
Chapter 1
Protein Folding Simulations
by Generalized-Ensemble Algorithms

Takao Yoda, Yuji Sugita, and Yuko Okamoto

Abstract In the protein folding problem, conventional simulations in physical
statistical mechanical ensembles, such as the canonical ensemble with fixed tem-
perature, face a great difficulty. This is because there exist a huge number of
local-minimum-energy states in the system and the conventional simulations tend to
get trapped in these states, giving wrong results. Generalized-ensemble algorithms
are based on artificial unphysical ensembles and overcome the above difficulty by
performing random walks in potential energy, volume, and other physical quantities
or their corresponding conjugate parameters such as temperature, pressure, etc.
The advantage of generalized-ensemble simulations lies in the fact that they not
only avoid getting trapped in states of energy local minima but also allows the
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calculations of physical quantities as functions of temperature or other parameters
from a single simulation run. In this article we review the generalized-ensemble
algorithms. Four examples, multicanonical algorithm, replica-exchange method,
replica-exchange multicanonical algorithm, and multicanonical replica-exchange
method, are described in detail. Examples of their applications to the protein folding
problem are presented.

Keywords Generalized-ensemble algorithm • Multicanonical algorithm •
Replica-exchange molecular dynamics • Replica-exchange multicanonical
algorithm • Multicanonical replica-exchange method • Protein folding

1.1 Introduction

In order to study the protein folding problem, molecular simulation methods such as
Monte Carlo (MC) and molecular dynamics (MD) are often used. However, conven-
tional canonical simulations at physically relevant temperatures tend to get trapped
in states of energy-local-minima, giving wrong results. A class of simulation meth-
ods, which are referred to as the generalized-ensemble algorithms, overcome this
difficulty (for reviews see, e.g., Refs. [1–5]). In the generalized-ensemble algorithm,
each state is weighted by an artificial, non-Boltzmann probability weight factor so
that random walks in potential energy, volume, and other physical quantities or
their corresponding conjugate parameters such as temperature, pressure, etc. may be
realized. The random walks allow the simulation to escape from any energy barrier
and to sample much wider conformational space than by conventional methods.

One of effective generalized-ensemble algorithms for molecular simulations is
the multicanonical algorithm (MUCA) [6, 7], which was first applied to the protein
folding problem in Ref. [8]. In this method, the weight factor is defined to be
inversely proportional to the density of states and a free random walk in potential
energy space is realized. Another effective generalized-ensemble algorithm is the
replica-exchange method (REM) [9] (the method is also referred to as parallel
tempering [10]), which was first applied to the protein folding problem in Ref. [11].
In this method, a number of non-interacting copies (or, replicas) of the original
system at different temperatures are simulated independently and exchanged with
a specified transition probability. The details of molecular dynamics algorithm for
REM, which is referred to as the replica-exchange molecular dynamics (REMD),
have been worked out in Ref. [12], and this led to a wide application of REMD in the
protein and other biomolecular systems. One is naturally led to combine MUCA and
REM, and two methods, replica-exchange multicanonical algorithm (REMUCA)
and multicanonical replica-exchange method (MUCAREM), have been developed
[13–15]. MUCAREM can be considered to be a special case of the multidimensional
(or, multivariable) extension of REM, which we refer to as the multidimensional
replica-exchange method (MREM) [16]. MREM is now widely used and often
referred to as Hamiltonian replica-exchange method [17].
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In this article, we describe the generalized-ensemble algorithms mentioned
above. Namely, we review the four methods: MUCA, REM, REUMCA, and
MUCAREM. Examples of the results in which these methods were applied to the
protein folding problem are then presented.

1.2 Methods

1.2.1 Multicanonical Algorithm

Let us consider a system of N atoms of mass mk (k D 1, : : : , N) with their coordinate
vectors and momentum vectors denoted by q D (q1, : : : ,qN) and p D (p1, : : : , pN),
respectively. The Hamiltonian H(q,p) of the system is the sum of the kinetic energy
K(p) and the potential energy E(q):

H .q; p/ D K.p/ C E.q/; (1.1)

where

K.p/ D
NX

kD1

pk
2

2mk

: (1.2)

In the canonical ensemble at temperature T each state x � (q,p) with the
Hamiltonian H(q,p) is weighted by the Boltzmann factor:

WB .xI T / D exp .�ˇH .q; p// ; (1.3)

where the inverse temperature ˇ is defined by ˇ D 1/kBT (kB is the Boltzmann
constant). The average kinetic energy at temperature T is then given by

D
K.p/

E

T
D

*
NX

kD1

pk
2

2mk

+

T

D 3

2
N kBT: (1.4)

Because the coordinates q and momenta p are decoupled in Eq. (1.1), we can
suppress the kinetic energy part and can write the Boltzmann factor as

WB .xI T / D WB .EI T / D exp .�ˇE/ : (1.5)

The canonical probability distribution of potential energy PNVT(E;T) is then given
by the product of the density of states n(E) and the Boltzmann weight factor
WB(E;T):

PNVT .EI T / / n.E/WB .EI T / : (1.6)
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Because n(E) is a rapidly increasing function and the Boltzmann factor decreases
exponentially, the canonical ensemble yields a bell-shaped distribution of potential
energy which has a maximum around the average energy at temperature T. The
conventional MC or MD simulations at constant temperature are expected to yield
PNVT(E;T). A MC simulation based on the Metropolis algorithm [18] is performed
with the following transition probability from a state x of potential energy E to a
state x0 of potential energy E0:

w
�
x ! x0� D min

�
1;

WB .E 0I T /

WB .EI T /

�
D min .1; exp .�ˇ�E// ; (1.7)

where

�E D E 0 � E: (1.8)

A MD simulation, on the other hand, is based on the following Newton equations
of motion:

Pqk D pk

mk

; (1.9)

Ppk D � @E

@qk

D f k; (1.10)

where fk is the force acting on the k-th atom (k D 1, : : : , N). This set of equations
actually yield the microcanonical ensemble, however, and we have to add a
thermostat in order to obtain the canonical ensemble at temperature T. Here, we
just follow Nosé’s prescription [19, 20], and we have

Pqk D pk

mk

; (1.11)

Ppk D � @E

@qk

� Ps
s

pk D f k � Ps
s

pk; (1.12)

Ps D s
Ps

Q
; (1.13)

PPs D
NX

kD1

pk
2

mk

� 3N kBT D 3N kB .T .t/ � T / ; (1.14)

where s is Nosé’s scaling parameter, Ps is its conjugate momentum, Q is its mass,
and the “instantaneous temperature” T(t) is defined by

T .t/ D 1

3N kB

NX

kD1

pk.t/2

mk

: (1.15)
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However, in practice, it is very difficult to obtain accurate canonical distributions
of complex systems at low temperatures by conventional MC or MD simulation
methods. This is because simulations at low temperatures tend to get trapped in
one or a few of local-minimum-energy states. This difficulty is overcome by, for
instance, the generalized-ensemble algorithms, which greatly enhance conforma-
tional sampling.

