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Preface

Proteins exert a variety of fascinating functions to participate in virtually all
cellular processes. Underlying these highly controlled activities are the ordered
conformational changes, which lead to molecular events that drive efficient and
precise regulation and control of these processes. Although it has been widely
acknowledged that the conformational dynamics of proteins contributes enormously
in these molecular events and their biological function, it remains a major challenge
to unambiguously discern their working mechanism both experimentally and com-
putationally. The difficulties primarily arise from the complexity and heterogeneity
of protein assemblies, the ruggedness of free energy landscapes, and the largely
varied scales of temporal and spatial changes in different events.

Complementary to experimental studies, computational simulation has become
a powerful and unique tool to dissect the working mechanism of proteins and
provide information otherwise inaccessible to other methods. In recent years,
the persistent progress in methodologies (super-computational resources, multi-
scale modeling, enhanced sampling methods, etc.) has demonstrated a number of
important applications in biological processes, e.g. molecular recognition, enzyme
catalysis, molecular transport, protein folding and aggregation, and signal trans-
duction. In this book, we present an extensive review of the recent theoretical and
computational advances as well as their applications to key biological questions.

In Chaps, 1, 2, and 3, different methods are described to generate the con-
formational ensembles during the folding and function of proteins. Chapter 1
describes the generalized-ensemble algorithms and their applications to the protein
folding problem. Chapter 2 introduces another powerful tool in conformational
sampling, the Markov State Models (MSMs), which can increase the simulation
length to microseconds or even milliseconds. This chapter explains the general
concepts of MSMs, the model construct procedure, and its application to the
long time-scale molecular dynamics simulation of biological macromolecules. As
the conformational dynamics can now be characterized by advanced experimental
methods, Chap. 3 shows how these information can be combined with computa-
tional simulation to build the conformational ensembles.

v
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vi Preface

The conformational ensembles in biological macromolecules contain useful
information that describes the important features of the system. Methods to extract
this information will be summarized in Chaps. 4, 5, 6, and 7. Chapter 4 reviews
methods that produce generative models of conformational dynamics to manifest
the hidden thermodynamic and kinetic properties from the ensembles generated
during simulations. To study the large-scale motions of proteins, Chap. 5 describes
various coarse-grain elastic network models (ENMs) that predict the magnitudes
and directions of protein motion, focusing on the recently developed generalized
spring tensor model. When the size of biological systems increase, high-resolution
structure can only be obtained in fragments and the structural information of the
system is often of low-resolution. Several flexible fitting methods are presented in
Chap. 6 to extract deeper understanding from the combination of these experimental
data. Along this line, various coarse-grained models are discussed in Chap. 7 to
study the functional change of the polypeptide backbones around their native states.

Protein folding is a critical biological process in which proteins acquire their
defined three-dimensional structures from linear polypeptides. Chapters 8 and 9
focus on this topic and review methods that unveil this dynamic process. Because
the cellular environment plays a major role in regulating the dynamics of protein
folding, Chap. 8 describes novel coarse-grained methods that go beyond tradi-
tional aqueous solvent conditions and study in vivo protein folding dynamics.
Since various optical spectroscopic techniques have been used to probe protein
folding/unfolding events, Chap. 9 addresses progress on modeling the unfolding
dynamics of several model proteins using the combined theoretical spectroscopic
and MSMs approaches.

Conformational dynamics plays a major role in dictating function of proteins.
Chapters 10 and 11 explore the conformational flexibility in enzyme catalysis
and drug designs. Chapter 12 addresses how the nuclear magnetic resonance
spectroscopy and computational methods are combined to understand the receptor-
ligand interaction. The structural dynamics of membrane proteins stands as a major
challenge and Chap. 13 presents a survey of the current methods and technique
issues for simulations of membrane proteins. Besides the well-structured proteins,
the intrinsically disordered proteins (IDPs) play important roles in a range of
biological processes through the distinct coupled folding and binding mechanism.
Chapter 14 presents the free energy analysis of the IDPs with the enhanced sampling
methods.

Chapters 15, 16, 17, and 18 summarize recent computational studies on several
biological processes. In Chap. 15, two machineries that transform chemical energy
to mechanical work are studied using atomistic molecular dynamics simulations,
coarse-grained analyses, and stochastic modeling techniques. In Chap. 16, recent
theoretical and experimental progresses are reviewed on the universally conserved
signal recognition particle machinery that mediates co-translational protein tar-
geting reaction. Chapter 17 discusses the detailed analyses of the ATP-driven
rotary motor enzyme that can perform ATP synthesis/hydrolysis using reversible
motor rotation. Among different membrane proteins, the G protein coupled receptor
(GPCR) is one of the most important families, which constitutes the target of about
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Preface vii

one third drugs in the market. Chapter 18 summarizes recent computational studies
on the chemo-sensorial GPCRs that are responsible to detect odorant and tasting
molecules.

Finally, we would like to express our gratitude to all the authors who have
contributed their excellent work to this book. We also acknowledge the editorial
team at the Springer, in particular Thijs van Vlijmen, Sara Germans-Huisman, and
Ilse Hensen, for their helpful guidance during the entire project.

Dalian, People’s Republic of China Ke-li Han
La Jolla, CA, USA Xin Zhang
Dalian, People’s Republic of China Ming-jun Yang
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Chapter 1
Protein Folding Simulations
by Generalized-Ensemble Algorithms

Takao Yoda, Yuji Sugita, and Yuko Okamoto

Abstract In the protein folding problem, conventional simulations in physical
statistical mechanical ensembles, such as the canonical ensemble with fixed tem-
perature, face a great difficulty. This is because there exist a huge number of
local-minimum-energy states in the system and the conventional simulations tend to
get trapped in these states, giving wrong results. Generalized-ensemble algorithms
are based on artificial unphysical ensembles and overcome the above difficulty by
performing random walks in potential energy, volume, and other physical quantities
or their corresponding conjugate parameters such as temperature, pressure, etc.
The advantage of generalized-ensemble simulations lies in the fact that they not
only avoid getting trapped in states of energy local minima but also allows the
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2 T. Yoda et al.

calculations of physical quantities as functions of temperature or other parameters
from a single simulation run. In this article we review the generalized-ensemble
algorithms. Four examples, multicanonical algorithm, replica-exchange method,
replica-exchange multicanonical algorithm, and multicanonical replica-exchange
method, are described in detail. Examples of their applications to the protein folding
problem are presented.

Keywords Generalized-ensemble algorithm • Multicanonical algorithm •
Replica-exchange molecular dynamics • Replica-exchange multicanonical
algorithm • Multicanonical replica-exchange method • Protein folding

1.1 Introduction

In order to study the protein folding problem, molecular simulation methods such as
Monte Carlo (MC) and molecular dynamics (MD) are often used. However, conven-
tional canonical simulations at physically relevant temperatures tend to get trapped
in states of energy-local-minima, giving wrong results. A class of simulation meth-
ods, which are referred to as the generalized-ensemble algorithms, overcome this
difficulty (for reviews see, e.g., Refs. [1–5]). In the generalized-ensemble algorithm,
each state is weighted by an artificial, non-Boltzmann probability weight factor so
that random walks in potential energy, volume, and other physical quantities or
their corresponding conjugate parameters such as temperature, pressure, etc. may be
realized. The random walks allow the simulation to escape from any energy barrier
and to sample much wider conformational space than by conventional methods.

One of effective generalized-ensemble algorithms for molecular simulations is
the multicanonical algorithm (MUCA) [6, 7], which was first applied to the protein
folding problem in Ref. [8]. In this method, the weight factor is defined to be
inversely proportional to the density of states and a free random walk in potential
energy space is realized. Another effective generalized-ensemble algorithm is the
replica-exchange method (REM) [9] (the method is also referred to as parallel
tempering [10]), which was first applied to the protein folding problem in Ref. [11].
In this method, a number of non-interacting copies (or, replicas) of the original
system at different temperatures are simulated independently and exchanged with
a specified transition probability. The details of molecular dynamics algorithm for
REM, which is referred to as the replica-exchange molecular dynamics (REMD),
have been worked out in Ref. [12], and this led to a wide application of REMD in the
protein and other biomolecular systems. One is naturally led to combine MUCA and
REM, and two methods, replica-exchange multicanonical algorithm (REMUCA)
and multicanonical replica-exchange method (MUCAREM), have been developed
[13–15]. MUCAREM can be considered to be a special case of the multidimensional
(or, multivariable) extension of REM, which we refer to as the multidimensional
replica-exchange method (MREM) [16]. MREM is now widely used and often
referred to as Hamiltonian replica-exchange method [17].
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In this article, we describe the generalized-ensemble algorithms mentioned
above. Namely, we review the four methods: MUCA, REM, REUMCA, and
MUCAREM. Examples of the results in which these methods were applied to the
protein folding problem are then presented.

1.2 Methods

1.2.1 Multicanonical Algorithm

Let us consider a system of N atoms of mass mk (kD 1, : : : , N) with their coordinate
vectors and momentum vectors denoted by qD (q1, : : : ,qN) and pD (p1, : : : , pN),
respectively. The Hamiltonian H(q,p) of the system is the sum of the kinetic energy
K(p) and the potential energy E(q):

H .q; p/ D K.p/CE.q/; (1.1)

where

K.p/ D
NX

kD1

pk
2

2mk

: (1.2)

In the canonical ensemble at temperature T each state x� (q,p) with the
Hamiltonian H(q,p) is weighted by the Boltzmann factor:

WB .xIT / D exp .�ˇH .q; p// ; (1.3)

where the inverse temperature ˇ is defined by ˇD 1/kBT (kB is the Boltzmann
constant). The average kinetic energy at temperature T is then given by

D
K.p/

E

T
D
*
NX

kD1

pk
2

2mk

+

T

D 3

2
NkBT: (1.4)

Because the coordinates q and momenta p are decoupled in Eq. (1.1), we can
suppress the kinetic energy part and can write the Boltzmann factor as

WB .xIT / D WB .EIT / D exp .�ˇE/ : (1.5)

The canonical probability distribution of potential energy PNVT(E;T) is then given
by the product of the density of states n(E) and the Boltzmann weight factor
WB(E;T):

PNVT .EIT / / n.E/WB .EIT / : (1.6)
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Because n(E) is a rapidly increasing function and the Boltzmann factor decreases
exponentially, the canonical ensemble yields a bell-shaped distribution of potential
energy which has a maximum around the average energy at temperature T. The
conventional MC or MD simulations at constant temperature are expected to yield
PNVT(E;T). A MC simulation based on the Metropolis algorithm [18] is performed
with the following transition probability from a state x of potential energy E to a
state x0 of potential energy E0:

w
�
x ! x0� D min

�
1;
WB .E

0IT /
WB .EIT /

�
D min .1; exp .�ˇ�E// ; (1.7)

where

�E D E 0 �E: (1.8)

A MD simulation, on the other hand, is based on the following Newton equations
of motion:

Pqk D
pk

mk

; (1.9)

Ppk D �
@E

@qk
D f k; (1.10)

where fk is the force acting on the k-th atom (kD 1, : : : , N). This set of equations
actually yield the microcanonical ensemble, however, and we have to add a
thermostat in order to obtain the canonical ensemble at temperature T. Here, we
just follow Nosé’s prescription [19, 20], and we have

Pqk D
pk

mk

; (1.11)

Ppk D �
@E

@qk
� Ps
s

pk D f k �
Ps
s

pk; (1.12)

Ps D s Ps
Q
; (1.13)

PPs D
NX

kD1

pk
2

mk

� 3NkBT D 3NkB .T .t/ � T / ; (1.14)

where s is Nosé’s scaling parameter, Ps is its conjugate momentum, Q is its mass,
and the “instantaneous temperature” T(t) is defined by

T .t/ D 1

3NkB

NX

kD1

pk.t/
2

mk

: (1.15)
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However, in practice, it is very difficult to obtain accurate canonical distributions
of complex systems at low temperatures by conventional MC or MD simulation
methods. This is because simulations at low temperatures tend to get trapped in
one or a few of local-minimum-energy states. This difficulty is overcome by, for
instance, the generalized-ensemble algorithms, which greatly enhance conforma-
tional sampling.

In the multicanonical ensemble [6, 7], on the other hand, each state is weighted
by a non-Boltzmann weight factor WMUCA(E) (which we refer to as the multicanon-
ical weight factor) so that a uniform potential energy distribution PMUCA(E) is
obtained:

PMUCA.E/ / n.E/WMUCA.E/ � const: (1.16)

The flat distribution implies that a free random walk in the potential energy space
is realized in this ensemble. This allows the simulation to escape from any local
minimum-energy states and to sample the configurational space much more widely
than the conventional canonical MC or MD methods.

The definition in Eq. (1.16) implies that the multicanonical weight factor is
inversely proportional to the density of states, and we can write it as follows:

WMUCA.E/ � exp Œ�ˇ0EMUCA .EIT0/� D 1

n.E/
; (1.17)

where we have chosen an arbitrary reference temperature, T0D 1/kBˇ0, and the
“multicanonical potential energy” is defined by

EMUCA .EIT0/ � kBT0 lnn.E/ D T0S.E/: (1.18)

Here, S(E) is the entropy in the microcanonical ensemble. Because the density of
states of the system is usually unknown, the multicanonical weight factor has to be
determined numerically by iterations of short preliminary runs [6, 7].

A multicanonical MC simulation is performed, for instance, with the usual
Metropolis criterion [18]: The transition probability of state x with potential energy
E to state x0 with potential energy E0 is given by

w
�
x ! x0� D min

�
1;
WMUCA .E

0/
WMUCA.E/

�
D min

�
1;
n.E/

n .E 0/

�

D min .1; exp .�ˇ0�EMUCA// ; (1.19)

where

�EMUCA D EMUCA
�
E 0IT0

� �EMUCA .EIT0/ : (1.20)



6 T. Yoda et al.

The MD algorithm in the multicanonical ensemble also naturally follows from Eq.
(1.17), in which the regular constant temperature MD simulation (with TDT0) is
performed by replacing E by EMUCA in Eq. (1.12) [21, 22]:

Ppk D �
@EMUCA .EIT0/

@qk
� Ps
s

pk D
@EMUCA .EIT0/

@E
f k �

Ps
s

pk: (1.21)

From Eq. (1.18) this equation can be rewritten as

Ppk D
T0

T .E/
f k �

Ps
s

pk: (1.22)

where the following thermodynamic relation gives the definition of the “effective
temperature” T(E):

@S.E/

@E

ˇ̌
ˇ̌
EDEa

D 1

T .Ea/
; (1.23)

with

Ea D <E>T .Ea/: (1.24)

If the exact multicanonical weight factor WMUCA(E) is known, one can calculate
the ensemble averages of any physical quantity A at any temperature T (D 1/kBˇ)
as follows:

<A>T D

X

E

A.E/PNVT .EIT /
X

E

PNVT .EIT /
D

X

E

A.E/n.E/ exp .�ˇE/
X

E

n.E/ exp .�ˇE/
; (1.25)

where the density of states is given by (see Eq. (1.17))

n.E/ D 1

WMUCA.E/
: (1.26)

The summation instead of integration is used in Eq. (1.25), because we often
discretize the potential energy E with step size " (EDEi; iD 1, 2, : : : ). Here,
the explicit form of the physical quantity A should be known as a function of
potential energy E. For instance, A(E)DE gives the average potential energy
<E>T as a function of temperature, and A(E)D “2 (E�<E>T)2 gives specific
heat.

In general, the multicanonical weight factor WMUCA(E), or the density of states
n(E), is not a priori known, and one needs its estimator for a numerical simulation.
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This estimator is usually obtained from iterations of short trial multicanonical
simulations. However, the iterative process can be non-trivial and very tedious for
complex systems.

In practice, it is impossible to obtain the ideal multicanonical weight factor with
completely uniform potential energy distribution. The question is when to stop
the iteration for the weight factor determination. Our criterion for a satisfactory
weight factor is that as long as we do get a random walk in potential energy space,
the probability distribution PMUCA(E) does not have to be completely flat with a
tolerance of, say, an order of magnitude deviation. In such a case, we usually
perform with this weight factor a multicanonical simulation with high statistics
(production run) in order to get even better estimate of the density of states. Let
NMUCA(E) be the histogram of potential energy distribution PMUCA(E) obtained by
this production run. The best estimate of the density of states can then be given by
the single-histogram reweighting techniques [23] as follows (see the proportionality
relation in Eq. (1.16)):

n.E/ D NMUCA.E/

WMUCA.E/
: (1.27)

By substituting this quantity into Eq. (1.25), one can calculate ensemble averages
of physical quantity A(E) as a function of temperature. Moreover, ensemble averages
of any physical quantity A (including those that cannot be expressed as functions of
potential energy) at any temperature T (D1/kBˇ) can now be obtained as long as one
stores the “trajectory” of configurations (and A) from the production run. Namely,
we have

<A>T D

n0X

kD1
A .x.k//W �1

MUCA .E .x.k/// exp Œ�ˇE .x.k//�
n0X

kD1
W �1

MUCA .E .x.k/// exp Œ�ˇE .x.k//�
; (1.28)

where x(k) is the configuration at the k-th MC (or MD) step and n0 is the total
number of configurations stored. Note that when A is a function of E, Eq. (1.28)
reduces to Eq. (1.25) where the density of states is given by Eq. (1.27).

Equations (1.25) and (1.28) or any other equations which involve summations of
exponential functions often encounter with numerical difficulties such as overflows.
These can be overcome by using, for instance, the following equation [24, 25]: For
CDACB (with A> 0 and B> 0) we have

lnC D ln

�
max .A;B/

�
1C min .A;B/

max .A;B/

��

D max .lnA; lnB/C ln f1C exp Œmin .lnA; lnB/ �max .lnA; lnB/�g :
(1.29)
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1.2.2 Replica-Exchange Method

The replica-exchange method (REM) is another effective generalized-ensemble
algorithm. The system for REM consists of M non-interacting copies (or, replicas)
of the original system in the canonical ensemble at M different temperatures
Tm(mD 1, : : : , M). We arrange the replicas so that there is always exactly one
replica at each temperature. Then there exists a one-to-one correspondence between
replicas and temperatures; the label i(D1, : : : , M) for replicas is a permutation of
the label m(D1, : : : , M) for temperatures, and vice versa:

�
i D i.m/ � f .m/;
m D m.i/ � f �1.i/; (1.30)

where f (m) is a permutation function of m and f� 1(i) is its inverse.
Let XDfxŒi.1/�1 , : : : ,xŒi.M/�M gD fxŒ1�m.1/, : : : ,x

ŒM�
m.M/g stand for a “state” in this general-

ized ensemble. Each “substate” xŒi�m is specified by the coordinates q[i] and momenta
p[i] of N atoms in replica i at temperature Tm:

xŒi�m �
	
qŒi�; pŒi�




m
: (1.31)

Because the replicas are non-interacting, the weight factor for the state X in this
generalized ensemble is given by the product of Boltzmann factors for each replica
(or at each temperature):

WREM.X/ D
MY

iD1
exp

n
�ˇm.i/H

	
qŒi�; pŒi�


o
D

MY

mD1
exp

n
�ˇmH

	
qŒi.m/�; pŒi.m/�


o

D exp

(
�

MX

iD1
ˇm.i/H

	
qŒi�; pŒi�


)
D exp

(
�

MX

mD1
ˇmH

	
qŒi.m/�; pŒi.m/�


)
;

(1.32)

where i(m) and m(i) are the permutation functions in Eq. (1.30).
We now consider exchanging a pair of replicas in this ensemble. Suppose we

exchange replicas i and j which are at temperatures Tm and Tn, respectively:

X D
n
: : : ; xŒi �m ; : : : ; x

Œj �
n ; : : :

o
! X 0 D

n
: : : ; xŒj �m ’; : : : ; xŒi �n ’; : : :

o
: (1.33)

The exchange of replicas can be written in more detail as

8
<

:
xŒi�m �

�
qŒi�; pŒi�

�
m
! x

Œj �
m ’ � �qŒj �; pŒj �’�

m
;

x
Œj �
n �

�
qŒj �; pŒj �

�
n
! xŒi�n ’ � �qŒi�; pŒi�’�

n
;

(1.34)

where the definitions for p[i]’ and p[j]’ will be given below.
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In the original implementation of the replica-exchange method (REM) [9],
Monte Carlo algorithm was used, and only the coordinates q (and the potential
energy function E(q)) had to be taken into account. In molecular dynamics
algorithm, on the other hand, we also have to deal with the momenta p. We proposed
the following momentum assignment in Eq. (1.34) [12]:

8
<̂

:̂

pŒi�’ �
q

Tn
Tm
pŒi�;

pŒj �’ �
q

Tm
Tn
pŒj �;

(1.35)

which we believe is the simplest and the most natural. This assignment means that
we just rescale uniformly the velocities of all the atoms in the replicas by the square
root of the ratio of the two temperatures so that the temperature condition in Eq. (1.4)
may be satisfied immediately after replica exchange is accepted. We remark that
similar momentum rescaling formulae for various constant-temperature algorithms
have been worked out in Ref. [26].

The transition probability of this replica-exchange process is given by the usual
Metropolis criterion:

w
�
X ! X 0� � w

	
xŒi�m

ˇ̌
ˇxŒj �n



D min

�
1;
WREM .X

0/
WREM.X/

�
D min .1; exp .��// ;

(1.36)

where in the second expression (i.e., w(xŒi�m jxŒj�n )) we explicitly wrote the pair of
replicas (and temperatures) to be exchanged. From Eqs. (1.1), (1.2), (1.32), and
(1.35), we have

� D ˇm
	
E
	
qŒj �



�E

	
qŒi�



� ˇn

	
E
	
qŒj �



�E

	
qŒi�




(1.37)

D .ˇm � ˇn/
	
E
	
qŒj �



�E

	
qŒi�



: (1.38)

Note that after introducing the momentum rescaling in Eq. (1.35), we have the same
Metropolis criterion for replica exchanges, i.e., Eqs. (1.36) and (1.38), for both MC
and MD versions.

Without loss of generality we can assume that T1<T2< : : : <TM . The lowest
temperature T1 should be sufficiently low so that the simulation can explore the
experimentally relevant temperature region, and the highest temperature TM should
be sufficiently high so that no trapping in an energy-local-minimum state occurs.
A REM simulation is then realized by alternately performing the following two
steps:

1. Each replica in canonical ensemble of the fixed temperature is simulated
simultaneously and independently for a certain MC or MD steps.
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2. A pair of replicas at neighboring temperatures, say, xŒi�m and xŒj�m C 1, are exchanged

with the probability w.xŒi�m jxŒj�m C 1 / in Eq. (1.36).

A random walk in “temperature space” is realized for each replica, which in turn
induces a random walk in potential energy space. This alleviates the problem of
getting trapped in states of energy local minima.

After a long production run of a replica-exchange simulation, the canonical
expectation value of a physical quantity A at temperature Tm(mD 1, : : : , M) can
be calculated by the usual arithmetic mean:

hAiTm D
1

nm

nmX

kD1
A .xm.k//; (1.39)

where xm(k)(kD 1, : : : , nm) are the configurations obtained at temperature Tm and
nm is the total number of measurements made at TDTm. The expectation value
at any intermediate temperature T (D 1/kBˇ) can also be obtained from Eq. (1.25),
where the density of states n(E) in Eq. (1.25) is now given by the multiple-histogram
reweighting techniques, or, the weighted histogram analysis method (WHAM) [27,
28] as follows. Let Nm(E) and nm be respectively the potential-energy histogram and
the total number of samples obtained at temperature TmD 1/kBˇm(mD 1, : : : , M).
The best estimate of the density of states is then given by

n.E/ D

MX

mD1
Nm.E/

MX

mD1
nm exp .fm � ˇmE/

; (1.40)

where we have for each m(D1, : : : , M)

exp .�fm/ D
X

E

n.E/ exp .�ˇmE/: (1.41)

Note that Eqs. (1.40) and (1.41) are solved self-consistently by iteration [27, 28] to
obtain the density of states n(E) and the dimensionless Helmholtz free energy fm.
Namely, we can set all the fm(mD 1, : : : , M) to, e.g., zero initially. We then use Eq.
(1.40) to obtain n(E), which is substituted into Eq. (1.41) to obtain next values of
fm, and so on.

Moreover, ensemble averages of any physical quantity A (including those
that cannot be expressed as functions of potential energy) at any temperature T
(D 1/kBˇ) can now be obtained from the “trajectory” of configurations of the
production run. Namely, we first obtain fm(mD 1, : : : , M) by solving Eqs. (1.40)
and (1.41) self-consistently, and then we have [14]
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<A>T D

MX

mD1

nmX

kD1
A .xm.k//

1

MX

lD1
nl exp Œfl � ˇlE .xm.k//�

exp Œ�ˇE .xm.k//�

MX

mD1

nmX

kD1

1

MX

lD1
nl exp Œfl � ˇlE .xm.k//�

exp Œ�ˇE .xm.k//�
;

(1.42)

where xm(k)(kD 1, : : : , nm) are the configurations obtained at temperature Tm.

1.2.3 Replica-Exchange Multicanonical Algorithm
and Multicanonical Replica-Exchange Method

The replica-exchange multicanonical algorithm (REMUCA) [13–15] overcomes
both the difficulties of MUCA (the multicanonical weight factor determination
is non-trivial) and REM (a lot of replicas, or computation time, is required). In
REMUCA we first perform a short REM simulation (with M replicas) to determine
the multicanonical weight factor and then perform with this weight factor a regular
multicanonical simulation with high statistics. The first step is accomplished by the
multiple-histogram reweighting techniques. Let Nm(E) and nm be respectively the
potential-energy histogram and the total number of samples obtained at temperature
Tm (D 1/kBˇm) of the REM run. The density of states n(E) is then given by solving
Eqs. (1.40) and (1.41) self-consistently by iteration.

Once the estimate of the density of states is obtained, the multicanonical weight
factor can be directly determined from Eq. (1.17) (see also Eq. (1.18)). Actually, the
density of states n(E) and the multicanonical potential energy, EMUCA(E;T0), thus
determined are only reliable in the following range:

E1 � E � EM; (1.43)

where
8
<

:
E1 D <E>T 1;
EM D <E>TM ;

(1.44)
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and T1 and TM are respectively the lowest and the highest temperatures used in the
REM run. Outside this range we extrapolate the multicanonical potential energy
linearly [13]:

Ef0g
MUCA.E/�

8
ˆ̂<

ˆ̂:

@EMUCA.EIT0/

@E

ˇ̌
ˇ
EDE1

.E �E1/CEMUCA.E1IT0/; for E < E1;

EMUCA .EIT0/ ; for E1 � E � EM ;
@EMUCA.EIT0/

@E

ˇ̌
ˇ
EDEM

.E �EM/CEMUCA .EM IT0/ ; for E > EM :

(1.45)

The multicanonical MC and MD runs are then performed respectively with the
Metropolis criterion of Eq. (1.19) and with the modified Newton equation in Eq.
(1.21), in which Ef0g

MUCA.E/ in Eq. (1.45) is substituted into EMUCA(E;T0). We expect
to obtain a flat potential energy distribution in the range of Eq. (1.43). Finally, the
results are analyzed by the single-histogram reweighting techniques as described in
Eq. (1.27) (and Eq. (1.25)).

Some remarks are now in order. From Eqs. (1.18), (1.23), (1.24), and (1.44),
Eq. (1.45) becomes

Ef0g
MUCA.E/ �

8
<̂

:̂

T0
T1
.E �E1/C T0S .E1/ D T0

T1
E C const; for E < E1;

T0S.E/; for E1 � E � EM;
T0
TM
.E �EM/C T0S .EM/ D T0

TM
E C const; for E > EM :

(1.46)

The Newton equation in Eq. (1.21) is then written as (see Eqs. (1.22), (1.23), and
(1.24))

Ppk D

8
<̂

:̂

T0
T1

f k � Ps
s
pk; for E < E1;

T0
T .E/

f k � Ps
s
pk; for E1 � E � EM;

T0
TM

f k � Ps
s
pk; for E > EM :

(1.47)

Because only the product of inverse temperature ˇ and potential energy E enters
in the Boltzmann factor (see Eq. (1.5)), a rescaling of the potential energy (or
force) by a constant, say ’, can be considered as the rescaling of the temperature
by 1/’ [21]. Hence, our choice of Ef0g

MUCA.E/ in Eq. (1.45) results in a canonical
simulation at TDT1 for E<E1, a multicanonical simulation for E1�E�EM , and
a canonical simulation at TDTM for E>EM . Note also that the above arguments
are independent of the value of T0, and we will get the same results, regardless of
its value.

For Monte Carlo method, the above statement follows directly from the following
equation. Namely, our choice of the multicanonical potential energy in Eq. (1.45)
gives (by substituting Eq. (1.46) into Eq. (1.17))
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WMUCA.E/ � exp
h
�ˇ0Ef0g

MUCA.E/
i
D

8
<̂

:̂

exp .�ˇ1E C const/ ; for E < E1;
1

n.E/
; for E1 � E � EM;

exp .�ˇME C const/ ; for E > EM :

(1.48)

We now present the multicanonical replica-exchange method (MUCAREM)
[13–15]. In MUCAREM the production run is a REM simulation with a few replicas
not in the canonical ensemble but in the multicanonical ensemble, i.e., different
replicas perform MUCA simulations with different energy ranges. While MUCA
simulations are usually based on local updates, a replica-exchange process can be
considered to be a global update, and global updates enhance the sampling further.

Let M be the number of replicas for a MUCAREM simulation. Here, each
replica is in one-to-one correspondence not with temperature but with multicanon-
ical weight factors of different energy range. Note that because multicanonical
simulations cover much wider energy ranges than regular canonical simulations,
the number of required replicas for the production run of MUCAREM is much less
than that for the regular REM (M � M ). The weight factor for this generalized
ensemble is now given by (see Eq. (1.32))

WMUCAREM.X/ D
MY

iD1
W

fm.i/g
MUCA

	
E
	
x
Œi�

m.i/




D

MY

mD1
W

fmg
MUCA

	
E
	
xŒi.m/�m




; (1.49)

where we prepare the multicanonical weight factor (and the density of states)
separately for M regions (see Eq. (1.17)):

W
fmg

MUCA

	
E
	
xŒi�m




D exp

h
�ˇmEfmg

MUCA

	
E
	
xŒi�m



i
� 1

nfmg
	
E
	
x
Œi�
m



 : (1.50)

Here, we have introduced M arbitrary reference temperatures Tm (D 1/kBˇm)
.m D 1; : : : ;M/, but the final results will be independent of the values of Tm, as
one can see from the second equality in Eq. (1.50) (these arbitrary temperatures are
necessary only for MD simulations).

Each multicanonical weight factor Wfmg
MUCA(E), or the density of states nfmg(E),

is defined as follows. For eachm.m D 1; : : : ;M/, we assign a pair of temperatures
(Tfmg
L ,Tfmg

H ). Here, we assume that Tfmg
L <Tfmg

H and arrange the temperatures so that
the neighboring regions covered by the pairs have sufficient overlaps. Without loss
of generality we can assume T f1g

L < � � � < T fMg
L and T f1g

H < � � � < T fMg
H . We define

the following quantities:

8
<

:
E

fmg
L D <E>

T
fmg
L
;

E
fmg
H D <E>

T
fmg
H
; .m D 1; : : : ;M/ :

(1.51)
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Suppose that the multicanonical weight factor WMUCA(E) (or equivalently, the
multicanonical potential energy EMUCA(E;T0) in Eq. (1.18)) has been obtained
as in REMUCA or by any other methods in the entire energy range of interest
(Ef1g

L < E < E
fMg
H ). We then have for each m.m D 1; : : : ;M/ the following

multicanonical potential energies (see Eq. (1.45)) [13]:

Efmg
MUCA.E/ �

8
ˆ̂̂
<̂

ˆ̂̂
:̂

@EMUCA.EITm/

@E

ˇ̌
ˇ
EDE

fmg
L

	
E �E

fmg
L



CEMUCA

	
E

fmg
L ITm



; for E < E

fmg
L ;

EMUCA .EITm/ for Efmg
L � E � E

fmg
H ;

@EMUCA.EITm/

@E

ˇ̌
ˇ
EDE

fmg
H

	
E �E

fmg
H



CEMUCA

	
E

fmg
H ITm



; for E > E

fmg
H

(1.52)

Finally, a MUCAREM simulation is realized by alternately performing the
following two steps.

1. Each replica of the fixed multicanonical ensemble is simulated simultaneously
and independently for a certain MC or MD steps.

2. A pair of replicas, say i and j, which are in neighboring multicanonical
ensembles, say m-th and (mC 1)-th, respectively, are exchanged:

X D
n
: : : ; xŒi �m ; : : : ; x

Œj �

mC1; : : :
o
! X 0 D

n
: : : ; xŒj �m ; : : : ; x

Œi �
mC1; : : :

o
: (1.53)

The transition probability of this replica exchange is given by the Metropolis
criterion:

w
�
X ! X 0� D min .1; exp .��// ; (1.54)

where we now have (see Eq. (1.37)) [13]

� D ˇm
n
Efmg

MUCA

	
E
	
qŒj �




� Efmg

MUCA

	
E
	
qŒi�


o

� ˇmC1
n
EfmC1g

MUCA

	
E
	
qŒj �




� EfmC1g

MUCA

	
E
	
qŒi�


o

: (1.55)

Here, E(q[i]) and E(q[j]) are the potential energy of the i-th replica and the j-th
replica, respectively.

Note that in Eq. (1.55) we need to newly evaluate the multicanonical potential
energy, Efmg

MUCA

�
E
�
qŒj �

��
and EfmC1g

MUCA

�
E
�
qŒi�
��

, because Efmg
MUCA.E/ and Efng

MUCA.E/

are, in general, different functions for m¤ n.
In this algorithm, the m-th multicanonical ensemble actually results in a

canonical simulation at TDTfmg
L for E<Efmg

L , a multicanonical simulation for

Efmg
L �E�Efmg

H , and a canonical simulation at TDTfmg
H for E>Efmg

H , while the

replica-exchange process samples states of the whole energy range (Ef1g
L � E �

E
fMg
H ).
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For obtaining the canonical distributions at any intermediate temperature T,
the multiple-histogram reweighting techniques are again used. Let Nm(E) and nm

be respectively the potential-energy histogram and the total number of samples
obtained with the multicanonical weight factor Wfmg

MUCA(E) .m D 1; : : : ;M/. The
expectation value of a physical quantity A at any temperature T (D 1/kBˇ) is then
obtained from Eq. (1.25), where the best estimate of the density of states is obtained
by solving the WHAM equations, which now read [13]

n.E/ D

MX

mD1
Nm.E/

MX

mD1
nm exp .fm/W

fmg
MUCA.E/

D

MX

mD1
Nm.E/

MX

mD1
nm exp

	
fm � ˇmEfmg

MUCA.E/

 ;

(1.56)

where we have for each m.D 1; : : : ;M/

exp .�fm/ D
X

E

n.E/W
fmg

MUCA.E/ D
X

E

n.E/ exp
	
�ˇmEfmg

MUCA.E/


: (1.57)

Note that Wfmg
MUCA(E) is used instead of the Boltzmann factor exp(�ˇmE) in Eqs.

(1.40) and (1.41).
Moreover, ensemble averages of any physical quantity A (including those

that cannot be expressed as functions of potential energy) at any temperature T
(D 1/kBˇ) can now be obtained from the “trajectory” of configurations of the
production run. Namely, we first obtain fm .m D 1; : : : ;M/ by solving Eqs. (1.56)
and (1.57) self-consistently, and then we have [14]

<A>T D

MX

mD1

nmX

kD1
A.xm.k//

1

MX

lD1
nl exp .fl /W

flg
MUCA .E .xm.k///

expŒ�ˇE.xm.k//�

MX

mD1

nmX

kD1

1

MX

lD1
nl exp .fl /W

flg
MUCA .E .xm.k///

expŒ�ˇE.xm.k//�
;

(1.58)

where the trajectories xm(k)(kD 1, : : : , nm) are taken from each multicanonical
simulation with the multicanonical weight factor Wfmg

MUCA(E) .m D 1; : : : ;M/

separately.
As seen above, both REMUCA and MUCAREM can be used to obtain the

multicanonical weight factor, or the density of states, for the entire potential energy
range of interest. For complex systems, however, a single REMUCA or MUCAREM
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simulation is often insufficient. In such cases we can iterate MUCA (in REMUCA)
and/or MUCAREM simulations in which the estimate of the multicanonical weight
factor is updated by the single- and/or multiple-histogram reweighting techniques,
respectively.

To be more specific, this iterative process can be summarized as follows. The
REMUCA production run corresponds to a MUCA simulation with the weight
factor WMUCA(E). The new estimate of the density of states can be obtained by the
single-histogram reweighting techniques of Eq. (1.27). On the other hand, from the
MUCAREM production run, the improved density of states can be obtained by the
multiple-histogram reweighting techniques of Eqs. (1.56) and (1.57).

The improved density of states thus obtained leads to a new multicanonical
weight factor (see Eq. (1.17)). The next iteration can be either a MUCA production
run (as in REMUCA) or MUCAREM production run. The results of this production
run may yield an optimal multicanonical weight factor that yields a sufficiently flat
energy distribution for the entire energy range of interest. If not, we can repeat the
above process by obtaining the third estimate of the multicanonical weight factor
either by a MUCA production run (as in REMUCA) or by a MUCAREM production
run, and so on.

We remark that as the estimate of the multicanonical weight factor becomes
more accurate, one is required to have a less number of replicas for a successful
MUCAREM simulation, because each replica will have a flat energy distribution for
a wider energy range. Hence, for a large, complex system, it is often more efficient to
first try MUCAREM and iteratively reduce the number of replicas so that eventually
one needs only one or a few replicas (instead of trying REMUCA directly from the
beginning and iterating MUCA simulations).

1.3 Simulation Results

We now present some examples of the simulation results by the algorithms described
in the previous section. The computer code developed in Refs. [12, 13, 29, 30],
which is based on the version 2 of PRESTO [31], was used after modifications that
were necessary for each calculation.

The first example is the C-peptide of ribonuclease A in explicit water [32]. The
N-terminus and the C-terminus of the C-peptide analogue were blocked with the
acetyl group and the N-methyl group, respectively. The number of amino acids
is 13 and the amino-acid sequence is: Ace-Ala-Glu�-Thr-Ala-Ala-Ala-LysC-Phe-
Leu-ArgC-Ala-HisC-Ala-Nme [33, 34]. It is known by experiments that this peptide
forms ’-helix structures [33, 34]. The initial configuration of our simulation was first
generated by a high temperature molecular dynamics simulation (at TD 1,000 K) in
gas phase, starting from a fully extended conformation. We randomly selected one
of the structures that do not have any secondary structures such as ’-helix and “-
sheet. The peptide was then solvated in a sphere of radius 22 Å, in which 1,387 water
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Fig. 1.1 The initial
configuration of C-peptide in
explicit water, which was
used in all of the 32 replicas
of the first REMD simulation
(REMD1 in Table 1.1). The
red filled circles stand for the
oxygen atoms of water
molecules. The number of
water molecules is 1,387, and
they are placed in a sphere of
radius 22 Å. As for the
peptide, besides the backbone
structure (in blue), side chains
of only Glu�-2, Phe-8,
ArgC-10, and HisC-12 are
shown (in yellow) (Reprinted
from Ref. [32] with kind
permission of Cell Press
(2005))

Table 1.1 Summary of parameters in REMD, MUCAREM, and REMUCA simulations of
C-peptide in explicit watera

Simulation
Number of
replicas, M Temperature, Tm (K) (m D 1, : : : , M) MD steps per replica

REMD1b 32 250, 258, 267, 276, 286, 295, 305,
315, 326, 337, 348, 360, 372, 385,
398, 411, 425, 440, 455, 470, 486,
502, 519, 537, 555, 574, 593, 613,
634, 655, 677, 700

2.0 � 105

MUCAREM1 4 360, 440, 555, 700 2.0 � 106

REMUCA1 1 700 3.0 � 107

aReprinted from Ref. [32] with kind permission of Cell Press (2005)
bREMD1 stands for the replica-exchange molecular dynamics simulation, MUCAREM1 stands
for the multicanonical replica-exchange molecular dynamics simulation, and REMUCA1 stands
for the final multicanonical molecular dynamics simulation (the production run) of REMUCA. The
results of REMD1 were used to determine the multicanonical weight factors for MUCAREM1, and
those of MUCAREM1 were used to determine the multicanonical weight factor for REMUCA1

molecules were included (see Fig. 1.1). Harmonic restraint was applied to prevent
the water molecules from going out of the sphere. The total number of atoms is
4,365. The dielectric constant was set equal to 1.0. The force-field parameters for
protein were taken from the all-atom version of AMBER parm99 [35], which was
found to be suitable for studying helical peptides [36, 37], and TIP3P model [38]
was used for water molecules. The unit time step, �t, was set to 0.5 fs. In Table 1.1
the parameter values in the simulations performed are summarized.
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We first performed a REMD simulation with 32 replicas for 100 ps per replica
(REMD1 in Table 1.1). During this REMD simulation, replica exchange was
tried every 200 MD steps. Using the obtained potential-energy histogram of each
replica as input data to the multiple-histogram analysis in Eqs. (1.40) and (1.41),
we obtained the first estimate of the multicanonical weight factor, or the density
of states. We divided this multicanonical weight factor into four multicanonical
weight factors that cover different energy regions [13–15] and assigned these
multicanonical weight factors into four replicas (the weight factors cover the
potential energy ranges from �13791.5 to �11900.5 kcal/mol, from �12962.5 to
�10796.5 kcal/mol, from �11900.5 to �9524.5 kcal/mol, and from �10796.5 to
�8293.5 kcal/mol). We then carried out a MUCAREM simulation with four replicas
for 1 ns per replica (MUCAREM1 in Table 1.1), in which replica exchange was
tried every 1,000 MD steps. We again used the potential-energy histogram of each
replica as the input data to the multiple-histogram analysis and finally obtained
the multicanonical weight factor with high precision. As a production run, we
carried out a 15-ns multicanonical MD simulation with one replica (REMUCA1
in Table 1.1) and the results of this production run were analyzed in detail.

In Fig. 1.2 we show the probability distributions of potential energy that were
obtained from the above three generalized-ensemble simulations, namely, REMD1,
MUCAREM1, and REMUCA1. We see in Fig. 1.2a that there are enough overlaps
between all pairs of neighboring canonical distributions, suggesting that there were
sufficient numbers of replica exchange in REMD1. We see in Fig. 1.2b that there
are good overlaps between all pairs of neighboring multicanonical distributions,
implying that MUCAREM1 also performed properly. Finally, the multicanonical
distribution in Fig. 1.2c is completely flat between around �13,000 kcal/mol and
around �8,000 kcal/mol. The results suggest that a free random walk was realized
in this energy range.

In Fig. 1.3a we show the time series of potential energy from REMUCA1. We
indeed observe a random walk covering as much as 5,000 kcal/mol of energy range.
We show in Fig. 1.3b the average potential energy as a function of temperature,
which was obtained from the trajectory of REMUCA1 by the reweighting tech-
niques. The average potential energy monotonically increases as the temperature
increases.

The accuracy of average quantities calculated depend on the “quality” of the
random walk in the potential energy space, and the measure for this quality can be
given by the number of tunneling events [7, 15]. One tunneling event is defined by
a trajectory that goes from EH to EL and back, where EH and EL are the values near
the highest energy and the lowest energy, respectively, which the random walk can
reach. If EH is sufficiently high, the trajectory gets completely uncorrelated when it
reaches EH. On the other hand, when the trajectory reaches near EL, it tends to get
trapped in local-minimum states. We thus consider that the more tunneling events
we observe during a fixed number of MC/MD steps, the more efficient the method
is as a generalized-ensemble algorithm (or, the average quantities obtained by the
reweighting techniques are more reliable). Here, we took EHD�8,250 kcal/mol
and ELD�12,850 kcal/mol for the measurement of the tunneling events. The
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Fig. 1.2 Probability distributions of potential energy of the C-peptide system obtained from
(a) REMD1, (b) MUCAREM1, and (c) REMUCA1. See Table 1.1 for the parameters of the
simulations. Dashed curves in (c) are the reweighted canonical distributions at 290, 300, 500, and
700 K (from left to right) (Reprinted from Ref. [32] with kind permission of Cell Press (2005))
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Fig. 1.3 Time series of potential energy of the C-peptide system from the REMUCA production
run (REMUCA1 in Table 1.1) (a) and the average potential energy as a function of temperature
(b). The latter was obtained from the trajectory of REMUCA1 by the single-histogram reweighting
techniques (Reprinted from Ref. [32] with kind permission of Cell Press (2005))

random walk in REMUCA1 yielded as many as 55 tunneling events in 15 ns. The
corresponding numbers of tunneling events for REMD1 and for MUCAREM1 were
0 in 3.2 ns and 5 in 4 ns, respectively. Hence, REMUCA is the most efficient and
reliable among the three generalized-ensemble algorithms.

In Fig. 1.4 the potential of mean force along the first two principal component
axes at 300 K is shown. There exist three distinct minima in the free-energy
landscape, which correspond to three local-minimum-energy states. We show
representative conformations at these minima in Fig. 1.5. The structure of the
global-minimum free-energy state (GM) has a partially distorted ’-helix with the
salt bridge between Glu�-2 and ArgC-10. The structure is in good agreement with
the experimental structure obtained by both NMR and X-ray experiments. In this
structure there also exists a contact between Phe-8 and HisC-12. This contact is
again observed in the corresponding residues of the X-ray structure. At LM1 the
structure has a contact between Phe-8 and HisC-12, but the salt bridge between
Glu�-2 and ArgC-10 is not formed. On the other hand, the structure at LM2 has this
salt bridge, but it does not have a contact between Phe-8 and HisC-12. Thus, only
the structures at GM satisfy all of the interactions that have been observed by the
X-ray and other experimental studies.

The next example is the C-terminal “-hairpin of streptococcal protein G B1
domain [39]. This peptide is sometimes referred to as G-peptide [40] and is known
by experiments to form “-hairpin structures in aqueous solution [41, 42]. The
number of amino acids is 16 and the amino-acid sequence is: Gly-Glu�-Trp-Thr-
Tyr-Asp�-Asp�-Ala-Thr-LysC-Thr-Phe-Thr-Val-Thr-Glu�. The N-terminus and C-
terminus were set to be in the zwitter ionic form (NH3

C and COO�), following the
conditions in the experiments. GROMOS96 (43a1) force field [43] was used for
the solute molecule. SPC model [44] was employed for solvent water molecules
according to the GROMOS prescription. We first performed a REMD simulation of
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Fig. 1.4 Potential of mean force (kcal/mol) of the C-peptide system along the first two principal
components at 300 K. The free energy was calculated from the results of REMUCA production run
(REMUCA1 in Table 1.1) by the single-histogram reweighting techniques and normalized so that
the global-minimum state (GM) has the value zero. GM, LM1, and LM2 represent three distinct
minimum free-energy states (Reprinted from Ref. [32] with kind permission of Cell Press (2005))

Fig. 1.5 The representative structures at the global-minimum free-energy state ((a) GM) and the
two local-minimum states ((b) LM1 and (c) LM2). As for the peptide structures, besides the
backbone structure, side chains of only Glu�-2, Phe-8, ArgC-10, and HisC-12 are shown in ball-
and-stick model (Reprinted from Ref. [32] with kind permission of Cell Press (2005))

G-peptide without explicit solvents from a fully extended polypeptide conformation.
In the simulation, we used the distance-dependent dielectric constant. We then
selected the final conformation in the replica that was simulated at the highest
temperature at the end of the simulation. This conformation was soaked in a
water cap whose radius was 26 Å. Before starting the MUCAREM simulation,
we performed a 100-ps REMD simulation with 64 replicas twice. (One of them
was done for optimization of temperature table for the second REMD.) Using
the results of the second REMD, we determined the initial multicanonical weight
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Fig. 1.6 Time series of structural properties of two folding events of G-peptide, resulting in the
native-like “-hairpin structures. Those during 5-ns time windows are shown. (a1) and (b1) are the
time series of heavy-atom RMSD values for Replica 4 and Replica 8, respectively. Likewise, (a2)
and (b2) are representative snapshot structures observed in these 5-ns time windows. The numbers
written under the snapshot structures represent the time when it was observed (Reprinted from Ref.
[39] with kind permission of Wiley (2007))

factor. By iterating cycles of a short MUCAREM with 8 replicas and an update
to a new weight factor [15], we refined the multicanonical weight factor. After
that we performed a MUCAREM MD with 8 replicas for 34.75 ns (per replica)
as a production run. Thus, the total production MD length was 278 ns. In total,
three independent folding events were observed in three different replicas. Thus,
the average simulation length per one observed folding event was 92.7 ns. This
suggests that MUCAREM can accelerate G-peptide folding more than 60 times
than the conventional MD simulations, because the experimental folding time of
G-peptide is 6 �s [45].

Figure 1.6 shows the time series of the heavy-atom Root Mean Square Deviation
(RMSD) from the native configuration (coordinates in the PDB entry 2GB1) and
representative snapshot structures observed in the folding events are shown for two
replicas. They indeed folded into native-like conformations.

We also evaluated the canonical expectation values of secondary-structure
contents (“-bridge contents) of each residue at 320 K using the multiple-histogram
reweighting techniques in Eqs. (1.56), (1.57), and (1.58). The results are shown
in Fig. 1.7. These results are qualitatively similar to the previous ones that were
derived from shorter MUCAREM simulations [36, 37]. They clearly imply that the
“-hairpin structures are formed at this temperature.

The third example is the chicken villin headpiece subdomain in explicit water
[46]. The number of amino acids is 36. The force field CHARMM22 [47] with
CMAP [48, 49] and TIP3P water model [38, 47] were used. The number of water
molecules was 3,513. The MD time step was 1.0 fs. We made two production runs
of about 1 �s, each of which was a MUCAREM simulation with eight replicas.
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Fig. 1.7 Canonical expectation values of the “-bridge contents of G-peptide at 320 K as a function
of the residue number. Values are evaluated by the multiple-histogram reweighting techniques
(Reprinted from Ref. [39] with kind permission of Wiley (2007))

Fig. 1.8 Snapshots of villin headpiece during the MUCAREM production runs that folded into
native-like conformations: MUCAREM1 (above) and MUCAREM2 (below)

They are referred to as MUCAREM1 and MUCAREM2. The former consisted of
1.127 �s covering the temperature range between 269 and 699 K, and the latter
1.157 �s covering the temperature range between 289 and 699 K.

We consider that the backbone folded into the native structure from unfolded
ones if the mainchain RMSD becomes less than or equal to 3.0 Å. The folding event
is counted separately if it goes through an unfolded structure (with the backbone
RMSD greater than or equal to 6.5 Å). With this criterion, we observed 11 folding
events in seven different replicas (namely, Replicas 5, 7, and 8 in MUCAREM1 and
Replicas 1, 2, 4, and 5 in MUCAREM2). In Fig. 1.8 we show the snapshots of the
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Fig. 1.9 Low-RMSD conformations of villin headpiece subdomain HP36 obtained in MUCA-
REM1 and MUCAREM2 (colored in orange). The X-ray structure (PDB ID: 1YRF) is also
superimposed (colored in blue and green). Here, the ’-helices in the X-ray structure are colored in
green and the rest in blue. Three phenylalanine side chains (Phe7, Phe11, and Phe18), which form
a hydrophobic core, are shown in ball-and-stick representation. (a) The lowest-bakcbone-RMSD
conformation observed in the two MUCAREM production runs (Replica 5 of MUCAREM2). The
backbone RMSD value is 1.1 Å (for non-terminal 34 residues). (b) A low-RMSD conformation
observed in MUCAREM1 (Replica 8). The RMSD value is 1.0 Å for residues 9–32 and 3.3 Å for
non-terminal 34 residues (Reprinted from Ref. [46] with kind permission of Cell Press (2010))

replicas folding into native-like conformations for the two MUCAREM production
runs. In Fig. 1.9 we compare the obtained low-RMSD conformations and the native
structure. They are indeed very close to the native structure.

1.4 Conclusions

In this article we introduced four powerful generalized-ensemble algorithms,
namely, multicanonical algorithm (MUCA), replica-exchange method (REM),
replica-exchange multicanonical algorithm (REMUCA), and multicanonical
replica-exchange method (MUCAREM), which can greatly enhance conformational
sampling of biomolecular systems. The results of protein folding simulations
by these methods were presented. Because it is very difficult to determine the
multicanonical weight factors for very large systems, MUCAREM is the most
promising method among the four methods for large biomolecular systems.
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Chapter 2
Application of Markov State Models
to Simulate Long Timescale Dynamics
of Biological Macromolecules

Lin-Tai Da*, Fu Kit Sheong*, Daniel-Adriano Silva*, and Xuhui Huang

Abstract Conformational changes of proteins are an essential part of many biologi-
cal processes such as: protein folding, ligand binding, signal transduction, allostery,
and enzymatic catalysis. Molecular dynamics (MD) simulations can describe the
dynamics of molecules at atomic detail, therefore providing a much higher temporal
and spatial resolution than most experimental techniques. Although MD simulations
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have been widely applied to study protein dynamics, the timescales accessible
by conventional MD methods are usually limited to timescales that are orders of
magnitude shorter than the conformational changes relevant for most biological
functions. During the past decades great effort has been devoted to the development
of theoretical methods that may enhance the conformational sampling. In recent
years, it has been shown that the statistical mechanics framework provided by
discrete-state and -time Markov State Models (MSMs) can predict long timescale
dynamics from a pool of short MD simulations. In this chapter we provide the
readers an account of the basic theory and selected applications of MSMs. We will
first introduce the general concepts behind MSMs, and then describe the existing
procedures for the construction of MSMs. This will be followed by the discussions
of the challenges of constructing and validating MSMs, Finally, we will employ
two biologically-relevant systems, the RNA polymerase and the LAO-protein,
to illustrate the application of Markov State Models to elucidate the molecular
mechanisms of complex conformational changes at biologically relevant timescales.

Keywords Markov State Models • Molecular dynamics simulations • Free
energy landscape • Molecular recognition • Biological macromolecules •
Proteins • RNA polymerase

2.1 Introduction

Conformational changes are known to be critical in many biological processes such
as protein folding, ligand binding, signal transduction, allostery, and enzymatic
catalysis [1–4]. Due to its significance in biological field, a great amount of research
attention has been drawn to investigate conformational changes in biological
macromolecules. Throughout the decades of conformational studies in biomolecular
systems, X-ray crystallography [5] has evolved and thus has already revolutionized
our understanding on the atomic-level structural details as well as the functions of
protein, DNA and RNA. More recently, the emergence of Cryo-electron microscopy
[6] and small-angle X-ray scattering techniques [7] has further boosted the advance
in the understanding of complex biomolecular structures. Despite their remarkable
success in the field, these experimental methods can only provide static snapshots
of the molecules under study but not the details of the conformational dynamics.
To overcome this limitation, alternative experimental methods, including nuclear
magnetic resonance spectroscopy (NMR) [8] and several different fluorescence
spectroscopic techniques [9–13], are routinely used to study the dynamics of protein
ensembles in real time. Even so, the atomic-level details of conformational changes
in biological macromolecules are still hard to capture, mainly due to the fast-
dynamics and microscopic nature of these systems.

Molecular dynamics (MD) simulations are a computational technique that can
complement experiments and address the aforementioned issues. MD is a simulation
technique based on Newton’s equations of motion and in the recent years it
has attracted great attention due to its ability to simulate dynamics of biological
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Fig. 2.1 The timescales gap between the conformational changes accessible by conven-
tional MD simulations and the relevant biological functions observed experimentally for
biomolecules. The picture illustrates the notion of timescale gap between the theory (MD
simulations) and experiments, however, (red color key) the Folding@home project (using massive
crowdsourcing computing) [22] and the specialized MD simulator machine Anton [23], have
been able to MD simulate experimentally relevant timescales (�s-ms) by using its massive
computational resources. However, these kinds of resources are not accessible to everyone and
currently its capacity is indeed restricted to relatively small biomolecules

macromolecules [14, 15]. MD can describe the molecules dynamics in atomic detail,
which is of a much higher spatial resolution than most experimental techniques.
In the past decades great progress has been made in the development of force
fields used for MD simulations of biologically relevant macromolecules, which
had led to a more accurate description of the dynamics of protein, DNA and
RNA. Furthermore, the exponential increase of computing power [16] and the
development of crowd-sourcing computing [17], has allowed in recent years the
simulation of biological macromolecules at timescales ranging from nanoseconds
(ns) to microseconds (�s). In a limited number of cases, it has even been possible
to simulate the millisecond timescale of small proteins with the aid of specialized
MD computers [18], an unprecedented timescale [19, 20] that, for the first time, has
permitted comparisons with experimental data and to elaborate hypothesis about the
mechanisms of protein’s function.

Although MD simulations have been widely applied to study protein dynamics
at an atomic-level of detail, the timescales accessible by conventional MD methods
are usually limited to the timescale that is orders of magnitude shorter than the
conformational changes relevant to the biological function. In order to bridge
this “timescale gap” [21] (see Fig. 2.1), many research efforts have been devoted
to the development of theoretical methods that aim at faster sampling of the
conformational space [24], some examples include: steered [25], targeted [26],
accelerated [27, 28], replica exchange MD simulations [29] and metadynamics [30].

In contrast to these enhanced sampling techniques, a mathematical framework
known as Markov State Model (MSM) has recently caught researchers’ attention
due to its potential to bridge the timescale gap. With the application of such
framework, system dynamics at long timescales can be predicted by performing
only short (time conventional) MD simulations [31–36]. The emergence of this
promising method has thus opened the door of extracting at-equilibrium models
of the complete energy landscape of biomolecules.
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A number of successful examples of applying MSM have already been reported
in the field of protein and RNA folding, protein-ligand binding mechanisms and the
release of enzymatic reaction’s sub-products. For further reference, we recommend
the following notable recent examples: the Pande group has described the protein
folding process of the Villin’s headpiece [37], lambda repressor [38], NTL9 [20]
and showed that for some protein the folded native-states are kinetic-hubs [39]; The
Huang group used MSM to study the folding of small RNA hairpins [40], ligand
binding mechanism of a periplasmic binding protein (PBP) [41] and the release of
pyrophosphate ion from the active site of the yeast RNA polymerase II (Pol II) [42]
and bacterial RNA polymerase [43]; the Noé group has used MSM to understand
the folding mechanism of the PinWW protein [44]; while Bowman and Geissler
have described a novel method to identify hidden allosteric sites in proteins based
mainly on MSMs [45]. All these studies have demonstrated a good agreement with
the available experimental observations.

In view of this widespread interest in the application of MSM to biomolecular
studies, we will hereby give a general account of the theories as well as applications
in the chapter. We will first introduce the basic concepts behind MSM and describe
the detailed procedures for its construction, we will then illustrate the challenges
of generating and validating a MSM, and finally we will employ two biological
systems, the RNA polymerase (bacterial and eukaryotic) and the Lysine-, Arginine-,
Ornithine-binding protein (LAO protein), as examples to explain the practical details
of how MSM can be used to extract relevant kinetic and at-equilibrium information
from an ensemble of short MD simulations.

2.2 Modeling the Dynamics of Biomolecules

Macromolecules, due to their high degrees of freedom and complicated molecular
interaction, have numerous free energy minima in their conformational free energy
landscape. In general, relatively low free energy barriers (within the order of several
kcal/mol) separate these free energy minima. Because molecules are dynamic in
nature at any temperature above absolute zero, and the amplitude of these motions
increases with temperature, thermal fluctuation at biologically relevant temperatures
are usually sufficient for the system to overcome these low conformational free
energy barriers. Therefore, in most cases (if not all), at biologically relevant
temperatures, what is called the native state of a protein is actually composed
by a collection of protein conformations in dynamic equilibrium. To model the
kinetics of such systems, a common approach is to divide the conformational
space into a set of discrete states that are kinetically metastable in nature [31, 33],
each corresponding to a free energy minima (or a grouped set of connected free
energy minima). Therefore, the transitions between these metastable states can be
approximated as the transitions between states in a kinetic scheme.
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If the probability distribution of any future state X(tC�t) depends only on the
present state X(t) the transition process is known as Markovian, also sometimes
dubbed as “memoryless”. Such Markovian process in a kinetic scheme can be
described by the memoryless Master equation:

dX.t/

dt
D X.t/K (2.1)

with X(t) being an n-dimensional row vector describing the probability for the n-
states to be occupied at time t. K is the rate matrix, where Kij is the rate constant
for the transition from state i to j. The diagonal elements of K are defined such
that KiiD�Pi ¤ jKij in order to have conservation of mass. This memoryless
approximation is the underlying reason that allows modeling of macromolecular
dynamics with MSM, which will be discussed in detail in the following section.

2.3 Markov Chain

To aid readers’ understanding in the application of MSMs, some basic knowledge of
Markov process will be first presented. A Markov Model (named in honor to Andrey
Markov, who develop the theory of stochastic processes) defines mathematically a
finite system (described by states) with transitions from one state to another. In this
stochastic model, the fundamental assumption is that the population distribution
X(t) is sufficient to determine any later distribution X(tC�t) where �t> 0.
Under this model the states evolves over time in a probabilistic manner, and
the distribution of states X(tC�t) after each �t (namely propagation) depends
only on its previous distribution X(t), but not on any state before that. This is
consistent with the “memoryless” approximation mentioned in the previous section,
and thus MSM can be applied in the description of kinetics of macromolecular
systems. Currently the prevailing type of Markov Model applied in macromolecular
studies is known as Markov Chain, which considers an autonomous (no external
contribution) process with fully observable states (occupancy of every states
in the model are transparent to the observers). In a time-continuous Markov
chain, the interval of propagation steps �t is infinitesimally small such that the
stochastic process can be represented as a continuous propagator. However, in
the case of the applications of Markov Models for the analysis of data from
MD simulations, due to the fact that MD simulations are intrinsically discrete
in nature, the model most frequently employed is a discrete-time homogeneous
Markov chain model in which the propagation only occurs as discrete steps.
More details of this kind of MSM will be illustrated in detail in the following
example.
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2.4 The Transition Probability Matrix

Let us consider a simple case, suppose that a protein has three metastable states,
namely: state 1, 2 and 3. If transitions only occur stochastically at some dis-
crete time, the system can be modeled as a discrete-time Markov chain. In our
example, we assume the propagation steps are equally spaced at an interval �
and the transition probabilities per propagation step are time-homogeneous (i.e.
the transition probabilities depend only on �t but not on t). Now, assume that
the transition probabilities per propagation time step � (also known as lag time)
between any pair of these three states are known to be those listed in the following
2D matrix:

State 1 2 3

1 0.65 0.28 0.07
2 0.15 0.67 0.18
3 0.12 0.36 0.52

The previous matrix is known as the transition probability matrix (TPM). In a
TPM we use the symbol pij to represent the transition probability from state i to
state j. Hence, the probability of the transition from state 2 to 3 is represented as p23.
From the TPM above we know that p23D 0.18. In terms of an MSM, the transition
probability matrix (P) is a row-normalized matrix (

P
jPijD 1,8 i), because the

elements pij in each row represent the probability of a state i to transition to different
states j and the summation

P
jPij is the probability to have a transition originating

from state i to any state j. Please note that some literature uses a column-normalized
matrix Pt instead of the row-normalized matrix, but in this chapter we will conform
to the row-normalized matrix definition.

2.5 Propagation of the Markov Chain

As mentioned before, a Markov chain must meet the requirement that the probability
of any state after the chain propagation is independent of all but the previous state.
For the previous example, suppose that the initial distribution probabilities of the
states follow the row vector X(0)D [0.21,0.68,0.11] (i.e. 0.21 of the population is in
state 1 and so forth). Because pij refers to the conditional probability of the transition
from state i to j, the distribution after one chain propagation (�t) can be calculated
by: X(0)P(� )� [0.25,0.55,0.19]. In a similar way, the distribution after two chain
propagations is determined as X(0)P(� )2. Therefore, we can write the distribution
vector after the time n� as:

X .n�/ D X.0/ŒP .�/�n (2.2)
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Given Eq. (2.2) and a vector of initial population distributions for the system
states, it is possible to predict the evolution of the system on a longer timescale by
the simple exponentiation of probability matrix. The Eq. (2.2) is actually equivalent
to Eq. (2.1), but at discrete times, and they are related by the expression: P(� )D e�K

[32, 43].

2.6 Constructing a TPM from MD Simulations

TPM is the fundamental part of a discrete-time homogeneous MSM, because
a vector of state probabilities can be propagated forward in time by simply
multiplying it to the transition probability matrix. The construction of TPM is
therefore the most important process in the construction of a discrete-time MSM.
To construct the TPM in practice from MD trajectories, one has to first perform
space discretization to group conformations in the trajectories together (details of
the technique will be discussed in later sections of the chapter), because only if we
consider a group of conformations as oppose to individual conformation we can
empirically determine the observed conditional probability for a transition event
to occur. With the conformational space properly discretized (in either microstate or
macrostate level), a transition count matrix (TCM) N is then constructed by counting
the total number of transitions (nij) from state i to j observed in all MD trajectories
within a certain lag time � . From the principle of detailed balance, the TCM obtained
should be symmetric because all elementary transitions should be reversible under
equilibrium condition. Yet due to the fact that equilibrium sampling is almost never
reached in simulations (thus the need of MSM for equilibrium studies), the TCM is
usually not strictly symmetric. In these cases, the TCM can be symmetrized by:

N symm D N CN T

2
(2.3)

The TPM is then formulated by normalizing each row of the symmetrized
TCM by:

Pij D
Nsymm

ijX	
Nsymm

ij


 (2.4)

Simply symmetrizing the transition count matrix is the most trivial way to
impose the detailed balance condition, but may introduce errors when the number of
inter-state count is small or rather un-symmetric. Noé has introduced an algorithm
to approximate the transition probability matrix induced by the observed count
matrix. Under the framework of the Bayesian Inference, a distribution of transition
probability matrices (posterior distributions) can be obtained using a Metropolis
Monte Carlo scheme, subject to the constraint of the detailed balance with the
observed transition count matrix as the maximum likelihood [32].
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2.7 Considerations of TPM Construction

With a properly constructed TPM, it is possible to derive a MSM that can be used
to understand the time-evolution of system. However, in spite of this attractive
feature of MSM, it is necessary to understand that such property is founded on
the Markovian assumption, but the assumption does not necessarily hold true for a
kinetic scheme obtained from MD simulation. This is due to the fact that upon space
discretization during the clustering step, one will introduce discretization error in
the model [46]. This error is mainly produced by the existence of small internal free
energy barriers inside of the discrete states, which will give rise to differences in
the dynamics among the conformations existent within the state (due to the inertial
effects of molecule dynamics at short timescales). In order to reduce such error, a
finer discretization can be performed or a longer lag time could be chosen. None
of these approaches is perfect, a finer discretization could reduce the differences in
dynamics among conformations within a state, but at the same time the statistical
significance of each cluster is reduced. On the other hand, by coarse-graining the
simulations time into long time steps, the system can have more time to “lost its
memory” so as to achieve better Markovianity. For example, if we consider the
limit, theoretically any model will be Markovian at the infinity limit, despite the
fact that this scenario is unfeasible in any time-dependent simulation. Yet if we
could achieve perfect Markovianity under such condition, the dynamic information
of the system will be completely lost. Therefore, in order to generate an insightful
Markov model using MD data, apart from choosing a lag-time long enough to give
a good approximation of the Markovian condition, it is equally necessary to choose
a lag-time that is short enough to be useful (few ps-ns in most cases). In other
words, when building an MSM from MD simulations, one always has to face the
tradeoff among Markovianity, spatial resolution and preserving certain timescale-
resolution of the dynamics. If we try to take into account these constraints as
well as our aim of representing the energy landscape with a Markovian kinetic
scheme, we can deduce one possible balance between these factors could be that
the state defined in the model should be metastable (thus correspond the minima
of the energy landscape), the intra-state relaxation times (the time a state takes for
a conformation inside the state to transit to other conformations within the state
and lost the memory) is minimal (thus all conformations can have similar kinetic
behavior via fast interconversion) and the interstate transition times (the time that
takes for a conformation to transit to a conformation in other state) is maximal
(or in other words, high barriers lie between states), this implies the generation of
metastable states without internal high free energy barriers [33, 34, 40].

If we examine closely the protocol presented above, one can discover that under
the Markovian assumption the construction of a TPM does not require individual
MD simulations to visit all the metastable regions in the free energy landscape
[34, 44, 47]. Instead, only probabilities of local interstate transitions are necessary
for constructing TPM and the corresponding MSM. This actually lessens the burden
of computational cost to strive for a converged sampling with long trajectories, as
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many short sampling-trajectories (just long enough to sample interstate transitions)
are all that is required. Furthermore, apart from standard MD simulation, there are
other sampling methods that can be applied in order to generating descriptions of
the energy landscape that can be used in a MSM construction (e.g. Monte Carlo
simulations), but those are beyond the scope of this chapter.

Now, the only remaining question for MSM construction is how to define the
micro- and macro-states that are used to calculate the TPM.

2.8 Free Energy Landscapes of Biomolecules and Its
Relation to Microstates, Macrostates and MSM

From the notion above, it can be understood that a proper partitioning of the
conformational space such that the metastable states correspond to distinctive
energy minima is necessary for generating a TPM that can give a valid MSM.
Usually such partitioning is achieved in two stages, namely the microstate clustering
and the macrostate lumping. The microstate clustering aims to generate clusters
of conformations fulfilling the criteria that conformations within each cluster have
similar kinetic behavior, while the macrostate lumping aims at putting the clusters
generated in the previous stage together, in order to give place to larger groups,
each composed of several microstates, such that the major energy barriers in the
system lie between macrostates. In the case of the microstates, if we consider that an
ensemble of converged MD simulations represents an “energy landscape” [44, 47],
then we can assume that it is possible to generate a partition of the system just by
grouping conformations that are related kinetically at short time-intervals. If the
partition of the microstates is fine enough (see Fig. 2.2), a group of the microstates
will correspond/minimize to the same energy-minimum basin [31, 33, 34].

Therefore, at the macrostate lumping stage (see Fig. 2.2), one can look at the
transition/kinetics between the microstates in order to connect those microstates

Fig. 2.2 The steps required when building a MSM. The conformations (GE data, represented by
points) obtained from the MD simulations are firstly grouped into microstates; next, the structures
are clustered in microstates based on its degree of geometric similarity. Next, the microstates are
further lumped into several kinetically related macrostates (Figure adapted from reference [34])
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Fig. 2.3 Relationship between energy landscape, MD trajectories and metastable states. The
schematic 3D free-energy landscape, comprised by 5 energy minimums, represents the confor-
mational space of a certain protein. The different lines illustrate the behavior of 3 hypothetical
MD trajectories started from different energy minima. It can be appreciated that some trajectories
are able to overcome the energy barrier, escaping from its starting energy minimum to enter into
another minimum, but none of the independent trajectories is able to visit the complete energy
landscape (i.e. all the relevant protein conformations). Nevertheless, if considered as a conjunct
the MD simulations had in fact visited all the energy landscape. The 2D projection in the bottom
shows an idealized discretization of this energy landscape into the corresponding 5 metastable
states (Figure adapted from reference [47])

separated by low-energy barriers (i.e. those with fast inter-microstates transitions)
into a single metastable state (macrostate). In this way, by first partitioning the
conformations into microstates and then lumping the microstates into macrostates
the complete energy landscape can be partitioned into a small set of metastable
states (see Fig. 2.3) [34], such macrostate division of the energy landscape is not
only representing the underlying kinetics of the system, but also by reducing the
number of states in the system (usually to less than 100) it is easier to analyze and in
many cases it is also possible to extrapolate the MSM into a human-comprehensible
fashion (e.g. a graphical representation showing the transitions between states).
Finally, by calculating the transition probability matrix at the micro and macrostate
level, we can construct and validate the MSM, which can be used to extract useful
thermodynamic and kinetic properties of the dynamic process that we are interested.
As explained before, any of the two models: micro- and macro-state level can
be valid, however one should choice between the finer and the coarser model
based. Nevertheless, usually the macrostate model is the common choice, since it
is simpler, easier to analyze and its statistical certainty is intrinsically higher.
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2.9 Microstate Clustering of MD Conformations

Although there is a lack of consensus about the best method to cluster kinetically
related conformations, the most usual methods are based on some sort of geo-
metrical clustering. The assumption behind structural clustering is that structures
closely related in the geometrical space should also be closely related in the kinetic
space, hence, grouping structures that are close in geometry will approximately give
structures that are close in dynamics. Several structure-based clustering methods
are already available, with the most fundamental and widely used are: K-centers,
K-means and K-medoids clustering. The common goal for these three methods
is to partition a set of n conformations into k mutually exclusive partitions C1,
C2, : : : , Ck. These k partitions are then used for macrostate lumping in the later
stage.

K-centers clustering aims at find k “centers” (see Fig. 2.4A), which is defined by
a subset S from the set of points V such that jSjD k and minimizing the expression:

max
v2V min

s2S .v; s/ (2.5)

or, in simple words, find k points from the dataset such that the longest distance
between any point to its closest corresponding center is minimized. The k partitions
can then be obtained by assigning all points into their closest corresponding centers
to form k mutually exclusive groups.

The k-centers problem is actually NP-hard, which implies that solving the exact
solution is computationally expensive. In real practice though, k-centers clustering
algorithm usually refers to an approximate algorithm shown below:

1. Randomly select one conformation as the center of the first microstate k1.
2. Calculate the distance d(xi, k1) between each of the conformations xi in the

dataset and k1.
3. Choose the conformation with the largest d(xi, k1) value as the second microstate

center k2.
4. Reassign the conformations in the dataset to the new cluster if the distance to the

new cluster center is shorter than the distance to any other cluster centers (i.e. for
a new cluster center k2, conformation xi is assigned to C2 if d(xi, k2) is shorter
than d(xi, k1).

5. Then choose the next cluster center that is furthest from the all previous centers
and repeat step 4.

6. Repeat the same procedure until the desired number of microstates is obtained.

The k-centers clustering method can create clusters with an approximately equal
geometric volume. Moreover, the clustering speed can be greatly improved by
applying triangle inequality in the step of cluster assignment, which has been
currently implemented in the MSMBuilder package [34, 50, 51].
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Fig. 2.4 (A) Illustration of an approximate k-centers clustering algorithm. The process of
generating k geometric groups from a given dataset with the approximate k-centers algorithm is
illustrated as follows: (from left to right) (a) From the given data points, choose a random point
as the first cluster center. (b) Measure the distance of all points against the first center and choose
the one with the furthest distance as the second cluster center. Assign all points to their closest
cluster center such that all points are divided into two clusters (“partitions” in the mathematical
sense), illustrated here with two different colors. (c) Measure the distance of all points against their
assigned cluster centers, find the point with the maximum distance (i.e. furthest from all existing
center) as the next cluster center. Re-assign all points to their closest centers into partitions. Repeat
until the desired number of clusters k is obtained. The final partitioning is used as the geometrical
grouping of the points (Figure adapted from reference [48]). (B) Illustration of an approximate
k-means clustering algorithm. K-means algorithm attempts to divide the given dataset (a) into
k geometric partitioning in the following way (From left to right, top to bottom). (b) From the
data points, randomly choose k points as initial centers (circled). Assign all points to their closest
corresponding centers into k partitions, shown here in different colors. (c–d) For each partition,
take the “mean” position of the points within the group as the updated center position (circles). Re-
assign all the points again to the new centers. (e) Repeat the process until no change in the cluster
assignment is observed. The final cluster assignment is taken as the geometrical partitioning of the
points (Figure adapted from reference [49])
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K-means clustering refers to something very different from k-centers clustering
(see Fig. 2.4B). Instead of aiming solely at points to be centers, the k-means
clustering attempts to find k partitions so as to minimize:

kX

KD1

X

xi2Ck

r	
xi � kj


T 	
xi � kj



(2.6)

where kj D 1
Nk

X

xi2Ck
xi . In other words, the points are put into k partitions so that

the sum of distances of all points to the partition average of their assigned partitions
is minimized.

Just like k-centers, k-means is also an NP-hard problem, and so an approximation
is also needed. A commonly used approximate k-means clustering protocol is
illustrated here:

1. Instead of using one conformation as the first microstate center, k conformations
are (randomly) chosen as the initial centers for the k microstates.

2. Calculate the Euclidean distance between every conformations in the dataset to
each centers defined in step 1.

3. Assign the conformation to the microstate with the minimum distance.
4. Determine the mean vectors by averaging the distance vector for all the confor-

mations within each microstate, and using the mean vector as the new center.
5. Repeat step 2, 3 and 4 until the clustering process is converged. That is, the new

round of iteration does not change the assignments of any conformations from
the previous iteration.

Despite the popularity of k-means cluster, this clustering technique is actually
sensitive to the low density regions and tends to lump the points from the low
density regions into the clusters from high density regions, which in the context
of microstate clustering leads to the incorrect description of the some interesting
states such as the transition states. A clustering algorithm that closely resembles k-
means, which is known as k-medoids clustering, can overcome the above drawbacks
of k-means by taking actual data points (“medoids”) instead of the means of the
partitions as centers. Unfortunately, k-medoids also has its own limitations, such as
being inefficient for large data sets and offer a poor control of the cluster size.

2.10 Implied Timescales and Number of Macrostates

With the microstates generated from the first stage of clustering, we can construct
the TPM based on the transitions between these states. Then if we attempt to do
eigenvector decomposition of the TPM:

XiP .�/ D �iXi (2.7)
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where each eigenvector Xi actually corresponds to a certain state distribution that
can give rise to a sustainable mode of transitions between groups of states, with
the signed structure of the eigenvector indicating the two groups between which the
transition occurs. The eigenvalue of each mode can be interpreted as reflecting the
decay of the occupancy of the mode (Ni). If initially, the occupancy of the mode i is
taken as:

Ni.0/ D 1 (2.8)

At tD � , the occupancy of the mode i then become:

Ni.�/ D �i (2.9)

where: �i� 1.
From the decaying property, the time dependence of the occupancy of each mode

can be modeled as an exponential decay with decay rate constant 1
�i

(or � i as time
constant), such that:

Ni.t/ D e� t
�i (2.10)

If we put tD � in Eq. (2.10), and combine that with Eq. (2.9), we have:

Ni .�/ D e� �
�i D �i (2.11)

We can then express the time constant � i of the decay of transition mode as:

�i D ��
ln .�i /

(2.12)

This time constant � i is also known in the literature as the “implied timescale” of
the transition mode. Due the fact that � i reflects the lifetime of a particular transition
mode, it can also be used in the assessment of the timescale of the dynamics of the
system and the identification of modes. A slow � indicates a persistent transition
mode, which can correspond to slow dynamics, and such modes are usually of
particular interest in MSM construction. When the implied timescales are used in
the determination of the Markovian time of the system, multiple transition matrices
are built at different lag time � and the corresponding sets of implied timescales
� i are then determined (see Fig. 2.5). If all the microstates generated are ideally
Markovian, all the implied timescales should remain constant regardless of the
choice of lag time, but this is usually not the case in practice. It is instead expected
that the implied time scale will first quickly rise and then flatten off. In such cases,
the time at which all implied timescales have plateaued will be treated as the
Markovian time of the system.
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Fig. 2.5 Implied timescales convergence at different discretization levels. The plot shows the
lag-time dependent implied timescales of the two slowest processes (t2, solid lines) and (t3 dashed
lines), computed from different MSM of the MR121-GSGSW peptide. The different models
(different line colors) correspond to k-centers clusterings of the same MD simulations data, but
using different number of clusters (microstates). As it has been explained in the text, a model
start to be Markovian at the shortest lag-time in which the slowest implied time scales converge,
it is to say when the plot flattens. It can be seen that, as explained in the text, increasing the
number of clusters (finer discretization) enhances a faster convergence of the implied timescales;
hence, models with more microstates are Markovian at shorter lag-times (Figure adapted from
reference [46])

2.11 Lumping Microstates into Macrostates

Under the protocol that we discussed, the second stage of MSM building involves
lumping the microstates generated in the first stage into larger macrostates. The
number of macrostates of the system can be chosen based on the major gap(s)
between two consecutive modes in the implied timescales (see Figs. 2.5 and 2.19),
as such gap indicates the slower modes and the faster modes have a significant
separation in timescale (i.e. the slower modes will be significantly more sustainable
than the faster ones). By choosing the number of macrostates in such way,
theoretically the slow dynamics can all be properly preserved in the final model
(i.e. no mixing of fast and slow dynamics in a single state), which in turn allows the
model to fulfill the basic MSM requirements: (1) states are metastable, (2) intrastate
transitions are fast, and (3) interstate transitions are distinct and slow.

The actual macrostate lumping can be performed using several methods, two
of the most commonly used are: Perron cluster cluster analysis (PCCA), and
its improved version (PCCAC). Basically, PCCA utilizes the properties of the
eigenvectors and eigenvalues of the TPM to split the set of microstates into groups
(see Fig. 2.6). As stated in the previous section, each eigenvector of the TPM
corresponds to a certain mode of sustainable transitions between groups of states
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Fig. 2.6 PCCA lumping of microstates into macrostates. (a). Projection of the energy potential
for 100 microstates onto one discrete coordinate, three energy bins were identified. (b). Transition
matrix T for the 100 microstates. (c). Left eigenvectors of T indicating the transition information
between different microstates. Each eigenvector corresponds to a certain mode of sustainable
transitions between groups of states with the signed structure indicating the two groups. Except
the first eigenvector provides the stationary distribution. (d). The eigenvalue spectrum of T. (e)
Projections of the 100 microstates onto the second and third right eigenvectors of T. (f) Transition
information for the macrostates A, B and C (Figure adapted from reference [33])

with the signed structure indicating the two groups. With the first eigenvector
neglected (as it has an eigenvalue of 1 or implied timescale which represents the
equilibrium), the set of microstates can thus be split into N groups by successively
choosing the first Ni eigenvectors and partition the microstates into two groups
according to their sign structure (see Fig. 2.6). After lumping we can recalculate the
TCM on macrostate level, from which we can calculate the stationary distribution
for the different metastable states. The next section treats a different algorithm that
aims to generate multiple timescale-resolution MSMs at the macrostate level, which
is based in the use of hierarchical clustering method.

2.12 Hierarchical Lumping of Microstates in Macrostates

In PCCA, microstates are lumped together based solely on the feature of TPM.
Despite the mathematical correctness of the previous method, practically the method
could suffer from sampling noise and cause errors in the resulted lumping. This is
especially true because of the multi-resolution nature of energy landscapes [40] and
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Fig. 2.7 Hierarchical clustering of microstates into macrostates. The kinetic clustering is done
separately on different density levels. At first level (highest density), two separate states are
identified, which are represented by the two nodes in red. At the next level, four separate states
are identified. After the identification of states at all density levels, the connectivity between states
at different level of hierarchy is identified, as shown in the figure below. The number of macrostate
and their corresponding lumping can be identified from the leaf nodes of the graph (Figure adapted
from reference [52])

also because the sampling quality of low populated microstates (e.g. near to high
energy barriers) can be very different to the highly-populated microstates (i.e. those
in the bottom of energy minima). The Super-density-level Hierarchical Clustering
(SHC) introduced by Huang et al. [40] attempts to address this issue by treating the
energy landscape in an hierarchical way instead of simply extracting features from
the TPM (see Fig. 2.7). As stated in the previous discussions, to achieve a Markovian
model the macrostates should be defined in a way that large internal free energy
barriers are avoided and conformations within the same macrostate can interconvert
quickly (within one lag time). Therefore, at smaller lag-times an MSM will require
more macrostates to ensure that each state is small enough such that its dynamics per
lag-time are memoryless. Intrinsically, shorter lag times result in higher resolution
MSM that capture more free energy minima separated by small energy barriers.
In the other hand, longer lag times result in a lower resolution MSM, with only a
few macrostates separated by high-energy barriers. From other point of view, in a
lower resolution MSM each macrostate is composed of multiple local free energy
minima. SHC attempts to do lumping at different resolution by considering subsets
of conformations with different densities successively, thus improves the accuracy
of the kinetic lumping by treating poorly sampled states differently from states
with better statistics [40]. Furthermore, for the issue that popular kinetic lumping
algorithms such as PCCA and PCCAC tend to identify poorly sampled states as
being kinetically distinct from the others [40] and preserve them as metastable state
in the resultant macrostate model, despite further investigations can easily show
that they are likely just due to sampling noise rather than representing the true free
energy minima, SHC can handle these states with very small populations separately
and so the resultant model will not be skewed by these poorly sampled states.
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The SHC algorithm clusters conformations hierarchically, by using super density
level sets in a bottom-up fashion. It first divides the densest regions of phase space,
which in a well-converged system may correspond to the free energy minima. Then,
by allowing the user to fine-tune the super density level sets, this algorithm can
generate multi-resolution models. From the best of the authors’ knowledge, SHC is
the first algorithm known to address the construction of MSM at different resolutions
(see Fig. 2.7).

The SHC algorithm lump the microstate together in the following way:

1. Partition the conformations into a large number of microstates. K-centers
clustering has been recommended by the authors, since it gives states with
approximately uniform size, which has been proposed that this might result in
a correlation between the population of each state and its density [40].

2. Split the microstates into n-density levels LDfL1, : : : Lng.
3. Calculate the super density level sets SiDL1 [L2 : : : [Li � 1[Li, and then each

super density level also contains all previous levels S1� S2� Si � 1� Si.
4. Perform spectral clustering, in each super density level, to group kinetically

related microstates.
5. Build a graph of the states connectivity across super density levels. Then,

generate a directed gradient flows along the edges of the graph from low to
high-density levels. In SHC, it is denominated an attraction node (or attractive
basin) where the gradient flow ends. Each attraction node is assigned to a new
metastable state.

6. Assign every microstate not belonging to an attraction node, to the metastable
state that it has the largest transition probability to (see Fig. 2.7).

In the SHC algorithm, the populations of microstates obtained from the K-
centers clustering are used to approximate the conformation density, since K-centers
algorithm can generate clusters with approximately equal radii in RMSD. However,
it is extremely challenging to accurately estimate the conformational densities in
high dimensional spaces, since small variances in the cluster RMSD radius may
cause large differences in volume.

To address the above issue, Huang and coworkers have developed a new algo-
rithm, which is based on the Nyström method and its multilevel extensions (HNEG)
[52]. The HNEG algorithm allows us to approximate the transition probability
matrix (P) with its dominant submatrix (A). Using the Nyström approximation,
it can be shown that the leading eigenvectors of the submatrix A containing the
most populated states (i.e. the entries in A are significantly larger than those in B
and C) have the same sign structure as those of the original transition probability
matrix P:

P D
�

A B
BT C

�
(2.13)
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Therefore, one can perform the kinetic lumping based on the eigenvector
components of the submatrix A using either PCCA or PCCAC. In order to define
the boundary between A and C, the same multi-level procedure as laid out in the
SHC algorithm has been adopted.

In both SHC and HNEG algorithms, there are many possible choices of the super
level sets (S) and each could result in different lumpings. The authors recommend
trying many of them and then use Bayesian model comparison to choose the
best model [52]. One additional advantage of SHC and HNEG is that they can
automatically determine the number of macrostates, whereas many other methods
(like PCCA and PCCAC) require the state number to be known in prior.

2.13 MSM Validation

With the microstates properly lumped into macrostates the TPM can be constructed
at the macrostate level and the corresponding MSM can be built. Yet before using
the MSM for any analysis, an assessment of the model accuracy is necessary.
Apart from the aforementioned plateauing of the implied timescales, there also exist
other tests for assessing the validity of the model. A notable method is known as
Chapman-Kolmogorov Test [40, 46], which assesses the validity of the model based
on the premise that the Markovian assumption:

P .t C s/ D P.t/P.s/ (2.14)

must hold within the error margin (see Fig. 2.8). The actual testing procedures vary
between implementations, but the general idea lies on testing the transition matrix
propagated at the chosen Markovian time against the transitions counted from
populations bootstrapped from simulations. Only if the transitions predicted by the
MSM match with those observed in the simulation, the model is deemed valid. An
implementation example of the test is shown in Fig. 2.8. Alternative approaches of
model validation include application of Bayesian factors or information entropy [36,
53, 54], which will not be discussed in detail here. Apart from these pure theoretical
validations, assessments can also be done via comparison with experimental data
[19, 40, 41, 55, 56], which will be illustrated later in this chapter (see Sect. 2.18).

2.14 Mean First Passage Time

Having a properly built and validated MSM, kinetic information of the system can
then be harvested from the model. Apart from simply propagating the TPM so as to
obtain equilibrium populations, timescale information of the transition can also be
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Fig. 2.8 Example of Chapman-Kolmogorov test. A representative implementation of Chapman-
Kolmogorov test is illustrated here on one partitioned state. In this implementation the initial
population is first solely populated on the state to be tested (i.e. Xi(t D 0) D 1, Xj¤i(t D 0) D 0),
the probability for this state to be occupied in the subsequent steps (which can be considered as
the “self-transition” probability at the test step) are calculated via repeated propagation with TCM
following Eq. (2.3) in the main text. The calculated self-transition probability is then compared
against the actual occupation probability counted from MD trajectories for all propagated steps.
In this example, at £D 100 the self-transition probabilities propagated to different time steps
clearly deviates from the ones directly observed from MD simulations, thus the MSM constructed
at £D 100 cannot represent the kinetics of the model properly. For the MSM constructed at
£D 500, the propagated self-transition probability marginally lies within the error bar, and thus
can better reflect the dynamics of the state than the one constructed at £D 100. The MSM
constructed at £D 2,000 gives self-transition probability that is close to the one observed from
MD, and thus is considered to be the model that best conform to the Chapman-Kolmogorov
equation under the test and should best represent the dynamics of the system (Figure adapted from
reference [46])

obtained from the model. One of the commonly used timescale for interstate tran-
sition is known as mean first passage time (MFPT), which is defined as the average
time taken for the transitions starting at state i until reaching state f for the first time,
including both the direct transitions from states i to f and transitions through other
intermediate states. MFPT of the transitions from i to f can be written as:

Fif D
X

j

Pij
�
� C Fjf

�
or Fif D � C

X

j¤f
Pij Fjf (2.15)

where � is the lag time used to construct the transition matrix P(� ). Thus the
MFPT for all transitions in the model can be determined by solving a set of linear
equations defined by Eq. (2.11) with the boundary condition Fff D 0. Therefore, we
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Fig. 2.9 Application of
MFPT to the study of
small-RNA folding
mechanism. The figure
shows the folding mechanism
of a small RNA-hairpin
tetraloop (50-GCGGCAGC-
30). Next to the arrows are the
corresponding Mean First
Passage Times (MFPTs units:
�s) between the eight most
populated states in the MSM.
States are labeled in red from
1 to 8 and the state
populations are shown in
black (Figure adapted from
reference [40])

can understand that while the implied timescales describe the aggregated timescales
for transitions between groups of states, the MFPT are average transition times
between specific pairs or groups of metastable conformational states, and thus
the MFPT calculation can provide detailed information about system’s kinetics
(see Fig. 2.9).

2.15 Transition Path Theory

Apart from the overall dynamical behaviors of the system, one might also be
interested in some particular states or transitions. For example, in the case of a
protein-ligand interaction, one might be interested more in the transitions from a
unliganded protein state to a liganded protein state than the transitions between
different unliganded states. Because multiple possible pathways between the two
states are likely to coexist in an MSM, simple network analysis might not be
adequate for such purpose. In this case, a framework known as transition path
theory could be applied in order to study the relative likelihood of transitions
between a particular state A to another state B [57]. Under this framework, by
recursively solving for the interstate transitions between states, the pathway with
highest flux, defined as highest number of transitions per unit time, can be identified.
Such pathway can thus be understood as the “dominant pathway” for state A to B
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Fig. 2.10 Determination of the top 15 folding pathways of NTL9 using TPT. The transitions
between the macrostates are connected with sized arrows. The pathway along the larger arrows
indicate the dominant folding path (Figure adapted from reference [20])

transitions (see Fig. 2.10), and second or third pathways can thereby be identified
by following this scheme. Detailed derivations are beyond the scope of this chapter
and interested readers are advised to consult the relevant literature referenced for
further information [33, 46, 54, 57, 58].

2.16 Visualization of MSM

As with many parts of research, on top of the quantitative analysis, visualization
is also a very important part of understanding and appreciating a MSM. An
intuitive approach of illustrating MSM would be to present them as graphs with
macrostates as vertices and connectivity as weighted edges. Yet it is common to
come across MSM with more than just a few macrostates, and the connectivity of
these states may form a high dimensional network, which could make visualization
difficult. Depending on the systems, solutions of visualization issue might vary
considerably. Apart from plotting out the macrostate connectivity in whole or in
part, if some specific representative geometric parameters exist in the system that
can be used to describe the progress of the dynamics (e.g. a dihedral angle can
be used to describe the rotation of a bond), conformations could be projected on
such parameters and use them to describe the most prominent geometric differences
between different macrostates. This is a commonly used approach for simple system
as represented by the well-known system in the field: the terminally blocked alanine



2 Application of Markov State Models to Simulate Long Timescale Dynamics. . . 51

Alanyl

Acetyl

a

b

N-Methyl

60

60

−60

−60

f

f

y

y

9
8
7
6
5
4
3
2
1

kBT

Fig. 2.11 Projections of the conformational space of the terminally blocked alanine peptide.
(a) Illustration of the ˆ and ‰ dihedral angles of the alanine in the terminally blocked alanine
peptide. These two dihedral angles represent the major possible conformational changes in the
system. (b) Energy landscape of the peptide projected onto the ˆ-‰ plane. The “energy” (shown
here as the “potential of mean force”) of the bins in the grid is determined from the density of the
projected points in each bin. High density regions of the projection are shown as the minima of the
energy landscape. With a proper choice of geometric parameters (in this case ˆ and ‰ dihedral
angle), geometric differences between different minima (which also correspond to six macrostates
in this case) can become prominent and intuitive visualization of the states is thus possible (Figure
adapted from reference [52])

peptide (NMe-Ala-Ace, also known as alanine dipeptide in some literature), which
represents the peptide motion with the ˆ and ‰ angle of alanine (see Fig. 2.11).
If such parameters are not available, an alternative approach could be to project
the conformations of interest on the first one or more principle components of the
system in order to have a general understanding of the spatial distribution of the
macrostates.

Recently a new program, the MSMExplorer [59], has become freely available.
This Java suite allows interactive visualization and analysis of MSM built using
the MSMBuilder package [34, 50, 51] (see Fig. 2.12). The representations of a
MSM that it can generate includes graph of states connections, scatter plots of user
definable data, visualization of hierarchical MSM and transition paths.
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Fig. 2.12 Visualizations of MSM using the program MSMExplorer. The recently released
MSMExplorer program allows to easily perform several visual analysis of MSM built using
the MSMbuilder-2. For example: (a) Network representations of the states in the model and its
connections to other states. (b) 2D scatter plots of arbitrary RAW data vs. state number, with visual
representation of the state size. (c) Visualization of hierarchical MSM, in which the membership
of a finer-grained model can be overlaid with a coarser-grained model, this allows the visualization
of multiple resolutions of the MSM in a single plot. (d) TPT diagrams of the highest flux paths
between two macrostates, with the advantage that images depicting conformations in each state
can be overlaid on each node (Figure adapted from reference [59])

2.17 Mining Data from MSM

Constructing and validating an MSM can be challenging, but extracting relevant data
from the model could be even more difficult. Some MSM construction packages
have therefore offered an all-in-one solution for application of MSM in MD studies.
For example, the MSMbuilder 2 package [50] offers several general tools coded in
python for analysis of MSM, such as: (1) Extracting random conformations from
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the micro and macrostates, which allows rapid visual identification of the structural
properties of the system in each state. When one is dealing with large dataset, it
is often convenient to measure physical properties (e.g. distances, SASA, RMSF,
correlations, among others) in a reduced set of representative conformation of each
state, which can be accomplished by randomly extracting an statistically significant
number of random conformations; (2) Calculating cluster radii, which allows rapid
assessment of the structural diversity among the clusters; (3) Calculating cluster
RMSD to a reference structure, which can be used to identify known states
of interest (e.g. folded and unfolded states, bound state or intermediates); (4)
Calculating the aforementioned transition path between two states, and generate
a plain text graph in a DOT file that can be visualized with a number of open source
software widely available for several operating systems.

Nevertheless, as in any scientific research problem, each studied system can
pose unique challenges and the users will frequently find themselves without the
necessary tools to perform a particular analysis. In such scenario, in many cases it
is possible to use simple Linux-like command line scripting (BASH, CSH, TCSH,
etc.) to combine existing analysis tools in order to perform more complex analyses.
However, the most powerful approach is to code custom analysis tools. Open-source
packages that provide a framework to interact with MD trajectories are valuable aids
for such customized programming, such as: MDAnalysis (in python language) [60]
which can be advantageously combined with the open source NumPy and SciPy
suites, VMD (Tcl/Tk) [61] and Gromacs (C) [62, 63]. Anyhow, there is no unique
or simple answer of how to perform a certain analysis, we compel the readers to
make an incursion in programming their own analysis tools. One can, in most cases,
find that by just following the existent online literature and asking advice from more
experienced programmers (in the many-existent Internet communities), it takes little
time to get used to programming analysis tools.

