
Chapter 2
Application of Markov State Models
to Simulate Long Timescale Dynamics
of Biological Macromolecules
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Abstract Conformational changes of proteins are an essential part of many biologi-
cal processes such as: protein folding, ligand binding, signal transduction, allostery,
and enzymatic catalysis. Molecular dynamics (MD) simulations can describe the
dynamics of molecules at atomic detail, therefore providing a much higher temporal
and spatial resolution than most experimental techniques. Although MD simulations
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have been widely applied to study protein dynamics, the timescales accessible
by conventional MD methods are usually limited to timescales that are orders of
magnitude shorter than the conformational changes relevant for most biological
functions. During the past decades great effort has been devoted to the development
of theoretical methods that may enhance the conformational sampling. In recent
years, it has been shown that the statistical mechanics framework provided by
discrete-state and -time Markov State Models (MSMs) can predict long timescale
dynamics from a pool of short MD simulations. In this chapter we provide the
readers an account of the basic theory and selected applications of MSMs. We will
first introduce the general concepts behind MSMs, and then describe the existing
procedures for the construction of MSMs. This will be followed by the discussions
of the challenges of constructing and validating MSMs, Finally, we will employ
two biologically-relevant systems, the RNA polymerase and the LAO-protein,
to illustrate the application of Markov State Models to elucidate the molecular
mechanisms of complex conformational changes at biologically relevant timescales.

Keywords Markov State Models • Molecular dynamics simulations • Free
energy landscape • Molecular recognition • Biological macromolecules •
Proteins • RNA polymerase

2.1 Introduction

Conformational changes are known to be critical in many biological processes such
as protein folding, ligand binding, signal transduction, allostery, and enzymatic
catalysis [1–4]. Due to its significance in biological field, a great amount of research
attention has been drawn to investigate conformational changes in biological
macromolecules. Throughout the decades of conformational studies in biomolecular
systems, X-ray crystallography [5] has evolved and thus has already revolutionized
our understanding on the atomic-level structural details as well as the functions of
protein, DNA and RNA. More recently, the emergence of Cryo-electron microscopy
[6] and small-angle X-ray scattering techniques [7] has further boosted the advance
in the understanding of complex biomolecular structures. Despite their remarkable
success in the field, these experimental methods can only provide static snapshots
of the molecules under study but not the details of the conformational dynamics.
To overcome this limitation, alternative experimental methods, including nuclear
magnetic resonance spectroscopy (NMR) [8] and several different fluorescence
spectroscopic techniques [9–13], are routinely used to study the dynamics of protein
ensembles in real time. Even so, the atomic-level details of conformational changes
in biological macromolecules are still hard to capture, mainly due to the fast-
dynamics and microscopic nature of these systems.

Molecular dynamics (MD) simulations are a computational technique that can
complement experiments and address the aforementioned issues. MD is a simulation
technique based on Newton’s equations of motion and in the recent years it
has attracted great attention due to its ability to simulate dynamics of biological
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Fig. 2.1 The timescales gap between the conformational changes accessible by conven-
tional MD simulations and the relevant biological functions observed experimentally for
biomolecules. The picture illustrates the notion of timescale gap between the theory (MD
simulations) and experiments, however, (red color key) the Folding@home project (using massive
crowdsourcing computing) [22] and the specialized MD simulator machine Anton [23], have
been able to MD simulate experimentally relevant timescales (�s-ms) by using its massive
computational resources. However, these kinds of resources are not accessible to everyone and
currently its capacity is indeed restricted to relatively small biomolecules

macromolecules [14, 15]. MD can describe the molecules dynamics in atomic detail,
which is of a much higher spatial resolution than most experimental techniques.
In the past decades great progress has been made in the development of force
fields used for MD simulations of biologically relevant macromolecules, which
had led to a more accurate description of the dynamics of protein, DNA and
RNA. Furthermore, the exponential increase of computing power [16] and the
development of crowd-sourcing computing [17], has allowed in recent years the
simulation of biological macromolecules at timescales ranging from nanoseconds
(ns) to microseconds (�s). In a limited number of cases, it has even been possible
to simulate the millisecond timescale of small proteins with the aid of specialized
MD computers [18], an unprecedented timescale [19, 20] that, for the first time, has
permitted comparisons with experimental data and to elaborate hypothesis about the
mechanisms of protein’s function.

Although MD simulations have been widely applied to study protein dynamics
at an atomic-level of detail, the timescales accessible by conventional MD methods
are usually limited to the timescale that is orders of magnitude shorter than the
conformational changes relevant to the biological function. In order to bridge
this “timescale gap” [21] (see Fig. 2.1), many research efforts have been devoted
to the development of theoretical methods that aim at faster sampling of the
conformational space [24], some examples include: steered [25], targeted [26],
accelerated [27, 28], replica exchange MD simulations [29] and metadynamics [30].

In contrast to these enhanced sampling techniques, a mathematical framework
known as Markov State Model (MSM) has recently caught researchers’ attention
due to its potential to bridge the timescale gap. With the application of such
framework, system dynamics at long timescales can be predicted by performing
only short (time conventional) MD simulations [31–36]. The emergence of this
promising method has thus opened the door of extracting at-equilibrium models
of the complete energy landscape of biomolecules.
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A number of successful examples of applying MSM have already been reported
in the field of protein and RNA folding, protein-ligand binding mechanisms and the
release of enzymatic reaction’s sub-products. For further reference, we recommend
the following notable recent examples: the Pande group has described the protein
folding process of the Villin’s headpiece [37], lambda repressor [38], NTL9 [20]
and showed that for some protein the folded native-states are kinetic-hubs [39]; The
Huang group used MSM to study the folding of small RNA hairpins [40], ligand
binding mechanism of a periplasmic binding protein (PBP) [41] and the release of
pyrophosphate ion from the active site of the yeast RNA polymerase II (Pol II) [42]
and bacterial RNA polymerase [43]; the Noé group has used MSM to understand
the folding mechanism of the PinWW protein [44]; while Bowman and Geissler
have described a novel method to identify hidden allosteric sites in proteins based
mainly on MSMs [45]. All these studies have demonstrated a good agreement with
the available experimental observations.

In view of this widespread interest in the application of MSM to biomolecular
studies, we will hereby give a general account of the theories as well as applications
in the chapter. We will first introduce the basic concepts behind MSM and describe
the detailed procedures for its construction, we will then illustrate the challenges
of generating and validating a MSM, and finally we will employ two biological
systems, the RNA polymerase (bacterial and eukaryotic) and the Lysine-, Arginine-,
Ornithine-binding protein (LAO protein), as examples to explain the practical details
of how MSM can be used to extract relevant kinetic and at-equilibrium information
from an ensemble of short MD simulations.

2.2 Modeling the Dynamics of Biomolecules

Macromolecules, due to their high degrees of freedom and complicated molecular
interaction, have numerous free energy minima in their conformational free energy
landscape. In general, relatively low free energy barriers (within the order of several
kcal/mol) separate these free energy minima. Because molecules are dynamic in
nature at any temperature above absolute zero, and the amplitude of these motions
increases with temperature, thermal fluctuation at biologically relevant temperatures
are usually sufficient for the system to overcome these low conformational free
energy barriers. Therefore, in most cases (if not all), at biologically relevant
temperatures, what is called the native state of a protein is actually composed
by a collection of protein conformations in dynamic equilibrium. To model the
kinetics of such systems, a common approach is to divide the conformational
space into a set of discrete states that are kinetically metastable in nature [31, 33],
each corresponding to a free energy minima (or a grouped set of connected free
energy minima). Therefore, the transitions between these metastable states can be
approximated as the transitions between states in a kinetic scheme.
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If the probability distribution of any future state X(t C �t) depends only on the
present state X(t) the transition process is known as Markovian, also sometimes
dubbed as “memoryless”. Such Markovian process in a kinetic scheme can be
described by the memoryless Master equation:

dX.t/

dt
D X.t/K (2.1)

with X(t) being an n-dimensional row vector describing the probability for the n-
states to be occupied at time t. K is the rate matrix, where Kij is the rate constant
for the transition from state i to j. The diagonal elements of K are defined such
that Kii D � P

i ¤ jKij in order to have conservation of mass. This memoryless
approximation is the underlying reason that allows modeling of macromolecular
dynamics with MSM, which will be discussed in detail in the following section.