In the multicanonical ensemble [6, 7], on the other hand, each state is weighted
by a non-Boltzmann weight factor WMUCA(E) (which we refer to as the multicanon-
ical weight factor) so that a uniform potential energy distribution PMUCA(E) is
obtained:

PMUCA.E/ / n.E/WMUCA.E/ � const: (1.16)

The flat distribution implies that a free random walk in the potential energy space
is realized in this ensemble. This allows the simulation to escape from any local
minimum-energy states and to sample the configurational space much more widely
than the conventional canonical MC or MD methods.

The definition in Eq. (1.16) implies that the multicanonical weight factor is
inversely proportional to the density of states, and we can write it as follows:

WMUCA.E/ � exp Œ�ˇ0EMUCA .EI T0/� D 1

n.E/
; (1.17)

where we have chosen an arbitrary reference temperature, T0 D 1/kBˇ0, and the
“multicanonical potential energy” is defined by

EMUCA .EI T0/ � kBT0 ln n.E/ D T0S.E/: (1.18)

Here, S(E) is the entropy in the microcanonical ensemble. Because the density of
states of the system is usually unknown, the multicanonical weight factor has to be
determined numerically by iterations of short preliminary runs [6, 7].

A multicanonical MC simulation is performed, for instance, with the usual
Metropolis criterion [18]: The transition probability of state x with potential energy
E to state x0 with potential energy E0 is given by

w
�
x ! x0� D min

�
1;

WMUCA .E 0/
WMUCA.E/

�
D min

�
1;

n.E/

n .E 0/

�

D min .1; exp .�ˇ0�EMUCA// ; (1.19)

where

�EMUCA D EMUCA
�
E 0I T0

� � EMUCA .EI T0/ : (1.20)
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The MD algorithm in the multicanonical ensemble also naturally follows from Eq.
(1.17), in which the regular constant temperature MD simulation (with T D T0) is
performed by replacing E by EMUCA in Eq. (1.12) [21, 22]:

Ppk D �@EMUCA .EI T0/

@qk

� Ps
s

pk D @EMUCA .EI T0/

@E
f k � Ps

s
pk: (1.21)

From Eq. (1.18) this equation can be rewritten as

Ppk D T0

T .E/
f k � Ps

s
pk: (1.22)

where the following thermodynamic relation gives the definition of the “effective
temperature” T(E):

@S.E/

@E

ˇ̌
ˇ̌
EDEa

D 1

T .Ea/
; (1.23)

with

Ea D <E>T .Ea/: (1.24)

If the exact multicanonical weight factor WMUCA(E) is known, one can calculate
the ensemble averages of any physical quantity A at any temperature T (D 1/kBˇ)
as follows:

<A>T D

X

E

A.E/PNVT .EI T /

X

E

PNVT .EI T /
D

X

E

A.E/n.E/ exp .�ˇE/

X

E

n.E/ exp .�ˇE/
; (1.25)

where the density of states is given by (see Eq. (1.17))

n.E/ D 1

WMUCA.E/
: (1.26)

The summation instead of integration is used in Eq. (1.25), because we often
discretize the potential energy E with step size " (E D Ei; i D 1, 2, : : : ). Here,
the explicit form of the physical quantity A should be known as a function of
potential energy E. For instance, A(E) D E gives the average potential energy
<E>T as a function of temperature, and A(E) D “2 (E�<E>T)2 gives specific
heat.

In general, the multicanonical weight factor WMUCA(E), or the density of states
n(E), is not a priori known, and one needs its estimator for a numerical simulation.
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This estimator is usually obtained from iterations of short trial multicanonical
simulations. However, the iterative process can be non-trivial and very tedious for
complex systems.

In practice, it is impossible to obtain the ideal multicanonical weight factor with
completely uniform potential energy distribution. The question is when to stop
the iteration for the weight factor determination. Our criterion for a satisfactory
weight factor is that as long as we do get a random walk in potential energy space,
the probability distribution PMUCA(E) does not have to be completely flat with a
tolerance of, say, an order of magnitude deviation. In such a case, we usually
perform with this weight factor a multicanonical simulation with high statistics
(production run) in order to get even better estimate of the density of states. Let
NMUCA(E) be the histogram of potential energy distribution PMUCA(E) obtained by
this production run. The best estimate of the density of states can then be given by
the single-histogram reweighting techniques [23] as follows (see the proportionality
relation in Eq. (1.16)):

n.E/ D NMUCA.E/

WMUCA.E/
: (1.27)

By substituting this quantity into Eq. (1.25), one can calculate ensemble averages
of physical quantity A(E) as a function of temperature. Moreover, ensemble averages
of any physical quantity A (including those that cannot be expressed as functions of
potential energy) at any temperature T (D1/kBˇ) can now be obtained as long as one
stores the “trajectory” of configurations (and A) from the production run. Namely,
we have

<A>T D

n0X

kD1

A .x.k// W �1
MUCA .E .x.k/// exp Œ�ˇE .x.k//�

n0X

kD1

W �1
MUCA .E .x.k/// exp Œ�ˇE .x.k//�

; (1.28)

where x(k) is the configuration at the k-th MC (or MD) step and n0 is the total
number of configurations stored. Note that when A is a function of E, Eq. (1.28)
reduces to Eq. (1.25) where the density of states is given by Eq. (1.27).