2.18 Practical Examples of MSMs Construction

With all the basic theories and tools discussed above, readers should have already
get hold of the essential techniques for applying MSM in practical biomolecular
studies. In the following sections, two of our works are presented here as practical
examples to illustrate how all these aforementioned techniques work in practice.

2.18.1 MSM Example #1. PPi Release Mechanism in the Yeast
RNA Polymerase II and Bacterial RNA Polymerases

RNA polymerase is a critical biological machine that is responsible for transferring
the genetic information from the DNA template to the messenger RNA (mRNA)
[64–66]. The nucleic addition cycle (NAC) of the RNA polymerase consists of
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several steps: (1) The post-state of the polymerase contains an empty active site
at register C1 site that can accommodate the incoming NTP. (2) The binding of
the NTP that can form several important contacts with a critical domain of the
polymerase named Trigger Loop (TL) and then fix it in a closed state. (3) The
catalytic reaction which forms the phosphodiester bond. (4) The release of the
produced pyrophosphate ion (PPi) from the active site. (5) The opening of TL
domain accompanied by the forward shifting template DNA by one register site,
which creates a new active site and new NAC starts. Extensive experimental and
theoretical studies have been devoted to understand the specific steps during the
NAC, including NTP binding, TL motion, catalytic reactions and translocation.

The interplays between the PPi release, TL opening motion and translocation
have attracted extensive attentions [67, 68]. The crystallography studies indicated
that the PPi release in T7 RNA polymerase is the driving force to trigger the opening
of the adjacent O-helix that allows the translocation [69]. However, the E. coil single
molecular study did not observe the coupling between PPi release and translocation
[68]. Recent fluorescence studies suggest that translocation process proceeds shortly
after or concurrently with the PPi release in E. coil system [67]. Although these
experimental studies shed light on the roles of the PPi release on the translocation,
the detailed mechanism of the PPi release process as well as its role on the TL
opening motion has been elusive. We have used MSM to address these questions
[42, 43].

People have obtained the crystal structures of the RNA polymerase in both
eukaryote and bacterial systems [70, 71]. Based on the NTP-bound RNA poly-
merase complexes in yeast and T. thermophilus (termed as Pol II and RNAP
respectively afterwards), we build the PPi-bound RNA polymerase complexes by
directly cleaving the P’-O bond to form the phosphodiester bond and the PPi

group (see Fig. 2.13). The comparison of the structures of these two complexes
shows different features in the secondary channel and TL domains. These structural
differences suggest that the PPi release mechanism and its effects on the TL domains
are likely to be different.

In order to obtain the initial release pathways of the PPi group in both systems,
we adopted steered MD (SMD) simulations to pull the PPi group out of the active
site. The pulling simulations were conducted along different directions with the
aim of considering all the possible PPi release pathways. Then, representative
structures from the SMD simulations were chosen for the following unbiased MD
simulations to erase the biases introduced by the SMD. These MD simulations were
then used to build the MSM. At first, we divided all the conformations from the
seeding MD simulations into hundreds of microstates by employing the K-center
clustering algorithm. The distance between a pair of conformations was set to be
the RMSD value of three PPi atoms (the bridge oxygen and two phosphorus atoms).
To compute RMSD, the structure was aligned to the modeled PPi-bound RNAP
complex according to the C’ atoms of the BH residues. The microstates are small,
and the average RMSD values to its central conformation in each state are only
	2 Å in both systems.
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Fig. 2.13 Comparisons of the binding modes between the ligands and two RNA polymerases.
(a) and (b) are the structures of the NTP-bound RNA Pol II and RNAP complexes respectively. (c)
and (d) are the corresponding PPi-bound models (Figure adapted from reference [43])

Next, we applied the Robust Perron Cluster Cluster Analysis (PCCAC) algo-
rithm to lump these microstates obtained above into several macrostates. The
number of the macrostates was determined from the major gap captured in the
implied timescale plot on the microstates level. The macrostates number was finally
determined to be 4 and 2 for the Pol II and RNAP system respectively.

Our results suggest that the PPi release in the Pol II adopts a hopping mode
in which four metastable states were well defined and several positively charged
residues were observed to form favorable interactions with the PPi group in each
metastable state [42] (see Fig. 2.14). Furthermore, mutant MD simulations were
individually performed to elucidate the specific roles of these residues on the PPi

release.



56 L.-T. Da et al.

Fig. 2.14 PPi release in Pol II adopts a hopping mode identified by MSM. (a). Four metastable
states (S1–S4) on the releasing pathway are displayed in sized circles proportional to their
equilibrium populations. (b). Key interactions between the PPi group and the Pol II residues in
each state. (c). Multiple sequence alignment of these positive residues in the secondary channel
among different species (Figure adapted from reference [42])

However, a simpler two-state model was observed for the PPi release in the
RNAP [43] (see Fig. 2.15). We found that the difference in the number of metastable
states in the release of the PPi between these systems is due to the different layout
of the positive residues in the secondary channel. Specifically, in Pol II, the four
residues, K619, K620, K518 and K880 are located at relatively separated sites.
However, the positively charged residues in RNAP: K908, K912, K780 and K1369
are close to each other in a continuous region.

From the kinetic point of view, our MFPT calculation indicates that the PPi

release in bacterial RNAP is	3 fold faster than that in Pol II (500 ns versus 1.5 �s),
which is consistent with the faster elongation rates observed for RNAP. More
strikingly, because of the higher stabilities of the TL domain in RNAP compared
to that in Pol II, the PPi release in RNAP cannot induce the backbone unfolding of
the TL domain. Instead, the TL residue R1239 was observed to greatly facilitate the
PPi release in RNAP by rotating its long side chain (see Fig. 2.16). Further control
MD simulations indicate that the TL domain must be exposed to the solvent before
its secondary structures can be fully unfolded. And the full opening motion of the
TL is likely to occur at a timescale longer than the timescale of PPi release.
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Fig. 2.15 Two-state model for the PPi release in RNAP identified by MSM. (a). The
distributions of the two macrostates. Each sphere represents the center of mass of the PPi group.
(b). Sized circles proportional to their equilibrium populations. (c). Key interactions between the
PPi group and the Pol II residues in each state. (d). Multiple sequence alignment of these positive
residues in the secondary channel among different species (Figure adapted from reference [43])

Fig. 2.16 Structural differences lead to distinct PPi release mechanisms in RNAP (a) and
Pol II (b) (Figure adapted from reference [43])
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Taken together, we have built the MSM based on extensive MD simulations to
investigate how the PPi group releases from the active site in both Pol II and RNAP
systems. By comparing the structural features of these two RNA polymerases,
we have addressed how the structural differences influence the kinetics of the
PPi release from the active site, providing deeper insights on the structural basis
underlying the transcription elongation process.

2.18.2 MSM Example 2. Ligand-Binding Mechanism
in the LAO Protein

In this example, we used Markov State Models (MSM) to elucidate the mechanism
by which the Lysine-, Arginine-, Ornithine-binding (LAO) periplasmic binding
protein (PBP) binds to its ligand [41]. Two models of protein-ligand binding have
been proposed for PBPs, the induced fit and conformational selection mechanisms,
both of which attempt to explain how the protein could change from an unbound
conformation to a bound conformation in complex with a ligand. In the induced
fit model [72] the ligand first binds to the protein in its unbound conformation and
this binding event induces the protein to go to the bound state. On the contrary, in
the conformational selection model [73], the protein can access the protein-bound
conformation even in the absence of the ligand, therefore the ligand can diffuse
directly to the bound conformation and displace the equilibrium towards it. Using
MSM, we directly monitored the mechanism of LAO binding to assess the role of
conformational selection and induced fit.

We used the aforementioned MSMBuilder and SHC programs and algorithms
to construct the state decomposition for our MSM of LAO’s binding. We first
performed 65 molecular dynamics simulations using the program GROMACS
[62, 63], each 200 ns long, of the LAO protein from the organism Salmonella
typhimurium and one of its ligands, L-arginine [74]. Ten simulations were started
from the open protein conformation (PDB ID: 2LAO) with the ligand at more than
25 Å away from the binding site. The other 55 simulations were initialized from
conformations randomly selected from those first ten simulations. To construct the
microstate partition, we first used the k-centers algorithm in MSMBuilder to cluster
our data into a large number of microstates. The objective of this clustering was
to group together conformations that are so geometrically similar that one can
reasonably assume (and later verify) that they are also kinetically similar. For the
protein-based clustering, we created 50 clusters based on the Euclidean distance
between a vector containing the protein opening and twisting angles (see Fig. 2.17).
Then for the ligand-based clustering, we created 5,000 clusters using the Euclidean
distance between all heavy-atoms of the ligand.

We then had to modify our clustering to account for the fact that the ligand
dynamics fall into two different regimes (see Fig. 2.18): one where the ligand
moves slowly due to interactions with the protein and one where the ligand is freely
diffusing in solution.
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Fig. 2.17 Ad-hoc reaction coordinates used to describe the energy landscape of the LAO
protein. (a) Opening and (b) twisting angles used to describe the motion of the protein. (c). The
projection of conformations on the second eigenvector from Principle Component Analysis (PCA),
and protein opening dihedral angle as a function of time are shown in red and black respectively.
The 20 ns simulation is started from protein in the closed state (PDB ID: 1LAF), but ligand was not
included in the simulation. (d) Same as (c) except that the projection of conformations on the first
eigenvector from PCA and protein twisting dihedral angle are plotted. In this system, the twisting
and opening angles are correlated well with the first and second eigenvectors from PCA (Figure
adapted from reference [41])

The clusters described previously are adequate for describing the first regime,
when the ligand interacts with the protein. However, when the ligand is freely
diffusing (at more than 	5 Å from the protein) the procedure outlined above results
in a large number of clusters with poor statistics (less than ten transitions to other
states). Better sampling of these states would be a waste of computational resources
as there are analytical theories for diffusing molecules and a detailed MSM would
provide little new insight. Instead, we chose to re-cluster these states using the
Euclidean distance between the ligand’s center of mass (as opposed to the Euclidean
distance between all ligand heavy-atoms). At this stage, we created 10 new protein
clusters and 100 new ligand clusters. After dropping empty clusters, this procedure
yielded 3,730 microstates, of which 3,290 microstates came from the initial high
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Fig. 2.18 In the presence of LAO the diffusion of the ligand L-arginine experiences two
different relaxation-timescales. We found that the ligand of the LAO protein experience two very
different timescales. As exemplified in the schematic figure, it can be seen that the ligand rotates
quickly when it is far away from the protein but its rotation is restrained when it interacts with the
protein. Thus, when constructing MSM, we only consider the ligand center of mass motion when
the ligand does not have strong interactions with the protein (blue color) but we consider motion
of all the ligand heavy atoms when the ligand is strongly interacting with the protein (green and
red color). The graphs show the difference in the relaxation time of the ligand, which was assessed
by analyzing its rotational autocorrelation in many independent MD trajectories, for: the unbound
states (blue), the encounter complex state (green), and the bound state (red) (Figure adapted from
reference [41])

resolution clustering and 440 came from the data that was clustered again at low
resolution. To verify that the final microstate model is valid (i.e. Markovian) we
plotted the implied timescales and found that they level off at a lag time between 2
and 6 ns (see Fig. 2.19), implying that the model is Markovian for lag times in this
range.

We then lumped kinetically related microstates into macrostates using the SHC
algorithm with density levels LhighD [0.50, 0.55, 0.60, 0.65, 0.70, 0.75, 0.80, 0.85,
0.90, 0.95, 0.99] and LlowD [0.4, 0.95], for the high and low-density regions
respectively. The low and high resolution states were lumped separately because the
states in each set have different sizes, so it is difficult to compare their densities.
We then combined these two sets of macrostates to construct an MSM with 54
macrostates. Once again, we used the implied timescales test to verify that the
model is Markovian and found that a 6 ns lag time yields Markovian behavior (see
Fig. 2.19).

To generate the transition matrix using the above state decomposition, we have
used a sliding window of the lag time on each 200 ns trajectory with a 20 ps interval
between stored conformations (i.e. each trajectory contains 10,000 conformations)
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Fig. 2.19 Validating the MSM by analyzing the micro- and macro-states implied timescales.
To validate the Markovianity of our model, we examined the 20 slowest implied timescales as a
function of the lag time computed from: (a) MSM containing 3,730 microstates and (b) MSM
containing 54 macrostates. It can be appreciated that both plots level off at a lag time of �4 ns,
hence from this point the model can be consider Markovian. Thus we choose a lag-time of 6 ns
to construct our MSM. Furthermore, it can be seen that the implied timescales in the micro and
macrostate models has good correspondence, meaning that both models (micro and macro) give a
similar representation of the system (Figure adapted from reference [41])

to count the transitions. Because we used a hard cutoff between states, simulations at
the top of the barriers between states can quickly oscillate from one state to the other,
leading to an over-estimate of the transition rate between such states. To mitigate the
effect of these recrossing events, we only counted the transitions from state x to state
y if the protein remained in state y for at least 300 ps before transitioning to a new
state. To generate the transition probability matrix we normalized each row of the
transition count matrix.

To further assess the validity of our model we also verified that the system
could reproduce known experimental observables. First we confirmed that the state
with the largest population closely resembled the bound conformation observed in
crystals (see Fig. 2.20); we also confirmed that the model is also in reasonable
agreement with the experimentally measured binding free energy and association
rates. From the MFPT from all unbound states to the bound state, our model
predicts an association timescale of 0.258˙ 0.045 �s, in reasonable agreement
with the experimental value of 	2.0 �s found in the highly homologous HisJ
protein. Also, by using the algorithm introduced by van Gunsteren and co-workers
[75] in conjunction with the equilibrium populations derived from our model, we
estimate a binding free energy of �8.46 kcal/mol, in reasonable agreement with the
experimental value of �9.95 kcal/mol. Together, this agreement between theory and
experiment suggests that our model is in good reflection of reality.

Our final model suggests that three dominant-states need to be considered
to adequately describe LAO’s binding mechanism and that both: conformational
selection and induced fit, play important roles in the transitions between these states
(see Fig. 2.21). The third dominant state in our model—besides the previously
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Fig. 2.20 Validating the MSM by structural comparison of the bound state. In our MSM,
as in the reality, the bound state is the most populated state in the system, (in our model having
an equilibrium population of 74.9 %). We used a snapshot from our simulations (structure in red
color), to verify that the bound state is equivalent to the known crystal structure. We found that a
snapshot in our model achieves a C’-atoms RMSD of 1.2 Å (within 8 Å of the ligand C.O.M.) to
the crystal structure of the bound state (blue structure, PDB ID: 1LAF), which confirms that the
structures contained in our model are in good agreement with the experimental information (Figure
adapted from reference [41])

known open and closed states—is only partially closed and weakly bound to the
ligand, thus representing an encounter complex state. The ligand can induce the
protein to have transition from the open state to the encounter complex (induced
fit); however, the ligand-free protein can also go directly to the encounter complex
state, indicating also an important role for the conformational selection mechanism
(see Fig. 2.21).

2.19 Remarks and Future Perspectives

In this chapter we have reviewed the fundamental theories underlying the construc-
tion and applications of MSM, we have also highlighted that the main advantage
of this method is to access timescales that are usually unreachable through con-
ventional MD simulations. Finally, we presented two applications to illustrate the
ability of MSM to investigate protein dynamics (at biologically relevant timescales)
and to extract information about biological mechanisms. In conjunction with the
increasing computing power, MSMs hold a great potential to address many more
important problems related to the dynamics of complex biological macromolecules,
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Fig. 2.21 The mechanism of LAO’s binding revealed by TPT. The figure shows the superpo-
sition of the 10 highest flux pathways from the unbound macrostates to the bound macrostate.
These pathways account for 35 % of the total flux from unbound states to the bound state. The
conformational selection and induced fit pathways from the unbound states to the encounter
complex state is shown in green and grey arrows respectively; it can be seen that the two
mechanisms coexist. The arrow sizes are proportional to the interstate flux. State numbers and
their equilibrium population calculated from MSM are also shown. The flux was calculated using a
greedy backtracking algorithm applied to our 54-states MSM (Figure adapted from reference [41])

including problems that were impossible to attack just few years ago, mainly due
to their prohibitive computational cost and the intrinsic complexity of analyzing
complete free energy landscapes from a MD trajectory perspective. We envision
that MSMs will be widely applied to elucidate molecular mechanisms of functional
conformational changes in the near future.
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Chapter 3
Understanding Protein Dynamics Using
Conformational Ensembles

X. Salvatella

Abstract Conformational ensembles are powerful tools to represent the range of
conformations that can be sampled by proteins. They can be generated by using
purely theoretical methods or, as is most often the case, by fitting ensembles of
conformations to experimental data that report on the amplitude of protein dynam-
ics. Conformational ensembles have been useful instruments to study fundamental
properties of proteins such as the mechanism of molecular recognition, the early
stages of protein folding and the mechanism by which structural information
propagates through the structures of globular proteins structures via correlated
backbone motions. In this chapter I will review the various approaches that have
been put forward in the literature to generate conformation ensembles for proteins
and present a selection of examples of how such representations of the structural
heterogeneity of proteins have been used to explore the fundamental properties of
these macromolecules. Finally, I will look ahead at likely future developments in
this area, which is important for structural and chemical biology as well as for
biophysics.

Keywords Conformational ensembles • Nuclear magnetic resonance • Corre-
lated motions • Conformational selection • Induced fit • Allostery

3.1 Protein Dynamics

The structures of proteins fluctuate in various timescales and with various
amplitudes [1]. Since thesefluctuations play important roles in biological function it
is desirable to complement the structural information contained in protein structures
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with an account of how these fluctuate [2]. Various methodological approaches
have been put forward to reach this goal, ranging from purely theoretical methods
that predict the fate of protein structures from first principles [3] to experimental
methods that provide very detailed equilibrium distributions of well-defined
structural properties such as specific inter-atomic distances.

Protein conformational ensembles aim at representing the range of conforma-
tions that a given protein samples at equilibrium [4]. Several methods have been put
forward for their generation and most of these rely on the fitting of experimental
data sensitive to structural fluctuations to ensembles of conformations that model
the structural heterogeneity of proteins [2]. It is important to state early on that
conformational ensembles do not in general report on protein dynamics in the sense
that they do not provide information about the rate of inter-conversion between
conformers. They can however report on the amplitude of the dynamics and this
property has found wide use in the analysis of the behavior of proteins [4].

3.2 Generating Conformational Ensembles

As previously mentioned a wide range of tools is available for the generation of
conformational ensembles. Although they vary quite widely in how the ensembles
are built they share one important feature, which is that they extract information
on the amplitude of protein dynamics from experimental data sensitive to structural
fluctuations. I will now describe the different conceptual approaches that have been
used in the field to generate such representations of the structural heterogeneity of
proteins.

3.2.1 Using Molecular Dynamics and Advanced
Sampling Methods

Molecular dynamics (MD) [3] is a simulation technique that can in principle provide
an extremely detailed description of protein dynamics. It is based on modeling
interatomic interactions by using empiric potentials called force fields and in
the prediction of the time evolution of experimental structures by integration of
Newton’s equations of motion. The accuracy of these trajectories relies of course
on the quality of such force fields and on the ability of computer hardware to
simulate biologically relevant timescales, which is still a challenge, especially for
large proteins and multi-protein complexes.

Although the technique was developed long ago it has experienced an extraordi-
nary surge in recent years (Fig. 3.1) thanks to the availability of hardware designed
specifically to carry out MD simulations, such as the supercomputer Anton [9],
built by D. E. Shaw Research, and hardware designed to carry out other tasks but
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Fig. 3.1 MD is a very powerful simulation tool to characterize the structural heterogeneity and
the dynamics of macromolecules [5] as well as their interactions will small molecules [6, 7]. (a)
Analysis of a 1 ms simulation of BPTI run using the supercomputer Anton built by D. E. Shaw
research [5] which illustrates how the dynamics of side chains are in general much faster than those
of the backbone (b) snapshots of a simulation of the binding of benzamidine to trypsin carried out
by using the GPUGRID distributed computing network [8], where the orange dots represent the
various positions adopted by the C7 atom of benzamidine, shown in the inset, illustrating that the
small molecule can bind to several sites on the surface of the enzyme before forming a stable
complex

that performs MD particularly efficiently, such as graphics processing units (GPUs)
[8, 10]. Mainly thanks to these improvements in hardware it has recently become
possible to produce trajectories that are sufficiently long to sample the averaging
time of experimental observables [11]. This is an important development because it
allows the direct comparison of the simulated trajectories with experimental data,
which is necessary for iteratively improving force field parameters to render the
simulated behavior increasingly realistic.

One illustrative example of how increases in simulation time can lead to
improvements in the quality of force fields is provided by a recent report of the
D. E. Shaw Research team [12]. To improve the force field parameters that describe
the conformational preferences of amino acid side chains the authors first compared
the rotamer distributions obtained in very long (720 ns) MD simulations of model
’-helices using a state of the art force field (Amber ff99SB) [13] with those derived
from a statistical analysis of experimental structures deposited in the protein data
bank (PDB).

After identifying four side amino acid types for which the agreement was poor
(Ile, Leu, Asp, Asn) they optimized the force field parameters that govern the
conformational properties of their side chains against quantum chemical calcula-
tions. Finally, and crucially, they validated the force field thus obtained (Amber
ff99SB – ILDN) by predicting the NMR parameters (scalar and dipolar couplings,
see Table 3.1) of a number of globular proteins that have been well studied using



70 X. Salvatella

this technique such as hen egg white lysozyme, bovine pancreatic trypsin inhibitor,
ubiquitin, and the B3 domain of Protein G. That the authors were able to generate
trajectories with a length (1.2 �s) that matches the averaging time of the NMR
parameters was key for proving that the new force field parameters, that provide a
better validation that the old ones, represent a substantial improvement [12].

In cases where the size of the system and the timescale of the dynamics of interest
allow investigation by MD this is undoubtedly the most informative technique that
is currently available for characterizing the fluctuations of the structure of proteins.
Even in cases where MD can be used it is nevertheless necessary to validate the
resulting trajectories either by predicting experimental data sensitive to dynamics
such as nuclear magnetic resonance (NMR) parameters (see below) or by predicting
the outcome of perturbations of the system such as point mutations. Only in cases
when these validations are successful is it advisable to consider the trajectories
provided by MD a realistic model of the behavior of the protein [14].

An illustrative example of how it is possible to use MD trajectories validated by
experiments to analyze very subtle but important dynamical properties of proteins is
provided by the work of the Bruschweiler group on the protein ubiquitin. Ubiquitin
is small protein that is used as a model system for this type of studies because it
is of a size that allows the simulation of relative long timescales, is stable in most
force fields and because its spectroscopic properties render its characterization using
NMR relatively straightforward.

In an important study published in 2007 Showalter and Bruschweiler showed that
simulating the dynamics of this protein using MD and a state of the art force field
(Amber ff99SB) for 50 ns lead to a trajectory that agreed with NMR data sensitive
to dynamics (RDCs) better than the X-ray structure (1UBQ) and only slightly worse
than the NMR structure (1D3Z) refined against the NMR data used for validation
[15]. These results indicate that, at least for ubiquitin, proper consideration of
the contribution of motional averaging to the measured NMR data by using MD
can lead to much improved representations of the structural properties of proteins
(Fig. 3.2).

Armed with this validation Bruschweiler and co-workers analyzed the degree
of correlation of the motions of the backbone torsions in this protein [16]. They
recently found that there is a weak but certain degree of correlation of the motions
of the ¥ and § torsion angles of residues facing one another across the “-sheet
of ubiquitin, especially when they are hydrogen bonded, but that this decays very
quickly as the distance between two given residues increases. It is important to
emphasize that this type of analysis, that relies on a very accurate representation of
the dynamics of the protein, is warranted due to the notable ability of the trajectory
obtained by these researchers to validate against experiments [15].

Although MD has made spectacular progress in the last few years there are
still many biological processes that cannot yet be routinely simulated using this
technique. Processes that fall under this category include those involving intrinsi-
cally disordered proteins (IDPs), that have important biological functions but that
fail to fold into conventional structures that can be characterized using the tools
of structural biology such as X-ray crystallography, conventional NMR and cryo-
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Fig. 3.2 MD trajectories validated against experimental data that reports on the amplitude
of protein dynamics can be used to understand fundamental properties of proteins such as
the presence of correlated backbone motions. (a) Histogram of the quality factors, with
Q D rms(Dexp�Dcalc)/rms(Dexp), of the various conformations sampled during a 50 ns trajectory
of ubiquitin (in blue) and of the conformations of the conventional NMR ensemble (in yellow,
pdb code 1D3Z); quality factors of the various structural representations (with 1UBQ representing
the highest resolution X-structure) (b) matrix representation of the pairwise correlation coefficient
between backbone torsion angles of ubiquitin with R2 larger than 0.1, which shows the presence
of correlated motions across the “-sheet of the protein as indicated in red in the structure as well
as in other hydrogen bonded residues

electron microscopy [17]. These proteins present an extreme degree of structural
heterogeneity and play important roles in molecular mechanisms of enormous
importance for biology, such as transcription [18, 19], and biomedicine [20].

Due to the challenges involved in sampling the particularly vast conformational
space explored by IDPs and to the possibility that current force fields are not
optimized to accurately describe the weak inter-atomic interactions that dominate
the behavior of this type of proteins the use of conventional MD to study such
systems is still in its infancy [21]. For this reason there is substantial interest in
the development of approaches that allow determining conformational ensembles
for IDPs by combining molecular simulations with the information contained in
experimental observables reporting on the amplitude of protein dynamics such as
SAXS and NMR [22] (Sect. 3.2.2).

In cases where the size of the protein is too large, the conformational space
too vast [23] and the dynamics often too slow to be sampled by conventional
MD it is possible to use advanced sampling methods such as replica exchange
MD [24], umbrella sampling [25], accelerated MD [26], local elevation [27] and
metadynamics [28], among others available, to explore the conformational space
sampled by proteins. In these methods various strategies are used to overcome
the free energy barriers present in the energy landscape, that prevent efficient
sampling in conventional MD. A detailed theoretical and technical description of
these techniques is beyond the scope of this chapter and can be found elsewhere
[29, 30]. Advanced sampling tools have been important to show that appropriate
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Fig. 3.3 Advanced sampling methods can lead to accurate representations of the structural
heterogeneity of proteins. (a) Ubiquitin ensemble obtained by the McCammon and Blackledge
groups by AMD with a degree of boost optimized by validation against NMR data [31], where
the residues are colored according to their flexibility (blue: rigid, red: flexible). (b) Level of
agreement of AMD trajectories, expressed as Rcum D Qcum/

p
2, obtained with increasing degrees

of boost with an indication that both the scalar and the dipolar couplings, that average on the
same timescale, validate best when Eboost D 250 kcal.mol�1, strongly indicating that this level
of boost allows sampling all conformations that contribute to the average, experimental NMR
parameter [31]

consideration of the averaging implicit in the measurement of nuclear magnetic
resonance (NMR) parameters can lead to very accurate descriptions of the structural
heterogeneity of proteins and peptides [31].

In a particularly powerful illustration of how such methods can be used to report
on the amplitude of protein dynamics McCammon, Blackledge and co-workers use
accelerated molecular dynamics (AMD) [26] to analyze the dynamics of the protein
ubiquitin [31]. In AMD sampling is accelerated by adding an energy term to the
potential energy, that depends on the difference between the potential energy and
a reference energy called the boost energy (Eboost), that effectively decreases the
height of free energy barriers encountered by the simulation [26]. The correct value
of the Eboost that needs to be used to reach a particular timescale is however, in
principle, not known a priori.

To generate a trajectory describing all conformations contributing to the average
NMR parameters measured experimentally for the small model protein ubiquitin
(scalar and residual dipolar couplings, that average in the ms timescale) these
authors carried out AMD simulations of this protein with increasing values of
Eboost. An analysis of how well the simulated trajectories agreed with the NMR
experiments showed that conventional MD simulations did not validate well, that
moderate degrees of acceleration lead to very significant improvements in the
agreement against experiment and that it was possible to use the experimental data
to determine the optimal value of Eboost, one that samples all conformations that
contribute to the time-averaged NMR parameters (Fig. 3.3).
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3.2.2 From Experimental Data

In the methods discussed in the previous section experimental data plays a modest
role. It is merely used as a validation tool to reassure the researcher that the trajectory
provided by MD or by an advanced sampling method is a realistic representation of
the dynamics of the system. There are however scenarios where it is desirable that
experimental data plays a much more important role because the conformational
space sampled by the system is too vast to be sampled by MD, for example, when
there are reasons to think that a particular property of the system may not we well-
described by force fields or when, for a variety of possible reasons, it is desirable
to minimize the role played by the force field in determining the structural and
dynamical properties of the system.

There are a number of experimental methods that can provide structural and
dynamical information to determine conformational ensembles for proteins. These
include Förster resonance energy transfers (FRET) measured using fluorescence,
that provide information about r�6 averaged inter-dye distances [32] and, in single
molecule mode, distributions of distances as well as small angle x-ray scattering
(SAXS), that provides information about the hydrodynamic properties of proteins
[33]. The most powerful experimental method is however undoubtedly NMR [34]
because it provides information at atomic resolution, unlike SAXS, and because it
does not require, unlike FRET, labeling the protein with fluorescent groups that can
alter the structure, the dynamics and the interactions of the protein and therefore
require performing extensive experimental controls.

It is possible to measure a number of parameters by NMR (chemical shifts, scalar
couplings, nuclear Overhauser effects, residual dipolar couplings and chemical shift
anisotropy in aligned samples, cross-correlated relaxation rates) and these can be
related to quantities that can be in principle computed from structures, trajectories
and ensembles (distances, angles, torsion angles) as shown in Table 3.1. For the
purposes of validating and, especially, generating conformational ensembles it is
of course important to take into appropriate consideration the range of validity of
the equations used to back-calculate NMR parameters, the accuracy with which
NMR parameters can be measured experimentally [35] and the accuracy with which
they can be back-calculated [36]. Another factor to take into account is the way
these equations were parameterized i.e. whether the parameters were determined
from first principles or whether they were instead determined by fitting to known
crystallographic structures, a procedure that leads to equations that under-estimate
the contribution of conformational averaging [37].

3.2.2.1 Selection Methods

Various approaches are available for the generation of conformational ensembles
from experimental but I will start will selection methods because they these
conceptually related to the use of conventional MD and advanced sampling methods
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Table 3.1 NMR parameters that can be used for generating conformational ensembles and their
relationship to protein structure

Symbol Description Structural interpretation

NOEij Nuclear Overhauser effect Distance between 1H nuclei i and j
(<6 Å)

PREij Paramagnetic relaxation enhancement Distance between an unpaired electron
attached to site i and nucleus j
(<30 Å)

3Jij Three-bond scalar coupling Dihedral angle between bond vectors i
and j

3hJij Trans-hydrogen bond scalar coupling Geometry of hydrogen bond linking
heavy atoms i and j

RDC or Dij Residual dipolar coupling Angle between bond vectors i and j and
the molecular frame defined by
macromolecular alignment

CSi Chemical shifts Convolution of a large number of
structural properties in the vicinity of
nucleus i

Si
2 Order parameter Rigidity of bond vector i in the

molecular frame defined by
macromolecular tumbling
(0 � Si

2 � 1)

described inSect. 3.2.1. Selection methods use experimental data to, as their name
suggests, select conformations from a pre-defined pool of conformations generated
a priori. The pool is meant to contain all physically possible conformations that the
protein can sample in a defined timescale with some probability but that these are
not present with their correct statistical weights. Since any experimental (NMR or
otherwise) parameter contains information about the distribution of conformations
contributing to the average, it can be in principle be used to optimize the statistical
weights.

Several algorithms have been used to select the conformations from the pool.
These range from Monte Carlo algorithms, such as the ENSEMBLE method
developed by the Forman-Kay laboratory to generate ensembles for IDPs [38], to
genetic algorithms, such as the OED method of the Svergun laboratory to generate
ensembles from SAXS data [39] and the ASTEROIDS method (Fig. 3.4a) developed
by the Blackledge laboratory to generate ensembles for IDPs from NMR data
[41]. These methods differ in the nature of the pool and in the technical details
of the selection method but are all based on the same idea and make the same key
assumption, which is that all possible conformations are present in the pool.

Of course whether a selection method performs well depends fundamentally on
the properties of the pool. This must be an accurate representation of the range of
conformations that can be sampled by the protein and its size must be representative
of the size of the conformational space available. If the quality of the pool is low,
that is if the conformations present in the pool do not represent the conformations
that the protein can adopt, the selection method will generate a conformational
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Fig. 3.4 (a) Representative structures belonging to the three main clusters (RS1, RS2, RS3)
defining the denatured state of a drkN SH3 domain by selecting conformations from a pool
generated by a simulation of the thermal denaturation of the native state of this protein [38]
(b) Comparison of the dominant conformations of A“40 and A“42 as determined by selecting
structures from a pool derived from trajectories of these peptides computed using MD or REMD.
It can be observed that the C-terminal residues of A“42, that are not present in A“40, form long-
range transient contacts [40]
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ensemble that will be in agreement with experiment but that will be not be a realistic
description of the structural properties of the protein. If the pool is of good quality
but it contains too few conformations, that is if conformations actually sampled by
the protein are absent from the pool, the selection algorithm will also fail to produce
a useful result.

From Statistical Coils

As already mentioned selection methods have used quite extensively for the
generation of conformational ensembles describing the properties of chemically
denatured proteins and IDPs. The pioneering work of Dobson and co-workers [42],
recently followed up by the Sosnick [23] and Blackledge [43] groups, showed that it
is possible to produce reasonable representations for the range of structures sampled
by these systems by generating conformational ensembles where the distributions
of backbone torsion angles of the different residues of the protein match those of
the same residues in loops and termini of structures deposited in the PDB.

These conformational ensembles aim at representing the structural properties of
polypeptides where these are dominated by the local structural preferences [42],
that is in the absence of the long-range interactions that play an important role in
stabilizing the tertiary structure of globular proteins. These statistical coils have, in
spite of the simplicity of the approach used to generate them, structural properties
that match those determined experimentally for disordered proteins and that validate
reasonably well with SAXS and NMR experimental parameters such as backbone
scalar and residual dipolar couplings [23, 42, 43].

There is considerable experimental evidence, mainly from FRET, chemical shifts
and paramagnetic relaxation enhancement (PRE) experiments measured using NMR
(Table 3.1) that IDPs can form transient long range interactions that are important
for their physiological and physiopathological roles [44–47]. Since these long range
interactions cannot be definition be described by statistical coils [42] efforts have
been made in improving the description of IDPs by using selection methods where
statistical coils are used as pools.

From Ensembles Determined Using Simulations

Since the quality of the pool is key for the performance of selection methods efforts
have been directed at using molecular simulations for constructing pools that better
reproduce the structural properties of IDPs. These were pioneered by the Forman-
Kay group, that used thermal unfolding trajectories to generate the pool in a study of
the denatured state of an SH3 domain [38] in which they used 1H-1H NOEs, scalar
couplings, 13C chemical shifts, among other parameters, to optimize the statistical
weights of the conformations of the pool (Fig. 3.4b). This [38], as well as other
studies by the same group [48, 49], in which they also explored the use of statistical
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coils as pools, indicated that the denatured state is substantially collapsed, with a
fraction of the secondary structure of the native state, and that it is stabilized by
native as well as non-native long range interactions.

This pioneering work has been followed up by the Head-Gordon group, that
has used instead ensembles derived from MD or ERMD trajectories to generate
ensembles for the peptides A“40 and A“42 [40]. Although these two peptides
have very similar sequences the latter is much more prone than the former to form
neurotoxic oligomeric species thought to trigger Alzheimer’s disease [50, 51]. There
has been much discussion about how can the addition of only two residues have
such a profound effect on the structural properties of an IDP. The recent study of the
Head-Gordon group, in which the authors used 1H-1H NOEs as well as scalar and
residual dipolar couplings to bias a selection algorithm, is an important contribution
to this topic. It shows that A“42 has a substantially different contact map due
to the propensity of the two additional residues to form long-range contacts with
hydrophobic residues in the rest of the sequence (Fig. 3.4b).

3.2.2.2 Restrained Simulations

Both selection methods and, especially, MD rely heavily on an accurate description
of the conformational space available to proteins either by using motional models,
such as statistical coils, or molecular simulations force fields. These approaches
are therefore unsuitable when these descriptions are not available or when it is
thought that the conformations that they provide are not correct. In these cases it is
possible to carry out restrained molecular simulations in which empirical potentials
are added to the potential energy of the protein provided by the force field to
penalize configurations with back-calculated experimental parameters that are in
disagreement with those measured experimentally.

Since these methods bias the sampling they have the potential to generate con-
formations that would otherwise not be sampled in an unrestrained MD simulation
i.e. they use the experimental data as a protein-specific force field correction [52].
Restrained simulations have of course a long history in structure determination
and in fact lie at the heart of the ability of NMR to produce average structures
for proteins by generating configurations with structural properties (bond lengths,
angles, inter-atomic distances, etc.) that do not deviate too much from those
considered optimal for molecular simulation force fields and are in addition in
agreement with NMR parameters reporting on protein structure (Table 3.1) [53, 54].

Given that the NMR parameters cannot be measured or back-calculated from
structures with infinite accuracy they usually do not define a unique conformation
and it is customary to represent NMR structures as ensembles of conformations
that fit the NMR data. The spread of these ensembles depends on the ability of the
experimental data to define the average structure and can be considered equivalent
to the resolution of crystallographic structures, with significant heterogeneity
reflecting poor resolution. Even though the presence of significant dynamics can
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lead, like in X-ray crystallography, to poor resolution it is important to emphasize
that the spread of conventional NMR ensembles does not directly report on protein
dynamics [52].

For NMR ensembles to report on protein dynamics it is necessary to use
restrained simulation protocols that fit the NMR parameters to an ensemble of
conformations rather to a single average conformation [2, 55] In these protocols
an energy penalty is applied when the ensemble–averaged back-calculated NMR
parameters are in disagreement with experiment.

Ensemble Averaged Restrained Simulations

In ensemble-averaged restrained simulations an ensemble of conformations of the
protein of interest is simulated simultaneously and the ensemble-averaged back-
calculated NMR parameters are restrained by an empirical quadratic potential to be
in agreement with the experimental value [2]. When there is a violation the energy
penalty generates a force in all conformations that contribute to the average so
that the NMR parameter is fulfilled. This leads to conformational ensembles where
individual conformations may have NMR parameters that deviate from experiment
but where the ensemble collectively does not and is, therefore, a representation of
the range of conformations that is sampled by the protein at equilibrium.

As early as the 1990s there was a general awareness of the importance of
conformational averaging in protein structure determination by NMR and, as a
consequence, attempts at using this type of simulation protocols to generate con-
formational ensembles from the NMR parameters commonly used for determining
structures [55, 56]. This was however a challenging task because NOEs, the main
source of structural information available at the time, are not suitable restraints
for ensemble simulations because they average non-linearly [57] and could only
be measured semi-quantitatively due to the low signal to noise ratio of NMR and
the presence of spin-diffusion [58, 59]. As a consequence it was not possible to
cross-validate the resulting conformational ensembles, which were significantly
under-restrained and therefore presented artifactual structural heterogeneity. It is
worth mentioning that the measurement of very exact NOEs in per-deuterated
proteins is to a large extent alleviating the problems of this NMR observable as
restraint in ensemble simulations as illustrated by recent work of Riek and co-
workers [58, 59].

This situation, however, changed quite significantly when Tjandra and Bax
showed that it was possible to induce a small degree of anisotropy in the rotational
diffusion on protein samples by using an external alignment medium [62]. This
lead to the possibility of measuring residual dipolar couplings (RDCs) for pairs
of nuclei, which otherwise average to zero when the inter-nuclear vector rotates
isotropically around the magnetic field of the NMR apparatus. For proteins which
do not experience important changes in alignment when their structures fluctuate
[63] the value of the RDC of a given conformation is given by the degree of
alignment, which depends on the overall shape of the protein, and on the orientation
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Fig. 3.5 Restrained ensemble simulations can be used to generate detailed descriptions of the
structural heterogeneity of proteins that can be of great use to understand fundamental properties
of their structures (a) A conformational ensemble determined for the protein ubiquitin using RDCs
in its free state contains the structures that the protein adopts upon binding other proteins, indicating
that the molecular recognition of this protein occurs by conformational selection. Plot of the
Calpha-RMSD between each bound structure of ubiquitin (x-axis) and the ensemble members of
free (red dots) and bound (black dots) ubiquitin [60] (b) Using a similar approach we showed
that the motions of residues in the “-sheet of this protein are correlated, which suggests that
the collective motions that these correlations underlie could play role in molecular recognition.
The matrix represents the circular correlation coefficient between two backbone torsion angles of
ubiquitin [61]

of the inter-nuclear vector in the molecular structure [62]. Unlike NOEs RDCs can
be measured with quite high accuracy and, in addition, average linearly; they are
therefore much better suited to ensemble simulation protocols that aim at generating
conformational ensembles and have been used quite extensively in the last few years
[60, 61, 64, 65].

Parallel to these developments methods were also set up to use S2 order
parameters, that are derived from 15N relaxation rates and that report on the
amplitude of the motions of individual backbone NH bond vectors, as restraints
for ensemble restrained simulations [66]. Vendruscolo, Dobson an co-workers
showed that using these in combination with NOEs allowed the generation of
conformational ensembles that validated against ensemble-averaged experimental
RDCs better than single structures [67]. In further developments Vendruscolo
and co-workers showed how implementing changes to the simulation protocol,
particularly to the way in which the averaging of the various observables was carried
out, lead to very substantial increases in accuracy of the ensembles [68].

The use of RDCs as restraints in ensemble simulations was pioneered by Clore
and co-workers, which setup up the basic simulation protocol and put forward an
ingenious strategy to simultaneously fit the coordinates of the ensemble members
with the 5 independent elements of the alignment tensor [64]. This mathematical
object describes the degree and direction of alignment or the protein in the molecular
frame and can be represented by a symmetric traceless matrix that is in generally



80 X. Salvatella

not known but can be obtained by single value decomposition from a set of more
than 5 accurately measured RDCs if a reasonable structural model for the protein
is available [69]. The setup was initially implemented to explore whether restrained
ensemble simulations lead to ensembles that agreed with alternative ways of treating
the information about dynamics contained in RDCs [64] but has found use in the
analysis of protein dynamics since then [61, 65].

In a recent example we used the simulation setup proposed by Clore and co-
workers to analyze the dynamics of ubiquitin from a very large set of RDCs
in collaboration with Griesinger and co-workers [61]. One important property of
the ensemble that we generated is that it is in very good agreement with NMR
parameters that we did not use to restrain the ensemble simulation such as trans-
hydrogen bond scalar couplings and cross-correlated relaxation rates. An analysis
of the correlated motions present in this ensemble lead to the observation of weak
but statistically significant correlated motions that connect the dynamics of residues
that can be quite far apart in the structure of ubiquitin.

As previously mentioned the degree and directions of alignment of a protein
structure expressed in the alignment tensor are generally not known and need to be
fit to the experimental RDCs [69]. This is an important drawback of using RDCs
for characterizing the structural heterogeneity of proteins because it decreases the
information content of these NMR parameters and because it narrows the range
of systems that can be studied to those for which the alignment is assumed not
to change significantly during the dynamics. One possible way to alleviate this
problem is to calculate the alignment tensor of the various conformations that
contribute to the average RDC on the fly [70, 71], which is possible for mechanisms
of external that are well understood such as steric [69] and electrostatic [72]
alignment. This new approach to determining conformational ensembles is still
under development [73, 74] but it is likely to be an important development because
it will allow the characterization of the structural heterogeneity of proteins that
experience large shape changes such as intrinsically disordered and multi-domain
proteins.

In parallel to these developments in the characterization of the structural
heterogeneity of globular proteins restrained ensemble simulations have been
used extensively to generate conformational ensembles for chemically denatured
and intrinsically disordered proteins. The main source of structural information
for these proteins are paramagnetic relaxation enhancements (PREs). PREs are
increases in the relaxation of NMR resonances caused by transient interactions
of the corresponding nuclei with paramagnetic functional groups introduced by
using protein engineering and can be used to probe long-range (up to 25 Å)
transient interactions [77]. PREs can be used as restraints in ensemble simulations
of disordered proteins [78] but suffer from the same averaging problems of NOEs
i.e. they do not average linearly.

In order to clarify to what extent PREs are useful restraints for ensemble
simulations of disordered proteins our laboratory recently carried out a detailed
characterization of their information content. The conclusion that we reached
is that PREs are indeed very useful probes of transient long-range interactions
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but that their averaging properties render them quite inadequate restraints for
ensemble simulations because their average is to a large insensitive to the shape
of the distribution of distances. We find that ensemble-averaging does not provide
significant advantages for obtaining an accurate characterization of transient long-
range interactions and that fitting the PREs to a small number of structures, that can
be as small as one, provides the most accurate map for a disordered protein [79].

Time Averaged Restrained Simulations

An alternative to ensemble restrained simulations is time averaged restrained
simulations. In this approach, developed by Van Gunsteren and co-workers, a
single conformation of the protein is simulated and a quadratic empirical potential
ensures that the time-averaged value of a given NMR parameter is equivalent to
its experimental counterpart [75]. The key parameter of this simulation protocol
is the averaging time i.e. the time after which the trajectory is expected to satisfy
the experimental values, which needs to be determined a priori. Although this
approach was an important conceptual development when it was proposed [75,
76] it seems that carrying our ensemble-averaged restrained simulations is a more
common approach to the problem of determining conformational ensembles from
NMR data.

3.3 Looking Ahead

Conformational ensembles represent an exciting new development in biophysics
because they allow for an explicit represent of the dynamics of proteins. Although
they do not contain information about the timescale of the dynamics these ensembles
provide quite accurate representations of the amplitude of the motions. It is however
the case that the determination of such ensembles from experiment is not a routine
endeavor because it requires the measurement of a substantial number of NMR
parameters such as RDCs. From this point of view it seems that an important priority
should be to extract as much information about the amplitude of dynamics from
NMR chemical shifts because this NMR parameter is easy to measure. It is therefore
likely that we will see developments in this area soon [80].
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cell-signaling and cancer-associated proteins. J Mol Biol 323:573–584

21. Lindorff-Larsen K, Trbovic N, Maragakis P, Piana S, Shaw DE (2012) Structure and dynamics
of an unfolded protein examined by molecular dynamics simulation. J Am Chem Soc
134:3787–3791

22. Jensen MR, Ruigrok RW, Blackledge M (2013) Describing intrinsically disordered proteins at
atomic resolution by NMR. Curr Opin Struct Biol 23:426–435

23. Jha AK, Colubri A, Freed KF, Sosnick TR (2005) Statistical coil model of the unfolded state:
resolving the reconciliation problem. Proc Natl Acad Sci USA 102:13099–13104

24. Sugita Y, Okamoto Y (1999) Replica-exchange molecular dynamics method for protein
folding. Chem Phys Lett 314:141–151

25. Torrie GM, Valleau JP (1977) Nonphysical sampling distributions in Monte Carlo free-energy
estimation: umbrella sampling. J Comput Phys 23:187–199

26. Hamelberg D, Mongan J, McCammon JA (2004) Accelerated molecular dynamics: a promising
and efficient simulation method for biomolecules. J Chem Phys 120:11919

27. Huber T, Torda AE, van Gunsteren WF (1994) Local elevation: a method for improving
the searching properties of molecular dynamics simulation. J Comput Aided Mol Des
8:695–708



3 Understanding Protein Dynamics Using Conformational Ensembles 83

28. Laio A, Parrinello M (2002) Escaping free-energy minima. Proc Natl Acad Sci USA 99:
12562–12566

29. Berne BJ, Straub JE (1997) Novel methods of sampling phase space in the simulation of
biological systems. Curr Opin Struct Biol 7:181–189

30. Zuckerman DM (2011) Equilibrium sampling in biomolecular simulations. Annu Rev Biophys
40:41–62

31. Markwick PRL, Bouvignies G, Salmon L, McCammon JA, Nilges M et al (2009) Toward
a unified representation of protein structural dynamics in solution. J Am Chem Soc 131:
16968–16975

32. Sisamakis E, Valeri A, Kalinin S, Rothwell PJ, Seidel CAM (2010) Accurate single-molecule
FRET studies using multiparameter fluorescence detection. Methods Enzymol 475:455–514

33. Svergun D, Barberato C, Malfois M, Volkov V, Konarev P et al (1995) Evaluation of
the solution scattering from macromolecules with known atomic structure and fitting to
experimental data. J Appl Crystallogr 28:768–773

34. Dyson HJ, Wright PE (2004) Unfolded proteins and protein folding studied by NMR. Chem
Rev 104:3607–3622

35. Fenwick RB, Esteban-Martín S, Salvatella X (2010) Influence of experimental uncertainties on
the properties of ensembles derived from NMR residual dipolar couplings. J Phys Chem Lett
1:3438–3441

36. Robustelli P, Cavalli A, Dobson CM, Vendruscolo M, Salvatella X (2009) Folding of small
proteins by Monte Carlo simulations with chemical shift restraints without the use of molecular
fragment replacement or structural homology. J Phys Chem B 113:7890–7896

37. Case DA (2013) Chemical shifts in biomolecules. Curr Opin Struct Biol 23:172–176
38. Choy WY, Forman-Kay JD (2001) Calculation of ensembles of structures representing the

unfolded state of an SH3 domain. J Mol Biol 308:1011–1032
39. Bernadó P, Mylonas E, Petoukhov MV, Blackledge M, Svergun DI (2007) Structural character-

ization of flexible proteins using small-angle X-ray scattering. J Am Chem Soc 129:5656–5664
40. Ball KA, Phillips AH, Wemmer DE, Head-Gordon T (2013) Differences in “-strand popula-

tions of monomeric A“40 and A“42. Biophys J 104:2714–2724
41. Nodet G, Salmon L, Ozenne V, Meier S, Jensen MR et al (2009) Quantitative description of

backbone conformational sampling of unfolded proteins at amino acid resolution from NMR
residual dipolar couplings. J Am Chem Soc 131:17908–17918

42. Smith LJ, Bolin KA, Schwalbe H, MacArthur MW, Thornton JM et al (1996) Analysis of main
chain torsion angles in proteins: prediction of NMR coupling constants for native and random
coil conformations. J Mol Biol 255:494–506

43. Bernadó P, Blanchard L, Timmins P, Marion D, Ruigrok RWH et al (2005) A structural model
for unfolded proteins from residual dipolar couplings and small-angle x-ray scattering. Proc
Natl Acad Sci USA 102:17002–17007

44. Fuxreiter M, Simon I, Friedrich P, Tompa P (2004) Preformed structural elements feature in
partner recognition by intrinsically unstructured proteins. J Mol Biol 338:1015–1026

45. Song J, Guo L-W, Muradov H, Artemyev NO, Ruoho AE et al (2008) Intrinsically disordered
gamma-subunit of cGMP phosphodiesterase encodes functionally relevant transient secondary
and tertiary structure. Proc Natl Acad Sci USA 105:1505–1510

46. Baker JMR, Hudson RP, Kanelis V, Choy W-Y, Thibodeau PH et al (2007) CFTR regulatory
region interacts with NBD1 predominantly via multiple transient helices. Nat Struct Mol Biol
14:738–745

47. Sugase K, Dyson HJ, Wright PE (2007) Mechanism of coupled folding and binding of an
intrinsically disordered protein. Nature 447:1021–1025

48. Marsh JA, Neale C, Jack FE, Choy W-Y, Lee AY et al (2007) Improved structural characteri-
zations of the drkN SH3 domain unfolded state suggest a compact ensemble with native-like
and non-native structure. J Mol Biol 367:1494–1510

49. Marsh JA, Forman-Kay JD (2009) Structure and disorder in an unfolded state under nonde-
naturing conditions from ensemble models consistent with a large number of experimental
restraints. J Mol Biol 391:359–374



84 X. Salvatella

50. Chiti F, Dobson CM (2006) Protein misfolding, functional amyloid, and human disease. Annu
Rev Biochem 75:333–366

51. Roychaudhuri R, Yang M, Hoshi MM, Teplow DB (2009) Amyloid beta-protein assembly and
Alzheimer disease. J Biol Chem 284:4749–4753

52. Esteban-Martín S, Bryn Fenwick R, Salvatella X (2012) Synergistic use of NMR and
MD simulations to study the structural heterogeneity of proteins. WIREs Comput Mol Sci
2:466–478

53. Kaptein R, Zuiderweg ER, Scheek RM, Boelens R, van Gunsteren WF (1985) A pro-
tein structure from nuclear magnetic resonance data. lac repressor headpiece. J Mol Biol
182:179–182

54. Wüthrich K (2003) NMR studies of structure and function of biological macromolecules
(Nobel Lecture). J Biomol NMR 27:13–39

55. Bonvin AMJJ, Brünger AT (1995) Conformational variability of solution nuclear magnetic
resonance structures. J Mol Biol 250:80–93

56. Mierke DF, Kurz M, Kessler H (1994) Peptide flexibility and calculations of an ensemble of
molecules. J Am Chem Soc 116:1042–1049

57. Bürgi R, Pitera J, van Gunsteren WF (2001) Assessing the effect of conformational averaging
on the measured values of observables. J Biomol NMR 19:305–320

58. Vögeli B, Segawa TF, Leitz D, Sobol A, Choutko A et al (2009) Exact distances and internal
dynamics of perdeuterated ubiquitin from NOE buildups. J Am Chem Soc 131:17215–17225

59. Vögeli B, Kazemi S, Güntert P, Riek R (2012) Spatial elucidation of motion in proteins by
ensemble-based structure calculation using exact NOEs. Nat Struct Mol Biol 19:1-53-1057

60. Lange OF, Lakomek N-A, Farès C, Schröder GF, Walter KFA et al (2008) Recognition
dynamics up to microseconds revealed from an RDC-derived ubiquitin ensemble in solution.
Science 320:1471–1475

61. Fenwick RB, Esteban-Martín S, Richter B, Lee D, Walter KFA et al (2011) Weak long-range
correlated motions in a surface patch of ubiquitin involved in molecular recognition. J Am
Chem Soc 133:10336–10339

62. Tjandra N, Bax A (1997) Direct measurement of distances and angles in biomolecules by NMR
in a dilute liquid crystalline medium. Science 278:1111–1114

63. Salvatella X, Richter B, Vendruscolo M (2008) Influence of the fluctuations of the alignment
tensor on the analysis of the structure and dynamics of proteins using residual dipolar
couplings. J Biomol NMR 40:71–81

64. Clore GM, Schwieters CD (2004) How much backbone motion in ubiquitin is required to
account for dipolar coupling data measured in multiple alignment media as assessed by
independent cross-validation? J Am Chem Soc 126:2923–2938

65. Clore GM, Schwieters CD (2004) Amplitudes of protein backbone dynamics and correlated
motions in a small alpha/beta protein: correspondence of dipolar coupling and heteronuclear
relaxation measurements. Biochemistry 43:10678–10691

66. Best RB, Vendruscolo M (2004) Determination of protein structures consistent with NMR
order parameters. J Am Chem Soc 126:8090–8091

67. Lindorff-Larsen K, Best RB, Depristo MA, Dobson CM, Vendruscolo M (2005) Simultaneous
determination of protein structure and dynamics. Nature 433:128–132

68. Richter B, Gsponer J, Várnai P, Salvatella X, Vendruscolo M (2007) The MUMO (minimal
under-restraining minimal over-restraining) method for the determination of native state
ensembles of proteins. J Biomol NMR 37:117–135

69. Zweckstetter M, Bax A (2000) Prediction of sterically induced alignment in a dilute liquid
crystalline phase: aid to protein : : : . J Am Chem Soc 122:3791–3792

70. Huang J-R, Grzesiek S (2010) Ensemble calculations of unstructured proteins constrained by
RDC and PRE data: a case study of urea-denatured ubiquitin. J Am Chem Soc 132:694–705

71. Esteban-Martín S, Fenwick RB, Salvatella X (2010) Refinement of ensembles describing
unstructured proteins using NMR residual dipolar couplings. J Am Chem Soc 132:4626–4632

72. Zweckstetter M, Hummer G, Bax A (2004) Prediction of charge-induced molecular alignment
of biomolecules dissolved in dilute liquid-crystalline phases. Biophys J 86:3444–3460



3 Understanding Protein Dynamics Using Conformational Ensembles 85

73. De Simone A, Montalvao RW, Vendruscolo M (2011) Determination of conformational
equilibria in proteins using residual dipolar couplings. J Chem Theory Comput 7:4189–4195

74. Montalvao RW, De Simone A, Vendruscolo M (2012) Determination of structural fluctuations
of proteins from structure-based calculations of residual dipolar couplings. J Biomol NMR
53:281–292

75. Torda AE, Scheek RM, van Gunsteren WF (1989) Time-dependent distance restraints in
molecular dynamics simulations. Chem Phys Lett 157:289–294

76. Torda AE, Scheek RM, van Gunsteren WF (1990) Time-averaged nuclear Overhauser effect
distance restraints applied to tendamistat. J Mol Biol 214:223–235

77. Clore GM, Iwahara J (2009) Theory, practice, and applications of paramagnetic relaxation
enhancement for the characterization of transient low-population states of biological macro-
molecules and their complexes. Chem Rev 109:4108–4139

78. Dedmon MM, Lindorff-Larsen K, Christodoulou J, Vendruscolo M, Dobson CM (2005) Map-
ping long-range interactions in ’-synuclein using spin-label NMR and ensemble molecular
dynamics simulations. J Am Chem Soc 127:476–477

79. Silvestre-Ryan J, Bertoncini CW, Fenwick RB, Esteban-Martín S, Salvatella X (2013) Average
conformations determined from PRE data provide high-resolution maps of transient tertiary
interactions in disordered proteins. Biophys J 104:1740–1751

80. Camilloni C, Robustelli P, De Simone A, Cavalli A, Vendruscolo M (2012) Characterization
of the conformational equilibrium between the two major substates of RNase A using NMR
chemical shifts. J Am Chem Soc 134:3968–3971



Chapter 4
Generative Models of Conformational Dynamics

Christopher James Langmead, Ph.D.

Abstract Atomistic simulations of the conformational dynamics of proteins can
be performed using either Molecular Dynamics or Monte Carlo procedures. The
ensembles of three-dimensional structures produced during simulation can be
analyzed in a number of ways to elucidate the thermodynamic and kinetic properties
of the system. The goal of this chapter is to review both traditional and emerging
methods for learning generative models from atomistic simulation data. Here, the
term ‘generative’ refers to a model of the joint probability distribution over the
behaviors of the constituent atoms. In the context of molecular modeling, generative
models reveal the correlation structure between the atoms, and may be used to
predict how the system will respond to structural perturbations. We begin by dis-
cussing traditional methods, which produce multivariate Gaussian models. We then
discuss GAMELAN (GRAPHICAL MODELS OF ENERGY LANDSCAPES), which
produces generative models of complex, non-Gaussian conformational dynamics
(e.g., allostery, binding, folding, etc.) from long timescale simulation data.

Keywords Probabilistic graphical models • Generative models • Energy
landscapes • Conformational ensembles • Molecular dynamics • Thermody-
namics • Kinetics • Inference • Learning • Parametric • Semi-parametric •
Non-parametric

4.1 Introduction

Atomistic simulations are widely used to investigate the conformational dynamics of
proteins and other molecules (e.g., [22, 24]). The raw output from any simulation is
an ensemble of three-dimensional conformations. These ensembles can be analyzed
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using a variety of methods, ranging from simple descriptive statistics (e.g., average
energies, radius of gyration, etc.) to generative models (e.g., normal mode analysis,
quasi-harmonic analysis, etc.). Here, the term ‘generative’ refers to any model of
the joint probability distribution, P.X1; : : : ; Xn/, over a set of user-defined random
variables, X D fX1; : : : ; Xng, representing the system’s degrees of freedom (e.g.,
distances, fluctuations, angles, etc.). In this chapter, we focus on techniques for
learning generative models from conformational ensembles.

Generative models provide important insights into conformational dynamics. In
particular, they elucidate the inter-atomic correlations that give rise to collective
motions within and across dynamical domains. Consequently, generative models
can be used to estimate important quantities, including the magnitudes of atomic
fluctuations (e.g., [50]), configurational entropies (e.g., [21]), and free energies (e.g.,
[17, 18, 20]). They can also be used to predict how the system will respond to local
structural changes (e.g., ligand binding) (e.g., [39]).

Many techniques exist for learning generative models from conformational
ensembles. Well-known examples include: Normal Modes Analysis [6, 13, 25],
Quasi Harmonic Analysis [21, 26], Essential Dynamics [1], and Elastic Network
Models [50]. Ultimately, the differences between these methods amount to: (a)
which variables are modeled, and (b) the mathematical form used to define P.X/.
This chapter contrasts several strategies for specifying P.X/ (whether implicitly or
explicitly), starting from simple harmonic models (where P.X/ takes the form of
a multivariate Gaussian), and proceeding to more expressive models that are better
suited for anharmonic (i.e., non-Gaussian) motions. This latter category is presented
in the context of GAMELAN (GRAPHICAL MODELS OF ENERGY LANDSCAPES),
which is a new framework for learning generative models from conformational
ensembles.

GAMELAN is motivated by recent developments in atomistic simulation technolo-
gies. In particular, advances in hardware and software (e.g., [5, 15, 31, 34, 40, 47])
have dramatically increased the timescales accessible to simulation. Microsecond
.�s D 10�6 s/ and millisecond .ms D 10�3 s) simulations are increasingly
common, but the resulting conformational ensembles pose significant challenges.
First and foremost, the conformational dynamics observed on the �s and ms
timescales are usually very complex. In particular, they are not well suited to
harmonic approximations. GAMELAN addresses this problem by providing users
the option of learning multi-modal, non-Gaussian, and even time-varying gen-
erative models from the ensemble. This is achieved through a combination of
parametric, semi-parametric, and non-parametric models. The second challenge
is the size of the ensemble, which naturally increases with both the size of the
system and the timescale. GAMELAN addresses this challenge by using efficient,
but provably optimal algorithms for estimating the parameters of the generative
model.
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4.2 Conformational Ensembles

As previously noted, atomistic simulations can be performed using Molecular
Dynamics (MD) and/or Monte Carlo (MC) sampling. Molecular dynamics sim-
ulations involve numerically solving Newton’s laws of motion for a system of
atoms whose interactions are defined according to a given force field. Monte Carlo
simulations involve iteratively modifying an existing structure. Each modification
is either accepted or rejected, stochastically, according to its energy, as defined
by a force field. The theory and practice behind MD and MC algorithms is
beyond the scope of this chapter. Here, we will simply assume that each method
produces an ensemble of m conformations. The ensemble will be denoted as
C D fC.1/; : : : ; C.m/g, where C.i/ specifies the cartesian coordinates for each
atom in the i th conformation.

In principle, generative models can be constructed from the raw ensemble, C, but
it is much more common to limit the analysis to a limited number of covariates. Most
analyses operate on either: (a) the cartesian coordinates of a subset of the atoms
(e.g., non-solvent molecules, or even just the alpha carbons); (b) atomic fluctuations
(i.e., displacements from a reference conformation); (c) pairwise distances between
atoms; or (d) dihedral angles. The methods discussed in this chapter can be applied
to any set of covariates, and so we will not restrict them to any particular type.
Let X D fX1; : : : ; Xng be a vector encoding the n covariates to be analyzed, and
recall that a generative model encodes the joint probability distribution P.X/. The
parameters of the model are estimated from a set of data, D D fX.1/; : : : ;X.m/g,
where X.i/ is a vector containing the values of the n covariates extracted from C.i/.

4.3 Learning Generative Models from
Conformational Ensembles

This section presents several methods for learning generative models from a set
of data, D, starting with simple Gaussian models and progressing to non-Gaussian
models.

4.3.1 Simple Gaussian Models

The most straightforward way to produce a model of the joint distribution, P.X/, is
to fit a multivariate Gaussian distribution to the data. This can be accomplished, for
example, by computing the n-dimensional empirical mean vector, � D 1

m

P
X.i/,
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and the n 
 n empirical covariance matrix † D EŒ.X � �/.X � �/T �. Given these
parameters, the probability density for any n-vector x D fx1; : : : ; xng is:

P.x/ D 1

Z
exp

�
� 1
2
.x � �/T†�1.x � �/

�
; (4.1)

where Z D p
.2�/nj†j is the partition function and j†j denotes the determinant

of †.
Well-known methods for building harmonic models, including Normal Modes

Analysis [6, 13, 25], Quasi Harmonic Analysis [21, 26], and Essential Dynamics
[1], also produce multivariate Gaussian models, but not in the manner outlined
above. Instead, they transform the data in some way. Quasi-Harmonic Analysis,
for example, performs Principle Components Analysis (PCA) on a mass-weighted
covariance matrix of atomic fluctuations. PCA diagonalizes the covariance matrix,
producing a set of eigenvectors and their corresponding eigenvalues. Each eigenvec-
tor can be interpreted as one of the principal modes of vibration within the system
or, equivalently, as a univariate Gaussian with zero mean and variance proportional
to the corresponding eigenvalue. The eigenvectors are orthogonal by construction,
and so the off-diagonal elements of the correlation matrix are zero.

Principal Components Analysis operates on covariance matrices, which capture
pairwise relationships between variables. It is sometimes desirable to capture the
relationships between tuples of variables (triples, quadruples, etc.). Here, Tensor
Analysis may be used instead of PCA [35, 36]. The model produced via Tensor
Analysis is also Gaussian.

4.3.1.1 Computing with Gaussian Models

When appropriate, multivariate Gaussian models have a number of attractive
properties. For example, the Kullback-Leibler divergence1 between two different
models, M0 and M1 can be computed analytically:

KL.M0jjM1/ D 1

2
.trace.†�1

1 †0/C.�1��0/
T †�1

1 .�1��0/�ln.j†0j=j†1j/�n/:
(4.2)

The ability to quantify the differences between two models has a number of practical
uses. For example, the symmetric version of the Kullback-Leibler can be used to
cluster a set of models, or to compare models learned from independent sources
(e.g., different simulations of the same system).

1The Kullback-Leibler divergence is a non-symmetric measure of the difference between two
distributions. It is non-negative and zero if and only if the two distributions are identical. The
divergence can be symmetrized by taking the sum or average of KL.M0jjM1/ and KL.M1jjM0/.
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The generative nature of the model means, among other things, that one can
sample new conformations (i.e., those that weren’t in D). In the case of a multivariate
Gaussian, sampling can be accomplished in two steps. First, an n-dimensional
vector of independent Gaussian random numbers is generated, r D Œr1; : : : ; rn�.
Second, the random sample is produced by computing x D ArC �, where A is the
lower triangular matrix satisfying † D AAT.

Finally, Gaussian models also make it easy to predict how the system will
respond to local perturbations by computing conditional distributions. For example,
let V � X be an arbitrary subset of X, and let W D X n V be the complement
set. Here, V might correspond to an allosteric binding site. We can simulate a local
structural change (e.g., due to binding) by setting V to some particular value, say v.
Next, we can predict how the rest of the molecule will respond by conditioning
the distribution on v, and computing the conditional distribution P.Wjv/. This
conditional distribution is also a multivariate Gaussian with parameters .�W jv; †W /
where:

�W jv D �W C†TW†�1
VV.v � �v/ (4.3)

†W D †WW �†TWV†
�1
VV†WV (4.4)

Here, † D
 
†WW †WV

†TWV †VV

!
. The vector �� D v [ �W jv is the mode of a

new equilibrium distribution and is therefore the model’s prediction for the most
likely conformation, after the local perturbation. Significantly, this prediction is
computed analytically via matrix operations. Alternatively, one might sample from
the conditional distribution P.Wjv/ 	 N.�W jv; †W /.

4.3.2 GAMELAN

The computational and analytical tractability of Gaussian models belies the fact
that the conformational dynamics of proteins aren’t normally distributed [1, 16].
Thus, while it is always possible to fit a Gaussian to a set of data, sometimes
this approximation is valid, and sometimes it is not. In this section, we discuss
a framework for creating generative models from conformational ensembles. This
technique, called GAMELAN (GRAPHICAL MODELS OF ENERGY LANDSCAPES),
is capable of producing a variety of generative models (including Gaussian), but it
primarily intended for circumstances where the conformational dynamics are non-
Gaussian.

GAMELAN produces generative models from a set of data by learning a Proba-
bilistic Graphical Model (Fig. 4.1). Informally, a probabilistic graphical model is a
factored encoding of a multivariate distribution, P.X/. It consists of a graph defined
over the variables, and a set of functions defined over the nodes and edges in the
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X1

X8X7

X2

X3

X4

X6

Fig. 4.1 A probabilistic graphical model over eight random variables. Nodes correspond to
random variables. Edges reveal the conditional independencies among the variables. Each node and
edge is associated with a function. When combined, the graph and the functions encode the joint
probability distribution over the variables, P.X1; : : : ; X8/. Graphical models of protein structures
may have hundreds or thousands of nodes, depending on which covariates are being modeled

graph. The topology of the graph distinguishes between indirect and direct couplings
between random variables. The mathematical form of the functions determines the
nature of the distribution. Here, there is a great amount of flexibility; depending
on the choice of functions, GAMELAN can produce Gaussian distributions, multi-
nomial distributions, circular distributions, and, most significantly, multi-modal
distributions. Multi-modal distributions are essential if the system has more than
one conformational substate [9, 10]. It is also possible to define the functions using
molecular mechanics force-fields.

Like the simple Gaussian model discussed in Sect. 4.3.1, the models produced
by GAMELAN can perform a variety of tasks efficiently, although not necessarily
analytically. In particular, quantifying the difference between models, sampling,
and computing conditional distributions are all possible using GAMELAN models.
Additionally, if the node and edge functions are defined in terms of force-fields, the
model can be used to estimate important quantities, like free energies [17, 18, 20].

4.3.2.1 Probabilistic Graphical Models

A probabilistic graphical model, M D .G;‚/, encodes a joint probability distribu-
tion P.X/ in terms of a graph, G D .V;E/, and a set of functions‚ D .	1; : : : ; 	p/
defined over the nodes (V D .V1; : : : ; Vn/)—one for each random variable—and
edges (E � V 
 V) of the graph. For the models that GAMELAN produces, G
is undirected (Fig. 4.1). We note that undirected probabilistic graphical models
are often called Markov Random Fields in the Machine Learning and Statistics
literature.
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The probability density encoded by a GAMELAN model is:

P.X/ D 1

Z.‚/
exp

 
X

c2Cliques.G/

	c.Xc/

!
(4.5)

where the sum is over the fully connected subgraphs (i.e., cliques) of the graph and
XC � X is the subset of variables in clique c.

The topology of G defines the set of conditional independencies between the
random variables. In particular, the absence of an edge between Xi and Xj means
that the two variables are conditionally independent of each other. That is, given its
neighbors in the graph, random variable Xi is independent of Xj (and visa-versa).

Informally, the notion of conditional independence means that any observed
correlations between Xi and Xj can be explained in terms of the network of
couplings in G. Note that the lack of an edge does not mean that two random
variables are uncorrelated, only that the correlations are due to indirect couplings.
By analogy, consider a mass-spring system. The motions of two masses may be
correlated, even if they are not directly coupled by a spring. GAMELAN learns a
minimal set of edges and the associated parameters that best explain the correlations
observed in the data. We note, however, that the ‘springs’ in GAMELAN models are
not necessarily harmonic.

There are two basic tasks associated with probabilistic graphical models: learning
and inference. In general, both tasks are non-trivial, and there are a number of
algorithms for solving these problems. Here, we will highlight some of the key
concepts, and direct the reader to [23] for more information on these topics, and on
graphical models, in general.

4.3.2.2 Learning

Learning refers to a procedure for estimating the parameters of the model from
data. If the topology of the graph is given (i.e., imposed), then learning is generally
performed maximizing the log-likelihood of the parameters, given the data: ‚� D
argmax

‚

l l.‚jDIG/. If the topology of the graph is not known, it can also be learned

from the data. This is known as the structure learning problem. Finding the optimal
topology and parameters simultaneously is much harder than finding the optimal
parameters alone. This is because the number of undirected topologies over n
variables is 2.

n
2/. Practical algorithms for solving the structure learning problem

place a prior over graph topologies, often in the form of a regularization penalty,
which penalizes dense graphs. The intuition behind this penalty is that for every
edge that is added to the graph, the parameters associated with the corresponding
edge function must be estimated. Highly-parameterized models risk over-fitting the
data, and so sparse models are preferred over dense models.
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Fig. 4.2 Left: A complex consisting of gp120 (cyan), CD4 (green), and Ibalizumab (magenta and
yellow). Right: The topology of the graphical model learned by GAMELAN. A black dot means
there is an edge between residues i and j

When asked to solve the structure learning problem, GAMELAN optimizes a
regularized version of a quantity known as the pseudo log-likelihood:

.G;‚/� D argmax
G;‚

pll.G;‚jD/ � 
R.G;‚/: (4.6)

Here, pll is the pseudo log-likelihood of the graph and parameters, given the data, R
is the regularization function, and 
 is a parameter that controls the tradeoff between
fitting the data (the first term) and having simple models. The pseudo log-likelihood
is a consistent estimator (i.e., given enough data, it converges on the same solution
as the exact log-likelihood), and is also much more efficient to compute [3]. The
regularization penalty can be defined in a number of ways. GAMELAN uses an
L1 penalty, which encourages sparse graphs. L1 regularization also has desirable
statistical properties. Specifically, it leads to consistent models (that is, given enough
data our algorithm learns the true topology) while enjoying high efficiency (that is,
the number of samples needed to achieve the true model is small). The regularization
parameters, 
, can be set in a number of ways, including AIC and BIC, or through a
simple permutation test that finds the value of 
 that yields no edges on randomized
versions of the data (where all correlations have been eliminated).

Figure 4.2 illustrates the topology of the network learned by GAMELAN from
a 2ns simulation of a complex consisting of gp120 (a glycoprotein on the surface
of the HIV envelope), the CD4 receptor (a glycoprotein expressed on the surface
of T helper cells) and Ibalizumab, a humanized monoclonal antibody that binds to
CD4 and inhibits the viral entry process. The set of edges includes intra- and inter
molecular pairs.
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4.3.2.3 Inference

Once the model has been learned, it can be used to perform a variety of tasks.
For example, Gibbs sampling, and related procedures, can be used to generate new
conformations. Approximate versions of the KL divergence can be computed by cal-
culating an empirical estimate for KL.M0jjM1/ D P

PM0.i/ log
PM0 .i/

PM1 .i/
. Marginal

and conditional distributions can be computed using message-passing algorithms
on the graph, such as Belief Propagation [33] and Expectation Propagation [29],
depending on the nature of the functions (see [23] for a complete discussion).

The remainder of this section discusses the range of models that can be produced
by GAMELAN. We start with parametric models, such as the Gaussian and von Mises
distribution, and then move on to semi- and non parametric models, which are more
expressive.

4.3.2.4 Parametric Models

The simplest graphical model for continuous-valued random variables is the Gaus-
sian Graphical Model, which is defined as the pair .h; †�1/. Here,†�1 is inverse of
the covariance matrix (also known as the precision or concentration matrix) and h
is an n-dimensional vector satisfying � D hT†. Thus, a Gaussian Graphical Model
can be constructed from the empirical mean and covariance (as in Sect. 4.3.1).
Empirical estimates, however, are subject to over-fitting the data. Therefore, when
asked to produce a Gaussian Graphical Model, GAMELAN computes a regularized
estimate of the precision matrix (and hence a regularized version of its inverse, the
covariance matrix). Specifically, GAMELAN learns a sparse precision matrix (i.e.,
one with many zeros among the off-diagonal elements) (see [39]). The non-zero
elements of †�1 correspond to the edges in the graphical model.

Notice that unlike PCA-based methods, like Quasi-Harmonic Analysis, which
produce Gaussian models after a change of basis, a Gaussian Graphical model is
defined over the original variables, X D fX1; : : : ; Xng. Thus while having a similar
form, the resulting models are very different. In particular, PCA-based models
encode the joint distribution in terms of global motions, since each eigenvector is
a linear combination of the original variables. Gaussian Graphical Models, on the
other hand, are defined in terms of a network of local couplings.

Some quantities are not well modeled using Gaussian variables. Angles, in
particular, are defined on the circle, and so are best modeled using circular
distributions. The circular analog to the Gaussian distribution is the von Mises
distribution [8]. The univariate von Mises distribution over angle � 2 .��; �� is
defined as:

P.�/ D e� cos.���/

2�I0.�/
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Fig. 4.3 Ramachandran plot.
Axes are in radians

where I0.�/ is the modified Bessel function of order 0, and the parameters � and
1
�

are analogous to � and 2 (the mean and variance) in the Gaussian distribution.
� is known as the concentration of the variable, and so high concentration implies
low variance. The bivariate von Mises distribution [28] over ˆ D .�1; �2/, can be
defined as:

P.ˆ/ D
exp

n�P2
iD1 �i cos.�i � �i/

C 
g.�1; �2/
o

Z.�1; �2; �1; �2; 
/
;

where �1 and �2 are the means of �1 and �2, respectively, �1 and �2 are their
corresponding concentrations, g.�1; �2/ D sin .�1 � �1/ sin .�2 � �2/, 
 is a
measure of the dependence between �1 and �2, and Z.�/ is the normalization
constant.

A von Mises Graphical Model can be defined using a combination of uni-
and bivariate von Mises distributions as the node and edge functions, respectively.
GAMELAN can produce von Mises graphical models using existing algorithms for
regularized structure learning [38], and inference [37].

Gaussian and von Mises graphical models are most useful when the ensemble
being analyzed is well-approximated by a unimodal distribution (e.g., fluctuations
within a single conformational substate). For more complex ensembles, spanning
more than one conformational substate, or exhibiting substantial asymmetry, these
approximations will be poor. An obvious example of a complex distribution is the
Ramachandran distribution (Fig. 4.3).

There are a number of strategies for addressing this problem of non-Gaussian
distributed data. One simple-minded solution is to modify existing PCA-based
methods (e.g., quasiharmonic analysis) so that they perform Independent Compo-
nents Analysis, instead. Independent Components Analysis also performs a change
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of basis, but onto a set of statistically independent bases (as opposed to merely
uncorrelated bases, which is what PCA produces). Such modifications are straight-
forward, but still define the joint distribution in terms of global motions. To
address these same problem using graphical models, there are there are two basic
options. The first is to discretize conformation space in some fashion, and then
learn a multinomial model. For example, graphical models over discrete backbone
or side-chains conformations (i.e., rotamers) have been developed (e.g., [17, 20]),
and GAMELAN can construct such models. The second approach is to abandon
parametric forms and utilize semi- or nonparametric graphical models. GAMELAN

can produce these models too, as we discuss in the following sections.

4.3.2.5 Semi-parametric Models

If the data are not well-approximated via a Gaussian distribution, one option is
to apply a function to the data so that the transformed data are (approximately)
Gaussian. This is the central idea behind the Nonparanormal distribution [27].
Formally, random variable X D fX1; : : : ; Xng is distributed as a Nonparanormal,
denoted by X 	 NPN.�;†; f /, if there exist a set of functions f D ffi ; : : : ; fng
such that f .X/ 	 N.�;†/. Here, f .X/ D ff1.X1/; : : : ; fn.Xn/g. Under the
constraints that the functions are monotone and differentiable, the probability
density for any n-vector x D fx1; : : : ; xng is:

P.x/ D 1

Z
exp

�
� 1
2
.f .x/ � �/T†�1.f .x/ � �/

� Y

i

jf 0
i .xi /j; (4.7)

where Z Dp.2�/nj†j.
GAMELAN learns the parameters of the Nonparanormal graphical model (i.e., �,

†, and f ) from the data. Briefly, the f s are approximated as: fi D �i C ihi .x/,
where �i and i are the empirical mean and standard deviation for the i th variable,
and hi is the inverse cumulative distribution function applied to the marginal
empirical cumulative distribution Fi.t/ D 1

m

P
j I.Xi .j / � t / for the i th variable.

Here, I is the indicator function. Any operation that can be performed on a Gaussian
(e.g., Sect. 4.3.1) can also be performed on the Nonparanormal. The functions, f, are
invertible, so samples generated in the ‘Nonparanormal space’ can be projected into
the real space. Similarly, predictions made by calculating conditional distributions
can be inverted.

Figures 4.4 and 4.5 demonstrate the Nonparanormal. In Fig. 4.4 a scatter plot
of two dimensional data is presented, along with histograms of the marginal
distributions. The distribution is non-Gaussian. In Fig. 4.5 the red circles are the
same points as in Fig. 4.4, after the Nonparanormal transformation. Notice that the
marginals of the transformed data are now Gaussian.

Figure 4.6 illustrates the differences between making prediction using a Gaussian
Graphical Model and a Nonparanormal Graphical Model. Models were fit to the
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Fig. 4.4 Scatter plot of two dimensional data and histograms of the marginal distributions

same data as Fig. 4.4. The left-hand figure shows the predictions made for variable
y, given different values of variable x under both models using Eq. 4.3. Similarly,
the right-hand figure shows the predictions made for variable x, given different
values of variable y. In each figure, the red line is the prediction made using a
Gaussian model and the green line is the prediction made by the Nonparanormal
model. Notice that while the Gaussian predictions form a line, the Nonparanormal
predictions curve, better reflecting the distribution.

4.3.2.6 Non-parametric Models

The Nonparanormal Graphical Model is more expressive than a Gaussian Graphical
Model, but there are models which are more expressive than the Nonparanormal.
GAMELAN provides two options: (i) Hilbert-space embeddings of graphical models,
and (ii) mixtures of graphical models.

A Hilbert space is a complete vector space endowed with an dot product
operation. A Reproducing kernel Hilbert space (RKHS), H , is a Hilbert space of
functions with kernel k satisfying the reproducing property:

f .x/ D hf .�/; k.x; �/i;
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Fig. 4.5 The red points are the data from Fig. 4.4 in the ‘Nonparanormal space’. Notice that the
marginal distributions are now Gaussian

Fig. 4.6 Left: The lines show the maximum likelihood value for variable y, for different values of
x. Right: The lines show the maximum likelihood value for variable x, for different values of y.
The red line is computed using a Gaussian Graphical Model. The green line is computed using a
Nonparanormal Graphical Model
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and thus

k.x; x0/ D hk.x; �/; k.x0; �/i:

The significance of RKHS’s is that function evaluations can be performed via inner
products.

Recently, it has been shown that joint and conditional probability distributions
can be embedded into a suitable RKHS [42, 43]. That is, different distributions
correspond to different points in the RKHS. The significance of these embeddings
is that it becomes possible to efficiently learn non-parametric graphical models and
perform inference [44,45]. The resulting distributions can be real-valued and multi-
modal.

The second approach to learning non-parametric models is to learn a mixture of
graphical models. Here, the data can either be clustered beforehand into microstates,
and a separate graphical model learned for each cluster (Gaussian, von Mises,
Nonparanormal, or Hilbert-Space), or expectation-maximization can be used to
identify the mixtures, and their parameters. Under a mixture model, each component
is given a weight, wi and the probability density for any n-vector x D fx1; : : : ; xng
is: P.x/ DQi wiP.xIGi ;‚i /, where

P
i wi D 1.

4.3.2.7 Time-Varying, Reaction-Coordinate Coupled, and Kinetic Models

GAMELAN can also be used to learn time-varying models from the data. In partic-
ular, if the conformational ensemble has been produced via Molecular Dynamics
simulations, it is natural to wonder how the distribution changes over time. This is
easily accomplished by learning models from (possibly overlapping) windows of
the data. The width of the window is selected based on the timescale of interest. The
resulting sequence of graphical models encodes a diffusion process and users may
examine how the topology and parameters change over time. Similarly, GAMELAN

may be applied to conformations obtained via umbrella sampling (or similar) along a
reaction coordinate. The resulting models reveal how the distribution changes along
the reaction coordinate (Fig. 4.7).

Alternatively, GAMELAN can be combined with Markov State Models [2, 30, 41,
46, 48] to produce a fully generative, kinetic model. Here, the data are clustered
into microstates and the transition rates between states is estimated from the data.
A graphical model is learned for each state, to facilitate sampling and inference.
Unlike the time-varying model, Markov State Models are jump-processes.

4.4 Examples

To illustrate the predictive accuracy of different models, GAMELAN was applied
to data from a 50�s simulation of the engrailed homeodomain (Fig. 4.8-left). We
extracted the 	 � � angles from the data, which describes the configuration of
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Fig. 4.7 The enzyme
cyclophilin A isomerizes the
omega angle of its substrate.
Here, the number of edges
learned by GAMELAN is
plotted against the reaction
coordinate for three substrates

i

i+1
i+2

i+3

θ1
τ

θ2

Fig. 4.8 Left: The engrailed
homeodomain. Right: 	 � �

representation of the
backbone is defined over the
alpha carbons

Table 4.1 Predictive
accuracy on angular data

Model Root mean square error (ı)

Gaussian 8.5
von Mises 5.7
Nonparanormal 7.2
Hilbert-Space 5.0
Mixture of Gaussian 7.2
Mixture of von Mises 4.9
Mixture of Nonparanormal 7.6

the alpha carbons (Fig. 4.8-right). The data was partitioned into training and test
sets. The training data were used to learn a Gaussian, von Mises, Nonparanormal,
Hilbert-Space, mixture of Gaussian, mixture of von Mises, and mixture of Nonpara-
normal Graphical models. Next, using the test data we conditioned each model on a
random subset of the variables and predicted the values of the remaining variables.
Table 4.1 demonstrates that the mixture of von Mises Graphical models gives the
lowest errors.

Next, we extracted the pairwise distances between alpha carbons and partitioned
the data into training and test sets. The training data were used to learn a Gaussian,
Nonparanormal, Hilbert-Space Graphical, mixture of Gaussians (k D 10), and
mixture of Nonparanormal models. Using the test data we conditioned each model
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Table 4.2 Predictive
accuracy on distances

Model Root mean square error (Å)

Gaussian 3.9
Nonparanormal 4.9
Hilbert-Space 2.8
Mixture of Gaussian 1.6
Mixture of nonparanormal 3.1

on a random subset of the variables and predicted the values of the remaining
variables. Table 4.2 demonstrates that the mixture of Gaussian Graphical models
gives the lowest errors.

4.5 Discussion and Conclusion

Probabilistic Graphical Models of protein structures were first introduced in 2002
by Yanover and Weiss [51], who focused on predicting side chain configurations.
Subsequent uses of graphical models for proteins have considered a wide range of
problems, including density fitting [7], structure prediction [4, 14], protein design
[3, 11, 12, 32, 49], free energy calculations [20], and predicting resistance mutations
[19]. Their growing popularity in structural biology is due to their ability to
represent complex distributions and solve challenging inference problems.

GAMELAN is the first graphical model specifically designed to aid in the analysis
and modeling of conformational ensembles generated through simulation. The
extreme complexity of the resulting distributions has necessitated the development
of more expressive models. The Hilbert-Space embeddings presently represent
the most powerful generative models of protein structure. Applying these models
to application domains such as structure prediction and protein design is part of
ongoing research. Other challenges include the development of graphical model
based simulation algorithms where the model evolves in time along a reaction
coordinate, generating conformations along the way.

Acknowledgements This work is supported in part by US NSF grant IIS-0905193, US NIH
RC2GM093307, and US NIH P41 GM103712.
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Chapter 5
Generalized Spring Tensor Models
for Protein Fluctuation Dynamics
and Conformation Changes

Hyuntae Na, Tu-Liang Lin, and Guang Song

Abstract Background: In the last decade, various coarse-grained elastic network
models have been developed to study the large-scale motions of proteins and
protein complexes where computer simulations using detailed all-atom models
are not feasible. Among these models, the Gaussian Network Model (GNM) and
Anisotropic Network Model (ANM) have been widely used. Both models have
strengths and limitations. GNM can predict the relative magnitudes of protein
fluctuations well, but due to its isotropy assumption, it cannot be applied to predict
the directions of the fluctuations. In contrast, ANM adds the ability to do the latter,
but loses a significant amount of precision in the prediction of the magnitudes.

Results: In this book chapter, we present a single model, called generalized spring
tensor model (STeM), that is able to predict well both the magnitudes and the
directions of the fluctuations. Specifically, STeM performs equally well in B-factor
predictions as GNM and has the ability to predict the directions of fluctuations as
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ANM. This is achieved by employing a physically more realistic potential, the Gō-
like potential. The potential, which is more sophisticated than that of either GNM
or ANM, though adds complexity to the derivation process of the Hessian matrix
(which fortunately has been done once for all and the MATLAB code is freely
available electronically at http://www.cs.iastate.edu/~gsong/STeM), causes virtually
no performance slowdown. In addition, we show that STeM can be further extended
to an all-atom model and protein fluctuation dynamics computed by all-atom STeM
matches closely with that by Normal Mode Analysis (NMA).

Conclusions: Derived from a physically more realistic potential, STeM proves to
be a natural solution in which advantages that used to exist in two separate models,
namely GNM and ANM, are achieved in one single model. It thus lightens the
burden to work with two separate models and to relate the modes of GNM with
those of ANM at times. By examining the contributions of different interaction
terms in the Gō potential to the fluctuation dynamics, STeM reveals, (i) a physical
explanation for why the distance-dependent, inverse distance square (i.e., 1/r2)
spring constants perform better than the uniform ones, and (ii), the importance of
three-body and four-body interactions to properly modeling protein dynamics.

STeM is not limited to coarse-grained protein models that use a single bead,
usually the alpha carbon, to represent each residue. The core idea of STeM, deriving
the Hessian matrix directly from a physically realistic potential, can be extended
to all-atom models as well. We did this and discovered that all-atom STeM model
represents a highly close approximation of NMA, yet without the need for energy
minimization.

Keywords Normal mode analysis • Hessian matrix • Spring tensor model •
Protein dynamics • Mean-square fluctuations

Abbreviations

ENM Elastic Network Model
GNM Gaussian Network Model
ANM Anisotropic Network Model
STeM Spring Tensor Model
NMA Normal Model Analysis
ANMr2 ANM using 1/r2 as spring constant

5.1 Introduction

It is now well accepted that the functions of a protein are closely related to not
only its structure but also its dynamics. With the advancement of the computational
power and increasing availability of computational resources, function-related

http://www.cs.iastate.edu/~gsong/STeM
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protein dynamics, such as large-scale conformation transitions, has been probed
by various computational methods at multiple scales. Among these computational
methods, coarse-grained models play an important role since many functional
processes take place over time scales that are well beyond the capacity of all-atom
simulations [1]. One type of coarse-grained models, the elastic network models
(ENMs), have been particularly successful and widely used in studying protein
dynamics and in relating the intrinsic motions of a protein with its function-related
conformation changes over the last decade [2–5].

The reason why ENMs have been well received as compared to the conventional
normal mode analysis (NMA) lies at its simplicity to use. ENMs do not require
energy minimization and therefore can be applied directly to crystal structures to
compute the modes of motions. In contrast, minimization is required for carrying out
the conventional normal mode analysis (NMA). The problematic aspect of energy
minimization is that it usually shifts the protein molecule away from its crystal
conformation by about 2 Å. In addition, in ENMs analytical solutions to residue
fluctuations and motion correlations can be easily derived. On the other hand, the
simplicity of ENMs leaves much room for improvement and many new models have
been proposed [6–12].

The two most widely used ENM models are Gaussian Network Model (GNM)
and Anisotropic Network Model (ANM). They have been used to predict the
magnitudes or directions of the residue fluctuations from a single structure and have
been applied in many research areas [2, 5], such as domain decomposition [13]
and allosteric communication [14–17]. Both models have their own advantages and
disadvantages. GNM can predict the relative magnitudes of the fluctuations well,
but due to its isotropy assumption, it cannot be applied to predict the directions of
the fluctuations. In contrast, ANM adds the ability to do the latter, but it loses a
significant amount of precision in the prediction of the magnitudes.

5.1.1 Gaussian Network Model

Gaussian Network Model (GNM) was first introduced in [3] under the assumption
that the separation between a pair of residues in the folded protein is Gaussianly
distributed. Given its simplicity, the model performs extremely well in predicting
the experimental B-factors. The model represents a protein structure using its C˛
atoms. The connectivity among the C˛’s is expressed in Kirchhoff matrix � (see
Eq. (5.1)). Two C˛’s are considered to be in contact if their distance falls within a
certain cutoff distance. The cutoff distance between a pair of residues is the only
parameter in the model and is normally set to be 7–8 Å. Let �ri and �rj represent
the instantaneous fluctuations from equilibrium positions of residues i and j and rij

and r0,ij be the respective instantaneous and equilibrium distances between residues
i and j. The Kirchhoff matrix � is:
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� ij D

8
ˆ̂̂
<

ˆ̂̂
:

�1 if i ¤ j \ r0;ij � rc
0 if i ¤ j \ r0;ij > rc
XN

j;j¤i� ij if i D j
(5.1)

where i and j are the indices of the residues and rc is the cutoff distance.
The simplicity of the Kirchhoff matrix formulation results from the assumption

that the fluctuations of each residue are isotropic and Gaussianly distributed along
the X, Y and Z directions. The expected value of residue fluctuations, h�r2i i, and
correlations, h�ri ��rji, can be easily obtained from the inverse of the Kirchhoff
matrix:

˝
�r2i

˛ D 3kBT

�

�
��1�

ii; (5.2)

˝
�r i ��rj

˛ D 3kBT

�

�
��1�

ii; (5.3)

where kB is the Boltzmann constant and T is the temperature. � is the spring
constant. The h�r2i i term is directly proportional to the crystallographic B-factors.

5.1.2 Anisotropic Network Model

GNM provides only the magnitudes of residue fluctuations. To study the motions of
a protein in more details, especially to determine the directions of the fluctuations,
normal mode analysis (NMA) is needed. Traditional NMA is all-atom based and
requires a structure to be first energy-minimized before the Hessian matrix and nor-
mal modes can be computed, which was rather cumbersome. Even after the energy
minimization, the derivation of the Hessian matrix is not easy due to the complicated
all-atom potential. In Tirion’s pioneering work [18], the energy minimization step
was removed and a much simpler Hookean potential was used, and yet it was shown
that the low frequency normal modes remained mostly accurate. Since then, the
Hookean spring potentials have been favored in most coarse-grained C˛ models [4,
19, 20]. One of such models is best known as Anisotropic Network Model (ANM)
[4] since it has anisotropic, directional information of the fluctuations. The potential
in ANM has the simplest harmonic form. Assuming that a given structure is at
equilibrium, the Hessian matrix 3N 
 3N can be derived analytically from such a
potential [4]. The 3N 
 3N Hessian matrix HANM can be repartitioned into N 
N
super elements and each super element is a 3
 3 tensor.
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H ANM D

2

6664
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where Hi,j is the interaction tensor between residues i and j and can be
expressed as:
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Let HC be the pseudo inverse of Hessian matrix HANM. The mean square
fluctuation h�r2i i and correlation h�ri ��rji can be calculated by summing over
the X, Y and Z components:

˝
�r2i

˛ D 3kBT

�

�
H C

3i�2;3i�2 CH C
3i�1;3i�1 CH C

3i;3i

�
(5.6)

˝
�ri ��rj

˛ D 3kBT

�

	
H C

3i�2;3j�2 CH C
3i�1;3j�1 CH C

3i;3j



(5.7)

5.1.3 Strengths and Limitations of GNM and ANM

The advantages of ANM or GNM over the conventional NMA lie in several aspects:
(i) it is a coarse-grained model and uses the Ca’s to represent the residues in a
structure; (ii) it does not require energy minimization and thus can be applied
directly to crystal structures to compute the modes of motions; (iii) it provides
analytical solutions to the mean square fluctuations and motion correlations.

The limitations of the GNM model. GNM provides only information on the
magnitudes of residue fluctuations but no directional information. Therefore, the
modes of GNM should not be interpreted as protein motions or components of the
motions, since the potential in GNM is not rotationally invariant [21].