2.3 Markov Chain

To aid readers’ understanding in the application of MSMs, some basic knowledge of
Markov process will be first presented. A Markov Model (named in honor to Andrey
Markov, who develop the theory of stochastic processes) defines mathematically a
finite system (described by states) with transitions from one state to another. In this
stochastic model, the fundamental assumption is that the population distribution
X(t) is sufficient to determine any later distribution X(t C �t) where �t > 0.
Under this model the states evolves over time in a probabilistic manner, and
the distribution of states X(t C �t) after each �t (namely propagation) depends
only on its previous distribution X(t), but not on any state before that. This is
consistent with the “memoryless” approximation mentioned in the previous section,
and thus MSM can be applied in the description of kinetics of macromolecular
systems. Currently the prevailing type of Markov Model applied in macromolecular
studies is known as Markov Chain, which considers an autonomous (no external
contribution) process with fully observable states (occupancy of every states
in the model are transparent to the observers). In a time-continuous Markov
chain, the interval of propagation steps �t is infinitesimally small such that the
stochastic process can be represented as a continuous propagator. However, in
the case of the applications of Markov Models for the analysis of data from
MD simulations, due to the fact that MD simulations are intrinsically discrete
in nature, the model most frequently employed is a discrete-time homogeneous
Markov chain model in which the propagation only occurs as discrete steps.
More details of this kind of MSM will be illustrated in detail in the following
example.



34 L.-T. Da et al.

2.4 The Transition Probability Matrix

Let us consider a simple case, suppose that a protein has three metastable states,
namely: state 1, 2 and 3. If transitions only occur stochastically at some dis-
crete time, the system can be modeled as a discrete-time Markov chain. In our
example, we assume the propagation steps are equally spaced at an interval �

and the transition probabilities per propagation step are time-homogeneous (i.e.
the transition probabilities depend only on �t but not on t). Now, assume that
the transition probabilities per propagation time step � (also known as lag time)
between any pair of these three states are known to be those listed in the following
2D matrix:

State 1 2 3

1 0.65 0.28 0.07
2 0.15 0.67 0.18
3 0.12 0.36 0.52

The previous matrix is known as the transition probability matrix (TPM). In a
TPM we use the symbol pij to represent the transition probability from state i to
state j. Hence, the probability of the transition from state 2 to 3 is represented as p23.
From the TPM above we know that p23 D 0.18. In terms of an MSM, the transition
probability matrix (P) is a row-normalized matrix (

P
jPij D 1, 8 i), because the

elements pij in each row represent the probability of a state i to transition to different
states j and the summation

P
jPij is the probability to have a transition originating

from state i to any state j. Please note that some literature uses a column-normalized
matrix Pt instead of the row-normalized matrix, but in this chapter we will conform
to the row-normalized matrix definition.

2.5 Propagation of the Markov Chain

As mentioned before, a Markov chain must meet the requirement that the probability
of any state after the chain propagation is independent of all but the previous state.
For the previous example, suppose that the initial distribution probabilities of the
states follow the row vector X(0) D [0.21,0.68,0.11] (i.e. 0.21 of the population is in
state 1 and so forth). Because pij refers to the conditional probability of the transition
from state i to j, the distribution after one chain propagation (�t) can be calculated
by: X(0)P(� ) � [0.25,0.55,0.19]. In a similar way, the distribution after two chain
propagations is determined as X(0)P(� )2. Therefore, we can write the distribution
vector after the time n� as:

X .n�/ D X.0/ŒP .�/�n (2.2)
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Given Eq. (2.2) and a vector of initial population distributions for the system
states, it is possible to predict the evolution of the system on a longer timescale by
the simple exponentiation of probability matrix. The Eq. (2.2) is actually equivalent
to Eq. (2.1), but at discrete times, and they are related by the expression: P(� ) D e�K

[32, 43].

2.6 Constructing a TPM from MD Simulations

TPM is the fundamental part of a discrete-time homogeneous MSM, because
a vector of state probabilities can be propagated forward in time by simply
multiplying it to the transition probability matrix. The construction of TPM is
therefore the most important process in the construction of a discrete-time MSM.
To construct the TPM in practice from MD trajectories, one has to first perform
space discretization to group conformations in the trajectories together (details of
the technique will be discussed in later sections of the chapter), because only if we
consider a group of conformations as oppose to individual conformation we can
empirically determine the observed conditional probability for a transition event
to occur. With the conformational space properly discretized (in either microstate or
macrostate level), a transition count matrix (TCM) N is then constructed by counting
the total number of transitions (nij) from state i to j observed in all MD trajectories
within a certain lag time � . From the principle of detailed balance, the TCM obtained
should be symmetric because all elementary transitions should be reversible under
equilibrium condition. Yet due to the fact that equilibrium sampling is almost never
reached in simulations (thus the need of MSM for equilibrium studies), the TCM is
usually not strictly symmetric. In these cases, the TCM can be symmetrized by:

N symm D N C N T

2
(2.3)

The TPM is then formulated by normalizing each row of the symmetrized
TCM by:

Pij D Nsymm
ij

X �
Nsymm

ij

� (2.4)

Simply symmetrizing the transition count matrix is the most trivial way to
impose the detailed balance condition, but may introduce errors when the number of
inter-state count is small or rather un-symmetric. Noé has introduced an algorithm
to approximate the transition probability matrix induced by the observed count
matrix. Under the framework of the Bayesian Inference, a distribution of transition
probability matrices (posterior distributions) can be obtained using a Metropolis
Monte Carlo scheme, subject to the constraint of the detailed balance with the
observed transition count matrix as the maximum likelihood [32].
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2.7 Considerations of TPM Construction

With a properly constructed TPM, it is possible to derive a MSM that can be used
to understand the time-evolution of system. However, in spite of this attractive
feature of MSM, it is necessary to understand that such property is founded on
the Markovian assumption, but the assumption does not necessarily hold true for a
kinetic scheme obtained from MD simulation. This is due to the fact that upon space
discretization during the clustering step, one will introduce discretization error in
the model [46]. This error is mainly produced by the existence of small internal free
energy barriers inside of the discrete states, which will give rise to differences in
the dynamics among the conformations existent within the state (due to the inertial
effects of molecule dynamics at short timescales). In order to reduce such error, a
finer discretization can be performed or a longer lag time could be chosen. None
of these approaches is perfect, a finer discretization could reduce the differences in
dynamics among conformations within a state, but at the same time the statistical
significance of each cluster is reduced. On the other hand, by coarse-graining the
simulations time into long time steps, the system can have more time to “lost its
memory” so as to achieve better Markovianity. For example, if we consider the
limit, theoretically any model will be Markovian at the infinity limit, despite the
fact that this scenario is unfeasible in any time-dependent simulation. Yet if we
could achieve perfect Markovianity under such condition, the dynamic information
of the system will be completely lost. Therefore, in order to generate an insightful
Markov model using MD data, apart from choosing a lag-time long enough to give
a good approximation of the Markovian condition, it is equally necessary to choose
a lag-time that is short enough to be useful (few ps-ns in most cases). In other
words, when building an MSM from MD simulations, one always has to face the
tradeoff among Markovianity, spatial resolution and preserving certain timescale-
resolution of the dynamics. If we try to take into account these constraints as
well as our aim of representing the energy landscape with a Markovian kinetic
scheme, we can deduce one possible balance between these factors could be that
the state defined in the model should be metastable (thus correspond the minima
of the energy landscape), the intra-state relaxation times (the time a state takes for
a conformation inside the state to transit to other conformations within the state
and lost the memory) is minimal (thus all conformations can have similar kinetic
behavior via fast interconversion) and the interstate transition times (the time that
takes for a conformation to transit to a conformation in other state) is maximal
(or in other words, high barriers lie between states), this implies the generation of
metastable states without internal high free energy barriers [33, 34, 40].