Equations (1.25) and (1.28) or any other equations which involve summations of
exponential functions often encounter with numerical difficulties such as overflows.
These can be overcome by using, for instance, the following equation [24, 25]: For
C D A C B (with A > 0 and B > 0) we have

ln C D ln

�
max .A; B/

�
1 C min .A; B/

max .A; B/

��

D max .ln A; ln B/ C ln f1 C exp Œmin .ln A; ln B/ � max .ln A; ln B/�g :

(1.29)
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1.2.2 Replica-Exchange Method

The replica-exchange method (REM) is another effective generalized-ensemble
algorithm. The system for REM consists of M non-interacting copies (or, replicas)
of the original system in the canonical ensemble at M different temperatures
Tm(m D 1, : : : , M). We arrange the replicas so that there is always exactly one
replica at each temperature. Then there exists a one-to-one correspondence between
replicas and temperatures; the label i(D1, : : : , M) for replicas is a permutation of
the label m(D1, : : : , M) for temperatures, and vice versa:

�
i D i.m/ � f .m/;

m D m.i/ � f �1.i/;
(1.30)

where f (m) is a permutation function of m and f� 1(i) is its inverse.
Let X D fxŒi.1/�

1 , : : : ,xŒi.M/�
M g D fxŒ1�

m.1/, : : : ,xŒM�

m.M/g stand for a “state” in this general-

ized ensemble. Each “substate” xŒi�
m is specified by the coordinates q[i] and momenta

p[i] of N atoms in replica i at temperature Tm:

xŒi�
m �

	
qŒi�; pŒi�




m
: (1.31)

Because the replicas are non-interacting, the weight factor for the state X in this
generalized ensemble is given by the product of Boltzmann factors for each replica
(or at each temperature):

WREM.X/ D
MY

iD1

exp
n
�ˇm.i/H

	
qŒi�; pŒi�


o
D

MY

mD1

exp
n
�ˇmH

	
qŒi.m/�; pŒi.m/�


o

D exp

(
�

MX

iD1

ˇm.i/H
	
qŒi�; pŒi�


)
D exp

(
�

MX

mD1

ˇmH
	
qŒi.m/�; pŒi.m/�


)
;

(1.32)

where i(m) and m(i) are the permutation functions in Eq. (1.30).
We now consider exchanging a pair of replicas in this ensemble. Suppose we

exchange replicas i and j which are at temperatures Tm and Tn, respectively:

X D
n
: : : ; xŒi �

m ; : : : ; xŒj �
n ; : : :

o
! X 0 D

n
: : : ; xŒj �

m ’; : : : ; xŒi �
n ’; : : :

o
: (1.33)

The exchange of replicas can be written in more detail as

8
<

:
xŒi�

m � �
qŒi�; pŒi�

�
m

! x
Œj �
m ’ � �

qŒj �; pŒj �’
�

m
;

x
Œj �
n � �

qŒj �; pŒj �
�

n
! xŒi�

n ’ � �
qŒi�; pŒi�’

�
n
;

(1.34)

where the definitions for p[i]’ and p[j]’ will be given below.
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In the original implementation of the replica-exchange method (REM) [9],
Monte Carlo algorithm was used, and only the coordinates q (and the potential
energy function E(q)) had to be taken into account. In molecular dynamics
algorithm, on the other hand, we also have to deal with the momenta p. We proposed
the following momentum assignment in Eq. (1.34) [12]:

8
<̂

:̂

pŒi�’ �
q

Tn

Tm
pŒi�;

pŒj �’ �
q

Tm

Tn
pŒj �;

(1.35)

which we believe is the simplest and the most natural. This assignment means that
we just rescale uniformly the velocities of all the atoms in the replicas by the square
root of the ratio of the two temperatures so that the temperature condition in Eq. (1.4)
may be satisfied immediately after replica exchange is accepted. We remark that
similar momentum rescaling formulae for various constant-temperature algorithms
have been worked out in Ref. [26].

The transition probability of this replica-exchange process is given by the usual
Metropolis criterion:

w
�
X ! X 0� � w

	
xŒi�

m

ˇ̌
ˇxŒj �

n



D min

�
1;

WREM .X 0/
WREM.X/

�
D min .1; exp .��// ;

(1.36)

where in the second expression (i.e., w(xŒi�
m jxŒj�

n )) we explicitly wrote the pair of
replicas (and temperatures) to be exchanged. From Eqs. (1.1), (1.2), (1.32), and
(1.35), we have

� D ˇm

	
E

	
qŒj �



� E

	
qŒi�




� ˇn

	
E

	
qŒj �



� E

	
qŒi�




(1.37)

D .ˇm � ˇn/
	
E

	
qŒj �



� E

	
qŒi�




: (1.38)

Note that after introducing the momentum rescaling in Eq. (1.35), we have the same
Metropolis criterion for replica exchanges, i.e., Eqs. (1.36) and (1.38), for both MC
and MD versions.

Without loss of generality we can assume that T1 < T2 < : : : < TM . The lowest
temperature T1 should be sufficiently low so that the simulation can explore the
experimentally relevant temperature region, and the highest temperature TM should
be sufficiently high so that no trapping in an energy-local-minimum state occurs.
A REM simulation is then realized by alternately performing the following two
steps:

1. Each replica in canonical ensemble of the fixed temperature is simulated
simultaneously and independently for a certain MC or MD steps.
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2. A pair of replicas at neighboring temperatures, say, xŒi�
m and xŒj�

m C 1, are exchanged

with the probability w.xŒi�
m jxŒj�

m C 1 / in Eq. (1.36).

A random walk in “temperature space” is realized for each replica, which in turn
induces a random walk in potential energy space. This alleviates the problem of
getting trapped in states of energy local minima.