The limitations of the ANM model. In contrast to that in GNM, the potential in
ANM is based on simple, harmonic Hookean springs and is rotationally invariant.
And thus, the modes of ANM do represent the possible modes of protein motions.
In doing this, however, ANM loses a significant amount of precision in predicting
the magnitudes of the fluctuations. The reason is that, in GNM, the fluctuations in
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the separation between a pair of residues are assumed to be Gaussianly distributed
and isotropic, while in ANM, because only a Hookean spring is attached between a
pair of residues i and j, the fluctuation of residue j is constrained only longitudinally
along the axis from i to j. The fluctuation is unconstrained transversely. The interac-
tion spring tensor HANM

i;j between residues i and j in Eq. (5.5) becomes the following
in the local frame (where the Z axis is along the direction from residues i to j):

H ANM
i;j D

2

4
0 0 0

0 0 0

0 0 1

3

5 (5.8)

Because the fluctuation of residue j is unconstrained transversely relative to residue
i, the fluctuations given by ANM are less realistic than those by GNM, which are
assumed to be isotropic. The isotropy in GNM is equivalent to an interaction spring
tensor between residues i and j of the following form:

H GNM
i;j D

2

4
1 0 0

0 1 0

0 0 1

3

5 (5.9)

From the two tensors HANM
i;j and HGNM

i;j given in Eqs. (5.8) and (5.9), the causes
for the limitations in GNM and ANM are clearly displayed. The unrealistic-ness
in ANM is an artifact resulting from its over-simplified potential. The isotropy
assumption of GNM, on the other hand, does a better job than ANM in modeling
the effect of residue interactions on the magnitudes of the fluctuations, but gives
up completely on representing the anisotropic nature that is intrinsic to all physical
forces and interactions, since only the magnitudes of the mean-square fluctuations
and cross-correlations were of concern when GNM was first proposed. Therefore, to
overcome the limitations of GNM and ANM, what is needed is a generalized inter-
action spring tensor that both is anisotropic and can exert more proper constraints on
the fluctuations than the ANM tensor HANM

i;j does. This calls for a model that has a
physically more realistic potential than that of ANM. Since potentials with only two-
body interactions can provide only longitudinal constraints, it is necessary to include
multi-body interactions in the potential in order to have transversal constraints
as well. The multi-body interactions provide additional diagonal and off-diagonal
terms to the interaction spring tensor between residues i and j. For example, by prop-
erly including three-body interactions, the interaction spring tensor may look like:

H STeM
i;j D

2

4
0 0 0

0 0 0

0 0 T .i; j /

3

5C
X

k

2

4
s11 .i; j; k/ s12 .i; j; k/ s13 .i; j; k/
s21 .i; j; k/ s22 .i; j; k/ s23 .i; j; k/
s31 .i; j; k/ s32 .i; j; k/ s33 .i; j; k/

3

5

(5.10)

where k represent the indices of the residues that interact with both residues i and
j through three-body interaction S. The first tensor on the right side of Eq. (5.10)
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represents the two-body interaction, which is similar to HANM
i;j , except that the

interaction strength T(i,j) depends on residues i and j, and thus may be distance-
dependent as well.

5.1.4 Our Contributions

To overcome the limitations of ANM and GNM, we have developed a generalized
spring tensor model for studying protein fluctuation dynamics and conformation
changes. It is called generalized spring tensor model, or STeM, for the reason that
the interaction between a pair of residues i and j is no longer a Hookean spring
that has the tensor form of Eq. (5.8), but takes a generalized tensor form (similar to
that in Eq. (5.10)) that can provide both longitudinal and transversal constraints on a
residue’s fluctuations relative to its neighbors. We obtain the generalized tensor form
by deriving the Hessian matrix from a physically more realistic Gō-like potential
(Eq. (5.11)), which has been successfully used in many MD simulations to study
protein folding processes and conformation changes [22–24]. In additional to the
Hookean spring interactions, the potential includes bond bending and torsional
interactions, both of which had been found to be helpful in removing the “tip effect”
of the ANM model [9]. The inclusion of the bond bending and torsional interactions
is reflected in the generalized tensor spring interaction between residues i and j, in
such a way that the tensor now includes not only the two-body interaction between
residues i and j, but also three-body and four-body interactions that involve residues
i and j (see Eq. (5.10)).

In doing this, the STeM model is able to integrate all the aforementioned
attractive features of ANM and GNM and overcome their limitations. Specifically,
STeM performs equally well in B-factors predictions as GNM and has the ability
to predict the directions of the fluctuations as ANM. This is accomplished with
virtually no performance slowdown. The only potential drawback of this model is
the significantly increased complexity in deriving the Hessian matrix. Fortunately,
this has been done once for all and the derivation results are available electronically
at http://www.cs.iastate.edu/~gsong/STeM.

STeM is physically more accurate by explicitly including the bond bending and
torsional interactions since they capture the chain behavior of protein molecules,
which are neglected in most elastic network models where a protein is treated as
an elastic rubber. Therefore, we have reasons to expect this model will further
distinguish itself in studying protein dynamics where a correct modeling of bond
bending and/or torsional rotations is critical.

STeM is not limited to coarse-grained protein models that use a single bead,
usually the alpha carbon, to represent each residue. The core idea of STeM, deriving
the Hessian matrix directly from a physically realistic potential, can be extended
to all-atom models as well. We did this and discovered that all-atom STeM model
represents a closer approximation of NMA than most other models.

http://www.cs.iastate.edu/~gsong/STeM
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5.2 Results and Discussion

5.2.1 Crystallographic B-Factor Prediction

Table 5.1 shows the correlation coefficients between the experimental and calculated
B-factors of the 111 proteins in the first dataset. The mean values of the correlation
coefficients of ANM, GNM, and STeM are 0.53, 0.59, and 0.60 respectively. STeM
provides the directional information of the residue fluctuations as ANM and has
an accuracy even slightly better than GNM in B-factor predictions. Figure 5.1
shows the distributions of the correlation coefficients between the calculated B-
factors and the experimental B-factors. STeM is the only model in which there are
instances where the correlation coefficient is above 0.85 and no instances where
the correlation coefficient is below 0.25. This implies that the performance of
STeM is more steady than either ANM or GNM. The scatter plot of the correlation
coefficients between ANM and STeM in Fig. 5.2 shows that STeM performs better
than ANM for 80 % of the proteins in the dataset.

Table 5.1 The correlation coefficients between the experimental and calculated B-factors
using different models

Protein R(Å) ANM GNM STeM Protein R(Å) ANM GNM STeM

1AAC 1.31 0.7 0:71 0.76 1ADS 1.65 0.77 0.74 0.71
1AHC 2.00 0.79 0:68 0.61 1AKY 1.63 0.56 0.72 0.6
1AMM 1.20 0.56 0:72 0.55 1AMP 1.80 0.62 0.59 0.68
1ARB 1.20 0.78 0:76 0.83 1ARS 1.80 0.14 0.43 0.41
1ARU 1.60 0.7 0:78 0.79 1BKF 1.60 0.52 0.43 0.5
1BPI 1.09 0.43 0:56 0.57 1CDG 2.00 0.65 0.62 0.71
1CEM 1.65 0.51 0:63 0.76 1CNR 1.05 0.34 0.64 0.42
1CNV 1.65 0.69 0:62 0.68 1CPN 1.80 0.51 0.54 0.56
1CSH 1.65 0.44 0:41 0.57 1CTJ 1.10 0.47 0.39 0.62
1CUS 1.25 0.74 0:66 0.76 1DAD 1.60 0.28 0.5 0.42
1DDT 2.00 0.21 �0:01 0.49 1EDE 1.90 0.67 0.63 0.75
1EZM 1.50 0.56 0:6 0.58 1FNC 2.00 0.29 0.59 0.61
1FRD 1.70 0.54 0:83 0.77 1FUS 1.30 0.4 0.63 0.61
1FXD 1.70 0.58 0:56 0.7 1GIA 2.00 0.68 0.67 0.69
1GKY 2.00 0.36 0:55 0.44 1GOF 1.70 0.75 0.76 0.78
1GPR 1.90 0.65 0:62 0.66 1HFC 1.50 0.63 0.38 0.35
1IAB 1.79 0.36 0:42 0.53 1IAG 2.00 0.34 0.52 0.44
1IFC 1.19 0.61 0:67 0.53 1IGD 1.10 0.18 0.44 0.27
1IRO 1.10 0.82 0:51 0.85 1JBC 1.15 0.72 0.7 0.73
1KNB 1.70 0.63 0:66 0.54 1LAM 1.60 0.53 0.63 0.71
1LCT 2.00 0.52 0:57 0.61 1LIS 1.90 0.16 0.43 0.3
1LIT 1.55 0.65 0:62 0.76 1LST 1.80 0.39 0.72 0.73
1MJC 2.00 0.67 0:67 0.61 1MLA 1.50 0.59 0.57 0.54
1MRJ 1.60 0.66 0:49 0.5 1NAR 1.80 0.62 0.76 0.74
1NFP 1.60 0.23 0:48 0.41 1NIF 1.70 0.42 0.58 0.61

(continued)
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Table 5.1 (continued)

Protein R(Å) ANM GNM STeM Protein R(Å) ANM GNM STeM

1NPK 1.80 0.53 0.55 0.64 1OMP 1.80 0.61 0.63 0.65
1ONC 1.70 0.55 0.7 0.58 1OSA 1.68 0.36 0.42 0.55
1OYC 2.00 0.78 0.73 0.77 1PBE 1.90 0.53 0.61 0.63
1PDA 1.76 0.6 0.76 0.58 1PHB 1.60 0.56 0.52 0.59
1PHP 1.65 0.59 0.63 0.65 1PII 2.00 0.19 0.44 0.28
1PLC 1.33 0.41 0.47 0.42 1POA 1.50 0.54 0.66 0.42
1POC 2.00 0.46 0.52 0.39 1PPN 1.60 0.61 0.64 0.67
1PTF 1.60 0.47 0.6 0.54 1PTX 1.30 0.65 0.51 0.62
1RA9 2.00 0.48 0.61 0.53 1RCF 1.40 0.59 0.63 0.58
1REC 1.90 0.34 0.5 0.49 1RIE 1.50 0.71 0.25 0.52
1RIS 2.00 0.25 0.24 0.47 1RRO 1.30 0.08 0.31 0.36
1SBP 1.70 0.69 0.72 0.67 1SMD 1.60 0.5 0.62 0.67
1SNC 1.65 0.68 0.71 0.72 1THG 1.80 0.5 0.53 0.5
1TML 1.80 0.64 0.64 0.58 1UBI 1.80 0.56 0.69 0.61
1WHI 1.50 0.12 0.33 0.38 1XIC 1.60 0.29 0.4 0.47
2AYH 1.60 0.63 0.73 0.82 2CBA 1.54 0.67 0.75 0.8
2CMD 1.87 0.68 0.6 0.62 2CPL 1.63 0.61 0.6 0.72
2CTC 1.40 0.63 0.67 0.75 2CY3 1.70 0.51 0.5 0.67
2END 1.45 0.63 0.71 0.68 2ERL 1.00 0.74 0.73 0.85
2HFT 1.69 0.63 0.79 0.72 2IHL 1.40 0.62 0.69 0.72
2MCM 1.50 0.78 0.83 0.79 2MHR 1.30 0.65 0.52 0.64
2MNR 1.90 0.46 0.5 0.47 2PHY 1.40 0.54 0.55 0.68
2RAN 1.89 0.43 0.4 0.31 2RHE 1.60 0.28 0.38 0.33
2RN2 1.48 0.68 0.71 0.75 2SIL 1.60 0.43 0.5 0.51
2TGI 1.80 0.69 0.71 0.73 3CHY 1.66 0.61 0.75 0.68
3COX 1.80 0.71 0.71 0.72 3EBX 1.40 0.22 0.58 0.4
3GRS 1.54 0.44 0.57 0.59 3LZM 1.70 0.6 0.52 0.66
3PTE 1.60 0.68 0.83 0.77 4FGF 1.60 0.41 0.27 0.43
4GCR 1.47 0.73 0.81 0.75 4MT2 2.00 0.42 0.37 0.46
5P21 1.35 0.4 0.51 0.45 7RSA 1.26 0.42 0.63 0.59
8ABP 1.49 0.61 0.82 0.62 – – – – –

Column R (Å) gives the resolution of each structure

Fig. 5.1 The distributions of
the correlation coefficients
between the experimental and
calculated B-factors
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Fig. 5.2 The scatter plot of
the correlation coefficients
by ANM and those by
STeM. For 80 % of the
proteins listed in Table 5.1,
STeM does better than ANM

Protein structures of higher resolution have more accurate data on atom coordi-
nates and B-factors. We investigate whether our model’s performance can be further
improved when the dataset used is limited to structures with higher resolution. We
select the 12 structures with resolution better than 1.3 Å from the first dataset. The
mean values of the correlation coefficients of these 12 structures are 0.56, 0.62,
and 0.63 for ANM, GNM, and STeM, respectively, which gives an improvement
of about 5–6 % for all of the three models. Since the improvement is based on a
relatively small set of 12 structures, a larger dataset is needed to further examine
this potential dependence of B-factor prediction accuracy on structure quality.

5.2.2 The Contributions of Different Interaction Terms
to the Fluctuations

The Gō-like potential in Eq. (5.11) has four different interaction terms, namely, bond
stretching, bond bending, torsional interactions, and the non-bonded interactions. It
is of great interest to investigate the relative contributions of these different terms to
the agreement with experimental B-factors. Since only the non-bonded interaction
term (V4) is able to provide by itself enough constraints to ensure the Hessian
matrix to have no more than six zero eigenvalues, V4 is used as the base term
for the evaluation of different terms’ contributions to the mean-square fluctuations.
The Hessian matrix of ANM, denoted by HANM, is used as another baseline for
comparison purposes. Table 5.2 lists the contributions of these different terms to the
improvement of B-factor predictions as they are added to the potential.

First, it is seen that the non-bonded interactions, as are present in H V4 and HANM,
play a dominant role in contributing to the B-factors. This is not surprising since
the mean-square fluctuations of a residue are mostly constrained by its interactions
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Table 5.2 The contributions of different interaction terms to the agreement with
experimental B-factors HANM

Hessian matrices used

Correlation
coefficient with
B-factors

Improvement with
respect to ANM

HANM 0.53 0.00
H V4 0.55 0.02
H V4 C H V1 0.57 0.04
H V4 C H V2 0.57 0.04
H V4 C H V3 0.56 0.03
H V4 C H V1 C H V2 0.59 0.06
H V4 C H V1 C H V3 0.58 0.05
H V4 C H V2 C H V3 0.57 0.04
H V4 C H V1 C H V2 C H V3 .D H STeM/ 0.60 0.07
H ANM C H V1 0.54 0.01
H ANM C H V2 0.54 0.01
H ANM C H V3 0.54 0.01
H ANM C H V1 C H V2 C H V3 0.56 0.03

HANM is the Hessian matrix of ANM. H V1 , H V2 , H V3 , and H V4 are the Hessian
matrices of the bond stretching (V1), bond bending (V2), torsional rotation (V3), and
non-local interaction (V4) terms, respectively

with its spatial neighbors, most of which are through non-bonded interactions. What
is more interesting is that H V4 term alone performs better than HANM. This is in
agreement with recent results that the performance of B-factor predictions can be
improved by using distance-dependent force constants [25, 26]. Particularly, the
spring constants that take the form of inverse distance square have been shown to
be superior in a recent exhaustive study that experimented with different distance-
dependent spring constants on a large dataset [16]. The Taylor expansion of the
non-bonded interaction term (V4) shows that it has an equivalent spring constant of
the form 120"

r20;ij
(see Eq. (5.36)), which is exactly proportional to the inverse of the

pairwise distance square. Thus, STeM provides a physics-based explanation for the
choice of using inverse square distance spring constants.

The contribution to the improvement in B-factor predictions from each of the
bonded interactions, such as that of bond stretching, is small, as had been pointed
out by Bahar et al. when GNM was first proposed over a decade ago [3]. However,
when the contributions of all of these four terms are added up, they together enable
the STeM model to gain a significant improvement over ANM to reach the level of
accuracy on a par with GNM.

5.2.3 Conformational Change Evaluation

It is known that the modes derived from the open form of a structure have better
overlaps and correlations with the direction of a protein’s conformation change than
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Table 5.3 The overlaps and correlations between the observed conformation changes and the most
involved modes using different models and the open conformations

Protein Overlap in ANM
Correlation
in ANM

Overlap in
STeM

Correlation
in STeM

Adenylate kinase 0.49(1) 0.62(1) 0.55(1) 0.63(1)
Alcohol dehydrogenase 0.69(3) 0.54(9) 0.73(2) 0.65(30)
Annexin V 0.33(1) 0.60(32) 0.33(1) 0.56(22)
Aspartate aminotransferase 0.56(9) 0.63(9) 0.68(6) 0.67(6)
Calmodulin 0.44(5) 0.62(77) 0.48(1) 0.62(16)
Che Y protein 0.46(1) 0.78(12) 0.40(1) 0.74(1)
Citrate synthase 0.48(7) 0.72(26) 0.49(5) 0.63(5)
Dihydrofolate reductase 0.71(1) 0.65(1) 0.73(1) 0.66(1)
Diphtheria toxin 0.43(1) 0.69(2) 0.50(2) 0.73(2)
Enolase 0.31(1) 0.45(34) 0.32(1) 0.49(53)
HIV-1 protease 0.67(1) 0.78(10) 0.85(1) 0.90(1)
Immunoglobulin 0.68(3) 0.57(3) 0.66(3) 0.58(3)
Lactoferrin 0.48(1) 0.64(24) 0.48(1) 0.70(36)
LAO binding protein 0.81(1) 0.74(1) 0.87(1) 0.80(1)
Maltodextrin binding protein 0.77(2) 0.66(2) 0.80(2) 0.70(2)
Seryl-tRNA synthetase 0.21(4) 0.59(10) 0.21(4) 0.60(37)
Thymidylate synthase 0.37(4) 0.69(9) 0.44(3) 0.68(9)
Triglyceride lipase 0.35(15) 0.50(25) 0.30(14) 0.56(24)
Triose phosphate isomerase 0.15(38) 0.28(11) 0.14(7) 0.30(8)
Tyrosine phosphatase 0.41(2) 0.57(27) 0.42(1) 0.59(25)

the ones derived from the closed form [20]. Here we apply the STeM model to study
the conformation changes between the open and closed forms of 20 proteins. The
open forms are used to calculate the normal modes. Table 5.3 lists the overlaps and
correlations of the observed conformation changes and the indices of the modes
that are most involved in the conformation changes. GNM is not considered since
it cannot provide directional information. The mean values of the overlaps and
correlation coefficients of ANM are 0.49 and 0.61 respectively, and 0.52 and 0.64
respectively for STeM. These amount to an improvement of about 5 % for STeM
over ANM on both overlap and correlation. Since the results are obtained based on
a relatively small set of 20 protein pairs, the significance of the improvement seen
here needs to be further tested by conducting a more exhaustive analysis that uses
a larger set of proteins and varying parameters, and preferably taking into account
the effect of crystal packing as well. We will leave this for future work. It is also
worth noting that, in both the overlap and correlation calculations, the modes that
are most involved in the conformation change tend to have lower indices in STeM
than in ANM (see Table 5.3), which may imply the modes of STeM be of higher
quality than those of ANM.
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5.2.4 Protein Fluctuation Dynamics Predicted by All-Atom
STeM Matches Closely with That of NMA

In this section, we apply all-atom STeM model to a large number of proteins and
show that the fluctuation dynamics produced by STeM matches closely with that of
NMA. To avoid the uncertainties existing in experimental B-factors due to crystal
packing and disorder, the atomic fluctuations computed from NMA and STeM are
compared with each other and not with the experimental B-factors.

To compute the fluctuations, all the structures are first energetically minimized
using the Tinker program [27] with the Charmm22 force field. The minimized
structures are then used by NMA, STeM, and later on, by ANM and ANMr2 models,
to compute the mean-square fluctuations. Some of the force field parameters from
Charmm22 are used in computing the STeM Hessian matrix. Let M be the N 
N
diagonal mass matrix, I be the 3
 3 identity matrix, and ˝ be the operator of
the Kronecker product. Let bNMA and bSTeM denote the mean-square fluctuations
from NMA and STeM, respectively. The following procedure details how they are
determined:

1. Use Tinker [27] to determine the minimized conformation C whose potential
energy as defined by Charmm22 is fully minimized;

2. Obtain bNMA using Tinker;
3. Compute the Hessian matrix HSTeM of C using STeM;
4. Determine frequencies fi and modes mi of HSTeM in the mass-weighted Cartesian

coordinate as follows, where iD 7, 8, : : : , 3N:

(a) QH STeM  
	
M 1=2 ˝ I


�1
H STeM

	
M 1=2 ˝ I


�1I
(b) hfi ; Qmi i  i th eigenvalue and eigenvector of QH STeMI
(c) mi  

	
M 1=2 ˝ I


�1 Qmi;I
5. Compute the B-factor bSTeM using fi and mi;
6. Compute the correlation between bNMA and bSTeM.

The procedure is repeated for a dataset of 306 proteins.

5.2.4.1 STeM Outperforms ANM in Matching with NMA

Figure 5.3 compares the correlations between computed B-factors: bSTeM, bANM,
or bANMr2, with bNMA. 306 proteins, listed in Table 5.4, are used to compute
these correlations. Denote corr(a,b) by the correlation between two vectors a and
b. Figure 5.3a shows the scatter plot of corr(bNMA,bANM) and corr(bNMA,bSTeM),



120 H. Na et al.

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0
a

co
rr
(N

M
A

,S
T

eM
)

co
rr

(N
M

A
,S

T
eM

)
corr(NMA,ANMr2) corr(NMA,ANM)

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0
b

Fig. 5.3 The scatter plots of the correlation coefficients with NMA by different all-atom
models. (a) the scatter plot of corr(bNMA,bANM) and corr(bNMA,bSTeM), and (b) the scatter plot of
corr(bNMA,bANMr2) and corr(bNMA,bSTeM), where b denotes the mean-square fluctuations computed
by the different models. 306 proteins as listed in Table 5.4 are used for the computation

Table 5.4 List of proteins used in the all-atom STeM study

1BKR 2A28 2R8U 3B0F 3JQU 3NAR 3R87 3TME 4BBD
1C5E 2AAJ 2RK5 3B7H 3JTN 3NBC 3RDM 3TOE 4D8D
1DBF 2BT9 2RKL 3BD1 3K6F 3NGP 3RDO 3TP5 4DCZ
1G2B 2CKK 2VE8 3BRI 3K6T 3NJK 3RDS 3TPX 4DRO
1G2R 2F5K 2VKL 3BRL 3KBL 3NJM 3RE6 3TSI 4DRP
1GK7 2FE5 2VZC 3BZY 3KIK 3NS6 3RGR 3TWE 4E34
1GU1 2FL4 2WJ5 3CCD 3KJL 3NTW 3RHB 3TXQ 4E35
1HG7 2GBJ 2WPU 3CNK 3KNG 3NXA 3RJS 3TXS 4E6I
1I2T 2GBN 2WQ0 3CPO 3KOV 3O48 3RKV 3U1C 4E6S
1IHR 2HIN 2X3D 3CX2 3KXY 3O5Z 3RL8 3U80 4E8O
1J8Q 2HO2 2X48 3D4W 3L1F 3OBL 3RNJ 3UD8 4EDL
1J9E 2I5C 2X5H 3DS4 3L1X 3OJB 3RNV 3UJ3 4EDM
1JCD 2IC6 2X5T 3E2B 3L7H 3OMT 3RQ9 3VA9 4ERR
1JO0 2IGD 2XDH 3E56 3LKY 3OV4 3RSW 3VBG 4ES3
1MFG 2IZX 2XEM 3FG7 3LLB 3P38 3RY2 3VEJ 4EWI
1MG4 2J5Y 2XF6 3FX7 3LLO 3P6J 3RZW 3VGN 4EZA
1MK5 2JDC 2XF7 3FZW 3LNQ 3P7J 3S02 3VI6 4F26
1MM9 2JDD 2XG3 3G21 3LNW 3PA7 3SEI 3VMX 4F55
1N9M 2JKU 2XRH 3G9R 3LRD 3PE9 3SFM 3VMY 4F8A
1NWW 2LIS 2XUS 3GZ2 3LRG 3PO8 3SGP 3ZR8 4FQN
1OOT 2O31 2XW6 3H00 3M0R 3PYJ 3SGR 3ZSK 4FYH

(continued)
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Table 5.4 (continued)

1R29 2O37 2XX6 3HA4 3M0U 3Q47 3SHU 3ZSL 4GCN
1R6J 2O9V 2Y2T 3HFO 3M8J 3Q9Q 3SK4 3ZW2 4GCO
1T6F 2OEI 2Y3E 3HGM 3M9H 3QF3 3SK6 3ZZL 4GMQ
1TG0 2ON8 2Y3F 3HSH 3M9J 3QGL 3SK8 3ZZQ 4GS3
1U07 2ONQ 2Y4X 3HTU 3MAB 3QMQ 3SQF 4A1H 4GSW
1URR 2OVG 2Y9F 3I4O 3MBT 3QMX 3SSQ 4A6S 4HBX
1W53 2PMR 2Y9G 3ID1 3MCB 3QWG 3SSU 4A75 4HE6
1WM3 2PWO 2Y9R 3ID2 3MCE 3QWS 3SWY 4A9F 4HK2
1WYX 2PZV 2YEL 3ID3 3MHE 3R27 3T6F 4ABM 4HTH
1Y0M 2QCB 2YH5 3ID4 3MP9 3R3M 3T6L 4AEQ 4HTI
1YO3 2QCP 2YIZ 3IG9 3MSH 3R45 3T8N 4AGH 4HTJ
1Z96 2QJL 2ZWM 3IGE 3N27 3R69 3T8U 4B27 4HX8
2A26 2R6Q 3AXC 3IPT 3N4W 3R85 3TDM 4B6X 4IOG

while (b) the scatter plot of corr(bNMA,bANMr2) and corr(bNMA,bSTeM), respectively.
The average correlation over all proteins is 0.44 for corr(bNMA,bANM), 0.71 for
corr(bNMA,bANMr2), and 0.89 for corr(bNMA,bSTeM). STeM clearly outperforms both
ANMr2 and ANM in matching with NMA, having a high average correlation
in mean-square fluctuations with those of NMA. The results thus underscore the
importance of including multi-body interactions for a finer portrait of protein
fluctuation dynamics.

5.3 Conclusions

Protein mean-square fluctuations and conformation changes are two closely related
aspects of protein dynamics. However, in the past, two separate groups of models
were needed to best explain protein mean-square fluctuations or conformation
changes. Specifically, the best models for predicting mean-square fluctuations
cannot predict conformation changes, and the models that can predict conformation
changes do not have the best performance in predicting mean-square fluctuations.
There is thus an obvious gap between the models that work well in predicting one
aspect of the dynamics and those in another.

Since protein mean-square fluctuations and conformation changes are two
closely related dynamic phenomena and share a similar physical origin, we reasoned
that models based on a physically more accurate potential should be able to bridge
the gap and predict both aspects of the protein dynamics well. Indeed, by using a
Gō-like potential, we have successfully developed a spring tensor model (STeM)
that is able to singly predict well both mean-square fluctuations and conformation
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changes. Specifically, STeM performs equally well in B-factor predictions as GNM
and has the ability to predict the directions of fluctuations as ANM.

The new STeM model does come with a cost. As is seen, the derivation process
of the Hessian matrix in STeM is much more complex than models using only two-
body Hookean potentials, such as those used in ANM. However, the introduced
complexity in the potential is necessary in resolving the aforementioned gap that is
mainly due to over-simplified potentials and in providing a single, unified model for
protein dynamics. Moreover, the derivation process, though more complex, needs to
be done only once.

Examining the different interaction terms in the GNo potential and their con-
tributions to the agreement with experimental B-factors provides further benefits.
Along the way, we have discovered a physical explanation for why the distance-
dependent, inverse distance square (i.e., 1

r2
) spring constants perform better than

the uniform ones. The van der Waals interaction term in the potential naturally
renders inverse distance square spring constants! By including the bond bending
and torsional interactions and their contributions to the improvement in B-factor
predictions, the STeM model confirms the importance of 3-body and 4-body poten-
tials. The importance of multi-body potentials is made even more evident when their
contribution to the interaction spring tensor is examined – the multi-body potentials
are shown to be necessary in providing proper constraints on residue fluctuations,
even transversely. In [28] we noted that the 3-body and 4-body potentials introduced
through bond bending and torsional interactions in the coarse-grained STeM model
only scratched the surface of the full extensity of the multi-body potentials. Indeed,
results from all-atom STeM where the multi-body interactions are most accurately
represented demonstrate that all-atom STeM has reached an even higher correlation
with NMA in predicting mean-square fluctuations, yet without the need for energy
minimization.

Finally, since STeM takes into account bond bending and torsional interactions,
it is expected that it should further distinguish itself in studying protein dynamics
where a correct modeling of bond bending or torsional rotations is critical, such as
in predicting S2 order parameters of NMR structures.

5.4 Methods

In this section we present the derivations of the Hessian matrix for a coarse-
grained model from a Gō-like potential [23]. The derivations are mostly the same
as what appeared in [28]. In addition, we show how the core idea of STeM can be
extended to derive the STeM Hessian matrix for an all-atom model using an all-atom
potential.



5 Generalized Spring Tensor Models for Protein Fluctuation Dynamics. . . 123

5.4.1 The Gō-Like Potential

The Gō-like potential in [23] takes the non-native and native (equilibrium) con-
formations as input and it can be divided into four terms. The first term of this
Gō-like potential (defined as V1 for later use) preserves the chain connectivity. The
second (V2) and third terms (V3) define the bond angle and torsional interactions
respectively and the last term (V4) is the nonlocal interactions. The Gō-like potential
has the following expression:

V .X;X0/ D
X

bonds

V1 .r; r0/C
X

angle

V2 .	; 	0/C
X

dihedral

V3 .�; �0/C
X
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�
rij; r0;ij

�
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X
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X

dihedral

n
K
.1/
� Œ1 � cos .� � �0/�CK.3/

� Œ1 � cos 3 .� � �0/�
o

C
X

i<j�3
"

"
5

�
r0;ij

rij

�12
� 6

�
r0;ij

rij

�10#
(5.11)

In Eq. (5.11), r and r0 represent respectively the instantaneous and equilibrium
lengths of the virtual bonds between the C˛ atoms of consecutive residues. Similarly,
the 	 (	0) and � (�0) are respectively the instantaneous (equilibrium) virtual bond
angles formed by three consecutive residues and the instantaneous (equilibrium)
virtual dihedral angles formed by four consecutive residues. The rij and r0,ij

represent respectively the instantaneous and equilibrium distances between two non-
consecutive residues i and j.

The Gō-like potential in Eq. (5.11) includes several force parameters
(Kr, K	 , K.1/

¥ , K.3/
¥ and ") and the values of these parameters are taken directly from

[23] without any tuning. The values of these parameters are: KrD 100", K	 D 20",
K.1/
¥ D ", K.3/

¥ D 0.5" and "D 0.36.

5.4.2 Anisotropic Fluctuations from the Second Derivative
of the Gō-Like Potential

Similar to ANM, STeM has a 3N 
 3N Hessian matrix that can be decomposed
into N 
N super-elements. Each super-element in STeM, Hi,j, is a summation of
four 3
 3 matrices. The first 3
 3 matrix is the contribution from bond stretching.
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The second and third 3
 3 matrices are the contributions from bond bending and
torsional rotations respectively. The fourth 3
 3 matrix is the contribution from
nonlocal contacts.
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The Hessian matrix is the second derivative of the overall potential (Eq. (5.11)). Let
us first consider the first term of the Gō-like potential and let (Xi, Yi, Zi) and (Xj, Yj,
Zj) be the Cartesian coordinates of two consecutive residues i and j.

V1 .r; r0/ D Kr.r � r0/2

D Kr

�h�
Xj �Xi

�2 C �Yj � Yi
�2 C �Zj �Zi

�2i1=2 � r0
� 2 (5.13)

The first and second partial derivatives of V1 with respect to the X-direction of
residue i are

@V1

@Xi
D �2Kr

�
Xj �Xi

� �
1 � r0=r� (5.14)

@2V1

@X2
i

D 2Kr

	
1C r0�Xj �Xi

�2
=r3 � r0=r



(5.15)

We will get similar results for the Y – and Z-directions of residue i. Since we focus
only on the equilibrium fluctuations, we can have rŠ r0 at equilibrium and the
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first and second partial derivatives of V1 can be further simplified to the following
expressions.

@V1

@Xi
D 0 (5.16)

@2V1

@X2
i

D 2Kr

�
Xj �Xi

�2
=r2 (5.17)

In a similar way, the second cross-derivatives have the following form:

@2V1

@Xi@Yj
D �2Kr

�
Xj �Xi

� �
Yj � Yi

�
=r2 (5.18)

Equations (5.17) and (5.18) give the elements of the first 3
 3 matrix of the super
element Hij in Eq. (5.6). For the diagonal super elements Hii, Eqs. (5.17) and (5.18)
are substituted by the following:
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Now let us consider the second term of the potential in Eq. (5.11) and let
(Xi,Yi,Zi), (Xj,Yj,Zj) and (Xk,Yk,Zk) be the Cartesian coordinates of three consecutive
residues i, j and k. Suppose 	 is the virtual bond angle formed by these three
consecutive residues. Since the second term of the potential is V2DK	 (	 � 	0)2,
the first and second partial derivatives of V2 are
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@Xi
(5.21)
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Since 	 equals 	0 at equilibrium, @
2V2
@X2i

can be further simplified as

@2V2

@X2
i

D 2K	

�
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@Xi

�2
(5.23)
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Likewise, @2V2
@Xi @Xj

becomes
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@Xj

�
(5.24)

Let pD (Xi�Xj, Yi�Yj, Zi �Zj) and qD (Xk �Xj, Yk �Yj, Zk �Zj) and define G as
the following.
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jpj jqj (5.25)
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The partial derivatives of 	 are
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The derivative of G is
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We can also get @G
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and @G
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.
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Combined Eqs. (5.23), (5.27) and (5.30), we can get the following formula.
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Similarly, Combined Eqs. (5.24), (5.27), (5.28), (5.30), and (5.31), the second cross-
derivative @2V2

@XiXj
becomes
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Following a similar approach, we can get @2V2
@Xj Xk

and @2V2
@XkXi

and these second
cross-derivatives form the elements of the second 3
 3 matrix of the super element
Hij in Eq. (5.6).

Due to the complexity of the derivation process of the Hessian matrix for the
third (dihedral angle) term of the potential, we omit the derivation process here. The
complete derivation can be found in [28].

Finally, let’s consider the final (non-local contact) term.
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A Taylor expansion will give us the following form.

V4 D �"C 120"
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�2
(5.36)

Equation (5.36) has the same harmonic form as the first term but with a different
force constant, so the derivation process is the same as the first term. Therefore, we
give only the derivation result here.
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After combining the Hessian matrices from all four terms, we can calculate the
pseudo inverse of the final Hessian matrix H. The mean square displacement h�r2i i
and inter residue correlation h�ri ��rji can be calculated by summing the elements
over the X, Y and Z directions.
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5.4.3 Extending STeM to an All-Atom Model

STeM [28] was originally based on the Gō potential [29, 30] and was applied to
coarse-grained systems. Here we show how STeM can be extended to all-atom
models. Consequently, the force field parameters used in STeM for the interactions
among the atoms are adopted from an all-atom force field, for example, the
Charmm22 force field.

All-atom STeM is different from NMA. Though all-atom STeM share some
similarity with NMA, such as both are all-atom models and can be applied to an
equilibrated structure to compute normal modes, STeM is different from NMA in
the sense that it is fully spring-based models and does not consider the effect of
inter-atomic forces. Indeed, as in Gō model, STeM assumes the input structure is at
equilibrium, and in addition, the inter-atomic forces are all zero. NMA, however,
does not make the second assumption. NMA has been often applied to locally
energetically-minimized structures, where the systems are at equilibrium, but the
inter-atomic forces are clearly not zero. Thus, the difference between NMA and
STeM mostly represents the effect of inter-atomic forces on a system.

All-atom STeM is also different from all-atom ANM (anisotropic network model
[4]). In ANM, atoms interact through two-body Hookean springs only. In STeM,
atoms interact via generalized spring tensors (thus the name STeM – spring tensor
model) and include three-body and four-body interactions. STeM and ANM do
share some similarity. Both models are purely spring-based models and do not take
into account the effect of inter-atomic forces when studying protein fluctuations and
conformation changes. STeM is especially similar to a particular variant of ANM,
the ANMr2, or ANM using 1

r2
as spring constants, as was thoroughly investigated

in [10]. This is because, the effect of non-bonded terms in STeM, especially the van
der Waal interactions, is similar to 1

r2
springs [28].

In the following, we will show how STeM is a close approximation of NMA, and
how ANM is a further approximation of STeM.

5.4.3.1 The Close Relationship Between NMA to All-Atom STeM

The close relationship between STeM and NMA is illuminated in the following
derivation of STeM Hessian matrix.
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First, let us consider the three-body interactions, specifically the bond angle
interactions. Let 	 D∠ ijk be the instantaneous angle formed by three sequential
atoms i, j, and k. The bond angle potential of atoms i, j, and k is defined as V	 D
1
2
k	 .	 � 	0/2, where k	 is the bond angle spring constant, 	0 is the equilibrium

angle. The block Hessian matrix H	 for the angle interaction is a 9
 9 second
derivative matrix of V	 with respect to x, y and z coordinates of atoms i, j, and
k. Write out one component @V	

@Xi @Yk
of H	 as follows:

@2V	

@Xi@Yk
D @

@Xi

�
@V	

@	

@	

@Yk

�

D @2V	

@	2
@	

@Xi

@	

@Yk
C @V	

@	

@2	

@Xi@Yk

D k	 � @	
@Xi

@	

@Yk
C f	 � @2	

@Xi@Yk
(5.40)

where f	 D @V	
@	

is the bending force (which actually is a torque). Notice that Eq.
(5.40) is a combination of the physical terms (k	 and f	 ) and geometric terms (the
rest of the terms), which represent the projection of physical interactions into a
particular coordinate system. In a similar fashion, the rest of the elements of the
block hessian matrix H	 can be written out using k	 and f	 . Finally, the block
Hessian matrix H	 can be rewritten as a summation of two terms:

H 	 D H NMA
	 D k	 �H 	 jK	 C f	 �H 	 jf	 (5.41)

where H
	

ˇ̌
k	

and H
	

ˇ̌
f	

are 9
 9 matrice that are fully determined by protein geom-

etry and atom coordinates, where k	 is a force field parameter and f	 D k	 (	 � 	0)
is the torque acting on the bond angle. In STeM, the bending torque f	 is assumed
to be 0, i.e., f	! 0. This simplifies the H	 in Eq. (5.41) and it becomes:

H STeM
	 D k	 �H

	

ˇ̌
k	
: (5.42)

Now for the four-body interactions. Let H� be the 12
 12 block Hessian matrix

for the dihedral interaction among four atoms i, j, k, and l. Let k� D @2V
@�2

and f� D
@V
@�

be the dihedral spring constant and bending force (torque), respectively. Similar
to Eq. (5.41), the Hessian matrix H� can be written as a function of k� and f� :

H � D H NMA
� D k� �H

�

ˇ̌
K�
C f� �H

�

ˇ̌
f�
: (5.43)

Since V(�)DK�(1� cos(n(� ��0))) in most force fields, where K� and �0 are

force field parameters and n is the multiplicity, k� D @2V
@�2
D n2K� cos .n .� � �0//.

In STeM, the torque f� is assumed to be zero. In addition, STeM assumes that the
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input structure has the equilibrium values for all the dihedral angles, i.e., �D�0.
Therefore,

H STeM
� D k� �H

�

ˇ̌
K�
D n2K� �H

�

ˇ̌
K�
: (5.44)

Improper is a special type of dihedral interactions. Improper potential takes the
form of V( )DK ( � 0)2, where K and  0 are force field parameters. To
simplify notations for improper interaction, we define H
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in the same way as

H
�

ˇ̌
H�

, and its spring constant k D @2V . /
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D 2K . Therefore,
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Likewise, the Hessian matrix Hl for two-body interaction between a pair of atoms
i and j can be determined: H l D kl �H

l

ˇ̌
kl
C fl �H

l

ˇ̌
fl

. In STeM, the force term

is again assumed to be zero. As for the first term, there are three types of two-body
interactions in an all-atom potential, i.e., bond stretching, van der Waals interactions,
and electrostatic interactions, and thus different kl. For the bond stretching potential,
or Vbond, which is usually expressed as VbondDKbond(r� r0)2, we have

kbond D @2Vbond

@r2
D 2Kbond: (5.46)

For van der Waal term, whose potential is VvdW D �
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, where � and

r0 are force field constants. We have
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Lastly, for the electrostatic term, since Velec D 332qi �qj
rD

, where qi is the partial charge
of atom i, and D is the dielectric constant and is set to be 80, kl is thus:

kelec D @2Velec

@r2
D 2 � 332qi � qj

80r3
D 8:3qi � qj

r3
: (5.48)

Finally, the spring constant kl for two-body interaction is

kl D kbond C kvdW C kelec: (5.49)

This spring constant may become negative. In that case, we set kl to be zero to avoid
producing negative eigenvalues from the STeM Hessian matrix.

Finally, let N be the number of atoms, the 3N 
 3N full Hessian matrix HNMA for
the whole system can be written as a summation of a spring constant related term
HNMA
spr and a force/torque related term HNMA

frc :
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H NMA D H NMA
spr CH NMA

frc ; (5.50)
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where ‚, ˆ, ‰, and L are the sets of angular, dihedral, improper and pairwise
interactions.

STeM assumes that all forces and torques are zero. Therefore,

H STeM � H NMA
spr : (5.53)

It is approximately equal since STeM additionally assumes that the input structure
has the equilibrium values for the dihedral potentials, while NMA does not.
Specifically, HSTeM is,

H STeM D
X

	2‚
k	H 	 jK	 C

X

�2ˆ
k�H �jK� C

X

 2‰
k H  jK C

X

l2L
klH ljKl (5.54)

Our original work on STeM [28] details how HSTeM can be computed. To
compute HNMA, one may use software packages such as gromacs [31] or tinker
[27].

5.4.3.2 The Relationship Between STeM and ANM, the Role
of Multi-body Interactions

ANM [4] is a widely-used coarse-grained model for proteins. A particular variant
of ANM, ANMr2, which uses 1

r2
as spring constants, was thoroughly investigated

in [10] and was shown to have better performance than the regular ANM.
ANM, particularly ANMr2, is closely related to STeM in that the former is a

simplification of the latter [28]. STeM is a close approximation of the NMA, and
ANM/ANMr2 is a further approximation of STeM. STeM ignores the contributions
of inter-atomic forces that are considered in NMA (Eq. (5.50)), while ANMr2/ANM
takes into account only the two-body interactions and ignores the contributions
of multi-body interactions (bond angle and torsional angle interactions) that are
considered in STeM.
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5.4.4 The Protein Sets Studied

To evaluate the STeM model, we apply it to compute B-factors and to study protein
conformation changes and compare the results with those computed from ANM and
GNM. For B-factors computations, the protein dataset is from [32] and contains 111
proteins. Two proteins, 1CYO and 5PTP, are removed from the dataset because they
no longer exist in the current Protein Data Bank [33]. The proteins in the first dataset
all have a resolution that is better than or equal to 2.0 Å. For conformation change
studies, the dataset is from [20], which contains 20 pairs of protein structures.
Each pair of protein structures has significantly large structure difference from each
other.

5.4.5 Evaluation Techniques

We used the same evaluation techniques as have been applied before [20, 32].
Specifically, the following three numerical measures are used.

5.4.6 The Correlation Between the Experimental
and Calculated B-Factors

The linear correlation coefficient between the experimental and calculated B-factors
is calculated using the following formula.

� D
XN

i
.xi � x/ .yi � y/

�XN

i
.xi � x/2

XN

i
.yi � y/2

�1=2 (5.55)

where xi and yi are respectively the experimental and calculated B-factors of the
C˛ atom of residue i and x and y are the mean values. N is the number of
residues.

5.4.7 The Overlap Between the Experimental Observed
Conformation Changes and the Calculated Modes

The overlap measures the directional similarity between a conformation change and
a calculated mode. The formula for calculating the overlap is
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where ei is the relative displacement of residue i in a selected mode e and ri is the
conformation displacement of residue i.

5.4.8 The Correlation Between the Experimental Observed
Conformation Changes and the Calculated Modes

The correlation measures the magnitude similarity between a conformation change
and a calculated mode. The formula used for calculating the correlation is the same
as Eq. (5.55), with different meaning for xi and yi.

� D
XN

i
.xi � x/ .yi � y/

�XN

i
.xi � x/2

XN

i
.yi � y/2

�1=2 (5.57)

where xi is the magnitude of the displacement of residue i in the conformation
change and yi is the magnitude of the displacement of residue i in the selected mode.
x and y are the corresponding mean values.
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Chapter 6
The Joys and Perils of Flexible Fitting

Niels Volkmann

Abstract While performing their functions, biological macromolecules often form
large, dynamically changing macromolecular assemblies. Only a relatively small
number of such assemblies have been accessible to the atomic-resolution techniques
X-ray crystallography and NMR. Electron microscopy in conjunction with image
reconstruction has become the preferred alternative for revealing the structures
of such macromolecular complexes. However, for most assemblies the achievable
resolution is too low to allow accurate atomic modeling directly from the data.
Yet, useful models often can be obtained by fitting atomic models of individual
components into a low-resolution reconstruction of the entire assembly. Several
algorithms for achieving optimal fits in this context were developed recently,
many allowing considerable degrees of flexibility to account for binding-induced
conformational changes of the assembly components. This chapter describes the
advantages and potential pitfalls of these methods and puts them into perspective
with alternative approaches such as iterative modular fitting of rigid-body domains.

Keywords Electron microscopy • Fitting • Validation • Statistical methods •
Modeling

6.1 Introduction

Cooperative interaction among molecules in large assemblies are fundamental for
dynamic processes in living cells. A detailed understanding of how these assem-
blies work requires structural information at the atomic level. Nuclear magnetic
resonance (NMR) spectroscopy and X-ray crystallography are well-established
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approaches for obtaining atomic structures of individual molecules and domains.
However, atomic structures of large macromolecular assemblies remain more
difficult to obtain with these methods. These assemblies can be too large for NMR
and often exhibit a large degree of dynamic behavior that hampers crystallization.

Electron microscopy has been a powerful tool for the investigation of biological
structures for several decades now. However, only recently steps towards achieving
its full potential have begun to come to fruition. Technical advances in electron
microscopy equipment, in computational image reconstruction methods, and in
methods of specimen preparation have all been essential components in enabling
the extraordinary progress in the last few years. Resolutions of 0.5 nm or better
can now be achieved not only from two-dimensional crystals [23] or helically
symmetrical objects [86], but also from icosahedral virus particles [28] and even
from smaller, less symmetric particles [15, 42]. The recent introduction of direct
electron detection devices promises to further improve the overall resolution and
quality attainable by electron microscopy [5, 9, 27, 44]. Electron tomography,
the most widely applicable method for obtaining three-dimensional information
by electron microscopy, can now be combined efficiently with localization and
dynamics data from light microscopy [29, 52] and potentially allows investigation
of entire mammalian cells at molecular resolution [48], paving the way for structure-
based systems biology [78].

Since the potential of electron microscopy has been realized, more and more
methods are emerging that target incorporation of atomic-level information into
reconstructions derived by electron microscopy. Many of these approaches focus
on finding new and improved ways to ‘mold’ the atomic structures into the shape
of the electron microscopy reconstructions. The rationale is that binding can lead
to significant conformational changes and flexibility has to be introduced into the
fitting process to allow for these changes. While this development has lead to several
interesting and promising approaches, there are no methods available yet that allow
evaluation of the model quality and accuracy. In the remainder of the chapter, we
will introduce the general principles behind the various fitting paradigms that are
available and compare their relative merits and pitfalls.

6.2 Methods for Fitting High-Resolution Models into
Electron Microscopy Densities

Sub-nanometer resolution reconstructions have become more and more common
recently, especially for assemblies that are symmetric. However, the most generally
achievable resolution for large dynamic assemblies is in the 1–3 nm resolution
range. In this range it is possible to directly detect and map individual subunits
to understand the general architecture of the assemblies [75]. In addition, this inter-
mediate resolution already gives a solid basis for fitting high-resolution structures
of smaller entities into the densities. Generally, if the resolution is higher, the
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accuracy of the fitting results can be expected to improve. However, there is also
a dependency on the shape of the structural element to be fitted. For example, a
barrel-shaped structure will exhibit a high degree of ambiguity in the fit at relatively
high resolution while a distinct, asymmetrically shaped structure can be fit without
ambiguity at rather low resolution.

The models resulting from fitting of high-resolution components into densities
of larger, lower-resolution assemblies are often referred to as ‘pseudo-atomic’ to
emphasize the fact that the accuracy of the model is of limited resolution. However,
these models are built out of actual atoms and the term ‘pseudo atom’ is often used
to denote atom-like representations of entire residues or other groups of atoms in
nuclear magnetic resonance calculations [83], direct phasing approaches [19, 43],
and coarse-grained molecular modeling [84]. To avoid confusion, we will use the
term ‘near-atomic resolution model’ instead.

6.2.1 Fitting Paradigms

Fitting methods for combining the information from atomic models with recon-
structions from electron microscopy were used as soon as intermediate-resolution
electron microscopy densities became available. Since then the field has evolved
significantly and a fair number of different methods for fitting are now available.
Because of the increased availability in recent years of sub-nanometer resolution
reconstructions where secondary structural elements are often visible as rods (’-
helices) and sheets (“-sheets), most efforts in the field have been directed towards
the development of flexible fitting methods that allow flexibility of some sort in
the high-resolution structures in order to accommodate conformational changes that
occur upon the interaction of assembly components.

6.2.1.1 Manual Fitting

The first combinations of high-resolution structures with electron microscopy
reconstructions were achieved by ‘manual fitting’. In this method, the fit of the
model is judged by eye and corrected manually using a molecular viewer program
such as, initially, O [37] or, at a later stage, Chimera [49] until the fit ‘looks good’.
Sometimes, this subjective fit is refined locally using, for example, the real-time
fitting routines implemented in Chimera. The approach initially gained popularity
in the early 1990s and was the prime choice for combining such data for that decade
until more sophisticated and more global algorithms were introduced [76, 82]. If the
components of the assembly under study are large molecules with distinctive shapes
at the resolution of the reconstruction, manual fitting can often be performed with
relatively little ambiguity (see for example [51, 64]). However, divergent models
of the same complex fitted manually by different investigator teams have also been
reported [35, 39].
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Surprisingly, manual fitting is still a mainstay in the electron microscopy field
despite its obvious shortcomings including user bias and potential for inaccuracies.
The argument often invoked for using manual fitting instead of more objective
computational procedures involves the perceived complexity of running automated
fitting programs [4]. While some of the computational approaches certainly require
a rather involved work flow, others are much simpler to use. For example the fitting
program CoAn [77] can be run by simply telling the program which density map
and which coordinate file to use and – depending on the size of the density map –
often provides the final results in shorter time than required to load and orient the
model in a molecular viewer.

6.2.1.2 Rigid-Body Fitting

At a later stage, various flavors of automated, global rigid-body searches using
density-correlation measures as fitting criteria were developed [11, 54, 55, 76].
These flavors vary in the exact mathematical form of the density correlation,
the use of various preprocessing steps including masking and filtering, and in
implementation details. Masking operations using the calculated envelope [54] or
using the atomic model directly [55] both enhance high-resolution features and
suppress low-resolution information, making it somewhat equivalent to high-pass
filtering in Fourier space. The amplification of background noise is a common
side effect of high-pass filtering [60]. Thus, the success of this type of masking
will depend strongly on the noise level in the reconstruction. Convolution with a
Laplacian operator [11] is also known to be very sensitive to, and tends to amplify
noise [60]. While these filters have the potential to boost the signal in the absence
of noise they should be used with care if a significant amount of noise is present in
the reconstruction.

6.2.1.3 Flexible Fitting

The interactions between components or interactions with other co-factors often
result in dramatic conformational changes within the assembly. The need to accom-
modate such changes in combination with the increased availability of subnanome-
ter resolution reconstructions where secondary structural elements are often visible
as rods (’-helices) and sheets (“-sheets), have led to significant efforts directed
towards developing flexible fitting methods that allow the high-resolution structures
to be distorted in some way, subject to different types of constraints, in order to
improve the fit with the density [17, 24, 33, 36, 38, 58, 59, 68–72, 74, 87, 88].

These methods are designed to refine a predefined starting model and sacrifice the
global character of the rigid-body searches. In essence, all available flexible fitting
methods try to mold a starting model into the density by balancing force fields that
optimize the density fit with force fields that ensure proper stereochemistry in one
way or another. Examples include the use of normal modes [33, 69], full fledged
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molecular dynamics [72], and the use of elastic networks [59]. While these types of
methods are capable of significant improvements in the fit, in most cases the number
of parameters to be refined (i.e., the number of coordinates) is much larger than the
number of experimental observables making these methods potentially susceptible
to overfitting and misinterpretation of noisy density features.

6.2.1.4 Iterative Modular Fitting

The first attempt to address conformational changes in the fitted assemblies was
to break up the components into smaller domains or ‘modules’ and to fit these
independently as rigid bodies into the density [76, 80]. This approach has later been
refined to incorporate iterative refinement of domain boundaries and orientation
parameters [79]. As a first step of the method, the target reconstruction is dissected
into density modules using density segmentation approaches such as the watershed
transform [75].

Next, the structures to be fitted need to be divided into domain modules. If high
resolution structures for more than one conformation are available, independently
moving domains and hinges can be defined by comparing the two alternative
conformations [32]. If only one single conformation is available, normal modes
analysis can be used to make this division [34] or the watershed transform can be
applied to a low-resolution density calculated from the high-resolution structure to
be fitted in order to define the module boundaries. One important step is to identify
the correct correspondence between the target density modules and the domain
modules. In practice, the correspondence between volume and radius of gyration
in combination with connectivity considerations is usually sufficient. Each domain
is then fitted into the corresponding density segment using a global rigid-body fitting
protocol.

After this initial round, an iterative refinement procedure is applied where
for each domain in turn a discrepancy map [80] is generated by removing the
contribution of all other fitted domains from the unsegmented target density.
Then, the orientation and position of the remaining domain is refined using this
discrepancy map. Once done for all domains, the discrepancy-mapping-refinement
cycle is repeated until no further changes in orientation and position occurred. The
purpose of this refinement step is two-fold. First, it ensures the removal of bias
from sharp edges and inaccuracies introduced by the initial watershed segmentation.
Second, it removes bias that might be introduced by erroneous modularization of the
high-resolution structure.

A natural extension of the concept is the use of real-space refinement techniques
[13, 14, 25], where the structure is broken up into ever smaller rigid segments that
are then jointly refined into the target density subject to connectivity and energetic
restraints [12]. This methodology can accommodate more subtle conformational
changes than the domain module approach but needs to be applied with caution for
the same reasons as for the flexible fitting approaches.
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Fig. 6.1 Flexible fitting with sparse constraints. The upper left shows the crystal structure of
fibrinogen [7]. The constraint used for modeling was that the two residues indicated by arrows
in the crystal structure are within 0.5 nm under certain conditions. The arrow in the upper right
panel indicates the general direction of the structure deformation. A number of snapshots along
the trajectory are shown with the end result at the lower right corner

6.2.2 Potential Pitfalls

There are several potential systematic errors originating in the electron microscopy
data-collection and reconstruction procedures that can affect the performance of
fitting procedures. These include misestimations of the magnification, incomplete
corrections of the microscope’s contrast transfer function, uneven distribution of
projection images in Euler space, and misestimation of the resolution. Other factors
that can bias fitting results in significant ways include incompleteness of the
structure to be fitted in relation to the target reconstruction and the possible presence
of conformational mixtures during the reconstruction process. Generally, rigid-body
techniques will be less susceptible to generating artifacts in the presence of such
errors simply because the underlying structure is kept intact and only six parameters
per module, three for the center-of-mass position and three for the orientation,
need to be determined. Flexible fitting methods will tend to allow distortions
that accommodate those errors without any straightforward way to detect what is
happening.

Unfortunately, the quality of the model in terms of stereochemistry and other
physical parameters is not a good indicator for its correctness. To exemplify this
issue we run a simulation using the crystal structure of fibrinogen [7] and one
single distance constraint (Fig. 6.1). To arrive at a configuration that satisfies this
constraint, the structure was systematically and iteratively deformed to minimize
the distance between the two residues using the first 150 normal modes. After each
iteration a geometric regularization was performed to improve convergence of the
procedure. A number of snapshots along the trajectory are shown in Fig. 6.1 with the
end result at the lower right corner. The final model does not only fulfill the residue-
distance constraint perfectly, it also has perfectly reasonable geometry and contacts,
which is also true for all intermediate states along the trajectory. However, the final
structure is completely artifactual and is a product of overfitting the single distance
constraint by allowing an excessive amount of degrees of freedom to contribute
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to the deformation. In reality, the constraints are satisfied by interactions between
different fibrinogen molecules stacking end-to-end, forming long fibers [7]. Clearly,
the fact that a fitted structure makes physical sense is insufficient as a criterion for
its correctness.

6.3 Validation

At resolution lower than 0.3 nm the amount of structural information that can
be obtained is limited. Care must be taken that the number of the degrees of
freedom used during the fitting or modeling procedure does not exceed the number
of independent observations for the density maps. Otherwise, overfitting will
inevitably ensue. Even fitting of a single rigid body using only the six rotational
and translational degrees of freedom can lead to ambiguities in the resulting models
at intermediate resolution [77]. Recently developed methods for incorporating data
from other data sources such as proteomics [3], Förster resonance energy transfer
[85], or sparse distance restraints [10] into the fitting process are helping to resolve
some of these ambiguities. There have been several attempts to develop validation
methods for this type of situation.

6.3.1 Crossvalidation

While most fitting approaches generally perform quite well with test data where
the correct answer is known, there is currently no method available that allows
judging fitting quality with experimental data when the answer is unknown. This
is especially critical in regards to overfitting because, if too much flexibility
is introduced into the fitting process, eventually noise will be fitted. In X-ray
crystallography, this problem is solved by using a cross-validated measure of fit in
Fourier space, the ‘free R-factor’ [8]. The free R-factor relies on the fact that Fourier
terms are independent in crystallography. In electron microscopy the Fourier terms
are strongly correlated so the free R-factor is not applicable in a direct analogy
to crystallography. However, it may be possible to remove some of the Fourier-
term correlation in an analogous way to treating non-crystallographic symmetry
in crystallography [20] and to derive a modified crossvalidation measure. One
modification that has been proposed is the use of resolution shells instead of random
sets of Fourier terms as is usually done in X-crystallography [21, 62].

A promising idea in the context of crossvalidation is the use of independent
reconstructions [18, 79]. The general idea is that a set of particle images is split
into two independent sets and reconstructions are built from each set. One of these
reconstructions is used for fitting, model building and refinement, and the other is
used for crossvalidation. A recent study showed that this type of methodology can
be used to select a sensible weighting term between the density and all-atom energy
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contributions using the program Rosetta [17], provided significant data at resolution
higher than 1.2 nm is available [18]. Another recent trend is the use of consensus
between multiple flexible fitting approaches [1, 2]. Here, the idea is that models
derived with different flexible fitting methods for the same reconstruction that are
similar are more likely to be correct than models that are “method dependent”.
Despite the intuitive appeal of this idea, no formal proof exists that this is indeed
the case, especially in the presence of systematic errors where it is likely that all
methods that allow flexibility are affected in similar ways.

6.3.2 Statistical Methods

A radically different approach towards the development of validation tools is the use
of statistical methods to obtain confidence intervals for the orientation parameters
in modular fitting of rigid body domains [77, 79]. In this approach, a global
search is followed by a global statistical analysis of the distribution of the fitting
criterion. The analysis results in the definition of confidence intervals that lead to the
definition solution sets. These sets contain all fits that satisfy the data within the error
margin defined by the errors in the data and the chosen confidence level. Structural
parameters of interest can then be evaluated as properties of these sets. For example,
the uncertainty of each atom position of the fitted structure can be approximated
by calculating the root-mean-square deviation for each atom using all members of
the solution set. Ambiguities in the fitting are clearly reflected in the shape of the
solution set [77]. The size of the solution set can serve as a normalized goodness-
of-fit criterion. The smaller the set, the better the data determines the position of the
fitted atomic structure. An example for the utility of the method is shown in Fig. 6.2
and Table 6.1.

The statistical nature of the approach allows the use of standard statistical tests,
such as Student’s t-test, to evaluate the significance of differences between models
in different functional states and to help model the corresponding conformational
changes in a robust and reliable way. An example is shown in Fig. 6.3. The
methodology also allows estimating the probability that a certain residue is involved
in the interaction between two components (see for example [30, 80]). This
probabilistic ranking of residues in terms of their involvement in binding gives a
better starting point for the design of mutagenesis experiments.

Unfortunately, statistical methods are sometimes applied in a very casual manner
to density fitting procedures so that the conclusions deduced are not always reliable.
A recent example is the comparison of different scoring functions for the quality of
fit [73]. The authors calculate and compare confidence intervals by assuming that all
scoring functions follow Gaussian, normal distributions. However, it is well known
that, for example, the correlation coefficient, one of the scoring functions analyzed,
does not follow a Gaussian distribution at all and needs to be subjected to a variance-
stabilizing variable transformation [22] before reliable confidence intervals can be
calculated. Since no normality tests were performed for the other scoring functions
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Fig. 6.2 Ensemble of statistically equivalent solutions to a fitting problem. A 2.8-nm resolution
map of human rhinovirus complexed with Fab fragments [65] was used. The density corresponding
to the Fab fragment (wire frame in the Figure) was derived by difference mapping with the structure
of the uncomplexed virion [56]. The structure of the unbound Fab fragment [41] was fitted to
the isolated Fab-fragment density using a global rigid-body docking protocol [76] followed by
statistical analysis of the results [79]. All fits that satisfy the data at a confidence level of 0.995 are
represented by a worm model where the thickness and darkness are proportional to the variability
of the positioning of the corresponding structural elements, showing distinct local variations in
precision. The structure of the virion is depicted as a white tube. The crystal structure of exactly
the same construct as investigated by electron microscopy [65] was solved to atomic resolution
a few years later by X-ray crystallography [63] giving a one-to-one correspondence between the
low-resolution density and the corresponding atomic structure. There are several binding-induced
conformational changes in the Fab-fragment, but the uncertainty estimates extracted from the
confidence interval capture the correct structure quite well

and a visual inspection of the distributions does not convey a particularly Gaussian
shape for any of those, the confidence intervals calculated under the normality
assumption can not be considered to be supported by the data in that study.

6.4 Comparison of Flexible and Modular Fitting

Most observed protein conformational changes involve movements of rigid domains
that have their internal structure preserved [26, 31, 40]. Iterative modular fitting of
rigid-body domains should be adequate to accurately model those types of changes.
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Table 6.1 Conformations of
Arp3 in different functional
states of the Arp2/3 complex

Scar NWASP/Nck Cortactin

Intermediate 88.29 ˙ 0.49 88.72 ˙ 0.58 85.55 ˙ 0.69
Branch 87.27 ˙ 0.53 88.10 ˙ 0.60 84.18 ˙ 0.63
Inactive 86.93 ˙ 0.58 86.20 ˙ 0.67 78.78 ˙ 0.56

The table shows correlation values (in %) for alternative con-
formations of Arp3 with the corresponding density module
extracted from electron microscopy reconstructions of Arp2/3
complex bound to three different nucleation promoting factors
(NPFs), Scar, NWASP/Nck and cortactin [85]. The standard
deviations were estimated using random half data sets for the
respective NPF-bound complexes. The ‘inactive’ conformation
was taken from the crystal structure of the inactive complex
[53], the ‘branch’ conformation was extracted from the model
of the entire branch junction [57]. The ‘intermediate’ confor-
mation was derived by iterative modular fitting of the inactive
structure into to the corresponding densities (using subdomains
1–4 as modules). The statistical analysis indicates that – for
each NPF separately – there are significant differences between
the quality of fit for the intermediate conformation and the
other two conformations at a confidence level of 0.995. This
result allows to conclude with high confidence that the data
supports the notion that Arp3 is in an intermediate conforma-
tion between the inactive and the branch conformations when
NPFs are bound to the complex

Fig. 6.3 Fit of alternative conformations of Arp3 to the corresponding density module extracted
from an electron microscopy reconstruction of Arp2/3 complex with bound nucleation promoting
factors (NPFs) [85]. The fitting results and the subsequent statistical analysis (see Table 6.1) clearly
indicate that the data support the notion that Arp3 is in a conformation intermediate between that
in the inactive complex [53] and that in the branch junction [57]

We compared the performance of the iterative modular fitting approach with the
performance of four published flexible fitting methods (Table 6.2). It should be
noted that these structures were previously selected as adequate test cases for
flexible fitting [36, 71, 72, 81].
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Table 6.2 Comparative performance test of flexible and modular fitting strategies

Target Search
Resolution
(nm) Modules Residues

Identity
(%) RMSDlsq RMSDmod RMSDflex

1oaoC 1oaoD 1.5 3 729 100 0.092 0.111 0.201
1lfh 1lfg 1.5 3 691 100 0.094 0.098 0.189
1hwz 1hrd 1.5 2 491 28 0.258 0.298 0.490
1blb 1a45 1.0 2 172 35 0.157 0.203 1.150

The first two columns are the Protein Data Bank identifiers of the target and search structures. The
following columns are the resolution of the target map, the number of domains used as modules,
the number of residues, the sequence identity between target and search structures, the root-mean-
square deviation between ’-carbons of the search and target structures after least-squares fitting
of the modules (RMSDlsq in nm), after iterative modular rigid-body docking of the same modules
(RMSDmod in nm), and after using flexible fitting protocols (RMSDflex in nm). The values for the
last column were taken from [36, 71, 72] (2x)

6.4.1 Alpha Subunit of Acetyl-Coenzyme A Synthase/Carbon
Monoxide Dehydrogenase

The crystal structure of the acetyl-coenzyme A synthase/carbon monoxide dehy-
drogenase assembly [16] revealed two significantly different conformations of the
alpha subunit (PDB identifier 1oao, chains C and D). A comparison of the two
conformations indicates that this change can be approximated by hinged movements
of three rigid domains. Iterative modular fitting was performed using a 1.5-nm
resolution calculated density map from chain C and the atomic structure of chain
D, broken up into these three domains, as modules to be fitted. The fit resulting
from the modular fitting for this test is with root-mean-square deviation (RMSD)
of 0.111 nm very close to the 0.092 nm achievable by least-squares fitting of the
domains ’-carbon atoms to those of the target conformation.

The same fitting problem was tackled as a test case for molecular-dynamics based
flexible fitting [72]. The resulting RMSD at 1.5 nm resolution using this approach is
with 0.201 nm significantly worse than that from modular fitting and, with 0.125 nm
RMSD, is still slightly worse if a target map at 1.0 nm resolution is used. Only if
data at 0.5 nm is available, the flexible fitting approach surpasses iterative modular
rigid-body fitting with an RMSD of 0.075 nm. This also improves upon the least-
squares RMSD, indicating that, at this resolution, non-rigid conformational changes
can be picked up correctly by this flexible fitting approach. It is worth noting that,
in three dimensions, the amount of information increases by a factor of 3.375
if going from 1.5 to 1.0 nm resolution and by a factor of 27 if going from 1.5
to 0.5 nm. In addition, it should be kept in mind that the tests were performed
in the absence of systematic and random errors, which would likely degrade the
accuracy of the flexible fitting more than that of the more robust modular fitting
approach.
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6.4.2 Lactoferrin

The iron-binding protein lactoferrin goes through a large conformational change
when iron binds [47]. Comparison of the conformations suggests three hinged rigid-
body domain movements to explain the change. We Modular fitting at 1.5 nm resolu-
tion using apolactoferrin (PDB identifier 1lfh) as a target and iron-bound lactoferrin
(PDB identifier 1lfg), broken up into three domains, as modules. The RMSD after
iterative modular fitting was with 0.098 nm almost indistinguishable from the
0.094 nm RMSD achievable from least-squares fitting of the ’-carbon atoms.

The same fitting problem was addressed by two flexible docking approaches. One
was based on vector quantization and molecular mechanics force fields [81]. That
study was also performed at 1.5 nm resolution and the best RMSD achieved with this
approach was 0.272 nm, exhibiting local deviations of up to 0.9 nm [77]. The second
approach was based on constraint geometric simulations [36]. That study evaluated
the RMSD at various resolutions, the lowest of which was 14 Å. At this resolution
the best RMSD was 0.189 nm. The best overall RMSD of 0.127 nm was achieved
at 0.33 nm target map resolution. Even at near-atomic resolution, this flexible fitting
approach does not provide any advantage over modular rigid body fitting at 1.5 nm
resolution for this test case.

6.4.3 Glutamate Dehydrogenase

This test involved fitting the structure of the Pyrococcus furiosus glutamate dehy-
drogenase [6], split into two domains as indicated by the comparison of the
conformations, into a 1.5-nm resolution target map calculated from the bovine
homologue [66]. The sequence identity between the two is only 28 % and there
are several inserts present in the bovine form (PDB identifier 1hwz) that are not
present in the Pyrococcus furiosus form (PDB identifier 1hrd). This differences
include an extended, finger-like helix-turn-helix motif of 46 residues. This region
was easily identified by watershed segmentation and was deleted from the target
map after completing the initial step of the modular fitting procedure but before
invoking the iterative refinement. Removal of extra density during refinement is not
strictly necessary but does tend to increase the accuracy of the fitted structure. In this
case, a 0.009 nm improvement in RMSD can be achieved by deleting the density of
the helix-turn-helix motif prior to the iterative refinement. The RMSD of the final
structure is with 0.298 nm again very close to the least-squares based RMSD of
0.258 nm.

The same fitting task was addressed using a hierarchical flexible fitting procedure
involving Monte-Carlo based refinement of successively smaller structure fragments
[71]. That study was performed with target maps calculated at 1.0 nm resolution.
Despite the significant increase in information corresponding to the use of higher
resolution data, the best RMSD achieved with this method was with 0.49 nm
significantly higher than the RMSD achieved by iterative modular fitting.
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6.4.4 Eye Lens Crystallin

This test case also involves fitting of homologous structures, in this case the structure
of “-crystallin [45] was the target and ”-crystallin [46], divided into two domains,
provided the modules for the fitting. The sequence identity between the two is
35 %. This case was difficult in several ways. (i) The structure is fairly small,
the single domain modules are only 	80 residues. This fact implies that less
information than in the other test cases is available for fitting. (ii) Both modules
are highly similar in structure and shape, consisting of relatively symmetrical “-
barrels. As a consequence, the assignment of each domain to its corresponding
segment is not trivial and, after fitting, the barrel alignment might be out of register.
(iii) The conformational change is large. The centers of masses of the barrels
in the extended ”-crystallin (PDB identifier 1blb) are 4.3 nm apart whereas this
distance is only 2.4 nm in the more compact “-crystallin structure (PDB identifier
1a45). This change is primarily achieved by stretching the linker between the two
barrels.

The iterative modular fitting approach with a target map at 1.5 nm resolution,
yielded an alignment of one of the barrels aligned within 0.25 nm RMSD whereas
the second barrel was out of register by one “-strand. It appears that, at this
resolution, this configuration is the true correlation maximum because, even using
only local refinement and the correct least-squares based alignment as a starting
point, the structures would align out of register. This result has far-reaching
consequences for fitting strategies. The hierarchical multi-resolution strategy often
employed in registration of volumes derived by MRI or other clinical imaging
techniques [67], needs to be applied with caution in the case of fitting atomic
structures into low-resolution density maps. This test case shows that there is a
real danger of getting stuck in the wrong local maximum of the score function.
It appears that the safer option is to perform global searches at the highest available
resolution.

In order to obtain the correct registration of the “-strand, data up to a minimum
of 1.0 nm needs to be included for the iterative modular fitting. The RMSD of the
resulting model with the target structure is 0.203 nm and compares quite favorably
with the least-squares based RMSD of 0.157 nm. The crystallin fitting was also
chosen as a test case for the hierarchical approach mentioned in the last paragraph
[71]. However, this method fails to align the “-barrels correctly even at 1.0 nm
resolution.

6.4.5 Summary

In all four test cases, the iterative modular fitting approach yields RMSDs within
0.05 nm of what is achievable by least squares fitting of the ’-carbon coordinates.
While quite remarkable, this is not necessarily a surprising result. For each domain
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or module, only six parameters (three translational and three rotational) need to
be determined. This problem is highly over-determined for most practical cases.
This also makes the method very resilient against random and systematic errors.
The question is not if there are enough bits of independent information in the
data to support the degrees of freedom used for fitting (as one would need to ask
for flexible fitting approaches), the question is whether the level of detail in the
density is fine enough to nail down the six parameters for each module accurately
and uniquely. With the availability of confidence intervals, these questions become
testable hypotheses.

In all tests presented here, flexible fitting protocols appear to significantly
deteriorate the RMSD (Table 6.2), most likely due to overfitting and inadequate
distortions of the fitted structures. Only at resolution better than about 0.5 nm, a 27-
fold increase in information content over 1.5 nm resolution, one of the flexible fitting
methods [72] appears to pick up conformational changes that can not be adequately
modeled as movements of rigid domains and improves upon the results obtained by
modular rigid-body fitting done at 1.5 nm resolution.

6.5 Future Directions

It is clear that rigorous and objective evaluation criteria are still needed to cor-
roborate conclusions drawn from models derived from fitting of high-resolution
structures into lower-resolution densities from electron microscopy or alternative
imaging approaches such as Small Angle X-ray Scattering. Especially in the case of
flexible fitting methods, it is essential to find ways to validate results in order to avoid
over fitting and to increase robustness in the presence of systematic and random
errors. Crossvalidation procedure analogous to those used in X-ray crystallography
and NMR are difficult to implement owing to the strong correlation of Fourier terms
in electron microscopy reconstruction but are actively pursued by several research
groups. The use of statistical methods to evaluate the quality of rigid body fits
either with complete assembly models or using iterative modularization are well
under way. Extension of the concept to provide confidence intervals of fits derived
by flexible fitting methods would be very valuable in the context of validation
as well.

Another, recently proposed, promising direction is the uncoupling of the mod-
eling step from the fitting. Instead of steering the modeling procedure using
low-resolution density constraints, simulations or modeling attempts are performed
independently, without introducing knowledge about the density at the modeling
stage. This ensures that the resulting models and/or trajectories are completely free
of bias from the low-resolution density. A-posteriori comparison with the low-
resolution densities will then give an unbiased idea how well the models [61]
or trajectories [50] match the data, allowing robust statistical evaluation of the
results.
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6.6 Conclusions

Flexible fitting methods that allow distortions of the initial component structures
have become a popular approach for providing near-atomic resolution models of
dynamic assemblies. However, there has been little effort devoted to the devel-
opment of validation methods that allow to test whether these models are free of
overfitting artifacts. This problem tends to be particularly severe if systematic errors
are present in the model or in the density map. Thus, open issues in this area include
estimation of fitting quality, validation of results, estimation of fitting errors, and
detection of ambiguities. As a consequence, extreme care needs to be exercised in
the interpretation of models from flexible fitting methods.

For resolutions lower than 0.5 nm, the alternative method of iterative modular
fitting using rigid-body modules currently appears to be the better choice. Modular
fitting is not only less sensitive to systematic errors, it also is amenable to statistical
analysis, which provides objective criteria for the quality of prospective fits and
allows the derivation of significance levels for differences in conformations as well
as the detection of ambiguities in the fit.
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Chapter 7
Coarse-Grained Models of the Proteins
Backbone Conformational Dynamics

Tap Ha-Duong

Abstract Coarse-grained models are more and more frequently used in the studies
of the proteins structural and dynamic properties, since the reduced number of
degrees of freedom allows to enhance the conformational space exploration. This
chapter attemps to provide an overview of the various coarse-grained models that
were applied to study the functional conformational changes of the polypeptides
main chain around their native state. It will more specifically discuss the methods
used to represent the protein backbone flexibility and to account for the physico-
chemical interactions that stabilize the secondary structure elements.

Keywords Protein coarse-grained models • Molecular dynamics simulation •
Backbone flexibility • Functional conformational changes • Effective physico-
chemical potentials

7.1 Introduction

The biological function of proteins is not only related to their tridimensional
structure, but also to their conformational dynamics, particularly their backbone
motions [26]. Among many examples, the opening and reclosing motion of the two
flaps that protect the active site of the HIV-1 protease, is one of the key steps of
its enzymatic mechanism [33, 73]. The allosteric effects in proteins which regulate
their biological activities, are also well known to involve conformational rearrange-
ments of their backbone [22] and/or alterations of their dynamic properties [53].
Conformational changes of proteins also play an important role in their association
and self-assemblies, such as for the peptide Aˇ associated to the Alzheimer disease,
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which undergoes a structural transition in its aggregation pathway from oligomers
to fibrils [1].

As for the determination of their tridimensional structure, the proteins dynamics
is mostly experimentally probed at the atomic scale by X-ray crystallography and
NMR spectroscopy. Information about proteins fluctuations is provided by X-ray
diffraction through the Debye-Waller or temperature B factors. These latter are
related to the vibrational movements of the proteins atoms around their average
position in the crystal. With the help of molecular mechanics calculations, such as
the Translation/Libration/Screw model [58] or Normal Modes analysis [36], these
experimental data can be interpreted in terms of correlated atomic displacements of
the proteins in a crystal environment. In solution state, the fast and slow proteins
dynamics can be probed by the acquisition and interpretation of NMR dipolar
couplings [68]. Notably, their backbone movements can be characterized by the
measurement of the N–H order parameters S2 which reflect the angular fluctuation
of the N–H bonds and thus the flexibility of the polypeptide chains [32].

Using theoretical approaches, the proteins conformational changes are mostly
examined at the atomic scale by Normal Modes (NM) calculations and Molecular
Dynamics (MD) simulations. NM calculations determine the frequencies and
directions of the proteins collective vibrations around a stable structure. This
technique can be applied to large biomolecules but because of the quadratic approx-
imation of their energy function, it can hardly study anharmonic conformational
transitions [43]. All-atom MD allows to simulate the proteins dynamics in solution
by numerically integrating the Newton laws of movement for each particle [35].
Nevertheless, because proteins are generally solvated with a huge number of
explicit water molecules, this computational approach generally meets difficulties
to study long timescale movements of large proteins, despite the availability of
high performance parallel computing platforms. Actually, when using proteins
models at the atomic level, both NM and MD approaches struggle to provide
relevant information on large biomolecular systems dynamics because of their too
large number of degrees of freedom and their very rough potential energy surface.
Hence the development of novel methodologies to investigate the functional internal
motions of large biomolecular systems is still a very active research field.

In this perspective, Coarse-Grained (CG) models of polymers [50], particularly
proteins, are becoming very popular, since the reduction in the number of particles
smooths their potential energy surface, enhances the phase space exploration
[79], speeds up the computer calculations and allows to gain insight into up
to microsecond timescale biological processes [19, 37]. Among them, simplified
models at the residue scale, which describe each amino-acid with one or few
beads, succeed in combining computational efficiency and realistic description of
structural protein details. Thus, since the pioneer work of Levitt in 1976 [42],
a large number of CG proteins force fields were developed, mainly in order to
tackle the protein folding issue, but also to simulate the conformational dynamics of
large proteins [41, 69]. CG proteins models were also applied to the protein-protein
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recognition problem, since the bead softness can implicitly account for the side-
chain local flexibility and improve the predictions of matching interfaces between
proteins [8].

The internal movements of CG proteins can be efficiently studied using
“structure-based” models which explicitly need the native structure as input. Among
them, the “Elastic Network” models replace all the interactions between all pairs of
beads that are spatially close with quadratic potentials [67]. In a similar spirit but in
order to allow protein unfolding, the Go models distinguish the native local contacts,
which are still modelled by harmonic springs, from the non-local contacts, whose
energy potential is generally a Lennard-Jones dissociative functions [13,74]. Despite
their simplicity, these models can capture the essential features of the functional
large deformations of proteins around their native state [3, 29, 31, 46, 48, 65]. An
extension of these models even introduces effective potentials with two energy
minima, either for local interactions or for the protein global energy, in order to
study conformational transitions between two stable states [12,40,51,64]. However,
the main drawback of the “structure-based” models is the lack of physico-chemical
interactions, such as the hydrophobic ones and the hydrogen bonds, that can be
formed or broken during the dynamic course of the proteins. An alternative to
these models is the “molecular-mechanics-based” CG models which were initially
developed to study the protein folding. These models are now more and more
reliable to simulate their conformational dynamics.

Many excellent review papers already report overviews of the progress and
applications of the proteins CG models in the structural biology field [11, 27,
41, 62, 69, 70]. In this chapter, we aim at reviewing the “molecular-mechanics-
based” CG models of proteins that were applied to study their conformational
dynamics. In particular, we will discuss how the models introduce the polypeptide
main chain flexibility and how they account for the physico-chemical forces that
stabilize the secondary structure elements. Indeed, the reliability of the reduced
proteins models depends on the fine balance between the different terms of
the force fields. As in classical all-atoms models, “molecular-mechanics-based”
CG force fields generally have a nonbonded (or long-range) contribution, which
includes van-der-Waals and electrostatic interactions, and a bonded (or short-
range) one, that determines the local geometry and flexibility of polypeptide chains
[4, 15, 17, 24, 42, 44, 49, 56, 75, 77]. Whereas physical basis can guide the building
of nonbonded potentials between coarse grains [5, 6, 20, 34, 54, 55], the empirical
parameterization of the bonded terms is not straightforward, since their ability to
reproduce proteins secondary structures depends on the details of the nonbonded
interactions, particularly the hydrogen bonds.

This discussion will be organised according to the different proteins coarse-
grained levels and will be divided into three sections: the first one will be focused
on the “high resolution” CG models, the second one on “intermediate resolution”
proteins description, and the last one on the so-called “one bead” models.
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7.2 High Resolution CG Models

This “backbone centric” category includes the CG models that keep a detailed
representation of the polypeptides main chain and a more coarse-grained description
of the side chains. The less simplified models of the protein backbone use four
united atoms to represent its geometry, one for the nitrogen and its hydrogen, another
for the ˛-carbon and its hydrogen, a third one for the carbonyl carbon and a last one
for its oxygen (Fig. 7.1) [15,18,25,30,60,61]. Slightly more coarse-grained models
group together the carbonyl carbon and its oxygen into one particle, reducing the
number of backbone grains to three [63, 75, 76, 79]. In most of these models, the
side chains atoms are grouped together into one single bead, except in the models
by Hoang et al. and Ding et al. which describe the side chains with one to four united
atoms [18, 30].

Using these descriptions, the two backbone torsional degrees of freedoms ˆk D
Ck�1 � Nk � C˛

k � Ck and ‰k D Nk � C˛
k � Ck � NkC1 are naturally defined

as those in all-atom models. The profile of their energy functions can be similar to
the atomic force fields one, and their parameters can be extracted from a dataset of
known protein structures [61] or from atomic MD simulations [79]. They can also be
empirically calibrated in order to reproduce the Ramachandran energy landscapes
[25, 63, 75]. The other advantage of these models is that the two backbone united
atoms NH and CO allow to naturally introduce the hydrogen bonds that stabilize the
protein secondary structures. Despite the electrostatic nature of these interactions,
the hydrogen bonds between the backbone grains are generally modelled with
effective attractive potentials, such as square-well functions [18, 76] or Lennard-
Jones like potentials [25, 63, 75].

Most of these “backbone centric” CG models were developed to simulate
the proteins folding process, using Discontinuous MD [18, 76], classical MD
[25, 63, 79], or Langevin dynamics [75] methods. In theory, these models can also
be used to study the conformational dynamics of proteins around their folded native
structure. But curiously, this kind of CG models was seldom used to simulate the

Fig. 7.1 High resolution CG
models. The dashed arrows
indicate the hydrogen bonds
that can be formed between
the backbone beads
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polypeptidic chains dynamics over long trajectories. Among them, the OPEP model
developed by Derreumaux et al. was proved to be able to reproduce the structural
and thermodynamics properties of several medium-sized proteins with stable MD
trajectories over several hundreds nanoseconds [10,16]. OPEP was also successfully
used to sample the transient metastable conformations of the peptide Aˇ [9].
Recently, PaLaCe, another “high resolution” CG models developed by Pasi et al.
was able to generate long stable dynamics trajectories of a large set of 98 proteins
very close to their experimental conformations. The dynamics fluctuations observed
in these CG simulations also well reproduced the crystallographic B factors profiles
and those from atomistic MD simulations in explicit solvent [52].

7.3 Intermediate CG Models

Many proteins CG models attempt to reduce the representation of the backbone
atoms of each amino-acid to one grain, generally located at the C˛ . In these
representations, the proteins main chain geometry is principally described by the
pseudo-valence 	k D C˛

k�1 � C˛
k � C˛

kC1 and the pseudo-dihedral �k D C˛
k�1 �

C˛
k � C˛

kC1 � C˛
kC2 angles (Fig. 7.2). In most cases, the energy functions for

these degrees of freedom are derived from a statistical analysis of known proteins
structures, using a Boltzmann inversion procedure (Fig. 7.3) [3, 17, 23, 42, 47].
However these bendings and torsions energy functions alone seem insufficient to
stabilize the proteins backbone into their preferential secondary structures, during
MD simulations.

In order to account for the hydrogen bonds that stabilize the ˛-helices and the
ˇ-sheets conformations, several of these models introduced one or two additional
interacting virtual atoms to the polypeptides backbone representation [2, 23, 42,
44, 47]. These “intermediate CG” models do not artificially restrain the protein
backbone in any secondary structure with biasing potentials, but generally model the
hydrogen bonding as physical dipole-dipole interactions (Fig. 7.2). In his pioneer
work, Levitt introduced two effective atoms, one located in the middle of each
C˛k�1�C˛

k bond (N0
k) and the other (O0

k) displaced of 1 Å from N0
k perpendicularly

to the plane C˛k�1�C˛
k �C˛

kC1. All these virtual atoms were assigned a partial charge,

Fig. 7.2 Intermediate CG models. Left: Levitt [42]. Middle: Ha-Duong [23]. Right: Liwo et al.
[44], Majek and Elber [47] or Alemani et al. [2]
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Fig. 7.3 Left: Backbone bending angle probability and energy profile. Right: Backbone torsion
angle probability and energy profile. The “helical” and “extended” legends indicate the two
preferential backbone conformations

respectively qN 0 D 0:74e and qO0 D �0:74e, and interact with each other through
the Coulomb law [42]. A recent variant of the Levitt model, which was developed
by Ha-Duong, locates the two backbone pseudo-atoms in a different manner: The
first bead Bk groups the four atoms N, C˛ , C and O, and is positionned at their
geometric center. It carries a negative charge q D �0:5e. The second one (Hk)
is introduced to account for the dipolar property of the backbone bead: It carries
the opposite charge and the Bk–Hk bond length is such as its product by jqj is
equal to the average peptide dipole. The average orientation of the Bk–Hk bond
relative to the Bk�1–Bk–BkC1 plane is extracted from a statistical analysis of known
structures [23]. Then, like in the Levitt model, all the protein backbone charges
interact with each other through the Coulomb law, mimicking the hydrogen bonding
interactions.

Instead of using two separated charged atoms, one can use a vector to model the
peptide bonds dipolar property (Fig. 7.2). This approach was originally developed
by Liwo et al. in their UNRES force field [44] and more recently adopted by Majek
and Elber in their FREADY model [47]. These authors introduced a dipolar vector
Pk at the peptide center which is assumed to be in the middle of the C˛k�C˛

kC1 bond.
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Then the dipolar vectors interact with each other through a mean-field effective
potential depending on the relative orientation of the two virtual peptide bonds
in interaction. Interestingly, a variant of this vectorial approach was published by
Alemani et al. In their model, the orientation of the dipoles Pk are related to the
pseudo-valence angles C˛k�1 � C˛

k � C˛
kC1 and interact with each other through the

exact dipole-dipole energy function [2].
The presence of a physical and non-biased representation of the hydrogen bonds

in these CG models allows to simulate various aspects of the proteins dynamics,
such as the folding processes, transitions between different conformations, and the
large amplitude conformational fluctuations around stable structures. So, the model
by Alemani et al. is able to generate not only stable MD trajectories of ˛-helices
and ˇ-sheets, but also transitions from helices to helix-coil-helix or ˇ-hairpin
motifs [2]. The CG force field by Ha-Duong can also generate stable trajectories
for various proteins in the neighborhood of their experimental conformations. In
addition, the simulated dynamic conformations are in overall good agreement
with the experimental probes, particularly the NMR measurements of the N–H
parameters S2 which can be directly compared to the Bk–Hk virtual bonds order
parameters [23]. The UNRES model by Liwo et al. and the FREADY one by Majek
and Elber are both able to fold proteins in a satisfactory way [45], as well as to
simulate their conformational dynamics around their native state in an acceptable
agreement with the crystallographic B factors [47]. Recently, the CG model UNRES
was used to simulate by REMD techniques the conformational transitions of Hsp70
chaperones, as a function of their nucleotide-binding states, providing a detailed
description of the action mechanism of these proteins [21].

7.4 One-Bead Models

This category of low resolution models includes those which represent the backbone
atoms with a single coarse grain (and possibly other beads for the side chains). In
these models, the preferential conformations of the proteins main chain are captured
with effective potentials functions for the pseudo-bendings 	k D C˛

k�1�C˛
k �C˛

kC1
and pseudo-torsions �k D C˛

k�1�C˛
k �C˛

kC1�C˛
kC2, which are generally extracted

from statistical analysis of known proteins structures, using a Boltzmann inversion
procedure (Fig. 7.3) [3, 17, 56]. However, as previously mentioned, in the absence
of hydrogen bonding interactions, these models seem to be unable to yield stable
trajectories of CG proteins using MD simulations. For this reason, the study of the
proteins conformational dynamics with these models requires more or less some
bias potentials which maintain their secondary structural elements in their initial
state.

For instance, in the model by Klimov et al., two virtual atoms representing the
carbonyl CO group and the amide NH one, are placed on the C˛k �C˛

kC1 bonds, and
an angular gaussian potential mimick the hydrogen bonds between these two grains.
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However, in contrast to the previous “intermediate CG” models, these empirical
interactions can only occur between pairs of atoms predefined by the authors,
such as between the groups COi and NHiC4 in ˛-helices or between COi and
NH17�i in an anti-parallel ˇ-sheet [38, 39]. In a similar spirit but less restrictive,
the group of Head-Gordon introduced in their one-bead model a potential of mean
force accounting for the backbone hydrogen bonds. However, according to their
propensity to form a secondary structure, each C˛k bead is initially pre-assigned one
hydrogen bond forming capability among three possibilities: Either it interacts with
the C˛kC3 if this latter is similarly assigned (helical type), either it interacts with other
C˛ similarly assigned and within a certain cutoff distance (sheet type), or it cannot
make such interactions [78]. Using Langevin dynamics, the Klimov et al. and Head-
Gordon CG models were applied to provide a description of the thermodynamic
stability of small proteins.

If we are interested in the dynamic properties of proteins around their folded
conformation, it is even possible to introduce more drastic bias potentials in their
CG models. For instance, in the one-bead model by Tozzini et al., the backbone
pseudo-bendings 	k D C˛

k�1 �C˛
k �C˛

kC1 potential has two minima corresponding
to the two preferential conformations observed in the compact helices and extended
ˇ-strands (Fig. 7.3). However, the pseudo-torsions �k D C˛

k�1�C˛
k �C˛

kC1�C˛
kC2

are prevented to undergo conformational transitions by using harmonic potentials.
Because the backbone torsions were restrained, Tozzini et al. were able to generate,
using MD or Langevin simulations, long stable trajectories of the native structure of
the HIV-1 protease. The simulated conformational fluctuations of the protein core
were in good agreement with the experimental B factors of the crystallographic
structure 1HHP. Their simulations reveal in addition several events of opening and
closing of the flaps that control the access to the binding site [71, 73].

In the popular MARTINI model of proteins, the backbone flexibility is also
restrained by harmonic potentials whose parameters depend on the residues helical
or extended conformation. This allows to conserve the proteins secondary structures
along MD simulations and so to study only movements of secondary structure
elements relative to each other [49]. For instance, the model was used to follow
the opening and closing mechanism of several protein channels in their mem-
brane environment, such as voltage-gated potassium or mechanosensitive channels
[57,72]. In a variant of the MARTINI force field, developed in the group of Sansom,
the bias potentials for the backbone pseudo-torsions are replaced with harmonic
distance restraints between backbone beads mimicking the hydrogen bonds in the
secondary structures (Fig. 7.4) [7]. This model was used to study the conformational
dynamics of an R-SNARE peptide inserted in a lipid bilayer. The microsecond-
scale MD simulations reveal long-lived conformational sub-states in agreement with
most experimental data on this system and which give insights into its role for
the membrane fusion mechanism [19]. The Sansom’s model was also applied to
simulate the conformational dynamics of the membrane-bound CYP2C9 enzyme, in
order to study how the lipid bilayer influences the opening and closing of different
tunnels to access its catalytic site [14].
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Fig. 7.4 One-Bead CG
models. The dashed arrows
indicate the bias effective
potentials introduced to
maintain the secondary
structures

7.5 Perspectives

In constrat to the “structure-based” models, the “molecular-mechanics-based” CG
models are quite delicate to be parameterized in the view of correctly simulate the
proteins conformational fluctuations and transitions, because these properties subtly
depend on the balance between the different physico-chemical energy contributions.
The more the model is coarse-grained, the less the effective interactions descrip-
tion is straightforward. Regarding the “one-bead” CG approaches, most of the
applications using these models need some bias potentials to maintain the proteins
secondary structures during the MD simulations.

However, recently, new progress seem to be made by several groups in the
development of physico-chemical one-bead models: In constrast to knowledge-
based potentials derived from experimental structures, new effective potentials for
the pseudo-torsions �k D C˛

k�1 � C˛
k � C˛

kC1 � C˛
kC2 were developed on the basis

of all-atom simulations of peptides and proteins. The group of Voth developed
such a model which was used to successfully simulate the folding of the Trpzip,
Trp-cage and Adenylate Kinase proteins. In addition, their model generated stable
dynamic conformations of these proteins around their native state, and can be used
to monitor the conformational transition between open and close states [28]. Using
a similar procedure to parameterize the bonded potentials, the one-bead protein
model developed in the group of Takada was applied to the disordered N-terminal
domain of p53. Their MD simulations generated an ensemble of conformations that
reproduced NMR residual dipolar coupling and SAXS profiles very accurately [66].
Another “atomistic-MD-based” backbone potentials was also integrated into the
MARTINI model in order to better describe the polypeptides main chain flexibility.
Without constrains to impose secondary structures and without a specific model
of hydrogen bonds, this extension of MARTINI is able to reproduce quite well the
dynamic conformations of Amyloid and Elastin-like peptides calculated by all-atom
trajectories [59].
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It seems that the two common key features of these three recent developments
are (i) that the backbone pseudo-torsions �k D C˛

k�1�C˛
k �C˛

kC1�C˛
kC2 potentials

are specific to the chemical nature of the two residues C˛k and C˛kC1 and (ii) that their
parameterization is based on all-atom MD simulations of proteins in explicit solvent.
These promising results open the route to physics-based one-bead CG models as
robust and effective, if not more, as “structure-based” approaches.
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Chapter 8
Simulating Protein Folding in Different
Environmental Conditions

Dirar Homouz

Abstract Molecular dynamics simulations have become an invaluable tool in
investigating the dynamics of protein folding. However, most computational studies
of protein folding assume dilute aqueous simulation conditions in order to reduce
the complexity of the system under study and enhance the efficiency. Nowadays,
it is evident that environmental conditions encountered in vivo (or even in vitro)
play a major role in regulating the dynamics of protein folding especially when one
considers the highly condensed environment in the cellular cytoplasm. In order to
factor in these conditions, we can utilize the high efficiency of well-designed low
resolution (coarse-grained) simulation models to reduce the complexity of these
added protein-milieu interactions involving different time and length scales. The
goal of this chapter is to describe some recently developed coarse-grained simu-
lation techniques that are specifically designed to go beyond traditional aqueous
solvent conditions. The chapter also gives the reader a flavor of the things that we
can study using such “smart” low resolution models.
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8.1 Introduction

Molecular Dynamics (MD) simulation is a computer computational method that
utilizes the laws of classical statistical physics in order to predict the behavior of
many particle systems. The history of MD is tied to the history of the development
of computer technology. The first real system to be studied using MD simulations
was in 1964 by Rahman [1] who simulated liquid argon at 94.4 K. The system
simulated by Rahman was limited to only 864 particles. Studying bigger systems
with more particles became increasingly more feasible with the continual growth
in computational power and speed. The pioneering work of McCammon et al. [2]
marked the beginning of new era in using MD simulations in the very important
biological problem of protein folding.

Most of the functions performed in a living cell are carried out by different
proteins. In order for these proteins to function properly they have to be in their
functional shape or fold. Proteins are large biomolecules that consist of one or
more chains of amino acids. Thus, understanding the dynamics of how a protein
can go from unfolded sequence of amino acids into its functional three dimensional
fold is one of the fundamental problems in biology. MD simulations became an
invaluable tool for studying protein folding and unfolding dynamics. It is used
in conjunction with several experimental techniques in order to understand and
interpret the experimental results at the atomic level. For more details on the MD
history and techniques in protein folding studies we refer the reader to the following
review articles [3–5].