If we examine closely the protocol presented above, one can discover that under
the Markovian assumption the construction of a TPM does not require individual
MD simulations to visit all the metastable regions in the free energy landscape
[34, 44, 47]. Instead, only probabilities of local interstate transitions are necessary
for constructing TPM and the corresponding MSM. This actually lessens the burden
of computational cost to strive for a converged sampling with long trajectories, as
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many short sampling-trajectories (just long enough to sample interstate transitions)
are all that is required. Furthermore, apart from standard MD simulation, there are
other sampling methods that can be applied in order to generating descriptions of
the energy landscape that can be used in a MSM construction (e.g. Monte Carlo
simulations), but those are beyond the scope of this chapter.

Now, the only remaining question for MSM construction is how to define the
micro- and macro-states that are used to calculate the TPM.

2.8 Free Energy Landscapes of Biomolecules and Its
Relation to Microstates, Macrostates and MSM

From the notion above, it can be understood that a proper partitioning of the
conformational space such that the metastable states correspond to distinctive
energy minima is necessary for generating a TPM that can give a valid MSM.
Usually such partitioning is achieved in two stages, namely the microstate clustering
and the macrostate lumping. The microstate clustering aims to generate clusters
of conformations fulfilling the criteria that conformations within each cluster have
similar kinetic behavior, while the macrostate lumping aims at putting the clusters
generated in the previous stage together, in order to give place to larger groups,
each composed of several microstates, such that the major energy barriers in the
system lie between macrostates. In the case of the microstates, if we consider that an
ensemble of converged MD simulations represents an “energy landscape” [44, 47],
then we can assume that it is possible to generate a partition of the system just by
grouping conformations that are related kinetically at short time-intervals. If the
partition of the microstates is fine enough (see Fig. 2.2), a group of the microstates
will correspond/minimize to the same energy-minimum basin [31, 33, 34].

Therefore, at the macrostate lumping stage (see Fig. 2.2), one can look at the
transition/kinetics between the microstates in order to connect those microstates

Fig. 2.2 The steps required when building a MSM. The conformations (GE data, represented by
points) obtained from the MD simulations are firstly grouped into microstates; next, the structures
are clustered in microstates based on its degree of geometric similarity. Next, the microstates are
further lumped into several kinetically related macrostates (Figure adapted from reference [34])
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Fig. 2.3 Relationship between energy landscape, MD trajectories and metastable states. The
schematic 3D free-energy landscape, comprised by 5 energy minimums, represents the confor-
mational space of a certain protein. The different lines illustrate the behavior of 3 hypothetical
MD trajectories started from different energy minima. It can be appreciated that some trajectories
are able to overcome the energy barrier, escaping from its starting energy minimum to enter into
another minimum, but none of the independent trajectories is able to visit the complete energy
landscape (i.e. all the relevant protein conformations). Nevertheless, if considered as a conjunct
the MD simulations had in fact visited all the energy landscape. The 2D projection in the bottom
shows an idealized discretization of this energy landscape into the corresponding 5 metastable
states (Figure adapted from reference [47])

separated by low-energy barriers (i.e. those with fast inter-microstates transitions)
into a single metastable state (macrostate). In this way, by first partitioning the
conformations into microstates and then lumping the microstates into macrostates
the complete energy landscape can be partitioned into a small set of metastable
states (see Fig. 2.3) [34], such macrostate division of the energy landscape is not
only representing the underlying kinetics of the system, but also by reducing the
number of states in the system (usually to less than 100) it is easier to analyze and in
many cases it is also possible to extrapolate the MSM into a human-comprehensible
fashion (e.g. a graphical representation showing the transitions between states).
Finally, by calculating the transition probability matrix at the micro and macrostate
level, we can construct and validate the MSM, which can be used to extract useful
thermodynamic and kinetic properties of the dynamic process that we are interested.
As explained before, any of the two models: micro- and macro-state level can
be valid, however one should choice between the finer and the coarser model
based. Nevertheless, usually the macrostate model is the common choice, since it
is simpler, easier to analyze and its statistical certainty is intrinsically higher.
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2.9 Microstate Clustering of MD Conformations

Although there is a lack of consensus about the best method to cluster kinetically
related conformations, the most usual methods are based on some sort of geo-
metrical clustering. The assumption behind structural clustering is that structures
closely related in the geometrical space should also be closely related in the kinetic
space, hence, grouping structures that are close in geometry will approximately give
structures that are close in dynamics. Several structure-based clustering methods
are already available, with the most fundamental and widely used are: K-centers,
K-means and K-medoids clustering. The common goal for these three methods
is to partition a set of n conformations into k mutually exclusive partitions C1,
C2, : : : , Ck. These k partitions are then used for macrostate lumping in the later
stage.

K-centers clustering aims at find k “centers” (see Fig. 2.4A), which is defined by
a subset S from the set of points V such that jSj D k and minimizing the expression:

max
v2V

min
s2S

.v; s/ (2.5)

or, in simple words, find k points from the dataset such that the longest distance
between any point to its closest corresponding center is minimized. The k partitions
can then be obtained by assigning all points into their closest corresponding centers
to form k mutually exclusive groups.

The k-centers problem is actually NP-hard, which implies that solving the exact
solution is computationally expensive. In real practice though, k-centers clustering
algorithm usually refers to an approximate algorithm shown below:

1. Randomly select one conformation as the center of the first microstate k1.
2. Calculate the distance d(xi, k1) between each of the conformations xi in the

dataset and k1.
3. Choose the conformation with the largest d(xi, k1) value as the second microstate

center k2.
4. Reassign the conformations in the dataset to the new cluster if the distance to the

new cluster center is shorter than the distance to any other cluster centers (i.e. for
a new cluster center k2, conformation xi is assigned to C2 if d(xi, k2) is shorter
than d(xi, k1).

5. Then choose the next cluster center that is furthest from the all previous centers
and repeat step 4.

6. Repeat the same procedure until the desired number of microstates is obtained.

The k-centers clustering method can create clusters with an approximately equal
geometric volume. Moreover, the clustering speed can be greatly improved by
applying triangle inequality in the step of cluster assignment, which has been
currently implemented in the MSMBuilder package [34, 50, 51].
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Fig. 2.4 (A) Illustration of an approximate k-centers clustering algorithm. The process of
generating k geometric groups from a given dataset with the approximate k-centers algorithm is
illustrated as follows: (from left to right) (a) From the given data points, choose a random point
as the first cluster center. (b) Measure the distance of all points against the first center and choose
the one with the furthest distance as the second cluster center. Assign all points to their closest
cluster center such that all points are divided into two clusters (“partitions” in the mathematical
sense), illustrated here with two different colors. (c) Measure the distance of all points against their
assigned cluster centers, find the point with the maximum distance (i.e. furthest from all existing
center) as the next cluster center. Re-assign all points to their closest centers into partitions. Repeat
until the desired number of clusters k is obtained. The final partitioning is used as the geometrical
grouping of the points (Figure adapted from reference [48]). (B) Illustration of an approximate
k-means clustering algorithm. K-means algorithm attempts to divide the given dataset (a) into
k geometric partitioning in the following way (From left to right, top to bottom). (b) From the
data points, randomly choose k points as initial centers (circled). Assign all points to their closest
corresponding centers into k partitions, shown here in different colors. (c–d) For each partition,
take the “mean” position of the points within the group as the updated center position (circles). Re-
assign all the points again to the new centers. (e) Repeat the process until no change in the cluster
assignment is observed. The final cluster assignment is taken as the geometrical partitioning of the
points (Figure adapted from reference [49])
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K-means clustering refers to something very different from k-centers clustering
(see Fig. 2.4B). Instead of aiming solely at points to be centers, the k-means
clustering attempts to find k partitions so as to minimize:

kX

KD1

X

xi 2Ck

r�
xi � kj

�T �
xi � kj

�
(2.6)

where kj D 1
Nk

X

xi 2Ck

xi . In other words, the points are put into k partitions so that

the sum of distances of all points to the partition average of their assigned partitions
is minimized.