After a long production run of a replica-exchange simulation, the canonical
expectation value of a physical quantity A at temperature Tm(m D 1, : : : , M) can
be calculated by the usual arithmetic mean:

hAiTm
D 1

nm

nmX

kD1

A .xm.k//; (1.39)

where xm(k)(k D 1, : : : , nm) are the configurations obtained at temperature Tm and
nm is the total number of measurements made at T D Tm. The expectation value
at any intermediate temperature T (D 1/kBˇ) can also be obtained from Eq. (1.25),
where the density of states n(E) in Eq. (1.25) is now given by the multiple-histogram
reweighting techniques, or, the weighted histogram analysis method (WHAM) [27,
28] as follows. Let Nm(E) and nm be respectively the potential-energy histogram and
the total number of samples obtained at temperature Tm D 1/kBˇm(m D 1, : : : , M).
The best estimate of the density of states is then given by

n.E/ D

MX

mD1

Nm.E/

MX

mD1

nm exp .fm � ˇmE/

; (1.40)

where we have for each m(D1, : : : , M)

exp .�fm/ D
X

E

n.E/ exp .�ˇmE/: (1.41)

Note that Eqs. (1.40) and (1.41) are solved self-consistently by iteration [27, 28] to
obtain the density of states n(E) and the dimensionless Helmholtz free energy fm.
Namely, we can set all the fm(m D 1, : : : , M) to, e.g., zero initially. We then use Eq.
(1.40) to obtain n(E), which is substituted into Eq. (1.41) to obtain next values of
fm, and so on.

Moreover, ensemble averages of any physical quantity A (including those
that cannot be expressed as functions of potential energy) at any temperature T
(D 1/kBˇ) can now be obtained from the “trajectory” of configurations of the
production run. Namely, we first obtain fm(m D 1, : : : , M) by solving Eqs. (1.40)
and (1.41) self-consistently, and then we have [14]
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<A>T D

MX

mD1

nmX

kD1

A .xm.k//
1

MX

lD1

nl exp Œfl � ˇlE .xm.k//�

exp Œ�ˇE .xm.k//�

MX

mD1

nmX

kD1

1

MX

lD1

nl exp Œfl � ˇlE .xm.k//�

exp Œ�ˇE .xm.k//�

;

(1.42)

where xm(k)(k D 1, : : : , nm) are the configurations obtained at temperature Tm.

1.2.3 Replica-Exchange Multicanonical Algorithm
and Multicanonical Replica-Exchange Method

The replica-exchange multicanonical algorithm (REMUCA) [13–15] overcomes
both the difficulties of MUCA (the multicanonical weight factor determination
is non-trivial) and REM (a lot of replicas, or computation time, is required). In
REMUCA we first perform a short REM simulation (with M replicas) to determine
the multicanonical weight factor and then perform with this weight factor a regular
multicanonical simulation with high statistics. The first step is accomplished by the
multiple-histogram reweighting techniques. Let Nm(E) and nm be respectively the
potential-energy histogram and the total number of samples obtained at temperature
Tm (D 1/kBˇm) of the REM run. The density of states n(E) is then given by solving
Eqs. (1.40) and (1.41) self-consistently by iteration.

Once the estimate of the density of states is obtained, the multicanonical weight
factor can be directly determined from Eq. (1.17) (see also Eq. (1.18)). Actually, the
density of states n(E) and the multicanonical potential energy, EMUCA(E;T0), thus
determined are only reliable in the following range:

E1 � E � EM ; (1.43)

where
8
<

:
E1 D <E>T 1

;

EM D <E>TM ;
(1.44)
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and T1 and TM are respectively the lowest and the highest temperatures used in the
REM run. Outside this range we extrapolate the multicanonical potential energy
linearly [13]:

Ef0g
MUCA.E/�

8
ˆ̂<

ˆ̂:

@EMUCA.EIT0/

@E

ˇ̌
ˇ
EDE1

.E � E1/ C EMUCA.E1I T0/; for E < E1;

EMUCA .EI T0/ ; for E1 � E � EM ;
@EMUCA.EIT0/

@E

ˇ̌
ˇ
EDEM

.E � EM / C EMUCA .EM I T0/ ; for E > EM :

(1.45)

The multicanonical MC and MD runs are then performed respectively with the
Metropolis criterion of Eq. (1.19) and with the modified Newton equation in Eq.
(1.21), in which Ef0g

MUCA.E/ in Eq. (1.45) is substituted into EMUCA(E;T0). We expect
to obtain a flat potential energy distribution in the range of Eq. (1.43). Finally, the
results are analyzed by the single-histogram reweighting techniques as described in
Eq. (1.27) (and Eq. (1.25)).

Some remarks are now in order. From Eqs. (1.18), (1.23), (1.24), and (1.44),
Eq. (1.45) becomes

Ef0g
MUCA.E/ �

8
<̂

:̂

T0

T1
.E � E1/ C T0S .E1/ D T0

T1
E C const; for E < E1;

T0S.E/; for E1 � E � EM ;
T0

TM
.E � EM / C T0S .EM / D T0

TM
E C const; for E > EM :

(1.46)

The Newton equation in Eq. (1.21) is then written as (see Eqs. (1.22), (1.23), and
(1.24))

Ppk D

8
<̂

:̂

T0

T1
f k � Ps

s
pk; for E < E1;

T0

T .E/
f k � Ps

s
pk; for E1 � E � EM ;

T0

TM
f k � Ps

s
pk; for E > EM :

(1.47)

Because only the product of inverse temperature ˇ and potential energy E enters
in the Boltzmann factor (see Eq. (1.5)), a rescaling of the potential energy (or
force) by a constant, say ’, can be considered as the rescaling of the temperature
by 1/’ [21]. Hence, our choice of Ef0g

MUCA.E/ in Eq. (1.45) results in a canonical
simulation at T D T1 for E < E1, a multicanonical simulation for E1 � E � EM , and
a canonical simulation at T D TM for E > EM . Note also that the above arguments
are independent of the value of T0, and we will get the same results, regardless of
its value.