In recent years, it became very obvious that the folding of proteins is highly
dependent on their environmental conditions. Thus, the native protein folds are
likely to be different from the ones usually determined by experimental techniques
such as x-ray crystallography and NMR as these methods don’t account for the
densely crowded cellular environment. Several experimental studies have recently
started factoring in these crowding effects in their experimental design by adding
synthetic chowders to mimic the macromolecular crowding in the cell [6–14].
In addition to crowding, other cellular conditions can affect protein folding and
stability such as the concentration of different ions. Well-designed computer
simulation schemes are needed in order to better understand the role that all these
environmental factors play in determining protein structure. In order to efficiently
simulate protein interactions in vivo, one has to account for different sizes of
interacting particles and different time scales.

In this chapter we present a multi-scale molecular dynamics scheme that
can be used to simulate protein interactions in different crowding and solvent
conditions. This scheme is based on a low resolution simulation model Side-chain
C˛ Model (SCM) [15] that was previously implemented in studying the protein
folding dynamics in crowded environment. However, this model can’t handle other
environmental factors with small length scales besides the large crowders. Thus,
SCM is integrated into a multi-scale algorithm (MultiSCAAL) [16] that deals with
both large macromolecular crowders and small interfering chemicals. This scheme
enables us to simulate proteins in many cellular as well as experimental conditions.
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The material in this chapter is organized as follows: Sect. 8.2 gives a short
overview of molecular dynamics simulations in the context of protein folding appli-
cations. In Sect. 8.3 we describe SCM and how it is integrated into MultiSCAAL
scheme. In Sect. 8.4 we discuss some of the applications of these various techniques.
Finally, we close this chapter with conclusions.

8.2 Molecular Dynamics and Protein Folding

8.2.1 All-Atom Versus Coarse-Grained

Different Molecular Dynamics simulation schemes are distinguished by the models
they use to represent proteins and their interactions. These models differ in the level
of detail, or resolution, that they reflect. Traditionally, these models are classified
into two classes; All-Atom (AA) and Coarse-Grained (CG) models. AA models,
with their explicit solvent representation, provide a great deal of detail at very
short time scales (picoseconds). However, the inverse relationship between the
resolution and computational cost usually limits the applicability of AA models
when it comes to simulating protein folding trajectories with long timescales
(microseconds). In addition, the computational cost grows exponentially when one
considers environmental interactions with solvent, crowders, and other ions.

On the other hand, CG models with implicit solvents average out all amino acid
atomic sites and replace them with a smaller number of beads, typically one or two.
Thus, with these CG models, the accuracy of atomistic details and the reliability of
energy functions are reduced. However, this is the price that one has to pay in order
to capture the main features of protein folding over reasonable biological times.
CG models are capable of increasing the timescale of molecular simulations due to
the huge reduction in the number of degrees of freedom in the systems simulated
mainly due to replacing all the degrees of freedom of the solvent with a mean field
implicit solvent representation with zero degrees of freedom. Thus, with existing
computer technology, CG simulations seem to be the only viable solution in order
to study protein folding especially when the right environmental conditions are
considered.

8.2.2 Coarse-Grained Models for Protein Folding

The famous experiments of Anfinsen et al. [17] in the early 1960s have instigated
a large interest in the problem of protein folding. These experiments show that
proteins can fold and refold reversibly to the same native state (functional state)
which means that this state is thermodynamically stable and forms a global
minimum. This conclusion raised the question of how can proteins reach this
minimum starting from an unfolded state in a relatively short time (	ms) given the
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large number of possible conformations of any given protein. Levinthal [18] tried to
resolve this paradox by suggesting that proteins follow a specified (encoded) kinetic
“folding pathway” to reach its global minimum.

Several objections were raised against the idea of folding pathways and alter-
native views were proposed [19]. Among these alternative views, the Energy
Landscape Theory was the most acceptable one. According to the Energy Landscape
Theory, proteins don’t follow a single pathway to reach the native state. Rather,
they can follow multiple routes down a biased energy landscape towards the global
minimum [20–22]. In other words, the energy landscape of protein folding process
has a funnel-like shape and the folding is viewed as a flow process of an ensemble
of routes down this funnel. The energy funnel is controlled by both its bias towards
the native state and its roughness. In order for the protein to have fast folding,
the roughness has to be small compared to the bias. This concept gave rise to the
Principle of Minimal Frustration [23, 24] which can be justified by the fact that
folding processes have evolved to make the native state more stable, favor stabilizing
interactions, and make folding processes fast [25].

Coarse-grained computer models of proteins tried to conform to these competing
views of protein folding processes. Early models used simplified geometries as
well as energy functions. Lattice models achieved an early success due to the great
simplification in the simulation geometry [24, 26–28]. In these models, proteins
were modeled as self-avoiding polymer chains of one-bead amino acids where the
beads on the chain are confined to move on a fixed three dimensional cubic lattice.
These simplified models used fictitious energy functions such as HP [28] and Gō
[29] energy functions. The HP model distinguishes between two types of monomers,
H (Hydrophobic) and P (Polar), and assumes an attractive interaction between HH
pairs and none between all other pairs. Gō model on the other hand tries to bias
the energy function towards the native state by assuming attractive interactions for
native contacts and repulsive interactions for none-native contacts. The Gō model
gained more recognition later since it conforms to the Energy Landscape Theory
and the principle of minimal frustration. Several Gō-like energy functions were
developed later to be used with more advanced CG models [30].

The lattice models gave way to off-lattice models as computer power improved.
This development allowed for more realistic representation of protein’s geometry.
Most of the early off-lattice models relied on simplified energy functions and
one-bead amino acid representation [31–33]. These models are typically called
C˛ models since each amino acid is represented by one site located at the C˛
carbon position. These C˛ models started to take shape and give more faith-
ful representation of protein by adopting more sophisticated energy functions
(force fields) that included different type of structural as well as non-bonded
interactions.

The difficulty in designing these dimensionally reduced C˛ models lies in
choosing the proper force field. There were different strategies for choosing the
interaction energies between the 20 different types of beads (20 different amino
acids). The structural energy terms (bond, angle, dihedral) were typically chosen
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such that they produce a thermodynamically stable structure. The non-bonded
interactions could be still borrowed from earlier fictitious energy functions such as
Gō model. However, more improved models tried to base these interaction energies
on measured experimental values of amino acid pair potentials. Examples of such
interaction maps are the Betancourt-Thirumalai (BT) statistical potential [34] and
the Miyazawa-Jernigan (MJ) potential [35].

The C˛ models gave way to more advanced models that incorporate more
structural details of proteins. Cheung et al. [15] introduced one such a model in
which each amino acid is represented by two beads; one at the C˛ position and the
second one at the center of mass of the side chain. This model called Side-chain
C˛ Model (SCM) falls between C˛ and AA models and is capable of accounting
for side-chain packing while keeping the computational cost low. This model was
very successful in addressing protein folding interactions in crowded medium and
confined geometries [6, 7, 36, 37]. With such improvements, the CG models start
to look more like AA models and include more interactions which enable them to
simulate different biological and experimental conditions. More information about
CG models of protein folding can be found in these reviews [38, 39].

8.3 Flexible Low Resolution Simulation Techniques

The success of CG molecular dynamics stems from their ability to simulate protein
folding and refolding events over large time scales. They do so by capturing the
main features of the protein, stripping away complex details, and using implicit
solvent models. In fact the greatest reduction in computation cost and time comes
from replacing the atomic details of water with implicit solvent model. Thus, this
approach works well for studying folding dynamics of isolated proteins or protein-
protein interactions. In addition, the same CG models can be easily extended to
studying protein folding in crowded medium where the dominant crowding agents
are large macromolecules that can be themselves coarse-grained. However, this
approach will be useless if one has to deal with environmental conditions that are
controlled by small particles (	water molecule size) like urea. The reason being
that the simplification and reduction in computational time achieved by removing
water molecules will be undone by including a large number of these additional
small molecules.

Taking these points into consideration, CG models have to be modified and a
multi-scale approach is needed in order to capture both protein and environment
details without sacrificing the computational efficiency. Here we present the details
of the modifications that can be done to a simple two-bead model in order to
develop it into a multi-scale algorithm. This is done by using SCM at the core to
model proteins and large crowders, Langevin Dynamics to represent water solvent
conditions, and adjusting force field parameters for different solvent conditions in
order to account for chemical interference effects. The main elements of the final
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Fig. 8.1 A schematic diagram in a multi-scale algorithm where a protein configuration switches
from all-atomistic (AA) to coarse-grained (CG) representation and vice versa. A side-chain-C˛
model (SCM) is used as a coarse-grained model. The reconstruction of a protein in an AA
representation from CG representation is achieved by SCAAL. The Lennard-Jones (LJ) parameters
for an AA representation follow atomistic force field, while for a CG representation they follow
a statistical potential based on bioinformatics and the potential of mean force from the AA
molecular dynamic simulations via Boltzmann inversion method. The dynamics of an AA protein
is governed by the Newtonian equations of motion. The dynamics of a CG protein is governed by
the Langevin/Brownian equations of motion

multi-scale scheme, MultiSCAAL, are shown in Fig. 8.1 where we can see that SCM
model is used to build the coarse-grained model starting from the corresponding all-
atom representation. The scheme also includes the algorithm, Side-chain C Alpha to
All-atom (SCAAL), which enables us to construct the all-atom representation of a
protein starting from its course grained model. The Lennard-Jones (LJ) parameters
for nonbonded interactions are based on a CG statistical potential. The dynamics
that we use to sample the phase space of the protein is the Langevin Dynamics in
order to account for the water solvent conditions implicitly. The details of these
different elements and the implementation of the MultiSCAAL algorithm are given
in the subsections below.

8.3.1 SCM Model (Representation & Hamiltonian)

A Sidechain-C˛ (SCM) [15] coarse-grained model is used to represent proteins
where each amino acid (except glycine) is modeled by two beads: a C˛ bead and
a side-chain bead located at the center of mass of the side-chain. The potential
energy of a protein, Ep is the sum of three terms; the structural energy (EStruc), the
nonbonded energy (ENB), and the Hydrogen bond energy (EHB)

Ep D EStruc CENB CEHB (8.1)
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8.3.1.1 Structural Energy

The structural energy, EStruc, consists of the terms that account for all of the topo-
logical constraints of our structure. It is the sum of bond-length potential (Ebond),
bond-angle potential (Eangle), dihedral potential (Edih), and chiral interactions (Echi).

EStruc D Ebond CEangle CEdih CEchi (8.2)

The bond-length potential (Ebond) and the bond-angle potential (Eangle) are
represented by harmonic springs as follows:

Ebond D
X

bonds

kb.r � r0/2 (8.3)

Eangle D
X

angles

k	.	 � 	0/2 (8.4)

Dihedral potential (Edih) for every four consecutive C˛ beads is represented by:

Edih D
C˛�C˛�C˛�C˛X

dihedrals

k
.n/
� Œ1 � cos .n .� � �0//� (8.5)

where � is the dihedral angle, r is the distance between two adjacent beads and
	 is the angle of three consecutive beads. The equilibrium values of �0, 	0, and
r0 are calculated based on the native all-atom structure of a protein. The force
constants are given these values kbD 100©, k	 D 20©, k.1/¥ D ©, and k.3/¥ D 0.5©, where
©D 0.6 kcal/mol.

The chiral energy (Echi) accounts for an L-isoform preference of side chains. This
energy is given by:

Echi D
X

chiral

kc.c � c0/2 (8.6)

where c is the triple scalar product defined as c D �!r C i˛C iSC
�
	�!r C i˛C i�1˛


 �!r
C i˛C

iC1
˛



,

c0 is determined based on the native structure of the protein and kcD 20©.
Ci
’ and Ci

SC are the C˛ bead and side-chain bead of the ith residue of the protein,
respectively.

8.3.1.2 Nonbonded Energy

Nonbonded interaction energy Eij
NB between a pair of i and j side-chain beads at a

distance r has an LJ potential of the form,
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E
ij
NB D "ij

"�
ij

rij

�12
� 2

�
ij

rij

�6#
(8.7)

where  ijD f( iC  j),  i and  j are the Van der Waals (VdW) radii of side-chain
beads, ji�jj> 2, and f is a control scaling factor that is used to prevent clashes
that might destabilize the native state. The values of ©ij are based on the solvent-
mediated interaction between pairs of residues. For water solvent conditions we use
the Betancourt-Thirumalai statistical potential map [34]. For other solvents this map
can be modified according to the recipe give in Sect. 8.3.3.

Repulsive hard-core potential is used to model excluded volume interactions
between C˛–Side-chain nonbonded pairs. This potential is given by this form:

E
ij
NBrep D "

�
ij

rij

�12
(8.8)

8.3.1.3 Hydrogen Bond Energy

For backbone hydrogen bonding interactions, an angular-dependent function is used
to capture directional properties of backbone hydrogen bonds. For a pair of i and j
C˛ beads, the hydrogen bond interaction is given by:

E
ij
HB D A .�/E ij

NB (8.9)

A .�/ D 1
h
1C .1 � cos2�/

	
1 � cos �

cos �a


i2 (8.10)

where Eij
NB has the same form as in Eq. (8.8), except that ©ij for backbone hydrogen

bonding is 0.6 kcal/mol and ¢ ij is the hydrogen bond length, 4.6 Å.
The Lorentzian function A(�) in Eq. (8.10) restricts the structural alignment

of two interacting strands such that local backbone orientational configurations of
parallel ˇ sheets, antiparallel ˇ sheets, or left and right-handed ˛ helices are favored.
The parameter � is the pseudo-dihedral angle between two interacting strands of
the backbone. The function A(�) will have its maximum value of 1 when �D 0 (the
alignment that points to “-strands or ˛-helices) or when �D �a (the pseudo-dihedral
angle of a canonical helical turn, 0.466 rad). For all other pseudo-dihedral angles (�)
the value of A(�) will be diminished (much smaller than 1).

8.3.1.4 SCM with Gō-Like Hamiltonian

The energy terms presented above are used to model proteins with non-specific
nonbonded interactions. However, these terms can be manipulated easily to produce
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a topologically based Gō-like model that provides a minimally frustrated energy
landscape. In such a model, the nonbonded interactions found in the native structure
of the protein retain their sticky interaction represented by LJ potential of the form
give in Eq. (8.7). All other non-native nonbonded pairs will be assigned repulsive
interaction of the form in Eq. (8.8). The same rule can be applied to hydrogen
bonding where native interactions will be represented by Eq. (8.9) while the non-
native ones are represented by repulsive potential.

This kind of flexibility enables to tailor the SCM model to our computational
needs. While the SCM model with non-specific Hamiltonian can explore bigger
regions of the energy landscape than a one with Gō-like Hamiltonian, it is
more expensive computationally. Thus, when we are interested in protein folding
problems where the focus is on transitions out or into the native state we can utilize
the Gō-like based SCM model.

8.3.2 Langevin Dynamics (Implicit Solvent)

To account for the effect of the solvent on the protein dynamics the Langevin
equation of motion [40] is used to describe the dynamics in SCM coarse-grained
molecular simulations. The solvent is treated implicitly in the Langevin equation
through a stochastic term. The Langevin equation of motion for a general coordinate
x is:

m Rx D �@U
@x
� � Px C �; (8.11)

where m is the mass and U is the potential energy of the molecule. The drag
term, �� Px, or the dissipation term, is caused by friction which is compensated
by a random force � representing random collisions with solvent molecules. �
is sampled from a distribution of a white noise (Gaussian noise).

Fast motions of large biomolecules are quickly damped in a viscous solvent such
as water. As a result, they follow random trajectories referred to as the Brownian
motion. The inertia term is dropped in Eq. (8.11) and we get the first order ordinary
differential equation for the Brownian motion given by:

� Px D �@U
@x
C �: (8.12)

8.3.3 Different Solvent Conditions (Modifying LJ Parameters)

The techniques implemented in SCM were designed to simulated protein folding
in aqueous medium. However, we are presented with many situations where it is
important to study protein folding/refolding in different solvent conditions. One
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such a situation arises when one wants to simulate the experimental unfolding of
proteins in different urea concentrations or the experimental folding of a protein in
the presence of small molecules such as salt and alcohol, or small crowders such as
glycerol. Extending SCM to cover these situations presents us with great challenge
since these small molecules have the same length scale as water. These solvent
conditions can be readily handled in AA simulations. Thus, one has to devise a
multi-scale approach that can benefit from AA models of these solvents and feeds
back into GC simulations. This is the approach used here in order to implicitly
account for chemical interference in solvents by adjusting the solvent-mediated
amino acid pair interaction energies. The details of the technique used to adjust
these parameters are given below.

8.3.3.1 The Choice of Parameters ©ij

In order to design a coarse-grained model that can accommodate the chemical
properties of different amino acids we chose our nonbonded LJ interaction param-
eters in Eq. (8.7) based on knowledge-based potentials. These knowledge-based (or
statistical) potentials are matrices (of 210 elements) that give the solvent-mediated
interaction energies between all pairs of amino acids. There are several schemes for
calculating these potentials such as those of Miyazawa and Jernigan [35], Kolinski
and Skolnick [41], or Betancourt-Thirumalai [34]. Our model is based on the
Betancourt-Thirumalai statistical potential [34]. This statistical potential addresses
sequence variations where the reference interaction, ©D 0.6 kcal/mol, is based on
the Thr-Thr pairwise interaction.

8.3.3.2 The Statistical Potential Map in a Different Solvent

All of the available statistical potential maps give the interactions energies between
amino acids in water. Using SCM model to simulate proteins in other solvents such
as urea requires expanding the idea of statistical potential maps to other solvents.
In principle, the statistical potential between two residues should be the same as the
potential of mean force (PMF) between these residues. The effect of the solvent is
implicitly accounted for in the statistical potential. Calculating the potential of mean
force is inherently complex and inefficient. The direct calculation of the residue-
residue interaction from the PMF is therefore not attainable. However, creating the
statistical potential parameter map (SPPM) is a much simpler problem.

In order to get the statistical potential parameter map (SPPM) for a certain
solvent, we compute the PMFs of pairs of amino acids using all-atom simulations
of free residues in that solvent. We circumvent the inherent difficulty of calculating
this PMF by simulating a large number of copies of each pair at once, instead of one
pair. For instance, in order to calculate the parameter ©TT between two Threonine
(Thr) residues we run a simulation of a large number of solvated free Thr residues.
This method helps enhance the sampling and converge the PMF for this pair of
residues. We make two approximations in order to further simplify the calculation
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of the statistical potential map. First, we approximate the PMF between a pair of
amino acids by a two point correlation function of the distance between the two
centers of mass of the side chains. Second, we fit the calculated PMF to a Lennard
Jones (LJ) potential and set the statistical potential parameter to be equal to the
depth of the resulting LJ potential. This calculation is done by using the Boltzmann
inversion method discussed below.

8.3.3.3 Boltzmann Inversion

The CG energy function that accommodates chemical interference can be created
using Boltzmann inversion [42–44] based on data obtained from all-atomistic
molecular dynamics simulations. The pair correlation function between any two
amino acid types i and j at a distance r in type ˛ solvent is g’ij(r). This function is
related to the potential of mean force, Ua

ij(r), between the same pair of amino acids
through Boltzmann inversion at temperature T by the following formula [45]:

U˛
ij .r/ D �kBT ln

�
g˛ij .r/

�o

�
; (8.13)

where �o is the average density of the system (amino acid pairs and the solvent)
and kB is the Boltzmann constant. The average density �o is used to normalize the
pair correlation function at distances greater than the excluded volume radius. The
solvent mediated interactions ©0’ij for every pair of amino acids i and j is equal to
U˛

ij(r*)

"0˛
ij D U˛

ij

�
r�� ; (8.14)

where r� denotes the first highest peak of g’ij(r). Next ©0’ij is shifted by a constant,
Vo.,

"˛ij D "0˛
ij C Vo: (8.15)

where Vo is obtained from a Threonine pair by setting ©0’TT (in water) from the
simulation equal to ©’TT from the statistical potential of the same amino acid pair
[34].

A Lennard-Jones potential (LJ), Va
ij(r), is used to approximate the overall profile

of Ua
ij(r) [46] and it is the energy function for the same type of amino acids in

coarse-grained molecular simulation:

V ˛
ij .r/ D "˛ij

"�
roij

r

�12
� 2

�
roij

r

�6#
: (8.16)

©’ij is the solvent-mediated interaction of an amino acid pair i and j in solvent
type ˛. ro

ij is the bonding distance. Figure 8.2 shows how Boltzmann inversion
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Fig. 8.2 (a) Pair correlation function gaq
ij (r) for Thr-Thr (solid line) and Val-Val pairs (dotted line)

derived from all–atomistic molecular dynamics simulations in aqueous condition. r D r� is at the
maximum gaq

ij (r*). (b) The potential of mean force Uaq
TT (r) of Thr-Thr interaction (in black) is

obtained from all–atomistic molecular simulations under aqueous condition through Boltzmann
inversion (Eq. 8.13) as a function of r, distance between the chosen atoms (i.e. C“ atom for Thr.)
that are in closest proximity to the center of mass of the side chain in threonine. r* denotes the
position of the major peak of the pair correlation function gaqTT(r) in (a) and ©0aq

TT D Uaq
TT (r*). The

Betancourt-Thirumalai statistical potential follows a Lennard-Jones interaction Vaq
TT (r) (Eq. 8.16)

for the same pair of amino acid in coarse-grained molecular simulations (in red). r is the interacting
distance between the coarse-grained side-chain beads of the amino acids (i.e. center of mass of side
chains). ro is the bonding distance ¢TT in Eq. (8.7). ©aq

TT D Vaq
TT (ro) is taken from the Betancourt–

Thirumalai statistical potential. The reference potential from Eq. (8.15) is Vo. (c) Vaq
ij (r) for Thr-Thr

(solid line) and Val-Val pairs (dotted line) in aqueous solvent. ro is the same bonding distance in (b)

is applied in practice to generate LJ parameters for amino acid pairs in water. In
addition, Fig. 8.3 shows the accuracy of this process by comparing the SPPM for all
amino acid pairs in water with the BT map. The end process result of this process
is to generate a new SPPM of the parameters ©’ij. Once this map is generated it
can be then used for any CG simulation with the corresponding solvent. Important
examples of these maps would be the maps of solvent mediated interaction for all
210 amino acid pairs in different concentrations of urea published in [16].
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Fig. 8.3 The correlation
between the aqueous
solvent-mediated interactions
between amino acids i and j,
©0

aq
ij , which are derived from

the molecular dynamics
simulations and the ones from
the Betancourt-Thirumalai
statistical potential ©aq

ij . The
linear correlation coefficient
is 0.79

8.3.4 Crowders and Ions

More modifications were devised in order to account for other environmental
factors such as large molecular crowders, electrostatic interaction, and ions. A short
description of these modifications follows.

8.3.4.1 Macromolecular Crowders

Intracellular crowding can be mimicked experimentally by adding high concen-
trations of inert synthetic or natural macromolecules, termed crowding agents, to
the systems in vitro. Inert large synthetic macromolecules such as Ficoll 70 and
dextran can be readily included in CG simulations because of their large sizes.
The atomic details of these particles will be irrelevant when we investigate their
excluded volume effect on protein folding. Thus, they can be represented as hard
particles with shapes that capture the geometry of each molecule. For instance Ficoll
70 can be modeled as a hard sphere and dextran as a hard dumbbell (two bonded
spheres) of relevant size. In terms of the Hamiltonian, all the interactions that involve
crowders (crowder-crowder, crowder-protein) will be repulsive with the same form
given in Eq. (8.8). These repulsive interactions model the nonspecific steric space-
filling repulsions due to the excluded volume effect of crowding. For other types of
crowders such as the macromolecules in the cellular environment, a polydisperse
CG model of these particles can be employed in order to mimic their different sizes
and shapes.
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8.3.4.2 Electrostatics and Ionic Concentration

In order to improve the accuracy and the performance of the coarse-grained (SCM)
model, we included electrostatic interactions by adding a Debye-Hückel energy
term [47]. This added term is supposed to represent screened Columbic interactions
between charged sites. The charges are obtained using quantum chemistry calcula-
tions of the electronic structures of the all-atomistic representation of all residues in
the protein. However, adding this term means that our Lennard Jones (LJ) potential
parameters have to be adjusted. The original LJ parameters in the coarse-grained
model were obtained from knowledge-based statistical potential which measures the
solvent mediated interaction energies between different amino acid pairs including
electrostatic interactions.

In order to adjust the LJ parameters in the coarse-grained simulation we first
adjust the LJ parameters for every amino acid pair (i,j) as follows:

"0
ij D "ij C e2

4�"

�
qiqj

ij

�
D "ij C ˛

�
qiqj

ij

�
: (8.17)

where qi and qj are the charges of the two amino acids and  ij is the position
of the minimum in the original LJ potential. Then, we can adjust the nonbonded
interactions to have this form:
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The effects of ionic concentration in the solvent will be captured through a
screening factor that changes Eq. (8.18) to this form
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(8.19)

where I is the ionic concentration. The LJ parameters in Eq. (8.19) retain the same
modified values according to Eq. (8.17).

8.3.5 Reconstructing the AA Coordinates (SCAAL)

Several methods of reconstructing reduced representation into all-atomistic struc-
tures have been developed over the last few years [48–51]. These include methods
that can either recover the atomistic details of a protein’s backbone with the
knowledge of C˛ beads [48], or reconstructing a full protein with the knowledge
of its four heavy backbone atoms [49]. Methods that reconstruct all–atomistic
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structures from the information provided by a C˛ bead and the center of mass of the
side chain are also available [50]. However, the main purpose of the methods above
is to reconstruct protein conformations that are very close to the crystal structures
obtained by X-ray or NMR experiments. The use of rotamer libraries, obtained from
PDB structures, in all these algorithms has made possible the development of very
fast and accurate reconstruction methods. However, when reconstructing far – from
the native state protein structures, which is most often the case in the course of a
multi-scale simulation, it is questionable whether the accuracy of such methods can
still be achieved. For this reason we have used a very simple approach based on
the physics principle of harmonic constraints to reconstruct all-tom structures from
coarse-grained ones in multi-scale simulation scheme.

In order to reconstruct the desired all-atom structure from coarse-grained models
we use the positions from coarse-grained SCM as a part of harmonic constraints
and apply them to an all-atom protein template through a process of energy
minimization. For each residue, C˛ positions from the SCM will be used as position
constraints for C˛ in the backbones from the all-atom template. As for the constraint
of a side-chain position, it will be imposed on a heavy atom with the closest
proximity to the actual center of mass of the side chain, in which the distance
between the two is typically less than 1 Å. By doing this, the calculation of the
center of mass of the side chain during a reconstruction algorithm is avoided by
paying a small price on accuracy as long as we keep the harmonic spring constants
at a reasonable range. During the reconstruction procedure that takes in both a SCM
protein structure and an all-atom template as an input, the harmonic constraints
imposed by a few chosen beads will carry the all-atom template to the desired
structure, through driving forces of energy minimization, without the need for
building a protein from individual atoms. The use of this “template concept” for
protein reconstruction is depicted schematically in Fig. 8.4a and the flowchart of the
SCAAL reconstruction algorithm is shown in Fig. 8.4b. The details of this method
can be found in previous studies [7, 16].

8.3.6 MultiSCAAL: SCM C SCAAL

The improvements described above have transformed the SCM into a multifaceted
algorithm that can be used to simulate protein folding in many different conditions.
It can simulate the folding behavior in crowded environment that resembles the
cellular conditions or reproduce the effect of synthetic crowding agents used in
experimental studies to mimic cellular crowding. The modified SCM is capable
of simulating experimental refolding events in the presence of denaturing factors
such as urea or in the presence of other ions. Any combination of these different
conditions (crowding, urea, ionic concentration) becomes accessible for simulation
using low resolution protein representation.

In addition, combining reconstruction algorithm SCAAL with SCM results in a
more sophisticated multi-scale scheme that combines AA simulations with CG ones.
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Fig. 8.4 A schematic representation of the SCAAL reconstruction method with the use of an
all-atomistic protein structure as a template and the positions of coarse-grained side-chain-C˛
model (SCM) as harmonic constraints. (a) (Left) C˛ beads are in red and the heavy side-chain
beads are in yellow. The two beads hold the positions through harmonic constraints for a projected
reconstructed all-atomistic protein model. A randomly chosen all-atomistic protein structure that
can be far from the crystal structure is introduced as a structural template and shown in a solvent
accessible surface area mode. (Right) After the structural reconstruction by SCAAL, an all-
atomistic representation of a projected protein structure is created (myoglobin, PDBID 1A6M,
is used for illustration). (b) Flow chart of the SCAAL algorithm

This combined multi-scale scheme “MultiSCAAL” builds on the capabilities of the
modified SCM which can handle different solvent and environment condition and
on the accurate reconstruction of all-atom protein structures from SCM provided
by SCAAL. Both these steps are necessary to incorporate crowding and chemical
interferences in a multi-scale molecular simulation.

The MultiSCAAL scheme works on enhancing the sampling of all-atomistic
simulations by utilizing a large set of initial conditions sampled from the SCM dis-
tributions. These selected initial CG structures are reconstructed into AA ones using
SCAAL. Then we let the all-atom simulation visit and refine all the conformations
that are predicted by the more efficient SCM model. Our scheme is not based on
the concept of Resolution Exchange. Thus, we don’t perform any conformation
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exchanges between the CG and AA simulations. Instead, we concentrate on the
proper selection of initial AA conformations based on a knowledge-based CG model
that can be adjusted to different environmental conditions.

In summary, the MultiSCAAL scheme follows these steps:

(1) The energy function for SCM molecular dynamics simulations is derived from
the potential of mean force (PMF) from the all-atomistic simulations that
contain certain chemical interference using Boltzmann inversion method.

(2) SCM protein representations in a thermodynamic ensemble of interest are
selected according to a Metropolis criterion [52] and all-atomistic protein
conformation are promptly reconstructed using SCAAL.

(3) Folding free energy landscape of a protein is effectively simulated by all-
atomistic molecular dynamics that uses reconstructed all-atomistic protein
models built from step (2) as initial conformations.

8.4 Protein Folding in Different Conditions: Examples

8.4.1 Crowding and Protein Folding

The living cell is a highly crowded environment due to the presence of large
amounts of soluble and insoluble macromolecules, including proteins, nucleic acids,
ribosomes, and carbohydrates. This cellular crowding limits the available space
for biochemical interactions including protein folding. It is estimated that the
concentration of macromolecules in the cytoplasm is in the range of 80–400 mg/ml
which amounts to a volume fraction between 10 and 40 % [53–56]. Crowding can be
mimicked experimentally by adding high concentrations of inert synthetic crowders.
In addition, crowding can be modeled using CG molecular dynamics simulations.
There are established effects of crowding on protein folding such that crowding
stabilizes the folded protein, compacts denatured states. These effects have been
investigated using different theoretical and experimental techniques [6, 8, 36, 53,
57, 58]. Here, we present examples of other interesting effects of macromolecular
crowding on protein folding. These studies utilized the power and efficiency of CG
simulations based on the SCM model.

8.4.1.1 Crowding Changes Protein Shape

SCM based molecular dynamics [7] simulations were used to investigate the
secondary structure changes in protein Borrelia burgdorferi VlsE in experimental
crowded conditions [59]. VlsE is an aspherical protein with marginal stability:
It is best described as having an elongated football shape with a helical core
surrounded by floppy loops at each end [60]. Experiments using Ficoll 70 as an
inert synthetic crowding agent have shown that VlsE folded state is stabilized in
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the presence of increasing concentration of crowders. However, when the same
crowding experiments were repeated in the presence of urea, crowding seemed to
destabilize the folded state.

In order to understand these varying effects of crowding on the folding of VlsE,
CG molecular simulations were used to calculate energy landscape of VlsE in
different volume fractions of Ficoll 70 and at different temperatures. VlsE was mod-
eled using SCM with nonspecific interactions. Ficoll 70 molecules are modeled as
hard spheres that provide nonspecific repulsive interactions in the simulations. The
thermodynamic properties of VlsE in aqueous solvent and in crowded environments
(volume fractions, ¥c, of 0, 15, and 25 %) were studied by molecular simulations
with Langevin dynamics. The replica exchange method (REM) [61, 62] was used in
order to enhance the efficiency of sampling. The resulting trajectories were analyzed
using the weighted histogram analysis method (WHAM) [63, 64].

The resulting energy landscape is shown in Fig. 8.5. This energy landscape shows
that the combination of crowding and denaturing agents (temperature in simulations
versus urea in experiments) can produce conformational changes in VlsE between
three dominant states. These three states are the native structure (football shaped),
a bean-like structure, and a collapsed globular structure. The all-atomic structures
for these three states were reconstructed using SCAAL as shown in Fig. 8.6.
The simulations have also shown that these conformational (shape) changes were
accompanied by secondary structure transformations that lead to the exposure of a
hidden antigenic region in agreement with experiments.

8.4.1.2 Crowding and Protein Folding Routes

The folding energy landscape of an ˛/“ protein, apoflavodoxin, in the presence
of inert macromolecular crowding agents was studied using in silico and in vitro
approaches [65]. The crowding conditions were created using two crowding agents
with different shapes, the spherical Ficoll 70 and the rod-like dextran. Parallel
kinetic folding experiments were performed on purified apoflavodoxin in the
presence of Ficoll 70 and dextran. These experiments have shown that time-resolved
folding pathway of apoflavodoxin is modulated by crowding agent geometry.

In the CG molecular simulations, apoflavodoxin was constructed using the SCM
model with a Gō-like Hamiltonian. Ficoll 70 was modeled as hard sphere. The rod-
like dextran was modeled as dumbbell consisting of two bonded hard spheres (Ficoll
70). As with VlsE above, Langevin dynamics, REM, and WHAM were used. The
results of the simulations showed that these different types of crowders stabilize the
native state of apoflavodoxin (Fig. 8.7). In addition, the geometry of the crowder
tends to play an important role in manipulating the folding route. The simulations
show that the early formation of contacts around the ˇ1 sheet of apoflavodoxin
creates a topological frustrated structure. In order for the protein to proceed in its
folding, it has to unfold and undo these early formed contacts. This topological
frustration is affected by the crowded environment. More specifically, the shape of
the crowder can worsen or remedy the early topological frustration as can be seen
in Fig. 8.8.
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Fig. 8.5 Free-energy diagram as a function of radius of gyration Rg and the overlap function (¦)
for ®c D 0 % (water) (a, b, and c), 15 % (d, e, and f), 25 % (g, h, and i) at various temperatures
expressed in kBT/©. ¦ measures the deviation from crystal structure (¦D0). The color is scaled by
kBT. The native football-shaped species is labeled C, the bean structure is labeled B, the spherical
state is named X, and the unfolded state is indicated by U

Fig. 8.6 A schematic phase
diagram of VlsE
conformations in the ®c–T (or
urea) plane. The antigenic
IR6 sequence is shown in
green for all representative
states C, B, X, and U
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Fig. 8.7 Free energy profiles
are plotted as a function of Q
(the fraction of native contact
formation) at different
crowding conditions at 360 K.
®c (water) D 0, solid line; ®c

(Ficoll70) D 25 %, dotted
line; ®c (Ficoll70) D 40 %,
dashed line; and ®c

(dumbbell) D 40 %,
dot-dashed line

Fig. 8.8 Probability of select native contact formation <Q>i at the ith region of a protein in the
evolution of protein folding. Contact formation of the first “-strand (black), the first ˛-helix (red),
and the third “-strand (green) is plotted as a function of Q in (a) water, (b) ®c D40 %, Ficoll70,
and (c) ®c D40 %, dumbbell-like crowding agent, respectively. (d) A conformation in the unfolded
state with some contacts formed about “1 in early Q that causes topological frustrations in the
folding landscape. The diagonal line is provided as a visual guidance for a mean-field like behavior
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8.4.2 Multi-scale Simulation of Protein Folding
with Chemical Interference

8.4.2.1 Protein Folding in Urea

The mutliscale simulations using MultiSCAAL were used in order to investigate
the effect of urea on the folding landscape of Trp-cage [16]. In this approach, CG
simulations of Trp-cage in urea were performed first and then structures fished from
these simulations are fed into AA simulations in order to zoom in on important
details. In order to perform the CG simulation, statistical potential maps of amino
acid LJ parameters were created for different concentrations of urea. These maps
were created using the Boltzmann Inversion technique presented above.

The results obtained from the MultiSCAAL simulations were compared with
those of AA simulations performed in the same study. The AA atom simulation of
Trp-cage utilized the enhanced sampling technique of Replica Exchange Method
(REM). AA-REM and MultiSCAAL simulations were performed in aqueous and
8 M urea solvent conditions. MultiSCAAL were shown to be more accurate and
more efficient that AA-REM.

In terms of accuracy, MultiSCAAL samples a broader energy landscape, with a
wide distribution of ensemble structures as can be seen in Fig. 8.9. Interestingly,
in the case of 8 M urea the dominant structure sampled by MultiSCAAL matches
better with interatomic distances obtained by NMR experiments [66]. By using
a reduced representation in side-chain beads in the CG model, without explicit
solvent molecules, the protein can explore different side-chain orientations faster.
This allows the indole group of Trp 6 to exit the hydrophobic core of the protein and
this structural feature can account for the shorter distances between Trp 6 and other
amino acids.

In terms of efficiency, MultiSCAAL simulation was shown to provide a consider-
ably enhanced sampling efficiency and lower computational cost than the standard
AA-REMD simulations with the total simulation length being 	25 times greater in
less computational hours (<1/2).

8.4.2.2 Protein Folding and Ionic Concentration

Calmodulin (CaM) is the smallest known functional protein and plays an important
role in regulating intercellular signaling. CaM possesses a great conformational
flexibility as it can bind over 300 targets when fully saturated with calcium [67].
SCM based coarse-grained simulations were used to study the crowding effects
on the conformational states of apoCaM [68]. In addition, these calculations were
extended using a multi-scale approach to include electrostatics in studying the
conformational states of both apoCaM and holoCaM at different salt concentrations
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Fig. 8.9 Two–dimensional free energy landscape for Trp-cage as a function of the radius of
gyration (Rg) and the root-mean-square-deviation (RMSD) under (a, c) aqueous and (b, d) urea
conditions based on two different simulation schemes at 300 K: (a, b) simulations using AA-
REMD; (c, d) simulations using MultiSCAAL. The free energy is colored by kBT

in crowded environment [69]. This was done by developing a unique multi-scale
solution of charges computed from quantum chemistry, together with SCAAL
protein reconstruction, SCM coarse-grained molecular simulations, and statistical
physics, to represent the charge distribution in the transition from apoCaM to
holoCaM upon calcium binding. The simulations were performed at different salt
concentrations, different volume fraction of crowding agents, and a combination of
both. These simulations showed that increased levels of macromolecular crowding,
in addition to calcium binding and ionic strength typical of that found inside cells,
can impact the conformation, secondary structure and the EF hand orientation of
CaM [69].
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Fig. 8.10 Structural characteristics of the dominant compact ensemble structures of PGK in
cartoon representation. (a) Crystal state C, (b) Collapsed crystal state CC and (c) Spherical state
Sph. The coloring of each protein model ranges from N-terminus (red) to C-terminus (blue). The
-N and -C termini are represented with Van der Waals spheres. The schematic representation at the
bottom left of each panel is to address a simplistic view of the arrangement of the N- and C-lobes
in each conformation. (d) The probability distribution of the distance between N- and C- termini
of the three dominant structures of PGK under the condition when each prevails in the simulations.
C state (solid black), Collapsed Crystal CC (dashed red) and Spherical Sph (dotted blue)

8.4.3 Other Applications

SCM coarse-grained molecular dynamics simulations were used to investigate
the effect of macromolecular crowding on the folding and enzymatic activity of
phosphoglycerate kinase (PGK) [70]. Experiments suggested that PGK in a crowded
medium adopts conformations that are not seen in dilute conditions. In addition,
crowding was shown to enhance the enzymatic activities of PGK by more than 15
times. In the SCM coarse-grained molecular simulations, three possible compact
ensembles of PGK were identified as shown in Fig. 8.10. These results suggest that
rather than undergoing a hinge motion, the ADP and substrate sites at the inner
parts of two domains of PGK are already located in proximity in compact form
under crowded or even in vivo.
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SCM coarse-grained simulations were also used to investigate the competing
effects of crowding and urea on the folding of protein Trp-cage [71]. This study
shows that crowding enhancement of folding rates of Trp-cage is most pronounced
for extended conformations of Trp-cage in the presence of high concentrations
of urea.

Finally, a new algorithm was recently added to SCM in order to extend its
capabilities to deal with more realistic crowded conditions [72]. This self-assembled
clustering algorithm (CGCYTO) was used to produce a polydisperse (PD) coarse-
grained model for E. coli cytoplasm. It is shown by SCM coarse-grained molecular
simulations that the folding temperature of a test protein apoazurin in a PD
cytoplasm model is 	5ı greater than that in a Ficoll 70 model [72].

8.5 Conclusion

This chapter presented some of the recent developments in coarse-grained (CG)
molecular dynamics techniques when it applies to the problem of protein folding
in varying crowding and solvent conditions. We mainly focused on the evolving
(Side-chain-C˛ Model, [15]) SCM-based techniques. SCM molecular simulations
were used to study the protein folding dynamics in crowded conditions that
mimic the highly condensed cellular cytoplasm. In these studies, the computational
efficiency of simulations based on a minimalist model is utilized to incorporate
the additional crowding particles. Several studies have used the SCM simulations
to model different types, shapes, and concentration of crowders. SCM simulations
achieved a great success in explaining and predicting the behavior of protein folding
dynamics in crowded medium as can be seen in the example studies discussed in
this chapter.

Additional techniques can extend the capabilities of a CG model to address
different types of environmental conditions such as solvent, denaturants, and
ions. Several examples of these techniques were presented in this chapter in
addition to some applications of SCM-based simulations. A growing trend now in
computational studies is to design a multi-scale approach to simulate biophysical
systems. This approach tries to combine the advantages of both the more detailed
atomic simulations with the efficiency of coarse-grained ones. The chapter presented
an example of these multi-scale approaches, MultiSCAAL. MultiSCAAL uses
CG simulations in order to speed up and expand the sampling of the all-atom
protein folding landscape. All the techniques and the examples discussed here
show that well-designed coarse-grained molecular simulations can be a great
tool in addressing complicated problems such as protein folding. With the new
emerging techniques and with the help of coarse-grained models we can achieve
significant progress in understanding complicated systems, especially when they
are coupled with experimental methods or with higher resolution (All-atom or
Quantum) simulations.
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Chapter 9
Simulating the Peptide Folding Kinetic Related
Spectra Based on the Markov State Model

Jian Song and Wei Zhuang

Abstract Optical spectroscopic tools are used to monitor protein folding/unfolding
dynamics after a fast triggering such as the laser induced temperature jump.
These techniques provide new opportunities for comparison between theory and
simulations and atom-level understanding protein folding mechanism. However,
the direct comparison still face two main challenges: a gap between folding
relevant timescales (microseconds or above) and length of molecular dynamics
simulations (typically tens to hundreds of nanoseconds), and difficulty in directly
calculating spectroscopic observables from simulation configurations. Markov State
Model (MSM) approach is one of the most powerful means which can increase
simulations timescale up to microsecond or even millisecond. We address progress
on modeling infrared and fluorescence spectroscopic signals of temperature jump
induced unfolding dynamics for a few small proteins. The harmoniousness between
experiment and theoretical can both improve our understanding of protein folding
mechanisms and provide direct validation of those theoretical models.
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Abbreviations

2DIR Two-dimensional infrared spectroscopy
CD Circular dichroism
CGF Gaussian fluctuation
DFT Density functional theory
FE Frenkel exciton
FTIR Fourier transform infrared spectroscopy
GE Generalized ensemble
GLDP Glycine dipeptide
IR Infrared
MD Molecular dynamics
MSM Markov state model
MSMs Markov state models
NEP Nonlinear exciton propagation
NMA N-methyl acetamide
NMR Nuclear magnetic resonance
QM/MM Quantum mechanics and molecular mechanics
REM Replica exchange method
RHF Restricted Hartree-Fock
SHC Superlevel-set hierarchical clustering
TCC Transition charge coupling
TC-n Typical conformation n
TDC Transition dipole coupling
T-jump Temperature jump

9.1 Introduction

Understanding the mechanism of protein folding and unfolding is always one
of significant tasks in life sciences [1, 9, 12, 14, 15]. Amino acids interact with
each other to produce a well-defined three-dimensional structure and carry out
unique functions. Incorrectly folded proteins can induce many serious and fatal
neurodegenerative diseases, such as mad cow disease, Alzheimer’s disease and
Creutzfeldt-Jakob disease [10, 31, 39]. In the past decades, tremendous efforts in
theoretical and experimental fields have been devoted into understanding the protein
folding mechanisms. However, many aspects of this issue remains unclear even for
the small, single domain peptides [40].

X-ray crystallography [2, 30] has been used extensively to determine three-
dimensional atomic-resolution protein structure. Exploring the folding dynamics
usually employs the spectroscopy techniques, such as nuclear magnetic reso-
nance (NMR) [4, 28, 47], circular dichroism (CD), Infrared (IR) spectroscopy, and
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fluorescence spectroscopy, to monitor conformational change in adequate temporal
and spatial resolution [7, 13, 32]. Spectroscopy signals are, however, the eigenspace
reflections of the structure and dynamics in the real space. Understanding the
physics behind these signals is usually a nontrivial work, especially for complex
molecular systems such as the protein aqueous solutions.

Theoretical approaches such as Molecular Dynamics (MD) generate the molec-
ular level pictures of protein folding thermodynamics and kinetics. A proper
combination of the spectroscopic experiments and the MD simulation thus has
the potential to significantly improve our understanding of the protein folding
events. However, direct comparison between theory and experiment for protein
folding is still difficult due to two major challenges. First, a timescale gap exists
between experimental protein folding times and capability of MD simulations.
Even for the small and single domain protein and peptides, their folding time
are usually microsecond or above [11, 35]. The capability of MD simulation
nowaday is, however, usually submicrosecond. Second, even with sufficiently long
simulations, it is still a difficult task to carry out a direct comparison between
MD simulations and experimental results those are often optical spectroscopic
observables.

In recent years, a number of research groups have been working toward the
direction to bridge the gap between MD simulations and experimental spectroscopic
investigations in order to achieve a better understanding of protein folding. Coarse-
grained simulations [45] with simplified representations of proteins are a natural
solution to bridge the timescale gap. But they sacrifice the atomistic details needed
for the simulation of the spectroscopic signals comparable with the experiment.
Another solution to fulfil the gap is to develop algorithms that can construct models
from short simulations to predict long timescale dynamics for protein folding.
Markov State Model (MSM) approach [5,6,8,25,38,42] is one of the most powerful
means that have recently shown success in investigating protein folding kinetic at
microsecond or even millisecond timescales.

More meaningful comparison between the theoretical and experimental results
requires the modeling of spectra based on the MD simulation trajectory ensembles,
which is in general complicated due to the entangled and congested nature of
the optical transitions. The hybrid quantum mechanics and molecular mechanics
method is commonly used to model the spectroscopic lineshape in the protein-
solvent systems. For multi-chromophoric systems with weak couplings between the
units, one can adapt the Frenkel exciton model for the Hamiltonian construction,
which is widely used in optical response calculation of biological system.

In the current manuscript, we introduce our effort in modeling the tempera-
ture jump (T-jump) triggered peptide long time unfolding related Infrared, Two-
dimensional infrared spectroscopy (2DIR) and fluorescence spectra based on the
MSM approach. We will first briefly describe the MSM approach for generating
the long time peptide unfolding pathways triggered by the T-jump technique,
then discuss how to simulate the related Infrared, 2DIR and fluorescence spectra,
respectively.
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9.2 Long Time-Scale Molecular Dynamic Simulation:
Markov State Models

In this section, we only give a brief introduction on the basic idea of MSM. For the
complete and thorough discussions on this method, one should read those original
manuscripts [6,8,19,25,55]. In the Markov State Models (MSMs), the phase space is
partitioned into a group of metastable states, the intra-state transition is designed to
be much faster than the inter-state transitions, so that the kinetics can be considered
as Markovian, and described using a memoryless master equation (9.1),

P.n�t/ D ŒT .�t/�nP.0/ (9.1)

in which P.n�t/ is the state populations at time n�t and T is the transition
probability matrix. �t , the time interval for transitions, is the lag time. T is
calculated by normalizing the number of transitions between each pair of states
after a lag time in the simulation database [8].

Building MSMs with good state decomposition is challenging. Typically, a two-
step procedure is adopted: First, the massive number of MD conformations is
divided into a large set of microstates by geometrical similarity. These microstates
have to be fine enough so that they do not combine kinetically separated regions of
the phase space. Second, a kinetic clustering is performed to group these microstates
into a number of metastable states so that transitions between microstates within
the same metastable state are much faster than transitions between different
metastable states. MSMs can also be considered as a data-mining tool to generate
comprehensive folding models from massive simulation datasets. One of the major
challenges for the MSM is to ensure that all the relevant conformation states have
been visited. This issue may be alleviated by Generalized Ensemble (GE) algorithms
[22, 23], which can enhance conformational sampling by inducing a random walk
in Temperature or Hamiltonian space. In recent years, GE algorithms especially
Replica Exchange Method (REM) [41] have been widely applied in protein folding
studies. Huang et al. [18] have used non-equilibrium GE simulations to explore
the phase space, and then seed short simulations at constant temperature from GE
conformations to construct MSMs to obtain both equilibrium thermodynamics and
kinetics. Adaptive sampling, allowing one to use an initial MSM to decide where
to run new simulations, is another solution to alleviate the sampling issue. In the
adaptive sampling, new simulations are started from those states that contribute
most to the statistical uncertainty in kinetic properties of interest calculated from the
initial MSM. It has been shown that performing adaptive sampling and constructing
MSMs iteratively can quickly yield a good model.

In the following, we discuss the modeling of the IR and 2DIR spectra related to
the model peptide trpzip2 T-jump unfolding based on extended MSMs generated by
trajectory ensembles.



9 Simulating the Peptide Folding Kinetic Related Spectra Based on the. . . 203

9.3 Modeling Infrared (IR) and Two Dimensional
Infrared (2DIR) Spectroscopies

IR spectroscopy is widely used to monitor local environments and dynamics in
proteins. Vibrational transitions are sensitive to the local structure and bond-
ing environment, thus are ideal for distinguishing between various secondary
structural motifs and monitoring the effects of changing environments through
hydrogen bonding and electrostatic focus. For example, ˛-helix regions absorb near
1;650 cm�1, while ˇ-sheets absorb at 1,620 and 1;675 cm�1. IR pulses can provide
50 fs snapshots of dynamical events. The 1;600 � 1;700 cm�1 amid I band which
originates from the stretching motion of the C = O peptide bond (coupled to in-
phase N–H bending and C–H stretching) is particularly useful for structural studies,
since it has a strong transition dipole moment and is spectrally well separated from
other vibrational modes. The up to 20 cm�1 variation of the amid I frequency with
secondary structure and conformation, is widely used as a marker in polypeptide
and protein structure determination.

Coherent IR techniques, which record the molecular response to sequences of
pulses, provide a multidimensional view of protein structure. 2DIR is one of a
rapidly expanding class of new ultrafast coherent vibrational spectroscopies that are
finding broad use in studies of molecular structure and dynamics that probe peptides,
proteins, DNA, chemical exchange kinetics, hydrogen bonding, and rapidly initiated
chemical reactions. The first frequency-frequency 2DIR measurement was carried
out by Hamm and Hochstrasser, who employed a pump-probe technique with
two IR pulses with a narrow (ca.10 cm�1) pump and a broad .130 cm�1/ probe
pulse. A heterodyne-detected 2DIR experiment (Fig. 9.1) involves the interaction

Fig. 9.1 Schematic experimental setup for a heterodyne detected four-wave mixing experiment.
Signals are recorded as the function of three time delays and displayed as 2D correlation plots
involving the double fourier transform of two time delays, holding the third fixed
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Fig. 9.2 (Top) 2D spectra of two coupled vibrations. The frequency fluctuations of the two modes
are slow and anticorrelated in the left, slow and correlated in the middle, fast and anticorrelated in
the right (Adapted from Ref. [46]). (Bottom) Linear absorptions for the three models

of three laser pulses with wave vectors k1, k2, k3, (in chronological order) with
the peptide. A signal field is then generated coherently in the directions: k4 D
˙k1 ˙ k2 ˙ k3. This signal field is detected by interference with a 4th pulse
with the same wavevector k4. The signal S.t3; t2; t1/ is defined as the intensity
difference of the pulse before and after the interaction with the sample, and depends
parametrically on the time intervals between pulses t1, t2 and t3. The 2D IR signal
is obtained by displaying it as a two-dimensional correlation plot with respect to
two of these intervals, say t1 and t3, holding the third (t2) fixed. Such plots are
highly oscillatory. For a clearer picture, the signal is double fourier transformed
with respect to two time variables to generate a frequency/frequency correlation
plot such as S.�1; t2;�3/ where �1 and �3 are the frequency conjugates to t1 and
t3 (holding t2 fixed Fig. 9.1). Coupled vibrational modes create new resonances at
combinations of single-mode frequencies. The intensities and profiles of these cross-
peaks, give direct zero-background signatures related to the correlations between
transitions. Correlation plots of dynamical events taking place during controlled
evolution periods can be interpreted in terms of multipoint correlation functions.
These carry considerably more information than the two point correlation functions
of linear spectroscopy, and can distinguish between possible models whose 1D
responses are virtually identical (see Fig. 9.2).

The most commonly employed method to model IR spectroscopy is the normal
mode analysis. However, it is difficult to model IR spectroscopy of large molecular
systems such as proteins using the normal mode analysis. Since classical normal
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mode analysis can not reproduce the high frequency bands accurately while the
quantum normal mode analysis is obviously too expensive.

A peptide can be viewed as a chain of beads, connected by amide bonds (ODC–
N–H). The amide I vibrations [20] are localized on the backbone peptide bonds,
and these excitations have nonoverlaping transition charge densities, well localized
in space. These can be described by the Frenkel exciton model [20, 43, 54].

We assume the following form for the vibrational exciton Hamiltonian:

OH D OHS C OHF ; (9.2)

where

OHS D
X

m

"m.Q/ OB�
m
OBm C

m¤nX

mn

Jmn.Q/ OB�
m
OBn � 1

2

X

m

�m.Q/ OB�
m
OB�
m
OBm OBm (9.3)

is the system Hamiltonian and OHF represents the interaction with the optical
field, E.t/:

OHF D �E.t/ �
X

m

�m. OB�
m C OBm/; (9.4)

OB�
m ( OBm) is the creation (annihilation) operator for them’th amide I mode, localized

within the amide unit (ODC–N–H), with frequency "m, anharmonicity�m and tran-
sition dipole moment �m. These operators satisfy the Bose commutation relations
Œ OBm; OB�

n� D ımn. Jmn are the harmonic inter-mode couplings. Diagonal elements
of the Hamiltonian matrix give the zero-order local mode frequencies while off-
diagonal elements represent their couplings. All parameters of OHS fluctuate due to
conformational changes of the backbone, as well as solvent and side-chain dynam-
ics. These other degrees of freedom are represented collectively by Q. Starting
with the Hamiltonian in cartesian coordinates we define: OBm D 1p

2
.qm C ipm/,

OBC
m D 1p

2
.qm � ipm/. Alternatively we can start with a highly anharmonic local

Hamiltonian, calculate the eigenstates and use a bosonization procedure to bring the
Hamiltonian to this form. This can account for local anharmonicities to all orders.
Only the nonlocal couplings are expanded to quartic order. The Hamiltonian matrix
for large globular proteins may now be constructed using parameters obtained from
electronic structure calculations performed on small segments, (which constitute
the individual chromophores) [20, 43, 54]. It then becomes possible to have a fairly
accurate description of high frequency vibrational Hamiltonians for large systems.

A full microscopic simulation of the lineshape will require the construction of
a Hamiltonian at each joint along the MD trajectory with around 100,000–500,000
snapshots. The repeated electronic structure calculations, even for a single peptide
residue in solution, are very expensive.
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We can adopt an alternative strategy for the construction of instant vibrational
frequency and transition dipole moments which avoids the repeated calculations
along the trajectory. The basic idea is to describe the Hamiltonian and transition
dipole elements as a function of some fluctuating parameters of the molecular
system which can be easily obtained from the MD simulation trajectories.

Several maps which correlate site frequencies with the electrostatic potential
(Cho map), electric field (Skinner map) as well as the electric multipole field up
to 2nd derivatives of the electric field (Mukamel map) evaluated at or between
the atoms in the amide bond have been proposed. These maps were constructed
from electronic structure calculations of N-methyl acetamide (NMA). Cho’s electric
potential map and Skinner’s electric-field map assume a linear correlation between
the frequency and the electric fields which projected on the such as C, O, N and D
atoms. However, these maps focus on individual amide units, and do not take into
account coupling between different amides. The Mukamel ’s map was constructed
by amide I frequency calculations of a single NMA molecule subject to a set of
nonuniform multipole electric fields. The amide I frequency was parametrized as
a quadratic function of the electric field, its gradients and the second derivatives.
A similar approach was later adopted by Knoester who parametrized the frequency
with the electric field and gradients at the C, O, N and H atoms. That calculation was
carried out using a NMA molecule embedded in a set of electric charge distributions.

The couplings J between amide I vibrations of different peptide units are usually
assumed to depend only on the peptide backbone structure and not the electric field.
This coupling was first calculated using the transition dipole coupling (TDC) model.

Jm;n D 0:1A

�

.�m � �n/ � 3Œ�m � emn�Œ�n � emn�

r3mn

(9.5)

where �m is the transition dipole in (D Å�1 u�1=2) units, rmn is the distance between
dipoles (in Å), emn is the unit vector connecting m and n and � D 1 is the dielectric
constant.

Torii and Tasumi had shown that this model fails to describe the coupling of
neighboring peptide units. They constructed an ab initio map [44] of the coupling
as function of the Ramachandran angles between the neighboring peptide units
(the Tasumi map). This was done using restricted Hartree-Fock (RHF) electronic
structure calculations on an ensemble of glycine dipeptide (GLDP) configurations
with a 30ı grid of the Ramachandran angles. This type of map should be transferable
between different peptides. Stock and Cho had independently derived similar maps
with higher level quantum chemistry protocol and a finer (1ı) grid. Both the stock
and the Cho maps give similar values; half those of the Tasumi’s map. Hamm and
Woutersen had suggested a transition charge coupling (TCC) model, which extends
the TDC model to include higher-order multipoles. The model agreed reasonably
with the coupling constant calculated with density functional theory (DFT) on
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GLDP. The remaining discrepancy between the DFT calculation and the TCC model
can be mainly attributed to through-bond coupling, which cannot be described with
an electrostatic model, such as the TCC.

Infrared spectra of molecular vibrations can be simulated as the function of the
time correlation functions. The Cumulant expansion of Gaussian Fluctuation (CGF)
fluctuation models which may be solved exactly and provides a compact closed form
of expressions for the response functions. This model assume diagonal (energy)
fluctuations with Gaussian statistics and the transition dipoles do not fluctuate.

Line broadening functions gmn.t/ is given by the double time integral of the time
correlation function:

gmn.t/ D
Z t

0

d�1

Z �1

0

d�2Cmn.�1/ (9.6)

here:

Cmn.�1; �2/ D 1
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� C 0.�12/C iC 00.�12/ (9.7)

�H˛ˇ.t/ D H˛ˇ.t/ � NH˛ˇ represents the fluctuations of the transition frequencies
gmn.t/ can be conveniently expressed in terms of using the spectral density:
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with

C 00
mn.!/ D 2

Z 1

0

dt sin.!t/C
00

mn.t/ (9.9)

where C
00

mn.t/ is the imaginary part of the two time correlation function.
We first generate the fluctuating eigenspace Hamiltonian along the MD trajectory

using the protocol discussed above. We then define a reference Hamiltonian and
calculate the fluctuating energyUmn.t/ D Hmn.t/� NHmn. The next step is to calculate
the Fourier transform of Umn.t/, QUmn.!/:

QUmn.!/ D
Z 1

�1
dtUmn.t/ exp.i!t/ (9.10)
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Fig. 9.3 Simulated
absorption spectra of the
amide I band of NMA in
water at room temperature.
CGF, excluding lifetime
broadening (green), FWHM
(19 cm�1), with lifetime
broadening (red), the FWHM
becomes 30 cm�1, which is
very close to the experiment
(29 cm�1) [51]. The
inhomogeneous SOS
simulated signal (black)
overestimates the linewidth
(52 cm�1)

The correlation function is finally given in the frequency domain:

QCc
mn.!/ D

1

2��2
j QUmn.!/j2

C 00
mn.!/ D �!

2kbT
QCc

mn.!/ (9.11)

2� is the length of the trajectory.
Figure 9.3 shows the simulated CGF linear absorption spectra (give formula) of

the amide I band of NMA in water. Neglecting vibrational relaxation is (green line),
the Full width at half maximum (FWHM) is 19 cm�1, by adding the experimental
lifetime broadening give number (red line), the FWHM becomes 30 cm�1, which is
very close to experiment .29 cm�1/.

A commonly used method to trigger the peptide and protein unfolding processes
is T-jump, which uses a intense laser pulse to create a significant temperature jump
in nanoseconds. This then generates an unstable conformational distribution, the
relaxation of this distribution to the equilibrium can be monitored using optical
spectroscopic tools such as 2DIR. Even for small peptides with single structural
domain, the unfolding time is usually in the microsecond timescale, while the
straightforward MD simulations can usually achieve good statistics within several
hundred nanoseconds. One possible way to bridge this time gap is to extend MSM
method, which is described above and has recently shown success in investigating
protein folding kinetic at microsecond or even millisecond timescales, to simulate
the T-jump triggered folding events.

We’ve developed a protocol to extend the MSM for simulating the T-jump
triggered peptide unfolding dynamics and calculating the 2DIR signals using the
direct nonlinear exciton propagation (NEP) method. We use the small trpzip2
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hairpin peptide unfolding dynamics as an example. The whole story is summarized
briefly in following, and one can find the details in the original manuscripts [55]. To
construct MSMs, we first group each of the two sets of conformations, which are
fetched from simulation data, into 2,000 microstates at 300 K (T1) and 350 K .T2/

using a K-centers clustering algorithm. We then used the superlevel-set hierarchical
clustering (SHC) algorithm [19] to lump microstates together in further to construct
macrostate MSMs and 17-macrostate and 13-macrostate MSMs at 300 and 350 K
are obtained, respectively. We simulate the relaxation dynamics after the T-jump by
calculating the evolution of populations of metastable states using Eq. 9.1. 2DIR
spectra signals for each of the metastable states have been calculated from the
structure ensemble obtained from MSM, and we performed a weighted sum of these
spectra signals of different states based on their instantaneous populations to obtain
an overall signal.

The equilibrium population distribution for the macrostates calculated from the
17-state MSM at 300 K is presented in Fig. 9.4a. The representative structures for
all the states with population are shown in Fig. 9.4b. The simulated linear absorption
signal shows two main transitions: the low-frequency, stronger transition peaked at
	1;640 cm�1 and the high-frequency, weaker transition peaked at 	1;670 cm�1,
which is consistent with the experimental result.

And the signal from NMR structure shows a similar feature as in the MSM with
a lower intensity for the high-frequency peak. However, the simulated absorptive
(KI+KII) 2DIR signals at 300 K using MSM (left) and NMR structure (right) are
different (see in Fig. 9.5). In the MSM result, both peaks have an asymmetric
feature with the antidiagonal line width broadening at the red end, which agreed
with experimental observation. As the comparison, the NMR structure-based result
has the symmetric peaks elongated along the parallel direction. The simulated
transient Fourier Transform infrared spectroscopy (FTIR) and 2DIR at the different
time points after the T-jump are shown in Fig. 9.6. The signal lineshape change
performances with time of both transient FTIR and 2DIR are consistent with the
fact that the population shifts from the folded state to other unfolded states.

9.4 Modeling Fluorescence Spectroscopy

Fluorescence spectroscopy always remains one of the most important and successful
tools for understanding the protein folding. The changes of fluorescence wave-
length, intensity, lineshape and lifetime of the intrinsic or extrinsic fluorophores
are monitored and assigned to different folding stages [49, 50]. Further unraveling
of the fluorescence signals with more molecular level insight usually requires the
help from theoretical modeling [3, 21, 37], which is in general complicated due to
the entangled and congested nature of the fluorescence transitions as well as the
difficulties in simulating the protein folding processes.

The hybrid quantum mechanics and molecular mechanics (QM/MM) method is
commonly used to model the fluorescence lineshape in the protein-solvent systems
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Fig. 9.4 (a) Equilibrium populations of 17-state at 300 K computed using MSMs for the trpzip2
peptide. (b) Representative structures of 17 metastable states (c) The overall 300 K equilibrium
linear absorption FTIR signal (black dash) and the contributions (solid lines) from states with
population >1 %, simulated using MSM data. The overall signal is scaled by 1:2 for a better
presentation. Green solid line gives the contribution from the most significant macro state (state 2).
Red dash line gives the simulated absorption signal based on the NMR structure, it is scaled to
have the same maximum as the MSM overall signal for a better comparison

[17, 27, 33]. Many models can be employed to count in the vibrational feature of
the fluorescence spectra for single chromophores, such as the Brownian oscillator
model, the displaced harmonic oscillator model and the anharmonic oscillator model
[24, 36, 48, 52]. Huang-Rhys factor gained by theoretical Franck-Condon analysis
is introduced to evaluate the vibronic coupling. For large molecules, however, it
often becomes very difficult to calculate the fluorescence by the quantum chemistry
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Fig. 9.5 Simulated absorptive 2DIR spectra for the trpzip2 peptide at 300 K, computed from the
MSM and nanosecond MD simulations starting from the NMR structure are shown in (a) and (b)
respectively. In (c), the experimental results [34] at 298 K are shown

Fig. 9.6 Simulated Transient FTIR and 2DIR at the different time points after the T-jump are
shown in (a) and (b) respectively. For (a), the plots on the lower panel are the difference spectra
with the signal before the T-jump at 300 K

calculation for the whole molecule. For multi-chromophoric systems with weak
intermolecular interaction, an alternative and effective approach is to use the Frenkel
exciton model and plays an important role in understanding processes concerning
the transfer of excitation energy in biological systems. So it is widely used in
linear optical response calculation [26, 29]. In these systems, the intramolecular
interactions are much stronger than the intermolecular forces. The Hamiltonian
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of whole system may be written as a sum of individual excitations and their
interactions and exciton states are linear combinations of localized excited states.
How to evaluate the exciton-exciton coupling accurately is the most important task
in exciton model.

The non-trivial work required in sampling the configuration distribution and
long timescale folding kinetics adds an extra layer of complexity in simulating
the peptide folding fluorescence. Here we try to show the vibrationally-resolved
tryptophan band lineshape of trpzip2’s fluorescence spectral simulation based on
the MSMs.

The trpzip2 system is treated as an tryptophan aggregate, and described by
effective Hamiltonians. Considering aggregate consisting of p monomers, and

neglecting the weak interaction in the electronic ground state
ˇ̌
ˇ�01 ; �02 ; � � �; �0p

E
D j0i,

one can obtains the ground state Hamiltonian for p-monomer aggregate as

Hg.x1; � � �; xp/ D j0i
"

pX

nD1
h0n.xn/

#
h0j (9.12)

Here h0n is the ground state Hamiltonian of monomer n. The wavefunction for the
single excitation state is

ˇ̌
ˆ1n
˛ D

ˇ̌
ˇ�01 � � � �1n � � � �0p

E
(9.13)

where, �0n represents the ground state of the nth monomer and �1n is its first excited
state. The adjacent excited state configurations interact via coupling elements J ,
and the excited state nuclear Hamiltonian is a p 
 p matrix of the form

He.x1; � � �; xp/ D

0

BBBBB@

he1 J1;2 � � � � � � J1;p
J1;2 he2 � � � � � � J2;p
� � � � � � � � � � � � � � �
J1;p�1 J2;p�1 � � � hep�1 Jp�1;p
J1;p J2;p � � � Jp�1;p hep

1

CCCCCA
(9.14)

where hen represents the excited state Hamiltonian of the nth monomer, Jm;n is the
coupling between two Frenkel exciton (FE) states localized on the monomersm and
n. Under a first-order approximation, Jm;n is approximated to be [16],

Jm;n D
˝
ˆ1m jH jˆ1n

˛ � ˝�1m�0n jVmnj�0m�1n
˛
: (9.15)

J is split into the following three terms as

Jm;n D J coul
m;n C J ex

m;n C J overlap
m;n (9.16)
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where J coul
m;n , J ex

m;n, and J overlap
m;n are defined as

J coul
m;n D

Z
d Er
Z
d Er 0�1m.Er/

1

jr � r 0j�
1
n.Er 0/;

J ex
m;n D

Z
d Er
Z
d Er 0�1m.Er; Er 0/

1

jr � r 0j�
1
n.Er 0; Er/ (9.17)

For a molecular dimer, J overlap
m;n D �!0

R
d Er�1m.Er/�1n.Er/. Here �1m and �1n are the

transition densities of the first excited state of molecule m and n, respectively.
In the above FE model, a monomer .m/ unit is described by a single mode

Hamiltonian including the electronic ground state
ˇ̌
�0m
˛

and the first excited stateˇ̌
�1m
˛
,

hm D
ˇ̌
�0m
˛
h0m
˝
�0m
ˇ̌C ˇ̌�1m

˛
hem
˝
�1m
ˇ̌

(9.18)

where the ground state and the excited state Hamiltonians can be written, respec-
tively, as

h0m D �
1

2

d2

dx2
C 1

2
!20x

2; (9.19)

hem D �
1

2

d2

dx2
C 1

2
!20.x � xe/2 C�EFE (9.20)

x is the coordinate, and �EFE is the 0–0 transition energy. The xe and !0 are
the effective displacement and frequency, respectively. In fact, there are 3N � 6
vibrational modes in one molecule containing N atoms, and each mode has
its own !k and xe.k/. However, due to the large Gaussian broadening arising
from complicated environment in the observed spectra, the multiple vibrational
behavior is usually not resolved and different vibrations merge into a single vibronic
progression feature, which can be described by an effective mode with Huang-Rhys
factor [53],

S D 


!0
D
P

k 
k

!0
(9.21)

!0 D
vuut
P

k !
4
kx

2
e.k/P

k !
2
kx

2
e.k/

(9.22)

The effective displacement xe is related to S by S D 1
2
!0x

2
e . The reorganization

energy 
k of each mode !k is 
k D sk!k and the Huang-Rhys factor sk for each
mode !k can also be expressed in terms of the displacement parameter xe.k/ as
sk D 1

2
!kx

2
e.k/.
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Fig. 9.7 The calculated fluorescence spectra of trpzip2 at 300 K. The black curve is the overall
fluorescence spectrum; the blue curve corresponds to the contribution from Metastable state 2; the
red curve is calculated with only the coulomb term considered in the exciton-exciton couplings;
the bright green curve is calculated with zero exciton-exciton coupling; the light gray is calculated
with no exciton-phonon coupling

With the constructed Hamiltonians Hg and He above, the correlation function
Ce.t/ for emission in linear response spectroscopy is given as

Ce.t/ D TrŒe�ˇHe
eiHe t=��e�iHgt=���

TrŒe�ˇHe
�

(9.23)

Thus, the optical emission cross section ˇ.!/ can be obtained

ˇ.!/ / !3
Z 1

�1
dt exp .�i!t � � jt j/C e.t/ (9.24)

Here � represents the dephasing factor. All the parameters of Hamiltonian are
calculated by quantum chemistry based on the representative trpzip2 conformations
obtained from previously constructed MSMs.

For trpzip2, 17-state and 13-state MSMs have been built from extensive molec-
ular dynamic simulations at 300 and 350 K, respectively [55]. In the fluorescence
simulation, we have selected one representative conformation from each metastable
state for the further calculation of the fluorescence signal. The representative
conformation has been chosen as the central conformation of the most probable
microstate (see Ref. [55] for details of the microstate construction) within each
metastable state. For simplicity, here we use TC-n (Typical Conformation n) to
label the representative conformation of each mestable state, for example TC-2 is
the typical structure for metastable state 2. The vibrationally-resolved fluorescence
spectra of trpzip2 can be obtained by summing up the weighted contributions from
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Fig. 9.8 T-jump induced transient fluorescence lineshapes (left) and the differential spectra (right)
between 0 and 200 ns

those typical conformations. Figure 9.7 presents the steady state spectra at 300 K,
which nicely resemble the experimental lineshape in Ref. [50]. The maximum of
the simulated fluorescence is 	332:6 nm (the black line in Fig. 9.7) while that of
the experimental trpzip2 fluorescence is 	351 nm at 297 K [50]. Consistent with
the experiment, the simulated spectrum shows a significant asymmetric feature.
The lineshape of the spectra at 350 K become more asymmetric, as demonstrated
in Fig. 9.8, with a unsymmetrical ratio of 	1:71. The experimental [50] ratio
at 347 K’s is about 1.88. A 3.4 nm red shift is found between the simulated
300 and 350 K fluorescence signals. This agrees with Gruebele’s experiment, in
which they reported a 3–5 nm red shift from 297 to 347 K [50]. The simulation
thus decently reproduced the experimental tryptophan band fluorescence signal
and its temperature dependence. Besides, theoretical analysis show that exciton-
exciton couplings between different tryptophan groups almost has no change on the
lineshape. the asymmetric feature observed in the fluorescence mainly originates
from the vibronic couplings instead of the conformational inhomogeneity.

A temperature jump induced fluorescence signal was also simulated, the popula-
tions of metastable states will relax to the equilibrium distribution at T2 starting from
their initial distributions. Based on the population relaxation of each metastable
state, the transient fluorescence signals at different moments can be generated. The
population change converges at about 200 ns. The lineshape of the spectrum during
the T-jump process (see in Fig. 9.8) also has the asymmetric character. At 0 ns, the
spectral maximum is 350.6 nm, with unsymmetrical ratio about 1.51. From 0 to
200 ns, the spectral maximum gradually red shifts and the asymmetricity increases.
The differential spectra from 0 ns are also plotted in Fig. 9.8. Compared with 0 ns,
the intensity of blue tail decreases and that of red tail increases.
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Fig. 9.9 The time dependence of the state population weights � after T-jump (top) and the
conformations of the tryptophan fluorophores on which the eight most populated 1La states locate
(bottom). On the left, one typical folded state and two typical unfolded states’ fluorescence spectra
are showed

To reveal the molecular details underlying the trpzip2 unfolding fluorescence, we
define �ir D PiBir for a specific 1La state r (rDA,B,C,D) in a peptide conformation
TC-state i . Here, Pi is the TC-state population, and Bir D e�Eir=kT

P
r0 e

�Eir0 =kT is the

Boltzmann weight of the 1La state (emission state of indole-related compounds)
with index r (rDA,B,C,D), Eir is the corresponding excitation energy. �ir thus
represents the probability of a certain state ir as the initial state of the emission.
Changes of � for all the 52 states during the T-jump unfolding process are plotted in
the top panel of Fig. 9.9. The locations of the eight most weighted fluorophores are
demonstrated at the bottom panel of Fig. 9.9. The two fluorophores with largest � are
both on the TC2, a typical folded state. When the temperature changes from 300 to
350 K, � decrease from 48.5 to 23.1 % for TC-2 D, and from 23.6 to 11.3 % for TC-2
A, respectively. And the values for TC-1 C, TC-8 A and TC-7 A increase from 6.3,
1.3 and 0.8 % to 10.6, 7.2 and 7.0 %, respectively. We can also define ˛ir D �irD

2
ir,

in which Dir is the amplitude of the transition dipoles. ˛ thus represents the
contribution of a certain state to the spectrum. Most of the fluorophores on the
unfolded configurations, including 1C, 8A, 7A and 4C has significant red shifted
transition energies compared with those on the folded configurations, such as 2D and
2A. The analysis above provides a molecular level explanation of the fluorescence
change with the rise of temperature: As the temperature increases, the trpzip2
peptide experiences an unfolding process, the populations of blue-end fluorophores
on the folded peptides, such as TC-2 D and TC-2 A, decrease and those of red-end
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Fig. 9.10 Correlations between the electric potentials and the transition energies only (left),
between geometry parameters and the transition energies only (middle) and between electric
potentials plus geometry parameters and the transition energies (right)

fluorophores on the unfolded peptides, such as TC-8 A and TC-7 A, increase at the
same time, which causes the red shift in the spectrum.

To understand the influence of the environment on the tryptophan fluorescence,
we investigated the correlation between the tryptophan transition frequencies and
the environmental factors. Calculations are performed on 1La equilibrium states
of all 52 3MIs at 350 K. The electric potentials on each of the 10 heavy atoms
in 3MI, which generated by the point charge distribution of the environment, are
calculated. Based on those 52 calculated data sets, the 3MI transition energy with
10 parameters (10 heavy atoms) are fitted using multiple linear regression analysis.
The left panel of Fig. 9.10 shows the poor correlation between the fitted transition
energies and the transition energies calculated by quantum chemistry. The 1La state
of tryptophan fluorophores is a typical � ��� conjugated transition on indole ring.
Thus the geometry distortion of the 3MI group, which is induced by environment
and have effect on electronic delocalization, may have influence on the transition
energy as well. We thus carried out another fitting procedure which includes six
geometry parameters to describe the mechanical influence of the environment on
the transition frequencies. The middle part of Fig. 9.10 gives a better correlation
between geometry parameters and transition energies. And then the right part of
Fig. 9.10, which include both environmental electric potential and environment
induced geometry changes, shows the more largely improved correlation between
the fitted and calculated transition energy. This means that the origin of tryptophan
fluorescence shows a combined influence from both the environment field and the
3MI geometry distortions.

9.5 Summary and Future Perspective

Based on MSMs, the T-jump triggered long time unfolding related IR, 2DIR
and vibrationally-resolved fluorescence of small peptide ˇ-hairpin trpzip2 can be
simulated. We can demonstrate that sufficient conformational sampling are crucial
for obtaining accurate spectroscopic observables. MSMs provide a good way to
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simulate the time resolved spectroscopy from the relaxation of the metastable state
populations.

Evidently, sufficient accuracy spectroscopic signal simulation for peptides and
proteins can push theoretical work become more capable to shed light on inter-
preting protein folding/unfolding problems. Correspondingly, this will also help to
refine the theoretical model. The complexity of the atomistic processes contributing
to the IR signal makes it still rather difficult to interpret IR absorption patterns in
terms of local structural organisation and atomic motions. Due to computational
demand, the limited conformational number certainly trims fluorescence spectra
calculation accuracy. Obtaining spectroscopic signals of each state still requires an
ensemble average over many protein conformations. There is every reason to believe
that developing high efficiency protocol, which combines quantum mechanism with
sampling algorithm, still is the future trend for theorists.
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Chapter 10
The Dilemma of Conformational Dynamics
in Enzyme Catalysis: Perspectives
from Theory and Experiment

Urmi Doshi and Donald Hamelberg

Abstract The role of protein dynamics in catalysis is a contemporary issue that
has stirred intense debate in the field. This chapter provides a brief overview of
the approaches and findings of a wide range of experimental, computational and
theoretical studies that have addressed this issue. We summarize the results of
our recent atomistic molecular dynamic studies on cis-trans isomerase. Our results
help to reconcile the disparate perspectives regarding the complex role of enzyme
dynamics in the catalytic step and emphasize the major contribution of transition
state stabilization in rate enhancement.

Keywords Enzyme dynamics • Accelerated Molecular dynamics • Catalysis •
Molecular mechanics • Kramers’ rate theory • Conformational dynamics •
Cis-trans isomerization/isomerase • Cyclophilin A • Principal component
analysis • NMR relaxation dispersion • Protein flexibility • Structure-function •
Dynamics-function • Multi-exponential • Kinetics • Free energy barrier

10.1 Introduction

Enzymes are biological catalysts that enhance the rates of a plethora of reactions
important for life processes [1]. In the absence of enzymes, the reactions in solution
would be 1017 to 1019 times slower [2]. Along with remarkable selectivity, the speed
up of rates by enzymes allows for reactions to occur at timescales of milliseconds
to seconds, which is relevant for cellular function [2]. Ever since the discovery of
the first enzyme in 1833 [3], the quest for understanding how enzymes are able
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to achieve such proficient catalytic properties has been ongoing. Our knowledge
in enzymology in the last four decades has increased to a large extent, leading to
several successful industrial applications [3]. These advances, in part, have been
based on protein engineering efforts that have exploited the structure-function
relation, i.e. focusing on the structural changes upon mutagenesis and its effects
on enzyme function [4]. Conceptually, a chemical reaction is visualized as an
energy barrier between reactant and product that must be overcome by thermal
activation of reactant molecules [2, 5]. The increase in the reaction rates is then,
evidently, due to significant reduction of this activation barrier by enzymes. It has
been now well-established that enzyme active sites provide favorable environment
for electrostatic stabilization of the transition state to a much greater degree relative
to that of the ground states [6]. This, therefore, has led to efforts for structural
and energetic optimization of active sites. Although other factors such as steric
strain, desolvation and entropy have been proposed to play a role in decreasing
the activation energy, their effects, even if present, are very small as compared to
the dominant contribution arising from transition state stabilization (TSS) [5, 7].
The TSS principle has been exploited in rational approaches for designing and
engineering enzymes with better catalytic efficiencies than the naturally occurring
ones. However, such attempts have met only moderate success, underscoring our
inadequate understanding of the factors responsible for the catalytic power of
enzymes and the need for new concepts to explain enzyme function. Since the
beginning of this millennium, an increasing number of studies have suggested the
role of protein dynamics in enzyme action [8].

The earliest model to understand enzyme specificity emphasized stringent
requirement of shape complementarities between enzyme and substrate (the lock
and key mechanism [9]) and was deficient in the role for any protein motions.
Almost seven decades later, the model proposed by Koshland [10], for the first
time, accommodated protein flexibility and suggested that upon encountering the
substrate, considerable structural rearrangements took place in the enzyme and the
substrate, such that a perfect fit was ‘induced’. In this mechanism, substrate binding
results in the enzyme visiting those conformations that are not sampled in the free
unliganded enzyme [11]. Experimental evidence of structural variability in proteins
came later from solution nuclear magnetic resonance (NMR) spectroscopic [12]
and X-ray studies that showed that in many instances the structure adopted by an
enzyme upon binding its substrate is distinct to that by a free enzyme [13, 14].
Moreover, even in a free enzyme, an ensemble of models yielded from NMR struc-
ture determination studies and high B-factors in X-ray crystallography suggested
relatively higher flexibility in certain disordered regions of the proteins. One of the
earlier implications of protein motions arose from allostery that involved concerted
large-scale transitions between at least two conformations or states of a protein and
where each conformation (generally interpreted then as a static structure) could
be associated with a distinct function [15]. Presence of conformational ensembles
was also indicated in the conformational selection view of binding, in which the
substrate could choose a subset of enzyme conformers to find the best fit in the
complex [16]. Pioneering molecular dynamics simulations had also long before
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revealed the dynamical nature of biomolecules [17]. It is now commonplace to find
several examples of enzymes in literature that undergo, on one hand, substantial
conformational changes (sometimes large-scale such as opening and closing of a
loop or hinged movements of domains) for substrate binding and product release
[18]. On the other hand, thermal fluctuations in a protein may result in an ensemble
of conformations that show only minor deviations from the overall native structure,
involving a small set of degrees of freedom [19]. Whether such stochastic thermal
fluctuations have any functional significance in molecular recognition and catalysis
has largely been an unexplored issue, until the last decade. More recently, enzyme
flexibility has been suggested to be a crucial determinant of its catalytic efficiency
[18, 20–25]. However, the question of how exactly the dynamical motions help in
accelerating the catalytic rates has remained elusive, despite intensive research on
experimental and theoretical fronts accompanied with unprecedented controversies
in the field of enzymology (vide infra).

10.2 Nature of Protein Dynamics

Protein dynamics encompass motions that span broad range of timescales and
length-scales [26]. The timescales and amplitudes of these motions are governed
by the features of the underlying energy landscape [27]. The energy landscape of
biomolecules is hyper-dimensional and rugged with multiple energy wells or con-
formational states (or sub-states) separated by barriers of varying lengths (Fig. 10.1).
When conformational states are separated by barriers of several kBTs (kB being
the Boltzmann constant and T, the temperature) interconversions between them are
slower, ranging from microseconds to seconds and involving collective motions
of many degrees of freedom, for e.g. allostery, protein folding/unfolding, enzyme
catalysis. Within each state, transitions between closely related conformational sub-
states constitute the relatively faster fluctuations on the picosecond-nanosecond
timescale, for e.g. side-chain rotations or loop motions. Local flexibility at the
atomic level within each conformational sub-state includes femtosecond-bond
vibrations. Motions may involve a group of atoms located proximally in sequence
or space or those that are distal to each other but move in a concerted fashion.
The timescale of these motions can fall anywhere in the wide continuum range
depending on the barrier heights between the sub-states. The energy landscape
represents all the possible states of a protein in a solvent environment. Protein
dynamics is coupled to the motions of the surrounding water molecules [28] that
rearrange around the protein (hydration shell) involving breakage and formation
of hydrogen bonding network [29]. Water dynamics contributes an added level
of roughness to the protein energy landscape [29]. When a protein undergoes
mutation or binds a substrate/ligand; or there are changes in the external conditions,
for e.g. in temperature or solvent composition, the modified system of protein-
solvent is then represented by a distinct energy landscape in which the equilibria
between the various states may be modified. The conformational ensemble of each
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Fig. 10.1 Protein conformational dynamics. Schematic representation of a region of an energy
landscape depicting two conformational states separated by a relatively high energy barrier.
Transition from one state to another may involve a local change in few degrees of freedom or
large-scale with collective motions of many degrees of freedom. Depending upon the barrier
height, the transition may take microseconds to milliseconds or even seconds. If we zoom into the
bottom of any such state, we may find that the bottom of the well is rugged with multiple valleys
separated by barriers of different heights. Interconversions between closely-related sub-states are
in the nanosecond timescale whereas faster picoseconds transitions may occur between even more
closely-related sub-states (Adapted from Frauenfelder et al. [27, p. 1598] & Henzler-Wildman and
Kern [26, p. 964])

state (i.e. State I or II in Fig. 10.1) may generally have structural identity and
thermodynamic properties that are different from those of the other. Besides, since
fluctuating to another state requires crossing large barriers, the time the system
spends in a particular energy well is long enough to allow direct characterization
of these states from ensemble- and time-averaged low-resolution bulk experiments.
Relaxation to equilibrium conditions is usually monitored spectroscopically fol-
lowing sudden perturbation of the system (for e.g. by temperature, pressure, or
pH) to obtain kinetic information about interconversion between states. Probing
dynamics in the faster regime is more challenging, partly because of the short
lifetimes of the conformational sub-states. From an ensemble-averaged signal, it is
not possible to characterize the sub-states and their exchange rates. Advancements
in NMR relaxation studies now allow accessing a wide spectrum of timescales
from picoseconds to seconds at atomic resolution [30]. One can obtain high-
resolution (i.e. site-specific) information about conformational sub-states when their
interconversion rates are in the intermediate to rapid regime on the NMR timescale.
The Carr-Purcell-Meiboom-Gill relaxation dispersion (CPMG-RD) method, which
reduces the line-broadening due to interconversions between sub-states, have been
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combined with isotope labeling of backbone amides and methyl carbons to probe
millisecond dynamics in many free as well as substrate-bound enzymes [31, 32].
The heterogeneous behavior of a single enzyme molecule has been revealed by
single molecule fluorescence studies. Enzymatic turnover rates for a single molecule
have been shown to fluctuate over a broad range of timescales (from milliseconds
to tens of seconds) [33, 34]. Such variation in turnover rates is suggested to be
due to interconversions between enzyme conformers. Further, single molecule fluo-
rescence quenching by electron transfer have been used to measure the timescale at
which the donor-acceptor distances fluctuate, from which the range of timescales for
conformational fluctuations in an entire protein has been inferred [33]. Interestingly,
the range of timescales spanned by conformational fluctuations has been found to be
similar to that by enzymatic turnover rates. Molecular dynamics (MD) simulations
have been greatly instrumental in probing dynamics on the sub-microsecond
timescale and providing a complete structural characterization of transient species
in atomistic details [17, 35, 36]. The advantage of MD computational studies is
that even states with higher energy (with low probability) can be accessed, which
is not possible with current experiments. Progress in computational architecture
and methodologies has been impressive in the past decade [37–39], permitting
routine use of MD alongside experimental investigations. However, accessing long
timescale dynamics still presents substantial challenge for atomistic MD studies.

10.3 Computational Modeling of the Effects of Enzyme
Dynamics on Catalysis

Computational simulations of enzyme catalysis are challenging from many aspects.
An enzyme molecule represented in atomistic details and solvated in explicit solvent
involves very many degrees of freedom. Sampling of such large systems is restricted
to a few hundreds of microseconds in classical MD simulations. Such studies can
help characterize the reactant or the product states from an equilibrium point of
view. However, the enzymatic chemical step of transforming the reactant to product,
that usually takes milliseconds, cannot be simulated directly yet. In view of the
fact that conventional MD trajectories fail to capture the suggested functionally
important millisecond dynamic motions, refuting or establishing a role of protein
dynamics in catalysis becomes unattainable. To simulate reactions involving bond
breaking and formation, quantum mechanical (QM) treatment is required. Also, it
is important to model polarization effects caused by environmental dynamics. Due
to the high computational cost involved, QM simulations of large enzyme systems
are not feasible. Therefore, hybrid methods have been implemented; in which part
of the system involved in the chemistry is treated quantum mechanically while the
rest of the system is represented with molecular mechanics (MM). Here, we briefly
describe some of the currently used approaches for modeling enzyme catalyzed
reactions and the kind of information that can be obtained from these methods.
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10.3.1 Classical Molecular Dynamics

Although traditional MD is limited in modeling the entire catalytic pathway in
continuity, i.e. the progression of the reaction from reactants to products via tran-
sition state, useful insights about enzyme dynamics can be gained from analyzing
individual atomistic MD trajectories of enzymes in the absence of the substrate and
those bound to either the reactant or the product. We have recently demonstrated
this point in our model enzyme system, Cyclophilin A (CypA), which belongs
to a class of peptidyl prolyl isomerases. CypA catalyzes cis-trans isomerization
of prolyl peptide bonds [40]. The isomerization reaction does not involve any
bond breaking and formation, making it an ideal candidate for classical MD
studies. In addition, the location of the transition state is also well-defined (i.e.
regions around ¨	 90o, where ¨ is the peptide bond torsional angle between the
Xaa-Pro motif in the substrate). Such reactions, in which local conformational
change occur at a peptide bond, are associated with several biological switches
and have important functional consequences [41]. We carried out one very long
normal MD simulations of free CypA and three simulations of CypA bound to the
substrate that was restrained in either the cis, trans or transition state configurations.
We then applied principal component analysis of these trajectories, which is a
mathematical procedure to reduce the dimensionality of huge data sets and de-
convolute the local fast fluctuations from collective large-scale motions [42, 43].
Essentially, a new set of orthogonal coordinates is constructed by diagonalization
of the covariance matrix of the atomic coordinates in a trajectory. The resulting
set of coordinates or eigenvectors are arranged according to the decreasing order
of their corresponding eigenvalues. Eigenvalues represent the variance along the
corresponding eigenvectors. The first few eigenvectors have the largest variances
such that most of the protein motions can be described by projecting the original
data onto these eigenvectors (also called principal components). Figure 10.2 shows
the slowest eigenmode projected on the CypA structure. The flexibility observed
in the loop regions (motions depicted by the arrows) in the free enzyme is lost in
the presence of the substrate when it is in the cis or the trans state. Interestingly,
some of the slowest motions in one of the loops are retained when the substrate is
in the transition state configuration. However, the direction of motion of that loop
is opposite to the direction observed in the free enzyme. Similarly, comparisons
of other eigenmodes in free and substrate-bound enzymes can help in identifying
motions that are inherent to the enzyme and those that are important in the transition
state. Also, similarity in motions can be determined from calculating dot products
between eigenvectors in the reactant-, product-, transition-state-bound enzyme or
the apo enzyme. In our recent studies, projection of the conformational phase
space of the CypA active site residues onto the first three principal components
revealed some important features [40, 46]. The conformational space sampled by
the active site residues bound to transition-state substrate was seen to be more
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Fig. 10.2 Comparison of the slowest modes in free CypA and CypA-substrate complexes along
the reaction coordinate. CypA structure is projected along the slowest eigenmode (red arrows)
obtained from principal component analysis of trajectories of (a) free CypA and CypA in complex
with the substrate (cyan) in the (b) trans, (c) transition state and (d) cis configurations. The
lengths of the arrows are proportional to the extent of motion, where the head and tail of the
arrows represent the most positive and negative projections, respectively. The slowest motions
predominantly involve loops (gray) (The figures were prepared using VMD [44] and IED [45])

restricted that those sampled by the enzyme in complex with the ground states.
Moreover, each of the three substrate-bound conformational ensembles was a subset
of the significantly much broader ensemble sampled by the free CypA. Furthermore,
from two-dimensional free energy profiles, we were able to identify the enzyme-
substrate interactions coupled to the ¨ dihedral and, thereby, to the chemical step
[46]. Recent computational studies by others on human CypA and its homologs in
two other species have shown that reaction-coupled modes (i.e. eigenmodes that
are coupled to the maximum displacement of the peptidyl-prolyl ¨ dihedral of
the substrate) are conserved [47]. These comparative studies in non-homologous
enzymes that catalyze the same chemistry have further suggested that conforma-
tional dynamical motions, which were coupled to the chemical step, facilitated
the interactions between the enzyme and the substrate in the active site in a
similar manner.
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10.3.2 Combined Quantum Mechanical and Molecular
Mechanical Methods

Electronic redistribution accompanying formation or breakage of chemical bonds
cannot be described by molecular mechanical force fields, which typically model
bonds with a harmonic potential. Therefore, for reactions involving bond breaking
or formation and/or metals, the electronic structure of the atoms participating in the
reaction should be described with quantum mechanics. To make the calculations
tractable, the QM treatment, i.e. the detailed electronic structure method is limited
to the atoms of the substrate and the enzyme involved in the reactions, whereas the
surrounding regions of the enzyme and the solvent are modeled with MM force field
[48]. Improved boundary treatments are now available for appropriate modeling of
the interaction between the QM and MM regions [49]. Detailed reviews on hybrid
QM/MM methods can be found elsewhere [35, 49–53] and articles cited therein.
The accuracy of potential energy surfaces computed for a chemical reaction will
depend on the type and the level of molecular orbital theory used to describe the
QM region. Although ab initio methods are most accurate, they are computationally
very demanding and limited to only a few atoms. Reparameterized semi-empirical
methods and density functional theory are most popularly used due to the low
computational cost involved and the possibility of extending to larger systems [35,
49, 52]. To compute potentials of mean force (PMF), potential energy is averaged
over ensemble of structures generated from conformational sampling via classical
MD. Detailed QM calculation is performed on each configuration of normal MD
trajectory. MD simulations are implemented in restricted and small overlapping
regions along the reaction coordinate using umbrella sampling [54] or free energy
perturbation methods [55]. The activation free energies can then be calculated from
the PMF’s. Another method that is computationally efficient for larger systems
and extensively used to calculate the free energy profiles of chemical reactions in
solution and enzymes is the empirical valence bond method [56]. A wide range
of QM/MM implementations [35, 49, 57, 58] have been carried out to identify
enzyme motions deemed important for catalysis [20], estimate rate constants, kinetic
isotope effects (KIEs) and their temperature dependence that are consistent with
experimental values for several enzymes and their mutants. This has helped to gain
insights for the role of protein dynamics in enzyme function at the molecular level.
In most cases, equilibrium motions were identified that facilitated the chemistry but
not found to be coupled to the chemical step.

10.3.3 Enhanced Sampling Methods

Sampling schemes in which the Hamiltonian is modified by addition of a bias
potential are widely employed in either constrained or unconstrained simulations.
Umbrella sampling [54] is one of the oldest and commonly used methods to generate
PMF along the reaction coordinate and estimate free energy of activation (�G#)
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from the PMF profiles. The reaction coordinate is divided into several windows and
the phase space is sampled by MD in each window. Such PMF from MM force
fields do not include nuclear quantum effects. Therefore, techniques to incorporate
the effects of zero point and quantized vibrational energies in the MM-PMF have
been proposed using normal mode analysis [49].