Just like k-centers, k-means is also an NP-hard problem, and so an approximation
is also needed. A commonly used approximate k-means clustering protocol is
illustrated here:

1. Instead of using one conformation as the first microstate center, k conformations
are (randomly) chosen as the initial centers for the k microstates.

2. Calculate the Euclidean distance between every conformations in the dataset to
each centers defined in step 1.

3. Assign the conformation to the microstate with the minimum distance.
4. Determine the mean vectors by averaging the distance vector for all the confor-

mations within each microstate, and using the mean vector as the new center.
5. Repeat step 2, 3 and 4 until the clustering process is converged. That is, the new

round of iteration does not change the assignments of any conformations from
the previous iteration.

Despite the popularity of k-means cluster, this clustering technique is actually
sensitive to the low density regions and tends to lump the points from the low
density regions into the clusters from high density regions, which in the context
of microstate clustering leads to the incorrect description of the some interesting
states such as the transition states. A clustering algorithm that closely resembles k-
means, which is known as k-medoids clustering, can overcome the above drawbacks
of k-means by taking actual data points (“medoids”) instead of the means of the
partitions as centers. Unfortunately, k-medoids also has its own limitations, such as
being inefficient for large data sets and offer a poor control of the cluster size.

2.10 Implied Timescales and Number of Macrostates

With the microstates generated from the first stage of clustering, we can construct
the TPM based on the transitions between these states. Then if we attempt to do
eigenvector decomposition of the TPM:

Xi P .�/ D �i Xi (2.7)
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where each eigenvector Xi actually corresponds to a certain state distribution that
can give rise to a sustainable mode of transitions between groups of states, with
the signed structure of the eigenvector indicating the two groups between which the
transition occurs. The eigenvalue of each mode can be interpreted as reflecting the
decay of the occupancy of the mode (Ni). If initially, the occupancy of the mode i is
taken as:

Ni .0/ D 1 (2.8)

At t D � , the occupancy of the mode i then become:

Ni .�/ D �i (2.9)

where: �i � 1.
From the decaying property, the time dependence of the occupancy of each mode

can be modeled as an exponential decay with decay rate constant 1
�i

(or � i as time
constant), such that:

Ni .t/ D e
� t

�i (2.10)

If we put t D � in Eq. (2.10), and combine that with Eq. (2.9), we have:

Ni .�/ D e
� �

�i D �i (2.11)

We can then express the time constant � i of the decay of transition mode as:

�i D ��

ln .�i /
(2.12)

This time constant � i is also known in the literature as the “implied timescale” of
the transition mode. Due the fact that � i reflects the lifetime of a particular transition
mode, it can also be used in the assessment of the timescale of the dynamics of the
system and the identification of modes. A slow � indicates a persistent transition
mode, which can correspond to slow dynamics, and such modes are usually of
particular interest in MSM construction. When the implied timescales are used in
the determination of the Markovian time of the system, multiple transition matrices
are built at different lag time � and the corresponding sets of implied timescales
� i are then determined (see Fig. 2.5). If all the microstates generated are ideally
Markovian, all the implied timescales should remain constant regardless of the
choice of lag time, but this is usually not the case in practice. It is instead expected
that the implied time scale will first quickly rise and then flatten off. In such cases,
the time at which all implied timescales have plateaued will be treated as the
Markovian time of the system.
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Fig. 2.5 Implied timescales convergence at different discretization levels. The plot shows the
lag-time dependent implied timescales of the two slowest processes (t2, solid lines) and (t3 dashed
lines), computed from different MSM of the MR121-GSGSW peptide. The different models
(different line colors) correspond to k-centers clusterings of the same MD simulations data, but
using different number of clusters (microstates). As it has been explained in the text, a model
start to be Markovian at the shortest lag-time in which the slowest implied time scales converge,
it is to say when the plot flattens. It can be seen that, as explained in the text, increasing the
number of clusters (finer discretization) enhances a faster convergence of the implied timescales;
hence, models with more microstates are Markovian at shorter lag-times (Figure adapted from
reference [46])

2.11 Lumping Microstates into Macrostates

Under the protocol that we discussed, the second stage of MSM building involves
lumping the microstates generated in the first stage into larger macrostates. The
number of macrostates of the system can be chosen based on the major gap(s)
between two consecutive modes in the implied timescales (see Figs. 2.5 and 2.19),
as such gap indicates the slower modes and the faster modes have a significant
separation in timescale (i.e. the slower modes will be significantly more sustainable
than the faster ones). By choosing the number of macrostates in such way,
theoretically the slow dynamics can all be properly preserved in the final model
(i.e. no mixing of fast and slow dynamics in a single state), which in turn allows the
model to fulfill the basic MSM requirements: (1) states are metastable, (2) intrastate
transitions are fast, and (3) interstate transitions are distinct and slow.

The actual macrostate lumping can be performed using several methods, two
of the most commonly used are: Perron cluster cluster analysis (PCCA), and
its improved version (PCCAC). Basically, PCCA utilizes the properties of the
eigenvectors and eigenvalues of the TPM to split the set of microstates into groups
(see Fig. 2.6). As stated in the previous section, each eigenvector of the TPM
corresponds to a certain mode of sustainable transitions between groups of states
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Fig. 2.6 PCCA lumping of microstates into macrostates. (a). Projection of the energy potential
for 100 microstates onto one discrete coordinate, three energy bins were identified. (b). Transition
matrix T for the 100 microstates. (c). Left eigenvectors of T indicating the transition information
between different microstates. Each eigenvector corresponds to a certain mode of sustainable
transitions between groups of states with the signed structure indicating the two groups. Except
the first eigenvector provides the stationary distribution. (d). The eigenvalue spectrum of T. (e)
Projections of the 100 microstates onto the second and third right eigenvectors of T. (f) Transition
information for the macrostates A, B and C (Figure adapted from reference [33])

with the signed structure indicating the two groups. With the first eigenvector
neglected (as it has an eigenvalue of 1 or implied timescale which represents the
equilibrium), the set of microstates can thus be split into N groups by successively
choosing the first Ni eigenvectors and partition the microstates into two groups
according to their sign structure (see Fig. 2.6). After lumping we can recalculate the
TCM on macrostate level, from which we can calculate the stationary distribution
for the different metastable states. The next section treats a different algorithm that
aims to generate multiple timescale-resolution MSMs at the macrostate level, which
is based in the use of hierarchical clustering method.