For Monte Carlo method, the above statement follows directly from the following
equation. Namely, our choice of the multicanonical potential energy in Eq. (1.45)
gives (by substituting Eq. (1.46) into Eq. (1.17))
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WMUCA.E/ � exp
h
�ˇ0Ef0g

MUCA.E/
i

D

8
<̂

:̂

exp .�ˇ1E C const/ ; for E < E1;
1

n.E/
; for E1 � E � EM;

exp .�ˇM E C const/ ; for E > EM :

(1.48)

We now present the multicanonical replica-exchange method (MUCAREM)
[13–15]. In MUCAREM the production run is a REM simulation with a few replicas
not in the canonical ensemble but in the multicanonical ensemble, i.e., different
replicas perform MUCA simulations with different energy ranges. While MUCA
simulations are usually based on local updates, a replica-exchange process can be
considered to be a global update, and global updates enhance the sampling further.

Let M be the number of replicas for a MUCAREM simulation. Here, each
replica is in one-to-one correspondence not with temperature but with multicanon-
ical weight factors of different energy range. Note that because multicanonical
simulations cover much wider energy ranges than regular canonical simulations,
the number of required replicas for the production run of MUCAREM is much less
than that for the regular REM (M � M ). The weight factor for this generalized
ensemble is now given by (see Eq. (1.32))

WMUCAREM.X/ D
MY

iD1

W
fm.i/g

MUCA

	
E

	
x

Œi�

m.i/




D

MY

mD1

W
fmg

MUCA

	
E

	
xŒi.m/�

m




; (1.49)

where we prepare the multicanonical weight factor (and the density of states)
separately for M regions (see Eq. (1.17)):

W
fmg

MUCA

	
E

	
xŒi�

m




D exp

h
�ˇmEfmg

MUCA

	
E

	
xŒi�

m



i
� 1

nfmg
	
E

	
x

Œi�
m



 : (1.50)

Here, we have introduced M arbitrary reference temperatures Tm (D 1/kBˇm)
.m D 1; : : : ;M/, but the final results will be independent of the values of Tm, as
one can see from the second equality in Eq. (1.50) (these arbitrary temperatures are
necessary only for MD simulations).

Each multicanonical weight factor Wfmg
MUCA(E), or the density of states nfmg(E),

is defined as follows. For each m .m D 1; : : : ;M/, we assign a pair of temperatures
(Tfmg

L ,Tfmg
H ). Here, we assume that Tfmg

L < Tfmg
H and arrange the temperatures so that

the neighboring regions covered by the pairs have sufficient overlaps. Without loss
of generality we can assume T

f1g
L < � � � < T

fMg
L and T

f1g
H < � � � < T

fMg
H . We define

the following quantities:

8
<

:
E

fmg
L D <E>

T
fmg
L

;

E
fmg
H D <E>

T
fmg
H

; .m D 1; : : : ;M/ :
(1.51)
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Suppose that the multicanonical weight factor WMUCA(E) (or equivalently, the
multicanonical potential energy EMUCA(E;T0) in Eq. (1.18)) has been obtained
as in REMUCA or by any other methods in the entire energy range of interest
(Ef1g

L < E < E
fMg
H ). We then have for each m .m D 1; : : : ;M/ the following

multicanonical potential energies (see Eq. (1.45)) [13]:

Efmg
MUCA.E/ �

8
ˆ̂̂
<̂

ˆ̂̂
:̂

@EMUCA.EITm/

@E

ˇ̌
ˇ
EDE

fmg
L

	
E � E

fmg
L



C EMUCA

	
E

fmg
L I Tm



; for E < E

fmg
L ;

EMUCA .EI Tm/ for E
fmg
L � E � E

fmg
H ;

@EMUCA.EITm/

@E

ˇ̌
ˇ
EDE

fmg
H

	
E � E

fmg
H



C EMUCA

	
E

fmg
H I Tm



; for E > E

fmg
H

(1.52)

Finally, a MUCAREM simulation is realized by alternately performing the
following two steps.

1. Each replica of the fixed multicanonical ensemble is simulated simultaneously
and independently for a certain MC or MD steps.

2. A pair of replicas, say i and j, which are in neighboring multicanonical
ensembles, say m-th and (m C 1)-th, respectively, are exchanged:

X D
n
: : : ; xŒi �

m ; : : : ; x
Œj �

mC1; : : :
o

! X 0 D
n
: : : ; xŒj �

m ; : : : ; x
Œi �
mC1; : : :

o
: (1.53)

The transition probability of this replica exchange is given by the Metropolis
criterion:

w
�
X ! X 0� D min .1; exp .��// ; (1.54)

where we now have (see Eq. (1.37)) [13]

� D ˇm

n
Efmg

MUCA

	
E

	
qŒj �




� Efmg

MUCA

	
E

	
qŒi�



o

� ˇmC1

n
EfmC1g

MUCA

	
E

	
qŒj �




� EfmC1g

MUCA

	
E

	
qŒi�



o
: (1.55)

Here, E(q[i]) and E(q[j]) are the potential energy of the i-th replica and the j-th
replica, respectively.

Note that in Eq. (1.55) we need to newly evaluate the multicanonical potential
energy, Efmg

MUCA

�
E

�
qŒj �

��
and EfmC1g

MUCA

�
E

�
qŒi�

��
, because Efmg

MUCA.E/ and Efng
MUCA.E/

are, in general, different functions for m ¤ n.
In this algorithm, the m-th multicanonical ensemble actually results in a

canonical simulation at T D Tfmg
L for E < Efmg

L , a multicanonical simulation for

Efmg
L � E � Efmg

H , and a canonical simulation at T D Tfmg
H for E > Efmg

H , while the

replica-exchange process samples states of the whole energy range (Ef1g
L � E �

E
fMg
H ).
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For obtaining the canonical distributions at any intermediate temperature T,
the multiple-histogram reweighting techniques are again used. Let Nm(E) and nm

be respectively the potential-energy histogram and the total number of samples
obtained with the multicanonical weight factor Wfmg

MUCA(E) .m D 1; : : : ;M/. The
expectation value of a physical quantity A at any temperature T (D 1/kBˇ) is then
obtained from Eq. (1.25), where the best estimate of the density of states is obtained
by solving the WHAM equations, which now read [13]

n.E/ D

MX

mD1

Nm.E/

MX

mD1

nm exp .fm/ W
fmg

MUCA.E/

D

MX

mD1

Nm.E/

MX

mD1

nm exp
	
fm � ˇmEfmg

MUCA.E/

 ;

(1.56)

where we have for each m .D 1; : : : ;M/

exp .�fm/ D
X

E

n.E/W
fmg

MUCA.E/ D
X

E

n.E/ exp
	
�ˇmEfmg

MUCA.E/


: (1.57)

Note that Wfmg
MUCA(E) is used instead of the Boltzmann factor exp(�ˇmE) in Eqs.