Unlike umbrella sampling, accelerated molecular dynamics (aMD) approach [59]
does not require restricting the phase space and prior knowledge of the reaction
coordinate. aMD has been shown to successfully address the problem of inadequate
sampling and accessing long timescale dynamics [60–62]. The main idea behind
aMD is to modify the potential energy surface near the minima by adding a bias
potential such that the minima are raised and the transition rates out of the basin
are increased. A continuous and non negative bias potential is added only when the
potential energy falls below a preset threshold boost energy. The prescription for
the bias potential maintains the basic shape of the potential and does not allow
the forces (i.e. derivative of the modified potential) to be zero at places where
the modified potential is equal to the boost energy. The equilibrium properties of
the original landscape can be reproduced by a simple reweighting procedure to
remove the effects of the bias [59]. The main advantage is that the free energy
profiles can be projected onto any choice of variables, not necessarily the progress
coordinate. aMD permits the flexibility to boost an entire system or only selective
set of degrees of freedom belonging to either one or more molecules in a system.
Our recent work has shown that it is also possible to retrieve the kinetics on the
original potential by using Kramers’ rate theory [60, 63] and establish the relation
between roughness of the underlying energy landscape and the effective diffusion
coefficient [64]. Accelerated molecular dynamics can be greatly valuable in directly
simulating enzyme-catalyzed reactions and their corresponding reference reactions
in solution that involve very large activation barriers [62]. Moreover, aMD has the
potential to probe the direct effects that millisecond timescale dynamical motions
of the enzyme may have on the catalyzed reaction in atomistic details [40]. We
have recently employed aMD to simulate the catalyzed and the uncatalyzed cis-
trans isomerization of a prolyl peptide bond in a realistic enzyme model with lower
activation barriers (Sect. 10.5). Improved versions of aMD have been developed by
our group in which only rotatable dihedrals i.e. degrees of freedom most relevant
for conformational sampling are subjected to acceleration. This has resulted in the
reweighted equilibrium properties with significantly less statistical noise than the
previous implementations [65].

10.4 Controversy Over the Role of Enzyme
Dynamics in Catalysis

It is now broadly accepted that enzyme flexibility is important for function, there
exist multiple conformations of an enzyme and enzyme dynamics span multiple
timescales. However, whether enzyme dynamics contribute to catalysis or not is
an intensely debated contemporary issue. It is not within the scope of this chapter
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to review the available exhaustive literature on this problem. Therefore, here, we
shortly summarize some of the key experimental observations whose interpretations
failed to reconcile with computational studies, theoretical predictions for which
no compelling experimental evidence exist and disagreements based on semantic
issues. Recent reviews and articles [7, 66, 67] and references therein provide detailed
discussions on this matter.

NMR relaxation dispersion studies detected amide nitrogens in one of the loop
regions in the substrate-bound CypA that underwent chemical exchange during
catalysis [31]. Since the global exchange rates of these amides coincided with the
catalytic rates, it was suggested that enzyme dynamics directly promoted catalysis
[32]. Moreover, conformational exchanges of these same amide nitrogens preexisted
in the free enzyme and on the same millisecond-timescale as those observed
during substrate turnover [32, 68]. This led to the proposition that catalysis-coupled
dynamics is an inherent property of enzymes. Similar conclusions were drawn for
dihydrofolate reductase (DHFR), another extensively-studied paradigm to investi-
gate the effects of dynamics on catalysis. The rates of hydride transfer catalyzed
by DHFR seemed to be dictated by the dynamics that facilitated the sampling
of various conformational states during the course of the catalytic cycle [69]. In
subsequent studies on DHFR mutants, millisecond-timescale dynamics observed in
the active site loop of the wild-type (wt) was abrogated [70]. The loss of flexibility
was concomitant with the decrease in the hydride transfer rates in the mutants.
Virtual similarity was also noted in the structural comparisons of active sites in
the wt and mutants. Therefore, it was inferred that dynamics is directly coupled
with the catalyzed hydride transfer, with the assumption that there was no apparent
difference in the electrostatic interactions made in the active sites of wt and mutants
[70]. These claims were later contested by computational investigations that showed
that the trend of reduced hydride transfer rates in mutants could be reproduced
without including any dynamical effects in the model [71]. In agreement to the
well-established transition state stabilization principle, it was further suggested that
the reduction in the rates was due to an increase in the activation barriers that
were predominantly determined by electrostatic preorganization at the active site
(as shown earlier by the same group [72]), and not due to the loss of conformational
motions in the mutants [71].

Primarily, the experimental observables to monitor tunneling in enzyme-
catalyzed hydrogen-transfer reactions are primary KIEs and their temperature
dependence. KIEs quantify the isotope dependent differences in the reaction rates
(i.e. kH/kD). Although the chemical properties of hydrogen isotopes (protium,
deuterium and tritium) are the same, differences in their zero-point vibrational
energies lead to smaller activation energy and hence faster rate for the transfer of
protium than for deuterium or tritium. However, much larger KIEs measured at
ambient temperature than expected from a semi-classical description of reaction
kinetics (i.e. transition state theory that incorporates quantized vibrational energies
of the ground state) are often taken as an indication of quantum tunneling (i.e.
passage through the barrier) [73]. Since KIEs are sensitive to the changes in
hydrogen donor-acceptor distance and overlap of donor-acceptor wave functions,



10 The Dilemma of Conformational Dynamics in Enzyme Catalysis. . . 231

models invoking a role for protein dynamics in hydrogen transfer reactions
have been proposed to explain the unusually large KIEs and their anomalous
temperature dependence (or independence) [22]. In case of DHFR, it is argued that if
conformational dynamics were directly coupled to the hydride transfer step, it would
modify the hydrogen donor-acceptor distance or the wavefunction overlap between
the substrate and the product in the mutants. And modifications of these parameters
would reflect in the changes in KIEs and their temperature dependence. However,
a subsequent experimental investigation found striking similarity in the magnitude
of the KIEs and their temperature dependence in the wt and the same DHFR
mutants [74] as studied in the previously mentioned experiments [70]. These results
re-emphasized that the reaction rates were affected by the changes in the active
site electrostatic preorganization (increase in reorganization energy) as a result
of mutations and there did not seem any direct coupling between conformational
fluctuations and the actual hydride transfer step [74].

The other source of controversy is the fast (femtosecond) vibrational dynamics
at the atomic level that are either interpreted as statistical or non-statistical motions.
Long-range network of coupled motions on the femtosecond-picosecond timescale
have been proposed from detailed computational studies to assist hydride transfer
[75, 76] by facilitating tunneling. These motions are considered to be promoting
vibrations that bring about fluctuations in equilibrium ensemble [20]. Another set of
theoretical and computational studies have suggested the non-statistical vibrational
modes of residues distal to the active site of an enzyme to actively drive the reaction
over the barrier [24, 77, 78]. Ring polymer molecular dynamics that incorporated
zero-point and tunneling effects could capture non-statistical vibrations of only a
small set of atoms involved in the hydride transfer reactions [79]. However, such
non-statistical dynamics existed only for short length-scales (i.e. up to 4–6 Å of the
transferring hydrogen), beyond which no coupling was found with the hydride trans-
fer step [79]. In support of these conclusions, experimental studies on thermophilic
DHFR have found no evidence for long-range coupling with the chemical step in
distal mutations [80]. Also, computational simulations by other independent groups
could reproduce experimental observations without invoking any non-statistical
motions [7, 81]. Another contentious aspect of coupling between vibrational dynam-
ics and the chemical step is the disconnect in the timescale of the two processes –
typical turnover rates for biochemical reactions are on the millisecond timescale and
vibrational motions occur in femtoseconds. In case of hydride transfer, it is argued
that the actual cleavage of the C–H bond is fast on the femtosecond-picosecond
timescale, thus accommodating catalysis-promoting role for fast vibrations. For that
matter, direct contribution of slow millisecond dynamics in CypA-catalyzed cis-
trans isomerization, which also occurs on the same timescale, is thought to be more
convincing. However, as we show further (Sects. 10.5 and 10.6), coincidence of
enzyme motions and the chemical step on the same timescale does not guarantee
that enzyme motions are driving the chemical step.

To rationalize the observations of large KIEs and their temperature dependence
not expected from classical over the barrier kinetics, several mathematical models
with simple functional forms have been proposed with a role for promoting
vibrations to effect quantum mechanical tunneling. In the full tunneling model, fast



232 U. Doshi and D. Hamelberg

femtosecond-promoting vibrations bring about fluctuations in the donor-acceptor
distance [22]. This distance sampling enhances the extent of wave function overlap
between donor and acceptor, and thereby tunneling. Although convincing interpre-
tations in certain cases of large KIEs and their anomalous temperature dependence
(and independence) have been provided by this simple model [73], not all available
data could be explained [82]. Another model have suggested ‘barrier compressing’
vibrations to be instrumental in reducing donor-acceptor distance (i.e. decrease in
the width of the barrier), which would lead to efficient tunneling [83, 84]. For this
model, however, there has still been lack of support in terms of direct experimental
evidence and from computational simulations that have pointed out the breakdown
in the dependence of tunneling and KIEs on physically unreasonable short donor-
acceptor distances used in the model [81]. If, according to the model, compression
in the donor-acceptor distance is accompanied with a decrease in the barrier height
and width, and thereby, an increase in tunneling probability, tunneling may become
meaningless in cases where the barriers are so small that reaction might as well be
able to proceed ‘over the barrier’.

Certain amount of confusion and apparent disagreement in the field regarding the
role of protein dynamics in catalysis have arose from the definitions of ‘catalysis’.
Ideally, catalysis is the rate enhancement of a reaction by an enzyme as compared
to an uncatalyzed reaction in solution, which follows the same mechanism as the
one in the enzyme’s active site. Discussions on the choice of another ‘reference’
reaction can be found in references [7, 67]. Large scale conformational changes
are brought about in adenylate kinase by a hierarchy of timescales [18, 68]. The
opening of the active site lid is crucial for substrate binding and product release
whereas the chemical step takes place in the closed state. The rate determining
step is the opening of the lid after the reaction has occurred. It was obvious that
protein dynamics impacted catalysis when it was referred to as the overall step
[85], whereas others who considered catalysis as the chemical step, did not find
any direct coupling between millisecond-timescale dynamics and the chemical step.
Such findings were obtained from coarse-grained simulations mapped with the
properties of an atomistic model in an explicit solvent [86].

10.5 CypA as a Model to Investigate the Direct Effects
of Enzyme Dynamics on Catalysis

As we have seen above, hydride transfer reactions involve nuclear quantum mechan-
ical effects and are more complex to investigate computationally. CypA, on the other
hand, catalyzes the reversible cis-trans isomerization of peptide bonds preceding
proline residues and does not involve any bond formation or bond breaking. There
are several advantages for modeling cis-trans isomerization reactions: (i) classical
MD can be used for simulation; (ii) the choice for the reaction coordinate, i.e.
the peptide bond dihedral, ¨, is validated; (iii) along with the cis and the trans
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(regions around¨	 0o and 180o, respectively) the transition state regions are clearly
distinguishable (regions around ¨	 90o); (iv) optimized parameters for peptide
bond dihedrals that have reproduced experimentally measured activation barriers
and cis-trans equilibria are available [87]; (v) CypA is very-well characterized
experimentally, making validation of simulations by comparison to experiments
possible [88]. However, cis-trans isomerization in solution is extremely slow,
occurring on the second-timescale. And the catalyzed reaction by CypA takes
milliseconds, which is on the timescale still beyond the reach of conventional MD.
Since the probabilities of transitions from the trans well to the cis and vice versa
are very small, the system may remain trapped in an energy basin and with no
guarantee that even a single transition will be observed from trajectories longer than
milliseconds. We, therefore, built a model system in which the potential energy
barriers around the peptidyl-prolyl bond were significantly reduced in the CypA-
substrate. We summarize below the results of our recent studies on CypA-catalyzed
cis-trans isomerization [40]. The V2 force constant of the dihedral potential,
V2
2
Œ1C cos .n� � �/�, in the AMBER force field [89] controls the rotational barrier

around the ¨ bond and modification of V2 does not perturb cis-trans equilibria. A
decrease in V2 allowed adequate sampling of cis-trans transitions from conventional
MD and to extract reliable kinetics. We carried out atomistic-explicit-solvent
classical MD simulations of cis-trans isomerization in the free substrate and that
bound to CypA. Rotational barriers were systematically increased by setting V2 to
increasing values (i.e. 7, 9, and 11 kcal/mol) in three different sets of simulations.
On one hand, the decay of probability of survival in the trans well invariably
exhibited mono-exponential behavior for the uncatalyzed reactions (Fig. 10.3a–
c). The decays for the catalyzed cis-trans isomerization reactions, on the other
hand, were multi-phasic. The differences in the kinetic behaviors of the uncatalyzed
and the catalyzed reactions revealed the nature of the environment that is coupled
to the reaction. Aqueous solvent presents a homogeneous environment in which
solvent dynamics occurs on a very narrow or perhaps a single timescale and much
faster than the timescale of the (uncatalyzed) reaction. In the enzyme, however, the
different modes, some on the same timescale and some slightly faster and slower
than the catalyzed chemical step, got coupled with the substrate dynamics over the
barrier. Fitting the decays of survival probability with multi-exponential functions
without deciding a priori [90, 91] the number of phases yielded distributions
of time constants. Expectedly, with the increase in the rotational barrier, the
single time constant for the uncatalyzed isomerization or the distributions of time
constants obtained for the catalyzed reaction gradually shifted to slower timescales
(Fig. 10.3d–f). However, the average time constant (caption of Fig. 10.4.) for
the catalyzed isomerization was always faster than the time constant for the
corresponding uncatalyzed reaction. Also, the trend of progressively diminishing
relative amplitudes of the faster phases and increasing slower phases was notable.
These results suggested the coupling between the chemical step and the dynamics in
CypA. As to which enzyme modes would get coupled and affect the chemical step
depended on the timescale of the reaction. However, evidence for this coupling did
not mean dynamics would bring about enhancement in chemical rates (vide infra).
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We, further, investigated how changes in the CypA dynamics would affect
isomerization rates in the substrate. The idea was to mimic experimental sys-
tems wherein mutational changes (i.e. slowing down or abrogation) in enzyme
dynamics correlated with diminished rates. However, in our study, we aimed to
speed up the dynamics of CypA by subjecting only CypA to accelerated MD in
simulations of CypA-substrate complexes. The substrate with a reduced rotational
barrier (V2D 7.0 kcal/mol) was simulated with conventional MD. As the extent of
acceleration was increased on CypA, all the enzyme modes sped up, resulting in the
coupling of relatively faster modes with the chemical step. The multi-exponential
behavior was still present but with decreased number of phases (Fig. 10.3d, h). The
speed up in the slower phases caused an increase in the relative contribution of
the faster phases, and clearly, the average time constants became faster, increasing
the isomerization rates by factors of 	2, 3 and 5 respectively, for the lowest,
intermediate and highest levels of acceleration. These results suggested that enzyme
dynamics did affect the chemical step, however, to conclude whether the rate
enhancement compared to the uncatalyzed reaction was brought about by CypA
dynamics or not, we needed to interpret our findings within the framework of a
rate theory that would allow teasing out the relative effects from barrier reduction
(Sect. 10.6.2).

10.6 Theoretical Frameworks to Model and Interpret
the Effects of Dynamics on Catalysis

10.6.1 Transition State Theory

Transition state theory (TST) [92] provides a simple and generalized theo-
retical framework to predict rate constants for reactions occurring in gas and
condensed phases from the following modern mathematical expression [93]:

k D �.T/ .kBT=h/
Q#

QR exp
���G #=RT

�

�
Fig. 10.3 Kinetics of cis-trans isomerization in solution and active site of CypA. (Left) Decay
of survival probability (on a logarithmic scale) in the trans well as a function of time for the
uncatalyzed (cyan) and the CypA-catalyzed (blue) cis-trans isomerization when V2 was set to
(a) 7.0 kcal/mol (b) 9.0 kcal/mol and (c) 11.0 kcal/mol in conventional MD. Effects of CypA
dynamics on isomerization kinetics are seen in (d) when V2 was set to 7.0 kcal/mol and CypA was
subjected to normal MD (blue), lower (dark blue), intermediate (violet) and higher (magenta) levels
of acceleration in accelerated MD. For comparison, decay of survival probability in the absence of
the enzyme (cyan) is also plotted. Continuous black lines are (mono- or multi-) exponential fits.
(Right) (e–h) Distributions of time constants (one for each phase) corresponding to a, b, c and d,
respectively, obtained from exponential fits are shown with respect to their amplitudes
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Fig. 10.4 Free energy profiles and prediction of rates of the uncatalyzed and the catalyzed cis-
trans isomerization from Kramers’ plot. (a) Reweighted free energy profiles of the uncatalyzed
(cyan) and the CypA-catalyzed (blue) cis-trans isomerization generated from accelerated molecu-
lar dynamics using the optimized value of 28.0 kcal/mol for V2 [87]. Upper and lower bounds of
error are depicted by gray lines. (b) Obtained from the linear form of Kramers’ rate expression in
the high friction regime (Sect. 10.6.2), ln (k/¨o¨b) is plotted vs. �G# for the uncatalyzed (cyan
triangles) and the catalyzed (blue triangles) reactions when V2 was set to 7.0 kcal/mol, 9.0 kcal/mol
and 11.0 kcal/mol. Activation free energies, �G#, curvatures of the trans basin (¨b) and barrier
region (¨o) were calculated from potentials of mean force obtained from umbrella sampling. The

average rate constant k D 1/h�i, where � is the average lifetime given by h�i D
nX

i D1

Ai �i . Ai and � i

are the amplitudes and lifetimes of phase i in the exponential function S .t/ D
nX

i D1

Ai exp .t=�i /

used for fitting decays in Fig. 10.3. Black lines are linear fits with slope D 1/kBT. �G#, ¨o, and
¨b for the uncatalyzed (cyan square) and the catalyzed (blue square) cis-trans isomerization with
the actual barriers are obtained from plots in (a). Assuming linearity at higher values of �G#, the
corresponding rate constants are predicted from these Kramers’ plots. A decrease in barrier height
of �9 kcal/mol and an effective increase in the catalyzed rate (i.e. after correcting for the reduction
in curvatures) are shown as dashed lines with arrows

Here, the frequency factor, kBT/h, is on the order of 	6
 1012 s�1 at 298 K
irrespective of the reaction occurring in the gas or the condensed phase and �G# is
the activation free energy i.e. the free energy difference between the reactant and the
transition state. Q# and QR are the partition functions of the transition state and the
reactant, respectively. TST allows the incorporation of quantum mechanical effects
in ”(T), which is the generalized transmission coefficient including the dynamical
effects from barrier recrossing, tunneling and non-equilibrium conditions, i.e.
deviations from Boltzmann distribution in the phase space [93]. In some imple-
mentations, �G# includes the nuclear quantum effects from quantized vibrations.
Transmission coefficients can be evaluated in many different ways as discussed
in references [49, 94 and other references therein]. Transmission coefficients
calculated for many enzyme-catalyzed reactions have been found to be larger than
the reference reactions in solution, thereby contributing to rate enhancement [35].
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However, independent theoretical calculations that estimated fluctuations of the
solvent coordinates from MD simulations have shown no significant differences in
the transmission coefficients of the enzyme-catalyzed and the solution reactions. As
compared to the predominant contribution from the exponential dependence of�G#

to the increase in the enzyme-catalyzed rates, the speed up due to larger transmission
coefficients, if any, is typically less than an order. In the context of variational TST,
if the reaction coordinate is appropriately chosen, the dynamical effects arising from
recrossing the transition state hypersurface can become negligible and thus the rate
constant can be minimized. The usage of TST for enzymatic reactions have been
argued as it does not take into account the direct influence of the surrounding
and the accuracy of the rate constant depends on the choice of the dividing
hypersurface. Nevertheless, improved variants of TST with ensemble averaging and
multidimensional tunneling remain to be the rate theory of choice to rationalize
experimentally measured temperature dependence of KIEs and reproduce activation
barriers in several wild-type and mutant enzymes, especially those involved in
hydride transfer reactions where nuclear quantum effects may be significant [49,
50]. Recently, a model that invoked more than one conformation of the reactant
with different transfer rates for product formation under the TST framework has
been successful in fitting experimental data on rate constants, KIEs and their
temperature dependence for many enzymes [82, 95]. The model assumed certain
a priori criteria for fitting procedures, one being that the rate of interconversion
between the two conformations was much faster than their conversion to the product.
Although this simplistic model demonstrated that explaining experimental trend was
possible without introducing any direct role for protein motions, it included only
two conformations, which is not consistent with the picture implied from single
molecule studies, i.e. enzymes have multiple conformations with a wide range of
reactivities.

10.6.2 Kramers’ Rate Theory

Kramers’ rate theory in the overdamped limit has been employed by us in our
recent work to interpret the simulation results on CypA [40]. Kramers’ framework
explicitly allows for the role of the environment in the noise-driven escape over the
barrier [96]. On a one-dimensional free energy profile, the rate of escape from the
reactant well is given by: kD (!0!bDeff /2�kBT)exp(��G#/kBT) where !o and !b

are the curvatures of the reactant well and the barrier region, respectively, �G# is
the free energy barrier height and Deff is the effective diffusion coefficient, assumed
to be constant along the reaction coordinate. The effects from solvent viscosity
or internal friction from the enzyme as well as dynamical effects due to solvent
dynamics or enzymatic motions on a wide range of timescales are incorporated into
the effective diffusion coefficient. The differences in the energetic roughness in the
aqueous environment and the enzyme’s active site are also included in Deff , which
will, therefore, vary for the uncatalyzed and enzyme-catalyzed reactions. When
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Kramers’ rate equation is expressed in the logarithmic form and then rearranged, it
results in a linear relation: ln(k/!0!b)D ln(Deff /2�kBT)� (1/kBT)�G#. This means
that ln(k/!0!b) can be plotted vs. �G# with a well-defined slope of 1/kBT and Deff

can be calculated from the y-intercept. As mentioned in the Sect. 10.5, the rotational
barriers around the peptide bond are very high (>20 kcal/mol), prohibiting the use of
conventional MD to simulate cis-trans isomerization. We, therefore, computed the
rates of escape from the trans well by setting the rotational barriers to significantly
lowered values. Using umbrella sampling, we generated free energy profiles for
the uncatalyzed and the CypA-catalyzed cis-trans isomerization simulated for each
distinct value of the rotational barrier. However, free energy profiles for the actual
rotational barrier were obtained by subjecting the substrate to accelerated MD
(Fig. 10.4a). Accelerated MD speeds up the transition out of energy well by raising
the minima but not modifying the transition state regions (Sect. 10.3.2). Free
energies of activation (�G#) and the curvatures of the trans well and the transition
state regions were calculated from the free energy profiles. The Kramers’ plots
for the uncatalyzed and the CypA-catalyzed cis-trans isomerization (Fig. 10.4b)
in the lower regime of �G# were extrapolated to higher values corresponding to
the actual reactions. These plots revealed that the effective diffusion coefficient
for the uncatalyzed reaction was faster by an order of magnitude. Moreover, the
predicted rates for the isomerization with the actual barriers exhibited a speedup of
	105 times for the catalyzed reaction over that in solution, which agreed notably
well with experimental estimates. These results provided validation for the use
of Kramers’ framework in describing enzymatic reactions, despite the notion that
Kramers’ treatment can be used only for regimes in which the environment relaxes
much faster than the chemical reaction. It was clearly seen that catalysis was brought
about by a decrease of	9 kcal/mol in the free energy barrier while the effects of
enzyme dynamics opposed the rate enhancement, as reflected in the reduced Deff for
the CypA-catalyzed reaction. When CypA dynamics were accelerated, the overall
rate constant for cis-trans isomerization in the active site had increased. Kramers’
approach permitted us to separate the relative contributions from the barrier effects
and those from the prefactor. Deff had indeed increased with the speed up of CypA
dynamics, however, the overall rate enhancement was hindered by an increase in the
free energy barrier heights. The drawback of Kramers’ theory is that it cannot take
into account quantum mechanical effects, restricting its use for describing reactions
involving tunneling. Despite this fact, the effects of disperse enzyme dynamics
on the chemical step can be interpreted directly and applied generally across
all enzymatic reactions. Unlike the implementation of TST for enzyme reactions
in which rates are calculated from activation barriers obtained from equilibrium
simulations and estimates of transmission coefficient, in this approach we directly
simulated the kinetics of cis-trans isomerization and obtained the rates of escape
out of an energy basin. The effective diffusion coefficient was then predicted from
the information of kinetic rates and free energy barriers. Alternatively, Grote-Hynes
theory can be used for analyzing the coupling between slowly relaxing environment
as in the enzyme and the reaction dynamics, with the advantage of combining with
QM/MM calculations [97].
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10.7 Summary

To rationalize outstanding catalytic efficiencies of enzymes, a catalytic-promoting
role of enzyme dynamics has been implied from recent experiments and theoretical
studies. Establishing enzymatic dynamical effects to rate enhancement has been
elusive and contentious. Various computational methodologies and procedures for
analyses have been developed to interpret observations from experiments and
simulations and further understand at the atomistic level the coupling between
enzymatic motions and the reaction occurring at the active site. This has made
possible to model chemical reactions that involve bond breaking and formation
and simple but very slow isomerization around peptide bonds with large activation
barriers. Proposals on how enzyme dynamics may increase catalytic rates via
tunneling have been put forth. However, nuclear quantum effects and tunneling,
wherever present, are shown to decrease the effective barriers by 2–3 kcal/mol,
accounting for a speed up of not more than 1–2 orders of magnitude in enzymatic
rates [35]. Also, the presence of tunneling in uncatalyzed reactions in solution, and
not only in enzymatic reactions, diminishes its effective contribution in enhancing
catalytic rates [94, 98]. Our atomistic MD simulation studies on CypA have
provided useful insights and reconciled the opposing perspectives regarding the
role of enzyme dynamics in catalysis. Comparing the kinetic behaviors of cis-trans
isomerization in aqueous solution and the CypA active site suggested that enzyme
modes are coupled to and can affect reaction dynamics. Analysis of our results with
Kramers’ rate theory revealed that enzyme dynamical effects, incorporated in the
prefactor, do not increase, but rather opposes the potential enhancement in catalytic
rates due to reduction in activation barriers. The predominant factor responsible
for the increase in the overall rate is the barrier effect arising from electrostatic
stabilization of the transition state.
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Chapter 11
Exploiting Protein Intrinsic Flexibility
in Drug Design

Suryani Lukman, Chandra S. Verma, and Gloria Fuentes

Abstract Molecular recognition in biological systems relies on the existence of
specific attractive interactions between two partner molecules. Structure-based
drug design seeks to identify and optimize such interactions between ligands and
their protein targets. The approach followed in medicinal chemistry follows a
combination of careful analysis of structural data together with experimental and/or
theoretical studies on the system. This chapter focuses on the fact that a protein is
not fully characterized by a single structure, but by an ensemble of states, some
of them represent “hidden conformations” with cryptic binding sites. We highlight
case studies where both experimental and computational methods have been used
to mutually drive each other in an attempt to improve the success of the drug design
approaches.

Advances in both experimental techniques and computational methods have
greatly improved our physico-chemical understanding of the functional mechanisms
in biomolecules and opened a debate about the interplay between molecular struc-
ture and biomolecular function. The beautiful static pictures of protein structures
may have led to neglecting the intrinsic protein flexibility, however we are entering
a new era where more sophisticated methods are used to exploit this ability of
macromolecules, and this will definitely lead to the inclusion of the notion in the
pharmaceutical field of drug design.
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Abbreviations

ATP adenosine triphosphate
FDA Food and Drug Administration (US)
CBF core binding factor
CPMG Carr–Purcell Meiboom–Gill relaxation dispersion
CSP chemical shift perturbations
DHFR dihydrofolate reductase
FBDD fragment-based drug design
FEP free energy perturbation
FTIR spectroscopy Fourier transform infrared spectroscopy
GTP guanosine triphosphate
GPCR protein-coupled receptor
HIV human immunodeficiency virus
HSQC heteronuclear single quantum correlation
HTS high-throughput screening
LBD ligand binding domains
LES locally enhanced sampling
LIE linear interaction energy
MAPK mitogen activated protein kinase
MBP maltose binding protein
MD molecular dynamics
MM-PB(GB)SA molecular mechanics Poisson-Boltzmann

(Generalized Born) Surface Area
MRC multiple receptor conformations
NADPH nicotinamide adenine dinucleotide phosphate
NMA normal mode analysis
NMR nuclear magnetic resonance
NOE nuclear Overhauser effect
PBP periplasmic binding protein
PI(3)K phosphoinositide-3-OH kinase
PRE paramagnetic relaxation enhancement
RCS relaxed complex scheme
RDC residual dipolar coupling
REMD replica exchange molecular dynamics
SAR structure activity relationship
SAXS small-angle X-ray scattering
SBDD structure-based drug design
TAMD temperature-accelerated MD
TMD targeted MD



11 Exploiting Protein Intrinsic Flexibility in Drug Design 247

11.1 Introduction: Including the Importance of Flexibility
of Both Receptor and Ligand

For some time, it was thought that all functions that proteins perform stem
predominantly from the three-dimensional structures that they adopt. Because these
structures are stabilized by a large network of weak interactions, they are easily
rearranged by thermal motion at biologically relevant temperatures. This provides
proteins an intrinsically dynamism that is best understood by considering proteins
as an ensemble of inter-converting conformers [1, 2]; in contrast to the static
interpretation that has been generated from representing a single conformation
as determined by crystallography. Furthermore, a large body of experimental and
computational studies has conclusively highlighted that many biochemical and
cellular processes are intimately coupled to the structural fluctuations of proteins.
Thus, the explicit description of the dynamical behavior of these molecules is
required to relate the structure of biomolecular systems with their function in the
biological context.

The range of motions covered by protein dynamics is extraordinarily large both in
space and time domains, ranging from 10�11 to 10�8 m, and from femtoseconds to
hours, respectively [3]. It has been generally assumed that fast and local motions can
be fundamental in ligand binding and enzymatic catalysis, while slower and global
motions modulate allostery and conformational transitions; even longer timescales
are characteristic of protein folding and association. Conformational flexibility
extends to different levels in the spectrum of motions starting with small local
adjustment such as re-orientation of side chains or even backbones, continuing with
medium-range movement loops and local alterations in secondary structures, to
large-scale conformational changes of structural motifs or domains, including the
extreme case of disorder-to-order transitions.

This intrinsic dynamical property of proteins is of extremely importance in the
field of ligand-receptor recognition, and thus it has direct consequences in the
drug design. Numerous evidences have revealed the limitations of the lock-and-
key theory in taking into account the conformational changes upon ligand binding,
and in consequence novel mechanisms to account for the inherent plasticity of
biomolecules have been elaborated, such as the induced-fit model or the existence of
an ensemble of pre-equilibrated conformations, as proposed in the population-shift
mechanism or also known as conformational selection [4]. Neglecting any flexibility
at the binding site, although has shown some success, in general it has led to failures
in predicting protein recognition events and in successfully docking ligands with
protein receptors [5].

Currently, it has become a common practice to combine both experimental and
computational methods to unravel the role of conformational dynamics associated
with the binding of a ligand to a protein. Experimental data can reveal the type
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of motions inherent to the ligand recognition and the type of mechanism that
the system is more likely to use in such an event. This highly system-dependent
information can then be used to determine the most suitable computational methods
to describe the intrinsic conformational diversity that characterize the system.
Reproducing the inherent flexibility of biomolecules has thus become one of the
most challenging issues in molecular modeling and simulation studies, as it has
direct implications in our understanding of the structure-function relationships, even
in areas such as virtual screening and structure-based drug discovery. A small
number of current computational and experimental methods that can address this
diversity in flexibility are detailed in the next section.

11.2 Experimental Methods Reporting Protein
Conformational Changes

There is a large number of experimental techniques that can unravel the implications
of conformational dynamics in the protein structure and function, as well as few
others characterizing the molecular forces that govern the recognition event (see
Fig. 11.1). Here we focus on the first type although in certain cases, these same
techniques can complementarily provide information for both types of phenomena.

Infrared and Raman spectroscopies measure the vibrational frequencies of a
group of bonded atoms in a molecule. There is a high degree of synergy amongst
these experimental probes in the information that they provide. The frequencies
are determined by the masses of atoms, the force constants and the geometry of
the molecule [6]. This makes possible the structural determination of parameters,
such as bond orders, bond lengths and angles, ionization state of ionizable moieties
for a molecular group from its vibrational frequencies. Changes are observed when
the vibrational frequencies are affected, like it occurs when new interactions are
formed between molecular groups upon binding of a small molecule to a protein,
such as hydrogen bonding and other bond polarizing electrostatic interactions,
and/or geometry distortion from steric clashes. The accuracy of determining these
parameters from vibrational frequencies is very high however it is not yet feasible to
determine the full structure of a protein from its vibrational spectrum, basically due
to spectral crowding. Recent developments in Fourier transform infrared (FTIR)
spectroscopy and Raman difference techniques place them as powerful tools for
the investigation of protein-ligand interactions [7], and they have made possible
to measure the vibrational spectra of any small molecule when it is bound to a
protein. In such an experiment, a protein spectrum is measured in the apo and
ligand-bound states, and the subtraction of the two yields the spectrum of the bound
ligand.

Inelastic neutron scattering captures the diffusive component of protein inter-
nal motions by determining the vibrational density of states (frequency distribution).
However, this description is complexed due to the large variety of co-existing
motions within the protein, where groups of atoms undergo a plethora of continuous
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Fig. 11.1 Experimental and computational techniques to study protein motions. A timescale
line is drawn as reference ranging from femtoseconds to seconds. Above such a line, the protein
motions have been annotated according to their timescale; while below it, the computational
methods reporting on the flexibility within the different regions in time are indicated

or jump-like diffusion. Neutron spectroscopy permits the investigation of motions in
the time range from 10�14 to 10�9 s (depending on the timescale different methods
are available such as time-of-flight, backscattering, spin echo techniques) [8, 9].
Neutron scattering also provides an unique opportunity for comparing the dynamics
of protein and hydration water due to the large incoherent cross section between
hydrogen and deuterium, and the fact that hydrogen atoms are distributed ‘quasi-
homogeneously’ in proteins. In most cases, the hydrogenated protein is measured
in H2O and in D2 technique [10]. They found that the vibrations of the complex are
significantly softer relative to the unbound protein, meaning that the protein-ligand
association can be significantly more flexible than the apo protein, that resulting in
free-energy change that contributes significantly around 3 orders of magnitude more
to the binding equilibrium. This was surprising since it has been frequently accepted
that the complexation of the ligand will somehow rigidify the complex.

X-Ray crystallography is the most established and accurate method for deter-
mination of the three-dimensional structure of a protein. The output data of such a
method corresponds to a single set of coordinates of all atoms in the molecule. X-
ray crystallography is highly sensitive to the experimental conditions under which
it was performed. Thus, in spite of the difficulty and time-consuming process, often
for a large number of interesting molecules, there are several structures available
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characterized under different conditions, collectively constituting a conformational
ensemble that contains relevant biological motions and defines the system. A
representative example in this line is the work published by Grant and collaborators
on kinesins [11]. But in general, it was always thought that the data and models
coming out from crystallographic experiments were quite static, mainly providing
snapshots of the molecule, and with a glimpse of the system flexibility reflected
in the temperature factors or B-factors. B-factor values, as determined crystallo-
graphically, represent smearing of atomic electron densities around their equilibrium
positions and have been associated as a measure of protein dynamics, flexibility of
amino acids and protein stability.

However, several time-resolved X-ray methods have been recently developed
following the burst of impressive advances on intense X-ray radiation at the third-
generation synchrotron sources. In general all these methods aim to follow in real
time the functional conformational changes a protein goes through. Among them,
the most popular are time-resolved Laue diffraction and intermediate trapping (or
so-called kinetic crystallography) studies. Time-resolved wide-angle X-ray scatter-
ing has also emerged for the characterization of large-scale global conformational
changes in proteins in a liquid environment, while time-resolved X-ray absorption
studies are used to determine structural details around metal ions (for a review of
these methods see the work published by Westenhoff and collaborators [12]).

The second most common method of determining the structure of a protein is
nuclear magnetic resonance (NMR) spectroscopy. Although, this method is in
general less accurate than X-ray crystallography and limited to small to medium
sized proteins, it is unique in that it can simultaneously describe directly the motions
that proteins undergo as well as their structure, and consequently it yields great
insight into how proteins ‘work’ [13]. Another advantage of using NMR structures
is that the final solution is not a single structure but a family of structures derived
from the set of experimental conditions that best represent the system. Although
this family is usually composed of 10–50 structures, this number can be made as
large as necessary by deriving more structures that satisfy the NMR experimental
constraints. The progress in NMR-based approaches and their impact in deciphering
the nature of protein dynamics have been extensively reviewed [14–16]. This type
of spectroscopy is uniquely suited to study many of these dynamical processes,
because site-specific information can be extracted for a large variety of motions
that span many timescales (see Fig. 11.1). When analyzing fast dynamics (ps to
ns), the measurements of NMR relaxation rates provide the parameters required
to characterize these motions, due to the sensitivity of internal motions towards
fluctuations of the local magnetic fields. The most common approach used to
get insight into the motional processes is the model-free from Lipari-Szabo that
expresses the amplitude of these motions as order parameters, S2 [17]. For slower
motions (�s to ms), which normally involve larger conformational transitions with
transient intermediates, relaxation dispersion is an amenable tool. In this technique,
the additional line-broadening of the NMR signals caused by the conformational
exchange between two states can provide information about the relative populations
for the different intermediates, their rate of interconversion and additionally the
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chemical shifts between these exchanging species. The basic NMR experiment is
the so-called Carr–Purcell Meiboom–Gill (CPMG) relaxation dispersion [18], that
relies on the application of a variable number of refocusing pulses during a fixed
interval of time.

Another technique frequently used for determining dynamics spanning a broader
timescale is based on the measurement of Residual Dipolar Coupling (RDCs) [19].
The loss of structural information due to the random tumbling of a molecule can be
recovered if the protein is dissolved in an anisotropic solution, such as liquid crys-
talline media. Under these conditions, the macromolecule becomes weakly aligned
so the magnetic dipolar interactions do not average to zero and residual dipolar
coupling constants can be measured between proximal pair of nuclei. They are a rich
source of structural information since they do report on the orientation of bond vec-
tors with respect to the magnetic field. Dipolar coupling data per se do not report on
the timescale of the motions, however this information is extracted by comparison
of the per-residue generalized order parameters estimated using the 3D GAF model
of dynamics with those parameters extracted from spin relaxation experiments.
The synergism between NMR spectroscopy and molecular dynamics simulations
is of great importance due to their high complementarity [20]. On one hand,
NMR provides quantitative data on dynamical processes, but these data does not
unambiguously describe the motions; on the other hand, MD simulations describe
atomic motions at high detail but they are highly dependent on the force fields and
model used. Combination of both can reveal a deeper understanding of the dynamics
of the system, with a physical and quantitative description of the motions involved.

NMR spectroscopy, apart of providing structural and dynamical information on
the protein receptor, offers a great potential in drug discovery since it can reveal
information about protein-ligand interactions at atomic resolution [21]. During the
past decade, novel NMR screening methods have been developed either to increase
the sensitivity and/or to reduce the protein consumption in an attempt to push
the technique towards a high-throughput use. A brief description of some new
NMR screening techniques applied to drug discovery has been given in very good
reviews [22, 23]. NMR screening methods can be divided into two main categories:
target-based screening relying on observing the target resonances, and ligand-
based screening, which comprises methods that rely on the detection of an altered
hydrodynamic property of the ligand or the transfer of an NMR signal between
target and ligand. In screening methods that observe the macromolecular target,
the parameters that are typically monitored are the chemical shifts. Heteronuclear
Single Quantum Correlation (HSQC) experiment exploits the differences in chem-
ical shifts on the two-dimensional correlation spectra of the target upon titration
of a ligand. The NMR assay is simple, less time consuming compared with other
acquisition methods, applicable to any class of compound, with no upper limit in
affinity and highly informative in the identification of the ligand binding site. The
SAR (Structure Activity Relationship) by NMR technique makes use of ligand-
induced chemical shift perturbations (CSPs) in the protein target to localize the
binding sites [24] and it is extensively used in fragment-based drug design (FBDD).
Alternatively, experiments that rely on observation of ligand resonances can be used
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for protein targets of virtually any size, but are restricted in the ligand’s binding
affinity range; although this scenario is changing due to the introduction of cryo-
cooled NMR probe technology. For these methods, the choice of NMR parameters
is more diverse, few of them rely on the detection of an altered hydrodynamic
property of the ligand, such as transferred NOESY, relaxation-edited or diffusion-
edited NMR experiments; while few other will follow the evolution on the transfer
of an NMR signal between target and ligand, including saturation transfer difference
and WaterLOGSY experiments [25].

Although NMR based screening is only one of the more recent additions to the
bag of tools used in drug discovery [26], it promises to revolutionize the field,
mainly for the amount of detailed structural information it can provide, ranging
from revealing the binding site on the target (HSQC screening), the conformation
of the bound ligand (transfer NOE), and additionally it can also supply information
facilitating the precise docking of the ligand to the protein’s binding pocket (isotope-
filtered NOESY).

Small-angle X-ray scattering (SAXS) has become a widely streamline tool
in structural molecular biology for low-resolution structural characterization of
macromolecules in solution [27–30]. The major advantage of SAXS compared to
other structural characterization techniques is that it can be performed under a
wide variety of solution environments, including near physiological conditions, and
for a wide range of molecular sizes. Additionally, it provides unique information
about overall structure and conformational changes of native individual proteins,
functional complexes, flexible macromolecules and assembly processes. In a recent
study, Fenton and collaborators have used a combination of protein fluorescence and
SAXS to monitor and characterize different conformational changes associated with
pyruvate kinase triggered by the binding of different allosteric inhibitors and the
effect that they elicit on the binding of its substrate [31]. The authors, apart of reveal-
ing the intrinsic motions of the system, have been able to propose a novel view in the
regulation of the enzyme. Allostery does not derive from a conformational transition
upon the binding of a single ligand, but both substrate and inhibitors mutually
modulate how the other molecule binds to the enzyme, in line with a linked-
equilibrium mechanism and against previously proposed two-state model [32].

In a normal scenario, the identification and characterization of the dynamics in
a system will require the combination of different experimental techniques. E. coli
dihydrofolate reductase (DHFR) is a popular target for drug design against microbial
infections. DHFR is one of the most extensively studied enzymes at the structural
and dynamical level. The protein progresses through its catalytic cycle transiting
into two different states for its Met20 loop, “closed” and “occluded” states. The bac-
terial enzyme bound to a quinazoline derivative exhibits conformational dynamics,
both in the protein and the small molecule, as it was shown by NMR line-broadening
properties. On the other hand, crystallographic studies revealed a closed conforma-
tion for the complex DHFR-NADPH-ligand, with electron density poorly defined in
the loop region, and portions of cofactor and inhibitor, suggesting multiple binding
poses and high mobility. NMR chemical shift and RDCs experiments corroborated
the closed conformation for the Met20 loop and suggested a different solution
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preferred orientation for the inhibitor and cofactor. From NMR spectroscopy and X-
ray crystallography, the compound was found to bind in an unorthodox orientation
but switch internally to drive a dynamic conformational loop change in the protein.
The two methods used jointly are highly complementary, and both are necessary to
develop a full, accurate picture of this small molecule complex [33].

11.3 Computational Methods to Disclose
Flexibility in Proteins

In the modern drug discovery, all steps are closely linked with some computational
methods [34]. There exists a high interest on the in silico protocols with the ability
to predict the binding mode and affinity of small molecules to biomolecular targets
of pharmaceutical interest. This is the case in structure-based drug design (SBDD)
approaches, where the knowledge of the 3D structure of the target is exploited to
design small molecules that tightly bind into the active site and modulate the bio-
logical function. The proper incorporation of protein flexibility in the prediction of
binding poses and affinities for small compounds has attracted increasing attention
recently in current structure-based drug design projects such as virtual screening
and protein-ligand docking [35, 36]. Incorporating protein flexibility would allow
the expansion of the conformational and chemical space of the hit molecules.
Diversity in ligand-binding mechanisms and associated conformational changes
make difficult to treat dynamic features of the receptor during docking protocols,
and this has been the main reason for neglecting this factor. We discuss here some
of the most commonly used computational tools developed to characterize the
conformational flexibility in ligand-receptor complexes, focusing on those that are
used in the examples presented in the last part of the chapter. There is a large number
of published works in the field [35, 37–41].

In spite of the approach taken, drug design procedures need to predict and
simulate the intrinsic flexibility of proteins, trying to find the best compromise
between accuracy, reliability and computational resources available. Several dock-
ing algorithms and programs have incorporated different levels, both implicitly or
explicitly, for receptor flexibility during or prior the virtual screening experiments.
The less time and computational consuming algorithms simulate the possible
movements of the side chains in the active site by a variety of approaches, such as the
implementation of soft potentials [42], the use of rotameric conformation libraries,
or even just local energy minimization because of the dominance of small side chain
rotations during ligand binding [43]. These receptor-ligand docking methods are
less computationally demanding than simulation-based free energy methods, for
that reason they are the preferred ones when large libraries of compounds need
to be tested in order to identify novel chemotypes for a particular target. There are
different types of scoring methods available with distinct level of sophistication,
although they can predict correctly binding poses for few cases, the identification of
new hits from large databases of putative candidates has been found [44]. However,
they present few limitations and problems, especially in the accurate prediction
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of binding energies and the low correlation between experimental and predicted
binding affinities, as well as the treatment of protein flexibility, only partially
incorporated in the docking scheme.

One approach that it is becoming popular is the use of receptor ensemble-
based methods. The molecular docking on multiple receptor conformations (MRC)
approach can be used with both experimental structures from different crys-
tal structures, an NMR ensemble or computationally generated conformations.
Molecular dynamics (MD) simulations have been extensively used to obtain these
conformations that describe the conformational space of proteins [45, 46]. The right
choice of the conformations that best represent the full spectrum of the receptor
flexibility, which depends highly on the quality of the conformational sampling,
is a key for the success of virtual screening experiments. Several strategies have
been already proposed together with some recommendations in order to determine
how to select the right subset of receptor conformations to use in the docking
protocol [47, 48]. This approach has been implemented in the drug industry to
screen large databases and predict roughly the binding affinity of these compounds
for biologically relevant targets, complementing high-throughput screening (HTS)
methodology.

Until very recently and given the intrinsic limitations of conventional compu-
tational tools, only events occurring in short timescales could be reproduced at
a high accuracy level through all-atom techniques such as molecular dynamics
simulations (see Fig. 11.1). Larger structural rearrangements demand the use of
enhanced sampling methods relying on modified descriptions of the biomolecular
system or the potential surface [49]. These techniques offer an alternative to bridge
the detailed intermolecular interactions with larger spatial and longer scale motions.
The simplest and crudest approach is to manipulate the energy function used in
the MD simulation by applying a restrained potential, such as in targeted MD
(TMD) [50] or umbrella sampling [51]. Besides, the energy can as well be altered
by using additional energy terms into the potential energy. Such it is the case in the
accelerated MD, where a new term is used to boost the potential and help the system
to escape from a local minimum [52]. Another option will be the modification of
the MD simulation protocol, such as it is done in approaches like replica exchange
molecular dynamics (REMD) [53] and locally enhanced sampling (LES) [54].

One of the most challenging tasks is to devise computational methods and
protocols that are able to yield better agreement between in silico and experimental
results using reasonable computer times. Free energy methods have been proposed
in order to increase this accuracy in predicting the binding affinities and thus
they have been used extensively in the past for the estimation of the binding free
energy of small-molecule drugs to proteins [55–57]. There are mainly two different
options when referring to the computational resources required. On one hand, the
end-point methods like free energy perturbation (FEP), linear interaction energy
(LIE), and molecular mechanics Poisson-Boltzmann (Generalized Born) Surface
Area (MM-PB(GB)SA) have been shown to give highly accurate estimates of the
relative binding energy, and they could be used to improve the in silico scoring
protocols used in the pharmaceutical industry. The free energy perturbation method
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can predict the absolute as well as relative binding free energy of ligands using
thermodynamical cycles [58, 59]. In spite of the high computational cost associated
with the method, FEP provides good predictions when a small series of compounds
with similar structures are compared. This makes this technique most useful in lead
optimization process. Linear interaction energy method [60], although based on
different assumptions than FEP, represents a valid alternative but it is still too slow to
be used in high-throughput virtual screening for a large number of candidates. MD
simulations are not only used as a pre-technique to generate models for docking
but for post-processing to estimate more accurate free binding energy of small
molecules. This protocol in which docking poses are conformationally refined by
molecular dynamics (MD) followed by prediction of the binding free energy by
MM-PB(GB)SA is becoming extremely successful [61, 62].

On the other hand, methods based on a physical path, especially umbrella
sampling and metadynamics, although highly demanding in resources, have the
advantages of the prediction of the full free energy profile along the binding
pathway, which can lead to the estimation of kinetics of binding and unraveling
of intermediate states that can report new venues in drug design [63].

11.4 How to Incorporate Experimental and Computation
Information on Protein Flexibility in the Designing
of New Drugs

There are different approaches and protocols that incorporate computational meth-
ods such as molecular dynamics simulations in drug discovery to account for
the flexibility of the receptor; however these flexibility-function studies are very
rare in the current pharmaceutical research. As a consequence, there is still a
communication breakdown between research on protein dynamics and drug design
[64], probably due to the demanding pressure for high-throughput methodology.

As mentioned earlier, molecular recognition and, in particular, drug binding are
highly dynamical processes, where a large spectrum of responses are involved. On
one extreme of the scale, protein motions are limited and the ligand fits into a
fairly static binding pocket. For such systems with reduced flexibility, the required
additional degrees of freedom can be include by allowing side chains of residues in
the binding site to be flexible throughout the search process, by exhaustive search
or by using a rotameric library. This induce-fit case is easy to be incorporated in the
docking schemes [65].

However, in some other cases, the ligand binds and stabilizes only a subset of
many conformations sampled by its dynamical receptor; in agreement with the
conformational selection hypothesis, where the flexibility required for the binding
is encoded intrinsically in the apo form of the protein. The easiest approach will
be to use a combination of experimental structures from different sources and/or
conditions, if available, constituting a set of conformers that describes the dynamical
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behavior of the system. If only one structure is known, computational methods
can be used to introduce this variability by adding conformational fluctuations in
terms of collective motions. These degrees of freedom have been obtained through
performing normal mode analysis using a fully atomistic representation of the
protein [66] or an elastic-network model [67]. Another possibility is to perform
canonical MD simulations to generate a proper ensemble of conformations for
the docking protocol [36]. This idea has been incorporated in virtual screening
under the relaxed complex scheme (RCS), where each possible ligand is docked
to multiple protein conformations [68], and after that ideally, a holo MD simulation
can be carried out. Some systems display novel conformational changes upon ligand
binding that are not typically sampled when the ligand is absent.

In order to dissect the different flexibility schemes a protein adopt when coupled
to ligand binding, and thus characterize the system and decide upon the computa-
tional protocol to carry out, experimental techniques such as X-ray crystallography,
NMR experiments, and kinetic measurements are utilized. They can help in the
determination of whether the ligand-bound protein conformations pre-exist in the
ligand-free state of the protein (population-shift mechanism or conformational
selection), or in the identification of intermediate states, potentially pointing toward
an induced-fit mechanism. However, in most of the cases, experiments normally
suggest the co-existence of both the population-shift and induced-fit mechanisms
for ligand binding to a protein, and the decision of the approach to take becomes
challenging. Furthermore, these flexibility-function studies can point to new modes
of drug action that would be invisible to traditional drug design strategies that
consider a static structure of the receptor. Simulations can also displayed motions
that reveal the formation of cryptic and allosteric binding sites by exploring further
cavities or even revealing transient pockets [69]. Following this idea, motions at
one site can be inhibited by the binding at a remote site of selective inhibitors
[70, 71]. Similarly modeling protein conformations associated with specific cellular
functions might enable the discovery of conformationally selective ligands [72, 73].
In order to include these notions in the drug design protocol, it is necessary to run
very long MD simulations or use enhanced sampling methods in order to achieve the
required long-range effects involved in the identification of these sites (see previous
section in this chapter).

In a different front and apart of this intra-network communication analysis within
a protein, the flexibility-function studies can be expanded to protein complexes [74],
when a dimeric association is used in the simulation. This opens up a new avenue for
developing drugs, such as small molecules, peptidomimetics, and stapled peptides
[75, 76], that can pharmacologically disrupt aberrant protein-protein interactions in
the complexes.

From a more knowledge-based point of view, when studying protein dynamics
upon the binding of a ligand, apart of the analysis of the effects caused and the
understanding of the underlying mechanism, a large amount of atomistic informa-
tion is earned, such as putative hydrogen bonds, level and nature of the residue
contributions in the binding, providing a cautionary note for structure-based drug
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design [61, 77]. This information is not easy to extract in a high-throughput manner,
since the analysis to perform will highly depend on the nature of the system; a deep
knowledge on the protein can help to unravel the entwined molecular interactions
that assemble this functional unit, and reduce its dimensionality. Although the field
is on track, further work still needs to be done for the complete automation of the
use of MD and other computational techniques in areas such as virtual screening
and structure-based drug discovery.

11.5 Examples of Cases Where Flexibility Has Been
Taken into Account

In the last section of this chapter, we illustrate the crucial role that intrinsic flexibility
of protein structures plays in mediating ligand recognition through representative
examples. Ideally, both experimental and computational approaches are mutually
used complementing each other and thus symbiotically driving the design of drugs
to the protein targets of interest.

11.5.1 Cryptic Pockets and Resistance Mechanism
in HIV Integrase

Human immunodeficiency virus (HIV) integrase is one of three virally encoded
enzymes required for HIV replication; the other two enzymes are a protease and
a reverse transcriptase. HIV integrase pathogenically functions as an enzyme that
inserts the viral genetic material into human chromosome, hence the inhibition
of HIV integrase (using e.g. small molecule drugs) is essential to treat this
viral infection. The integration is achieved by first creating reactive cytosine-
adenosine 30-hydroxyl ends (by cleaving off two nucleotides from the viral cDNA
in cytoplasm), and after transport to the nucleus, transferring the hydroxyl ends on
the human chromosomal DNA strand.

The first successful use of MD simulations to generate an ensemble of diverse
receptor conformations for HIV integrase led to an FDA-approved drug, raltegravir
[78]. Before this landmark study, the HIV integrase was deemed to be difficult
for structure-based drug design. The diverse conformations generated in the study
enabled the discovery of a previously unknown binding trench adjacent to the
protein active site. This trench is formed only transiently and went undetected
using conventional experimental methods. However, the finding of this channel was
influential to the development of the drug [79] that works by inhibiting the strand
transfer reaction in the nucleus [80]. Raltegravir was 1st FDA approved to target
HIV integrase in 2007, and until Oct 2012, it is the only approved HIV integrase
inhibitor, with a good activity against multi-drug resistant HIV-1 strains [81].
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McCammon group further developed a method to produce a more accurate model
of the active site of HIV integrase based on a restrained MD that ensures correct
mono-dentate interactions between the carboxylate groups of the residues at the
DDE motif and the two active-site Mg2C ions [82]. This method has also been used
to get insights into the effect of G140S/Q148H raltegravir-resistant double mutant
of HIV integrase. Raltegravir adopts both the primary mode and a flipped mode of
binding for the wild-type HIV integrase; while in the resistant-double mutant, the
primary mode of binding is less accessible to raltegravir and the flipped binding
mode is not observed.

11.5.2 Generation of Multiple Conformations for HIV Protease

HIV protease is known to undergo large conformational changes upon binding
of natural or drug ligands. Based on the hypothesis of conformational selection
(introduced earlier on in this chapter), the ligand-bound conformational states are
less populated in the absence of ligands. To account for intrinsic flexibility of HIV
protease, MD simulations of apo HIV protease have been performed to generate
multiple receptor structures for docking [83]. They showed that the incorporation of
protein flexibility enabled them to identify the correct HIV protease inhibitors and
the binding modes.

11.5.3 Allosteric Sites in GTPase

GTPase proteins are members of a large superfamily, also known as Ras, consisting
of the Ras, Rho, Rab, Ran, and Arf family [84, 85]. GTPase proteins bind and
hydrolyze guanosine triphosphate (GTP) through a tight regulation mediated by the
binding of guanine nucleotide exchange factors (GEFs) and GTPase-activating pro-
teins (GAPs). Normally, Ras proteins regulate cytoplasmic signaling that mediates
gene expression, cell proliferation, and differentiation. Rho proteins are involved
in the regulation of actin organization, cell motion, and cell shape. Mutations in
Ras are associated with over 25 % of diverse human tumors and leukemia [86, 87].
However, the structures of wild-type and mutant Ras are highly similar as observed
by X-ray crystallography, hence rendering traditional structure-based drug design
challenging.

Recently, Ras and Rho family members have been shown to possess intrinsic
flexibility in the absence and presence of nucleotide ligand [88–91]. This intrinsic
flexibility of the GTPase proteins has been explored using MD and accelerated
MD simulations, and has led to the identification of their pattern of correlated
motions, allosteric coupling between (1) the nucleotide-binding site and the (2)
distant loops and membrane interacting C-terminal region [88, 90]. This has opened
up new avenues to selectively target allosteric sites, instead of targeting the highly
conserved and polar nucleotide-binding site [92]. A later study also using MD
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simulations reveals that acetylation of a lysine residue on the recently identified
allosteric site results in conformational changes and an increased flexibility of
Ras; the altered flexibility inhibits Ras from interacting with GEFs and hence the
transforming/oncogenic activity of Ras, as verified using biochemical analysis [49].
This computational work highlights the importance of exploiting post-translational
modification conformations in therapeutics.

11.5.4 Fragment Based-Screening on Transcription Factor p53

p53 is a transcription factor that regulates a wide variety of genes involved in repair,
apoptosis, senescence and metabolism [93–95] in response to stress, e.g. DNA
damage, telomere erosion, and hypoxia [96]. p53 is the most widely mutated protein
in human cancer, with more than 25,000 mutations reported so far, which makes it
a weak point in the complexity of the cells.

MD simulations have successfully been used to characterize the flexibility of a
cavity in an oncogenic mutant Y220C of p53 DNA binding domain (DBD) [97]. The
authors also employed fragment based screening to examine the druggability of this
flexible cavity, followed by crystallizing the complex of fragment hits and mutant
to elucidate the binding mode. Their work shows that the fragment hits reduce the
dynamics of this flexible cavity. These fragments can then be used to design anti-
cancer therapeutic small molecules that bind to the cavity and re-stabilize (hence
rescue) the mutant in an allosteric manner. An interesting note on their procedure
of MD simulations is the use of isopropanol solvent, based on the rationale that
the isopropanol mimics a ligand possessing both polar and non-polar properties that
enable it to bind to the Y220C cavity through hydrogen bonding and hydrophobic
interactions.

11.5.5 Inhibition of Protein-Protein Interaction Between
p53 and MDM2

MDM2 is an E3 ubiquitin ligase that regulates the levels of p53 through binding
to the N-terminal transactivation domain and the DBD of p53, and stimulates the
ubiquitination of p53 for subsequent proteasomal degradation [98, 99]. To drive
the apoptosis of cancer cells, p53 can be reactivated through the inhibition of p53-
MDM2 interaction. Moreover, in cancer cells, MDM2 is over-expressed and results
in the loss of p53 activity. MD simulations have been performed to generate multiple
structures of p53-MDM2, hence accounting for intrinsic flexibility of MDM2 in
its complexed form; the set of diverse MDM2 structures has been used for virtual
screening that succeeds in identifying two compounds with higher affinity than the
natural p53 peptide [100]. These small molecules have distinct scaffolds from nutlin,
a well-know inhibitor of p53-MDM2 interaction, bringing the advantage of a more
diverse scaffolds of therapeutic small molecules that can be useful to overcome
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resistance against existing drugs. Moreover, the N-terminal transactivation domain
of p53 that inserts into a hydrophobic cleft of MDM2, has inspired the design and
synthesis of stapled peptides that bind well to MDM2 and readily enter cells [75].
Efforts to further improve the binding affinity of stapled peptides to MDM2 using
MD simulations highlight the requirement for higher helicity and reduced solvent
exposure from the stapled peptides [76].

11.5.6 NMR Ensemble of Transcription Factor CBF

The transcription core binding factor (CBF) is important in blood cell development
and often implicated in acute myeloid leukemia. The CBF comprises a protein-
protein complex formed by core binding factor beta (CBFbeta) and Runx1. CBFbeta
increases the affinity of Runx1 towards DNA and protects Runx1 against ubiquitin
tagging and the subsequent proteasomal degradation [101]. In leukemia, CBFbeta
aberrantly fuses to coiled-coil region of smooth muscle myosin protein (SMMHC)
[102]. Unlike the wild-type CBFbeta, the fused CBFbeta binds to Runx1 over
tightly and results in the deregulation of the CBF function and the cell cycle pro-
gression associated with leukemia. Therefore, the binding between fused CBFbeta
and Runx1 is a potential target for inhibitory small molecules with anti-cancer
therapeutic properties.

Before screening for small molecules that can inhibit the interaction between
CBFbeta and Runx1, the protein intrinsic flexibility of CBFbeta, determined by
multiple NMR structures of CBFbeta [103] has been used for virtual screening
to identify top 35 hits, which were posteriorly validated using NMR spectroscopy.
Interestingly, the identified lead compounds do not bind directly to the CBFbeta-
Runx1 interface, suggesting that they act through allosteric or non-competitive
mechanism. The allosteric mechanism possibly compensates for the lack of sig-
nificant curvature at the CBFbeta-Runx1 interface. Then, the virtual screening was
followed by compound synthesis and cell assays, which successfully revealed the
first small molecule inhibitors of Runx1-CBFbeta interaction with the ability to
inhibit the proliferation of the human leukemia cell line ME1 [104].

11.5.7 Understanding Selective Drugs for Abl Kinase
Inhibition Using Experimental and Computational
Information

Almost 2 % of human genes encode protein kinases, which use ATP to phos-
phorylate their substrates and are involved in different biological processes such
as cell growth, movement, and apoptosis. Next to the ATP-binding site there is
a DFG motif, which is highly conserved and often mutated in human cancers
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[105]. When the aspartate residue in the DFG motif points into the ATP-binding
site (known as adopting the DFG-in conformation), the aspartate can coordinate
an ATP-bound magnesium ion. In many kinases, the active DFG-in conformation
is more favored than the inactive DFG-out conformation as the former has higher
stability. Previously, the anti-cancer drug imatinib (Gleevec, Novartis) was known
to inhibit the Abl kinase by selectively targeting a specific DFG conformation,
but its mechanism was unclear especially at the level of atomistic detail. Crystal-
lographic studies mostly capture the two distinct DFG conformations [106, 107]
but not their transitional mechanism which hampers the understanding of the DFG
flip. To address this challenge, long MD simulations have shown that imatinib
selectively stabilizes the DFG-out conformation in a pH-dependent manner through
electrostatic changes intrinsic to the kinase catalytic cycle. This testable mechanism
was verified experimentally using the Abl-imatinib binding assays [108]. The
investigations of the DFG conformations of Abl kinase and its inhibition by imatinib
are an excellent example where both experimental and computational methods have
been used to generate ideas and results that mutually drive the subsequent studies.
This study of imatinib-Abl kinase can also inspire the development of selective
drugs targeting a particular kinase through understanding of mechanism at atomic
level details.

11.5.8 Large Conformational Changes in Periplasmic Binding
Protein (PBP) Studied by Accelerated MD

PBPs are expressed by Gram-negative bacteria to function in chemotaxis and to
transport various nutrient molecules including amino acids, ions, vitamins, and
carbohydrates. Structurally, all PBPs share two-domain architecture with a central
inter-domain ligand binding cleft. This architecture allows PBPs to utilize Venus-
flytrap mechanism to undergo large scale hinge-bending motions for trapping ligand
(upon its binding) at the inter-domain cleft [109].

Well-studied PBPs include bacterial maltose binding protein (MBP), due to its
use as an affinity tag for protein expression and purification. Although crystallo-
graphic structures suggest the possibility of only two conformations of apo/open
and holo/closed, NMR paramagnetic relaxation enhancement (PRE) measurements
on apo MBP suggest major open and minor semi closed conformational states [110].
To verify the existence of semi closed conformation of apo MBP, accelerated MD
simulations [111, 112] have been used to sample the conformational landscape of
this protein, whose conformational transitions may take up to microseconds and
milliseconds, and they indeed confirmed the existence of such transient but stable
semi closed conformation.

Although MBP is not a drug target on its own, the understanding of conforma-
tional dynamics of this protein is a critical starting point for drug design because
PBPs and the extracellular ligand binding domains (LBD) of some mammalian
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receptors have a high structural homology. These receptors include NMDA receptor
and G protein-coupled receptor (GPCR) [113], which are of major pharmaceutical
interest. The identification of hidden yet stable conformations of the LBD of these
receptors can be a promising target for conformationally selective drugs.

In another study, temperature-accelerated MD (TAMD) simulations have been
combined with the C’ atom-based elastic network normal mode analysis (NMA)
to study the large scale conformational changes in MBP [114]. A combination of
few low-frequency modes can describe the entire conformational changes and a
single low-frequency mode can rationalize the individual functional conformational
change along the transition pathway generated using TAMD, whose trajectories
are not trapped in the local phase space. The characterization of the full entire
conformational changes provides the diversity in structures that optimistically will
lead towards an effective drug design. This study also serves as an inspiration
for future studies aimed to explore protein intrinsic flexibility, through integrating
insights obtained from a combination of MD simulations, NMA, and experimental
methods.

11.5.9 Conformationally Selective Inhibition
of Mismatch Repair Protein

Deregulation at the decision point where, upon DNA damage, the cell should either
activate the DNA repair machinery or induce cell death, results in cancer and failure
of anti-cancer therapy. The MSH2/MSH6 protein complex acts as a sensor for both
DNA damage and mismatches, and then a recruiter for additional proteins that
function in either DNA repair or cell death depending on the conformation of the
MSH2/MSH6. Molecular modeling has been used to obtain the death conformation
of the MSH2/MSH6, which is distinguishable from their repair conformation [63].
The results from this computational work have facilitated the identification and
synthesis of conformationally selective small molecules, such as reserpine and its
analog rescinnamine [115].

11.5.10 Physical Path-Based Free Energy Methods

The mitogen activated protein kinase (MAPK) p38 is an interesting target mainly
due to its implication in several signaling mechanisms and the regulation of a wide
range of cellular processes, from proliferation to cell survival and apoptosis, among
many others [116]. The interest in oncology for the development of p38 inhibitors
arises from its role as a tumor suppressor, with the downregulation of the cell
cycle progression and the induction of apoptosis [117]. Using metadynamics in
combination with few other computational algorithm, Gervasio and collaborators
have designed a blind protocol to estimate accurately the binding profile of a series
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of p38 inhibitors [63]. In addition to the correct prediction of the affinities with
their approach, the full characterization of the full binding pathway, exploring
all important intermediates and transition states, provides information about the
flexibility of the protein in the binding of different inhibitors. For several of the
inhibitors there is an increased in protein flexibility that allows the molecules to
establish alternative interactions, expanding the range of binding poses that they
might adopt. Some of them vary in the localization within the pocket, such as how
buried they are, while for an inhibitor a “flipped” conformation has been observed
along the binding pathway explored in their work. This structural and dynamical
information could potentially be used in the lead optimization process, expanding
the current use of computational methods in the design of drugs.

11.6 Conclusion

The understanding of the biological timescales and scope of protein dynamics, the
implications of these conformational changes into the biological functions, and the
effective design of drugs that inhibit these important roles must come from the
combination of the atomistic information provided by computational simulations
and experimental studies.

In the recent years, advances in computational techniques and especially in the
hardware potency have made possible the use of in silico methods as a key tool in
simulating structural and functional properties of biological macromolecules. The
advance in modern graphical processing units (GPUs) have opened new venues
for MD simulations, extending the timescale they can reach and dropping the
price and expanding the accessibility of these machines in fields as drug discovery
process. This dramatic reduction in the cost of MD simulations and the length of
them make this technique an interesting tool to include in the arsenal of biological
research and biomedicine. Indeed, these computational methods are widespread in
the initial stages of drug discovery and their importance in guiding the rational
design has increased in last few decades. The field is evolving towards the tight
integration of more expensive and time-consuming experiments with faster and
cheaper computational simulations.

However, although routine MD on biological systems is becoming popular;
the complementarity with the experimental data needs to be scrutinized carefully.
Experimental methods can help us to identify the motion regimes the protein follows
in the binding event, which it will determine the kind of computational approach to
take in order to capture these motions and predict new small molecules that inhibit
more efficiently the protein conformational dynamics of the target. A lot of progress
has been done in this direction, but still there is no a general and automatic recipe
on how to treat the systems, and expert contribution is required to complete a full
description of the flexibility of the protein. Making use of this information promises
to initiate new and intensive studies in the field of predicting the most successful
inhibitors for our current and future biological targets.
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Abstract The recurrent failures in drug discovery campaigns, the asymmetry
between the enormous financial investments and the relatively scarce results have
fostered the development of strategies based on complementary methods. In this
context in recent years the rigid lock-and-key binding concept had to be revisited in
favour of a dynamic model of molecular recognition accounting for conformational
changes of both the ligand and the receptor. The high level of complexity required
by a dynamic description of the processes underlying molecular recognition requires
a multidisciplinary investigation approach. In this perspective, the combination of
nuclear magnetic resonance spectroscopy with molecular docking, conformational
searches along with molecular dynamics simulations has given new insights into the
dynamic mechanisms governing ligand receptor interactions, thus giving an enor-
mous contribution to the identification and design of new and effective drugs. Herein
a succinct overview on the applications of both NMR and computational methods to
the structural and dynamic characterization of ligand-receptor interactions will be
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12.1 Introduction

Drug discovery is a complex and expensive process, requiring approximately
12 years and costing >800 million dollars to develop one new medicine from
the earliest stages of discovery until it is available for treating patients. At the
end of this time-consuming and challenging endeavour only few drugs, after
having been successfully tested in the clinics, are able to reach the market. High-
throughput screening (HTS), though being one of the primary pharmaceutical
methods for the identification of lead compounds, display a high false positive
rate. Several inhibitors are not routinely translated into new drugs because they
often have undesirable side effects leading to the delay or failure of drug discovery
projects [1]. The reasons of this shortcoming are diverse, including unclear target
biology, inappropriate leads, poor potency or selectivity of the discovered drug,
lack of efficacy, unexpected animal toxicity and unwanted drug-like properties.
It is therefore of paramount importance to identify lead compounds that interact
with the target in a biologically relevant mechanism without inducing adverse or
paradoxical modes of action. The recurrent failures and the asymmetry between the
enormous investments (in terms of time and financial resources) and the relatively
scarce results have therefore fostered the development of strategies based on com-
plementary methods (e.g. bioinformatics, computational chemistry, cell biology,
medicinal chemistry, enzymology, molecular biology, protein chemistry, genomics,
proteomics, metabolomics, structural biology) to drive the drug discovery and
development processes in a more efficient and productive way [2]. In this context,
in recent years the original lock-and-key binding concept originally introduced by
Emil Fischer in 1894, in which a frozen ligand accommodates into a static receptor,
had to be revisited in favour of more dynamic models of molecular recognition,
able to account for conformational changes of both the ligand and the receptor. The
high level of complexity required by a dynamic description of molecular recognition
necessitates a multidisciplinary investigation approach. In this perspective, the
combination of nuclear magnetic resonance (NMR) spectroscopy with molecular
docking, conformational searches along with molecular dynamics simulations
has given new insights into the dynamic mechanisms governing ligand-receptor
interactions, thus giving an enormous contribution to the identification and design
of new and effective therapeutic drugs [3, 4]. This chapter is meant to give a
succinct overview on the application of both NMR and computational methods to
the structural and dynamic characterization of ligand-receptor interactions. It will
be organized in four sections:

I. We will briefly outline the strength and the weakness of NMR in ligand
screening (Sect. 12.2);

II. We will discuss the fundamental role of an exhaustive conformational search in
the selection of suitable ligands for docking calculations (Sect. 12.3);

III. We will highlight the importance of collective protein dynamics in the design
of drugs targeting allosteric receptors (Sect. 12.4);
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IV. Finally, we will focus on a case study, in which the combination of experimental
and computational techniques resulted in a successful strategy in the identifica-
tion of real integrin ’v“3 antagonists (Sect. 12.5).

12.2 NMR-Based Screening

One of the most powerful aspects of NMR spectroscopy relies on its ability
to characterize at atomic detail protein-ligand interactions under physiological
conditions. Especially in those situations in which several biophysical techniques
might fail because the interactions are inherently weak and transient, or because
the protein-ligand complex does not crystallize, NMR can play a unique role in
the molecular characterization. In this regard, the vast range of applicability of
the method, which is able to investigate affinity constants spanning from nM to
mM values, can potentially contribute to improve the efficiency of drug discovery
programs. NMR spectroscopy has therefore become a well-established tool both
for screening techniques in leads identification and for the examination of structure
activity relationship (SAR) [3].

Herein we will briefly summarize the most popular NMR-based screening
techniques, that are traditionally classified in target-observed and ligand-observed
techniques, depending whether the binding event is detected monitoring the changes
in the NMR parameters of the ligand or of the target (protein, nucleic acid),
respectively. The major parameters being sensitive to ligand binding include:
chemical shifts, relaxation and translational diffusion properties, intermolecular
cross-relaxations. Depending on the kind of experiments site-specific information
or simple binding assessment can be obtained.

12.2.1 Target-Observed Techniques

Target-observed methods are usually based on the acquisition and comparison
of 1H-13C or 1H-15N heteronuclear single quantum coherence (HSQC) spectra
of the 13C and 15N isotopically enriched target in the presence or absence of
unlabelled ligand. If the spectral assignment of the protein is known, binding can
be proved monitoring the chemical shift displacements (CSD) of the target upon
ligand binding. CSD is a highly sensitive tool for proving interactions, for mapping
binding sites and detecting residues which are directly interacting with the ligand
or that are indirectly affected by the association [5]. Information obtained from
CSD can be then used to filter docking solutions or even to drive the docking,
thus limiting the conformational search problem (see Sect. 12.3) [5]. One of
the most popular applications of chemical shift mapping is the “SAR-by-NMR”
methodology in which small organic molecules that bind to proximal subsites of
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a protein are identified, optimized and linked together to produce high-affinity
ligands [6]. Thanks to NMR intrinsic high sensitivity to detect weak interactions,
the method is successfully applied in fragment based drug discovery, whose main
concept consists in building up high-affinity ligands in a modular way, starting
from the identification of low affinity binders through the screening of a compound
library. The chemical substructures (MW< 300 Da), sufficient to elicit a minimal
yet specific and localized interaction with the target are then merged to generate
higher affinity ligands guided by structural information. In contrast to ligand-based
experiments (see Sect. 12.2.2), observation of the target molecule is not restricted to
an affinity limit, however the throughput of these assays is intrinsically low, due to
the relatively large amounts of recombinant labelled target (in the mg range) and to
the relatively lengthy experimental time needed. Target-observed experiments also
suffer from one important limitation, represented by the molecular weight of the
target, which is restricted to an upper limit of approximately 40–50 kDa (larger
molecular sizes are accessible in case of oligomer proteins). One major problem for
larger macromolecules resides in the fast relaxation rates, reflecting on turn in poor
spectra quality. These detrimental effects can be partly overcome by special tech-
niques, such as TROSY (transverse relaxation optimized spectroscopy), CRINEPT
(cross-correlated relaxation-enhanced polarization transfer) at high magnetic fields,
deuteration and selective labelling [7]. One seminal example in which the power
of target based methods has been exploited up to its size limits is represented by
Malate Synthase (723 residues) in which the chemical shift changes of 1HN, 15N and
13C0 nuclei upon binding of pyruvate have been mapped onto the three-dimensional
structure of the molecule [8]. Another successful case of TROSY-based NMR
experiments is represented by Methyl-TROSY-based NMR spectroscopy performed
on 20S archaeal proteasome from Thermoplasma acidophilium, which provided
evidence for a novel class of 20S proteasome inhibitors [9]. Nevertheless, it should
be pointed out that this kind of NMR studies on supramolecular structures are still
relatively rare in the literature, because they require large investments in terms of
sample preparation and acquisition time, thus limiting their vast applicability.

12.2.2 Ligand-Observed Techniques

Ligand-observed NMR screenings monitor the NMR spectrum of a ligand under
free and bound conditions and are based on the concept that upon binding to
a macromolecule, the apparent molecular weight and the hydrodynamic radius
of the small molecule change substantially by several orders of magnitude. The
dynamic nature of ligand receptor interactions influences the appearance of the
NMR spectra, several different NMR experiments can be therefore performed to
detect and quantify these changes. Importantly, ligand-observed experiments are
only applicable on complexes that are in the fast exchange regime on the NMR
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chemical shift difference timescale, i.e. when the difference in chemical shift
between the free and bound form of the ligand is considerably smaller then the
exchange constant kex. This condition requires high dissociation rate constants
(koff) and usually applies, as a rough rule of thumb, when the ligand binds with
a Kd> 10�5 M, assuming a diffusion limited kon rate constant (kon 	107–108s1m1).
Through this fast exchange mechanism it is possible to obtain information on the
low population bound state by analysing the resonances from the free form in
exchange with the bound form. In this situation the observed NMR parameters for
the ligand will reflect the population weighted average of the free and bound form.
Therefore, when a small molecule binds to its target it will adopt the dynamical
properties of the larger molecular-weight protein. The spectroscopic and dynamic
properties of a small molecule tumbling in solution, which typically include slow
relaxation rates, fast diffusion and fast Brownian motions, vanishing or weakly
positive Nuclear Overhauser Effects (NOE) cross-peaks, will drastically change
when binding occurs, resulting in high relaxation rates, reduced diffusion and
Brownian motions, and development of negative NOEs. These distinct differences
imply that changes in the ligand NMR spectral parameters can be monitored to
assess target binding.

As ligand-observed NMR techniques rely on the rapid and efficient transfer
of spectral characteristics between the free and the bound state of a ligand, they
have the enormous advantage to require only small amounts of purified unlabelled
receptor (pM-�M concentrations), which is order of magnitudes lower compared
to the quantities required by protein detected methods. Thanks to the reduced
burden on protein expression and purification these methods are routinely used to
interrogate receptor-ligand interactions. Moreover, as a large difference between the
molecular weight of the small compounds and the target molecule is required, the
size of the receptor does not constitute a limiting factor. As the approach becomes
even more sensitive and effective with increasing molecular weights, the target may
be even immobilized, bound to lipid vesicles, or bound on the surface of the cells
(see Sect. 12.5.2). An important drawback affecting ligand based approaches, as
compared to target based methods, consists in their inability to a priori localize the
binders on the receptor. Additionally, a major caveat affecting all these approaches
relying on the rapid exchange of the NMR properties between the free and the bound
form, originates from the fact that they are all biased towards weakly binding ligands
and large ligand molar excesses. As a consequence, high ligand concentrations
with respect to the target may start to occupy low affinity non specific binding
sites, giving rise to false positives. Nevertheless, the use of simple one-dimensional
1H spectra and the ability to screen mixtures without deconvolution, fosters the
application of ligand based experiments in high throughput screenings.

In the following we will summarize the most popular ligand-based NMR
experiments. For a detailed discussion of the theoretical and practical aspects of
the single experiments we encourage the reader to refer to several seminal reviews,
that illustrate in detail the methods and their applications [10–13].
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12.2.2.1 Transverse Relaxation Rates

One of the most well-established class of NMR binding assays relies on the
comparison of the ligand’s relaxation rate in the presence and absence of the target.
Relaxation reflects the hydrodynamic radius and rotational tumbling rate (� c) of
species in solution [11]. When a small molecule binds to a large molecule, the
small molecule transiently possesses similar NMR properties as the large molecule,
thus assuming fast transverse relaxation rates, which on turn lead to spectral line
broadening of the small molecule signal. The simplest experiment requires the
acquisition of a ligand spectrum (or mixture of compounds) in the absence and
presence of a protein target. Enhanced transverse relaxation of ligand(s) upon
the addition of the protein target, reflecting in line broadening of the ligand(s)
resonances, indicates the transient formation of a bound complex. One of the earliest
example of applications of transverse relaxation for the efficient screening of large
libraries of compounds has been presented by Fesik and co-workers to detect ligands
that bind to the FK506 binding protein [14].

12.2.2.2 Diffusion Experiments

Comparison of the ligand’s diffusion coefficient, describing the translational mobil-
ity of the molecule, with or without the protein target, can be also used to prove
intermolecular interactions between protein targets and ligands. Most diffusion
filters are based on pulsed field gradient (PFG) stimulated echo (STE) experiments
[15, 16]. They follow the same basic principles as relaxation experiments but rely
on differences in translational instead of rotational motion. Briefly, in the case of a
ligand in fast exchange between the free and receptor-bound states, the observed
translational diffusion coefficient (Dobs) is given by: DobsDDfree �freeCDbound

(1��free), where �free is the mole fraction of the ligand in the free state and Dfree and
Dbound are the translational diffusion coefficients for the free and receptor-bound
ligand, respectively. The use of diffusion-edited NMR spectroscopy for screening
compound libraries was first illustrated by Lin et al. [17, 18]. In this study, a
change in the diffusion rate of DL-isocitric lactone upon binding to hydroquinine
9-phenanthryl ether was used to identify the ligand binding in the presence of a
mixture of non binding compounds.

12.2.2.3 Saturation Transfer Difference (STD)

Saturation Transfer Difference (STD) was introduced in 1999 by Meier and Meyer
in a seminal paper describing the study of the interaction of wheat germ agglutinin
with saccharides [19]. Several other STD experiments for analysing mixtures of
putative ligands have since been reported, using a broad range of targets, including
transmembrane receptors on whole cells [20, 21]. In STD experiments, a 1D steady-
state NOE experiment is measured for a ligand (or a library of ligands) in the
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presence of a small amount of target, usually at a ligand:protein ratio of about 100:1.
The method relies on the selective saturation of receptor protons by irradiating
regions of the 1H NMR spectrum (for example the aliphatic region of the spectrum,
between �1 and 2 ppm) that are usually not occupied by resonances from small
organic molecules. Due to the effective spin diffusion of the receptor, saturation
quickly propagates across the entire macromolecule. If the ligand(s) binds to the
receptor, saturation will be transferred to the ligand(s), whereby ligand protons
which are near in space to the receptor will be mostly affected by saturation.
As a result of the saturation transfer the intensity of the ligand signals will be
attenuated. Subtraction of the saturated spectrum from the reference spectrum
without saturation, generates the STD spectrum which contains only signals of the
binding ligands. STD can be also used to determine the binding epitope of the ligand
by exploiting the fact that STD signal intensities (ISTD) are not equal for the different
protons in the ligand [22].

12.2.2.4 Water Ligand Observation by Gradient Spectroscopy
(WaterLOGSY)

WaterLOGSY is an experiment strictly related to STD, whereby the selective
saturation of the protein is achieved by irradiation of water protons [23]. The transfer
of magnetization occurs from bulk water to the ligand via the receptor through
multiple pathways including: (i) long-lived water molecules that are within the
binding pocket, (ii) solvent exchangeable protons of the binding pocket, (iii) remote
exchangeable protons that propagate their magnetization state across the receptor
via spin diffusion. Differently from STD, WaterLOGSY is not suitable for epitope
mapping, but is similarly well suited for competition experiments to confirm the
binding site of screening hits and to estimate binding affinity. Alternatively, a known
ligand with relatively weak affinity can be used as a reporter or spy molecule:
screening is performed with the known ligand present in all samples, and a decrease
in binding of this reporter indicates competition by a fragment in the mixture.

12.2.2.5 Transferred NOE (trNOE)

In trNOE experiments reversible protein-ligand complexes can be examined under
chemical equilibrium, monitoring the changes in nuclear spin relaxation of the
ligand in the presence of a sub-stoichiometric amount of target. The technique is
based upon transfer of nuclear spin relaxation of a small ligand from the bound to
the free state, provided that the ligand-protein dissociation constants are sufficiently
high (koff> 300 s�1 and Kd> 10�7 M). The trNOE experiment [24] relies on
the different tumbling time (� c) of either free or bound ligand. Small ligands
(MW< 1,000 Da), which have small � c, usually develop weak positive NOE at
a slow rate, whereas large receptors, which show large � c, are characterized by
a rapid development of strong negative NOE [25]. When a ligand binds in fast
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Fig. 12.1 Schematic representation of trNOE experiment The ligand and the receptor are
represented as a blue star and red oval, respectively. The NOE effect between protons is
represented with the symbol of the music (representing the radiofrequency). The sharp small
positive NOEs of the free ligand are represented with red cross-peaks outside the diagonal, the
NOEs of the receptor are represented as broad blue peaks outside the diagonal. The negative
trNOEs of the ligand when bound to the receptor are represented as blue cross-peaks

exchange with the receptor, it transiently adopts the tumbling time of a large
molecule during its bound life-time; thus, the motional characteristics of the bound
state are carried into solution and detected using the signals of the free ligand.
In particular, as discussed elsewhere [25, 26] the averaged cross-relaxation rate
< ij>, which is responsible of the NOE intensity build-up in trNOE experiments
in fast exchange regime, is given by < ij>DXFF

ijCXBB
ij, whereby XF and XB

are the molar fractions of free and bound ligand; and F
ij and B

ij are the cross-
relaxation rates of free and bound ligand, respectively. As long as the inequality
jXBB

ijj> jXFF
ijj applies, < ij> will be dominated by the bound state. Binding

compounds will be therefore characterized by NOE cross-peaks that have changed
sign in the presence of the receptor, whereas non-binders will show no change in the
presence of the receptor and display either zero or negative cross-peaks with respect
to the diagonal of the NOESY spectrum (Fig. 12.1). Several methods have been
developed that allow a quantitative interpretation of trNOEs and, thus, yield reliable
information about the bioactive conformation of bound ligand. trNOE has been
successfully applied to detect binding within the framework of a lead generation
method (SHAPES), based on a limited but diverse library of small compound
scaffolds whose shapes are commonly found in known therapeutic agents [27].
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12.2.2.6 Interligand NOEs for Pharmacophore Mapping (INPHARMA)
and Interligand Nuclear Overhauser Effect (ILOE)

Once a ligand has been confirmed to bind to a protein by methods such as
trNOE, two recently developed techniques may be used to facilitate identification
of the bound ligand’s orientation inside the receptor binding site. The protein
mediated INPHARMA method is based on the observation of interligand, spin
diffusion mediated, trNOE data, between two ligands, binding competitively and
weakly to a macromolecular receptor. Interligand NOEs are then used to obtain
information on the binding mode of one ligand with respect to the other. The
interligand NOEs between a known binder and a new compound are then used
to determine the orientation of the new complex without the need for complete
structure identification. The method has been successfully applied to a mixture of
epothilone A and baccatin III [28] in the presence of tubulin, representing the first
observation of protein mediated NOEs between two ligands that bind competitively
and consecutively to the same target molecule.

A second method, which should not be confused with the previous one, is the
ILOE approach, which uses trNOEs to identify small molecule ligands bound to
the protein target simultaneously in close proximity to each other. Interligand NOEs
are then used to provide information about the orientation of ligands, which can be
then linked to yield a high affinity lead compound in the correct conformation [29].
Following an NMR-based approach SAR by interligand NOE method, Becattini
et al. were able to identify two chemical fragments that bind on the surface of Bid,
a proapoptotic member of the Bcl-2 family [30].

12.2.2.7 Ligand Fluorine Chemical Shift Perturbation

Although most NMR screening experiments focus mainly on 1H, the 19F nucleus
presents unique properties that render it a highly effective probe for NMR screening.
First, 19F is usually incorporated in drugs to enhance their pharmacokinetic. Second,
the absence of endogenous 19F in biological molecules allows direct observation of
ligand spectra, without the need of relaxation filters and/or difference spectroscopy
to eliminate receptor or large solvent signals. Third,19F is present at 100 % natural
abundance with a sensitivity comparable to that of 1H. Finally, the chemical shift
range of 19F is much larger than that of 1H (900 ppm) implying high sensitivity of
the 19F chemical shift to local changes. Chemical shift changes of the fluorinated
molecule in the bound state can be very large, thus allowing the detection of
very weak binding. For example, in the fluorine chemical shift anisotropy and
exchange for screening (FAXS) strategy, developed by Dalvit and co-workers,
useful screening information can be gained by looking at the 19F relaxation of a
small library of compounds. In this approach, the relaxation properties of a small
set of 19F “spy” compounds report on the binding of a larger set of higher affinity
binders via competitive displacement. The large 19F chemical shift dispersion and
low fragment concentration enable screening of large mixtures thus offering high
throughput [31, 32].
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12.3 The Ligand Flexibility: the Importance of an Exhaustive
Conformational Sampling in Docking Calculations

Molecular docking is a computational method to investigate intermolecular com-
plexes formed between two or more constituent molecules. It comprises the process
of generating a model of a complex based on the known three-dimensional structures
of its components, i.e. the receptor (protein, or nucleic acids) and the ligand (a
peptide, an protein, a small molecule), free or bound to other species [33]. The
docking procedure consists in the search for the precise ligand conformations and
orientations (usually referred as docking poses) within a given target protein, when
the structure of the protein is known or modelled. Fast approximate mathematical
methods (so called scoring functions) are used to predict the binding affinity
between two molecules and to rank the docking poses. Pioneered during the early
1980s [34], molecular docking is still a field of intense research, as it represents a
fundamental component in many drug discovery programs [35] and a primary tool
for the virtual screening of large chemical libraries [36].

The typical system described in docking calculations usually includes the ligand,
the receptor and the solvent molecules. Because of the enormous number of
degrees of freedom associated to the solvent molecules, they are normally excluded
from the calculations, or implicitly modelled in the scoring functions. However,
the number of degrees of freedom associated to both the ligand and receptor
still remains computationally untreatable. The dimensionality of the problem can
be further reduced through different approximations, allowing for a more time
effective sampling of the conformational space. The most basic one is the rigid-
body approximation, that treats both the ligand and the receptor as rigid entities.
However, this constitutes a strong approximation, as both the ligand and the
protein generally undergo structural rearrangements upon complex formation, thus
requiring the introduction of flexibility in docking algorithms [37]. This aspect
is particularly relevant in those cases in which a flexible ligand is docked into a
known three-dimensional binding site. As a matter of fact, unrealistic high-energy
descriptions of the ligand conformer can lead to wrong conclusions on the ligand-
receptor interactions, or small changes in the ligand input conformation can cause
drastic differences in the geometries and the scores of the docking poses [38].
At present several programs exist, including HADDOCK, Gold, Autodock, MOE,
Glide, FlexX and Surflex, that try to account for a certain level of flexibility for the
ligand and in some cases also for the receptor [39–43]. However, as pointed out by
Tirado-Rives and Jorgensen when describing the binding of flexible ligands to HIV-
1 reverse transcriptase [44], insufficient conformational sampling can compromise
the efficiency of current docking methodology in the ranking of diverse compounds
in high-throughput virtual screening. In this context, it should be pointed out that
the identification of relevant ligand conformations that might affect binding affinity
is often challenging for standard spectroscopic and diffraction techniques, as it is
virtually impossible to experimentally characterize the rapid transition from one
minimum to the other. In this scenario detailed conformational searches of ligands
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prior docking calculations might be a successful strategy to improve the accuracy
and the prediction power of docking calculations. In the next section we will briefly
discuss the methods for the conformational searches outside the docking framework,
but still in the context of protein-ligand interactions analysis.

12.3.1 Replica-Exchange Molecular Dynamics (REMD)

Molecular Dynamics (MD) simulation is the most popular method used to sample
the molecular conformational space [45]. Based on the integration of Newton’s law,
it allows to compute time–dependent properties and to follow individual particles’
motion along time [46]. Assuming that the ergodic hypothesis holds, an infinitely
long MD trajectory should be able to sample the entire conformational space.
Nevertheless, at room temperature the probability of crossing high energy barriers
is often too small to be observed during a finite MD simulation. Most likely, even
with several hundred nanoseconds of simulations, the system might be confined to
limited regions of the conformational space. A solution usually applied to overcome
the limited sampling efficiency of MD simulations at room temperature consists
in raising the simulation temperature. The additional kinetic energy available at
higher temperature allows the crossing of high energy barriers, thus ensuring a
wider sampling of the conformational space. This methodology is the basis of two
computational approaches, simulated annealing (SA) and parallel tempering (also
named replica-exchange molecular dynamics). SA consists in heating up the system
in order to jump out from the initial local minimum to explore other minima [47].
The heating step is followed by a gradual cooling, which allows the system to
slowly settle down to a lower energy minimum. This method is widely exploited
for the local structural optimization of polypeptides, that have broad and energy
rough surfaces requiring extremely long simulations to find the global minimum.
SA combined to Rosetta protein modelling suite proved to perform very well in the
design of the bound conformation of the C-terminal portion of the RGS14 GoLoco
motif peptide when bound to the G’i1 receptor [48].

REMD [49] is based on the run of multicopy MD simulations randomly
initialized, at different temperatures. The conformations are then exchanged at
different temperatures following the Metropolis criterion (see Sect. 12.3.2). The
strength and robustness of this method allows to sample both low and high energy
configurations [50]. In drug discovery focusing on cardiovascular and metabolic
disease extensive REMD has been for example exploited in the design of a new
antagonist of the apelin APJ receptor, a class A G-protein-coupled receptor (GPCR)
working as co-receptor for HIV cellular entry [51]. This work showed that the
peptides promoting a “-turn at the RPRL motif displayed a good affinity for the
APJ receptor.

Okumura et al. [52] compared the computational efficiency of the traditional
constant temperature MD with REMD in a series of inhibitors of HIV-1 reverse
transcriptase. Herein the authors showed that the conformational populations are
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accurately estimated by both methods, however, REMD converged at a faster rate,
especially for one ligand (rilpivirine), which is characterized by multiple stable
states separated by high-free energy barriers. Moreover, they showed that for small
drug-like molecules with energetic barriers separating the stable states, the use
of REMD with Weighted Histogram Analysis Method (WHAM) is an efficient
computational approach for estimating the contribution of ligand conformational
reorganization to binding affinities.

12.3.2 Monte Carlo (MC) Search Methods

Monte Carlo search methods are stochastic techniques based on the use of random
numbers and probability statistics to sample the conformational space [53]. A Monte
Carlo search consists of two steps: (1) generation of a new trial conformation, and
(2) decision whether the new conformation will be accepted or rejected. The trial
conformation is usually accepted or rejected according to a temperature-dependent
probability of the Metropolis type pDmin[1,e�ˇ�U] where �U is the difference
in potential energy between the trial and starting conformations, ˇD 1/kT, k is
the Boltzmann constant and T is the temperature. MC methods have a significant
advantage over MD methods, as they use a simpler energy function that does
not require any sort of derivative information. In addition, MC methods are more
efficient in stepping energy barriers, thus allowing more complete conformational
searches.

Several docking programs are directly interfaced with MC-based algorithms;
combinatorial small molecule growth (CombiSMoG) for example introduces the
philosophy of combinatorial synthesis into computational drug design combining
a knowledge-based potential with Monte Carlo ligand growth algorithm [54].
The method was successfully applied to design picomolar inhibitors of human
carbonic anhydrase II [54]. Macromodel is another popular commercial software
capable to perform Monte Carlo search of small molecule [55]. It was used in
[56], were the conformational minima of a small set of HIV reverse transcriptase
inhibitors have been located using a Metropolis Monte Carlo simulation. Herein
the conformational space was sampled exploring a set of rotatable bonds con-
tributing to the conformational flexibility of the molecule. Another example of
MC search combined to docking is represented by the design of a new highly
flexible inhibitor against acyl-CoA [57]. ConfGen is a conformational search pro-
gram, that, similarly to Macromodel, efficiently generates bioactive conformations
exploiting MC simulation [58]. This approach has been used in the development
of novel IKK“ inhibitors with IC50 values lower than 10 �M [59]. MC search
is also implemented in Molecular Operating Environment (MOE) software, a
fully integrated commercial drug discovery software package [60]. MOE offers
three methods for conformers generation: systematic search, stochastic search,
and low mode molecular dynamics. OMEGA is another commercial conformers
generation tool that uses a systematic, knowledge-based approach to generate ligand
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conformers [61]. The program generates initial 3D structures from a library of
fragments, then it exhaustively enumerates all rotatable torsions using pre-defined
libraries, and finally it samples this large conformational space using geometric and
energy criteria. As an example, potential inhibitors of HIV-1 protease have been
designed by the combination of conformational search with Omega and docking
with Autodock [62].

Finally, it is worth pointing out that it is quite common after a MC search (or
MD sampling) to define structural similarities between conformations [63] using
clustering approaches. Although this method can provide valuable insights into the
structural diversity of conformations, it may end up with a collection of clusters
poorly related to the actual energetics of the system. An alternative to MC to perform
a more reliable exhaustive conformational analysis is based on free energy surface
calculations and will be described in the following section.