2.12 Hierarchical Lumping of Microstates in Macrostates

In PCCA, microstates are lumped together based solely on the feature of TPM.
Despite the mathematical correctness of the previous method, practically the method
could suffer from sampling noise and cause errors in the resulted lumping. This is
especially true because of the multi-resolution nature of energy landscapes [40] and
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Fig. 2.7 Hierarchical clustering of microstates into macrostates. The kinetic clustering is done
separately on different density levels. At first level (highest density), two separate states are
identified, which are represented by the two nodes in red. At the next level, four separate states
are identified. After the identification of states at all density levels, the connectivity between states
at different level of hierarchy is identified, as shown in the figure below. The number of macrostate
and their corresponding lumping can be identified from the leaf nodes of the graph (Figure adapted
from reference [52])

also because the sampling quality of low populated microstates (e.g. near to high
energy barriers) can be very different to the highly-populated microstates (i.e. those
in the bottom of energy minima). The Super-density-level Hierarchical Clustering
(SHC) introduced by Huang et al. [40] attempts to address this issue by treating the
energy landscape in an hierarchical way instead of simply extracting features from
the TPM (see Fig. 2.7). As stated in the previous discussions, to achieve a Markovian
model the macrostates should be defined in a way that large internal free energy
barriers are avoided and conformations within the same macrostate can interconvert
quickly (within one lag time). Therefore, at smaller lag-times an MSM will require
more macrostates to ensure that each state is small enough such that its dynamics per
lag-time are memoryless. Intrinsically, shorter lag times result in higher resolution
MSM that capture more free energy minima separated by small energy barriers.
In the other hand, longer lag times result in a lower resolution MSM, with only a
few macrostates separated by high-energy barriers. From other point of view, in a
lower resolution MSM each macrostate is composed of multiple local free energy
minima. SHC attempts to do lumping at different resolution by considering subsets
of conformations with different densities successively, thus improves the accuracy
of the kinetic lumping by treating poorly sampled states differently from states
with better statistics [40]. Furthermore, for the issue that popular kinetic lumping
algorithms such as PCCA and PCCAC tend to identify poorly sampled states as
being kinetically distinct from the others [40] and preserve them as metastable state
in the resultant macrostate model, despite further investigations can easily show
that they are likely just due to sampling noise rather than representing the true free
energy minima, SHC can handle these states with very small populations separately
and so the resultant model will not be skewed by these poorly sampled states.
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The SHC algorithm clusters conformations hierarchically, by using super density
level sets in a bottom-up fashion. It first divides the densest regions of phase space,
which in a well-converged system may correspond to the free energy minima. Then,
by allowing the user to fine-tune the super density level sets, this algorithm can
generate multi-resolution models. From the best of the authors’ knowledge, SHC is
the first algorithm known to address the construction of MSM at different resolutions
(see Fig. 2.7).

The SHC algorithm lump the microstate together in the following way:

1. Partition the conformations into a large number of microstates. K-centers
clustering has been recommended by the authors, since it gives states with
approximately uniform size, which has been proposed that this might result in
a correlation between the population of each state and its density [40].

2. Split the microstates into n-density levels L D fL1, : : : Lng.
3. Calculate the super density level sets Si D L1 [ L2 : : : [ Li � 1 [ Li, and then each

super density level also contains all previous levels S1 � S2 � Si � 1 � Si.
4. Perform spectral clustering, in each super density level, to group kinetically

related microstates.
5. Build a graph of the states connectivity across super density levels. Then,

generate a directed gradient flows along the edges of the graph from low to
high-density levels. In SHC, it is denominated an attraction node (or attractive
basin) where the gradient flow ends. Each attraction node is assigned to a new
metastable state.

6. Assign every microstate not belonging to an attraction node, to the metastable
state that it has the largest transition probability to (see Fig. 2.7).

In the SHC algorithm, the populations of microstates obtained from the K-
centers clustering are used to approximate the conformation density, since K-centers
algorithm can generate clusters with approximately equal radii in RMSD. However,
it is extremely challenging to accurately estimate the conformational densities in
high dimensional spaces, since small variances in the cluster RMSD radius may
cause large differences in volume.

To address the above issue, Huang and coworkers have developed a new algo-
rithm, which is based on the Nyström method and its multilevel extensions (HNEG)
[52]. The HNEG algorithm allows us to approximate the transition probability
matrix (P) with its dominant submatrix (A). Using the Nyström approximation,
it can be shown that the leading eigenvectors of the submatrix A containing the
most populated states (i.e. the entries in A are significantly larger than those in B
and C) have the same sign structure as those of the original transition probability
matrix P:

P D
�

A B
BT C

�

(2.13)
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Therefore, one can perform the kinetic lumping based on the eigenvector
components of the submatrix A using either PCCA or PCCAC. In order to define
the boundary between A and C, the same multi-level procedure as laid out in the
SHC algorithm has been adopted.

In both SHC and HNEG algorithms, there are many possible choices of the super
level sets (S) and each could result in different lumpings. The authors recommend
trying many of them and then use Bayesian model comparison to choose the
best model [52]. One additional advantage of SHC and HNEG is that they can
automatically determine the number of macrostates, whereas many other methods
(like PCCA and PCCAC) require the state number to be known in prior.

2.13 MSM Validation

With the microstates properly lumped into macrostates the TPM can be constructed
at the macrostate level and the corresponding MSM can be built. Yet before using
the MSM for any analysis, an assessment of the model accuracy is necessary.
Apart from the aforementioned plateauing of the implied timescales, there also exist
other tests for assessing the validity of the model. A notable method is known as
Chapman-Kolmogorov Test [40, 46], which assesses the validity of the model based
on the premise that the Markovian assumption:

P .t C s/ D P.t/P.s/ (2.14)

must hold within the error margin (see Fig. 2.8). The actual testing procedures vary
between implementations, but the general idea lies on testing the transition matrix
propagated at the chosen Markovian time against the transitions counted from
populations bootstrapped from simulations. Only if the transitions predicted by the
MSM match with those observed in the simulation, the model is deemed valid. An
implementation example of the test is shown in Fig. 2.8. Alternative approaches of
model validation include application of Bayesian factors or information entropy [36,
53, 54], which will not be discussed in detail here. Apart from these pure theoretical
validations, assessments can also be done via comparison with experimental data
[19, 40, 41, 55, 56], which will be illustrated later in this chapter (see Sect. 2.18).

2.14 Mean First Passage Time

Having a properly built and validated MSM, kinetic information of the system can
then be harvested from the model. Apart from simply propagating the TPM so as to
obtain equilibrium populations, timescale information of the transition can also be
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Fig. 2.8 Example of Chapman-Kolmogorov test. A representative implementation of Chapman-
Kolmogorov test is illustrated here on one partitioned state. In this implementation the initial
population is first solely populated on the state to be tested (i.e. Xi(t D 0) D 1, Xj¤i(t D 0) D 0),
the probability for this state to be occupied in the subsequent steps (which can be considered as
the “self-transition” probability at the test step) are calculated via repeated propagation with TCM
following Eq. (2.3) in the main text. The calculated self-transition probability is then compared
against the actual occupation probability counted from MD trajectories for all propagated steps.
In this example, at £ D 100 the self-transition probabilities propagated to different time steps
clearly deviates from the ones directly observed from MD simulations, thus the MSM constructed
at £ D 100 cannot represent the kinetics of the model properly. For the MSM constructed at
£ D 500, the propagated self-transition probability marginally lies within the error bar, and thus
can better reflect the dynamics of the state than the one constructed at £ D 100. The MSM
constructed at £ D 2,000 gives self-transition probability that is close to the one observed from
MD, and thus is considered to be the model that best conform to the Chapman-Kolmogorov
equation under the test and should best represent the dynamics of the system (Figure adapted from
reference [46])

obtained from the model. One of the commonly used timescale for interstate tran-
sition is known as mean first passage time (MFPT), which is defined as the average
time taken for the transitions starting at state i until reaching state f for the first time,
including both the direct transitions from states i to f and transitions through other
intermediate states. MFPT of the transitions from i to f can be written as:

Fif D
X

j

Pij

�
� C Fjf

�
or Fif D � C

X

j ¤f

Pij Fjf (2.15)

where � is the lag time used to construct the transition matrix P(� ). Thus the
MFPT for all transitions in the model can be determined by solving a set of linear
equations defined by Eq. (2.11) with the boundary condition Fff D 0. Therefore, we
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Fig. 2.9 Application of
MFPT to the study of
small-RNA folding
mechanism. The figure
shows the folding mechanism
of a small RNA-hairpin
tetraloop (50-GCGGCAGC-
30). Next to the arrows are the
corresponding Mean First
Passage Times (MFPTs units:
�s) between the eight most
populated states in the MSM.
States are labeled in red from
1 to 8 and the state
populations are shown in
black (Figure adapted from
reference [40])

can understand that while the implied timescales describe the aggregated timescales
for transitions between groups of states, the MFPT are average transition times
between specific pairs or groups of metastable conformational states, and thus
the MFPT calculation can provide detailed information about system’s kinetics
(see Fig. 2.9).