(1.40) and (1.41).
Moreover, ensemble averages of any physical quantity A (including those

that cannot be expressed as functions of potential energy) at any temperature T
(D 1/kBˇ) can now be obtained from the “trajectory” of configurations of the
production run. Namely, we first obtain fm .m D 1; : : : ;M/ by solving Eqs. (1.56)
and (1.57) self-consistently, and then we have [14]

<A>T D

MX

mD1

nmX

kD1

A.xm.k//
1

MX

lD1

nl exp .fl / W
flg

MUCA .E .xm.k///

expŒ�ˇE.xm.k//�

MX

mD1

nmX

kD1

1

MX

lD1

nl exp .fl / W
flg

MUCA .E .xm.k///

expŒ�ˇE.xm.k//�

;

(1.58)

where the trajectories xm(k)(k D 1, : : : , nm) are taken from each multicanonical
simulation with the multicanonical weight factor Wfmg

MUCA(E) .m D 1; : : : ;M/

separately.
As seen above, both REMUCA and MUCAREM can be used to obtain the

multicanonical weight factor, or the density of states, for the entire potential energy
range of interest. For complex systems, however, a single REMUCA or MUCAREM
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simulation is often insufficient. In such cases we can iterate MUCA (in REMUCA)
and/or MUCAREM simulations in which the estimate of the multicanonical weight
factor is updated by the single- and/or multiple-histogram reweighting techniques,
respectively.

To be more specific, this iterative process can be summarized as follows. The
REMUCA production run corresponds to a MUCA simulation with the weight
factor WMUCA(E). The new estimate of the density of states can be obtained by the
single-histogram reweighting techniques of Eq. (1.27). On the other hand, from the
MUCAREM production run, the improved density of states can be obtained by the
multiple-histogram reweighting techniques of Eqs. (1.56) and (1.57).

The improved density of states thus obtained leads to a new multicanonical
weight factor (see Eq. (1.17)). The next iteration can be either a MUCA production
run (as in REMUCA) or MUCAREM production run. The results of this production
run may yield an optimal multicanonical weight factor that yields a sufficiently flat
energy distribution for the entire energy range of interest. If not, we can repeat the
above process by obtaining the third estimate of the multicanonical weight factor
either by a MUCA production run (as in REMUCA) or by a MUCAREM production
run, and so on.

We remark that as the estimate of the multicanonical weight factor becomes
more accurate, one is required to have a less number of replicas for a successful
MUCAREM simulation, because each replica will have a flat energy distribution for
a wider energy range. Hence, for a large, complex system, it is often more efficient to
first try MUCAREM and iteratively reduce the number of replicas so that eventually
one needs only one or a few replicas (instead of trying REMUCA directly from the
beginning and iterating MUCA simulations).

1.3 Simulation Results

We now present some examples of the simulation results by the algorithms described
in the previous section. The computer code developed in Refs. [12, 13, 29, 30],
which is based on the version 2 of PRESTO [31], was used after modifications that
were necessary for each calculation.

The first example is the C-peptide of ribonuclease A in explicit water [32]. The
N-terminus and the C-terminus of the C-peptide analogue were blocked with the
acetyl group and the N-methyl group, respectively. The number of amino acids
is 13 and the amino-acid sequence is: Ace-Ala-Glu�-Thr-Ala-Ala-Ala-LysC-Phe-
Leu-ArgC-Ala-HisC-Ala-Nme [33, 34]. It is known by experiments that this peptide
forms ’-helix structures [33, 34]. The initial configuration of our simulation was first
generated by a high temperature molecular dynamics simulation (at T D 1,000 K) in
gas phase, starting from a fully extended conformation. We randomly selected one
of the structures that do not have any secondary structures such as ’-helix and “-
sheet. The peptide was then solvated in a sphere of radius 22 Å, in which 1,387 water
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Fig. 1.1 The initial
configuration of C-peptide in
explicit water, which was
used in all of the 32 replicas
of the first REMD simulation
(REMD1 in Table 1.1). The
red filled circles stand for the
oxygen atoms of water
molecules. The number of
water molecules is 1,387, and
they are placed in a sphere of
radius 22 Å. As for the
peptide, besides the backbone
structure (in blue), side chains
of only Glu�-2, Phe-8,
ArgC-10, and HisC-12 are
shown (in yellow) (Reprinted
from Ref. [32] with kind
permission of Cell Press
(2005))

Table 1.1 Summary of parameters in REMD, MUCAREM, and REMUCA simulations of
C-peptide in explicit watera

Simulation
Number of
replicas, M Temperature, Tm (K) (m D 1, : : : , M) MD steps per replica

REMD1b 32 250, 258, 267, 276, 286, 295, 305,
315, 326, 337, 348, 360, 372, 385,
398, 411, 425, 440, 455, 470, 486,
502, 519, 537, 555, 574, 593, 613,
634, 655, 677, 700

2.0 � 105

MUCAREM1 4 360, 440, 555, 700 2.0 � 106

REMUCA1 1 700 3.0 � 107

aReprinted from Ref. [32] with kind permission of Cell Press (2005)
bREMD1 stands for the replica-exchange molecular dynamics simulation, MUCAREM1 stands
for the multicanonical replica-exchange molecular dynamics simulation, and REMUCA1 stands
for the final multicanonical molecular dynamics simulation (the production run) of REMUCA. The
results of REMD1 were used to determine the multicanonical weight factors for MUCAREM1, and
those of MUCAREM1 were used to determine the multicanonical weight factor for REMUCA1