12.3.3 Enhanced Conformational Sampling
Methods Based on Bias Potentials

The methods presented in the previous sections often fail to generate reliable
equilibrium conformations because of the rugged and complex nature of the
Free-Energy Surface (FES) that is accessible to the system. As a consequence,
computational sampling is often relegated to some local, unrealistic minima,
which could compromise subsequent docking studies. Conformational sampling
and transitions are too slow to occur spontaneously in fully atomic MD simula-
tions. These long time-scales originate from relatively high free energy barriers
between metastable states, hampering efficient sampling of conformational space
in conventional MD calculations. The well-recognized limitations of sampling
in atomistic dynamics have led to many innovative alternatives to enhance the
coverage of the thermally accessible conformational space and to capture rare events
(events that might happen on a long timescale) [64]. One trick that is commonly
used to address this problem is to add a potential bias in order to force the rare
event to occur. In this context, several techniques, including the local-elevation
method [65], taboo search [66], the Wang–Landau method [67], adaptive force bias
[68] conformational flooding [69], umbrella sampling [70], weighted histogram
techniques [71], transition state theory and path sampling [72] and free energy
guided sampling [73] have been developed to address the sampling problem. In
this context, Metadynamics (MetaD) [74] has emerged as a powerful coarse-grained
non-Markovian molecular-dynamics approach for the acceleration of rare events
and the efficient and rapid computation of multidimensional free energy surfaces as
a function of a restricted number of degrees of freedom, named collective variables
(CVs). Differently from other sampling methods, in which the calculation of FES
requires an additional step (such as WHAM [67]), MetaD directly provides a good
estimate of the free energy of the system projected into the CVs.
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The principal advantages of MetaD are the following: (a) it is able to escape local
minima by overcoming large free energy barriers and (b) it allows to reconstruct the
FES in the space of the chosen CVs. This is possible because the CVs evolve under
a continuous addition of a history dependent potential energy, built as a sum of
repulsive Gaussian terms, that forces the dynamics to visit previously unexplored
regions of the conformational space and discourages the system from returning
to these regions. Hereby, the system can escape minima along low free energy
paths and can explore other minima in the free energy landscape, thus allowing
an enhanced sampling of the conformational space. The efficiency and reliability
of MetaD strongly depends on which CVs are chosen as reaction coordinates for
a particular mechanism. There is no a priori rule to define the correct set of CVs,
because of their strong dependence on the physical and chemical properties of the
system. However, their choice should satisfy the following properties:

1. CVs should be able to distinguish between the initial, intermediate and final state.
2. CVs should describe all slow events relevant to the process under investigation

that cannot be sampled within the typical scale of the simulation.
3. Their number should be kept to a minimum.

MetaD simulations have been exploited to predict equilibria in a variety of
different molecules. For instance, iduronic acid, unlike most other monosaccharides,
can adopt different ring conformations, depending on the context of the molecular
structure. Accurate modelling of this building block is essential for understanding
the role of glycosaminoglycans and other glycoconjugates [75]. Exploration of a
conformational space of eight drug-like molecules, including all major classes of
diseases such as antivirals, anticancer, and lifestyle drugs, has been evaluated by
MetaD enhanced molecular dynamics with the weighted holistic invariant molecular
(WHIM) descriptors, which does not require a prior knowledge of the accessible
conformations [76]. Combination of biasing potentials and traditional alchemical
free energy techniques, in particular Thermodynamic Integration (TI) and local ele-
vation/umbrella sampling (LE/US) methods, allowed to explore the conformational
equilibrium of highly flexible ligands such as guanosine-50-triphosphate (GTP) and
8-substituted GTP analogues [77]. Moreover LE/US has been also proposed to study
in water the relative free energies and interconversion barriers of “-d-glucopyranose
ring, a fundamental building block of a series of drugs [78].

12.4 The Receptor Flexibility

Presently, the vast majority of molecular docking applications considers the ligand
conformational flexibility either during docking calculations [40, 42] or using
libraries of conformers [41, 79]. Conversely, the flexibility of the receptor is usually
neglected as the number of degrees of freedom which should be considered in the
calculations is extremely computationally demanding. However, this approximation
constitutes a major drawback in docking calculations, as it does not account for
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conformational adjustments in response to environmental biological stimuli. The
frontiers of computer aided drug discovery should be therefore expanded to account
for both the inherent motions of the system and for potential induced fit phenomena.
Several research groups have started to consider protein flexibility into structure
based drug design, as summarized in detail in several recent reviews [37, 80, 81].
This represents a major progress in the field, increasing the discrimination power
between binders and non-binders (the so called enrichment factor) and improving
the ability to predict the correct binding poses and ligand induced conformational
changes. However, at present there is no reliable, easy-to-use docking/screening
protocol that accounts for all protein conformational changes. Thus, in several phar-
maceutical applications protein flexibility is still neglected, conceivably limiting the
success rate of drug discovery campaign. This important issue should be therefore
carefully considered in those cases in which the receptor displays a substantial
conformational transition upon ligand binding [82]. Diverse experimental methods
exist to elucidate collective motions, including NMR, X-ray crystallography, cryo-
Electron Microscopy, as well as single-molecule fluorescence or electron-transfer
measurements. In the last two decades considerable efforts have been also dedicated
to integrate experimental data with computational techniques. The comprehension
of the allosteric mechanisms, through which a local structural perturbation has
distant dynamic long-range effects, might be crucial to give new insights into
the protein function and its regulation mechanisms [83, 84]. In the following we
will briefly summarize the most popular in silico methods to characterize proteins
dynamic in the context of ligand-induced conformational changes.

12.4.1 Normal Mode Analysis (NMA)

NMA method [85] is based on the assumption that: (1) any given equilibrium
system fluctuates around a single well defined conformation and (2) the nature of
these thermally induced fluctuations can be calculated assuming a simple harmonic
potential. NMA determines the independent harmonic modes of the molecule,
whereby each single mode comprises the concerted motions of many atoms. The
standard application of NMA to a large biological molecule is computationally
expensive, however several sophisticated numerical techniques exist to extract the
lowest frequency modes of large molecules. Despite the intrinsic approximations
required by the method, including the use of a simple harmonic potential, sol-
vent exclusion and the inability to model multiple minima, NMA succeeded in
determining functionally relevant motions in several biological systems [86], such
as lysozome, crambin and ribonuclease [87], myosin, NtrC, hemoglobin [88, 89],
DNA-dependent polymerase [90], and several others [91, 92]. In all these cases,
the lowest frequency modes compared well with the experimentally conformational
changes observed upon ligand binding. Of note, Gramicidin A (GA) was the first
membrane protein examined by NMA, thus extending the range of applicability
of the method and opening new perspectives in the field. Extensive computational
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studies on GA have been performed since then [93, 94]. For example NMA analysis
was able to give new insights into GA gating mechanism and slow conformational
transitions, showing that its major motions consist in a counter-rotation of the two
helices around the pore axis, accompanied by a slight expansion of the channel
mouths at the EC and CP ends. Notably, the global modes of motion predicted by the
NMA models were consistent with experiments [95, 96]. Recently, NMA has been
also applied to flexible docking problems. Cavasotto at al., inspired by the current
representation of the ligand-receptor binding process, presented a normal-mode
based methodology to incorporate receptor flexibility in ligand docking and virtual
screening of cAMP-dependent protein kinase [97]. In 2012, Kruger et al., developed
the NMSim web server (http://www.nmsim.de) implementing a three-step approach
for multiscale modelling of protein conformational changes [98]. Efrat Mashiach
et al. [99] presented FiberDock, a new method for docking refinement, which
models backbone flexibility by an unlimited number of normal modes. Finally,
coarse-grained normal modes have been shown to be useful for the rapid prediction
of functional sites [100].

12.4.2 Elastic Network Model (ENM)

Although NMA has been used over three decades to study intrinsic flexibility of
proteins, interest in this approach increased after the development of NMA based
on Elastic Network Model, which proved to be accurate and robust despite its
simplified physical model and force field description [101]. The network represen-
tation adopted in ENMs takes advantage of principles deriving from both NMA and
spectral graph theory to obtain analytical solutions for equilibrium dynamics, that
can be readily implemented in efficient computational algorithms. The model was
recently exploited for the development of ElNémo: a normal mode web server for
protein movement analysis (http://igs-server.cnrs-mrs.fr/elnemo/index.html) [94].
The first simplified model, the Gaussian Network Model (GNM) [102] represents a
protein structure as a network of nodes (alpha-carbons) and elastic springs. In GNM
all the fluctuations and inter residues distances are gaussianly distributed around
their equilibrium coordinates. When this model is applied to coarse grained proteins’
description, it shows significant agreement with experimental crystallographic B-
factors for several proteins. Further extension of the model by Atilgan et al. [103]
included information of the direction of motions exploiting Anisotropic Network
Model (ANM).

Recently, the ENM was successfully applied to study large-scale conformational
transitions in the maltose-binding protein and in the nucleotide binding domains
of a maltose-transporter [104] or to analyze immunological relevant proteins such
as HIV gp120 plasticity in complexes with CD4 binding fragments, CD4 mimetic
proteins, and various antibody fragments [105]. Also the type and the extent

http://www.nmsim.de
http://igs-server.cnrs-mrs.fr/elnemo/index.html
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of conformational changes undergone upon activation of rhodopsin have been
extensively examined by various experiments and computations, including GNM
and ANM studies [106, 107]. In this case, the lowest ANM modes derived from the
model correctly predicted 93 % of the effects of 119 rhodopsin mutants [107].

12.4.3 Molecular Dynamics (MD)

In the absence of sufficient experimental data, the method that mostly contributes
to the understanding of biomolecular flexibility is MD simulation. Simulations in
explicit solvent can model flexibility of both ligand and receptor in a realistic
way, taking into account the fundamental role of water-mediated interactions.
However, the high computational cost combined with the long time-scale of
conformational changes strongly limits the applicability range of the method.
Nevertheless, MD simulations have been successfully and widely utilized in drug
design and development. One paradigmatic example highlighting the invaluable
role of MD in rational drug discovery is represented by HIV integrase. In 1999 the
solved structure of HIV integrase in complex with an inhibitor provided a platform
for the drug development of a different class of inhibitors. In this context MD
simulations were able to successfully predict more than one possible orientation of
HIV ligands binding [108, 109], as later confirmed by crystallography studies [110,
111]. Another seminal example of the useful insights offered by MD simulations
in structure based drug design was reported in 2011, when Buch et al. performed
on graphics processing unit (GPU)-based infrastructures 495 MD simulations of
100 ns each to simulate the complete binding process of the inhibitor benzamidine
to “-trypsin [112]. The approach allowed the identification of the lowest energy
binding mode of a ligand to a receptor. Monitoring of the binding process at an
atomic resolution can be potentially assist the development of drugs able to control
and modulate the ligand-receptor recognition process. In this context, Shaw and
collaborators formulated a mechanism for the flipping of a conserved motif of
Abl tyrosine kinases combining microsecond MD simulations with crystallographic
and kinetic experiments. Importantly, the conformation of this motif was crucial
to discriminate between active/inactive kinase conformations. Their results led to
the identification of a class of potent inhibitors of both Src and Abl that recognize
the inactive kinase conformations [113]. Recently, Skjærven et al. reported another
successful application of unbiased MD simulation on the chaperonine GroEL.
Multiple 100 ns MD simulations revealed a pre-existing equilibrium between the
unliganded closed T-state and the fully open R-state, even in the absence of bound
nucleotide. This study provided a model for the structure-dynamic relationship of
GroEL folding machine, supplying atomic insights into the interactions potentially
important for the large scale conformational transitions driven by ATP binding and
hydrolysis [114].
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12.4.4 Principal Component Analysis (PCA)

MD simulations generate an overwhelming amount of information contained in
the trajectory of atomic coordinates. The graphic visualization of such a trajectory
reveals the tremendous complexity of protein motion, but it is insufficient in
giving useful insights into the overall dynamics. To simplify the intricate network
of motions it is possible to identify concerted fluctuations with large amplitude
performing Principal Component Analysis on a large number of configurations
extracted from MD trajectory [115] or on a set of experimental structures (see
Fig. 12.4 in Sect. 12.5). PCA is a widely used statistical technique to retrieve
dominant patterns and representative distributions from noisy data. The idea is
to simplify the description of a complex system from a multidimensional to a
reduced dimensionality space, spanned by only few principal components (PCs),
thus elucidating the principal/dominant features underlying the observed data.
This method is based on the notion that by far the largest fraction of positional
fluctuations in proteins occurs along only a small subset of collective degrees of
freedom. The subset of largest-amplitude variables forms a set of generalized inter-
nal coordinates that can be used to describe the dynamics of a protein. Often a small
subset of 5–10 % of the total number of degrees of freedom yields a remarkably
accurate approximation. In other words, PCA is a multi-dimensional linear least
square fit procedure in the configurational space. Mathematically, it is based on the
calculation and diagonalization (after a fitting procedure to remove the translational
and rotational motions in the trajectories) of the positional covariance matrix of
atomic fluctuations [115] to yield collective variables that are sorted according to
their contributions to the total mean-square fluctuation. For studies aiming to relate
large scale motions to function, it is possible to reduce the computational effort
by selecting only backbone or alpha-carbon atoms for PCA; this analysis is often
named Essential Dynamics analysis (ED). Hence, PCA identifies displacements of
groups of residues and emphasizes amplitude and direction of dominant protein
motions, providing a reliable method to extrapolate collective functional motions
from relatively short MD trajectories [116]. As a matter of fact it has been
successfully exploited to describe motions occurring over longer timescale [117],
such as opening and closing events or large conformational transitions occurring
in enzymes and regulatory proteins. For example, ED analysis was used to capture
the early stages of the gating process in a potassium channel [118] or to reveal a
gating-like conformational change in the catalytic loop of a HIV-1 integrase [119,
120], or to suggest that conformational selection, rather than induced-fit, is the
dominant mechanism in the molecular recognition dynamics of ubiquitin [121].
Lou et al. applied PCA to analyze the resulting trajectory from MD simulations
of adenylate kinase [122]. Herein the computational results were discussed in light
of experimental data revealing substantial fluctuations characterizing the motion of
adenylate kinases in solution.

To conclude, one of the major challenging task for computational drug design
consists in the prediction of large domain motions. This objective requires an
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important change in our mind-set, as increasing evidences clearly show that the
comforting idea of a ligand perfectly adapting inside a static protein structure is now
outdated. The approach, that searches through an ensemble of conformations the
one which best accommodates the ligand, is still a strong biological approximation.
However, to date it constitutes an acceptable compromise between affordable
computational efforts and reliability of the results. Nevertheless, in the near future,
it is expected that calculations that will fully account for protein receptor flexibility
and dynamics, though computationally demanding, may likewise become routine,
leading to significantly improved computer-aided identification of effective drugs.
Moreover, presently underexploited target classes, such as ion channels, nuclear
hormone receptors or transporters, whose functions are strictly related to their
structural flexibility will be object of future drug design studies. Similarly, the
molecular description of allosteric modulation will provide new opportunities
to subtly regulate biological processes and will be likely object of future drug
discovery campaigns.

12.5 Integrin ’v“3-Drugs Interaction: A Case Study
for Ligands and Receptor Dynamics

In this section we will focus on a case study where the binding and the confor-
mational properties of both the ligands and the receptor have been analyzed by
the combined use of spectroscopic, biochemical and computational techniques. The
synergy between the different methods resulted in a successful strategy for the
identification of a real integrin ’v“3 antagonist. This example is particularly suited
to illustrate several issues related to:

i. The conformational characterization of flexible ligands and the allosteric effects
induced on the receptor upon ligand binding;

ii. The characterization of receptor-ligand molecular interactions in their natural
membrane environment.

12.5.1 The Combination of Metadynamics and Docking
Calculations: A Successful Strategy for Structure
Based Drug Design

Recent advances in cancer therapy include molecules interfering with angiogen-
esis and moieties that recognize specific receptors expressed onto the tumour
endothelium and/or cells, thus allowing the ligand-directed targeted delivery of
various drugs and particles to tumours. In this context, integrins play a pivotal role
regulating cellular functions crucial for the initiation, progression and metastasis
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of solid tumours [123]. Herein, integrin ’v“3 exerts a key function in endothe-
lial cell survival and migration, as it is an important transmembrane adhesion
receptor highly expressed during angiogenesis. It has therefore gained attention as
attractive therapeutic target in anti-angiogenic cancer therapy. The sequence Arg-
Gly-Asp (RGD), which is contained in natural ’v“3 interactors, such as vitronectin,
fibronectin, fibrinogen, osteopontin, and tenascin, is by far the most prominent
ligand to promote specific cell adhesion through stimulation. This sequence is
therefore attractive as a lead for the development of integrin antagonists. Recent
biochemical studies showed that deamidation of the NGR sequence gives rise to
isoDGR, a new ’v“3-binding motif [124]. As a novel class of peptidic integrin
ligands it paves the way to drug-design studies focusing on the synthesis and
characterization of a new generation of isoDGR-based cyclopeptides. [125–127].
IsoAspartic acid is a “-aminoacid, which induces high flexibility in isoDGR-
containing macrocycles, thus augmenting the range of accessible inter-converting
conformations which are difficult to be characterized by the common spectroscopic
techniques. Nevertheless, an accurate and reliable determination of the accessible
conformations of macrocycles containing the isoDGR signature conformation is a
prerequisite for a reliable docking screening. Exploring the conformational space of
peptides with sufficient detail is computationally very demanding and often beyond
the reach, even for state-of-the-art atomistic molecular simulations techniques.
As previously discussed, MetaD has emerged as a powerful coarse-grained non-
Markovian molecular-dynamics approach for the acceleration of rare events and
the efficient and rapid computation of multidimensional free energy surfaces as a
function of a restricted number of collective variables. In this case MetaD, combined
to docking calculations was successfully exploited to evaluate in silico the different
binding properties of the cyclopeptides CisoDGRC, CDGRC (a non-binder) and
RGDf(NMe)V to ’v“3. In particular, MetaD was applied to exhaustively and
rapidly characterize the conformational equilibrium of flexible ligands prior docking
calculations. The combination of MetaD and docking allowed to discriminate in
silico binders from non-binders [126]. In this work it was demonstrated that MetaD
performed on Gly ® and § angles reliably describes the free energy surface of a
relevant set of RGD, DGR and isoDGR-containing cyclopeptides, thus allowing the
scrutiny of their intrinsic conformational equilibria and the quantitative estimation
of the population of the conformers (Fig. 12.2). In addition, these MetaD-generated
conformations well agreed with NMR-derived experimental data performed on the

�
Fig. 12.2 Free energy surfaces (FES, kJ/mol) of RGDf(NMe)V, CDGRC, CisoDGRC
and acCisoDGRC reconstructed by well-tempered MetaD using central Gly ® and § angles
as collective variables (CVs). For each cyclopeptide, a representative structure extracted from
the corresponding FES global minimum is shown in licorice in the black box. In the red boxes,
the ligand-’v“3 binding site, as calculated by the docking program HADDOCK are shown. The
ligand is represented in licorice, ’v“3 is represented in cartoon, the side chains of ’v“3 directly
involved in the binding (ASP218 and ASP150) and Mn2C MIDAS cation are shown with green
licorice and red sphere, respectively (Modified from [125])
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free molecules. It is worth noting that MetaD was successfully applied to predict the
effect of chemical modifications on the cyclopeptides conformational equilibrium.
This prediction power is particularly relevant for macrocycles in which conforma-
tional heterogeneity can be exploited to fine tune the ligand selectivity and affinity
towards a specific receptor. As a matter of fact, it was demonstrated that MetaD
could be successfully applied to predict the conformational effects of N-terminal
acetylation of the macrocycle CisoDGRC (acCisoDGRC) and to generate reliable
structural models that were docked inside ’v“3. In particular, MetaD predicted
that N-terminal acetylation should remove “unproductive” conformations which
should result in an increased affinity of acCisoDGRC over CisoDGRC (Fig. 12.2).
Importantly, the computational predictions were validated in vitro through binding
experiments by conventional flow cytometry analysis by testing both living cells
and recombinant ’v“3. The results have been further confirmed performing binding
and competition experiments acquiring 2D trNOE spectra on living cells [126,
128] (see Sect. 12.5.2). Overall the combination of docking and conformational
sampling through MetaD allowed to discriminate among binding and non-binding
cyclopeptides, contributing to define descriptors for good ligands and to rapidly
discard in silico “unproductive” ligands. Overall, these findings provide support
for applying MetaD/docking to improve the rationale design of isoDGR-based new
diagnostic and therapeutic agents along with the rapid and accurate screening of
peptide libraries. Finally, it is conceivable that coupling MetaD to docking can be
successfully exploited in other ligand-receptor systems following the identification
of appropriate CVs for ligand conformational ensemble characterization. It is worth
noting that such an approach may be well exploited in the field of peptide-targeted
agents, which represent an emerging frontier in angiogenesis, where the availability
of in silico methods for rapid and reliable screening of targeted compounds is
critically needed before entering chemical synthesis and binding experiments.

12.5.2 Characterization of Receptor-Ligand Molecular
Interactions in the Natural Membrane Environment:
trNOE Experiments Interrogate and Rank ˛vˇ3-Ligand
Interactions in Living Human Cancer Cells

A crucial contribution to the efficacy of targeting approaches relies on the char-
acterization of receptor-ligand molecular interactions in their natural membrane
environment. However, this is an inherently difficult goal to achieve. Usually reduc-
tionist approaches are adopted, where binding experiments are mostly performed
on recombinant purified proteins. Nevertheless, these studies are often hampered by
the limited availability of the target receptor. In addition, because of the intricate
network of macromolecules simultaneously exerting different biological activities
at membrane level, binding assays using purified proteins often fail to reflect the
true nature of the cellular environment. Hence, drug-discovery studies may benefit
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from binding assays performed in physiological conditions, which might require
accessory proteins contributing to ligand-receptor interactions. Herein, solution
nuclear magnetic resonance spectroscopy, because of its non invasive nature, is
increasingly utilized [4]. In this framework trNOE methods were successfully
exploited directly on patient-derived intact cancer cells to prove the selective
binding of various cyclic ligands including CRGDC, RGDf(NMe)V, CisoDGRC
(the three peptides are ligands for ’v“3) and CDGRC (negative control). Binding
was also proven for the peptide CNGRC, a ligand of aminopeptidase N (CD13),
another membrane-spanning surface protein playing a pivotal role in tumour growth
and metastatic spread. The selected cell lines were melanoma (’v“3CCD13�)
and a non-small lung carcinoma cell lines (’v“3CCD13C) which display different
phenotypes for ’v“3 and CD13. Briefly, in this experiment the spectrum of the
free ligand and in presence of five millions cells are acquired. The free ligand
shows positive NOEs (opposite sign with respect to the diagonal), in the presence
of the cells, if it binds to the receptor, it transiently adopts the tumbling time of
the receptor attached to the cell and can hereby transfer the negative NOE (same
sign with respect to the diagonal) of the protein complex to the population of the
free molecule. If the ligand does not bind, the cross-peaks outside the diagonal will
maintain the positive sign (Fig. 12.3). The method allows using different cell lines,
with different receptors, which can be also silenced with siRNA techniques to prove
recognition specificity. Only very small amount of receptors are needed to prove
binding (in the picomolar range). Non specific binding can be straightforwardly
established by competitive binding with stronger ligands performing competition
experiments thus defining an affinity ranking of different ligands in a physiological
context [128]. This method was also applied to validate the MetaD hypothesis,
which had predicted an increased affinity of acCisoDGRC over CisoDGRC (see
Sect. 12.5.1). In conclusion, trNOE experiments performed directly on living cells
allows to follow ligand-receptor interactions with receptors involved in tumour
angiogenesis directly in a natural cellular environment that may confer relevant
biological structural conformations that cannot be duplicated in vitro with single
components. Furthermore, this method might have large general applications in drug
discovery studies, because it can be easily exploited in other cellular systems to
rapidly screen libraries of ligands and to contribute to drug design.

12.5.3 The Role of Essential Dynamics in the Study of ˛vˇ3
Allostery Upon Ligand Binding

As member of the integrin family ’v“3 relays signals bi-directionally across the
plasma membrane between the extracellular ligand binding site and the cytoplasmic
domains. Signal transfer is allosterically coupled to three major equilibrium confor-
mational states, including the (1) inactive bent state (low affinity); (2) intermediate
extended state with a closed headpiece, and (3) active extended form with an
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open headpiece (high affinity) [129]. Although controversy remains concerning the
level of complexity in integrin allostery, it is generally recognized that the out-
in signalling following ligand binding and the consequent switch from inactive to
active state is accompanied by an outwards movement of the “-hybrid domain, char-
acterized by a swing-out angle varying between 10ı and 80ı [129, 130] (Fig. 12.4).
Out-in activation of ’v“3 by natural ligands occurs through the recognition of
the tripeptidic motif RGD. This sequence, as mentioned before, is becoming a
lead for developing integrin antagonists. However, in this context it should be
pointed out that a major drawback with integrin antagonists is their potential to
activate the receptor. In fact, all clinically approved “3 integrin antagonists act as
partial agonists, as they can activate signalling through allosteric changes in the “
chain, generating aberrant integrin signalling. Pharmaceutical integrin antagonists
designed to block adhesive protein binding may actually promote conformational
changes and receptor clustering, thus converting integrin in a multifaceted signalling
machine. This might have been the case for example for oral RGD based ’IIb“3-
inhibitors which showed a significant increase in mortality in patients treated with
these reagents [131, 132]. One potential explanation for this extraordinary and costly
failure in drug development might rely on the fact that, binding of natural ligands
and of some small-molecule “antagonists” to integrins might induce exposure of
neoepitopes referred to as ligand-induced binding site (LIBS) epitopes [133]. The
exposure of LIBS is a consequence of conformational changes which indicate that
the “antagonists” paradoxically induce the active conformation, causing outside-
in signalling and subsequent receptor activation [134, 135]. Hence RGD mimetics
fit into the traditional binding pocket of the receptor, competing with its natural
ligands but, at the same time, act as partial agonist, inducing a response of the
receptor. Therefore, although therapeutic targeting of integrins is highly attractive,
the mimicking of ligands may result in an intrinsic paradoxical integrin receptor
activation and may therefore not be the ideal strategy for integrin inhibition [134,
136]. In the development process of new ’v“3 inhibitors, studies aiming at the
characterization of the receptor allosteric events induced by ligand binding can
therefore offer crucial information on the potential benefits and drawbacks elicited
by the lead molecule.

�
Fig. 12.3 trNOE on living human cancer cells. (a) Schematic representation of trNOE experi-
ment performed on cell surface bound receptors. (b) Representative spectra of a free ligand (left),
of free cells (center), of ligand bound to the cell surface receptor (right). The spectrum of the
free ligand shows positive NOEs (opposite sign with respect to the diagonal). During ligand–
receptor binding, the ligand transiently adopts the tumbling time of the receptor and can transfer the
negative NOE (same sign with respect to the diagonal) of the protein complex to the population of
the free molecule (c) selected region of trNOE experiments performed on different ligands and on
difference cell lines (indicated on the top of the panel), red circles indicate the cross-peaks deriving
from correlations of the arginine •/” and •/“ protons of the ligand; ligands interacting with the cell
lines are indicated with a green “v” symbol, whereas not interacting ligands are indicated with the
“stop” symbol (Modified from [128])
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Fig. 12.4 Principal Component Analysis shows integrin headpiece allosteric transition from
the closed to the open state. Porcupine visualization of the first dominant eigenvector (corre-
sponding to the swing out movement of integrin hybrid domain) obtained from PCA on a set of
crystallographic structures. Two integrin structures representing the closed (PDB code: 1L5G) and
the open (PDB code: 2VDN) state are shown in cartoon representation with the ’ chain coloured in
Silver, the “3 of the closed and open conformation are coloured in Pastel blue and Metallic Pastel
red, respectively

In the framework of a drug-discovery project focusing on the development
of ’v“3 ligands based on the isoDGR sequence we performed all atoms MD
simulations on ’v“3 in complex with RGDf(NMe)V and with isoDGR containing
cyclopeptides to characterize the receptor conformational changes induced by
different ligands. Calculations showed that both cyclopeptides anchor to the ’v
and “3 extracellular domains through an electrostatic clamp that exploits similar
though not identical interaction patterns. On one hand, the Arg guanidinium groups
of the ligands are engaged in stable salt-bridges with the carboxylate of D218 and/or
of D150 within the ’v “-propeller domain. On the other hand, their Asp/isoAsp
carboxylates bind to the I-like domain of the “3 subunit, coordinating the MIDAS
ion via a carboxylate oxygen. Herein, we observed relevant differences in the
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Fig. 12.5 Differences in the ligand-receptor interaction patterns induce different long range
conformational changes on ’v“3. On the top is shown a representative binding mode of
RGD (left) and isoDGR (right) containing cyclopeptides, extracted from MD simulations. The
carboxylate group of Asp/isoAsp residue of the ligands (represented with sticks) coordinates
the MIDAS cation and two different regions of integrin “3 chain. In agreement with Essential
Dynamics analysis, gel filtration profiles confirm different mobility of free ’v“3 or with saturating
amounts of RGDf(NMe)V, CRGDC, CisoDGRC and acCisoDGRC (on the bottom). RGD ligands
induce opening of the receptor (left structure), as assessed by the smaller elution volume as
compared to isoDGR ligands, which maintain ’v“3 an inactive conformation (right structure)
(Modified from [137])

coordination pattern of the second carboxylate oxygen: in isoDGR containing
cyclopeptides this oxygen interacts with the ’2-’3 loop in the “3 subunit, whereas,
the very same oxygen in RGDf(NMe)V stably binds to the “1-’1 loop of the “3
subunit (Fig. 12.5) [137]. Remarkably, this latter interaction, playing a relevant
role as trigger of the “3 swing-out mechanism [138], is barely present in the
simulations with isoDGR containing cyclopeptides. Importantly, differences in the
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ligand-receptor interaction patterns resulted in different long-distance effects on
’v“3 mobility as assessed from the essential dynamics analysis of the simulations.
In fact, ED showed that unlike RGDf(NMe)V, isoDGR-containing cyclopeptides
failed to induce the swing-out of the hybrid domain, maintaining ’v“3 in its
inactive conformation. Importantly, the in silico results were confirmed by size-
exclusion chromatography and flow cytometry analysis (Fig. 12.5). Moreover,
immunofluorescence microscopy showed that RGDf(NMe)V activated ’v“3 and
promoted the redistribution of ’v“3 from focal adhesions to the cell periphery,
an event critical for cell migration. In contrast, isoDGR containing cyclopeptides
do not induce accumulation of ’v“3 at the cell border, further supporting the
hypothesis that isoDGR containing cyclopeptides compete with ligand binding
without inducing integrin activation. Altogether, these findings hold major promises
for drug design, based on the intrinsic ability of the isoDGR motif to block receptor
allosteric activation. Conceivably, isoDGR based drugs might replace the current
generation of integrin-binding compounds, representing a promising solution in
designing integrin antagonists, devoid of intrinsic paradoxical effects.
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Chapter 13
Molecular Dynamics Simulation
of Membrane Proteins

Jingwei Weng and Wenning Wang

Abstract Membrane proteins play crucial roles in a range of biological processes.
High resolution structures provide insights into the functional mechanisms of
membrane proteins, but detailed biophysical characterization of membrane proteins
is difficult. Complementary to experimental techniques, molecular dynamics simu-
lations is a powerful tool in providing more complete description of the dynamics
and energetics of membrane proteins with high spatial-temporal resolution. In this
chapter, we provide a survey of the current methods and technique issues for setting
up and running simulations of membrane proteins. The recent progress in applying
simulations to understanding various biophysical properties of membrane proteins
is outlined.
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POPC palmitoyloleoylphosphatidylcholine
CG coarse-grained
PC phosphatidylcholine
EM energy minimization
PME Particle Mesh Ewald
RF reaction field
SMD steered MD
AFM atomic force microscopy
PMF potential of mean force
TMD targeted MD
ABF adaptive biasing force
CV collective variable
ENM elastic network model
NMA normal mode analysis
ANM anisotropic network model
VSD voltage sensor domain
GPCR G protein coupled receptor
AQP aquaporin
EGFR epidermal growth factor receptor
DOR delta opioid receptor

13.1 Introduction

Membrane proteins constitute 20–30 % of all proteins encoded by genes in most
genomes [1]. They are involved in crucial physiological processes of life, including
transporting various ions and molecules across membranes, transducing energy,
sensing and sending chemical signals, regulating intracellular vesicular transport
etc. Therefore, membrane proteins often serve as important drug targets. It has
been estimated that about 60 % drug targets for human diseases are membrane
proteins [2].

Understanding the biological function and the underlying molecular mechanism
of membrane proteins rely heavily on their high-resolution 3D structures. Compared
to soluble proteins, the structure determination of membrane protein is much more
difficult. The first crystal structure of membrane protein was determined in 1985
[3]. In the following two decades, only 	100 unique membrane protein structures
were reported. But this number is growing exponentially, and up to date 	400
unique membrane protein structures have been solved (http://blanco.biomol.uci.
edu/mpstruc/listAll/list). The crystal structures often provide clues to unraveling
the working mechanism of membrane proteins, but proteins often cycle between
multiple conformational/functional states during the biological processes and the
structural information of different states of the same membrane protein is limited.
On the other hand, when structures of multiple states of the membrane protein are

http://blanco.biomol.uci.edu/mpstruc/listAll/list
http://blanco.biomol.uci.edu/mpstruc/listAll/list
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determined, it is still difficult for experimental techniques to reveal the transition
mechanism between these states, which require the dynamic description of these
processes with high spatial and temporal resolutions [4].

Computer simulation, specifically molecular dynamics (MD) simulation, pro-
vides such a tool of exploring the membrane protein dynamics with atomistic and
femtosecond resolutions. MD simulation of biomolecular system is based on classic
Newton’s equation of motion and empirical potential energy functions. There is
a long history of application of MD simulations to biomolecular systems starting
with the simulation of BPTI in 1977 [5]. Since then MD simulation has been widely
applied and become a common technique to study the structure-function relationship
of biomolecules. The application of MD simulation to membrane proteins, however,
has a relatively short history due to the limited available protein structures and
the immature lipid force fields. In recent years, developments of the force fields
for lipids largely improve the description of the lipid bilayer and the protein-lipid
interactions. On the other hand, a more challenging aspect of membrane protein
simulation is the “time gap” between the simulations and the functional relevant
process of membrane protein. For a complex system of membrane protein, the
typical atomic MD simulation timescale is generally limited to 10�8 to 10�7 s by
the computer resources accessible for most research groups. On the other hand,
unfortunately, most of the biologically interesting processes occur at microsecond
to millisecond or even longer timescales. Recently, the development of high-
performance computer facilities and advances in computational algorithms begin to
progressively bridging the gap. The methodology advances mainly focus on coarse-
grained force fields and various enhanced sampling methods. With these advances of
computer hardware and software, many important biologically relevant phenomena
of membrane proteins have been investigated, such as the conformational changes,
ligand binding, ion conductance and substrate transport, receptor oligomerization
and assembly in membrane etc. In this chapter, we will first introduce the most
commonly used techniques in setting up and simulate the membrane protein
systems, and then give a brief review of some applications of MD simulation for
membrane proteins.

13.2 Force Fields

For all molecular dynamics simulations, two important issues must always be kept
in mind: (1) whether the interactions between atoms are accurately described and
(2) whether the simulation is long enough for the system to sufficiently sample its
conformational phase space. Reliable dynamics and thermodynamics properties can
be obtained only when both issues are well satisfied. In this section, we will first
introduce the empirical force fields which are currently used to describe atom-atom
interactions in membrane protein simulations.
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13.2.1 General Issues of Force Fields

In classical MD simulations, atoms are often reduced to point-like particles. The
interactions between the particles are typically modeled by sums of pairwise or
multibody potentials including bond stretching, angle bending, torsional twisting,
out-of-plane bending, Lennard-Jones (LJ) interactions and Coulomb interactions.
A general form of the potential energy function can be written as,
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although there may be some extra terms in certain force fields. The potential energy
function V is dependent on position vector r of all particles, from which the inter-
particle distance b and rij, the angle 	 , the dihedral angle ® and the improper dihedral
angle in the expression are derived. The parameters in bonded terms, including the
force constants kb, k	 , k®, k and the equilibration distance b0, angle 	0, improper
angle  0, dihedral phase angle ®0 and multiplicity n, and those in non-bonded
terms, including the LJ well depth "ij, the collision diameter  ij, and the partial
particle charges qi and qj, are all dependent on the particle type involved in each
term. "D is the dielectric constant. The functional form of potential energy and the
set of parameters constitute a force field. The parameters in force fields are derived
from a combination of experimental data and quantum mechanical calculations [6].
Parameterized force fields are computationally efficient and allow for simulation of
biomolecules with hundreds of thousands of atoms for hundreds of nanoseconds.

A good force field should provide satisfactory agreement with all available
experimental data and a well determined parameter set is crucial to its accuracy. In
parameter development, a basic assumption is often adopted that the particles bear-
ing similar chemical environment can share the same parameters (partial charges
are sometimes treated more specifically). For example, backbone carbonyl groups
and amino groups in proteins are often regarded to be the same to the groups in N-
methylacetamide, and methyl groups in amino acid side chains are treated equally
with those in alkanes. This assumption greatly reduces the number of parameters as
all particles involved are now reduced to a few particle types and the same parameter
set can be transferred between particles of the same type, thereby simplifies
the parameter optimization procedure. In practice, a large biomolecule is usually
divided into appropriate model molecules of about ten heavy atoms. Then parameter
optimization can be conducted individually for each small molecule by fitting to
its quantum mechanical calculation results and experimental data. The resulted
parameters are directly transferred to the original biomolecules and further verified
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by running simulations for complex systems and comparing the results with experi-
mental data. The parameters may be fine-tuned afterwards to better fit all used data.

Though the transferability is an approximation to real nature, it has produced
most of the commonly used force fields today, such as CHARMM [7], AMBER
[8, 9], GROMOS [10] and OPLS [11], and each of them reaches a satisfactory
agreement with experimental data. In the absence of more detailed rules, every force
field follows its own philosophy in practice. The differences in functional formula,
particle type and model molecule definition, quantum mechanical calculation
methods and experimental data used, and partial charges fitting strategy etc. lead to
very different parameters, even for similar particle types. Because of the differences
in philosophy, arbitrarily mixing parameters from different force fields would lead
to loss of accuracy, and is generally not recommended. Another important difference
is the particular water model utilized in each force field. CHARMM and AMBER
are paired with the TIP3P model [12], while GROMOS uses the SPC model [13]. A
mismatch between protein force field and water model would lead to several kJ/mol
discrepancies between computational and experimental values [14].

Different levels of particle details are adopted in various force fields, categorized
as ‘all-atom’, ‘united-atom’ and ‘coarse-grained’ (Fig. 13.1). All-atom force fields
are most popular, including the CHARMM, OPLS and AMBER force fields. They
treat every atom explicitly as one particle, including hydrogen atoms, and provide
the most detailed description of biomolecules. United-atom force fields adopt a
similar particle definition except aliphatic carbons. One carbon and its associated
hydrogen atoms are combined as one particle, and the computational cost of
simulating the hydrogens could be saved. Coarse-grained force fields use larger
particle units. The whole amino acid side chain or even several intact residues can
be represented by a single particle and the collective physiochemical properties of
the individual atoms are endowed to it. Due to the reduced number of particles
and faster dynamics, coarse-grained models could simulate systems with orders of
magnitude increase in time scale and system size.

13.2.2 Lipid Force Fields

Lipids are amphiphilic molecules consisted of charged or polar head groups and
hydrophobic acyl chains. In organisms, they often assemble noncovalently to form
a highly heterogeneous system called lipid bilayer, which varies largely in density
and polarity on a typically 	5 nm length scale. Lipid bilayers are often fluid-like,
showing evident dynamic properties in a wide range of time and spatial scale,
ranging from tail twisting, lateral diffusion, and flip-flop etc. It is quite challenging
to make a lipid force field since an elaborate balance between hydrophobicity and
hydrophilicity must be achieved to describe its complicated dynamic behavior.

The lipid bilayer dynamics also causes the sampling problem in lipid param-
eterization. As a pure lipid bilayer usually fluctuates on a multinanosecond time
scale [15], hundreds of nanoseconds are usually required to equilibrate the structure,
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Fig. 13.1 Particle definition of palmitoyloleoylphosphatidylcholine (POPC) in (a) all-atom, (b)
united-atom and (c) coarse-grained force fields. The particle types are indicated

and to sample the major states for accurate statistical averages [16]. Motions of
ions are also slowed down near the lipids. Binding of sodium or calcium to lipids
requires tens or one hundred nanosecond equilibration time [17]. To obtain a reliable
parameter set, large amount of computational resources are required.
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Another obstacle in parameterization comes from experimental techniques.
Because of the mobile nature of lipids, the most powerful techniques utilized in
lipid studies including X-ray and neutron diffraction, solid state nuclear magnetic
resonance and infrared spectroscopy, usually provide indirect information which
is interpreted based on models and assumptions. Structural information of lipids
is more limited and less reliable compared with proteins. Parameterization can
be supplemented by quantum mechanics calculations, but experimental data are
still indispensable for validation. A consensus for parameter validation of lipids
in the early days is using the average area per lipid (APL). APL could be obtained
from X-ray or neutron diffraction and volumetric experiments, and compared with
the calculated results obtained from a constant pressure-zero tension simulation
by dividing the total surface area of membrane using half of the total number of
lipids. Recently, a larger list of properties is proposed for validation, including the
structure factors (APL and bilayer thickness), carbon-deuterium order parameter,
NMR spin lattice relaxation times, elastic moduli, electron density profile and lipid
translational diffusion constants etc. [18].

Last decade has witnessed significant progress in lipid force field development
and the commonly used protein force fields have published their compatible lipid
parameters. The all-atom force field CHARMM has updated several times these
years. The CHARMM27r (C27r) parameter set [19] improved the behavior on
dipalmitoylphosphatidylcholine (DPPC) bilayers over C27 set [20] by revising the
torsion potential energies for short alkanes. The latest version C36 [21] made further
progress in providing correct surface area for both saturated and unsaturated chains
by modifying selected torsional, LJ, and partial charge parameters. The agreement
with experiments in other properties was also improved. Another popular atomistic
force field AMBER was less frequently used for lipid simulation as it did not
have a specific lipid force field for a long time. Its general parameter set GAFF
was an alternative though it tended to underestimate average APL [22, 23]. A new
parameter set Slipids was recently developed for several saturated and unsaturated
phospholipids using AMBER philosophy [24, 25]. It could accurately describe the
structural properties of lipid bilayers under a range of temperatures, and the NMR
order parameter profiles and the scattering form factors are also well reproduced.

United-atom lipid force fields can be traced back to Berger parameter set [26],
though the GROMOS force field is currently the more rigorous one. GROMOS
suffered from unneglectable disagreement with experiments in electron density
profile and APL in its early versions 45A3 [27] and its performance has been greatly
improved these years. GROMOS 53A6 set [28] increased the van der Waals radius
between the choline methyl groups and the non-ester phosphate oxygens and well
reproduced the structural and hydration properties of common phosphatidylcholine
lipids which have varying length and unsaturation degree of the acyl tails [18]. The
latest version 54A7 [29] made some small modifications by adding a new atom type
for headgroup etc., and provided the best agreements with the experimental results
in GROMOS series, especially in the ordering of the choline and glycerol moieties
and the orientation of the headgroup dipole.
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Coarse-grained (CG) force fields are very powerful in studying lipid dynamics
for its high-efficiency in sampling. A simple lipid CG model called MARTINI
[30, 31] has become very popular these years. It adopted a four-to-one mapping
procedure by combining approximately four heavy atoms into a coarse-grained
particle (Fig. 13.1). This model enabled rapid calculations on lipid dynamics
such as self-assemble, phase separation and membrane fusion, which usually span
microsecond timescales.

Currently, parameterization of phosphatidylcholine (PC) lipids is quite satisfy-
ing, but these lipids only constitute a part of all biologically relevant lipids. Works
on parameters of other lipids such as cholesterols and sphingolipids are still on
the way. A compatible comprehensive lipid parameter set could be expected in the
future.

13.2.3 Compatibility of Protein and Lipid Force Fields

Membrane proteins exist in a very heterogeneous environment. Within about 5 nm’s
space, they would experience very different physicochemical environment ranging
from a strongly polar water phase, a concentrated electrolyte solution, an ordered
hydrophobic matrix and a disordered hydrophobic matrix [32]. A good protein
parameter set should behave well in all these environments to ensure a reliable
description of protein-lipid interactions. Direct experimental measurements on
protein-bilayer systems are always preferred as target data for parameterization,
however, the information obtained is often too complicated to interpret or too global
for fine tuning of parameters. Several simplified systems are used instead for direct
comparison between simulations and experiments.

The Radzicka-Wolfenden system is most commonly used. Proteins are modeled
as small molecule analogs of amino acid side chains and bilayers are represented
by biphasic systems of water and cyclohexane [33, 34]. When systems reach
equilibration, the concentration is measured experimentally in each phase and the
partition coefficient determines the free energy of transfer. As the same property can
also be obtained from computation, a direct comparison between simulations and
experiments can be used to test [35, 36] and optimize [28] force field parameters.

Though the Radzicka-Wolfenden system provides a bridge between simulations
and experiments, it could be doubted in two aspects: first, side chains by themselves
do not represent all aspects of protein structure, especially the backbone; second,
the isotropic solvents do not resemble the complex environment of lipid bilayer.
More realistic systems using pure lipid bilayer, peptide, or even proteins have been
proposed in experiments [37], though simulations are still left behind.

Currently, a reasonable choice of force field for protein-bilayer simulation is to
employ the same set of force fields for either system to keep the consistency in
parameterization philosophy. However, it should be kept in mind that these param-
eters are not as convincing in protein-bilayer systems as they are used individually.
Case-by-case verifications on these parameters are still needed. As experimental
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techniques on membrane protein systems are improving, force fields may be
further trained and improved to attain a better agreement between simulations and
experiments.

13.3 Preparing the Simulation System

In this section we will present the technical details in setting up membrane protein
systems for MD simulations. MD simulations need to start from initial coordinates
of the system. Biologically meaningful production simulations are obtained only
when the initial coordinates are “correct”. A common procedure for system setting-
up usually starts with a high-resolution structure of membrane protein. The starting
structure will first be repaired and correctly protonated, then it is embedded into
a bilayer membrane and solvated. When the restraints on the system are gradually
removed in the equilibration process, the initial coordinate for production simulation
is finally obtained.

13.3.1 Preparing the Protein Structure Coordinates

To setup a membrane protein simulation system, one needs the starting struc-
ture coordinates of the protein. Membrane structure coordinates solved by X-ray
crystallography or NMR are all deposited to the Protein Data Bank and can be
obtained freely from the website: http://www.rcsb.org. The downloaded PDB files
of the membrane protein structures usually contain atoms belonging to amino acid
residues as well as heteroatoms constituting ligands, water molecules, or even
some detergents in the precipitation buffer. The protein coordinates are commonly
reserved. If the ligands and the crystal water molecules are biologically relevant,
e.g. important for protein structure stability, they should also be retained.

The experimental structures are usually not “complete”. Hydrogen atoms are
often invisible by crystallography. Some side chains in proteins may be unresolved
due to the low resolution diffraction data or their intrinsic high flexibility. Some
residues, usually at the loop region, may be even totally missing. The coordinates
of the missing atoms can be guessed with structure building tools, such as psfgen
(implemented in NAMD package) or pdb2gmx (implemented in GROMACS
package). Or, if there are too many missing atoms, especially the backbone atoms,
homology modeling programs such as Modeller [38] or online servers such as
SWISS-MODEL Workspace [39] (http://swissmodel.expasy.org/) may be utilized
to repair them. The protonation states of the titratable residues are often kept
in their default states. But when proteins show evident pH-dependent behavior,
the protonation states could be of physiological importance. The states could be
predicted using an empirically based method PROPKA [40] (http://propka.ki.ku.
dk/) or a more physically based method HCC [41] (http://biophysics.cs.vt.edu/).
Possible disulfide bonds should also be searched.

http://www.rcsb.org
http://swissmodel.expasy.org/
http://propka.ki.ku.dk/
http://propka.ki.ku.dk/
http://biophysics.cs.vt.edu/
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When all the missing atoms are generated and all the titration states are
determined, certain force field could be assigned to the protein using the structure
building tools. An energy minimization (EM) process is recommended afterwards
to remove any bad contact hidden in crystal structures or introduced in the repairing
process.

13.3.2 Preparing the Lipid Bilayer

Pure phospholipids bilayers are often used in simulations to model cell membranes.
In early times, the initial coordinates of a lipid bilayer were often generated ab
initio. Tools such as CHARMM membrane builder server (http://www.charmm-gui.
org/?doc=input/membrane_only&step=1) would stack lipid by lipid to build up an
integral bilayer. An alternative way to obtain the initial coordinates is to download
pre-equilibrated bilayers from internet. Lipidbook database [42] provides an easier
way from which various membrane structures attached in the published works can
be found (http://lipidbook.bioch.ox.ac.uk/). It is important to make sure that the
downloaded bilayer models have the proper size for the specific membrane proteins
one desires to simulate. As periodic boundary conditions are usually employed, the
size of the bilayer must be large enough to avoid interactions between the protein
and its periodic images, though a larger membrane would be more time-consuming.
After the modification, further equilibration is recommended. This process usually
requires dozens of nanoseconds MD simulations and can be monitored simply by
area per lipid (APL), as mentioned in Sect. 13.2.2.

13.3.3 Embedding Protein in a Lipid Bilayer

With a refined membrane protein and an equilibrated membrane model at hand,
the next step is to embed the protein in the bilayer. The embedding process aims
to provide a protein-lipid complex with an unperturbed protein structure, a well-
structured bilayer and a reasonable protein-lipid interface. Though several hundred
nanoseconds MD simulation would be enough for lipids to spontaneously assemble
into bilayer around membrane proteins [43], the computational cost for most
membrane protein systems is still very expensive, even with coarse-grained force
fields. Many time-saving strategies are developed, which often build up a protein-
lipid complex in vacuo, and then solvate and equilibrate the system.

Though there are different strategies for protein embedding, an initial location of
the protein relative to the bilayer is always the prerequisite for all the methods. The
positioning process is largely guided by hydrophobicity and hydrophilicity match
between the protein and the bilayer. All the membrane integrated proteins have a
transmembrane spanning region characterized by the absence of charged residues at
the molecular surface, usually capped with Tyr and Trp residues at both edges of the

http://www.charmm-gui.org/?doc=input/membrane_only&step=1
http://www.charmm-gui.org/?doc=input/membrane_only&step=1
http://lipidbook.bioch.ox.ac.uk/
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region corresponding to the lipid-solvent interfaces. The protein must be reoriented
and translated so that its transmembrane spanning region could be well matched
up with the hydrophobic tails of the bilayer and the Tyr and Trp residues of the
protein inserted into the headgroup/tail interfacial region. The procedure could be
conducted manually with molecular graphics tools, such as VMD. OPM database
provide a more precise way for the positioning [44]. It is based on a computational
approach developed to predict the transmembrane region of the protein and to
evaluate the transfer energy of protein from water to membrane. The optimized
spatial arrangement of proteins could be found using the approach. Searching within
the database could be easily executed using proteins’ name or PDB ID and the
optimized structure coordinates can be downloaded readily (http://opm.phar.umich.
edu/).

After the determination of the initial location, the protein is superimposed with
the bilayer. Embedding protocols would be utilized to remove the overlapping lipids
and create a proper protein-bilayer interface. There are various kinds of strategies at
hand which can be roughly categorized into two types: the bilayer-biased methods
and the interface-biased methods.

13.3.3.1 The Bilayer-Biased Methods

The bilayer-biased methods try to retain the pre-equilibrated bilayer structure as
much as possible. Though the lipids close to the protein would be removed or
modified when the protein-lipid interface is created, the farther ones are almost
undisturbed. A typical method of this class is to simply delete the overlapping
lipids within a certain distance cut-off. The applied cut-off length could be 5–6 Å
for protein-phosphorus distances or 0.8–1.6 Å for the minimal distance between
any two atoms on protein and lipids. Though this method is extremely fast and
well preserves the bilayer structure, it often produces a rather rugged protein-lipid
interface due to the highly disordered nature of bilayer lipids. The lipids are often
either too close to the protein or too far from it. A long and fussy equilibration
process will be required to remove the protein-lipid clashes and fill up the gap
between them. The process may take dozens of nanoseconds as lipid diffusion takes
place on a comparable time scale.

To improve the protein-lipid interface, methods specialized in creating com-
patible cavity in bilayer for proteins are proposed. These methods first use the
three-dimensional description of the protein shape to define the cavity. Regular
geometric solids such as a cylinder [45] or a finer Connolly solvent-accessible
surface [46] are acceptable. The cavity is then emptied by removing all the
overlapping lipids using a protein-phosphorus distance cutoff and further refined
by a weak repulsive potential which would drive out all the lipids atoms, e.g.
the hydrophobic tails. The resulted cavity would better fit the protein with hardly
any clash between them. This method could be implemented with mdrun_hole in
GROMACS package. Other programs such as GRASP [47] may also be required
to generate the solvent-accessible surface for GROMACS to use. A drawback of

http://opm.phar.umich.edu/
http://opm.phar.umich.edu/
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the method is that many parameters need to be specified. As no universal setting is
available, trial-and-error is often required [48]. Another problem is that the Connolly
surface only concerns van der Waals interactions, and the protein-lipid interface
needs further optimization to include electrostatic effects.

The protein-growing strategy proposed recently well settles the above problems
[49]. As in its initial location, protein is first laterally scaled down and a cavity
in bilayer is created by deleting all the overlapping lipids to accommodate the
compressed protein. Then the protein is gradually scaled up to its original size in
a short MD simulation. As the protein grows, the nearby lipids are gradually pushed
away and optimally form a protein-bilayer interface without disturbing of the overall
structure of the bilayer. As the bilayer structure is still close to its natural state, the
equilibration run could be shorter. For proteins with a large sectional area, some
lipids would have to travel a long distance during the growing stage and the bilayer
structure may be evidently disturbed. A moderate scaling-down ratio (such as 0.5)
would circumvent the problem. The protein-growing method is easy to use even for
proteins with very irregular shape and its computational tool g_membed is already
available in the GROMACS suite.

13.3.3.2 The Interface-Biased Methods

In contrast to the bilayer-biased methods, the interface-biased methods focus on
creating an elaborate protein-lipid interface, though large-scale perturbation is cast
on the bilayer structure. This class of methods could be traced back to the “ab
initio” approach [50] implemented in the CHARMM package. The method gains its
name as the membrane around the protein is constructed lipid by lipid. Each added
amphiphatic molecule is randomly chosen from a pre-equilibrated lipid libraries
and its location is decided according to the distribution of equilibrated bilayers.
A rigid-body conformational search is conducted afterwards. The process includes
randomly rotating around membrane normal and translating along membrane plane
to minimize protein-lipid clashes or lipid-lipid clashes. Though an optimized
protein-lipid interface is guaranteed, this method evidently messes up the bilayer
structure. An equilibration process is needed after the construction to re-equilibrate
the bilayer.

Shrinking approach [48] is another interface-biased method but with more
moderate perturbation on the bilayer structure. The pre-equilibrated bilayer is first
expanded by laterally translating lipid molecules in the membrane plane. A scaling-
up factor of 4 is usually appropriate in practice. After superimposing the protein, the
overlapping lipids are deleted and then the lipid bilayer is scaled back to the normal
density progressively. The possible clashes are eliminated by a subsequent energy
minimization (EM) procedure. The EM procedure would ensure the formation of
appropriate protein-lipid and lipid-lipid packing, while the protein are restrained to
avoid artificial conformational changes. A scaling factor of 0.95 for each shrinking
step works well in most cases and a total of 26 steps ends up with a protein-bilayer
complex structure very close to equilibration state.
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13.3.4 Solvation

As most embedding procedure is carried out in vacuo, the system is solvated
with water molecules and ions afterwards. The geometry-based solvation strategy
used for globular proteins could be directly applied here. A pre-equilibrated water
box is first superimposed onto the protein-bilayer system, and truncated to fit
the system. Then the overlapping solvent molecules are removed based on a
certain cutoff distance. As the equilibration of solvent molecules is generally fast
both in the bulk and at the solvent-lipid interface [51, 52], several hundreds of
picoseconds are usually enough to relax the system and form optimal protein-
solvent and lipid-solvent interfaces. In some cases, water molecules might be
misplaced in the hydrophobic core of bilayer during the solvation process, which is
thermodynamically unfavorable. It would be better to manually delete these water
molecules before the equilibration process using molecular graphics tools, otherwise
an equilibration process of several dozens of nanoseconds might be required for the
water molecules to spontaneously diffuse away. There are also cases when vacuum
bubbles appear in the system after a short equilibration run. This is often due to the
improper cutoff distance employed in the solvation procedure, in which too many
solvent molecules are deleted. The problem can be fixed by using a smaller cut-off
distance in solvation or by performing a short isothermal-isobaric MD simulation
to resize the simulation box by restraining the protein atoms at the same time.
Addition of ions could be carried out by randomly replacing water molecules to
reach a physiological salt concentration (typically 	0.15 mol/L). The added ions
are usually kept a certain distance (	0.5 nm) away from the solute so that they can
freely diffuse to the surface of the solute in the equilibration process. The system
may look like this after solvation (Fig. 13.2).

13.3.5 Equilibration

After solvation there might still be defects in the system, especially at the protein-
lipid, water-lipid and water-protein interfaces. Equilibration of several nanoseconds
is often necessary to relax the system and fix defects. It is worth noting that if there is
a big problem in the protein-bilayer complex, e.g. the protein is placed with a wrong
orientation or at a wrong depth relative to the bilayer, the equilibration process may
not fix it.

A typical equilibration process can often be divided into two stages. Solvent
can be equilibrated first as water molecules and ions usually move fast. Position
restraints are cast on both protein and lipid in this stage to avoid unreasonable
distortions in the structures due to the defects introduced in the system setup
procedure. Several hundreds of picoseconds are often enough to obtain an optimized
solvent configuration. After the equilibration of solvent, both lipid and solvent
are allowed to freely move while restraints are cast on protein atoms only. An
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Fig. 13.2 Membrane protein system after solvation. The vitamin B12 importer BtuCD is repre-
sented by ribbons with its transmembrane domains buried in the bilayer, the lipid molecules are
represented by spheres in grey, and the water molecules are represented by spheres in black and
grey. The lipid and the water molecules between protein and viewer are removed for clarity

isothermal-isobaric simulation using semi-isotropic pressure coupling algorithm
(see Sect. 13.4.1 for further details) is recommended so that the volume and the
surface tension could be relaxed simultaneously. An energy minimization process
or a short isothermal-isobaric simulation using isotropic algorithm may be used
before the semi-isotropic process to obtain a ‘good’ initial structure. The length of
the process depends on the system size and the embedding method. As mentioned
above, the protein-lipid complex constructed with the simple “delete lipids within
a cut-off” method may require long time simulation to reach equilibrium, while the
shrinking method or the protein-growing method may minimize the equilibration
time. As previous simulation study demonstrated that 10–20 ns are required to equi-
librate pure DPPC bilayers, at least a few nanoseconds simulation is recommended
to equilibrate the protein-bilayer system. APL could be used to monitor the process.
Equilibration is approximately reached when the APL curve turns flat. Then the
restraints on protein could be gradually diminished followed by the production run.
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13.4 Simulation Methods

13.4.1 All-Atom Molecular Dynamics (MD) Simulation

All-atom MD simulation method treats all atoms explicitly as point particles in the
system including protein, lipid bilayer and water, providing a natural environment of
the membrane protein and mimicking the experimental conditions. The inter-atomic
interactions are described by parameterized potential energy functions, also known
as force fields (see Sect. 13.2). In all-atom MD simulations, the Newton equation of
motion is integrated by numerical finite difference methods over small time steps.
At each time step, the total force on each particle is calculated according to the
coordinates of all the particles in the system and the force field parameters, and then
the forces are used to integrate the equation to predict the positions of the particles
for the next step. To avoid numerical instability, the time step of integration is
limited typically to 1–2 fs, which is the time scale of the highest-frequency vibration
in the system (covalent bond stretching). As a result, the motions of the system
are described by a series of snapshots (conformations) of the system (known as
trajectory) at femtosecond resolution. Various properties of interest can be evaluated
using the trajectories based on the principles of statistical thermodynamics.

The simulation parameters for membrane protein systems are generally the
same as those for globular protein systems. As the isothermal-isobaric algorithm
is becoming dominant for membrane proteins, one of the major differences between
two kinds of systems is the type of pressure coupling [15]. Globular proteins
are generally isotropic due to their free rotation in solvent, so isotropic pressure
coupling is always used which couples the contributions in x, y and z directions
by using a single proportional scaling factor. But for membrane protein systems, the
membrane surface (on x-y plane) is never equivalent to the membrane normal (along
z direction). If three directions are forced to couple together, the fluctuations in the
surface would be largely restrained and the surface tension would be inappropriately
specified. To allow surface fluctuations, semi-isotropic pressure coupling should be
used. In this case, the pressure contribution in z direction is decoupled from those in
x and y direction, so the surface could get rid of the restraint and its motion would
be driven by its own nature.

Another important issue is the treatment of non-bonded interactions.
Biomolecules and membranes are often highly charged and involve massive
electrostatic interactions inside of them. Because of the slow decay of Coulomb
potential, these interactions are usually significant at large distances. A simple
truncation strategy to remove long-range interactions beyond certain distance
(typically between 1.5 and 2 nm) could considerably reduce the computational
cost, but leads to major distortions in simulation systems, especially in bilayers
[53]. Two methods are now commonly used to treat the long-range problem:
Particle Mesh Ewald (PME) techniques [54, 55] and reaction field (RF) approaches
[56]. PME is the most popular and preferred method at the time. By infinitely
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replicating the simulation box in all three directions, PME could efficiently sums up
all of the interactions in this periodic system, and include long-range electrostatic
interactions. RF approaches provide an alternative for the calculation. They improve
the truncation strategy by introducing a correction term to electrostatic force, which
is obtained by analytically solving the Poisson-Boltzmann equation of the response
of a uniform dielectric media. Both methods have their drawbacks. PME artificially
enhances the periodicity of the system, while RF estimates heterogeneous system
properties using a homogenous model [57]. In practice, a safe choice between PME
and RF is to employ the same method as the force field developers use: PME for
CHARMM, OPLS and AMBER force fields and RF approaches for the GROMOS
force fields. Thus, the accuracy of the force fields can be preserved.

Calculation of long-range LJ force may also get renewed attention. Though a
truncation at 	1 nm is routinely used for LJ force in current simulations, a recent
work showed that neglecting the long-range terms led to 50 % overestimation
of the isothermal compressibility for bulk heptane, and approximately halved
the calculated surface tension of alkane/vapor interfaces [58]. As long-range LJ
correction in heterogeneous systems is very different from that in homogeneous
systems, further efforts will be needed to examine the importance of long-range
corrections, to test the correction algorithms, and to incorporate the algorithms into
the highly parallelized MD simulation codes.

Currently all-atom MD simulations are generally limited to nanosecond to
microsecond timescale due to the small integration time step of femtosecond.
Recent advances in computer hardware and development of software keep breaching
this limit and simulations of hundreds of microseconds have been reported [59].
However, these kinds of simulations are not normal in the community yet and
even this timescale is still far short compared to those of many biologically
relevant events for membrane proteins. In addition, simulation of the complex
system of membrane protein is demanding in respect of the statistical sampling
quality. A useful strategy for production run is to start multiple trajectories
with either multiple starting structures or using the same starting structure with
different initial velocities. A long sampling study on rhodopsin showed that multiple
trajectories could provide better agreement with experiment instead of using a single
one [60].

13.4.2 Coarse-Grained (CG) MD Simulation

One way to bridge the gap between the timescales of all-atom MD simulations and
the slow biological processes is to use CG force field as mentioned in Sect. 13.2.2.
One of the popular CG force field MATINI enables the simulation to take much
longer time steps (approximately ten times longer than the all-atom MD simulation),
providing 2–3 orders of magnitude speedup to extend the simulation timescales
to microsecond. However, because of the coarseness of the model, hydrogen
bonds were poorly described when MARTINI was extended to proteins. Extra
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restraints had to be cast on backbone atoms to stabilize the structure of proteins and
large-scale conformational changes were excluded in simulations [61]. One strategy
to overcome this difficulty is to switch between different coarse-graining levels
in a single simulation. When the system is in the coarse-grained level, it samples
efficiently in the phase space, and as the system switches to the fine-grained level,
structural refinement is allowed and atomic details are provided. This strategy is
known as multiscale simulation method, and has been widely applied to membrane
protein systems [62, 63].

13.4.3 Enhanced Sampling Methods

Instead of coarse-graining the force fields, another solution to bridging the
simulation-experimental time gap is using enhanced sampling of the configuration
space of the system. It is not possible to give a comprehensive review of enhanced
sampling methods here. We briefly introduce several enhanced sampling methods
that are widely used in membrane protein simulations.

The steered MD (SMD) simulation method [64] applies external forces to a
selected group of protein atoms, which are anchored to a spring of elastic constant
k and pulled from the initial position at a velocity v in order to accelerate a
certain type of conformational change. Initially SMD simulation was performed
to interpret the data from atomic force microscopy (AFM) experiments. Although
SMD simulation is based on non-equilibrium sampling, the trajectories can also be
used to calculate potential of mean force (PMF) along specific coordinates based on
Jarzynski’s identity [65]. It should be noted that when using SMD to calculate PMF
very long simulation time at slow pulling velocity is needed to ensure the proper
sampling of the system. Similar with SMD, targeted MD (TMD) simulation [66]
exerts external force on protein to drive the protein from an initial conformational
state to a targeted one. When two conformational states are known for a membrane
protein, TMD simulation can be applied to explore the transition process between
the two structures.

Some enhanced sampling methods are designed to improve sampling for the
calculation of PMF along predefined reaction coordinates. Umbrella sampling is
the oldest approach of these methods, in which the computation along the reaction
coordinate is divided into subintervals (windows) and in each window a static
biasing potential is used to further improve the sampling. These windows are then
analyzed together and the PMF profile can be reconstructed using reweighting
algorithms such as WHAM method [67, 68]. The more recently developed methods
of adaptive biasing force (ABF) [69–71] and metadynamics [72, 73] use history
dependent biasing force or potential to enhance sampling along certain reaction
coordinates. These methods enable the construction of a multidimensional free
energy surface as a function of a set of reaction coordinates or collective variables
(CVs). The key issue of applying these methods in computing PMF of a complex
system as membrane protein is the proper choice of the CVs, which should
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represent the degrees of freedom of the slowest conformational motions in the
system ensuring that the sampling of all other dimensions orthogonal to the reaction
coordinates converges quickly during the simulation time.

13.4.4 Elastic Network Model

Elastic network model (ENM) [74] is a coarse-grained version of normal mode
analysis (NMA), which provides information of the vibrational modes intrinsically
accessible to a protein structure. In ENM, the protein structure is represented as a
network of nodes (C’ atoms) connected by elastic springs within a specific cutoff
distance. The optimal cutoff distance for the most widely used ENM anisotropic
network model (ANM) is suggested to be 18 Å, and a uniform force constant
is used in ENM. In recent years, ENM is widely used to explore the collective
conformational motions of proteins based on the observation that the global modes
elucidated by ENM are functionally significant. This method is also extensively
applied to study membrane protein due to its low computational cost [75]. In the
application of ENM to membrane protein, the lipid bilayer and solvent are usually
not taken into account. It has been shown that the global modes of membrane protein
are essentially dictated by the overall shape of the protein while the environment has
little effect.

13.5 Typical Biological Questions of Membrane Protein
Explored by Simulation Methods

The first MD simulation study of membrane protein of bacteriorhodopsin was
reported in 1995 [76]. Since then, MD simulation and related techniques have been
successfully applied to unravel structure-function relationship of various membrane
proteins, such as ion channels, aquaporins, transporters, receptors, ATP-synthases
and so on. Some excellent reviews of this field have been published recently [77–
85]. Here, we are not aiming to a comprehensive survey, but present some examples
to showcase the applicability of MD simulation to membrane protein study, focusing
on several typical questions of membrane protein biophysics.

13.5.1 Conformational Change

Majority of membrane proteins undergo large-scale conformational changes during
the biological processes. For example, the voltage sensor domain (VSD) of the
voltage-gated potassium channel changes its conformation in response to the
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changes of membrane potential (voltage) to control the activation-deactivation
of the channel [86]. The transporter proteins switch between outward-facing
and inward-facing conformations to translocate substrates across cell membrane
[87], and the membrane receptors alter their conformations upon extracellular
ligand binding. Most of these conformational changes involve slow inter-domain
motion/rearrangement that span long time scales from tens of microseconds to mil-
lisecond and beyond. Therefore, it is generally unfeasible for the direct equilibrium
all-atom MD simulation to sample the conformational space with enough statistical
accuracy at the level of the nowadays computer resources. However, numerous
previous studies [78, 88] have shown that equilibrium all-atom simulations at sub-
microsecond time scales can provide useful information of the conformational
dynamics of the physiologically relevant states of membrane protein, such as the
local conformational changes, the tendency of the conformational transition as well
as inter-residue interactions crucial in the conformational movement.

In the MD simulation studies of the voltage-gated potassium channel Kv1.2,
standard MD simulations of 	1 �s under a hyperpolarizing membrane potential
revealed the secondary structure transformation of the S4 helix from ’- to 310-helix
with a 120ı rotation, although the later step of S4 downward translation toward
deactivated state was not observed [89]. To explore the entire transition process
from activated to deactivated states of Kv1.2, combined use of unbiased and biased
MD simulations revealed three intermediate states of the voltage sensor domain
[90]. Recently, impressive extended all-atom MD simulations of Kv1.2 channel
over 200 �s were reported [91]. The entire conformational change processes
during deactivation and activation of the channel were observed and a complete
mechanistic model of voltage gating has been proposed. Interestingly, the main
observations in the previous equilibrium and biased nonequilibrium simulations are
in good agreement with this extended long time MD simulation study.

For G protein coupled receptors (GPCRs), another family of membrane proteins
of biological importance, long-time scale all-atom MD simulations have also been
invested to explore the conformational changes [92], but the entire conformational
transition from inactive to active state is still out of reach. Provasi and Filizola
combined biased MD and metadynamics simulation to calculate the PMF profile
connecting two experimental end structures [93]. The conformational change
pathway was initially obtained from the biased MD simulation trajectories, and
subsequently used in the path collective variable-based metadynamics simulations.
Two pathways and four metastable states were identified along the conformational
transition [93].

Elastic network model was also employed to study the conformational change of
membrane proteins, including ion channels, receptors and transporters. The large-
scale conformational changes of membrane proteins can be captured in a few low-
frequency normal modes, although these analyses lack the atomistic details. We
direct the readers for a recent detailed survey by Bahar [75].
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13.5.2 Ion and Ligand Permeability

Transporting substances across membrane is the main function of membrane
channels and transporters. The permeation of ions and ligands is therefore a key
topic in membrane protein simulations. The most extensively studied system is
the potassium channel. To understand the process of KC permeation through the
selective filter of KcsA channel, early study calculated the PMF of three ions using
umbrella sampling [94], revealing concerted pathways for KC permeation and the
most stable binding site of KC. SMD simulation was also employed to compute
the PMF of KC permeation through KcsA [95], generally in agreement with the
findings of the umbrella sampling study. An interesting study [96] that compared
the performance of three methods, i.e. SMD, umbrella sampling and metadynamics
in calculating the PMF of KC permeation indicated that the PMFs obtained are
qualitatively similar but metadynamics was recommended for its computational
efficiency and accuracy. The KC conductance of Kv1.2 channel was studied using
direct all-atom MD simulations at microsecond timescales, revealing a detailed
conduction mechanism supporting the Hodgkin-Keynes “knock-on” model [97].
This straightforward MD simulation also allowed direct observation of the time
limiting step of KC dehydration.

Water channel aquaporins (AQPs) belong to another family of membrane
proteins extensively characterized both by experiments [98] and simulations [82].
The process of water permeation through aquaporins takes places at nanosecond
timescale. Therefore, direct all-atom simulations are adequate to characterize the
dynamics of translocation and calculate the free energy profile of water permeation.
Simulation studies have shown that the free energy barrier for water permeation
through AQPs is about 3 kcal/mol [99, 100]. AQPs can transport other molecule than
water, but the permeation rates are much slower. Permeation of glycerol through
aquaglyceroporin GlpF was studied using enhanced sampling methods SMD [101]
and ABF [102], giving permeation free energy barriers of 7.3 and 8.7 kcal/mol
respectively, in agreement with the experimental value of 9.6˙ 1.5 kcal/mol [103].
It is interesting to note that calculation with umbrella sampling gave a lower energy
barrier of 3.2 kcal/mol [99]. Larger ligand molecules have intrinsic conformational
flexibilities, thereby introduce additional degrees of freedom in the simulation which
may render difficulties in convergence of the sampling.

13.5.3 Dimerization of Receptors

Membrane bound receptors is responsible for signaling cross the cell membrane.
These receptors have ectodomains that bind extracellular ligands, single transmem-
brane helix, and intracellular signaling domains. Membrane bound receptors (e.g.
integrin, epidermal growth factor receptor (EGFR)) are often activated through
dimerization, which involves the dimerization of transmembrane helices of the two
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monomers. Therefore TM helices dimerization has been extensively studied with
various computational approaches. CG MD simulations were used to investigate
the glycophorin A dimer assembly from separate monomers in lipid bilayer, with
the resultant dimer structure in good agreement with experimentally determined
one [104]. The PMF of glycophorin A dimerization were also calculated, showing
that the dimerization is assisted by lipid-induced interactions [105, 106]. Recently,
extended all-atom MD simulations of EGFR showed that the self-assembly of the
TM helix dimer in lipid bilayer took place on timescale of 50–75 �s [107].

GPCRs, which bear seven transmembrane helices, have also been shown to form
dimers and/or oligomers in lipid bilayer. Umbrella sampling and CG simulation
were used to calculate the free energy profile of delta opioid receptor (DOR) dimer
formation and by using a diffusion limited model of dimerization the lifetime of this
dimer was estimated to be 4.4 s [93]. A similar simulation with CG metadynamics
obtained a shorter lifetime of 0.2 s [108]. Obviously this time scale is inaccessible
to direct MD simulations.
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Chapter 14
Free-Energy Landscape of Intrinsically
Disordered Proteins Investigated by All-Atom
Multicanonical Molecular Dynamics

Junichi Higo and Koji Umezawa

Abstract We introduce computational studies on intrinsically disordered proteins
(IDPs). Especially, we present our multicanonical molecular dynamics (McMD)
simulations of two IDP-partner systems: NRSF–mSin3 and pKID–KIX. McMD
is one of enhanced conformational sampling methods useful for conformational
sampling of biomolecular systems. IDP adopts a specific tertiary structure upon
binding to its partner molecule, although it is unstructured in the unbound state (i.e.
the free state). This IDP-specific property is called “coupled folding and binding”.
The McMD simulation treats the biomolecules with an all-atom model immersed in
an explicit solvent. In the initial configuration of simulation, IDP and its partner
molecules are set to be distant from each other, and the IDP conformation is
disordered. The computationally obtained free-energy landscape for coupled folding
and binding has shown that native- and non-native-complex clusters distribute com-
plicatedly in the conformational space. The all-atom simulation suggests that both of
induced-folding and population-selection are coupled complicatedly in the coupled
folding and binding. Further analyses have exemplified that the conformational
fluctuations (dynamical flexibility) in the bound and unbound states are essentially
important to characterize IDP functioning.
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14.1 Introduction

Intrinsically disordered proteins (IDPs) or intrinsically disordered regions (IDRs)
are structurally disordered in the unbound state (free state) and adopt a well-defined
tertiary structure upon binding to their partner molecules [9, 55, 62]. Thus, folding
and binding are coupled indivisibly. This property proposes a new scheme for the
structure-activity relationship as opposed to the well-known “lock and key” scheme,
and is referred to as “coupled folding and binding” [9]. IDPs and IDRs exist in
various eukaryotic genomes [46, 60], and play important roles in physiological
processes, such as cellular signal transduction, protein phosphorylation, molecular
assemblies, transcription, and translation regulation [9, 13, 24]. Therefore, IDPs and
IDRs are thought to be potential drag targets [38]. A single IDP or IDR, as a hub
protein, can interact with various targets exhibiting various biological functions [8,
47, 48]. Based on the biological significance, IDP database have been established:
DisProt [53], GTOP [11], DICHOT [10], MobiDB [7], IDEAL [12] and D2P2 [44].

It is difficult to experimentally detect various molecular conformations that
temporally appear in coupled folding and binding. A computer simulation is a
suitable technique to persuade such transient conformations. A coarse-grained
model provides large-scale molecular motions in a short computing time because
the IDP and the partner are highly simplified and the surrounding solvent is ignored.
Taking this advantage, the coarse-grained model proposed an interesting binding
mechanism for IDPs: a “fly-casting mechanism” [52]. The unfolded conformation of
IDP in the unbound state has a greater interaction radius than a well-packed structure
does, and this increases the binding rate constant to capture the partner molecule.
However, a coarse-grained simulation proposed an objection to the fly-casting
mechanism [22]: The unfolded conformation has slower translational diffusion than
the compact one (i.e. the unfolded state does not accelerate the binding). Instead,
they argued that the structural flexibility of IDP in an encounter–complex state
reduces the free-energy barrier between the encounter complex and the final native
complex. In other words, an induced-folding (or induced-fit) mechanism [39, 54]
dominates the coupled folding and binding. A population-selection (or population-
shift) is known as another binding mechanism [2, 29, 63], which may be opposite to
the induced-folding mechanism. Okazaki and Takada studied which the induced-
folding or the population-selection is dominant in coupled folding and binding
by using a coarse-grained model [45]. They argued that the binding mechanism
shifts from population-selection to induced-folding with increasing the strength of
the IDP-partner interactions and/or with an increment of the interaction radius.
The coarse-grained model was also effectively used to study binding kinetics,
where parameters used in the coarse-grained model were modulated to reproduce
experimental rate constants [51].

The above-mentioned coarse-grained models are categorized in a simplified
protein model, the Gō-like model [14], where the interactions are usually designed
so that a target structure (i.e. the native structure or the native complex structure)
has the global energy minimum: In other words, the protein conformation fluctuates
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under a target-structure-oriented bias. Therefore, the coarse-grained model may
skip over some important intermediates in the coupled folding and binding process
in exchange for the simplification of the model. We emphasize that an all-atom
simulation is useful to link the experiments and the coarse-grained models.

Although time consuming, the all-atom simulation of biomolecules in an explicit
solvent provides a conformational ensemble of the system at an atomic resolution.
A conventional MD (i.e. canonical MD) simulation was used to investigate the
structural dynamics for the complex of an IDP, the C-terminal segment of FCP1,
and the partner protein, the winged-helix domain of RAP74 [61]. The simulation
has shown that FCP1 retains disorder in complex with RAP74, which was also
examined by an NMR experiment [36]. The large flexibility in the bound state
suggests that the chain-entropy loss upon binging is small. Such structural disorder
in the bound state has been generally termed “fuzzy” [57]. Chen has used an
all-atom model with a continuum solvent to investigate the conformations of the C-
terminal segment of p53 from the bound state with the partner protein, S100B(““),
to the unbound sate, and found that the unbound state of p53 contains a native-
like bound conformation [3]. Chen suggested that those residual conformations in
the unbound state control thermodynamically the entropic cost for binding, and
that it is not evident for population-selection mechanism in this case because p53
is unfolded at an intermediate state between the bound and free states, which
supports the fly-casting mechanism. A multi-scale sampling technique, where
an all-atom system is combined with a coarse grained system to enhance the
conformational sampling, has shown that non-native interactions between an IDP
and its partner facilitate binding by reducing the entropic cost to reach the final
form in the free-energy landscape [59]. Therefore, this work supports the induced-
folding mechanism. A conventional MD of an IDR, the N-terminal tail of the p53
protein, supports the population-selection scheme [23]. Anchor residues in the tail,
which are buried in the IDP-partner interface in the complex, frequently adopt
the bound form even in the unbound state. A protein sortase has an intrinsically
disordered loop, and the N-terminal of the loop is structured upon binding to a signal
peptide and the C-terminal is done upon binding to a calcium ion. A multi-scale
enhanced sampling simulation of this system has proposed that the N-terminal tends
to exhibit population-selection, whereas the C-terminal does the induced-folding
[41]. Interestingly, the signal-peptide binding and the calcium-ion binding enhance
cooperatively the structure formation of the disordered loop. These works suggest
that the mechanism for coupled folding and binding has multifaceted aspects.

As above, not only the coarse-grained model but also the all-atom models have
uncovered various pictures for coupled folding and binding. Natural explanation
for coupled folding and binding is: each IDP/IDR has its own mechanism. Another
explanation is that the induced-folding and population-selection are mixed in an
IDP-partner system, and then either mechanism appears on the front responding to
a situation. Below we describe our simulation results of two IDP-partner systems:
NRSF–mSin3 and pKID–KIX systems. In the initial configuration of simulation,
the IDPs (NRSF and pKID) and the partner molecules (mSin3 and KIX) were
put distant to each other in an explicit solvent, and the IDP conformations were
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disordered. Then, a multicanonical MD (McMD) simulation, which is explained
briefly blow, was performed to enhance conformational sampling of the IDP-partner
systems.

14.2 Multicanonical MD

14.2.1 Methods

Protein folding and protein-ligand binding have been studied individually or
separately. Because each of folding and binding accompanies large configurational
motions, a powerful sampling method is required for the computational study. In
coupled folding and binding, on the other hand, folding and binding are coupled
indivisibly. Thus computational clarification of this phenomenon is a challenging
task. We have attacked this task using an enhanced conformational sampling
method, McMD simulation developed by Nakajima et al. [42].

Historically, the multicanonical algorithm was developed first to investigate
statistical properties of a two-dimensional Potts model on lattices based on Monte
Carlo (MC) sampling [1]. The MC-based method was applied to biological systems
[16, 34] and extended to molecular dynamics [17, 42]. The version by Nakajima
et al., denoted as McMD simulation in this chapter, executes the sampling in
a Cartesian coordinate space. Adoption of the Cartesian coordinates made the
multicanonical method extendable readily to a flexible multi-molecular system in
explicit solvent. Below we briefly explain the McMD method. Methodological
details are given in a review [18].

At a temperature T, the potential energy E of a system fluctuates, and a long MD
simulation yields an energy distribution Pc(E,T). This distribution, characterized
by E and T, is called a “canonical energy distribution”. Because a single energy
value is assigned to a conformation, E is a function of atomic coordinates of the
system:

E D E .r1; r2; : : : ; rN / ; (14.1)

where ri is the position of atom i expressed as riD [xi,yi,zi], where xi, yi, and zi are
its x-, y-, and z-coordinates, respectively. The parameter N is the number of atoms
in the system (i.e. atoms in biomolecules and solvent molecules). In conventional
MD (canonical MD), the force acting on atom i is given as

f i D �
@E

@xi
ex � @E

@yi
ey � @E

@zi
ez; (14.2)

where ex, ey, and ez are unit vectors parallel to the x, y, and z axes, respectively.
A simulation, which is performed by solving Newtonian equations of motion with
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using Eq. 14.2 under constant temperature and volume, is called the canonical MD
simulation, and Pc(E,T) is computed from time-average of E along the simulation
trajectory.

Here we suppose that Pc(E,T) is known accurately in advance. Statistical
mechanics ensures that the density of states n(E) of the system is given by the
following equation: n(E)/Pc(E,T)exp[E/RT], where R is the gas constant (we
assume that energy is measured in an kcal/mol unit). Here let us introduce another
potential energy Emc (called “multicanonical energy”) as

Emc D E CRT ln ŒPc .E; T /� / RT ln Œn.E/� (14.3)

Then, we define the force acting on atom i as

f mc
i D �

@Emc

@xi
ex � @Emc

@yi
ey � @Emc

@zi
ez

D �
�
@E

@xi
ex � @E

@yi
ey � @E

@zi
ez

�
@Emc

@E

D @Emc

@E
f i : (14.4)

Then, the MD simulation at T with Eq. 14.4 for the force evaluation is called
“multicanonical MD (McMD)”. The simulation trajectory provides the following
energy distribution:

Pmc .E; T / / n.E/ exp

�
�Emc

RT

�
D n.E/

n.E/
D const: (14.5)

Equation 14.5 ensures that the energy distribution from a long McMD run converges
to a flat distribution. Although the system consists of a variety of atoms (i.e.
atoms in biomolecules, water molecules, and ions), the single term � @Emc/@E is
multiplied to forces of any atom for performing McMD. In other words, replacement
of fi by � @Emc/@E
 fi in an MD computer program converts canonical MD
to McMD.

However, we do not know an accurate function form for Pc(E,T) a priori. Then,
McMD is done iteratively, through which the accuracy of Pc(E,T) increases and the
multicanonical energy distribution gradually converges to a flat function in a wide
energy range: Pmc(E,T)! const. See the review [18] for detailed procedure. After
reaching the flat distribution, we perform the last McMD simulation (production
run), during which a number of conformations are stored. We denote the ensemble
of stored conformations in the production run as Qmc.

Because McMD produces the flat energy distribution in the wide energy range,
the conformations in Qmc have various energies, some of which correspond to high-
temperature conformations and some of which to low-temperature ones. Therefore,
when we select conformations from Qmc whose energies are probable at a room
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temperature Troom, the ensemble of the selected conformations is a canonical
ensemble at Troom, denoted as Qc(Troom). Similarly, when conformations probable
at another temperature T 0 are taken from Q, the generated ensemble is a canonical
ensemble at T 0 : Qc(T 0). By this way, we can generate the canonical ensemble at
arbitrary temperature.

With increasing the system size, the complexity of the system and the volume
of conformational space increase drastically. Accordingly, the simulation length
required for sampling increases. To expand the applicability of McMD to such
a large and complex system, we developed a trajectory-parallelization method
of McMD (trivial trajectory-parallelization of McMD; TTP-McMD) [20], where
a number of McMD runs are executed from various initial conformations of
simulation. Importantly, the ensemble of the multiple trajectories is equivalent to
a long single trajectory of McMD [27]. TTP-McMD was used to compute the free-
energy landscape of IDP systems [21, 58]. This method is mentioned again later.

14.2.2 Free-Energy Landscape

Now we have the conformational ensemble Qc(Troom). Biophysically interesting
characteristics in protein folding or binding may be related to some structural
parameters of conformations stored in Qc(Troom). These parameters may be such
as an end-to-end distance, a radius of gyration, a solvent accessible surface area,
an inter-atomic distance, a number of inter-residue contacts (quantities listed up
to here are those related to folding), and an inter-molecular distance, a number of
inter-molecular residue-residue contacts, and an interface area (these are related
to molecular binding). Or one can define an arbitrary parameter to analyze the
conformational ensemble. Assuming a one-, two-, or three-dimensional space by
those parameters, we can generate a distribution function of Qc(Troom) in the
space. For instance, a three-dimensional distribution function P(s1,s2,s3;Troom) is
defined by counting the number of conformations detected in a small volume
�s1 
�s2 
�s3 at a position [s1,s2,s3], where si is one of the parameters. When one
or two parameters are selected, the distribution function is denoted as P(s1;Troom) or
P(s1,s2;Troom). Benefit for generating a low-dimensional space is visibility.

A potential of mean force, PMF, is a quantity categorized into free energy, which
is defined as

PMF .s1; s2; s3ITroom/ D �RTroom ln ŒP .s1; s2; s3ITroom/� : (14.6)

Because the probability is large at a site where snapshots are frequently detected,
PMF is low at the site. This means that the structure/configuration at this site is
thermodynamically stable. Patterns of PMF in the conformational space provide
an image of a “free-energy landscape”. Generation of the landscape at a different
temperature T 0 is achieved by replacing Troom by T 0 in Eq. 14.6.



14 Free-Energy Landscape of Intrinsically Disordered Proteins Investigated. . . 337

s1

s 2

B1
B2

B3

p1-2

p2-3

Fig. 14.1 Scheme for
free-energy landscape
illustrated two-dimensionally
by parameters s1 and s2. The
darker the tone, the lower the
free energy (i.e. potential of
mean force; PMF). Three
free-energy basins, B1, B2,
and B3, are shown. Saddle
point p1 � 2 separates B1 and
B2, and p2 � 3 does B2 and B3

One may obtain a free-energy landscape as illustrated in Fig. 14.1, which is a
two-dimensional representation for the landscape. A region with low PMF at Troom

is called a “free-energy basin” (or simply “basin”). In this figure, the basin B1 is the
global free-energy minimum. The global minimum may correspond to the native
structure (or native complex structure) at Troom if the force filed parameters are
accurate enough and the simulation length is long enough. An important quantity to
characterize the free-energy landscape is a free-energy barrier, of which the height is
the PMF value at the saddle point p1 � 2 or p2 � 3. We can presume that an inter-basin
transition between B1 and B2 occurs directly via passing the saddle point p1 � 2 and
one between B2 and B3 via p2 � 3. Contrarily, a transition between B1 and B3 occurs
indirectly. To argue the conformational change for this indirect transition, one may
pick up conformations from B1, B2, B3, p1 � 2, and p2 � 3.

If the free-energy landscape is presented as Fig. 14.1, we can specify pathways
readily. However, a structural parameter, mentioned above, may mislead in identify-
ing the free-energy barriers. This is because largely different protein conformations
may have the same parameter value. We have experienced that a free-energy barrier
identified in a conformational space vanishes completely in another space [21, 31].
A universal method to unerringly identify the free-energy basins and barriers is
desired. However, no such a universal method exists.

Here we explain a method to naturally construct the conformational space
without prejudice. We start with the high-dimensional space, although it is invisible.
This space specifies full details of the system in each snapshot of Qc(Troom). The
configuration of the system in a snapshot is expressed by a vector as:

X D Œx1; y1; z1; x2; y2; z2; : : : ; xN ; yN ; zN � : (14.7)

The X may consist of coordinates of a protein and a ligand when ligand–protein
binding is studied. The conformational space is a 3N-dimensional space, and the
conformations stored in Qc(Troom) distribute in the space. Our study usually focuses
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on the biomolecules (i.e. protein and ligand). Then, to reduce the degrees of
freedom with respect to mutual translation and rotation of the biomolecules, the
conformations in Qc(Troom) are superimposed onto a reference conformation given
arbitrarily. The coordinates used for analyses are those after the superposition,
where the number of independent coordinates is 3N � 6 substantially.

Internal coordinates, such as a set of inter-atomic distances, can also express
the biomolecular conformational space. Note that our analyses may not require
complete description of the biomolecular configuration. For instance, we can select
C’-atomic positions or inter-C’-atomic distances to specify the overall structures
of the biomolecules. Then, we present the system configuration by those selected
quantities as

q D Œq1; q2; q3; : : : ; qM � ; (14.8)

where M is the number of the selected quantities. Although M is smaller than
3N � 6, the M-dimensional space is still high dimensional (M 3) generally. Then,
we encounter again a difficulty to analyze the conformational distribution because
the M-dimensional distribution P(q;Troom) is invisible. A commonly used strategy
for analyzing the high-dimensional distribution is to reduce the space dimensionality
without loosing important features of the high-dimensional distribution.

We have frequently used principal component analysis (PCA) to view the
free-energy landscape because PCA defines coordinate axes, along which the con-
formational distribution P(q;Troom) has large variances. For simplicity, we suppose
that the full space is two dimensional (q1 and q2), and the full distribution is as
Fig. 14.2a. Suppose that this two-dimensional distribution is invisible for us. Then,
we define new axes v1 and v2 as in Fig. 14.2. Suppose that the one-dimensional
distribution projected on v1 or v2 is visible because of the space-dimensionality
reduction. The v1 is an axis where the projected distribution P(v1;Troom) widely
spread and the basins are distinguishable (Fig. 14.2b). Along the axis v2, in
contrast, the distribution P(v2;Troom) is narrow and basins may be merged into
one (figure not shown). From visual comparison of Figs. 14.2a, b, one may state
that the reduction of the space-dimensionality, P(q;Troom)!P(v1;Troom), is not
useful because P(q;Troom) discriminates more clearly the basins and barriers than
P(v1;Troom) does. However, remember that the total dimension of the full space is M
(or 3N). Then we need to select an adequate set of axes to construct the free-energy
landscape with a smaller dimension than four. Otherwise the basins and barriers are
invisible as mentioned above.

Now we explain how to compute such axes using PCA. We first calculate a
variance-covariance matrix C from the conformational ensemble Q(Troom) as

Cmn D< qmqn>T room� < qm >< qn>T room (14.9)

where Cmn is the matrix element (m,n), and < : : : >Troom is the ensemble average
over the conformations in Q(Troom). Diagonalization of C provides M eigenvectors



14 Free-Energy Landscape of Intrinsically Disordered Proteins Investigated. . . 339

v1v2

q1

q 2

v1

P
M

F

a

b

Fig. 14.2 (a) Scheme of the full-dimensional distribution, although the conformational space is
provided two-dimensionally (q D [q1,q2]) for simplicity. The distribution P(q;Troom) is converted
to potential of mean force as PMF(q;Troom) D � RTroomln[P(q;Troom)] (Eq. 14.6). Two axes
v1 and v2 may be derived from principal component analysis (PCA) (see text for details).
(b) One-dimensional distribution projected on v1 converted to potential of mean force as
PMF(v1;Troom) D � RTroomln[P(v1;Troom)]. Broken-line arrows present correspondence of three
basins between panels (a) and (b)

and eigenvalues. An eigenvector v and an eigenvalue 
 are paired satisfying an
equation CvD
v. We assign an index k to each of v�
 pairs so that the k-th
eigenvector and eigenvalue are denoted as vk and 
k, respectively, and arrange
the eigenvectors in descending order of pairing eigenvalues. The eigenvectors
satisfy equations CvkD
kvk and vi � vjD ıij. The latter equation assures that the
eigenvectors can construct M-dimensional orthogonal axes, and the former does that
the variance of conformational distribution along a larger-eigenvalue eigenvector
is larger than that along a smaller-eigenvalue eigenvector. Then, the position of a
snapshot in the M-dimensional space is expressed as

s D Œs1; s2; : : : ; sM � ; (14.10)

where the element si is expressed as

si D vi � .q� < q>T room/ : (14.11)

We refer to the M-dimensional space constructed by the eigenvectors as “PC
space”. Projecting the conformations in Qc(Troom) on the PC space using Eq. 14.10,
we generate a conformational distribution. By projecting the conformations on a
subspace constructed by a few (one, two or three) eigenvectors, we can generate
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a visible low-dimensional distribution. These eigenvectors should be those with
large conformational variance (i.e. large eigenvalues) to capture important features
(basins and barriers) in the free-energy landscape. Picking v1, v2 and v3, a snapshot
is simply expressed in the three-dimensional PC subspace as

s D Œs1; s2; s3� : (14.12)

We have experienced that free-energy barriers detected in the three-dimensional
PC space disappear in a low-dimensional space constructed by well-used structural
parameters such as the radius of gyration or the accessible surface area [21, 31].

14.2.3 Our McMD Research

We have applied McMD to polypeptide folding and ligand–protein flexible docking.
So far, we have computed the free-energy landscape of a 40-residue ’C“ protein
[25] and a 57-residue protein consisting of two long helices [26], where the initial
simulation conformations were fully disordered in an explicit solvent. A flexible
docking of lysozyme and sugar in an explicit solvent was performed, where
lysozyme and sugar were set distant to each other in the initial configuration [33].
McMD produced a free-energy landscape, in which the lowest free-energy basin
was assigned to the native complex structure and the lowest basin was separated
from the other minor basins by free-energy barriers.

To expand the applicability of McMD to a more complicated system, recently
we have developed a trajectory–parallelization method [20], where multiple McMD
runs are initiated from various conformations. Then, a long trajectory is generated
with simply connecting the multiple trajectories. Importantly, the integrated long
trajectory is theoretically equivalent to a single McMD trajectory because the
detailed balance is satisfied at the connection points of the multiple trajectories
[27]. Because the initial conformations spread widely in the conformational space,
the integrated trajectory covers a larger region than a real single trajectory, even
though the integrated-trajectory length is equal to or shorter than the real single
trajectory. This method, called “trivial trajectory parallelization (TTP)”, was used
for the McMD sampling of IDP systems.