2.15 Transition Path Theory

Apart from the overall dynamical behaviors of the system, one might also be
interested in some particular states or transitions. For example, in the case of a
protein-ligand interaction, one might be interested more in the transitions from a
unliganded protein state to a liganded protein state than the transitions between
different unliganded states. Because multiple possible pathways between the two
states are likely to coexist in an MSM, simple network analysis might not be
adequate for such purpose. In this case, a framework known as transition path
theory could be applied in order to study the relative likelihood of transitions
between a particular state A to another state B [57]. Under this framework, by
recursively solving for the interstate transitions between states, the pathway with
highest flux, defined as highest number of transitions per unit time, can be identified.
Such pathway can thus be understood as the “dominant pathway” for state A to B
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Fig. 2.10 Determination of the top 15 folding pathways of NTL9 using TPT. The transitions
between the macrostates are connected with sized arrows. The pathway along the larger arrows
indicate the dominant folding path (Figure adapted from reference [20])

transitions (see Fig. 2.10), and second or third pathways can thereby be identified
by following this scheme. Detailed derivations are beyond the scope of this chapter
and interested readers are advised to consult the relevant literature referenced for
further information [33, 46, 54, 57, 58].

2.16 Visualization of MSM

As with many parts of research, on top of the quantitative analysis, visualization
is also a very important part of understanding and appreciating a MSM. An
intuitive approach of illustrating MSM would be to present them as graphs with
macrostates as vertices and connectivity as weighted edges. Yet it is common to
come across MSM with more than just a few macrostates, and the connectivity of
these states may form a high dimensional network, which could make visualization
difficult. Depending on the systems, solutions of visualization issue might vary
considerably. Apart from plotting out the macrostate connectivity in whole or in
part, if some specific representative geometric parameters exist in the system that
can be used to describe the progress of the dynamics (e.g. a dihedral angle can
be used to describe the rotation of a bond), conformations could be projected on
such parameters and use them to describe the most prominent geometric differences
between different macrostates. This is a commonly used approach for simple system
as represented by the well-known system in the field: the terminally blocked alanine
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Fig. 2.11 Projections of the conformational space of the terminally blocked alanine peptide.
(a) Illustration of the ˆ and ‰ dihedral angles of the alanine in the terminally blocked alanine
peptide. These two dihedral angles represent the major possible conformational changes in the
system. (b) Energy landscape of the peptide projected onto the ˆ-‰ plane. The “energy” (shown
here as the “potential of mean force”) of the bins in the grid is determined from the density of the
projected points in each bin. High density regions of the projection are shown as the minima of the
energy landscape. With a proper choice of geometric parameters (in this case ˆ and ‰ dihedral
angle), geometric differences between different minima (which also correspond to six macrostates
in this case) can become prominent and intuitive visualization of the states is thus possible (Figure
adapted from reference [52])

peptide (NMe-Ala-Ace, also known as alanine dipeptide in some literature), which
represents the peptide motion with the ˆ and ‰ angle of alanine (see Fig. 2.11).
If such parameters are not available, an alternative approach could be to project
the conformations of interest on the first one or more principle components of the
system in order to have a general understanding of the spatial distribution of the
macrostates.

Recently a new program, the MSMExplorer [59], has become freely available.
This Java suite allows interactive visualization and analysis of MSM built using
the MSMBuilder package [34, 50, 51] (see Fig. 2.12). The representations of a
MSM that it can generate includes graph of states connections, scatter plots of user
definable data, visualization of hierarchical MSM and transition paths.
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Fig. 2.12 Visualizations of MSM using the program MSMExplorer. The recently released
MSMExplorer program allows to easily perform several visual analysis of MSM built using
the MSMbuilder-2. For example: (a) Network representations of the states in the model and its
connections to other states. (b) 2D scatter plots of arbitrary RAW data vs. state number, with visual
representation of the state size. (c) Visualization of hierarchical MSM, in which the membership
of a finer-grained model can be overlaid with a coarser-grained model, this allows the visualization
of multiple resolutions of the MSM in a single plot. (d) TPT diagrams of the highest flux paths
between two macrostates, with the advantage that images depicting conformations in each state
can be overlaid on each node (Figure adapted from reference [59])

2.17 Mining Data from MSM

Constructing and validating an MSM can be challenging, but extracting relevant data
from the model could be even more difficult. Some MSM construction packages
have therefore offered an all-in-one solution for application of MSM in MD studies.
For example, the MSMbuilder 2 package [50] offers several general tools coded in
python for analysis of MSM, such as: (1) Extracting random conformations from



2 Application of Markov State Models to Simulate Long Timescale Dynamics. . . 53

the micro and macrostates, which allows rapid visual identification of the structural
properties of the system in each state. When one is dealing with large dataset, it
is often convenient to measure physical properties (e.g. distances, SASA, RMSF,
correlations, among others) in a reduced set of representative conformation of each
state, which can be accomplished by randomly extracting an statistically significant
number of random conformations; (2) Calculating cluster radii, which allows rapid
assessment of the structural diversity among the clusters; (3) Calculating cluster
RMSD to a reference structure, which can be used to identify known states
of interest (e.g. folded and unfolded states, bound state or intermediates); (4)
Calculating the aforementioned transition path between two states, and generate
a plain text graph in a DOT file that can be visualized with a number of open source
software widely available for several operating systems.

Nevertheless, as in any scientific research problem, each studied system can
pose unique challenges and the users will frequently find themselves without the
necessary tools to perform a particular analysis. In such scenario, in many cases it
is possible to use simple Linux-like command line scripting (BASH, CSH, TCSH,
etc.) to combine existing analysis tools in order to perform more complex analyses.
However, the most powerful approach is to code custom analysis tools. Open-source
packages that provide a framework to interact with MD trajectories are valuable aids
for such customized programming, such as: MDAnalysis (in python language) [60]
which can be advantageously combined with the open source NumPy and SciPy
suites, VMD (Tcl/Tk) [61] and Gromacs (C) [62, 63]. Anyhow, there is no unique
or simple answer of how to perform a certain analysis, we compel the readers to
make an incursion in programming their own analysis tools. One can, in most cases,
find that by just following the existent online literature and asking advice from more
experienced programmers (in the many-existent Internet communities), it takes little
time to get used to programming analysis tools.

2.18 Practical Examples of MSMs Construction

With all the basic theories and tools discussed above, readers should have already
get hold of the essential techniques for applying MSM in practical biomolecular
studies. In the following sections, two of our works are presented here as practical
examples to illustrate how all these aforementioned techniques work in practice.

2.18.1 MSM Example #1. PPi Release Mechanism in the Yeast
RNA Polymerase II and Bacterial RNA Polymerases

RNA polymerase is a critical biological machine that is responsible for transferring
the genetic information from the DNA template to the messenger RNA (mRNA)
[64–66]. The nucleic addition cycle (NAC) of the RNA polymerase consists of
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several steps: (1) The post-state of the polymerase contains an empty active site
at register C1 site that can accommodate the incoming NTP. (2) The binding of
the NTP that can form several important contacts with a critical domain of the
polymerase named Trigger Loop (TL) and then fix it in a closed state. (3) The
catalytic reaction which forms the phosphodiester bond. (4) The release of the
produced pyrophosphate ion (PPi) from the active site. (5) The opening of TL
domain accompanied by the forward shifting template DNA by one register site,
which creates a new active site and new NAC starts. Extensive experimental and
theoretical studies have been devoted to understand the specific steps during the
NAC, including NTP binding, TL motion, catalytic reactions and translocation.