molecules were included (see Fig. 1.1). Harmonic restraint was applied to prevent
the water molecules from going out of the sphere. The total number of atoms is
4,365. The dielectric constant was set equal to 1.0. The force-field parameters for
protein were taken from the all-atom version of AMBER parm99 [35], which was
found to be suitable for studying helical peptides [36, 37], and TIP3P model [38]
was used for water molecules. The unit time step, �t, was set to 0.5 fs. In Table 1.1
the parameter values in the simulations performed are summarized.
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We first performed a REMD simulation with 32 replicas for 100 ps per replica
(REMD1 in Table 1.1). During this REMD simulation, replica exchange was
tried every 200 MD steps. Using the obtained potential-energy histogram of each
replica as input data to the multiple-histogram analysis in Eqs. (1.40) and (1.41),
we obtained the first estimate of the multicanonical weight factor, or the density
of states. We divided this multicanonical weight factor into four multicanonical
weight factors that cover different energy regions [13–15] and assigned these
multicanonical weight factors into four replicas (the weight factors cover the
potential energy ranges from �13791.5 to �11900.5 kcal/mol, from �12962.5 to
�10796.5 kcal/mol, from �11900.5 to �9524.5 kcal/mol, and from �10796.5 to
�8293.5 kcal/mol). We then carried out a MUCAREM simulation with four replicas
for 1 ns per replica (MUCAREM1 in Table 1.1), in which replica exchange was
tried every 1,000 MD steps. We again used the potential-energy histogram of each
replica as the input data to the multiple-histogram analysis and finally obtained
the multicanonical weight factor with high precision. As a production run, we
carried out a 15-ns multicanonical MD simulation with one replica (REMUCA1
in Table 1.1) and the results of this production run were analyzed in detail.

In Fig. 1.2 we show the probability distributions of potential energy that were
obtained from the above three generalized-ensemble simulations, namely, REMD1,
MUCAREM1, and REMUCA1. We see in Fig. 1.2a that there are enough overlaps
between all pairs of neighboring canonical distributions, suggesting that there were
sufficient numbers of replica exchange in REMD1. We see in Fig. 1.2b that there
are good overlaps between all pairs of neighboring multicanonical distributions,
implying that MUCAREM1 also performed properly. Finally, the multicanonical
distribution in Fig. 1.2c is completely flat between around �13,000 kcal/mol and
around �8,000 kcal/mol. The results suggest that a free random walk was realized
in this energy range.

In Fig. 1.3a we show the time series of potential energy from REMUCA1. We
indeed observe a random walk covering as much as 5,000 kcal/mol of energy range.
We show in Fig. 1.3b the average potential energy as a function of temperature,
which was obtained from the trajectory of REMUCA1 by the reweighting tech-
niques. The average potential energy monotonically increases as the temperature
increases.

The accuracy of average quantities calculated depend on the “quality” of the
random walk in the potential energy space, and the measure for this quality can be
given by the number of tunneling events [7, 15]. One tunneling event is defined by
a trajectory that goes from EH to EL and back, where EH and EL are the values near
the highest energy and the lowest energy, respectively, which the random walk can
reach. If EH is sufficiently high, the trajectory gets completely uncorrelated when it
reaches EH. On the other hand, when the trajectory reaches near EL, it tends to get
trapped in local-minimum states. We thus consider that the more tunneling events
we observe during a fixed number of MC/MD steps, the more efficient the method
is as a generalized-ensemble algorithm (or, the average quantities obtained by the
reweighting techniques are more reliable). Here, we took EH D �8,250 kcal/mol
and EL D �12,850 kcal/mol for the measurement of the tunneling events. The
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Fig. 1.2 Probability distributions of potential energy of the C-peptide system obtained from
(a) REMD1, (b) MUCAREM1, and (c) REMUCA1. See Table 1.1 for the parameters of the
simulations. Dashed curves in (c) are the reweighted canonical distributions at 290, 300, 500, and
700 K (from left to right) (Reprinted from Ref. [32] with kind permission of Cell Press (2005))
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Fig. 1.3 Time series of potential energy of the C-peptide system from the REMUCA production
run (REMUCA1 in Table 1.1) (a) and the average potential energy as a function of temperature
(b). The latter was obtained from the trajectory of REMUCA1 by the single-histogram reweighting
techniques (Reprinted from Ref. [32] with kind permission of Cell Press (2005))

random walk in REMUCA1 yielded as many as 55 tunneling events in 15 ns. The
corresponding numbers of tunneling events for REMD1 and for MUCAREM1 were
0 in 3.2 ns and 5 in 4 ns, respectively. Hence, REMUCA is the most efficient and
reliable among the three generalized-ensemble algorithms.

In Fig. 1.4 the potential of mean force along the first two principal component
axes at 300 K is shown. There exist three distinct minima in the free-energy
landscape, which correspond to three local-minimum-energy states. We show
representative conformations at these minima in Fig. 1.5. The structure of the
global-minimum free-energy state (GM) has a partially distorted ’-helix with the
salt bridge between Glu�-2 and ArgC-10. The structure is in good agreement with
the experimental structure obtained by both NMR and X-ray experiments. In this
structure there also exists a contact between Phe-8 and HisC-12. This contact is
again observed in the corresponding residues of the X-ray structure. At LM1 the
structure has a contact between Phe-8 and HisC-12, but the salt bridge between
Glu�-2 and ArgC-10 is not formed. On the other hand, the structure at LM2 has this
salt bridge, but it does not have a contact between Phe-8 and HisC-12. Thus, only
the structures at GM satisfy all of the interactions that have been observed by the
X-ray and other experimental studies.