To computationally investigate large configurational motions, force field is
essentially important. We have developed an AMBER-hybrid force field [32]
expressed as E(w)D (1�w)E94CwE96, where E94 and E96 are the AMBER parm94
[4] and parm96 [35] force fields, respectively, and the parameter w is the mixing rate.
We computed the free-energy landscape of short peptides by McMD simulations
and quantum chemical calculations with varying w from 0 to 1, and found that
E(0.75) produces the best agreement of the free-energy landscape between the
two computation methods. Furthermore, in McMD simulations with E(0.75), a
peptide with a helical propensity folds into a helix, while a peptide with a “-hairpin
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propensity forms a “-hairpin. The force field for a water molecule is TIP3P [30]. A
cell-multipole expansion method [6] was used to compute long-range electrostatic
interactions, and the net charge of the system was neutralized by introducing
Cl� and four NaC ions. A spherical boundary condition was used for generating
the solvent environment. A computer program, Presto ver. 3 [40], was used for
performing McMD.

14.3 Free-Energy Landscape of Coupled Folding
and Binding

So far, as mentioned in the Introduction section, we have computed the free-
energy landscape of two IDP systems: NRSF–mSin3 and pKID–KIX. Remember
that NRSF and pKID are IDPs, and mSin3 and KIX the partners. For simplicity,
the paper on the NRSF–mSin3 system [21] is referred to as “the NRSF-mSin3
paper”, and the paper on the pKID–KIX system [58] as “the pKID-KIX paper”. The
structure of the partner molecule was weakly restrained around the pdb structure
to prevent the partner from unfolding during McMD, although IDP was completely
flexible and allowed translational and rotational motions. We emphasize that the
force fields for proteins, solvent and ions are the same and that the simulation
protocol is also the same between the two systems. Details for the simulation
protocol is described in the papers. In the initial conformations of simulation,
the IDPs were set to be distant from the partners in an explicit solvent and
the IDP conformations were disordered: See Fig. 1c of the NRSF-mSin3 paper,
and Fig. 1b of the pKID-KIX paper. During McMD, IDPs fluctuated around the
partner molecules adopting a variety of complex forms. The computed free-energy
landscapes (see Fig. 5 of the NRSF-mSin3 paper and Fig. 4 of the pKID-KIX
paper) consisted of various structural clusters, where one of them corresponded
to the native-like complex and the other to non-native clusters. We discussed the
conformational pathways for coupled folding and binding. The non-native clusters
provided a variety of IDP conformations in both the bound and unbound states.

The size of cluster i in the free-energy landscape at temperature T is proportional
to the free energy Fi(T) of the cluster as

Fi.T / D �RT ln ŒZi .T /� ; (14.13)

where Zi is a partition function of cluster i. By setting the cluster border in the
conformational space in an appropriate way, we can compute Zi:

Zi D
Z

cluster i

P .s1; s2; s3IT / ds1ds2ds3; (14.14)
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Fig. 14.3 (a) Conformational distribution of the NRSF–mSin3 system at 300 K, displayed in
a three-dimensional PC subspace, where coordinate axes v1, v2, and v3 are eigenvectors with
the largest, second largest, and third largest eigenvalues. A small sphere represents a sampled
conformation probable at 300 K. The first cluster (i.e. the lowest free-energy cluster) consists of
red-colored spheres. The second, third, fourth and fifth clusters (i.e. the second, third, fourth and
fifth lowest free-energy clusters) are colored in blue, magenta, green, and cyan, respectively. Gray
spheres belong to other minor clusters. The arrow indicates the position of the NMR complex
structure (native complex). Broken lines show free-energy barriers separating three super-clusters.
See paper [21] for detailed characterization of the free-energy barriers. (b) Free energy, F, assigned
to each cluster at 300 K (Eq. 14.13). The cluster ordinal numbers on the x-axis are arranged so that
the smaller the number the lower the free energy. The free energy for the largest cluster is set to
zero. The NMR complex structure is involved in the largest cluster

where the integral is taken over the volume of the cluster. The larger the Zi, the lower
the free energy of the cluster i. A free-energy difference between clusters i and j is
given as

�F.T / D Fj � Fi D �RT ln
�
Zj .T /=Zi .T /


: (14.15)

The free-energy landscape (conformational distribution) of the NRSF–mSin3
system is shown in Fig. 14.3a. Importantly, that the lowest free-energy cluster,
shown in red in the figure, involves the native complex (see also Figs. 7 and 8 of
the NRSF-mSin3 paper). In other words, the computed lowest free-energy cluster
corresponds to the experimental structure [43]. We have identified two free-energy
barriers (broken lines in Fig. 14.3a), which divide the distribution into three super-
clusters. Subsequent analyses showed that passing a barrier corresponds to a specific
motion of NRSF from hairpin-like conformations to helical conformations and
the other to a change of the molecular orientation of NRSF in the mSin3 cleft.
Figure 14.3b plots the free-energy values of the clusters.

McMD simulation of the unbound NRSF has produced a rugged free-energy
landscape consisting of various structures involving ’ and “ secondary-structure
elements. Thus the unbound NRSF is disordered in solution as a whole. This
multiple-structure property has been found in other peptide systems [19, 28].
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Fig. 14.4 Potential of mean force (PMF) of the pKID-KIX system at 315 K mapped on the plane

of R˛A and R˛B. The quantities R˛A and R˛B are defined as follows: R˛A D
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ˇ̌�!R ˛A � �!
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and R˛B D
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ˇ̌�!R ˛B � �!
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ˇ̌
ˇ̌, where

�!
R ˛A and

�!
R ˛B respectively represent the center positions

of the N-terminal and C-terminal halves of pKID in a snapshot, and
�!
R

NMR

˛A and RNMR
˛B those in the

reference structure (i.e. the NMR model), respectively. The lowest PMF value was set to zero. This
figure also displays some complex structures picked from the PMF map, where KIX is represented
by the blue ribbon and pKID by rainbow (blue N-terminal and red C-terminal). Green and red
circles represent the native-like and largest clusters, respectively. The black circle represents a
cluster where pKID bind to the MLL binding sites (see text for details)

Interestingly, most of these conformations in the unbound state could be found in the
bound state (see Fig. 10 of the NRSF-mSin3 paper). This point is discussed again
later.

In the NMR structure of the pKID–KIX complex (PDB ID: 1kdx), each of
the N- and C-terminal halves of pKID adopts helix and the two helices are
spaced by non-helical two amino-acid residues, a proline and a phosphorylated
serine. Interestingly, our McMD simulation has shown that each half has a helical
propensity even in the unbound state, whereas the unbound pKID is, as a whole,
disordered. Detailed analyses have shown that the helix propensity for the N-
terminal half is larger than that for the C-terminal half (Fig. 2 of the pKID–KIX
paper). This result agrees with an experimental result for the unbound pKID [49]. In
the bound state, the free-energy landscape has provided a native-like cluster (a green
circle in Fig. 14.4). However, the largest cluster was not this native-like cluster but
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one indicated by the red circle. In the largest cluster, the C-terminal half was helical
whereas the N-terminal half was disordered. Furthermore, in the native-like cluster
the N-terminal half of pKID was somewhat fragile, whereas the C-terminal half
adopts a well-ordered helix. We note that this fragility of the N-terminal half agrees
with experimental observations: In the complex the N-terminal helix is more flexible
than the C-terminal helix, and the binding affinity of the N-terminal half to KIX is
weaker than that of the C-terminal [50, 64].

The reason why the native-like cluster was not the largest in the computed free-
energy landscape may be because pKID was truncated in the simulation: the pKID
sequence used for the NMR experiment was longer than the portion deposited to
PDB, and we used the deposited portion for McMD. The unstructured regions of
pKID may stabilize the C-terminal helix more.

14.4 Binding of pKID to the MLL Binding Site of KIX

An NMR study [5] has shown that KIX binds to two protein segments: a segment
taken from the activation domain of the mixed lineage leukemia (MLL) transcription
factor and a segment taken from the cMyb transcription factor. The NMR structure
(PDB ID: 2agh) shown that both segments adopt helix upon binding to KIX. Here
we refer to this complex structure as MLL–KIX–cMyb. The helical C-terminal half
of pKID in the largest cluster and the native-like cluster (red- and green-circle
clusters in Fig. 14.4, respectively) was similar to the c-Myb segment structure.
The MLL-binding site of KIX is far from the pKID-binding site. We have checked
whether the McMD simulation produce a similar complex structure with the MLL
segment in the MLL–KIX–cMyb complex, and found that the pKID structure
taken from the black-circle cluster in Fig. 14.4 was similar with the MLL segment
structure (Fig. 14.5).

It is worthwhile to note that in the presence of MLL, pKID binds to KIX with
the twofold higher affinity than pKID in the absence of MLL [15]. Our simulation
suggests that MLL facilitates the pKID binding to the genuine binding site via
blocking the MLL binding site.

14.5 Coupled Folding and Binding

Scheme 14.1 is a schematic representation of the free-energy landscape for coupled
folding and biding of the NRSF–mSin3 system, obtained from McMD. The bound
state involves a variety of complex forms. Then, a non-native complex moves in the
free-energy landscape and is stabilized when reaching the native-like form. Some
non-native complexes may overcome the free-energy barriers to reach the native-
like complex.
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pKID(134-142)
MLL (847-855)

C

N

Fig. 14.5 Structures of pKID (red) and MLL segment (green) bound to KIX (blue). The N- and C-
terminal halves of pKID are shown in red, and two residues spacing the halves are shown in while.
The MLL segment structure was taken from an NMR structure (PDB ID: 2agh) of the MLL–KIX–
cMyb complex, where the c-Myb segment was removed. Character “N” indicates the N-terminal
of pKID, and “C” the C-terminal of the MLL segment. The numbers “134-142” and “847-855” are
the residue ordinal numbers for the segments used in the original PDB files

As mentioned in Introduction, there are two representative mechanisms to
explain molecular binding: induced-folding and population-selection. Which of the
two mechanisms does work in coupled folding and binding for the current systems?
Remember that the unbound NRSF fluctuates among various conformations, and
most of these NRSF conformations are found in the bound state. Therefore, if
a temporally formed helical conformation binds to mSin3, this process supports
the population-selection mechanism. On the other hand, other non-helical NRSF
conformations are also bindable to mSin3, and yield various non-native complex
structures (encounter complexes). Once the non-native complex is formed, the
conformation moves in the free-energy landscape, and finally reaches the most
thermodynamically stable cluster (the native-like cluster). This process supports the
induced-folding mechanism. The free-energy landscape has shown that multiple
pathways are possible between the non-native and native complexes. Thus, the
induced-folding mechanism has an entropic advantage against the population-
selection mechanism, in which a small number of pathways are possible. Finally,
we presume that the induced-folding mechanism is dominant for the NRSF–mSin3
system.

The pKID-KIX paper reports that in the unbound state, the C-terminal half of
pKID contains a nascent helix with a smaller content than the N-terminal does
(Fig. 2 of the pKID–KIX paper). This result agrees qualitatively with an experiment
[49]. Contrarily, in the bound state, the largest cluster consists of conformations
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unbound NRSF (single-chain NRSF)

various conformations at equilibrium

NRSF-Sin3 complex

binding
unbinding

induced folding

non-native complex

native
complex

Scheme 14.1 Schematic representation of the free-energy landscape for coupled folding and
biding for the NRSF–mSin3 system. The upper half represents the unbound NRSF (red string)
fluctuating among various conformations. These conformations are bindable to the partner
molecule, mSin3. The lower half represents the complex state. Only when the helical NRSF in the
unbound state binds to mSin3 (four-cylinder model), the native complex is formed immediately
(blue colored arrow), where the population-selection mechanism works. Other complex forms
are non-native. Then, the non-native complexes move in the free-energy landscape, some of
which overcome free-energy barrier(s) shown by broken lines to reach the native complex form.
This movement is categorized to the induced-fit mechanism. We do not exclude a possibility of
dissociation, which is shown by shaded arrows

where the C-terminal half is helical whereas the N-terminal half is flexible and
somewhat disordered. This result is also consistent with experiments [50, 64].
The folding of the C-terminal half is explained with two alternative scenarios.
One is: the wide distribution in Fig. 14.4 demonstrates that various encounter
complexes are formable in the bound state. Then, the helix is induced during the
conformational fluctuations with keeping the contacts to KIX. This scenario accords
with the induced-folding mechanism. The other scenario (population-selection) is:
the nascent helical structure of pKID formed in the unbound state is selected by
the interactions with KIX. Thus, the largest cluster is formed in an early phase of
complex formation. Because the multicanonical algorithm provides an equilibrium
distribution [18], we cannot select deterministically which mechanism is dominant.

The N-terminal half of pKID may have a different binding mechanism than the C-
terminal half. The N-terminal half has a structural variety in the largest cluster. Thus
the interactions between the N-terminal half and KIX are weak even after the C-
terminal half has folded into helix. As notified above, the fragility of the N-terminal
half has been observed in the experiments [50, 64]. Therefore, it is likely that the
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Scheme 14.2 Free-energy landscapes for the unbound state of IDP (a), IDP-partner bound state
with induced-folding (b) and (c), and IDP-partner bound state with population-selection (d).
Character “N” represents the position of the native complex. Red-colored and blue-colored curved
arrows indicate amounts of rotational and translational motions of IDP: the larger the arrows, the
larger the entropy. Magenta-colored solid lines indicate a free-energy level of the unbound state.
The landscapes above the magenta lines are shown by black broken lines. Magenta broken line is
the free-energy level in a more condensed IDP-partner solution

N-terminal-half folding stabilizes supplementarily the native complex. The coarse-
grain model by Okazaki and Takada [45] has proposed that a weak IDP-partner
interaction leads the binding mechanism to population-shift. Then, we presume that
the N-terminal half is controlled by the population-selection mechanism.

Scheme 14.2 illustrates free-energy landscapes for an IDP-partner system. The
unbound IDP has a wide conformational variety (chain entropy) in the thermal
fluctuations (Scheme 14.2a). Furthermore, the unbound IDP has large translation
and rotation entropies because the IDP can move freely in solution. The free-energy
landscape for the bound state is shown in Scheme 14.2b–d. In the induced-folding
mechanism (Scheme 14.2b, c), once a non-native encounter complex is formed,
the complex can reach the native complex without dissociation. The landscape
of Scheme 14.2b may have a faster rate to reach the native form than that of
Scheme 14.2c does. To maintain binding, the free energy for the non-native complex
should be lower than that of the unbound state. Otherwise the non-native complexes
may be dissociated before reaching the native form, which is essentially the same as
the population-selection mechanism.

In the population-selection mechanism (Scheme 14.2d), a non-native complex
cannot overcome a free-energy barrier(s) even though the free energy of the non-
native complex is lower than that of the unbound state. Then the non-native complex
is dissociated most likely. A chance for reaching the native form is assigned to
encounter complexes whose conformations are similar to the native form. Here we
note that the free-energy level of the unbound state moves according to the solute
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(IDP and partner) concentration: With increasing the concentration, the level rises.
Then, population-selection switches with induced-folding as indicated by the broken
line in Scheme 14.2d.

The entropy change upon binding is an important issue. The unbound IDP
can vary the molecular orientation and translation freely (red and blue arrows in
Scheme 14.2a). In the induced-folding mechanism, a variety of orientation and
translation as well as various encounter-complex forms are possible. Contrarily,
in the population-selection mechanism, the orientation and translation as well as
the encounter complex form are restricted considerably: Red and blue arrows in
Scheme 14.2b, c are larger than those in Scheme 14.2d. Therefore, the entropy loss
for population-selection is larger than that for induced-folding.

We should note that the conformational variety of the unbound IDP also affects
the binding mechanism. When a native-like form (i.e. the form in the native
complex) has a large probability in the unbound state, this situation increases
the advantage of population-selection. If the unbound state is restricted in small
volumes in the conformational space (or the unbound state consists of some
restricted conformational clusters), then the entropy of the unbound state is small.
Then the entropy cost �T�SD�T(Sbound � Sunbound) upon binding is also small.
In other words, the restricted unbound state facilitates IDP-partner binding in either
the induced-folding or population-selection mechanism.

The “conformational flexibility” is an important keyword to characterize IDP
for both of induced-folding and population-selection. The flexibility in the bound
state is more important in induced-folding than in population-selection. I.e. in the
induced-folding mechanism the bound-IDP conformation fluctuates largely without
dissociation, and then the entropic loss upon binding is small. This small entropic
loss may ease the complex formation because a small enthalpy gain can compensate
the small entropic loss. In population-selection, contrarily, the large entropy loss
upon binding should be compensated by a large enthalpy gain.

Our all-atom McMD simulations of the NRSF–mSin3 system has suggested that
the main mechanism for coupled folding and binding of this system is induced-
folding. However, the existence of free-energy barriers in the bound state and the
existence of helical conformations in the unbound state suggest that population-
selection works as a secondary mechanism.

Last in this chapter, we note that the coarse-grained model is also useful to
rationally explain coupled folding and binding, as done by Okazaki and Takada
[45], and Terakawa and Takada [56]. Recently, Matsushita and Kikuchi [37] have
proposed a novel picture for intrinsic disorder, where structural frustrations are
designed for inducing the intrinsic disorder. We believe that both the all-atom
and coarse-grained models are useful to understand the mechanism of IDP-partner
binding.
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Chapter 15
Coordination and Control Inside Simple
Biomolecular Machines
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Abstract Biomolecular machines can achieve physiological functions precisely
and efficiently, though they always operate under fluctuations and noises. We review
two types of simple machinery that we have recently studied. The machinery can
be regarded as molecular motors. They transform chemical free energy from NTP
hydrolysis to mechanical work. One type belongs to small monomeric helicases
that move directionally along single-stranded nucleic acid, and may further unwind
the duplex part for gene replication or repair. The other type belongs to ring-
shaped NTPase motors that also move or transport nucleic acid or protein substrate
in a directional manner, such as for genome packaging or protein degradation.
The central issue in this review is on how the machinery coordinates essential
degrees of freedom during the mechanochemical coupling process. Further concerns
include how the coordination and control are manifested in experiments, and how
they can be captured well in modeling and computational research. We employed
atomistic molecular dynamics simulations, coarse-grained analyses, and stochastic
modeling techniques to examine the molecular machines at multiple resolutions and
timescales. Detailed descriptions on how the protein interacts with its substrate at
interface, as well as how multiple protein subunits are coordinated are summarized.
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15.1 Introduction

Biomolecular machines are microscopic counterparts of human-made machines
that play diverse functions in living organisms. They are indispensible to genetic
control, molecular transport, cell movements and a variety of metabolisms. Due
to their small sizes and ambient solution conditions, the physics that governs the
operations of the molecular machines appears quite different from that of the
macroscopic machines [1, 2]. Essentially, viscosity forces and accompanied thermal
fluctuations are significantly high in the small systems, such that stochasticity
becomes critical for the operation. Viewed from atomistic details, the molecular
machines are extremely complex entities that organize a large number of degrees
of freedom. How to manipulate so many degrees in coordination to achieve precise
control, in the presences of fluctuations and noises, is fundament to understand the
operation mechanisms of the systems.

In this review, we focus on two types of simple machinery, the monomeric and
ring-shaped NTPase motors that we have recently studied [3–6]. The molecular
motors consume free energy from NTP hydrolysis to achieve directional movements
along molecular tracks. They are self-sustaining mechanochemical systems. The
monomeric ATPase motors can be regarded as smallest molecular machines [7].
The single peptide chain ATPase can fold into several structural subdomains,
among which there locates a single chemical site for ATP binding and hydrolysis.
The protein coordination, therefore, targets solely on linking the chemical site
signal with subdomain conformational changes. The ring-shaped NTPase motor [8],
however, consists of several protein subunits around the ring, with each of them a
single polypeptide chain. The chemical sites are located at the interfaces between
two neighboring subunits, and there are several of the sites. The multiple subunits
along with the chemical sites need substantial coordination around the ring to ensure
they work cooperatively.

From comparative genomic studies, the NTPase motors are affiliated to ASCE
division of P-loop NTPases [9, 10], characterized by conserved NTP binding
motif (Walker A), Mg2C binding motif (Walker B), and some additional conserved
residues in Walker B and related region. This division of proteins includes many
helicases, packaging ATPases or terminases, pilus retraction motor proteins, ABC
transporters, etc. Among them we have studied monomeric helicases, as well as
viral DNA packaging motors that are multimeric and ring-shaped. The helicases
and packaging motors use DNA or RNA as their molecular tracks to translocate
linearly. It is interesting to notice that some evolutionary links may exist between
the linear motors and an exemplary rotary motor, F- or V-type ATPase [11], which
forms a trimer-of-dimer ring and encloses a protein substrate/track (” subunit) for
torque generation.

Experimental studies have improved substantially our knowledge on these motor
proteins [7, 8, 12, 13]. In particular, single molecule experimental technologies
have been implemented to monitor the functional motions of the stepping motors,
one molecule at time, as well as to detect force responses of the molecules at
real time [13, 14]. The information on dynamics of the motor, extracted from
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the experimental measurements, is ready to be incorporated into computational
work to reveal mechanisms underlying. On the other hand, molecular dynamics
(MD) simulations based on high-resolution structures can zoom into atomistic
details of the system [15]. Nevertheless, as even the smallest molecular machines
solved within water amount to 	100,000 atoms, MD simulations can barely reach
microsecond (�s) time scale, far below the millisecond (ms) time resolution of
single molecule experiments. Indeed, molecular machines usually work across time
scale of several orders of magnitude, in particular, mechanochemical coupling
involves degrees of freedom from supporting fast catalysis (femtosecond to picosec-
ond) to propagating slow elastic deformations (�s to ms). Hence, it is expected that
computational techniques should also accommodate different resolution and time
scales when studying molecular machines. In this review, we summarize mainly
our computational studies on some of nucleic acid motors, combining atomistic
MD simulations, coarse-grained analyses, kinetic or stochastic modeling, etc. We
want to demonstrate how to use a variety of computational techniques to fully take
advantage of the experimentally detected information on structure and dynamics,
and to discover how the protein machines deal with internal complexities amongst
intrinsic and environmental noises.

15.2 Monomeric Helicases – Directionality Control
and Active Unwinding

In this section we discuss how small helicase motor proteins move directionally
along single-stranded (ss) DNA or RNA as well as how they further unwind
the double-stranded (ds) DNA/RNA [7]. Basically, the motor proteins use free
energy from ATP hydrolysis to support translocation as well as duplex unwinding.
Helicases are involved in almost all aspects of DNA/RNA metabolism, including
transcription, replication, and recombination. Defects in helicase function in humans
can lead to genomic instability and pre-disposition to cancer [16].

We will introduce systematic studies on translocation of PcrA helicase from
electronic to functional level. PcrA from bacteria is a monomeric ATPase that
belongs to helicase superfamily 1 (SF1) [12]. As one of the smallest molecular
motors, PcrA helicase is weighted about 80 kDa, and folds into four structural
subdomains (1A, 2A, 1B and 2B). ATP binds into a cleft between the two RecA-like
subdomains 1A and 2A, and modulates the alternative domain movements. We start
by comparing the ATP binding site and hydrolysis characters of PcrA with that of
F1-ATPase. Then we will focus more on discussing how the domain movements are
coordinated for directional translocation, using classical MD, stochastic modeling,
along with coarse graining and coevolutionary statistical analyses.

Following the studies of helicase translocation, we then investigated duplex
unwinding of nucleic acids using a similar small helicase NS3, which belongs
to helicase superfamily 2 (SF2). NS3 had been particularly studied by single
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molecule experiments on its unwinding properties [17–19]. We hence modeled NS3
unwinding mainly based on experimental data.

15.2.1 PcrA Helicase – Alternative Subdomain Stepping
Coordinated by ATP Cycle

PcrA (plasmid copy reduced) is essential for plasmid rolling circle replication and
repair of DNA damage in Gram-positive bacteria. It preferably binds to ssDNA
containing 30 overhangs, and moves directionally from 30 to 50 of the DNA strand. In
this section, we illustrate how this directionality is maintained in molecular details.
PcrA helicase had been crystalized and solved with high-resolution structures [20],
in both a substrate (ATP bound) and a product (without ATP/ADP) state. The
structure of the substrate state, in complex with a duplex DNA flanked by a piece of
30 ssDNA, is shown in Fig. 15.1. Comparing to the product structure in the absence
of ATP or ADP, the subdomains 1A and 2A come close to each other when ATP is
bound in between.

15.2.1.1 ATP Hydrolysis

It has been noticed that high structural similarity exists between ATP binding or
catalytic sites of PcrA and F1-ATPase. Both systems are RecA-like ATPases. The
structural alignment between 1A and 1B subdomains of PcrA and “TP domain of
F1-ATPase, taken from [21], is shown in Fig. 15.1. Both catalytic sites have a
RecA-like fold consisting of a central “ sheet adjoined by ’ helices on both sides.
The bound nucleotide is located at the interface between 1A and 2A subdomains in
PcrA, while in F1-ATPase, the interface is provided by adjacent ’ and “ subunits.
Sequence alignment based on the structural fitting is also shown, with the upper
panel the Walker A motif, the lower panel the Walker B motif. It is remarkable that
PcrA and F1-ATPase show high degree of structural similarity though their sequence
homology is fairly low.

In simulating the substrate state of PcrA using QM/MM, it was found that ATP
hydrolysis reaction proceeds under a proton reply mechanism and is endothermic,
with a product state energy of 	10 kcal/mol and a moderate transition state barrier
of 	20 kcal/mol [21]. Similar mechanism and endothermicity was found in the F1-
ATPase “TP site that binds tightly with ATP [22, 23]. Simulations of F1 suggested
that movement of the arginine finger residue ’R373 toward the ”-phosphate group
is necessary to convert the endothermic reaction to one that efficiently hydrolyses
ATP with an equilibrium constant of K	 1. In PcrA, the arginine finger residue
R287 seems properly positioned, yet another close-by arginine residue R601 was
suspected to pose an unfavorable configuration. A slightly more closing between
subdomains 1A and 2A seems to be required to bring R601 closer to ATP, and
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Fig. 15.1 PcrA helicase, its structural alignment with F1-ATPase, and the translocation
model. (a) The structure of PcrA in complex with DNA and ATP [20]. The image is from [3]. The
protein domains are in cartoon presentation (red, 2A domain; green, 1A; blue, 2B; yellow, 1B),
along with DNA (van der Waals, vdW presentation: red, oxygen; cyan, carbon; blue, nitrogen; tan,
phosphorus; white, hydrogen); the duplex DNA is bound to the top left of PcrA and is flanked
by a 30 ssDNA that crosses through the middle of PcrA from left to right. The ATP (analog) is
bound in between domains 1A and 2A. (b) Structural alignment of PcrA and F1-ATPase. The
images and captions are adopted from [21]. Depicted on the left are the aligned structures of the
1A and 1B domains of PcrA and the “TP subunit of F1-ATPase (the color scheme from red to
white to blue indicates a structural alignment quality ranging from good to weak). Shown on the
top right is a close-up view of the aligned catalytic sites of PcrA (red) and F1-ATPase (blue) with
bound ADP in vdW representation; conserved residues (Walker motifs A and B) are highlighted
in licorice representation. Shown on the bottom right are the two parts of the sequence alignment
that contain a stretch of two or more consecutive conserved residues; the upper panel corresponds
to the Walker A or P loop motif, and the lower panel corresponds to the Walker B motif. (c) The
simplified unidirectional translocation model of PcrA helicase [3, 4]. The image is from [4]. The
green/red bead represents domain 1A/2A. The link between 1A and 2A hints for their association
(e.g. an elastic spring). When there is no ATP, the two domains are separated. ATP binding draws
the two domains close to each other. The green/red curve shows the potential of mean force of
domain 1A/2A moving along the ssDNA, with periodicity in 1-nt distance

hence, to a more efficient ATP hydrolysis [21]. It was further proposed that
there is a glutamine residue Q254 in the catalytic site of PcrA playing a role of
‘ssDNA sensor’. As mutations of Q254 significantly change the reaction profiles
of ATP hydrolysis [21], Q254 was considered to be involved in the coupling of
conformational changes induced by ssDNA base flipping into the Y257/F64 pocket
to ATP hydrolysis in the catalytic site. The base flipping is an essential element in
ssDNA translocation. The study gives a sneak peek on how chemical catalysis is
coupled to amino acids movements.
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15.2.1.2 Alternating Domain Mobilities

From the previous high-resolution structural studies, ‘inchworm’ model of helicase
translocation had been proposed [20]. It was suggested that the two subdomains (1A
and 2A) alternate their affinities with ssDNA in translocation. The inchworm model
gives a nice structural perspective, however, it was lack of energetic evidence. We
therefore tired to investigate energetically how ‘inchworm’ proceeds, i.e., how the
alternative subdomain stepping happens in PcrA [3].

First, we decipher the model using a mathematical presentation, with two translo-
cation energy profiles, or potentials of mean force (PMF) for both subdomains 1A
and 2A (green and red in Fig. 15.1), respectively. The potential is a 1-D projection
of free energy from high-dimension coordinate space. It is with 1-nucleotide (nt)
distance periodicity as the helicase translocates, presumably, 1-nt at a time and
repeats. Due to intrinsic stochasticity of the system, the stepping does not have
to be fully synchronized with the ATP cycle. There can be ‘diffusional’ stepping
without ATP participation, and there can also be futile ATP hydrolysis cycles
without stepping. That says, the mechanochemical coupling is not necessarily tight
or perfect. Besides, we assume that the potential inside 1-nt period is symmetric, or
say, moving forward 1/2 nt is identically easy as moving backward 1/2 nt, though
it does not have to be this way. Periodic yet asymmetric saw-tooth potentials have
been widely used to describe ratcheting molecular motors [24]. The asymmetry in
those potentials is essential in conducting the directionality, as moving forward
is preferred to backward in transiting from a smooth potential to the saw-tooth
potential. In our alternative domain stepping model, however, the directionality is
not convoyed through any asymmetry in individual domain potentials (though the
potential for the two subdomains combined does show an asymmetric shape and
biases forward rather than backward, see figure 6 in reference [3]). As we illustrate
below, the directionality in current model comes from alternating mobilities of
respective domains coordinated by ATP hydrolysis cycle.

The mobilities of 1A and 2A are measured according to the potential or barrier
height for each of subdomain to move 1-nt along ssDNA. The symmetry makes
the barrier to be located at the center of the potential. The higher the barrier, the
less mobile the (sub)domain. Hence, the mathematical presentation demonstrated
in Fig. 15.1 delivers this scenario: When there is no ATP, 1A (green bead) and
2A (red bead) are fairly separated and 1A has a higher mobility (green potential
lower than red one). As ATP binds in between 1A and 2A, it draws two subdomains
closer by either having 1A moving forward 1-nt or 2A backward 1-nt. Since 1A has
higher mobility than 2A at this moment, 1A moving forward dominates 2A moving
backward. The domain mobilities, however, switch after ATP binds in the substrate
state such that 2A becomes more mobile (red potential lower than the green one).
The property persists through ATP hydrolysis to the moment that ADP/Pi product
releases. The release relaxes the two subdomains so they separate again from each
other, by either 2A moving forward or 1A moving backward. Since now 2A has
a higher mobility, it moves forward faster and dominates to 1A backward. In this
fashion, the helicase alternatively moves 1A and 2A forward during ATP binding
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and product release phases. The ATP hydrolysis reaction seems to play little role
energetically to assist directional translocation. This seems to be consistent with
a view that ATP hydrolysis reaction itself hardly releases much free energy (an
equilibrium constant K	 1).

Then comes the next question, how to calculate the domain mobility potentials
for 1A and 2A respectively? And what is the relationship between the mobility and
the affinity of the domain with ssDNA? Intuitively, higher mobility would relate
to lower affinity. We explored structural and energetic details behind this using
atomistic simulations, summarized as below.

15.2.1.3 Determining Domain Mobility via Binding Affinities
of Individual Nucleotides

The domain mobility is defined as the helicase moves along ssDNA, while the
affinity between the protein domain and ssDNA is defined as protein approaches
‘vertically’ to bind to the DNA strand. Hence, the two quantities are considered
through two ‘orthogonal’ directions, tangential to the DNA strand and perpendicular
to the strand. Our calculations using MD were based on the idea that the protein
domain mobility along the ssDNA can be measured through the change of protein-
DNA affinities along the DNA strand. As the translocation is periodic, we only
consider how the affinities change within 1-nt distance.

The protein-DNA affinity is measured as the binding free energy between the
protein domain and a stretch of bound ssDNA, which consists of 5–6 individual
nucleotides. If one knows a ‘continuous’ binding free energy curve along the
ssDNA, as if a single nucleotide associates with the protein at different locations
along the DNA strand, one can then calculate the domain translocation barrier, or
the mobility: It can calculated as the sum of changes of binding free energies for all
the 5 or 6 nucleotides, as the nucleotides move collectively along the strand through
the protein [3].

However, the continuous binding free energy does not exist, as to obtain it one
has to simulate the full translocation process or drag one nucleotide slowly enough
along the DNA strand across the helicase. Since the translocation takes place in
milliseconds, while atomistic MD simulations are limited by nanoseconds, direct
simulation is impossible. Though steered simulation can accelerate the process, it is
extremely hard to steer and coordinate several slow degrees of freedom involved in
the helicase translocation, without artificially distorting the structure or energetics.
Hence, what we really did was to estimate the binding free energy curves to come
up with the domain mobility measurements: We calculated relative binding free
energies of the 5–6 individual nucleotides along the DNA strand with the protein at
one equilibrium configuration; then we ‘guessed’ the full binding free energy curve
using data interpolation, with a free parameter determining the ‘roughness’ of the
binding free energy curve. As we assumed that the translocation potential bears a
symmetric shape, what we calculated are essentially the heights of translocation
barriers for subdomain 1A and 2A [3].
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The calculations were conducted through the atomistic MD simulations, with
PcrA helicase solved with explicit water molecules and ions (	110,000 atoms).
The resulted two potential profiles for 1A and 2A, at both the substrate and the
product states, are shown already in Fig. 15.1. From the calculations, we estimated
the height of translocation barrier, subjecting to the undetermined interpolation
parameter. Experimentally, it is known that the PcrA translocates at about 50 nt/s
[25]. If the translocation is rate-limited by domain movements, one can fit the
parameter by the translocation speed. However, it is not quite clear if chemical
transitions such as ATP binding, hydrolysis, or product releases actually limit the
speed. Hence, our calculations were still semi-quantitative. Nevertheless, the key
results from the calculations are: First, we demonstrated the alternating ‘asymmetry’
in domain mobilities of 1A and 2A, with 1A more mobile in the product state, and
2A more mobile in the substrate state. Second, we identified essential amino acids
that contribute most to the alternating domain mobilities thus the directionality.
In brief, the studies provide energetic as well as structural details for directional
mechanisms of a prototypical stepping motor [3].

15.2.1.4 Correlations Inside Protein and at Protein-DNA Interface

Based on MD simulation results, we can directly monitor how different parts of
protein-DNA complex are correlated during the simulation period. The correlations
are key in coordinating different essential degrees of freedom to achieve functional
control in the molecular machine. First, we analyzed cross-correlations between
any pair of residues using trajectories of C’ atoms from protein and P atoms from

�
Fig. 15.2 Correlation and coupling analyses from MD simulation, the elastic network model,
and multi-sequence alignments. (a) Cross-correlation maps calculated from MD simulations
of PcrA helicase complex, in both the substrate state with ATP bound (left) and the product
state without ATP/ADP bound (right). The images are adopted from [3]. The maps are colored
according to the amplitude of the cross-correlation matrix elements. (b) The coupling analyses
based on the elastic network model of the PcrA-DNA complex, for both the substrate state
(left) and the product state (right). The images are adopted from [3]. The complexes are colored
according to the dynamical coupling of residues to the fluctuations of the ATP binding pocket.
The dynamic coupling is probed through perturbation of one residue’s spring constant and
monitoring the ensuing effect on the vibrational fluctuation of the other interested site [26].
The protein, DNA, and ATP are shown in surface, licorice, and vdW presentations, respectively.
(c) Co-evolutionary analyses for pair-wise mutational correlations between residues based on
multi-sequence alignments of PcrA-related helicases. The images are adopted from [4]. The co-
evolutionary statistical analyses, developed by [31, 32], were performed to sequences of over 800
proteins related to PcrA. The map on the left is colored according to the correlation matrix elements
that describe the mutational coupling strength between two residues in the sequence alignment.
This correlation map has been rearranged employing a procedure that clusters highly correlated
core residues (see the brightest square region on bottom left of the map). The core residues are
illustrated in blue surface representation in the PcrA-DNA complex on the right
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nucleic acids. The correlation map showing the amplitudes (absolute values) of
the cross-correlation of the protein-DNA complex are displayed in Fig. 15.2, for
both the substrate and product states. We see that in the product state (right), when
subdomain 1A is more mobile than 2A, the correlation inside 1A is smaller than
that inside 2A. While in the substrate state (left), when 1A is less mobile, the
correlation inside 1A becomes larger than that inside 2A. The asymmetry from the
internal correlation map suggests that when a structural domain is fairly ‘rigid’,
i.e., with strong correlations or high collectivity inside the domain, the domain is
also held tight by the DNA and is not very mobile. Vice versa, a mobile domain
seems to have fairly low collectivity inside. Nevertheless, the mobility character
would be considered more relevant at the interface between the motor protein and
the DNA track. Our further cross-correlation analyses focusing on protein-DNA
interaction did show that when 1A/2A is less mobile (in the substrate/product state),
its correlation with the DNA segment on top of it is fairly high. The correlation
is particularly for movements parallel to the protein-DNA interface rather than
perpendicular to the interface [4]. So one sees that domain mobility is tuned through
protein-DNA interactions at atomic level and links allosterically to internal domain
collectivity. One also sees that the asymmetrical correlation pattern has already been
manifested at nanoseconds time scale as our simulation conducted.

Next we tried to explore correlation properties of protein-DNA at longer time
scales, as real translocation step takes milliseconds to happen. We implemented a
method developed by [26] that analyzes ‘dynamical coupling’ in an elastic network
model (ENM) of the protein-DNA complex. The ENM is a highly simplified model
that has been widely used to describe large and slow conformational changes of
protein. The model basically uses one node to represent each residue, and connects
any pair of nodes within some cutoff distance by an elastic spring of the same
strength [27]. The simple model can nevertheless describe well some experimental
observables, such as B-factors. Combining with normal model analysis (NMA),
ENM can predict large conformational changes of protein that overlap fairly well
with real changes in many cases. The dynamical coupling is probed through
perturbing a residue’s spring constant in ENM and monitoring the ensuring effect on
vibrational fluctuation of some other residue(s) [26]. The larger the fluctuation effect
the higher the coupling is between the two parts. In particular, shown in Fig. 15.2,
is the coupling pattern between ATP binding pocket and any residue in the protein-
DNA complex, in both the substrate and product states. The purpose is to find out
which part of the protein-DNA complex couples tightly to the chemical catalytic
site. From analyses above, we know that in the substrate state, subdomain 2A is
more mobile. We notice that in the dynamical coupling analyses, the DNA segment
on top of 2A strongly couples with the catalytic site bound with ATP. While in
the product state, 1A is more mobile, and the DNA segment on top of 1A strongly
couples to the catalytic site, while there is no ATP/ADP bound. Hence, one infers
that the domain mobility is somehow controlled by elastic couplings of the DNA
segments to the chemical catalytic site. Without ATP, the catalytic site ‘holds’ the
DNA nucleotides that are in contact with 1A such that the protein-ssDNA affinities
are fairly low there, and therefore, 1A is quite mobile. When ATP binds, it changes
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the coupling pattern through allosteric interactions, and the DNA nucleotides in
contact with 2A are ‘held’ by the catalytic site, 2A thus becomes fairly mobile.

Hence, we see that a highly coarse-grained network model is able to catch some
mechanochemical coupling properties, which are crucial for directional control.
Interestingly, we noticed that the above coupling pattern disappears when 30–50
polarity of the strand is artificially switched in the simulation. Indeed, PcrA helicase
does not bind well to a 50 piece of ssDNA. The coupling pattern keeps robust,
however, when only the DNA sequences are changed (from poly-T to poly-C)
[4]. The observations support the idea that it is mainly the protein-DNA backbone
interactions that direct the coupling asymmetries, while ATP hydrolysis cycle alters
the asymmetries in between the two subdomains, thus driving the directional domain
stepping.

15.2.1.5 Co-evolutionary Coupling from Protein Sequences

Besides studying molecular dynamics, we tried to explore residue-residue couplings
from protein sequence alignments. The related proteins share essential information
about function and stability deposited into their protein sequences. Using BLAST
(Basic Local Alignment Search Tool) [28], we collected hundreds of sequences
from SF1 and SF2 proteins that are closely related to PcrA helicase. In particular,
these proteins share similar 1A and 2A subdomains. We next made multi-sequence
alignments using ClustalW [29] as well as structural alignment [30]. Then we
implemented a ‘co-evolutionary’ statistical analysis (SCA) method developed by
[31, 32]. The method detects how each pair of residues are coupled in protein
sequence mutations. If two residues are highly correlated maintaining protein
stability or function, the mutation of one would likely cause the mutation of
the other. Hence, by counting how mutational events are correlated between two
positions in a multi-sequence alignment, one obtains the coupling strength between
each pair of residues in the related proteins. In this way we identified a ‘co-
evolutionary core region’ of the PcrA-alike helicases, highlighted in the mutational
correlation map and shown in blue in the helicase structure in Fig. 15.2. One sees
that the core region links the ATP binding site to the protein-ssDNA interface, and to
regions close to the protein-dsDNA interface. One would expect that the core region
consists of most essential residues collectively maintaining structure and function
throughout the evolutionary history.

In summary, for PcrA helicase, we have studied its directional translocation in
structural and energetic details. We focused on the alternating domain stepping
mechanisms of the motor, probed coordinated protein-ssDNA couplings during ATP
hydrolysis cycle, from atomistic to residue and informatic level. There are similar
SF1 helicases Rep, UvrD, RecB and RecD [7], which all contain similar helicase
motifs and are likely use similar stepping mechanisms.

There is, however, another proposed ‘ratcheting’ model of translocation, which
also requires the helicase switches between two states, weakly and strongly bound
states with the ss [33]. It is proposed that, e.g., ATP binding loosens the grip of the
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Fig. 15.3 Coupling translocation with nucleic acid unwinding in NS3 helicase. The images
are adopted from the graphic abstract of [5]. Shown on the bottom left is the translocation model
of NS3 helicase, similar to that of PcrA helicase [3, 4]. The green/red bead represents domain 1/2
in NS3, while the green/red curve represents the translocation potential of the domain 1/2 along
the single strand. In particular, the potential barriers are low in the ATP bound state as the affinity
between NS3 helicase and the single strand is low [47]. The structure of NS3 helicase is shown in
the middle [35]. ATP is supposed to bind in between domain 1 (green) and 2 (red). At the junction
formed by duplex DNA/RNA and a single stranded 30 tail, there are two interaction potentials that
affect the helicase action. One is the base par unwinding potential/barrier that hinders the helicase
to move forward. The other is the junction stabilization potential, which prevents the helicase from
moving away from the junction. On the bottom right, a two-state double well potential is shown for
the opening and closing equilibrium of the end base pair on the duplex. Active helicase unwinding
reduces the free energy difference from �G0 to œ �G0, with 0<œ< 1

helicase on the ss so that the helicase may transiently diffuse along the ss (weakly
bound); ATP hydrolysis and product release re-induce tight binding of the helicase
to the nucleic acid (strongly bound), resulting in a biased forward movement that
leads to directional translocation. The directional bias comes from asymmetric saw-
tooth potentials between the protein and ss in the strongly bound state. As a matter of
fact, the ‘ratcheting’ model can be accommodated well in the two-domain stepping
framework we implemented above. Essentially, if one lowers the potential barriers
for both subdomains 1A and 2A, e.g., in the ATP bound substrate state, one gets the
weakly bound state that allows helicase diffusion to happen soon enough. While
raising both domain barriers sufficiently high in the product state, one gets the
strongly bound state. Instead of depicting potentials for individual subdomains, one
can draw the potential for the motor as the sum of the individual domain potentials,
and then obtain the asymmetric sawtooth-like potentials for ‘ratcheting’ (see refer-
ence [3] figure 6). We took this perspective to model another monomeric helicase
NS3 (see Fig. 15.3 left), which ratchets or steps along ssRNA/DNA and is able to
unwind dsRNA/DNA [5]. Our focus, however, would be then on helicase unwinding
that is coupled to the ss translocation, rather than on the ss translocation alone.
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15.2.2 NS3 Helicase – Coupling ss Translocation
with ds Unwinding

NS3 from hepatitis C virus (HCV) is a non-structural protein with its C terminal
part folds into a SF2 helicase. Identifying inhibitors that target HCV-NS3 helicase
would help develop anti-HCV drugs [34]. In its monomeric form, NS3 helicase
(NS3h) can translocate along the ss nucleic acid in the 30–50 direction, unwind the
duplex region, and displace other bound proteins on the nucleic acid. The helicase
shares with other monomeric helicases or translocases the two RecA-like domains
[1, 2], with an ATP binding site located in between the two domains (see Fig. 15.3
middle). Additionally, NS3h has a domain 3, positioned similarly as the subdomain
1B (and part of 2B) in PcrA helicase. The high-resolution structure of NS3h was
obtained early without ATP/ADP bound [35]. The substrate structure with ATP
analog bound was discovered recently [36]. However, these structures contain only
ss nucleic acids bound with the protein, while the binding configuration of NS3h to
the duplex part of the nucleic acids is still missing. This causes difficulties studying
protein-ds RNA/DNA interactions and hence, the duplex unwinding of NS3h.

On the other hand, experimental studies on NS3, including biochemical and
single molecule measurements, have been abundant in recent years [17–19, 37–
43]. In particular, single molecule optical tweezers monitored monomeric NS3h
unwinding activities in real time [17, 18], providing substantial data to build a
stochastic model of the helicase unwinding [5]. Below we illustrate essential ideas
in the model, focusing first on how ss translocation is coupled to ds unwinding, and
then on how the duplex unwinding is connected with junction stabilization of the
helicase. Besides, we also summarize sequence effects on helicase unwinding, as
well as on fluctuation properties of the helicase motor that have been caught and
can be further probed.

15.2.2.1 Coupling Translocation with Unwinding

The helicase motor protein uses free energy from ATP hydrolysis cycle to assist
its unidirectional translocation. When the helicase moves to the junction formed
by the ds RNA/DNA and the ss tail, it can possibly move further and have the
duplex region unwound. Basically, the unwinding is treated as simple as separation
or opening of the base pair (bp) at the end of the duplex, breaking the hydrogen
bonding interactions therein. Normally, the hydrogen bonds quickly form and break,
at a time scale (�s) much faster than that of the helicase translocation (ms). Hence,
the bp opening and closing are supposed to maintain a thermal equilibrium, with bp
closing more favored. Separation of a stretch of bps altogether would be possible
but was not considered yet.

For helicases that can unwind the duplex nucleic acids, there are two basic
mechanisms proposed [44–46]: passive and active unwinding. Under the passive
mechanism, the helicase does not interfere with the bp opening and closing equi-
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librium; it only takes advantage of spontaneous opening of the bp, makes a move
1-bp forward fast enough so that the bp cannot be closed back again. Indeed, even
the bp is closed, there are still slight probabilities that the helicase can thermally
force opening the bp (without affecting the opening-closing equilibrium) if the
corresponding activation energy is not too high [5]. Anyhow, under this scenario, the
helicase does not use its translocation free energy (from ATP hydrolysis cycle) to
assist unwinding. In contrast, helicase works under the active unwinding mechanism
does ‘tilt’ the bp opening and closing equilibrium toward the opening direction. We
thus utilized a parameter œ (0�œ� 1) to characterize how ‘active’ the helicase is
(see Fig. 15.3 middle and right). The bp opening and closing free energy difference
�G0 (>0) is reduced to œ �G0 upon the presence of the helicase at the end of
the duplex. The closer œ is toward 1, the less active the helicase is (œD 1 for the
passive case). The energy to ‘tilt’ the bp opening comes from the free energy being
utilized for translocation. Consequently, the ratio between forward and backward
rates of helicase translocation is reduced during the active unwinding. However, it
is not clear yet if the forward or backward moves are limited by chemical transitions
(such as ATP/ADP binding/unbinding, hydrolysis etc.), or by the protein domain
movements. In practice, we assume that the forward and backward moves of the
helicase are characterized by the domain stepping, either diffusional (e.g. in ATP
bound state) or coupled to ATP binding or product release.

By fitting with single molecule experimental data on how fast the helicase
unwinds under different ATP concentrations, we estimated the value of œ< 0.5
[5]. This suggests that energetically NS3h is a quite active helicase, as it reduces
more than half of the bp opening-closing free energy difference on average during
unwinding. Then comes the next question, how exactly the protein unwinds the
dsDNA, kinetically, energetically, and structurally?

In studying PcrA helicase, we noticed that the duplex part of the DNA is
significantly distorted by 2B subdomain of PcrA in the product state in the absence
of ATP/ADP. The role of 2B itself is still unclear, however, as removal of it in
some similar helicases (such as Rep) actually enhances unwinding activities of the
helicase. Nevertheless, from a structural perspective, some regions in NS3 (domain
2 or 3) should interact closely or even distort the duplex, likely in the product
state. Biochemistry measurements had indicated that NS3 shows low binding
affinity with ssDNA in the ATP bound state [33, 47]. For the fluctuation properties
detected in single molecule experiments, we suggested that the fluctuation is due
to diffusional characters of the helicase in the low ss affinity ATP bound state (see
later discussions). Indeed, stepping upon ATP binding (by domain 1) is hardly able
to ‘push’ further for unwinding, as the protein transits to the low affinity state to
ss (see Fig. 15.3 left). On the other hand, some evidence showed that Pi release
generates power stroke for the duplex unwinding [42]. That is, after ATP hydrolysis,
the stepping motions by domain 2 upon product release can ‘push’ further on the
duplex region as the protein-ss affinity increases, making the end bp more likely to
be open that it originally is, and hence actively assists ds unwinding.
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15.2.2.2 Duplex Unwinding and Helicase Stabilization at Junction

Now we consider how unwinding proceeds at the junction. The junction is formed
by the end of the duplex region and a piece of 30 ss tail. Experiments had noticed
that the helicase shows a higher affinity to the junction than to a piece of pure ss of
the same tail length (7–10 nt) [33]. Thus one can estimate an association strength
U0 between the helicase and the duplex region of the junction at 	4 kBT, in the apo
state (U0	 2 kBT in the ATP bound state as estimated further in [5]). Experiments
had also discovered that unwinding could happen when NS3h binds the junction of
a tail length <7 nt [33]. Combining the evidences, we inferred that in the stabilized
binding configuration, NS3h covers 10-nt length on the junction, with a front 3-nt
length bound with the duplex region, while the left 7-nt distance associated with
the ss tail (see Fig. 15.3 middle). The association strength U0 between the NS3h
and the duplex, mainly through the front 3-nt length interface, would be responsible
for preventing backward diffusion or dissociation of the helicase during unwinding.
This could be important for NS3h as its diffusion is significant and the affinity to ss
is low in the ATP bound state. Without strong enough ds association, the helicase
may move away from the duplex region before it unwinds the bp.

Hence, one can imagine that in order to successfully unwind the bp at the
junction, the helicase needs sufficiently high affinity with both the ss and ds part.
For some of monomeric helicases, even they can translocate well along ss, they
cannot unwind the ds part [7]. The possible reasons are (1) they may not be able
to grab ssDNA/RNA strongly enough to make a power stroke for active unwinding;
(2) they do not associate with dsDNA/RNA tightly enough and escape away from
the ds most of time, failing even for the passive unwinding.

15.2.2.3 Sequence Effects of Unwinding and Diffusional Fluctuations

Through active bp unwinding at the duplex end, the helicase has its translocation
velocity reduced compared to that during ss translocation, as the forward stepping
rate of the front domain is inhibited. The average stepping efficiency, defined as the
average number of steps advanced for each ATP consumed, is also reduced below
1 nt/ATP. Both of the reductions depend on the DNA/RNA sequence encountered by
the front domain, or say, by the value of �G0 that measures the sequence stability
(	3 kBT for GC and 	1.5 kBT for AU on average). Even the dissociation rate
of the helicase from the junction can be sequence dependent, as the helicase-ds
interaction during unwinding bears the sequence effect. We have quantified the
unwinding velocity, stepping efficiency, and dissociation rate in kinetic model. The
resulted sequence dependencies match well with experimental measurements: with
increasing sequence stability, the unwinding velocity and average stepping effi-
ciency decrease, while the dissociation rate increases. As a result, the processivity
length, defined as the average distance the helicase travels before its first dissociation
(velocity over dissociation rate), decreases with the increasing sequence stability.
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These experimental observables, hard to examine from detailed simulations, are
easily trackable in kinetic or stochastic modeling.

An important character of the NS3h in this model is that its translocational
diffusion is not negligible when the helicase is bound with ATP. The diffusion
affects fluctuation properties of the helicase during ss translocation, though without
impacting the average translocation velocity or the stepping efficiency (1 nt/ATP
at average). During unwinding, however, the diffusive character does affect both
the fluctuational and the average properties, such as the velocity and the step-
ping/unwinding efficiency of the helicase. In the absence of diffusion, the unwinding
efficiency is already lower than 1 bp/ATP due to occasional futile ATP cycles upon
the sequence barrier. The diffusion further lowers the average unwinding efficiency.
The larger the diffusion rate, the more significant the sequence barrier decreases
the efficiency, and this is achieved by increasing the frequency of backward jumps
(�1 nt at a time) during unwinding. The interplay between the diffusion rate and
sequence effects is also displayed in helicase dissociation during active unwinding.
According to the numerical results, the sequence dependence of the dissociation rate
is detectable only in the presence of diffusion; the larger the diffusion rate, the more
pronounced the sequence dependency.

To quantify the diffusive character of the NS3 helicase, we estimated the
diffusion rate to an order of 10 nt2 s�1 based on the unwinding velocity fluctuations
(standard deviation) measured from single-molecule experiments [17, 18]. This
shows that a significant advantage of the single molecule experiments is to measure
not only the average quantities, but also their fluctuation properties. More straight-
forwardly, one could obtain the diffusion rate from measuring velocity fluctuation or
the effective diffusion rate during ss translocation of the helicase in the experiments.
Further efforts are needed to link these ‘long time’ (ms) experimental observables
to ‘short time’ (ns–�s) molecular dynamic quantities as well as structural properties
of the molecular motor.

15.3 Multimeric Ring NTPase – DNA Packaging Motor
and a Couple of Others

In this section we discuss how the ring-shaped multimeric NTPase or translocase
moves along the molecular track, coordinating its individual subunits. The molecu-
lar track can be DNA, RNA or protein. The chemical or catalytic sites are distributed
around the ring, and are located at the interfaces formed by any two neighboring
subunits. We focus on our previously studied system, a viral DNA packaging motor
from bacteriophage ¥29 [6]. We want to highlight two key issues, first, how the
motor interacts with the molecular track or the substrate, and second, how the motor
subunits are coordinated around the ring.

Indeed, multimeric NTPases or translocases are widely distributed [8, 48–52].
For example, in helicases super-families other than SF1 and SF2, most of them
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are hexameric rings. NTPs bind in between two neighboring RecA-like domains
on the ring. The binding site consists of Walker A and B motifs from one domain,
and arginine finger from the other. In comparison with the DNA packaging motor,
we briefly review studies on hexameric T7 helicase and ClpX motor as well. T7
helicase moves along ssDNA and unwinds the duplex DNA [48]. It is supposed
to use arginine finger to coordinate around the ring. ClpX motor translocates and
unfolds protein strand [53]. The subunits around the ClpX ring are not coordinated
but rather ‘fire’ randomly. Hence, the protein- substrate interactions in T7 helicase
and ClpX are different from that in the dsDNA packaging motor. The inter-subunit
coordination, however, can be similar for T7 helicase and the packaging motor,
while ClpX provides a special case.

15.3.1 DNA Packaging Motor – ‘Push and Roll’
and Coordination Around the Ring

Packaging the genome into the viral capsid is a key event in the life cycle of viruses.
The bacteriophage ¥29 is one of the simplest and most intensively studied systems
[54]. Its genome is made of a linear ds DNA of about 19 kb, encoding 20 proteins.
Packaging the long piece of dsDNA into a near- crystalline state inside a virus capsid
	50 nm in diameter generates a high internal pressure, due to entropic barriers,
electrostatic repulsions and bending energies of DNA. The pressure can be utilized
later on to eject the genome into the host cell during viral infection. The packaging
is done by a powerful ATPase motor gp16. Figure 15.4 shows an image of the
phi29 DNA packaging system obtained from the cryo-electron microscope (cryo-
EM) density map [55]. It consists of three multimeric rings: an ATPase (gp16), a
174 base RNA (pRNA), and a dodecameric portal connector (gp10). The apparatus
are located at a unique five-fold vertex of the icosahedral capsid (the prohead). It
has shown that the ATPase and pRNA form pentamers [55]. A similar organization
of the ATPase has been found in the DNA packaging motor from bacteriophage
T4 [56].

In our modeling work, we studied ¥29 DNA packaging ATPase, which has
been investigated intensively in experiments using single-molecule manipulation
techniques [51, 57–60]. The experiments indicated that DNA translocation is likely
associated with Pi release after ATP hydrolysis, and the motor affinity for the DNA
is high in the ATP-bound state (T) but low in the ADP-bound (D) or apo state
(E) [58]. Further high-resolution optical tweezer measurements showed that the
packaging proceeds in bursts of 10 bp, with each composed of four 2.5 bp substeps
(Fig. 15.4) [59]. Following the burst phase is a dwell phase, composed of four ATP-
binding events and several non-ATP binding events. Accordingly, we constructed
a mechanochemical model based on experimental knowledge, homolog structural
information, and a few necessary, but generic, assumptions [6]. The model provides
a physical picture of how this multimeric motor translocates along dsDNA. We
summarize the main features of the model as below.
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Fig. 15.4 A viral DNA packaging motor from bacteriophage ¥29 and the push-and-roll
model. The images are adopted from [6]. (a) Images (courtesy of M. Morais) from cryo-EM
studies of the packaging system [55]: The dodecameric connector (gp10, green), pRNA (magenta)
and ATPase pentamer (gp16, blue) with the DNA modeled for visualization. (b) The essential
experimental results from high-resolution optical tweezer measurements [59]. DNA translocation
proceeds in bursts of four power strokes of 2.5 bp, separated by dwell phases wherein four ATPs
are loaded into four catalytic sites. There are also multiple slow events in the dwell phase that do
not involve ATP binding. (c) The push-and-roll of DNA packaging and cooperative ATP hydrolysis
mechanism proposed for ¥29 DNA packaging [6]. The mechanism along with the cartoon is similar
to that used for the ¥12 packaging motor [63]. The molecular lever is down in the T (ATP-bound,
color in black) state and up in the D (ADP-bound, color in red) state, while the DNA affinity of
the lever/subunit is high in the T state but low in the D state. As the lever moves up during the
power stroke (T ! D), the DNA (blue) is pushed up by �2.5 bp, rotates (��30ı), and rolls to the
next subunit. In the top view, the packaging up direction points toward the reader. Besides, ATP
hydrolysis/Pi release in the current subunit triggers the Arg finger insertion into the next catalytic
site, accelerating the (otherwise slow) ATP hydrolysis

15.3.1.1 Motor-DNA Interaction in ‘Push and Roll’

The DNA packaging had been measured along with DNA rotation. We developed a
‘push and roll’ model to describe how the motor and DNA interact during the pack-
aging cycle. The ‘push’ of the motor subunit onto the DNA is presumably conducted
by a lever structure. Lack of the high-resolution structure of the packaging ATPase in
¥29, we borrowed some structural features from another packaging motor P4 in ¥12
[61–63]. These are basically the luminal loops that emanate from the central “-sheet,
which also emanates the P-loop to grasp ATP. The loops are used as molecular levers
by the motor subunits, to move up and down in cycles, to drive the translocation of
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the DNA. The packaging force generation can then be regarded as the consequence
of conformational couplings between the loop and the ATP binding/catalytic site.
The ‘firing’, or the power stroke, is likely generated upon the release of Pi, in the
transition from the high lever-DNA affinity state T to the low affinity state D [58].

Intuitively, one expects the motor lever to push perpendicularly on the DNA
helical strand (see Fig. 15.4), which is right-handed and tilted about 30ı above
the horizontal direction. The push, consequently, leads to movements of the DNA
along two orthogonal directions, one ‘vertically’ up for the packaging, and one
‘horizontally’ toward left for rotating (CW in top view, with the packaging direction
toward the reader, or ‘-’along the under-winding direction). The push leads to about
�30ı of DNA rotation for every 2.5 bp distance of DNA packaging.

Energetically, the push comes from steric interactionis. Experiments had shown
that the packaging could happen for the neutralized DNA, as long as the neutralized
segment is less than 30 bp in length [60]. This suggests that the steric interaction
is crucial for the packaging strokes. However, the electrostatic interactions are also
important for ‘steering’ the lever toward the DNA backbone, as well as for ‘holding’
the DNA without slipping during the dwell phase. There can be a positively charged
residue located at the tip of the lever (as that in ¥12-P4 packaging motor). When
the lever approaches to the DNA strand for push, the positively charged residue
will grab to the nearest negatively charged phosphate group on the DNA backbone,
so that the steric push can effectively happen. The electrostatic association is
indispensible, in particular, when there is no steric push during the dwell phase. If
the neutralized DNA region is too long (>30 bp), it poses too big an energy barrier
even for four packaging strokes in a row (during the burst phase) to carry the DNA
across (see supplementary information in ref [6]); as the motor subunit cannot grab
on or associate with the neutralized DNA segment, slipping between the motor and
the DNA will happen, and abolish the packaging.

Besides, DNA can roll around the internal ring from one subunit toward the
next for each packaging substep. The cross-sections of DNA and the motor ring
are circles. Rolling is the basic movement between two circular surfaces without
slipping. If rolling of the DNA is CCW around the ring, a coupled rotation of DNA
should be CW (-), leading to an even larger DNA rotation toward the under-winding
direction (<�30ı) for each packaging substep (2.5 bp). Preliminary (unpublished)
measurements, however, indicated fairly small negative values of DNA rotations per
step (>�30ı). Hence, we inferred that the rolling happens in CW direction around
the ring, leading to a positive (CCW) DNA rotation (Fig. 15.4). The amount of
rotation depends actually on the relative size of the DNA cross-section to that of
the motor ring [6]. A larger radius of the motor ring leads to a larger positive DNA
rotation during the rolling. Hence, by measuring the exact amount of DNA rotation
during each packaging substep, one can estimate the radius of the motor ring.

The energetic driving force for rolling can be electrostatic. We had shown that
energetically, the rolling configurations of the DNA (attaching to the peripheral or
internal surface of the ring) are more stabilized than hanging around the center
of the ring (see supplementary information in ref [6]). The conclusion, however,
was based on screened coulomb interactions between protein and DNA in a highly
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simplified model, with five positive lever charges equally distributed around the
ring, and with long strands of negative charges representing the phosphate groups
on the DNA. Further, we had assumed that the high protein-DNA affinity in the T
state is largely due to the lever charge grabbing on the DNA backbone; after the
power stroke (T!D) or steric push, the lever withdraws from the DNA and loosen
its grip, hence, leading to a low protein-DNA affinity in the D state. As a result,
the electrostatic attraction between the DNA and the neighboring subunit at high
affinity T state makes the DNA to roll toward it.

15.3.1.2 Which Strand and Where on the DNA the Motor Pushes?

Based on the ‘push and roll’ model, the motor lever should push on whatever it
can push on the DNA, without differentiating which DNA strand or the exact spot,
though the positively charged residue likely grabs on the nearest phosphate group.
However, experimental measurements did bring up some ‘puzzles’. First, the motor
seems to react differently to neutralizing different strands [60]: neutralizing the 50–
30 strand (	30 bp) abolished the packaging, while neutralizing the same length on
the 30–50 strand does not affect the packaging much. Second, the packaging step
takes a fractional substep of 2.5 bp [59], why this happens, and would it bring out
of registry trouble as the motor subunit ‘sees’ different spots for different pushes?

Indeed, there are ‘asymmetries’ between the two DNA strands, as the backbone
of the 50–30 (30–50) strand forms the upper edge of the DNA major (minor) groove.
For the first ‘puzzle’, we inferred that during the power stroke the motor lever pushes
more ‘effectively’ on the upper edge of the major groove (	12 Å wide in B-form
DNA) than on the minor groove (	6 Å wide). Due to steric hindrances or some
entropic barrier, the minor groove might be too narrow for the lever to produce an
effective steric push. Neutralizing the 50–30 strand would energetically lead the lever
to approach the upper edge of the minor groove (30–50 strand) and push, which might
not generate sufficient force to sustain packaging. Nevertheless, when the motor is
packaging a normal DNA substrate, there is no such a large electrostatic energy
barrier as that exists in packaging the neutralized DNA. Thus, the lever can approach
to either strand and push on whatever steric elements it encounters, although we still
expect that the packaging is more powerful or effective when the motor pushes on
the 50–30 strand than on the 30–50 strand.

For the 2.5-bp packaging substep measured experimentally, we took it for granted
in the model, without explaining why it is generated in the first place. A likely
reason behind it is that the lever (a loop structure) lengthens or simply moves up
about 2.5
 3.4	 8.5 Å for each power stroke. As such, will there be out of registry
trouble every other 2.5-bp, when the lever tip stays in between two phosphate groups
rather than on one of them? The trouble comes from an implicit assumption that
the lever is a rigid device, and the motor requires grabbing exactly the same spot
each time to make the push. The resolution can be, first, the lever is not rigid
but flexible, it deforms from time to time to grab on the nearest phosphate group;
second, as the push is steric, the pushing spot does not necessarily coincide with the
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electrostatic grabbing site. The electrostatic association is there only for holding the
DNA, assisting packaging without slipping.

Hence, the above ‘puzzles’ could be artificial. Without direct measurements, one
should not expect that the motor ‘choses’ some sophisticated way of packaging.
The movements of the motor are guided by protein-DNA associations, tuned by
solution condition and counterion effects. Lack of high-resolution structures of the
packaging motor, as well as limited by the computational power, unbiased atomistic
simulations of the full packaging process is not feasible in near future. On the other
hand, toy models that catch some essential features of the system may provide
certain insight into the functional mechanisms.

15.3.1.3 Coordination Mechanisms Around the Motor Ring

CryoEM studies had suggested that the ¥29 packaging motor has a pentameric ring
structure [55]. The high-resolution optical tweezer measurements, however, showed
that in each 10-bp packaging burst, there are four instead of five substeps (2.5-bp
each) [59]. It was not clear why the five motor subunits package four substeps in a
row. Besides, it was not clear what else happen aside of four ATP loadings in the
dwell phase. To provide feasible answers to these questions from a modeling point
of view, we suggested a dominant packaging scenario (Fig. 15.5). The essential
experimental clues, aside from that mentioned above (Fig. 15.4 left), include also
some previous findings: T (D, E)-state motor subunits have high (low) DNA affinity,
and that T!D transition (Pi release) likely delivers the packaging stroke [58]. The
key properties in the suggested scenario are summarized as I to III below. They
answer why that the packaging strokes happen in a row (I), why each packaging
burst stops at the fourth rather than the fifth step (II), and what else happen besides
the ATP binding during the dwell phase and how (III).

In Fig. 15.5, we provide the schematics of the dominant packaging events for
the five motor subunits in one full packaging cycle. We start with a configuration
in which all five motor subunits are loaded already with ATP molecules, hence in
all T states. The state of the subunit is defined as the catalytic site on the subunit
(e.g. formed with the subunit proceeding to it) is bound with ATP (T), ADP (D) or
none (E). T!D!E!T transitions (reversible but with forward free energy bias)
happen sequentially for each subunit and alternatively around the ring for the five.

(I) Arginine finger insertion from one subunit to the next accelerates the ATP
hydrolysis, leading to packaging strokes/substeps happening in a row.

The arginine finger is supposed to locate at the interface of two neighboring
subunits, inserting from the first subunit into the catalytic site formed by the two
subunits (see Figs. 15.4 and 15.5 center). The knowledge that the arginine finger
insertion can reduce activation barrier in the ATP hydrolysis and thus accelerate
the process had been known [64, 65]. More specifically for the ring motor, it
was proposed that the arginine finger insertion couples ATP hydrolysis events
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Fig. 15.5 A dominant mechanochemical scheme of ¥29 DNA packaging motor. The image
is adopted from [6]. The reaction cycle is divided into two phases. The burst phase contains four
sequential power strokes at four consecutive catalytic sites. Each power stroke generates a 2.5-
bp substep [59]. The dwell phase contains four consecutive ATP loadings and several non-ATP-
binding events [59]. Each power stroke commences upon the T ! D transition (Pi release) when
the DNA is initially attached to the subunit. Each power stroke requires the next subunit to be in
the T state to receive the DNA as the DNA rolls toward the subunit, following the completion of
current power stroke (see text for property II). After four contiguous power strokes in the burst
phase, the motor pauses because the next subunit has been left in the low DNA affinity D state,
and the system enters the dwell phase. During the dwell phase, the 1st ADP release is slow, but the
following ADP releases (2nd to 4th D ! E transition) proceed faster as ATP binds quickly (at high
[ATP]) and accelerates ADP release at the next site (see text for property III). The waiting time for
the 1st power stroke is another rate-limiting non-ATP-binding event during the dwell phase after
the four ATPs are loaded. The ensuing power strokes (2nd to 4th T ! D) happen very quickly
in the next burst phase. A related hydrolysis cooperative mechanism is the insertion of an Arg
finger from the preceding subunit, driven by the hydrolysis/power stroke in that subunit (see text
for property I)

for neighboring subunits in ¥12-P4 packaging motor [61–63], and we borrow
this property. The arginine finger residue for ¥29 packaging motor had also been
identified from genomics studies [9]. Accordingly, we suggested that without
arginine finger insertion from previous subunit, the first ATP hydrolysis during the
1st T!D happens spontaneously and slow, which partially limits the starting of the
burst phase. However, once the 1st T!D happens, conformational changes trigger
the Arg-finger insertion into the next catalytic site and accelerate the corresponding
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T!D transition, hence 2nd to 4th packaging strokes or substeps happen fast and
in a row.

(II) A packaging stroke requires the next subunit to be in high DNA-affinity T state
to prevent slipping, and hence can bring to a stop at the 4th stroke.

To obtain four substeps out of five presumably identical subunits, one simple
scenario is that each two neighboring subunits are coupled for one packaging
substep. More specifically, it enforces both subunits to be in T state to have the
first subunit pushes on the DNA and rolls the DNA toward the second subunit. The
scenario is physical since the T state subunit has high DNA-affinity to ‘attract’ or
hold the DNA, while the subunit in the low DNA-affinity state (D and E) does not.
Starting from the configuration fT1T2T3T4T5g (with the number index labeling
subunits from 1 to 5 around the ring), the 4th packaging stroke ends up with a
configuration fD1D2D3D4T5g. The configuration cannot support the fifth packaging
stroke due to the ‘end pair’ T5D1 has subunit 1 in low DNA-affinity D state, which is
not yet ready to ‘accept’ the DNA. If subunit 5 fires and has the DNA roll toward to
subunit 1 at this moment, the DNA likely slips. Hence, until the ADPs are replaced
by new ATPs, the motor stays in a dwell phase. One has to be aware, therefore, that
the presence of the dwell phase also requires the ADP release to be sufficiently
slow (discussed below). In brief, we see that TiTiC1 neighbor coupling for one
packaging stroke is necessary for the packaging stops at every 4th stroke, though
it is not sufficient.

(III) ADP releases slowly, sequentially, alternating and in coordination with ATP
loading around the ring.

As mentioned above, slow ADP release is also essential to bring the packaging
motor to the dwell phase. The motor relinquishes the reaction products and loads
new fuels during this period. At the saturating ATP concentration, the dwell time
statistics fits to a gamma distribution, which suggests multiple events and further
gives an effective number of slow events in between 3 and 4 [59]. At this condition,
ATP binding is very fast, so possible rate limiting events include four ADP releases
and waiting for the 1st ATP hydrolysis. If the four ADP releases are equally slow, the
effective number of events would likely be	4 more. Hence, correlations likely exist
among the four ADP releases. We suggested that the first ADP release is very slow,
while the ADP release later on is accelerated by the ATP binding at the preceding
site. The scenario seemed to work in F1-ATPase system [66]. For example, in the
depicted scheme in Fig. 15.5, D1!E1 happens slowly after the 4th packaging
stroke; at a high ATP concentration, E1!T1 happens immediately; the ATP then
shrinks the binding pocket stronger than ADP does, and helps to open the binding
pocket for subunit 2, thus accelerates D2!E2. Besides, the ADP releases need to
go sequentially around the ring, as our numerical test on random ADP release turned
out in conflict with experimental data.

Under the above scenario, we numerically solved Fokker-Planck equations
describing both mechanical packaging and chemical transitions, and generated
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packaging trajectories and statistics. The results fit well with experimental data.
More recently, further high-resolution optical tweezer measurements [51] confirmed
that the ADP releases alternate with ATP loadings during the dwell phase, as
suggested by (III) above. The measurements, however, suggested that a certain
subunit plays a regulatory role without participating in ATP hydrolysis during each
packaging cycle [51]. In the depicted scheme in Fig. 15.5, it implies that after the
current packaging burst from subunit 1 to 4, the next cycle will repeat exactly (for
subunit 1–4) and end up with the same configuration fD1D2D3D4T5g. In this case,
subunit 5 appears to be the special ‘regulatory’ subunit that has ATP binding but no
hydrolysis. Our previous suggestion, however, is that the five subunits likely play
equal roles: If current cycle starts packaging with subunit 1, then next cycle will start
with subunit 5 and ends up with fD1D2D3T4D5g after the 4th stroke. Anyhow, the
suggestion is irrelevant to properties (I) to (III) discussed above. For five identical
subunits, our previous suggestion simply assumes regular and cyclic repeats around
these subunits. However, it is possible that due to some structural differences, or
more subtly, due to some dynamic reasons, there comes a ‘special’ subunit. For
example, the DNA, held by subunit 5 (T5) after the 4th stroke, may dissociate from
subunit 5 during the long dwell phase, and roll toward subunit 1 as D1 is replaced
by T1. Without the DNA binding, subunit 5 cannot sustain ATP hydrolysis and thus
is ‘left out’ for each cycle. Further studies are expected to investigate this issue.

We also notice that there is some additional or alternative mechanism suggested
from literature [67], which may work together or replace the Arg-finger mechanism
(I) to explain the continuous packaging strokes during the burst phase. The
mechanism suggests that ATP binding to one subunit inhibits ATP hydrolysis by
the neighboring (next) subunit, leading to coordinated rather than stochastic ATP
hydrolysis within the ring. Under this mechanism, ATP hydrolysis can hardly
happen for configurations with all or partial subunits bound with ATP; hydrolysis of
one subunit (T!D), however, releases the inhibition to the next subunit (T). The
inter-subunit coordination or signaling is supposed to be conducted by pore loops
in the AAA proteases [67], corresponding to the levers in the packaging motor. The
overall effect is that the first ATP hydrolysis takes long time to happen in the ring,
but once it takes place, the rest ones follow quickly. To find out the exact mechanism,
further studies are needed.

15.3.2 Hexameric Helicase T7 – Mechanochemical Coupling
and Unwinding

Bacteriophage T7 gp4 gene codes for a prototypical ring helicase. Like the
translocation domain in the small helicases PcrA and NS3, the protein fold in
individual subunits of T7 helicase is also RecA-like [68]. In the presence of dTTP
and DNA, the T7 helicase can assemble into a multimeric ring of six-fold symmetry,
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with the DNA threading through its central channel. The ring is flexible and can
deviate from the six-fold symmetry.

The essential issue for studying the ring helicase is to understand how the
unwinding force is generated, and how motor subunits work together. Substantial
experimental progress has been made on T7 helicase translocation and unwinding
[69–71]. These studies provide information on pre-steady-state kinetics and single
molecule dynamics of the system. Interestingly, the multi-meric T7 helicase had
been examined comparatively in experiments with the monomeric NS3 helicase
in nucleic acid unwinding [70]. Below, we first compare the subunit coordination
around the ring in T7 helicase with that in ¥29 DNA packaging motor. Then we
discuss its unwinding activities, in comparison with NS3 helicase.

15.3.2.1 Mechanochemical Coupling as a Multimeric Ring Motor

By capturing the crystal structure of an active hexameric fragment of the T7 gp4
helicase [68], a sequential four-site ‘binding change’ mechanism was proposed. It
explains how cooperative binding and hydrolysis of nucleotides are coupled to con-
formational changes in the helicase ring. Later experimental [72] and computational
studies [73] supported the idea, and ssDNA is envisioned to be transferred from one
subunit to the next, sequentially, around the helicase ring.

Indeed there are significant similarities between the T7 helicase and the ¥29
packaging motor [6]. First, in the T7 helicase structure, luminal loops on the inner
surface of the hexameric ring seem to provide binding sites for the ssDNA [68],
analogous to molecular levers envisioned for the packaging motor. Second, the NTP-
bound state of the motor has a high affinity to ssDNA, while the affinity is low in
other chemical states – the same affinity trend found in between the ¥29 packaging
motor and DNA. This property is important for the packaging as illustrated in (II)
in the previous section. Third, recent experimental analyses indicated that Pi release
may also serve to trigger a power stroke [71], similar to that in the ¥29 packaging
motor. The ¥29 packaging motor currently has no crystal structure available, so
in modeling we borrowed features from the ¥12 RNA packaging motor P4. These
included the molecular lever and the arginine finger hydrolysis coupling mechanism
(I). Indeed, the ¥12 packaging motor P4 is a hexameric ATPase that is closely
related to the helicase superfamily 4, to which the T7 gp4 helicase belongs [9].

Still, there are essential differences between these multimeric motors. Most
importantly, the substrate of the T7 helicase translocation is ssDNA, while duplex
DNA is involved only during helicase unwinding. As ¥29 packaging motor pushes
on dsDNA, the force generation mechanism cannot be simply transferred to the T7
helicase system. Instead, the essential properties that the ssDNA is polarized and
highly flexible need to be taken into account if one is to study protein-substrate
interactions in T7 helicase.
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15.3.2.2 Active DNA Unwinding Helicase

T7 helicase is able to translocate unidirectionally along ssDNA [74]. The average
translocation rate is	130 bps in the 50–30 direction. The processivity of T7 helicase
is fairly high: It can travel along ssDNA 	75 kb before dissociation. However,
during unwinding in vitro [75], the processive rate of the helicase drops to about ten
times slower than its translocation rate, and the processivity also decreases signifi-
cantly. Recent single molecule studies have detected both ssDNA translocation and
dsDNA unwinding activities of T7 helicase [69]. These studies clearly indicated that
strand separation is a major barrier to unwinding, and suggested an active unwinding
mechanism in the T7 helicase. The sequence dependence of the helicase unwinding
has also been demonstrated in a recent experimental work [71]. The study showed
that T7 helicase adjusts both its unwinding rate and coupling ratio (bp/dTTP) in
response to different sequences: It unwinds the dsDNA slower with a lower coupling
ratio when it encounters GC vs. AT bps.

From single molecule measurements [18] and our studies on NS3 helicase [5], we
notice that NS3 has similar unwinding behaviors. Both helicases seem to be ‘active’
rather than ‘passive’, the unwinding rate and NTP coupling ratio display similar
trends of sequence dependence. Although the two helicases have quite different
molecular geometries, the unwinding force generation step in both systems seems
to take place upon NTP hydrolysis or Pi release [33, 71].

In addition, T7 helicase unwinding has been studied in the vicinity of the
replication fork where the T7 replisome is assembled [45, 48, 76]. The assembly
includes T7 helicase and primase as well as DNA polymerases on both leading and
lagging strand, along with ss binding proteins. Interestingly, the in vivo unwinding
rate of the T7 helicase increases significantly compared to that in vitro, reaching
about the same as its ssDNA translocation rate. This suggests that T7 helicase
becomes more efficient in unwinding when assisted by other proteins.

15.3.3 ClpX – A Multimeric Ring Dismantling Protein Fold

ClpX is the ATPase component of the ClpXP protease in prokaryotes [77, 78].
It denatures native proteins and transports the denatured peptide into ClpP for
degradation. ClpX belongs to AAAC family (ATPases associated with various
cellular activities) molecular machines that use energy from ATP hydrolysis to
remodel a variety of molecular assemblies in the cell [79]. In E. coli, ClpX
assembles into a hexameric ring docking onto the heptameric ClpP. Two ClpP
rings stack back-to-back, creating the degradation chamber that aligns with the
central channel of ClpX [77]. Protein substrates for denaturation and degradation
are recognized by ClpXP via short peptide sequences [80].

Unlike the sequential and coordinated ATP binding and hydrolysis around the
motor ring identified for the packaging motor and helicase systems, the six subunits
in ClpX appear to fire independently and in random order [81]. That is, any subunit
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in the motor ring positioned best with the protein substrate can hydrolyze ATP,
incrementally unfold the protein, and translocate the substrate. This is an intriguing
property that appears to be uncommon amongst currently known ring ATPases,
including the above mentioned T7 helicase, ¥29 and ¥12 packaging motor, as well
as F1-ATPase, Rho and E1 helicase [59, 62, 68, 72, 82–84].

One also expects a somewhat different substrate translocation mechanism in
ClpX from other motors working with nucleic acid substrate. In our model of ¥29
DNA packaging motor, we have proposed a ‘push-and-roll’ mechanism for how
the DNA moves through the ring lumen. In particular, the mechanism depends on
DNA’s helical structure and regular charge distribution. A protein substrate as in
ClpX case, however, does not have this periodic structure: the charge distribution is
not stereotyped, and the chain is much more flexible than dsDNA on the length scale
of the motor dimension. On the other hand, the essential motor forces that directly
transport the substrate appear to be steric in both ClpX and the packaging motor
systems [49, 60, 85], providing some common theme in the force generation.

15.3.3.1 Random Firing and Structural Basis

Experimental studies linking covalently active and inactive subunits in ClpX showed
that different geometric arrangements support the enzymatic unfolding of protein
substrates and translocation of the denatured polypeptides into ClpP [81]. The
studies indicate that the ClpX power stroke is generated autonomously in each
subunit. They have also ruled out concerted and sequential hydrolysis, while
suggesting a probabilistic sequence of hydrolyses around the ClpX ring.

High resolution structure of single subunit and the hexameric structure of ClpX
reveal striking asymmetry due to large differences in rotation between large and
small domains within individual subunits [53]. These differences in subunit rotation
prevent nucleotide binding to two subunits and generate a staggered arrangement
of ClpX subunits and pore loops around the hexameric ring. This could provide
a mechanism for coupling conformational changes caused by ATP binding or
hydrolysis in one subunit to flexing motions of the entire ring. It is possible that ATP
binding, hydrolysis, and Pi or ADP release will alter the rotation between the large
and small domains in the corresponding subunit. However, it is not clear how to link
the structural characters to the mechanochemistry of the motor, so as to distinguish
structural basis between random and coordinated firing.

15.3.3.2 Protein Unfolding and Translocation

Before the high resolution structure of the hexameric ClpX became available, it
was shown in mutation experiments that a tyrosine residue in a pore loop of the
ATPase links the hydrolysis to mechanical work by gripping substrates during
unfolding and translocation [85]. The results support a model in which nucleotide-
dependent conformational changes in the pore loops drive the substrate translocation
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and unfolding. Were the hexameric ClpX symmetric with a not-too-narrow central
pore, the above suggestions would have provided a straightforward picture on how
the protein substrate is driven through the motor, i.e., by each loop dragging one
residue at a time.

However, significant asymmetries in the hexameric ClpX have been identified
from the crystal structure [53], in which the tyrosine bearing loops occupy different
axial positions. It is possible that ATP binding and/or hydrolysis could cause the
loop to move downward as a consequence of the rigid-body movement of the large
domain in an individual subunit. In addition, there are other types of pore loops that
may participate in substrate interactions, though these extra loops are less conserved
in AAAC proteases. Anyhow, the pore loops fill most of the space in the pore such
that it appears unlikely that even a single translocating polypeptide with bulky side
chains could fit without some structural rearrangements.

Hence, the pore must be highly elastic in order to accommodate various sizes
of protein substrates. One picture is that the protein substrate is ‘swallowed’ into
the pore (as in the jaws of a snake), and ‘squeezed’ to drive unfolding, whereupon
denatured polypeptides are translocated further by the loops. In order to describe this
process, one should examine the size of the pore, the movement of the large domain,
and the dominant loop configuration. These degrees of freedom are coordinated,
loosely or tightly, as each subunit proceeds through its ATP hydrolysis cycles.

Indeed, it had been discovered early that the rate of ATP turnover was several fold
slower during denaturation than translocation [86]. During the denaturation, the ATP
turnover rate remains constant for substrates of different stabilities, but total ATP
consumption increases with substrate stability. Hence, the effective unfolding force
seems to be uniform and implemented iteratively. In addition, the protein unfolding
process in ClpX has to be more or less coupled to the translocation of the unfolded
polypeptide. In this aspect, it is similar to the helicase that couples ss translocation
with duplex unwinding.

15.4 Conclusions

We have reviewed how simple biomolecular machinery, such as NTPase molec-
ular motors, coordinate and control their internal degrees of freedom to achieve
functional specificities. The mechanisms revealed from our computational work
were based on recent experimental discoveries, in particular, from high-resolution
structural studies and single molecule measurements. These NTPase motors share
nucleotide-binding motifs in their catalytic sites, while developing variable types
of architectures and functional modules. For the smallest helicase motors, the two
RecA-like domains alternate their affinities to the nucleic acid strand as directed
by ATP binding and product release, hence, leading to directional movements.
For the ring-shaped NTPase motors, the inter-subunit coordination, though not
indispensible in every case, is crucial as its presence ensures concerted motor firings
around the ring. When the translocation of the motor is further coupled to activities
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such as DNA unwinding, protein displacement or unfolding, part of chemical energy
utilized for translocation would be transferred to the activities.

For the P-loop NTPase motors of different types, there are some essential
structural elements that play relatively conserved roles. For example, the arginine
finger, present in both monomeric and ring-shaped systems, can stabilize some
catalytic intermediate to accelerate the hydrolysis; the molecular levers in the
cavity of the ring-shaped motors can push or pull on the substrate; the central
beta-sheet, from which emanates both the P-loop (for nucleotide during) and the
lever-like structure (for substrate contact), couple chemical transitions to mechanical
force generation. It is interesting to consider how these molecular motors are
evolutionarily connected, not only from a structural perspective, but also from their
mechanochemic properties involving energy coupling and force generation.
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Chapter 16
Multi-state Targeting Machinery Govern
the Fidelity and Efficiency of Protein
Localization

Mingjun Yang, Xueqin Pang, and Keli Han

Abstract Proper localization of newly synthesized proteins is essential to cellular
function. Among different protein localization modes, the signal recognition particle
(SRP) and SRP receptor (SR) constitute the conserved targeting machinery in
all three life kingdoms and mediate about one third of the protein targeting
reactions. Based on experimental and computational studies, a detailed molecular
model is proposed to explain how this molecular machinery governs the efficiency
and fidelity of protein localizations. In this targeting machinery, two distinct
SRP GTPases are contained into the SRP and SR that are responsible to the
interactions between SRP and SR. These two GTPases can interact with one
another through a series of sequential and discrete interaction states that are the
early intermediate formation, stable complex association, and GTPase activation.
In contrast to canonical GTPases, a floppy and open conformation adopted in free
SRP GTPases can facilitate efficient GTP/GDP exchange without the aid of any
external factors. As the apo-form free SRP GTPases can adopt the conformational
states of GDP- or GTP-bound form, the binding of GTP/GDP follows a mechanism
of conformational selection. In the first step of complex formation, the two SRP
GTPases can rapidly assemble into an unstable early intermediate by selecting
and stabilizing one another’s primed states from the equilibrium conformational
ensemble. Subsequently, extensive inter- and intra-domain changes rearrange the
early complex into a tight and closed state of stable complex through induced fit
mechanism. Upon stable complex association, further tune of several important
interaction networks activates the SRP GTPase for GTP hydrolysis. These different
conformational states are coupled to corresponding protein targeting events, in
which the complex formation deliveries the translating ribosome to the target
membrane and the GTPase activation couples to the cargo release from SRP-SR
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machinery to the translocation channel. It is thus suggested that the SRP GTPases
constitute a self-sufficient system to execute exquisite spatial and temporal control
of the complex targeting process. The working mechanism of the SRP and SR
provides a novel paradigm of how the protein machinery functions in controlling
diverse biological processes efficiently and faithfully.

Keywords Signal recognition particle • Protein targeting • Protein localization •
Molecular machinery • Protein machinery • Protein conformational dynamics •
Principal component analysis • Targeted molecular dynamics

Abbreviations

cpSRP chloroplast SRP
cpSR chloroplast SR
Ffh SRP54 homologous protein in bacteria and archaea
FtsY SR’ homologous protein in bacteria and archera
GDP guanosine diphosphate
GTP guanosine triphosphate
IBD insertion box domain
RNC ribosome nascent chain complex
SRP signal recognition particle
SR SRP receptor
T.aq. Thermus aquaticus

16.1 Introduction

Proteins play a variety of fascinating roles in virtually all intra- and inter-cellular
events. The functions of proteins are exerted through their unique three-dimensional
structures dictated by the amino acid sequence. However, the protein structures
are not rigid and can adopt a series of different functional conformations in
response to biological cues, including interactions with other molecules and exterior
environmental changes (light, heat, pressure, and concentration etc.) [1, 2]. Many
studies have shown that the transitions between different functional states are
intrinsically hierarchical in both time and space, from the local changes of side
chain rotamers with typically picoseconds timescale to the collective inter-domain
motions within micro- or milliseconds. Thus the dynamic personalities of specific
proteins potentially govern the temporal and spatial precisions of diverse cellular
processes [3].

In light of the central role of protein conformational dynamics in cellular func-
tions, this question has attracted extensive experimental and computational studies
in the past several decades [4]. In experiments, the studies from X-ray crystallog-
raphy [5], nuclear magnetic resonance spectroscopy [6, 7], time-resolved X-ray
scattering [8, 9], single particle cryo-electron microscopy [10, 11], fluorescence-
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based ensemble/single-molecule techniques [12–14], infrared spectroscopy [15],
and neutron scattering [16] have offered insightful information of the protein struc-
tures and conformational dynamics. From the computational aspects, the persistent
developments of novel algorithms and simulation skills have provided powerful
tools in dissecting the detailed correlation between protein conformational dynamics
and functions. These computational methods include different levels of system
representations (from quantum mechanics [17–23], molecular mechanics [24, 25],
to coarse grained models [26, 27]), the enhanced conformational sampling [28–31]
or accelerated exploration [32], the analysis algorithms to extract useful information
from simulated trajectories [33, 34], and the flexible fitting methods between differ-
ent resolutions of structures [35, 36] etc. These experimental and computational
methods have shown distinct advantages and efficiencies in demonstrating diverse
aspects of protein functioning mechanisms. Combining the advantages of both types
of methods, people have attained significant insights into the role of the protein
conformational dynamics in a number of different biological processes, e.g. enzyme
catalysis [3, 37], protein folding [38], molecular transport [39, 40], and signal
transduction [41, 42]. In this chapter, we review the working mechanism of the
protein targeting machinery consisting of signal recognition particle (SRP) and its
receptor (SR) [43, 44]. In this molecular machinery, two SRP GTPases interact with
each other through a series of discrete and sequential conformational switches, each
of which can be utilized by external cues in controlling the efficiency and fidelity of
the targeting events. Studies of this system from both experiments and computations
have provided a novel paradigm of the structure-dynamics-function relation in the
protein targeting process.

Proteins are synthesized by ribosomes in cytosol and roughly one third of the
newly synthesized proteins are destined as secretive or membrane proteins. Of these
proteins, the first translated 15–30 amino acid residues compose the signal peptide,
which determines their cellular localization. According to properties of different
signal sequence, the corresponding molecular machinery are utilized to mediate
correct localization of the proteins, among which the SRP and SR together form an
evolutionarily conserved co-translational protein targeting machinery in all three life
kingdoms [45–47]. The SRP and SR target the translating ribosome-nascent chain
complex (RNC cargo) to a protein translocation channel in the endoplasmic reticu-
lum membrane in eukaryotes or the plasma membrane in prokaryotes. In this target-
ing process, the SRP firstly recognizes and binds the newly synthesized signal pep-
tide and then load the RNC cargo to membrane translocon through a series of dis-
crete and sequential interaction states with SR associated to the membrane [43, 44].

16.2 Bacteria Preserve a Minimal Functional Core
of the SRP and SR Targeting Machinery

There are two distinct SRP pathways existing in cytosol and chloroplast to mediate
the co-translational or post-translational protein targeting, respectively [48–50]. The
composition of SRP and SR in cytosol varies widely among different organisms.



388 M. Yang et al.

Fig. 16.1 The composition of SRP and SR in eukarya, archaea, and bacteria. (a) Components of
SRP (The figure is used under permission from the original journal [55]). (b) Components of SR

In higher eukaryotes, SRP is a nucleoprotein particle consisting of one 7S RNA and
six proteins including SRP9/14, SRP72/68, SRP19, and SRP54 [51]. This complex
can be classified into the ALU domain and the S domain that are structurally and
functionally independent to each other. The ALU domain includes SRP9/14 and
helices 1–4 of SRP RNA and the S domain includes SRP72/68, SRP19, SRP54, and
helices 6–8 of SRP RNA [52] (Fig. 16.1a). Studies have shown that the ALU domain
plays a role in arresting protein translation on ribosome and the S domain is mainly
responsible to signal peptide recognition and SRP-SR interaction [53, 54]. The SR
is a heterodimer composed of two subunits SR’ and SR“ (Fig. 16.1b). The SR“ is a
transmembrane protein and anchors SR’ onto the endoplasmic reticulum membrane
through its interaction with the N-terminal X domain of SR’. The SR’ shares high
sequence and structure similarity with SRP54 and is responsible to the interaction
with SRP during protein targeting. In archaels, only one 7S SRP RNA and the
SRP54 and SRP19 homologues are included in SRP and only SR’ homologue in
SR [55]. Bacteria occupy a set of minimal components of the targeting machinery,
in which only one 4.5S SRP RNA and the SRP54 homolog are included in SRP and
the SR’ homologous protein in SR [47, 56]. In both archaea and bacteria, the SRP54
and SR’ homologous proteins are termed as Ffh and FtsY, respectively (Fig. 16.1b)
[57]. The 4.5S RNA in bacterial SRP shares a conserved identity to helix 8 of
the 7S RNA in both eukaryotes and archaels. Despite the simple constitution of
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the targeting machinery in bacteria, it carries the same functional role as in other
complicated organisms and thus most experiments have been carried out using this
reduced system.

Besides the canonical composition of SRP and SR in cytosol, another distinct
SRP targeting system exists in the chloroplast of higher plants, in which the
conserved cytosolic SRP RNA is absent and only one SRP54 homologue (cpSRP54)
and one chloroplast specific protein SRP43 (cpSRP43) compose the chloroplast SRP
(cpSRP). In chloroplast SR, only one SR’ homologous protein (cpFtsY) is included.
In fact, the cpSRP RNA are also found in the chloroplast of some photosynthetic
organisms, which can be the evolutionary intermediate state of this machinery from
bacteria to higher plants [48].

16.3 Structural Characteristics of the Functional Core

X-ray crystallographic studies have provided insightful understandings of the SRP
and SR structures [58–63]. Because a minimal composition of SRP system can have
the full function in protein targeting and is conserved among other complicated
organisms, we will take these essential components as an example to address their
structure features. In bacteria and archaea, the homologous proteins of SRP54
and SR’ are termed as Ffh and FtsY, respectively. Both Ffh and FtsY contain
two universally conserved N and GTPase (G) domain [62, 63] (Fig. 16.2a). The
N domain is composed of four helices packing into a bundle and opens at one
end to accommodate the hydrophobic core of the G domain, which results in a
structurally and functionally coupled NG unit (Fig. 16.2b). The G domain is a
unique GTPase domain, which shares high structural similarity to the GTP-binding
domain of RAS-like GTPases. Distinct from RAS-like GTPases, the SRP GTPases
include an additional insertion-box domain (IBD). A number of conserved motifs,
including the motifs I-V, DGQ, DARGG in the G domain and the ALLEADV in
the N domain, are responsible to GTP binding and hydrolysis and comprised of the
main interaction interface between SRP and SR [60, 61]. Besides the NG domain,
there is an additional M domain linked to the C-terminus of G domain through a
flexible helix [64, 65]. The M domain is responsible to the signal peptide recognition
through a hydrophobic binding groove and forms primary contacts with the SRP
RNA [66] (Fig. 16.2c). In bacteria and archaea where no SR“ component exists,
an additional A domain at the N-terminus of FtsY attaches itself onto the plasma
membrane. However, the A domain is absent in FtsY from Thermus aquaticus
(T.aq.). Although the SRP RNA is much variable, the 4.5S RNA preserves a minimal
functional core, in which two internal loops (symmetric and asymmetric) interact
with the M domain of SRP54. A tetraloop at the proximal end plays a critical role
in regulation of protein translocation [67–70].
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Previous studies have shown that the SRP GTPases in both SRP54 and SR’
undergo a series of discrete and sequential conformational states in the process
of protein targeting [43, 69, 71] (Fig. 16.3). These conformations respond to
external cues and provide different regulation points of the targeting events. In
this targeting pathway, the SRP recognizes and binds to the RNC cargo and
then loads it to the membrane translocon through interaction with SR. The SRP
and SR’ interaction begins with fast assembly of an unstable early complex and
then extensive conformational rearrangements lead to a stable complex formation.
Following the stable SRP-SR complex, the SRP GTPases are activated and GTP
hydrolysis drives dissociation of the complex to produce free SRP and SR for the
next round of protein targeting.