The interplays between the PPi release, TL opening motion and translocation
have attracted extensive attentions [67, 68]. The crystallography studies indicated
that the PPi release in T7 RNA polymerase is the driving force to trigger the opening
of the adjacent O-helix that allows the translocation [69]. However, the E. coil single
molecular study did not observe the coupling between PPi release and translocation
[68]. Recent fluorescence studies suggest that translocation process proceeds shortly
after or concurrently with the PPi release in E. coil system [67]. Although these
experimental studies shed light on the roles of the PPi release on the translocation,
the detailed mechanism of the PPi release process as well as its role on the TL
opening motion has been elusive. We have used MSM to address these questions
[42, 43].

People have obtained the crystal structures of the RNA polymerase in both
eukaryote and bacterial systems [70, 71]. Based on the NTP-bound RNA poly-
merase complexes in yeast and T. thermophilus (termed as Pol II and RNAP
respectively afterwards), we build the PPi-bound RNA polymerase complexes by
directly cleaving the P’-O bond to form the phosphodiester bond and the PPi

group (see Fig. 2.13). The comparison of the structures of these two complexes
shows different features in the secondary channel and TL domains. These structural
differences suggest that the PPi release mechanism and its effects on the TL domains
are likely to be different.

In order to obtain the initial release pathways of the PPi group in both systems,
we adopted steered MD (SMD) simulations to pull the PPi group out of the active
site. The pulling simulations were conducted along different directions with the
aim of considering all the possible PPi release pathways. Then, representative
structures from the SMD simulations were chosen for the following unbiased MD
simulations to erase the biases introduced by the SMD. These MD simulations were
then used to build the MSM. At first, we divided all the conformations from the
seeding MD simulations into hundreds of microstates by employing the K-center
clustering algorithm. The distance between a pair of conformations was set to be
the RMSD value of three PPi atoms (the bridge oxygen and two phosphorus atoms).
To compute RMSD, the structure was aligned to the modeled PPi-bound RNAP
complex according to the C’ atoms of the BH residues. The microstates are small,
and the average RMSD values to its central conformation in each state are only
�2 Å in both systems.
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Fig. 2.13 Comparisons of the binding modes between the ligands and two RNA polymerases.
(a) and (b) are the structures of the NTP-bound RNA Pol II and RNAP complexes respectively. (c)
and (d) are the corresponding PPi-bound models (Figure adapted from reference [43])

Next, we applied the Robust Perron Cluster Cluster Analysis (PCCAC) algo-
rithm to lump these microstates obtained above into several macrostates. The
number of the macrostates was determined from the major gap captured in the
implied timescale plot on the microstates level. The macrostates number was finally
determined to be 4 and 2 for the Pol II and RNAP system respectively.

Our results suggest that the PPi release in the Pol II adopts a hopping mode
in which four metastable states were well defined and several positively charged
residues were observed to form favorable interactions with the PPi group in each
metastable state [42] (see Fig. 2.14). Furthermore, mutant MD simulations were
individually performed to elucidate the specific roles of these residues on the PPi

release.
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Fig. 2.14 PPi release in Pol II adopts a hopping mode identified by MSM. (a). Four metastable
states (S1–S4) on the releasing pathway are displayed in sized circles proportional to their
equilibrium populations. (b). Key interactions between the PPi group and the Pol II residues in
each state. (c). Multiple sequence alignment of these positive residues in the secondary channel
among different species (Figure adapted from reference [42])

However, a simpler two-state model was observed for the PPi release in the
RNAP [43] (see Fig. 2.15). We found that the difference in the number of metastable
states in the release of the PPi between these systems is due to the different layout
of the positive residues in the secondary channel. Specifically, in Pol II, the four
residues, K619, K620, K518 and K880 are located at relatively separated sites.
However, the positively charged residues in RNAP: K908, K912, K780 and K1369
are close to each other in a continuous region.

From the kinetic point of view, our MFPT calculation indicates that the PPi

release in bacterial RNAP is �3 fold faster than that in Pol II (500 ns versus 1.5 �s),
which is consistent with the faster elongation rates observed for RNAP. More
strikingly, because of the higher stabilities of the TL domain in RNAP compared
to that in Pol II, the PPi release in RNAP cannot induce the backbone unfolding of
the TL domain. Instead, the TL residue R1239 was observed to greatly facilitate the
PPi release in RNAP by rotating its long side chain (see Fig. 2.16). Further control
MD simulations indicate that the TL domain must be exposed to the solvent before
its secondary structures can be fully unfolded. And the full opening motion of the
TL is likely to occur at a timescale longer than the timescale of PPi release.
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Fig. 2.15 Two-state model for the PPi release in RNAP identified by MSM. (a). The
distributions of the two macrostates. Each sphere represents the center of mass of the PPi group.
(b). Sized circles proportional to their equilibrium populations. (c). Key interactions between the
PPi group and the Pol II residues in each state. (d). Multiple sequence alignment of these positive
residues in the secondary channel among different species (Figure adapted from reference [43])

Fig. 2.16 Structural differences lead to distinct PPi release mechanisms in RNAP (a) and
Pol II (b) (Figure adapted from reference [43])



58 L.-T. Da et al.

Taken together, we have built the MSM based on extensive MD simulations to
investigate how the PPi group releases from the active site in both Pol II and RNAP
systems. By comparing the structural features of these two RNA polymerases,
we have addressed how the structural differences influence the kinetics of the
PPi release from the active site, providing deeper insights on the structural basis
underlying the transcription elongation process.

2.18.2 MSM Example 2. Ligand-Binding Mechanism
in the LAO Protein

In this example, we used Markov State Models (MSM) to elucidate the mechanism
by which the Lysine-, Arginine-, Ornithine-binding (LAO) periplasmic binding
protein (PBP) binds to its ligand [41]. Two models of protein-ligand binding have
been proposed for PBPs, the induced fit and conformational selection mechanisms,
both of which attempt to explain how the protein could change from an unbound
conformation to a bound conformation in complex with a ligand. In the induced
fit model [72] the ligand first binds to the protein in its unbound conformation and
this binding event induces the protein to go to the bound state. On the contrary, in
the conformational selection model [73], the protein can access the protein-bound
conformation even in the absence of the ligand, therefore the ligand can diffuse
directly to the bound conformation and displace the equilibrium towards it. Using
MSM, we directly monitored the mechanism of LAO binding to assess the role of
conformational selection and induced fit.

We used the aforementioned MSMBuilder and SHC programs and algorithms
to construct the state decomposition for our MSM of LAO’s binding. We first
performed 65 molecular dynamics simulations using the program GROMACS
[62, 63], each 200 ns long, of the LAO protein from the organism Salmonella
typhimurium and one of its ligands, L-arginine [74]. Ten simulations were started
from the open protein conformation (PDB ID: 2LAO) with the ligand at more than
25 Å away from the binding site. The other 55 simulations were initialized from
conformations randomly selected from those first ten simulations. To construct the
microstate partition, we first used the k-centers algorithm in MSMBuilder to cluster
our data into a large number of microstates. The objective of this clustering was
to group together conformations that are so geometrically similar that one can
reasonably assume (and later verify) that they are also kinetically similar. For the
protein-based clustering, we created 50 clusters based on the Euclidean distance
between a vector containing the protein opening and twisting angles (see Fig. 2.17).
Then for the ligand-based clustering, we created 5,000 clusters using the Euclidean
distance between all heavy-atoms of the ligand.