The next example is the C-terminal “-hairpin of streptococcal protein G B1
domain [39]. This peptide is sometimes referred to as G-peptide [40] and is known
by experiments to form “-hairpin structures in aqueous solution [41, 42]. The
number of amino acids is 16 and the amino-acid sequence is: Gly-Glu�-Trp-Thr-
Tyr-Asp�-Asp�-Ala-Thr-LysC-Thr-Phe-Thr-Val-Thr-Glu�. The N-terminus and C-
terminus were set to be in the zwitter ionic form (NH3

C and COO�), following the
conditions in the experiments. GROMOS96 (43a1) force field [43] was used for
the solute molecule. SPC model [44] was employed for solvent water molecules
according to the GROMOS prescription. We first performed a REMD simulation of
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Fig. 1.4 Potential of mean force (kcal/mol) of the C-peptide system along the first two principal
components at 300 K. The free energy was calculated from the results of REMUCA production run
(REMUCA1 in Table 1.1) by the single-histogram reweighting techniques and normalized so that
the global-minimum state (GM) has the value zero. GM, LM1, and LM2 represent three distinct
minimum free-energy states (Reprinted from Ref. [32] with kind permission of Cell Press (2005))

Fig. 1.5 The representative structures at the global-minimum free-energy state ((a) GM) and the
two local-minimum states ((b) LM1 and (c) LM2). As for the peptide structures, besides the
backbone structure, side chains of only Glu�-2, Phe-8, ArgC-10, and HisC-12 are shown in ball-
and-stick model (Reprinted from Ref. [32] with kind permission of Cell Press (2005))

G-peptide without explicit solvents from a fully extended polypeptide conformation.
In the simulation, we used the distance-dependent dielectric constant. We then
selected the final conformation in the replica that was simulated at the highest
temperature at the end of the simulation. This conformation was soaked in a
water cap whose radius was 26 Å. Before starting the MUCAREM simulation,
we performed a 100-ps REMD simulation with 64 replicas twice. (One of them
was done for optimization of temperature table for the second REMD.) Using
the results of the second REMD, we determined the initial multicanonical weight
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Fig. 1.6 Time series of structural properties of two folding events of G-peptide, resulting in the
native-like “-hairpin structures. Those during 5-ns time windows are shown. (a1) and (b1) are the
time series of heavy-atom RMSD values for Replica 4 and Replica 8, respectively. Likewise, (a2)
and (b2) are representative snapshot structures observed in these 5-ns time windows. The numbers
written under the snapshot structures represent the time when it was observed (Reprinted from Ref.
[39] with kind permission of Wiley (2007))

factor. By iterating cycles of a short MUCAREM with 8 replicas and an update
to a new weight factor [15], we refined the multicanonical weight factor. After
that we performed a MUCAREM MD with 8 replicas for 34.75 ns (per replica)
as a production run. Thus, the total production MD length was 278 ns. In total,
three independent folding events were observed in three different replicas. Thus,
the average simulation length per one observed folding event was 92.7 ns. This
suggests that MUCAREM can accelerate G-peptide folding more than 60 times
than the conventional MD simulations, because the experimental folding time of
G-peptide is 6 �s [45].

Figure 1.6 shows the time series of the heavy-atom Root Mean Square Deviation
(RMSD) from the native configuration (coordinates in the PDB entry 2GB1) and
representative snapshot structures observed in the folding events are shown for two
replicas. They indeed folded into native-like conformations.

We also evaluated the canonical expectation values of secondary-structure
contents (“-bridge contents) of each residue at 320 K using the multiple-histogram
reweighting techniques in Eqs. (1.56), (1.57), and (1.58). The results are shown
in Fig. 1.7. These results are qualitatively similar to the previous ones that were
derived from shorter MUCAREM simulations [36, 37]. They clearly imply that the
“-hairpin structures are formed at this temperature.

The third example is the chicken villin headpiece subdomain in explicit water
[46]. The number of amino acids is 36. The force field CHARMM22 [47] with
CMAP [48, 49] and TIP3P water model [38, 47] were used. The number of water
molecules was 3,513. The MD time step was 1.0 fs. We made two production runs
of about 1 �s, each of which was a MUCAREM simulation with eight replicas.
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Fig. 1.7 Canonical expectation values of the “-bridge contents of G-peptide at 320 K as a function
of the residue number. Values are evaluated by the multiple-histogram reweighting techniques
(Reprinted from Ref. [39] with kind permission of Wiley (2007))

Fig. 1.8 Snapshots of villin headpiece during the MUCAREM production runs that folded into
native-like conformations: MUCAREM1 (above) and MUCAREM2 (below)

They are referred to as MUCAREM1 and MUCAREM2. The former consisted of
1.127 �s covering the temperature range between 269 and 699 K, and the latter
1.157 �s covering the temperature range between 289 and 699 K.

We consider that the backbone folded into the native structure from unfolded
ones if the mainchain RMSD becomes less than or equal to 3.0 Å. The folding event
is counted separately if it goes through an unfolded structure (with the backbone
RMSD greater than or equal to 6.5 Å). With this criterion, we observed 11 folding
events in seven different replicas (namely, Replicas 5, 7, and 8 in MUCAREM1 and
Replicas 1, 2, 4, and 5 in MUCAREM2). In Fig. 1.8 we show the snapshots of the
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Fig. 1.9 Low-RMSD conformations of villin headpiece subdomain HP36 obtained in MUCA-
REM1 and MUCAREM2 (colored in orange). The X-ray structure (PDB ID: 1YRF) is also
superimposed (colored in blue and green). Here, the ’-helices in the X-ray structure are colored in
green and the rest in blue. Three phenylalanine side chains (Phe7, Phe11, and Phe18), which form
a hydrophobic core, are shown in ball-and-stick representation. (a) The lowest-bakcbone-RMSD
conformation observed in the two MUCAREM production runs (Replica 5 of MUCAREM2). The
backbone RMSD value is 1.1 Å (for non-terminal 34 residues). (b) A low-RMSD conformation
observed in MUCAREM1 (Replica 8). The RMSD value is 1.0 Å for residues 9–32 and 3.3 Å for
non-terminal 34 residues (Reprinted from Ref. [46] with kind permission of Cell Press (2010))

replicas folding into native-like conformations for the two MUCAREM production
runs. In Fig. 1.9 we compare the obtained low-RMSD conformations and the native
structure. They are indeed very close to the native structure.

1.4 Conclusions

In this article we introduced four powerful generalized-ensemble algorithms,
namely, multicanonical algorithm (MUCA), replica-exchange method (REM),
replica-exchange multicanonical algorithm (REMUCA), and multicanonical
replica-exchange method (MUCAREM), which can greatly enhance conformational
sampling of biomolecular systems. The results of protein folding simulations
by these methods were presented. Because it is very difficult to determine the
multicanonical weight factors for very large systems, MUCAREM is the most
promising method among the four methods for large biomolecular systems.
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