We then had to modify our clustering to account for the fact that the ligand
dynamics fall into two different regimes (see Fig. 2.18): one where the ligand
moves slowly due to interactions with the protein and one where the ligand is freely
diffusing in solution.
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Fig. 2.17 Ad-hoc reaction coordinates used to describe the energy landscape of the LAO
protein. (a) Opening and (b) twisting angles used to describe the motion of the protein. (c). The
projection of conformations on the second eigenvector from Principle Component Analysis (PCA),
and protein opening dihedral angle as a function of time are shown in red and black respectively.
The 20 ns simulation is started from protein in the closed state (PDB ID: 1LAF), but ligand was not
included in the simulation. (d) Same as (c) except that the projection of conformations on the first
eigenvector from PCA and protein twisting dihedral angle are plotted. In this system, the twisting
and opening angles are correlated well with the first and second eigenvectors from PCA (Figure
adapted from reference [41])

The clusters described previously are adequate for describing the first regime,
when the ligand interacts with the protein. However, when the ligand is freely
diffusing (at more than �5 Å from the protein) the procedure outlined above results
in a large number of clusters with poor statistics (less than ten transitions to other
states). Better sampling of these states would be a waste of computational resources
as there are analytical theories for diffusing molecules and a detailed MSM would
provide little new insight. Instead, we chose to re-cluster these states using the
Euclidean distance between the ligand’s center of mass (as opposed to the Euclidean
distance between all ligand heavy-atoms). At this stage, we created 10 new protein
clusters and 100 new ligand clusters. After dropping empty clusters, this procedure
yielded 3,730 microstates, of which 3,290 microstates came from the initial high
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Fig. 2.18 In the presence of LAO the diffusion of the ligand L-arginine experiences two
different relaxation-timescales. We found that the ligand of the LAO protein experience two very
different timescales. As exemplified in the schematic figure, it can be seen that the ligand rotates
quickly when it is far away from the protein but its rotation is restrained when it interacts with the
protein. Thus, when constructing MSM, we only consider the ligand center of mass motion when
the ligand does not have strong interactions with the protein (blue color) but we consider motion
of all the ligand heavy atoms when the ligand is strongly interacting with the protein (green and
red color). The graphs show the difference in the relaxation time of the ligand, which was assessed
by analyzing its rotational autocorrelation in many independent MD trajectories, for: the unbound
states (blue), the encounter complex state (green), and the bound state (red) (Figure adapted from
reference [41])

resolution clustering and 440 came from the data that was clustered again at low
resolution. To verify that the final microstate model is valid (i.e. Markovian) we
plotted the implied timescales and found that they level off at a lag time between 2
and 6 ns (see Fig. 2.19), implying that the model is Markovian for lag times in this
range.

We then lumped kinetically related microstates into macrostates using the SHC
algorithm with density levels Lhigh D [0.50, 0.55, 0.60, 0.65, 0.70, 0.75, 0.80, 0.85,
0.90, 0.95, 0.99] and Llow D [0.4, 0.95], for the high and low-density regions
respectively. The low and high resolution states were lumped separately because the
states in each set have different sizes, so it is difficult to compare their densities.
We then combined these two sets of macrostates to construct an MSM with 54
macrostates. Once again, we used the implied timescales test to verify that the
model is Markovian and found that a 6 ns lag time yields Markovian behavior (see
Fig. 2.19).

To generate the transition matrix using the above state decomposition, we have
used a sliding window of the lag time on each 200 ns trajectory with a 20 ps interval
between stored conformations (i.e. each trajectory contains 10,000 conformations)
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Fig. 2.19 Validating the MSM by analyzing the micro- and macro-states implied timescales.
To validate the Markovianity of our model, we examined the 20 slowest implied timescales as a
function of the lag time computed from: (a) MSM containing 3,730 microstates and (b) MSM
containing 54 macrostates. It can be appreciated that both plots level off at a lag time of �4 ns,
hence from this point the model can be consider Markovian. Thus we choose a lag-time of 6 ns
to construct our MSM. Furthermore, it can be seen that the implied timescales in the micro and
macrostate models has good correspondence, meaning that both models (micro and macro) give a
similar representation of the system (Figure adapted from reference [41])

to count the transitions. Because we used a hard cutoff between states, simulations at
the top of the barriers between states can quickly oscillate from one state to the other,
leading to an over-estimate of the transition rate between such states. To mitigate the
effect of these recrossing events, we only counted the transitions from state x to state
y if the protein remained in state y for at least 300 ps before transitioning to a new
state. To generate the transition probability matrix we normalized each row of the
transition count matrix.

To further assess the validity of our model we also verified that the system
could reproduce known experimental observables. First we confirmed that the state
with the largest population closely resembled the bound conformation observed in
crystals (see Fig. 2.20); we also confirmed that the model is also in reasonable
agreement with the experimentally measured binding free energy and association
rates. From the MFPT from all unbound states to the bound state, our model
predicts an association timescale of 0.258 ˙ 0.045 �s, in reasonable agreement
with the experimental value of �2.0 �s found in the highly homologous HisJ
protein. Also, by using the algorithm introduced by van Gunsteren and co-workers
[75] in conjunction with the equilibrium populations derived from our model, we
estimate a binding free energy of �8.46 kcal/mol, in reasonable agreement with the
experimental value of �9.95 kcal/mol. Together, this agreement between theory and
experiment suggests that our model is in good reflection of reality.

Our final model suggests that three dominant-states need to be considered
to adequately describe LAO’s binding mechanism and that both: conformational
selection and induced fit, play important roles in the transitions between these states
(see Fig. 2.21). The third dominant state in our model—besides the previously
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Fig. 2.20 Validating the MSM by structural comparison of the bound state. In our MSM,
as in the reality, the bound state is the most populated state in the system, (in our model having
an equilibrium population of 74.9 %). We used a snapshot from our simulations (structure in red
color), to verify that the bound state is equivalent to the known crystal structure. We found that a
snapshot in our model achieves a C’-atoms RMSD of 1.2 Å (within 8 Å of the ligand C.O.M.) to
the crystal structure of the bound state (blue structure, PDB ID: 1LAF), which confirms that the
structures contained in our model are in good agreement with the experimental information (Figure
adapted from reference [41])

known open and closed states—is only partially closed and weakly bound to the
ligand, thus representing an encounter complex state. The ligand can induce the
protein to have transition from the open state to the encounter complex (induced
fit); however, the ligand-free protein can also go directly to the encounter complex
state, indicating also an important role for the conformational selection mechanism
(see Fig. 2.21).

2.19 Remarks and Future Perspectives

In this chapter we have reviewed the fundamental theories underlying the construc-
tion and applications of MSM, we have also highlighted that the main advantage
of this method is to access timescales that are usually unreachable through con-
ventional MD simulations. Finally, we presented two applications to illustrate the
ability of MSM to investigate protein dynamics (at biologically relevant timescales)
and to extract information about biological mechanisms. In conjunction with the
increasing computing power, MSMs hold a great potential to address many more
important problems related to the dynamics of complex biological macromolecules,



2 Application of Markov State Models to Simulate Long Timescale Dynamics. . . 63

Fig. 2.21 The mechanism of LAO’s binding revealed by TPT. The figure shows the superpo-
sition of the 10 highest flux pathways from the unbound macrostates to the bound macrostate.
These pathways account for 35 % of the total flux from unbound states to the bound state. The
conformational selection and induced fit pathways from the unbound states to the encounter
complex state is shown in green and grey arrows respectively; it can be seen that the two
mechanisms coexist. The arrow sizes are proportional to the interstate flux. State numbers and
their equilibrium population calculated from MSM are also shown. The flux was calculated using a
greedy backtracking algorithm applied to our 54-states MSM (Figure adapted from reference [41])

including problems that were impossible to attack just few years ago, mainly due
to their prohibitive computational cost and the intrinsic complexity of analyzing
complete free energy landscapes from a MD trajectory perspective. We envision
that MSMs will be widely applied to elucidate molecular mechanisms of functional
conformational changes in the near future.
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