16.4 Free SRP GTPases: Floppy Open Conformation
in apo-, GDP-, or GTP-Binding States

Unlike the canonical RAS-like GTPases that require the guanine exchange factor
(GEF) to switch from GDP-bound to GTP-bound states, the intrinsic nucleotide
exchange in free (monomeric) SRP GTPases does not require the aid of any external
factors and has a rate of 2–4 orders faster than that of canonical GTPases [72, 73].
However, the basal GTPase activity in free SRP GTPases is very low compared to
canonical GTPases (Fig. 16.4a). Biophysical studies based on fluorescent techniques
have determined similar binding affinity between GDP and GTP to free SRP
GTPases, with a dissociation constant of 0.2–2.0 �M. However, considering the
different concentrations of GTP (900 �M) and GDP (100 �M) in physiological
conditions, the GTP-bound form is predominant in vivo [72]. Structural studies by
X-ray diffraction indicate that free SRP GTPases bind GDP or GTP in a floppy
and open conformation, which is very similar to that of apo-form state (Fig. 16.4b,
c) [74–78]. Computational simulations show that the conformation of free SRP
GTPases is flexible in both the conserved motifs and inter-domain orientations,
which can accommodate the variations in different crystal structures [79, 80]. It
is thus suggested that GDP or GTP binding to free SRP GTPases utilizes the
conformational selection rather than the induced-fit mechanism, in which the ligand
selectively binds to a specific conformational ensemble of the apo-receptor and
stabilizes the conformation after formation of the receptor-ligand complex [41].

�
Fig. 16.2 Sequence alignment and structural features of the NG domain and signal peptide-M
domain-RNA interaction. (a) Sequence alignment between the NG domains of Ffh (T.aq.) and
FtsY (T.aq.). (b) Cartoon representation of the NG domain of Ffh. The N domain is colored
green, the conserved sequence motifs in red and the core region of the G domain in blue. (c) The
signal peptide-M domain-RNA interaction model was constructed using resolved crystal structures
(PDBID: 1DUL [66] and 3NDB [59]) (Figures (a) and (b) are used under permission from original
journal [79])
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Fig. 16.3 Schematic draw of the discrete and sequential interaction states between Ffh and FtsY
in the SRP mediated protein targeting process

Fig. 16.4 Free energy profile for GTP hydrolysis in free SRP GTPases and structural super-
position over the apo-, GDP-, and GTP-analog bounded Ffh and FtsY. (a) The free energy
profile is computed using rate formula k D kBT

h
e�ˇ�G , where k, �G, T, kB, h, and “ are the

rate constant determined in experiment [73], free energy barrier of the reaction, experimental
temperature, Boltzmann constant, Planck constant, and inverse temperature, respectively. (b)
Structural superposition of T.aq. Ffh (PDBID: 1LS1 [75], 2C03 [78], and 2C04 [78]). (c) Structural
superposition of T.aq. FtsY (PDBID: 2Q9A [77], 2Q9C [77], and 2IYL [76])
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16.5 Unstable Early Complex Formation Between Ffh
and FtsY: A Conformational Selection Mechanism

In the process of SRP-mediated protein targeting, the SRP interacts with SR through
a series of discrete and sequential conformational states, which begins from the
fast early-complex formation between Ffh and FtsY [43]. This early complex is an
on-pathway transient intermediate and can be stalled by GDP-bound or apo-form
SRP GTPases [81]. Biophysical studies using electron paramagnetic resonance and
time-resolved fluorescent resonance energy transfer methods reveal that the early
complex can occupy a broad conformational ensemble with relatively closer N
domain-N domain contacts and further separated G domain-G domain interactions.
According to charge distribution in the two proteins, the formation of early complex
is mediated mainly by different electrostatic properties in the N domains of the two
SRP GTPases [69].

The conformation rearrangements are believed to be small in formation of the
transient intermediate since a fast kinetic rate was determined experimentally [81].
Intriguingly, computational simulations show that a cooperative inter- and intra-
domain motion embedded into the equilibrium fluctuation of free SRP GTPases
can be functionally relevant to the formation of Ffh-FtsY complex (Fig. 16.5) [79].
However, the magnitude of functional fluctuation is far from that of the confor-
mational changes required for stable Ffh-FtsY complex formation. It is suggested
that these functional relevant motions can be utilized by external interactions to
shift the equilibrium towards the association of the heterodimeric complex. In this
context, the fast assembly of early intermediate can be regarded as the first stage of
stable complex formation, in which free SRP GTPases can select and stabilize one
another’s primed state from the equilibrium conformational ensembles [82].

16.6 Stable Ffh-FtsY Complex Association: Extensive
Inter- and Intra-domain Rearrangements
from the Induced-Fit Interaction

In the presence of GTP or GTP analogs, the early intermediate proceeds to a
stable Ffh-FtsY complex. Based on crystal structures resolved for the heterodimeric
complex and the free SRP GTPases, two significant changes are observed: the
N/G inter-domain orientation and the position of conserved motifs (Fig. 16.5b)
[54, 58, 60, 83–85]. Along with stable complex association, the floppy open
conformation in free SRP GTPases evolves into a tightly closed state in the
heterodimeric complex in which extensive interaction interface are formed between
the conserved motifs in the two proteins. Structural analyses show that the core
region of the G domain is composed of several alternatively connected ’ helices
and “ sheet, and this region changes as a rigid body with respect to the N domain.
Computational studies using targeted molecular dynamics suggest that the relative



394 M. Yang et al.

Fig. 16.5 Functional relevant motions in free T.aq. Ffh. The protein structures are shown in tube,
with a cone attached to each CA atom indicating the direction of displacement. The length of the
cone represents twice the magnitude of the displacement for clarity. The N domain is colored in
green, the conserved sequence motifs in red and the core region of the G domain in blue. (a) The
first mode of principal component analysis of the equilibrium fluctuation of free Ffh. (b) Crystal
structural transitions from free Ffh (PDBID: 1JPJ [74]) to Ffh-FtsY complex (PDBID: 1RJ9 [61])
(This figure is used under permission from original journal [79])

Fig. 16.6 Structural rearrangements of ’3 and ’4 helices from free Ffh to heterodimeric Ffh in
targeted molecular dynamics simulations. The initial conformation is colored gray. Only the G
domain is shown for clarity (This figure is used under permission from original journal [79])

position of two ’ helices (’3 and ’4) packing at the domain interface can move
flexibly to serve as a bridge between the N domain and the core region of the
G domain to accommodate significant inter-domain reorientations in the process
of complex formation (Fig. 16.6) [79]. However, these extensive inter- and intra-
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domain changes are only observed in the reciprocal interaction between GTP-bound
Ffh and FtsY, which can be assigned to the induced-fit mechanism from early
intermediate to stable complex [82].

16.7 SRP GTPase Activation: Fine Tune of the Positions
of Several Important Residues from Stable Complex

Upon the formation of the heterodimeric complex between Ffh and FtsY, a
composite active chamber is formed between the cis/trans packed GTP molecules
and the conserved motifs in the two proteins (Fig. 16.7a) [60, 61]. Distinct from
canonical RAS-like GTPases, which rely on external GTPase activating protein
(GAP) to hydrolyze GTP, the SRP GTPases can reciprocally stimulate one another’s
enzymatic activity to catalyze GTP hydrolysis upon complex association. However,
in all the available structures of the stable heterodimeric complex, some residues
are not arranged properly to explain their role in GTPase activation observed from
mutational studies [60, 61, 71]. These discrepancies from structural and biochemical
observations suggest that additional tune of the stable complex conformation is
required to achieve GTPase activation.

Computational studies of the T.aq. Ffh-FtsY complex show that three key inter-
action networks contribute to the GTPase activation via well-tuned conformational
changes [86]. The first network involves the conserved Ffh:R191 residue (or its
homolog FtsY:R195), the mutation of which diminishes GTPase activation in both
Ffh and FtsY (Fig. 16.7b) [71, 87]. Analyses of the crystal structures in complex
with GTP analogs show that the Ffh:L198 residue (FtsY:L202) hinders further
readjustment of Ffh:R191 (FtsY:R195). Molecular simulations with GTP bound in
both active sites and in solvent environment suggest that flip of the loop connecting
Ffh:R191 and Ffh:M199 (FtsY:R195 and FtsY:M203) can remove the hindrance
and accommodate further rearrangements of Ffh:R191 (FtsY:R195) side chain. In
several trajectories under different simulation conditions, the side chain of Ffh:R191
(FtsY:R195) can rotate across the Ffh-FtsY interface to form additional interactions
with FtsY:E284 (Ffh:E274). In this new model of the arginine residues, mutation
of Ffh:R191 near the Ffh active site disrupts its interaction with FtsY:E284 and
results in deficiency of both active sites. In the second network, two positively
charged residues Ffh:R138 and FtsY:R142 position in the center of the composite
active chamber and play critical role in GTP hydrolysis (Fig. 16.7c). A rotation
of FtsY:R142 side chain is reproduced in several different simulation trajectories
when replacing the GTP analogs in crystal structures by GTP molecules in the
computational models. The new conformation of FtsY:R142 can generate stronger
interaction with the leaving phosphate group of GTP, which is suggested to maintain
better electrostatic balance of the active chamber and stabilize the transition state
in GTP hydrolysis. In the third interaction network, one crystal water molecule is
suggested to attack the leaving phosphate group in GTP hydrolysis and is stabilized
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Fig. 16.7 The activation model of SRP GTPases in Ffh-FtsY complex. (a) Cartoon representation
of the heterodimeric complex. FtsY:R195 and Ffh:E274, mirrored by Ffh:R191 and FtsY:E284
on the other side of the complex were shown in green sticks (left). Positions of conserved
motifs were labeled and colored in red (right). The bound GTP molecules were represented in
gray sticks. (b) Conformational rearrangement of the pending residues Ffh:R191 and FtsY:R195
before (gray) and after (green) the formation of salt bridge. (c) Rotation of FtsY:R142 side chain
from bended to extended conformation in MD simulations. This interaction network involving
FtsY:R142, Ffh:R138, the central water (C.W.) and two GTP molecules. Initial conformation was
in gray and the rotated conformation in yellow. The central water shifted from the initial position
(gray) to a new position (red) toward FtsY:GTP. (d) Structure model of the interaction network
including Ffh:D135 (FtsY:D139), nucleophilic (attacking) water (A.W.), auxiliary water (aux.
W.), coordinating water (coor. W.), Ffh:G190 (FtsY:G194), Ffh:GTP (FtsY:GTP), and FtsY:E284
(Ffh:274) (The figure is used under permission from original journal [86])
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by an auxiliary water (Fig. 16.7d) [83]. However, the auxiliary water is too mobile
to maintain the interaction network for attacking water stabilization. Instead, a
stable hydrogen bonding interaction between the conserved residue Ffh:G190 or
FtsY:G194 and the attacking water is observed in the simulations. Therefore, it is
the glycine residue rather than the auxiliary water molecule suggested from crystal
structures is responsible to stabilize the attacking water in GTP hydrolysis.

Taken together, these conformational rearrangements from stable Ffh-FtsY
complex present a more favorable interaction model for SRP GTPase activation
in comparison to the conformational states resolved from crystallographic studies.
These findings provide a connection between the structural characteristics of the
key interaction networks and their functional roles for understanding of the distinct
GTPase activation mode by hetero- or homo-dimerization [88].

16.8 GTP-Binding Primes the cpFtsY Conformation
for Efficient Ffh-FtsY Complex Association

Besides the cytosolic SRP pathway in which the SRP RNA plays an indispensible
role in protein targeting, there is another distinct SRP system in chloroplast of higher
plants [48, 49, 89]. The chloroplast SRP mediates protein localization to thylakoid
membrane through both post-translational and co-translational modes. In the co-
translational pathway, some chloroplast encoded proteins are transported when
translating on the ribosome; whereas the post-translational pathway mainly target
the nucleus-encoded light harvesting chlorophyll a/b binding proteins after finishing
translation. In comparison to cytosolic SRP, three distinct features are found in
the cpSRP pathway: (1) in the absence of SRP RNA, cpSRP54 can interact with
cpFtsY (the SR’ homolog in chloroplast) with a similar efficiency as their bacterial
homologs [90, 91]; (2) in contrast to bacterial FtsY that exhibits low discrimination
between cognate and noncognate nucleotide in its free form, free cpFtsY displays
substantial GTP specificity [90]; (3) in comparison to free cytosolic FtsY, the N/G
inter-domain orientation in cpFtsY is much closer to that of the stable T.aq. FtsY-
Ffh complex [48, 92, 93]. It is thus interesting to address why cpSRP pathway can
bypass the requirement of SRP RNA to achieve efficient protein localization.

Based on structural analyses and kinetic rate measurements, it is suggested that
free cpFtsY is preorganized into a closed state that allows an optimal interaction
with cpSRP54 [48, 90–93]. However, all the crystal structures for cpFtsY are
in apo form, which cannot provide direct evidence to support the biochemical
hypothesis [48, 92, 93]. In this case, computational simulation is a convenient tool
to virtually construct the GTP-bound cpFtsY and investigate the conformational
dynamics induced by GTP molecule. In a well-designed computational study of
both apo-cpFtsY and GTP-cpFtsY, GTP binding induces important inter-domain
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Fig. 16.8 GTP induced inter- and intra-domain rearrangements in free cpFtsY. (a) Superposition
among crystal structure of the cpFtsY (PDB code 2OG2 [93], green), structure of the T. aq. FtsY
in the stable complex (PDB code 1OKK [60], gray), and a representative MD snapshot (blue) at
19 ns in the simulation of the GTP–cpFtsY that shared the same N–G domain orientation with the
T. aq. FtsY. Red arrows (middle panel) indicate movement of the N domain from the initial cpFtsY
structure. (b) Distance variation between the nucleotide specificity determinant cpFtsY:D283 and
the guanine base of GTP molecule. (c) Conformational rearrangements of motifs G-I–G-V. The
crystal structure of the cpFtsY (PDB code 2OG2 [93], gray), the structure of the T. aq. FtsY in the
Ffh–FtsY complex (PDB code 1OKK [60], green), and one representative MD snapshot (red) at
19 ns of GTP–cpFtsY simulation were superimposed onto the core region of the G domain. Red
arrows indicated movements towards the conformation of Ffh–FtsY complex

reorientation towards the structure observed in the Ffh-FtsY complex (Fig. 16.8a)
[80]. This inter-domain rearrangement is strictly GTP dependent where no similar
dynamic changes were observed in a longer simulation time of the apo-cpFtsY
model. Along with the inter-domain change, a GTP specificity determinant residue
in the conserved motif V of the G domain is brought closer to the nucleotide
ring and produces a tight hydrogen bonding interaction as observed in the stable
Ffh-FtsY complex, explaining why free cpFtsY exhibits substantial discrimination
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over cognate and noncognate nucleotides (Fig. 16.8b). In addition, a number
of conserved motifs in the G domain that are responsible to GTP binding and
interaction interface formation between cpSRP54 and cpFtsY also rearrange into
a closed conformation (Fig. 16.8c). Further analyses using the binding energy
decomposition show that the GTP binding in cpFtsY follows the same principle
as in the bacterial homolog because the same set of residues contribute remarkably
to the binding affinity. These observations suggest that the conformation of GTP-
cpFtsY could access to the preorganized structure for formation of a stable complex
under the equilibrium condition. In this case, large energy penalty is not paid
for significant conformational rearrangement from free cpFtsY to stable cpFtsY-
cpSRP54 complex, rationalizing why the cpSRP system can bypass the requirement
of SRP RNA in the targeting process.

16.9 SRP RNA Regulates the Kinetic and Thermodynamic
Properties of the Interaction Between Ffh and FtsY

In the cytolic SRP pathway, the SRP RNA is an indispensible component. It
profoundly influences the kinetic and thermodynamic properties of Ffh and FtsY
interaction; the SRP RNA stabilizes the early complex by 50-fold and accelerates
assembly of the stable complex and the followed GTPase activation by 200–400 and
6-fold, respectively [73, 81, 94, 95]. However, the stabilization of stable complex
is not affected, suggesting a typical catalytic role of SRP RNA in the stable Ffh-
FtsY complex formation. Mutational studies indicate that the tetraloop region in
the proximal end of SRP RNA plays a critical role in acceleration of Ffh-FtsY
complex association and the distal end specifically stimulate the subsequent SRP
GTPase activation [69, 81, 85]. Structural studies by both X-ray crystallography
and cryo-EM show that the SRP RNA tetraloop binds to the G domains in the
Ffh-FtsY early conformation and the distal end binds to the G domains in stable
Ffh-FtsY complex (Fig. 16.9) [85, 96]. These results suggest that the interaction
of Ffh and FtsY takes place initially at the tetraloop end of SRP RNA and then is
transferred to the distal end. Based on observation of a large-scale movement of the
relative position between SRP RNA and Ffh-FtsY complex from single-molecule
fluorescence microscopy, Shan and co-workers suggest that the SRP RNA can act
as a scaffold to handover the RNC cargo onto membrane translocation channel [70].

16.10 Conformational Rearrangements in the Interaction
Process of Ffh and FtsY Provide Key Regulation Points
for External Cues

In the SRP mediated protein targeting pathway, the interactions between SRP
and SR undergo a series of discrete and sequential conformational states. These
conformational rearrangements provide important regulation points by external
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Fig. 16.9 The relative position between SRP RNA and the NG domains of Ffh and FtsY in
different stages of protein targeting. (a) In early complex (PDBID: 3ZN8 [58]), the tetraloop
of SRP RNA contacts with the G domain of FtsY. (b) In the stable complex after cargo release
(PDBID: 2XXA [85]), the distal end of SRP RNA contacts with the G domains of Ffh-FtsY

cues, e.g. bindings to cargo, membrane, and membrane translocon, to control the
spatial and temporal accuracy of the targeting reaction (Fig. 16.10). It has been
shown that the RNC binding can speed up the association rate of the closed SRP-SR
complex by 100-fold [97, 98]. Simultaneously, the closed complex is destabilized
and the subsequent SRP GTPase activation is delayed by tenfold. Besides the RNC
cargo, the anionic lipid membrane can also accelerate the stable complex formation
by 100-fold and stabilize the activation state by 40-fold [99, 100]. These results
suggest that the RNC cargo can be efficiently delivered to the target membrane in the
process of stable SRP-SR complex formation. In addition, the membrane translocon
can re-activate the SRP GTPases in the heterodimer for cargo releasing from SRP
to the translocation channel [101].

16.11 How Do the SRP and SR Targeting Machinery Govern
the Efficiency and Fidelity of Protein Localization?

Based on previous studies from both experiments and computations, a detailed
molecular model is proposed to explain how the SRP and SR govern the efficiency
and fidelity of protein localizations [43, 102]. In minimal composition of this
targeting machinery in bacteria, the SRP consists of one 4.5S RNA and one SRP54
homologous protein Ffh and only the SR’ homolog FtsY is contained into SR. Both
Ffh and FtsY interact with one another using their NG domains and proceed the
early intermediate formation, stable complex association, and GTPase activation
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Fig. 16.10 Free energy profiles of stable SRP-SR complex association and subsequent SRP
GTPases activation. The free energy profile is computed using rate formula k D kBT

h
e�ˇ�G ,

where k, �G, T, kB, h, and “ are the rate constant determined in experiment, free energy barrier
of the reaction, experimental temperature, Boltzmann constant, Planck constant, and inverse
temperature, respectively. The rate constants determined for Ffh(˙RNA) and FtsY interactions
[72, 79, 92], Ffh(CRNA), FtsY, and RNC interactions [97, 98], Ffh(CRNA), FtsY, RNC, and
SecYEG interactions [101] are used to compute the free energy differences

for GTP hydrolysis. These different conformational states of Ffh and FtsY are
coupled to corresponding protein targeting events. The stable complex deliveries
the translating ribosome exposing the signal peptide to the plasma membrane;
whereas the GTPase activation releases the cargo from SRP-SR complex to the
translocation channel. Thus the SRP GTPases constitute a self-sufficient system to
execute exquisite spatial and temporal control of the complex targeting process [97].
By summarizing all these observations of this system together, a fascinating picture
of the SRP mediated targeting process can be depicted as follows (Fig. 16.11):

(1) The SRP recognizes and binds to the signal peptide on the translating ribosome.
The ribosome binding with SRP positions the tetraloop of SRP RNA in a
suitable orientation relative to the NG domain of Ffh and selects out the
functional relevant motion in the equilibrium fluctuation of free Ffh [58,
79, 96]. These conformational and dynamic pre-organizations prime SRP for
subsequent interaction with SR attached on membrane surface. However, in
this step, only the binding affinity difference between SRP and diverse signal
peptide cannot provide sufficient discrimination against incorrect cargos and
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Fig. 16.11 Schematic draw of the SRP mediated protein targeting process

other kinetic checkpoints are required in following events to guarantee the
fidelity of protein targeting [97].

(2–3) The SRP interacts with membrane anchored SR to transport the RNC cargo to
the target membrane. In this process, the SRP and SR firstly assemble into an
unstable on-pathway early intermediate and then evolve into the stable SRP-
SR heterodimer via extensive inter- and intra-domain rearrangements [79, 81].
Formation of the early complex is supposed to adopt the conformational selec-
tion mechanism in which the pre-organized conformations in both free SRP
GTPases are selected and stabilized by one another. In addition, the electrostatic
interactions between the N domains of the two GTPases are suggested to be the
main driving force in this early intermediate association [69]. From the early
complex, significant inter-domain reorientation and extensive adjustments of
conserved motifs turn the floppy open state in free SRP GTPases to the closed
conformation in stable SRP-SR complex [60, 61]. Two ’ helices (’3 and ’4)
at the domain interface adjust their relative positions flexibly to accommodate
the inter-domain rearrangements between the N domain and the core region
of the G domain [79]. In the formation of stable Ffh-FtsY complex, the SRP
RNA and lipid membrane can accelerate the rate by 200–400 and 100-fold,
respectively [73, 94, 99, 100]. The RNC cargo can also speed up the stable
SRP-SR association by 100-fold but delay the subsequent GTP activation rate
by 10-fold [98]. In addition, there is also a 	1,000-fold kinetic discrimination
between the correct and incorrect cargos in the stable complex assembly, which
offers additionally checkpoint for the fidelity of protein targeting [97]. The
delay of GTPase activation by RNC binding can provide longer time window
for efficient cargo delivery to target membrane, which can compete with the
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translating rate of the nascent chain on ribosome to regulate the temporal
accuracy of the targeting events. In addition, the incorrect state of SRP in step
(1), e.g. the apo- or GDP-bound SRP, can be aborted from this pathway at early
complex formation.

(4) SRP GTPases activation following SRP-SR complex formation unloads the
cargo from the targeting machinery to the membrane translocon. Upon stable
association of SRP-SR complex, further rearrangement of a number of critical
residues in conserved motifs II and III are required to fine tune the interaction
network for GTPase activation around the active chamber [71, 86, 87]. In this
step, the NG domains of Ffh-FtsY complex is relocalized from the tetraloop end
to the distal end of the SRP RNA, which release the ribosome exit site for initial
binding of the membrane translocation channel. This large-scale movement of
the SRP GTPase domains along the RNA scaffold is negatively regulated by
RNC cargo and positively regulated by the translocation machinery [70]. In
addition, it is shown that the GTP hydrolysis competes with cargo unloading,
implying that the targeting reaction would be aborted if GTP hydrolysis is too
fast in the heterodimeric complex. Correspondingly, the RNC can stabilize
the activation state by tenfold, which provide extra point for fidelity check
of the targeting [97]. Therefore, only at this point after handover of the RNC
cargo to membrane translocation complex, the SRP GTPases are reactivated for
GTP hydrolysis, which are regulated by the cargo and translocon interaction to
govern the spatial and temporal fidelity of the targeting reactions [101].

(5) GTP hydrolysis in the SRP-SR heterodimer drives dissociation of the complex
to recover free SRP and SR states for next round of protein targeting [71].

16.12 Perspective

Although the critical functioning mechanism of the SRP-SR targeting machinery
has been presented through several decades of persistent efforts, further studies are
required to dissect the details of how this machinery work, e.g. how the composite
active chamber in the heterodimer catalyzes cis/trans bound GTP hydrolysis [60,
61], how the signal peptide binding to SRP cross talks to SRP RNA to exert their
role in a synergistic way [103, 104], how the SRP RNA transmits the information of
cargo and translocon binding to regulate the stable complex formation and GTPase
activation [97, 98, 101]. However, due to the complexity of this system and the large-
scale temporal and spatial changes spanned by the targeting process, great chal-
lenges still exist in both experimental and computational methods. Experimentally,
the newly developing time-resolved techniques with higher resolution are promising
for presenting profound insight into the conformational dynamics of complicated
biomolecular systems [5, 9, 105]. Computationally, consistent multiscale modeling
algorithms in combination with robust enhanced sampling techniques will be more
powerful in elucidating the mechanism of large-scale conformational dynamics of
various macromolecular systems [26, 28]. Furthermore, it is of most importance to
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actively combine the advantages of both experimental and computational methods
in one study, which will provide us great opportunities to tackle more difficult and
important problems.
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Chapter 17
Molecular Dynamics Simulations of F1-ATPase

Yuko Ito and Mitsunori Ikeguchi

Abstract F1-ATPase is a rotary motor enzyme. Despite many theoretical and
experimental studies, the molecular mechanism of the motor rotation is still not
fully understood. However, plenty of available data provide a clue as to how this
molecular motor rotates: with nucleotide perturbations, the catalytically active “
subunit propagates its structural changes to the entire ’3“3 complex via both sides
of the subunits, resulting that asymmetry is created in the ’3“3 hexamer ring. In the
sequential reaction step, the structure of the asymmetrical ’3“3 complex changes
from one state to the other due to the nucleotide perturbations, and the ” subunit
axis follows the sequentially changing ’3“3 structure. Therefore, there are mainly
two essential elements for motor rotation: the conformational change of the “
subunit and the asymmetrical structure of the ’3“3 subunit complex. Therefore, this
chapter reports a series of studies focused on these two elements via combinational
approaches of molecular dynamics (MD) simulations and experimental or other
theoretical studies. In addition to the motor rotation factors, the combined study also
revealed other important elements of F1-ATPase, such as torque transmission and
the chemical reaction pathway, which is described in the later part of this chapter.
All of these results provide insight into the rotational mechanism and deepen the
understanding of this molecular motor.

17.1 F1-ATPase

F1-ATPase is an ATP-driven rotary motor enzyme [1–11]. This enzyme can perform
ATP synthesis/hydrolysis using reversible motor rotation (Fig. 17.1, inside the
rectangular box) [13]. ATP synthesis/hydrolysis via a rotation of the ” subunit
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Fig. 17.1 Reaction scheme for the 120ı rotation of the ” subunit. The figures inside the brackets
indicate each intermediate for the 80ı and 40ı substeps. The bottom left figure inside the
rectangular box indicates the general information for F1-ATPase: structure of the F0F1-ATPase
complex and the cross-sectional arrangement of the subunits in the F1 moiety, viewed from the side
of the C-terminal domains. In a yeast crystal structure reported in 2006 [12], the central stalk is
rotated C16ı in the hydrolysis direction from the catalytic dwell state, and Pi molecule is released
from the “E subunit, which is mentioned in the latter part of this article

in F1-ATPase (the F1 moiety) is coupled to an electrochemical diffusion gradient
across a membrane-embedded F0 unit [14]. The three-dimensional structure of F1-
ATPase was determined for the first time in 1994 [15]. The ’3“3 subunits are
arranged hexagonally around the central ”-subunit stalk. Only the “ subunit is
catalytically active and changes its conformation during nucleotide binding/release
and ATP hydrolysis. In most of the crystal structures, the three “ subunits are in
different states: two closed states (“DP and “TP) and one open state (“E) (Fig. 17.1).
The hydrolysis reaction of F1-ATPase occurs during the 120ı rotation step of
the ” subunit [16], which can be further divided into 80ı and 40ı substeps, as
described below [17]. The crystal structure corresponds to the structure after the
80ı rotation [18].

A single molecule experiment has revealed the sequential conformational
changes of the “ subunit along with the 120ı rotation of the ” subunit (Fig. 17.1)
[19]. According to the study, before the 80ı rotation, the three “ subunits in the
F1-ATPase complex adopt the closed (“’TP), open (“’E), and half-closed (“HC)
conformations, where “HC is the “half-closed” structure, and the apostrophe (’) is
used to distinguish the “ subunit structures from those found in the crystal structure.
This structure corresponds to the ATP-binding dwell state [19]. The 80ı rotation
is then induced by the ATP binding and the ADP release, and the structure of two
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different “ subunits changes: “’E! “TP and “HC! “E [19]. After the 80ı rotation,
the F1-ATPase complex corresponding to the crystal structure is at the catalytic
dwell state [18]. At this state, ATP hydrolysis occurs for 1 ms [20]. Subsequently,
the 40ı rotation is induced by the “ subunit conformational change of “DP! “HC

due to the ATP hydrolysis [19] and the Pi release from the “E subunit [21].
Only the “ subunits change conformations during nucleotide events (substrate

binding/release or ATP hydrolysis). However, the conformational changes of the
“ subunits propagate to the entire ’3“3 complex via both sides of the ’ subunits
and create the asymmetrical ’3“3 ring structure. In the sequential reaction step,
the structure of the asymmetrical ’3“3 complex changes from one state to the
other due to the nucleotide perturbations, and the ” axis follows the sequentially
changing ’3“3 structure. It is the so-called “” subunit rotation”. Accordingly, there
are mainly two essential elements for motor rotation: the conformational change of
the “ subunit and the asymmetry of the ’3“3 subunit complex. Therefore, a series
of studies have focused on these two elements using combinations of molecular
dynamics (MD) simulations with experimental and theoretical approaches.

17.2 The Main “Engine” of the F1-ATPase Motor:
The “ Subunit

17.2.1 Structural Properties of the ˇ Subunit Obtained
from Thermal Fluctuations at Equilibrium

When all-atom MD simulations are conducted for hundreds of nanoseconds,
proteins only fluctuate around their starting structures (which are generally crystal
structures). However, the thermal fluctuations observed at equilibrium are a good
indicator of the intrinsic flexibility of a protein, and this flexibility is closely related
to the large conformational change during biological functional process. According
to theoretical methods, such as the application of the fluctuation dissipation theorem
that includes linear response theory, there is a relation between the fluctuation
properties of a system at thermal equilibrium and the response of the system to
an applied perturbation. This relation can be applied to protein dynamics [22].
Protein flexibility, which is linked to functional activity, is an intrinsic property of
the protein and is encoded in its folding. Therefore, analyzing structural fluctuations
at equilibrium to investigate and discuss protein dynamics on a slow time scale is
reasonable and has been established as a common method [23–26]. We used this
technique on isolated “ subunits and conducted equilibrium MD simulations for
100 ns [27]. In fact, before this study, Böckmann et al. performed MD simulations
on the isolated “ subunit [28], and the open “ subunit tended to close during
the 12-ns simulation without nucleotide binding. However, this observation is
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inconsistent with NMR results in which the isolated “ subunit remains open, and
only nucleotide binding is able to induce the changes in conformation to reach
the closed form [29]. To clarify this inconsistency, all-atom MD simulations of
isolated open “ subunits were performed on a longer time scale (100 ns) using two
different species of the isolated “ subunit, MF1 (bovine mitochondrial F1-ATPase)
and TF1 (thermophilic Bacillus PS3 F1-ATPase). These species were used because
the cause of the inconsistency between the previous MD simulation [28] and the
NMR experiment [29] might have been the difference in species (the MD simulation
used MF1, whereas the NMR experiment used TF1).

First, to investigate the structural flexibility of the “ subunit, principal component
analysis (PCA) was used. PCA can decompose the overall protein motion over the
entire simulation time into a set of modes that can be ranked by the size of their
contribution (from largest to smallest) to the protein root mean square fluctuation,
RMSF. The RMSF is the fluctuation around the time-averaged structure and is

defined as RMSF.i/ D
rD
.Ri � hRi i/2

E
, where Ri is the position vector of atom

i and the chevron brackets represent the time average over the entire trajectory. The
PCA results show that the motions in the low-frequency mode are well correlated
with the functionally important structural transition of the “ subunit from the open
to the closed conformation in both species (Fig. 17.2a–d). In the TF1 simulation,
the motions in the second dominant mode (PC2) are correlated with the “E-“DP/TP

structural transition (Fig. 17.2a, c). In the MF1 simulation, the third dominant mode
(PC3) corresponds to the structural transition direction (Fig. 17.2b, d).

Subsequently, the fluctuations of the structural transition direction were analyzed
using the angle ™ (measured between an axis connecting the centers of mass of the
N- and C-domains and the axis of a helix:Glu399-Lys409 [29]) representing the
“E-“DP/TP structural transition (Fig. 17.3b, shown in red). This analysis was also
applied to the two species (Fig. 17.2e, f). Although 12-ns MD simulations of the
isolated “ subunit previously showed that the open “ subunit tended to close [28],
the longer time scale simulations clarify that the “ subunits in both the TF1 and MF1

simulation fluctuates only around the open form. The fluctuation is insufficient to
reach the fully closed conformation.

The results of the fluctuation analysis using PCA and the angle ™ indicate that,
regardless of the species, the “ subunit remains in the open form unless a nucleotide
binds, which is consistent with the NMR experimental data [24]. Only nucleotide

�
Fig. 17.2 PCA and oscillating direction of the isolated “ subunit. PCA for (a) TF1 and (b) MF1.
The solid line indicates the fractional contribution in PCA, while the dotted and dashed lines
indicate the correlation with the “DP and “HC subunit, respectively. The average structure of (c)
PC2 in TF1 and (d) PC3 in MF1. The green arrows indicate the strongest correlation mode. The
red arrows indicate the structural transitional direction to the closed form (“DP). Angle ™ versus
time for the isolated “E subunits of (e) TF1 and (f) MF1. The upper and lower lines in (e) and (f)
represent the open and closed forms, respectively. (e) TF1 in NMR [30] and (f) MF1 in the 1E79
crystal structure [31]
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Fig. 17.3 (a) Free-energy profiles associated with the conformational transitions of the isolated
“ subunit. The one-dimensional energy profile along the �Drmsd reaction coordinate in the ATP-
bound and ATP-free pathway. The error bars represent the standard error of the mean energy values
determined from the trajectory, which was divided into three phases. In the ATP-bound pathway,
the arrows indicate minima i, ii, and iii. The main barrier between minima ii and iii is divided into
Uphill (1) and Downhill (2). The�Drmsd value of the open (“E) and closed (“TP) forms in the 2JDI
crystal structure is �3.92 and 3.92, respectively. (b) Isolated “ subunits in the open (“E) and closed
states (“TP) taken from a crystal structure (PDB code: 2JDI). Colored parts show key regions of
the conformational change, which were identified using experimental studies.
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binding can induce the conformational change from the open to the closed form
in the “ subunit. In short, this NMR experiment [29] and the MD simulations [27]
suggest that although flexibility in the direction of the structural transition is an
intrinsic structural feature of the “ subunit, there is an energy barrier in the pathway
between the open and closed states and that this barrier cannot be overcome without
nucleotide binding.

17.2.2 Mechanism of the Conformational Change of the ˇ

Subunit Revealed by Free-Energy Simulations

17.2.2.1 Computational Methods

To confirm the structural dynamics of the “ subunit obtained from the equilibrium
MD simulations [27], free-energy simulations were performed to determine the
mechanism of the structural change from the open to the closed state in the isolated
“ subunit [33]. Generally, for the temporal and spatial scales, this open-closed
conformational change is too broad to simulate directly using equilibrium all-atom
MD simulations. Therefore, to bridge the sampling between the open and closed
states, many alternative methods have been developed. Targeted MD (TMD) and
steered MD (SMD) are used to investigate the conformational change of proteins
using external perturbations along a conformational progress variable to guide the
transition into a predefined direction in conformational space. These simulation
methods have previously been used to show the conformational change of F1-
ATPase [34, 35]. However, the structural transitions generated by TMD or SMD
appear to depend strongly on the external forces, and the path obtained between the
initial and final states appears to be affected by the starting MD structures. In our
experience, for example, an NMR study [32] identified that switching an important
salt bridge induces an overall structural change of the “ subunit. However, even after
the overall structural change was completed in the TMD simulation, the salt bridge
remained until the last moment of the simulation. Therefore, to overcome these

�
Fig. 17.3 (continued) Pink, blue, green, and orange indicate the ’B-helix and “6 strand, the “3/“7
sheet, binding residues for the ” phosphate of ATP, and the “4 strand and hinge, respectively. The
angle ™ represents the open/closed structural transition. (c) A schematic model for the conversion
from the open to the closed form of the “ subunit. Color coding is the same as in (b). Numerals
indicate the residue numbers. “*” indicates essential residues for the open/closed conversion,
identified by NMR [32]. Roman numerals correspond to the minima in the energy profile of the
ATP-bound state in (a). Int. represents the intermediate structure before Downhill (2) starts. (d)
Superimposition of the structures of the “3 and “7 strands before (orange) and after (blue) the
dihedral angles at Gly156 and Gly157 rotate. (e) Superimposition of the structure around the P-
loop and the (f) Walker A and B motifs before (orange) and after (blue) the dihedral angles of the
Gly156 main chain and the Lys162 side-chain flip, corresponding to the structure at�Drmsd D �0.5
and 0.0 Å, respectively
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problems, a different sampling method, a combination [36, 37] of nudged elastic
band (NEB) [38, 39] and umbrella sampling MD simulations [40], was used to
calculate the potential of mean force (PMF) [41]. For the atomistic conformational
change of the biomolecules, various other simulation methods, such as the “string
method” and “transition path sampling” have been developed [42–56]. However,
considering the size of the simulation system of the “ subunit, NEB is a less
computationally demanding approach to obtaining converged energy profiles. For
the reaction coordinate in the simulations, a difference in the root-mean-square devi-
ation between the open (“E) and closed states (“TP) (�Drmsd) of the “ subunit was
chosen such that the difference was able to successfully characterize the transition
pathways in various protein and DNA molecules [36, 37, 57, 58]. The NEB method
was able to find a minimum energy path between the open and closed structures:
first, dozens of structures were generated via linear interpolation between the open
and closed structures, and subsequently these structures were minimized using the
adopted-basis Newton–Raphson method. When the initial path was obtained, the
resulting structures were subjected to umbrella sampling MD simulations with the
restraint wj on the �Drmsd order parameter. wjDKrmsd(�Drmsd��Dmin)2, where
�Dmin is the value around which �Drmsd is restrained and Krmsd is a force constant.
The PMF can provide the behavior of the system between the open and closed forms
with free-energy variation along the reaction coordinate.

17.2.2.2 Overview of the Obtained Energy Profiles

Figure 17.3a shows the free-energy profiles associated with the conformational
transition pathway of the isolated “ subunit with/without ATP along the �Drmsd

reaction coordinate. The profiles indicate that in the “ subunit without ATP, the open
state is favored by 6 kcal/mol (Fig. 17.3a, bottom). This finding is consistent with
the results of the equilibrium MD simulations [27] and the NMR experiments [29];
the ATP-free “ subunit fluctuates only around the open form, and ligand binding
is required to attain the fully closed conformation of the “ subunit. In contrast, in
the “ subunit with ATP, the closed state is favored (Fig. 17.3a, top). In the energy
landscape of this ATP bound state, there is a metastable state between the open and
closed state (Fig. 17.3a, ii), indicating that before the “ subunit turns into the fully
closed from, the intermediate structure, i.e., the open “ subunit that binds ATP, is
transiently stable.

17.2.2.3 Details of the Conformational Change of the “ Subunit with ATP

To obtain a more-detailed mechanism of the conformational change of the ATP-
bound pathway, various local structure changes along the �Drmsd order parameter
were computed. The results reveal that the “ subunit conformational change is
accomplished roughly in two characteristic steps: (A) changing of the hydrogen-
bond network around ATP (Fig. 17.3c, from Open to Int.) and (B) dynamic
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movement of the C-terminal domain via sliding of the B-helix (Fig. 17.3c, from
Int. to Closed). The details revealed by the simulation are described below and are
classified using the �Drmsd order parameter from the open to the closed state.

17.2.2.4 First Step, (A)

In the first stage of the stepwise conformational change of (A) (Fig. 17.3a, c,
open! i), Glu188 and Arg189 form a salt bridge and subsequently bind to the ”
phosphate of ATP, where Glu188 and Arg189 have been identified as the residues
that contribute to the catalytic reaction (the residue numbering is based on bovine
mitochondrial F1-ATPase) [59–63]. Before these interactions are formed, the side
chain of Arg189 is able to swing without any restrictions, and Glu188 is coordinated
by a salt bridge to Arg260 (Fig. 17.3c, left).

In the second stage (from minimum i to ii), the hydrogen bond between Arg260
and Asp256 is broken. Asp260 has been reported to be an essential residue for
recognizing Pi (the cleaved phosphate) [64]. Asp256 is recognized as the residue
of the Walker B motif that is conserved in many ATPases, and this residue was
also reported to be essential for the “-subunit conformational change induced by
nucleotide binding [32]. In the open structure, Arg260 initially interacts with both
Asp256 and Glu188. However, the newly formed conformation of Glu188 in the
former step (open! i) intrudes into the Arg260-Asp256 space, breaking this salt
bridge.

The third stage corresponds to Uphill (1) of the main barrier (Fig. 17.3a, c,
ii! Int.) and includes three processes: (a) hinge flips (¥, Gly178; §, His177) [65],
(b) formation of the “3/“7 sheet [32], and (c) switching of the partner of Asp256
(Walker B) from Lys162 to Thr163 (Walker A) [32], the details of which follow
below in (a)–(c). These structural changes appear to be coupled with one another,
leading to a small loss of free energy.

(a) As described above, in the open state, Arg260 initially forms a salt bridge
with both Asp256 and Glu188. However, the Arg260-Asp256 salt bridge is
broken in the second step (i! ii), but Glu188 still maintains interactions with
Arg260. Therefore, along with the elongation of the distance between Asp256
and Arg260 due to the bond breaking, the entire Glu188 residue is dragged
toward the direction of Arg260. The pulled Glu188 residue imposes stress on
the hinge region (His177 and Gly178 through the “4 sheet) (Fig. 17.3c, orange
part). When this strain on the “4 sheet exceeds the elasticity, the hinge (the
backbone dihedral angles: ¥, Gly178; §, His177) is flipped. The hinge residues
have been identified by Masaike et al. as essential for the structural conversion
[65].

(b) After (a), the “3 and “7 strands become closer (the reason is described in
the original paper [33]). When the “3 and “7 strands become close enough
to interact with each other, Gly156 on the P-loop, which resides next to the
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“3 strand, rotates its backbone to form a hydrogen bond with Val312 on “7
(Fig. 17.3d). Once this additional hydrogen bond between the “3 and “7 strands
is established, the formation of the “3/“7 sheet is completed. The formation of
the “3/“7 sheet has also been determined by an NMR study to be the essential
element for the structural conversion [32].

(c) During the “3/“7 sheet formation, the rotation of the backbone dihedral angles
§ at Gly156 and ¥ at Gly157 results in the structure of the P-loop backbone
changing (Fig. 17.3e). Along with the structural change of the P-loop backbone,
the side chain of Lys162 relocates by rotations of the ¦1 and ¦4 dihedral angles
of Lys162 (data shown in the original paper [33]). This rotation of the alkyl side
chain of Lys162 distances Lys162 from Asp256, which triggers the hydrogen
bond of Asp256 to switch from Lys162 to Thr163 (Fig. 17.3f). The released
side chain of Lys162 forms new hydrogen bonds with the backbone CO of
Gly156 as well as with the “ and ” phosphates of ATP. The NMR study [32]
indicated that the switching of the hydrogen bonding partner is also essential
for the conformational change.

17.2.2.5 The Second Step, (B)

These local structural changes of (A) increase the structural strains around the
ATP-binding site. To alleviate this strain, the B-helix, which is located beside the
P-loop, slides using its hydrophobic residues on the other hydrophobic surface
(Fig. 17.3c, right). This sliding occurs during Downhill (2) (Fig. 17.3a). In fact,
this process corresponds to (B) because this B-helix displacement is coordinated
with the movement of the lower half of the “ subunit (depicted with the light color
in Fig. 17.4c). In this movement, the values of both the RMSD of the B helix
(Fig. 17.4b) and the angle ™, which represents the structural transition (Fig. 17.4a),
simultaneously change at �DrmsdD 0.0–1.5. The large open/closed motion of the
C-terminal domain in the “ subunit is responsible for changing the ’3“3 complex
ring and eventually leads to the ” subunit rotation. Consequently, this torque
generation is ascribed to the one-turn shift of the B helix.

The large closing motion of the C-terminal domain associated with the B-helix
displacement leads to a stabilization energy of 	5.0 kcal/mol relative to that of the
structure at the top of the peak (Fig. 17.3a, top). The stabilization occurs because
the packing rearrangement of the hydrophobic interface of the B-helix is improved
along with the B-helix sliding (Fig. 17.4e, f). After the completion of the B-helix
displacement, the space between these interfaces is too small for even a single water
molecule to occupy (Fig. 17.4d). Generally, water molecules inside hydrophobic
surroundings prevent the formation of hydrophobic interactions. Therefore, after the
water molecules are excluded, hydrophobic side chains make contacts, which lead to
the lowest free-energy configuration. This rearrangement has often been postulated,
such as in the process of protein folding [66–68].
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Fig. 17.4 Local conformational change associated with the structural transition of the “ subunit
in the ATP-bound pathway. Free-energy surface along the �Drmsd reaction coordinate (horizontal
axis) and various variations (vertical axis): the angle ™ (a), the RMSD of residues of the B-helix
from the closed “TP structure (b), and the number of water molecules in the space formed by
the hydrophobic surfaces of the B-helix and the other helices/sheets (i.e., the C-helix and “3-
7 sheets) (d). Superposition of the structure before and after the C-terminal domain movement,
corresponding to the structures at �Drmsd D 0.0 (magenta) and 1.4 Å (cyan), respectively. The
fit is performed over the N-terminal domain. The parts exhibiting a small structural change (i.e.,
residues 9–123 and 178–329) and a large change (i.e., residues 124–177 and 330–474) in reaction
coordinate from �Drmsd D 0.0 and 1.4 Å are depicted with dark and light colors, respectively.
The B-helix is marked by a red arrow (c). Snapshots of the packing of the hydrophobic surface
at �Drmsd D 0.0 (magenta) and 1.4 Å (cyan) are exhibited in (e) and (f), respectively. The
hydrophobic parts of the interface are colored green. The trapped water molecules in the interspace
are indicated in blue. Color coding for dark/light is matched to (c)

Here, the proposed pathway of the entire open/closed conversion for the “
subunit agrees well with experimental data. Because the conformational change
in the “ subunit is responsible for the driving force of the rotation of the ”

subunit, several essential regions for the structural change have been identified
experimentally [32, 65]. However, it is still difficult to comprehend the entire picture
of the consecutive conformational changes using only the experimental information.
Therefore, simulations are a powerful tool to show the entire sequential process of
protein conformational changes at the atomistic level.
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17.2.3 Discussion of the Conformational Change
of the ˇ Subunit

Furthermore, the mechanism in this study is informative not only for the “ subunit
but also for the broadly existing P-loop ATPase protein family because the “ subunit
contains the P-loop and Walker motifs, which exist throughout the entire ATPase
protein family. The P-loop and Walker motifs are important for ATP binding and
ATP hydrolysis in the ATPase family. However, in addition to those functions, both
experimental [32] and theoretical studies [33] have revealed that the P-loop and
Walker motifs are also involved in the conformational change of the “ subunit. This
finding suggests that these universally conserved sequences play important roles not
only in ATP binding and hydrolysis, but also in the large conformational change
that occurs during biological functional processes in the entire ATPase protein
family.

The conformational change investigated here, which is the inward movement of
“E! “TP upon ATP binding, is coupled with the opposite structural change, the
outward movement of “HC! “E with the release of ADP during the 80ı ” rotation
in the 120ı cycle of the F1-ATPase complex [16, 19, 20, 69]. As shown in the
free-energy profile (Fig. 17.3a, top), the inward structural change yields energy.
Although the free-energy profile of the outward movement has not been calculated,
it is most likely endoergic, and we assumed that the exoergic conformational
change (“E! “TP) would cover the endoergic energy loss of the outward movement
(“HC! “E). Moreover, “reversibility” is one of the major distinctive features of this
rotary motor enzyme. For the ATP synthesis direction using the obtained energy
surface for the reverse mechanism, the process becomes endoergic and must be
coupled with a structural change that yields energy. Combining different confor-
mational changes with energy compensation also contributes to the reversibility of
this motor. Such energy compensation is a prime reason for F1-ATPase adopting the
binding change mechanism [70].

Our results show that ATP binding is tightly coupled to the conformational
change in the “ subunit. The advantage of the tight coupling for the motor engine
would be that the ” rotation can be strictly regulated via the “ subunit, which can
change its conformation only through nucleotide binding, thus avoiding unproduc-
tive rotations that might otherwise be caused by severe thermal fluctuations.

17.3 Packing Exchange Mechanism

In this section, we describe the other factor in the ” rotation: the asymmetry of the
’3“3 complex. The conformational changes of the “ subunit propagate to the entire
’3“3 complex via both side of the ’ subunits and create the asymmetrical ’3“3 ring
structure, and the constant changes of the ’3“3 asymmetrical ring with nucleotide
perturbations allow the ” subunit to rotate. However, as described in the “ subunit
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section, it is very difficult to simulate this series of events directly using all atom
MD simulations due to both the total number of atoms (the F1-ATPase complex
is substantially larger than the “ subunit) and the time scale of the movement
(sub-millisecond). To overcome the limitation, coarse-grained (CG) simulations
are used to simulate the motor rotation; in these simulations, small groups of
atoms are treated collectively as large particles to reduce number of degrees of
freedom, speeding-up the simulation by several orders of magnitude [71, 72]. In
fact, the CG simulation performed by Koga and Takada [71] demonstrated that the
conformational changes of three “ subunits allow the ” subunit to rotate. From this
finding, it was concluded that the crystal structures correspond to a snapshot of the
catalytic dwell state rather than the ATP-binding dwell state, which was not obvious
previously. Thus, CG simulations can handle large-scale conformational changes of
large biomolecules.

In contrast to CG simulation, analyses at the atomistic level revealed that the
intrinsic structural flexibility contributes to motor rotation [73–77]. Of these studies,
all-atom MD simulations [76] and the statistical thermodynamics of molecular liq-
uids [77] indicate that there are substantial differences in the interface configurations
of each subunit in the ’3“3 complex, which allows us to deduce that these different
interface configurations are cyclically exchanged during nucleotide perturbations,
resulting in the ” subunit rotation. We refer to this proposed hypothesis as the
“packing exchange mechanism”.

17.3.1 Packing Exchange Mechanism: MD Simulations

First, to investigate the packing change mechanism, an equilibrium MD simulation
was conducted for 30 ns [76]. The catalytic waiting dwell state [18] (PDB code:
2JDI [78]) was used for the initial structure of the simulation. The trajectory was
analyzed in terms of the structural fluctuations and the subunit interface interactions
using an RMSF calculation and contact analysis, respectively. The RMSF indicates
the intensity of the structural fluctuation of each residue. In contact analysis [79],
residue pairs that maintained their inter-subunit interactions within a certain distance
over a certain percentage of the MD trajectory were selected. In this study, the
following basic threshold values were used: <4.5 Å for the interatomic distance
and more than 98 % of the MD trajectory. Satisfying these threshold values indicates
that although that residue pair resides on different neighboring subunits, the residues
stay close to each other during the entire MD simulation. In other words, the subunit
interface around the selected residue pairs is tightly packed. Hereinafter, the contacts
between residue pairs are referred to as “stable contacts”. The subunit interface
interactions identified by contact analysis affect the magnitude of the structural
fluctuation (e.g., a tightly packed interface suppresses structural fluctuation, whereas
a loose interface allows significant structural fluctuations) [76]. In particular, distinct
differences in both the RMSF value and stable contacts for the subunits are observed
in the C-terminal domain, because the most distinct structural differences are found



424 Y. Ito and M. Ikeguchi

Fig. 17.5 (a) RMSF as a function of the residue number for the “ subunits of the simulated
catalytic dwell structure. The data are partitioned by domains (the N-terminal, nucleotide binding,
and C-terminal). (b) The three domains of the “ subunit are color-coded. The parts enclosed by red
rectangles indicate the C-terminal domain, which has relatively large fluctuations

in the C-terminal domain in the “ subunit for some nucleotide states (Fig. 17.5).
Hence, the results using the contact analysis and the RMSF calculation are focused
on the C-terminal domain.

The MD simulations show that stable contacts appear in all “DP subunit interfaces
(both sides of the ’ subunits and the ” subunit), indicating that the “DP subunit
interacts intensively with all neighboring subunits (Fig. 17.6, left). Because these
tight interface interactions restrict fluctuations, the “DP subunit has the smallest fluc-
tuation magnitude of the three “ subunits (Fig. 17.5a, blue line). The conformation
of the “TP subunit is fairly similar to that of the “DP subunit, and “TP binds ATP in
the same manner as the “DP subunit (the C’-RMSD between “TP and “DP in 2JDI
is 0.67 Å). However, the “TP subunit has stable contacts with only the ” subunit.
Therefore, the “TP subunit fluctuates to some extent (Fig. 17.5a, red line). Compared
with the “TP and “DP subunits, the “E subunit has few stable contacts, resulting in
large fluctuations. In this MD simulation, three different interface configurations
(tight, moderate, and loose) are revealed in the catalytic dwell state of the F1-ATPase
complex (Fig. 17.6, left).

17.3.2 Packing Exchange Mechanism: Water-Entropy Effects

In addition to the MD simulation, we analyzed the characteristics of the asymmetric
packing of the same F1-ATPase structure in terms of the water-entropy effect using
the statistical thermodynamics of molecular liquids [77]. The asymmetric interface
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Fig. 17.6 Schematic representation of the subunit interface configuration of F1-ATPase during the
120ı rotation of the ” subunit, obtained from MD simulations and the statistical thermodynamics
of molecular liquids. The blue double lines indicate the tightly packed interface configurations.
When the ’“’ subunit sub-complex (the “ subunit is in the center, and both sides of the ’ subunits
are included) is considered, the three different types of interface configurations are indicated by
circular arcs

interactions observed in the MD simulations were successfully reproduced using
a theoretical method focused on the water-entropy effect. We have asserted that
this type of asymmetric packing is driven by the water-entropy effect. In general,
when overall, impartial tight packing is not achievable in a protein, the portions
that can be tightly packed are chosen for preferential tight packing to maximize
the water entropy. When a tightly packed portion is perturbed, the structure with
the maximum water entropy is recovered by forming tight packing in the other
portion. This asymmetry of the catalytic dwell state of the F1-ATPase structure
found in these studies suggests that after this state, the tightly interacting interfaces
around the “DP subunit are loosened due to perturbations, such as ATP hydrolysis
and Pi release. Furthermore, instead of the “DP subunit interfaces, the other subunit
interfaces reach tighter packing than that in the catalytic dwell state. These subunit
rearrangements within the ’3“3 complex eventually induce the ” subunit rotation.
This effect can be expanded to the following complete (80ıC 40ı) rotational
mechanism: a nucleotide event occurs; the asymmetric ’3“3 complex structure
is perturbed, leading to a decrease in the water entropy; and tightly or weakly
interacting interfaces are reorganized within the ’3“3 complex ring, allowing the
” subunit to rotate and resulting in maximization of the water entropy of the system.
This description is a view of the packing exchange mechanism in terms of the
water-entropy effects. In this mechanism, the complex always tries to form three
regions (tightly packed, moderately packed, and loosely packed), and these regions
are cyclically exchanged (Fig. 17.6). In fact, the importance of rearrangement in
the ’3“3 complex is supported by experiments. In single molecules studies, the
” subunit still rotated in the correct direction during ATP hydrolysis, even with
most of the ” axle truncated [80, 81]. Even without the ” subunit, unidirectional “
subunit conformational changes in the presence of ATP were observed in an atomic
force microscopy (AFM) study [82]. These data clearly indicate that the sequential
packing exchange in the ’3“3 asymmetric ring is primarily responsible for the ”
subunit rotation.
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17.3.3 Yeast F1-ATPase Case

Furthermore, to confirm the proposed “packing exchange mechanism”, the same
theoretical means (MD simulations [83] and the statistical thermodynamics analyses
of molecular liquids [84]) were applied to different state structures, which are the
crystal structures of yeast F1-ATPase reported in 2006 [12]. Almost all crystal struc-
tures of F1-ATPase represent the catalytic waiting dwell conformation. However,
the yeast crystallographic unit contains two different state structures. One structure
corresponds to the catalytic dwell state with a structure similar to other existing
crystal structures, and this structure is named “yF1II”. In the other structure, the
central stalk is rotated C16ı in the hydrolysis direction, and this structure liberates
Pi from the “E subunit, which is “yF1I” (Fig. 17.1). Because single molecule
experiments demonstrated that Pi release occurs at the “E subunit and that the ”
subunit is rotated after ATP hydrolysis and Pi release [21, 85], these yeast structures
are supposed to represent snapshots of before and after the Pi release in the 40ı
substep. Accordingly, these structures are suitable for studying the sequentially
changing structures and for characterizing the rotational mechanism.

17.3.3.1 The ’DP“DP and ’TP“TP Subunit Interfaces in yF1II and yF1I

First, the ’3“3 ring structures of yF1II and yF1I were analyzed using the structural
fluctuations and the subunit interface interactions. The RMSF magnitudes are
summarized in Fig. 17.7a. In the same figure, the total numbers of stable contacts
between the neighboring subunits are also shown. The data clearly show that the
fluctuation tendency and the interface configuration of each subunit differ between
yF1II and yF1I. As shown in the left part of Fig. 17.7a, in yF1II, the smallest
fluctuation is found in the “DP subunit (the order is “DP<“TP<“E [83]), and this
order is equivalent to that of the catalytic dwell structure determined in bovine F1-
ATPase [76] shown in Fig. 17.5a. This RMSF magnitude is interpreted using the
subunit interface interactions derived from the contact analysis. The “DP subunit
has stable contacts in all “DP subunit interfaces (both sides of the ’ subunits
and the ” subunit), indicating that the “DP subunit interacts intensively with all
neighboring subunits. Because these tight interface interactions restrict fluctuations,
the “DP subunit has the smallest fluctuation magnitude of the three “ subunits.
In contrast, for yF1I, the order of the magnitude of the structural fluctuations is
“TP<“DP<“E (Fig. 17.7a, right), differing from that determined for yF1II. This
fluctuation order can also be explained by subunit interface interactions. Since the
“TP subunit fluctuates with the smallest magnitude in yF1I, more contacts are found
in the “TP subunit of yF1I than yF1II (particularly on the ’TP subunit side). These
gained contacts are depicted as a contiguous surface in Fig. 17.7b, appearing as red
marks in the C-terminal domain in those subunits (Fig. 17.7b, panel 3). In contrast to
the “TP subunit, the “DP subunit, whose fluctuation is not the smallest in yF1I, loses
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contacts with neighboring subunits (Fig. 17.7a). As shown in Fig. 17.7b, panel 5,
the stable contacts found in the C-terminal domain of the ’DP“DP subunit interface
for yF1II are completely absent.

17.3.3.2 The ’E“E Subunit Interface in yF1II and yF1I

We further investigated the ’E“E subunit interface of yF1I and yF1II; this subunit
interface is directly associated with the Pi release. However, as shown in Fig. 17.7a,
b, panel 1, distinct differences between the two structures are not found because
the threshold of the contact analysis for obtaining permanent interactions (<4.5 Å
interatomic distance and more than 98 % of the MD trajectory) is too high to
examine the differences of the ’E“E subunit interfaces. Therefore, for this interface,
the contacting percentage of the MD trajectory (the latter threshold value) was
gradually reduced. The reduction in the value from 98 to 70 % (70 % means
interacting with a moderate frequency) yields different results for the ’E“E subunit
interface of yF1II and yF1I. The overall ’E“E subunit interface in yF1I, particularly
the side facing the ” subunit, loses contacts, suggesting that after the Pi release, that
part of the interface becomes looser and more flexible (Fig. 17.7c).

17.3.3.3 Position of the ” Subunit

Finally, the positions of the ” subunit relative to the different ’3“3 complexes in
yF1II and yF1I were investigated to characterize the induction of the 16ı rotation
of the ” subunit via the subunit rearrangements of the ’3“3 complex due to the Pi
release. According to the contiguous surface figures (Fig. 17.7d), the additional ’TP

and “TP contacts with the ” subunit appear in the C-terminal domain after the Pi
release. In contrast, the ’DP and “DP subunits do not show distinctive differences
before and after the Pi release (Fig. 17.7d). However, when the contacted surface
areas of the ’/“ subunit with the ” subunit were calculated, the value between the
“DP and ” subunits was significantly reduced (data shown in the original paper [83]).
These observations: the increased number of contacts for the ’TP and “TP subunits
not only with the ’3“3 subunit complex but also with the ” subunit, suggest that
after the Pi release, the tightly packed interface regions are reorganized from the
interfaces around the “DP to those around the “TP subunit.

17.3.3.4 Overall Structural Change due to the 16ı Rotation of the ”

Subunit

The results of the entire subunit rearrangements are visualized in the three-
dimensional model in Fig. 17.8a and are summarized in Fig. 17.8b. With the Pi
release from the ’E“E subunit interface, the interface becomes looser and more
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flexible, allosterically causing the ’DP“DP subunit interface to loosen as well. This
structural communication between these two interfaces occurs through tightening
of the ’TP“TP subunit interface because the ’E“DP interface hardly changes (data
shown in the original paper [83]). The interactions of the ” subunit with the ’DP

and “DP subunits weaken, whereas the interactions with the ’TP and “TP subunits
strengthen. With this displacement of the ” subunit, the ” axis leans into the
loosened ’E“E subunit interface (data shown in the original paper [83]). After the
Pi release, the tightly packed interfaces are reorganized from the interfaces around
the “DP to those around the “TP subunit, inducing the 16ı rotation. This view of the
16ı rotation is consistent with the results suggested from an analysis of the water-
entropy effect [84]. These results are also consistent with our proposed “packing
exchange mechanism” [77].

17.3.3.5 Proposed Mechanism for the Structural Change
in the 40ı Rotation

The results of this simulation show the details of the structural displacement after
the 16ı rotation of the ” subunit, which corresponds to the state after the Pi release
but before the ATP hydrolysis. In fact, the 40ı rotation of the ” subunit is induced by
both the ATP hydrolysis and the Pi release. On the basis of our series of studies [76,
77, 83, 84] combined with past theoretical and experimental insights, a view of the
structural changes occurring during the 40ı rotation of F1-ATPase can be deduced.

�
Fig. 17.7 (a) Summary of the fluctuation magnitude and the number of the interface contacts for
the C-terminal domain in yF1II and yF1I. “S”, “M”, “L”, and “XL” indicate small, medium, large
and extra large, respectively, for the RMSF of three ’ or “ subunits. These indicators are defined
by the average of the RMSF value in the C-terminal domain: “S”< 1.0 Å; 1.0 Å � “M”< 1.3 Å;
1.3 � “L”< 1.5; and 1.5 � “XL”. The numbers outside and inside the F1 complex model indicate
the net number of stable contacts in the interface of the C-terminal domain between the ’ and “
subunits and those between the ’/“ and ” subunits, respectively. Further data on the RMSF and
the stable contacts are in the original paper [83]. (b) Stable contacts (in red) that maintain the
interatomic distance at <4.5 Å for more than 98 % of MD trajectory The top and bottom panels
indicate yF1II and yF1I, respectively. The “TP’TP and “DP’DP subunit interfaces, which show
noticeable change in the contiguous surface between yF1II and yF1I, are enclosed by cyan and
green rectangles, respectively. (c) Contact analysis result for the ’E“E subunit interfaces, which
are viewed from the C-terminal domain. Colored lines indicate stable contacts that maintain the
interatomic distances at <4.5 Å for more than 70 % of the MD trajectory. The residue pairs found
only in yF1II (i.e., after the Pi release, these residue combinations no longer interact even with
a moderate frequency) are indicated by the pink color. The pink lines appear mainly on the side
facing the ” subunit. In the figure for yF1II, to emphasize the localization of the pink lines, the
’E“E interface is divided into the ” subunit side and the outside interfaces, using a half radius of
25 Å (from the ” subunit to the edge of the ’/“ subunit is �50 Å). The pink lines in each section
are counted, and the total numbers are indicated. (d) Red indicates the stable contacts between the
” and ’/“ subunits that maintain the interatomic distance at <4.5 Å for more than 70 % of the
MD trajectory; the low-threshold value for the contacts that maintain the percentage of the MD
trajectory is used to obtain the difference between yF1II and yF1I
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Fig. 17.8 Displacements of the ’3“3 complex before (gray) and after (magenta) Pi release as
viewed from the C-terminal domain side; the fit was performed over the N-terminal domain of all
the subunits (a). The geometric arrangements of the average domain centroids of the ’3“3 subunits
are described by a three-dimensional model using cut-orange-like objects. “N” and “C” indicate
the N- and C-terminal ’ helix of the ” subunit, respectively. The portions for the N- and C-terminal
’ helices are Lys18-Ile25 and Ala236-Asn243, respectively. To indicate the bulge position of the
” subunit, two ’ helices (residues from Leu91 to His98 and from Lys113 to Arg120) are also
presented. Summary of the subunit rearrangements after the Pi release (b). Cyan color indicates
the ” subunit. “N” and “C” indicate the N- and C-terminal ’ helices of the ” subunit, respectively

ATP hydrolysis depends weakly on the angle of the ” subunit [86]. Our
simulation results are consistent with this weak dependence. The local structures
of the ATP-binding site remain similar before and after the 16ı rotation of the ”
subunit (data shown in the original paper [83]), suggesting that the local structures
of the ATP-binding site are insusceptible to the rotation angle of the ” subunit in
the range of 	10ı. In contrast, Pi release is strongly dependent on the angle of the
” subunit [21, 85]. Our simulation results are also consistent with the strong angle
dependence. With the Pi release, the ’E“E interface becomes looser at both the local
and global levels, contributing to the ” subunit rotation. The loosening of the ’E“E

subunit interface allosterically makes the ’DP“DP subunit interface looser through a
tightening of the ’TP“TP subunit interface and the ” subunit. Once the tightly packed
’DP“DP subunit interface is allosterically perturbed, both the loosened interfaces and
the ATP hydrolysis concertedly allow conformational changes in the “DP subunit
from the closed to the half-closed form (“DP! “HC). These conformational changes
of the ’3“3 complex drive the 40ı rotation. Consequently, it is not until both the Pi
release and the ATP hydrolysis are accomplished that the F1-ATPase completes the
40ı rotation of the ” subunit.

MD simulations and the statistical thermodynamics analysis of molecular liq-
uids identify the consistent structural characteristics via structural dynamics and
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thermodynamics properties, respectively. These features indicate that the structural
fluctuations at these portions are highly suppressed with the formation of tightly
packed configurations due to the water-entropy effect. These different theoretical
approaches are fundamentally related to each other.

17.4 Role of the DELSEED Loop Revealed by Single
Molecule Experiment and MD Simulations

In this section, we briefly introduce an example of combining single molecule
experiments and MD simulations. The structural information derived from MD
simulations facilitates a deep understanding of the facts observed in single molecule
experiments. This combined study revealed the key factor for torque transmission
[87]. As described so far, the “ subunit undergoes a conformational change using
nucleotide events, and the largest conformational change appears in the C-terminal
domain (Fig. 17.5). Therefore, the definitive asymmetry of the ’3“3 complex ring
also appears in part of the C-terminal domain. Because the ” subunit (axis) follows
the sequentially created asymmetrical ’3“3 ring, the C-terminal domain has the
primary responsibility of transmitting the conformational change of the “ subunit
to the ” axis. In particular, the DELSEED loop (residue number: 386–394 in
thermophilic Bacillus PS3, TF1) of the C-terminal domain plays a critical role in
the transmission of torque. This loop comprises a strongly conserved sequence of
the amino acids “DELSEED”, the loop forms a helix-turn-helix motif that bulges
toward the ” subunit, and the ” subunit mostly contacts this loop during the rotation.
The aim of this combined study was to elucidate the factor of the DELSEED loop
that was crucial for torque transmission.

In the experiments, all of the residues in the DELSEED loop were substituted
either with alanine or glycine. The purpose of using the alanine mutant is to diminish
the specific interaction between the DELSEED loop and the ” axis; the purpose of
the glycine mutant is to disrupt the loop structure because the structure of poly-
glycine is much more flexible than that of poly-alanine. The resulting glycine
substitution mutants generate half the torque of the wild-type, whereas the alanine
substitution mutants generate comparable torque. The MD simulations show that the
DELSEED loop is disordered by the glycine substitution, whereas the loop forms
the original secondary structure of the alanine mutant (Fig. 17.9). This result is
reflected in the magnitude of the structural fluctuations, and the RMSD value of
the glycine mutant is much larger than that of the alanine mutant. Consequently,
the combination of experimental approaches and MD simulations emphasize the
importance of loop rigidity for the efficient transmission of torque.
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Fig. 17.9 The average structures of the “E subunit during the last 15 ns of the simulations are
shown. The structures of the “E subunit in the wild-type, glycine mutant, and alanine mutant of
F1-ATPase are shown in red, black, and orange, respectively. Expanded views of the structure of
the DELSEED loop regions are shown in the bottom of the figure (This figure was taken from the
original article [87])

17.5 Chemical Reaction Mechanism of ATP Hydrolysis
in the F1-ATPase

Chemical–mechanical energy conversion is also important for this rotary molecular
motor. To elucidate the energy conversion, the chemical reaction (the ATP hydrol-
ysis) during the structural change (motor rotation) was elucidated [63, 88–92].
The hybrid quantum-mechanical/molecular-mechanical (QM/MM) methodology
was developed to treat the chemical reaction involving the formation/cleavage of
chemical bonds in a biosystem. The QM/MM methodology allows us to calculate a
chemical reaction involving a substrate in a binding pocket by taking the molecular
interactions with the surrounding protein environment into account.

Providing a quantum-chemical description of the highly polar electric nature
of the ATP substrate and its binding pocket is difficult. Therefore, the reaction
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mechanisms proposed for F1-ATPase to date are diverse and depend on the
simulation protocols and computational accuracies [63, 88, 89]. Therefore, Hayashi
et al. [92] conducted a combination of molecular simulations and single molecule
experiments; thus, the reaction mechanisms predicted by the simulations underwent
a solid verification process using single molecule experiments.

In the predicted reaction mechanism (Fig. 17.10b), the P”-O“ bond dissociates
first. Subsequently, a proton is transferred from the lytic water molecule, which
is strongly activated by a metaphosphate that is generated by the preceding P”-
O“ bond dissociation. The latter proton transfer is the rate-determining step. The
activation energy of the transition state for the proton transfer is computed to
be 71.1 kJ/mol. The overall reaction is calculated to be slightly exothermic by
�6.7 kJ/mol (Fig. 17.10a).

As described above, this mechanism was verified using single molecule exper-
iments, in which the ATP hydrolysis reaction rates in D2O and with a substrate
analogue, ATP”S, were measured. Considering the reaction order of each substance
(the proton transfer or the P”-O“ dissociation) and the possible cases for the rate-
determining step for either the proton transfer or the P”-O“ dissociation, there are
three other possible reaction pathways in addition to the path predicted by the
molecular simulations (Fig. 17.11). The D2O solvent should remarkably reduce
the reaction rate if the rate-determining step is the proton transfer because of the
kinetic isotope effect (cases a and c). In contrast, the hydrolysis reaction should
be slowed with ATP”S if the rate-determining step is the P”-O“ bond dissociation
because the P”-O“ dissociation is affected by the substitution of S for O” , which
is adjacent to the dissociating P-O bond (cases b and d). The reaction profile
proposed by the calculation predicts that the reaction rate should decrease when
both the D2O solvent and the ATP”S substrate are used (case c). Single-molecule
experiments show positive rate sensitivity when using both D2O and ATP”S,
proving that the reaction mechanism predicted by the molecular simulations is
reasonable.

The computed small reaction energy in this QM/MM study suggests that the
energy of the hydrolysis reaction would be utilized to regulate the unidirectional
rotation by rectifying the thermal equilibrium among the ligand binding and
unbinding states, rather than the actual motor function. The major driving forces of
the rotational torque should be derived from the ligand binding/release. This expla-
nation is consistent with the mechanism proposed by single molecule experiments
[21, 85, 86] and the MD simulation [83].

Despite the fact that the rate-determining step is the latter proton transfer, the first
P”-O“ bond cleavage is fulfilled by hydrogen bonds between the Walker A motif and
an arginine finger. These residues commonly exist in many NTPases and trigger the
chain activation of the proton transfer. This finding indicates that the overall activity
for the function via both the P”-O“ bond dissociation and the proton transfer steps
is regulated by the protein system.
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Fig. 17.10 Reaction profile determined using the QM/MM calculations. (a) Energy diagram of
the overall reaction path from reactant (R) to product (P). (b) Structural changes at important
states along the reaction path. POD and PT indicate P”-O“ bond dissociation and proton transfer,
respectively (This figure was taken from the original article [92])
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Fig. 17.11 Schematic energy diagrams of possible reaction mechanisms. Energy profiles of the
possible reaction paths for the native substrate in H2O solvent are drawn with black line for the
reactant, intermediate, and product states, red lines for PT (proton transfer), and blue lines for
POD (P-O bond dissociation). Two possibilities each for the RDS (rate-determining step) and the
sequential order produce four possible reaction schemes (a–d). The yellow lines at the activation
barriers of the PT steps indicate energy increases in D2O solvent. Energy profiles for ATP”S are
represented with cyan lines (This figure was taken from the original article [92])

17.6 Summary

Structural fluctuation analysis suggests that only nucleotide binding can change the
conformation of the “ subunit from the open to the closed form. The subsequent free-
energy simulations confirm this suggestion and further demonstrated the details of
the “ subunit conformational change. This change is accomplished in roughly two
characteristic steps: the change of the hydrogen-bond network around ATP and the
subsequent dynamic movement of the C-terminal domain via sliding of the B-helix.

Studying the entire F1-ATPase complex reveals that the complex structure is
asymmetric. The subunits in the ’3“3 subunit complex form three different interface
configurations (tight, moderate, and loose). This heterogeneity of the subunit
interfaces indicates that the F1-ATPase structure is frustrated, in terms of free-
energy. In general, the frustrated structure has greater variability and can alter its
structure to other free-energy minimum states. The F1-ATPase can switch among the
three different configurations of the packing interface in the ’3“3 subunit complex.
Therefore, perturbations (substrate binding/release or ATP hydrolysis) allow this
type of frustrated F1-ATPase to change from one to the other sequentially with
reorganization of the subunit interfaces, resulting in the ” subunit (axis) rotation.

Interestingly, the asymmetry observed using structural fluctuations via MD sim-
ulations are consistent with the results suggested by considering the water-entropy
effect. In general, a phenomenon in which a portion of a protein forms a tightly
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packed configuration can be explained by the water-entropy effect. Accordingly, all
of our results suggest that the water-entropy effect plays an important role in the
creation of the asymmetrical (frustrated) F1-ATPase structure that leads to motor
rotation. Therefore, this effect fundamentally underlies the rotational mechanism.

The asymmetry of the ’3“3 complex structure is created for the rotation of
the ” subunit axis. The definitive asymmetry of the ’3“3 complex ring appears in
part of the C-terminal domain. Therefore, the C-terminal domain, in particular the
DELSEED loop, has the primary responsibility of transmitting the conformational
change of the “ subunit to the ” axis. The factor of the DELSEED loop that is
crucial for torque transmission was investigated via a combined study using MD
simulations and single molecule experiments. This study shows that loop rigidity,
rather than the specific residual interactions between the ” subunit and DELSEED,
is important for the efficient transmission of torque.

Finally, the chemical–mechanical energy conversion, another important aspect
of this rotary molecular motor, was also studied. To elucidate the chemical reaction
of the ATP hydrolysis, QM/MM calculations were employed, and the predicted
reaction mechanism was subsequently verified using single molecule experiments.
This combination study identifies the sequential order of two elementary processes
(the first is the P”-O“ bond dissociation, and latter, the proton transfer) and the rate-
determining step (the proton transfer) in the ATP hydrolysis reaction. The small
reaction energy (�6.7 kJ) that is obtained suggests that the role of ATP hydrolysis is
to regulate the unidirectional rotation by rectifying the thermal equilibrium among
the ligand binding and unbinding states, rather than regulating the actual motor
function. The generation of the rotational torque and the major driving forces of
the ” rotation would be derived from the ligand binding/release.
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Chapter 18
Chemosensorial G-proteins-Coupled Receptors:
A Perspective from Computational Methods

Francesco Musiani*, Giulia Rossetti*, Alejandro Giorgetti, and Paolo Carloni

Abstract G-protein coupled receptors (GPCRs) constitute the targets of about
40 % of all the pharmaceutical drugs in the market and, among other functions,
a large portion of the family detects odorants and a variety of tastant molecules.
Computational techniques are instrumental to understand structure, dynamics and
function of the cascades triggered by these receptors. As an example, here we
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report our own computational work aimed to dissect GPCR molecular mechanisms
for chemical senses. The implications of our work for systems biology and for
pharmacology are discussed.

Keywords G-protein coupled receptors • Multi-scale modeling • Odor and bitter
taste perception • Bioinformatics • Molecular dynamics

18.1 Introduction

G-proteins-coupledreceptors (GPCRs) belong to the largest membrane-bound
receptor family expressed by mammalians (encompassing ca. 4 % of the protein-
coding human genome) [1] and are of paramount importance for pharmaceutical
intervention (ca. 40 % of currently marketed drugs target GPCRs) [2]. Structurally,
GPCRs are characterized by an extracellular N-terminus, followed by seven
transmembrane (7-TM) ’-helices (TM-1 to TM-7) connected by three intracellular
(IL-1 to IL-3) and three extracellular loops (EL-1 to EL-3), and finally by an
intracellular C-terminus (Fig. 18.1a). GPCRs’ tertiary structure resembles a barrel,
with the seven transmembrane helices forming a cavity within the plasma membrane
that serves as ligand-binding domain, often covered by EL-2.

Fig. 18.1 (a) Schematic representation of GPCR fold. Trans-membrane helices (TM) are depicted
as orange cylinders. The positions of intracellular (IL) and extracellular (EL) loops are indicated.
(b) Phylogenetic tree of human GPCRs according to the GRAFS system. Human GPCRs sequences
can be divided in five phylogenetic families following the so called GRAFS classification
(glutamate, rhodopsin, adhesion, frizzled/taste2, secretin) [105]. The rhodopsin family can be
further divided in four subfamilies (named ’-, “-, ”-, and •-branches). This classification excludes
the olfactory receptors (that form a separate sub-branch of 388 receptors in the rhodopsin •-branch)
and pheromone receptors of type 1
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The first solved structure of a GPCR was that of bovine rhodopsin, back
in 2000 [3]. In rhodopsin, the ligand is covalently bound to the protein. Seven
years were needed to get the high-resolution structure of the human “2-adrenergic
receptor (“2AR) [4, 5], the first example of a GPCR with a non-covalently bound
ligand. That structure was followed by other GPCRs in the rhodopsin family
(See Fig. 18.1b), including “1AR, A2A adenosine (A2AAR), chemokine CXCR4,
dopamine D3, histamine H1, opioid receptors, sphingosine 1-phosphate receptor,
5-HT1B and 5-HT2B serotonin receptors [9] and most recently by the structure of
the smoothened receptor belonging to the frizzled/taste2 family [10]. The explosion
of crystallography of GPCRs, while confirming the common seven transmembrane
GPCR fold, provided the first insights of structural diversity in GPCRs at various
levels of evolution. Thus, with the exception of the smoothened receptor, the
structures represent closely related GPCR subtypes, different subfamilies within the
aminergic family, different sub-branches within the same major ’-branch, as well as
different major ’-, “- and ”-branches of GPCRs belonging to the rhodopsin family.
The ligand binding pocket, which is similar across the GPCR X-ray structures
[11], is located in the extracellular side of the TM bundle. Because of the high
sequence diversity of the protein [11], in particular of the N-term [12] and of the
extracellular loops [13], they bind ligand molecules of diverse shapes, sizes and
chemical properties. These molecules range from metal ions [14] to small molecules
[11] and to short peptides [15].

The GPCR signaling cascade is initiated by the binding of a ligand to the GPCR
in the extracellular binding pocket (or by the interaction with the electromag-
netic field in the case of vision). GPCRs in the resting state are usually bound
to their cognate heterotrimeric guanine nucleotide-binding proteins (G-protein)
(Fig. 18.2a). G-proteins function as molecular switches [16]. In their inactive form,
they are trimers, formed by subunits G’ (in complex with GDP), G“ and G”
[17].1 When the ligand is bound to the GPCR, the activated receptor undergoes a
conformational change, causing a rearrangement of its cognate G-protein, which
then exchanges GDP for GTP [16, 18]. This triggers the dissociation (or the
weakening of interactions) between the G’•GTP subunit and the G“•G” dimer (G“”
hereafter). G’•GTP and G“” activate a downstream cascade of events by binding
to specific target proteins. The G-protein may also rearrange itself and/or bind to
molecules involved in the downstream pathway [19, 20].

1G’ subunits are divided in classes. In mammals, these are: the stimulatory G’s family (which
comprises G’s and G’olf), the inhibitory G’i family (which includes G’i/o, G’t, G’gus, and G’z),
G’q, G’12/13 and rod transducin G’t1. They feature from 35 to 95 % sequence identity (SI) among
each other [6]. G“ In mammals, isoforms (G“1–5), with splice variants of G“3 (G“3s, G“3s2 and
G“3v) and of G“5 (G“5L), feature 50–90 % SI [7]. In mammals, 12 isoforms of G” (G”T1, G”T2,
G”2-4, G”5, G”5ps, G”7,8,10–12) share 31–77 % SI [7].
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Fig. 18.2 (a) Schematic representation of GPCR/G-protein interactions during signalling in
eukaryotes. State 1: G-protein inactive state. State 2: GDP/GTP exchange, first step of activation.
State 3: dissociation of G’•GTP from the tightly bound G“•G” dimer. Initial phases of the
olfactory (b) and of the bitter taste (c) pathways. In the olfactory pathway, G’olf•GTP stimulates
the transmembrane AC enzyme, which catalyzes the formation of cAMP from ATP. cAMP in
turns activates ion channels as well as activating protein kinase A (PKA) enzyme. The latter
in turn activates a variety of downstream processes including the activations of CNG channels.
This process causes Ca2C and NaC inflow from the extracellular to the intracellular side of the
membrane and Cl� efflux. The signal is quenched by Ca2C binding to calmodulin (CaM), which
stimulates the activity of a phosphodiesterase (PDE) that converts cAMP into AMP and closes
the CNG channel. In the bitter taste pathway, G’gus•GTP stimulates PDE activity, thus reducing
intracellular cAMP concentration and opening the cNMP inhibited channels. Concomitantly, G“”
subunits stimulate the PLC-“2 enzyme, which catalyzed the formation of DAG and IP3 from PIP2.
PIP2 in turns stimulates Ca2C release from the endoplasmatic reticulum. Thus, both G’gus•GTP
and G“” concur in the increase of intracellular Ca2C concentration

18.2 Chemosensorial GPCR’S and Their Cascades

More than half of the GPCRs encoded in mammalian genomes are olfactory
receptors (ORs) [21]. The second largest sensorial GPCR subfamily is the bitter-
taste receptor family, formed by about 30 members in the human genome [22].
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18.2.1 Olfactory Signaling Pathway

In the cilia of olfactory sensory neurons, volatile odorant molecules binding to
ORs cause conformation changes, with the consequence of activating its cognate
G-protein (Golf and/or the Gs isoforms; Fig. 18.2b) [23]. The G’ subunit cellular
partner is isoform 3 of adenylate cyclase (AC3) enzyme, which converts adenosine-
50-triphosphate (ATP) into cyclic adenosine monophosphate (cAMP), triggered
by the binding of G’olf•GTP. cAMP acts as “second messenger”, activating the
protein kinase A (PKA), which phosphorylates downstream targets [24]. cAMP
also binds to and opens the cytoplasmic domains of the olfactory cyclic nucleotide
gated (CNG) ion channels. This allows NaC and Ca2C cations to flow along
their electrochemical gradients from the extracellular to the intracellular side of
the membrane [25, 26]. The increased Ca2C concentration in the cilia causes the
opening of Ca2C-activated Cl� channels and the subsequent Cl� efflux, which
further depolarizes the cell [27–29]. Thus, the chemical interactions of ORs with
volatile molecules lead ultimately to the production of action potentials that will
carry information about the external world to the brain [30, 31]. The axons of the
olfactory sensory neurons from the nasal cavity send information to second-order
neurons in the olfactory bulb, which in turn project to the olfactory cortex and then
to other brain areas. The increase of Ca2C concentration has an inhibitory effect,
which eventually terminates the signal, as obviously required for the function of
this apparatus. This is achieved by Ca2C binding to calmodulin (CaM), which also
stimulates the activity of a phosphodiesterase (PDE). Ca2C is then extruded by a
NaC/Ca2C exchanger (Fig. 18.2b).

18.2.2 Bitter Taste Perception

Bitter taste perception discourages humans and other mammals from ingesting
bitter, possibly toxic, substances. The perception stems from the binding of bitter
molecules to ca. 25 specific GPCRs referred to as taste 2 receptors (TAS2Rs) [32,
33]. TAS2Rs are located in special subsets of taste receptor cells [32–35]. They are
able to detect multiple and diverse natural and synthetic organic molecules [34].
Single nucleotide polymorphisms can cause “blindness” to its agonists. This is the
case, for instance of the phenylthiocarbamide (PTC) and propylthiouracil (PROP)
[36] agonists of the TAS2R38 receptor [37]. Indeed, normal populations can be
divided in two different phenotypes, i.e. those subjects that perceive phenylthio-
carbamide (PTC) and its related compounds and subjects that do not. The cognate
G-protein of TAS2Rs is the heterotrimeric gustducin protein (Ggus, a transducin-like
G-protein selectively expressed in ca. 25–30 % of taste receptors cells, Fig. 18.2c)
[38]. G’gus•GTP activate the phosphodiesterase (PDE) enzyme [38], which in turns
reduces the concentration of cAMP in the cell and thus decreases cAMP inhibi-
tion of the cNMP-inhibited channels, causing an increase of Ca2C concentration
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in the cell [38]. At the same time, the G“” subunit interacts with isoform 2
of 1-phosphatidylinositol-4,5-bisphosphate phosphodiesterase beta (PLC-“2) [38].
PLC-“2 catalyzes the hydrolysis of phosphatidylinositol 4,5-bisphosphate (PIP2)
into two second-messenger molecules: 1,4,5-trisphosphate (IP3) and diacylglycerol
(DAG). IP3 then stimulates the release of Ca2C in the cytoplasm [39]. Both DAG
and calcium are essential second messengers which activate downstream signaling
components such as protein kinase C and calmodulin dependent kinase [39].

In spite of GPCRs widespread presence in humans (as well as that in other
animals [40, 41]) experimental structural information at atomic level is so far
lacking. Hence, computer methods are the method of choice to investigate structure,
dynamics and function of these GPCRs [42–44]. Here we review some of our
computational work in the olfactory and the bitter taste receptor pathways.

18.3 Olfactory Receptor Cascade Proteins: From Structural
Predictions to Large Scale Motions

18.3.1 Olfactory Receptors

Structural predictions of the ORs have been carried out by several groups [45–48].
The observation that structural features are well conserved across GPCRs belonging
to the rhodopsin family,2 has led to the suggestion that template-based structural
predictions, together with the use of restraints extracted from point mutagenesis
experiments, may lead to the prediction of fairly reliable models [52, 53]. This
is confirmed by the observation that GPCR X-ray structures exhibit a large
predictability and can thus be used as templates for structural models of GPCRs
sharing similar sequences [52, 53]. Nine crucial amino acids involved in ligand
binding and selectivity on the helices TM3, TM5, and TM63 of ORs set the stage
for structural predictions [45]. Our model of one of the 29 ORs for which ligand
binding data are available – the MOR174-9 – were validated against experimental
information [55]. This model was then used to predict which amino acids could be
involved in the ligand binding.

18.3.2 G-proteins

Upon ligand binding, the active GPCR-bound heterotrimeric G-protein, bound to
GDP (Fig. 18.3a) undergoes a structural reorganization, including a rearrangement

2It includes ORs and rhodopsin [49], along with the structures of other GPCRs (such as the human
“2AR [4], the turkey “1AR [50] and the human A2AAR [51]).
3The identified residues were 3.40, 5.45, 5.46, 5.50, 5.51, 6.44, 6.47, 6.48, and 6.51; following the
numbering of Ballesteros et al. [54].
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Fig. 18.3 (a) Structure of a mammalian heterotrimeric G protein (PDB code: 1GP2 [8]). The
G’ subunit is formed by a helical domain composed of six helices and by a catalytic domain
(also referred as RAS-like or GTPase domain) (Fig. 18.3a). The two domains are connected by
two flexible linkers and their interface hosts the nucleotide binding pocket. G“ consists of an N-
terminal ’-helix followed by a “-propeller domain, formed by seven “WD” repeat motifs, each
made by approximately 43 amino acids. Its overall fold is completed by the interactions of strands
from WD1 and WD7. The N-terminal helix of G’ interacts with WD1 of G“, while “2 strand, ’2
helix and “3/’2 loop of G’ interact with six out of seven WD repeats of G“ (WD1-WD5, WD7).
G”, which is smaller than the other two subunits, consists of two helices connected by a loop.
The N-terminal helix of G” forms a tight coiled-coil interaction with the N-terminal helix of G“.
(b) Crystal structure of the dimeric catalytic extra membrane domain of trans membrane adenylyl
cyclase in complex with G’s•GTP, forskolin and ATP (PDB: 3C16) [50]. The monomers present
a ferredoxin-like fold. In the structure, AC dimer is formed by C1a from AC isoform 5 (AC5) and
C2a from isoform 2 (AC2). AC2/5 features 37–70 % SI with the other isoenzymes

of the ’5 helix (Fig. 18.3a) [56, 57]. These conformational changes lead to GDP
release, with formation of a transient and conformationally dynamic empty state
[58]. GTP then replaces GDP, triggering a new structural change that causes the
detachment of one of the three subunits (G’) from the other two, the G“ and G”.
The G’ subunit then binds and activates several enzymes and effectors [59–61]. In
the case of ORs, it activates the AC3 enzyme.

MD simulations on the inactive state have shown that large scale motions involve
the relative movement of the helical and catalytic domains [45], as highlighted by
previous observations [62, 63] suggesting that this conformational change may be
essential for GDP release [57]. Notably, almost all of the residues relevant for the
G’/G“ interface (identified by computational alanine scanning) are conserved or
conservatively mutated [64]. Instead, when the G-proteins are found in their empty
state, GDP removal causes instabilities in the “6-’5 region, consistently with the
suggestion that ’5 helix might be involved in the process [56, 62]. The latter
rearrangement is assisted by the conformational flexibility in the Gly202-Gly203
region.
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18.3.3 Adenylyl Cyclases and Their Complex with G˛ Subunit

AC enzymes catalyze the synthesis of the universal second messenger cAMP from
ATP. Depending on the AC isoform involved in the process, they can be activated
or inhibited by binding with GTP-bound ’-subunit of specific G-proteins or by G“”
subunits [65]. cAMP, synthesized by the enzyme, activates target proteins such
as protein kinases, ion channels, and transcription factors, firing up the cellular
response to the primary external stimulus. These proteins contain two TM domains
(M1 and M2), each crossing the membrane six times. The main functional parts
are located in the cytoplasm and can be subdivided into the N-terminus, C1a, C1b,
C2a, and C2b. The C1 region exists between TM helices 6 and 7 and the C2 region
follows TM helix 12. The C1a and C2a domains form a catalytic dimer where ATP
binds and is converted to cAMP (Fig. 18.3b). The structural determinants of the
cytoplasmic domain of an enzyme involved in OR signaling (AC3) in complex
with its cognate G’-subunit (G’olf), in the presence of the essential Mg2C ion
and forskolin (MPFsk), was predicted by using homology modeling and using the
MPFk-bound AC3•G’s•Mg2C•20-deoxy-30-adenosine monophosphate complex (SI
>50 %) as template. The model suggests that the active site residues binding to
MPFsk are the same as in the template [66].

18.3.4 Cyclic Nucleotide Gated Channels

CNG ion channels are tetrameric proteins gated by cGMP and cAMP second
messengers. They produce the electrical signal in response not only to odor
stimulation but also to light in the vision process. CNG channels belong to the
superfamily of tetrameric voltage-gated ion channels [67, 68]. Their structure
consist of: (i) a transmembrane domain formed by six transmembrane helices
(S1–S6) and a pore helix (P-helix); and (ii) a cytoplasmic domain formed by the
cyclic nucleotide binding domain, which is linked to the transmembrane domain
through the so-called C-linker region. The structure of the pore region of the CNG
channels was predicted by a knowledge-based guided homology model protocol,
in which sequence alignment and experimental constraints were used to provide a
structural basis for these channels [69]. The experimental constraints were obtained
by cysteine scanning mutagenesis of residues present principally along the channel
axis. Mutated channels were then studied by measuring the differences of current
blockage upon the introduction of metals, such as Cd2C, and agents capable of
interacting with cysteines in the solution [70]. A combination of experimental and
theoretical studies lead to the suggestion that a rotational movement begins in the
C-linker region. This rotational movement is then transmitted upwards, making the
upper part of S6 rotate anticlockwise. Due to the direct interaction of S6 with
the P-helix, this motion is transmitted to the latter, which rearranges itself so
that its terminal Thr360 residues and, therefore, the lower part of the pore wall,
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lead to the opening of the pore lumen. Thus, the initial event of cyclic nucleotide
binding is transmitted to the pore walls by a remarkable and sophisticated coupling
of conformational changes spanning the entire cytoplasmic and transmembrane
domains of the channel.

18.3.5 Chloride Channels

Anoctamin 2/TMEM16B is likely the major subunit of the Ca2C-activated Cl�
channel (CaCC) of olfactory sensory neurons [71], although other subunits may
also be involved. Previous studies proposed that a member of the bestrophin
protein family [72] plays a role as CaCC [73, 74], but recent works appear to
refute this hypothesis [75]. Bioinformatic studies suggest that the N- and C-
terminal domains of bestrophins would be located at the intracellular side of the
membrane and would be connected to four or five hydrophobic domains forming
the channel [76, 77]. Computational molecular biology techniques are currently in
use to identify aspartate and glutamate residues that bind Ca2C and to predict the
effects of their mutations to alanine. Selected mutations have been investigated by
electrophysiological experiments [78, 79].

18.3.6 Calmodulin

Calmodulin is a calcium-binding protein found ubiquitously in eukaryotes. It is
capable of regulating biological activities of several calcium-sensitive enzymes, ion
channels, and other proteins by performing conformational changes upon binding
to calcium. This events in turn enables the binding to cognate proteins that bring a
specific response. In particular, they regulate the activities of the CNG channels in
the olfactory signaling pathway by: (i) decreasing the probability of opening CNG
channels by binding to the channel subunits CNGA4 and CNGB1b; (ii) binding
and activating the CaM-dependent phosphodiesterase (PDE1C2) and therefore
catalyzing the transformation of cAMP in AMP; and (iii) activating the CaM-
dependent protein kinase II and thus inhibiting AC3 by Ser1076 phosphorylation
[80]. Calmodulin is composed of two globular domains connected together by a
flexible linker. Each end contains two EF-hand motifs, each of which can bind a
calcium ion. Despite a large number of experimental and theoretical studies, the
detailed mechanisms of CaM target peptide recognition are not fully understood.
Metadynamics-based free energy simulations [81] were used to investigate the final
steps of CaM-peptide complex formation. Due to the lack of structural information
for CaM in complex with the olfactory CNG channel target segment, the complex
between CaM and M13, a peptide which is part of the skeletal muscle myosin
light chain kinase (skMLCK), was considered. This complex is experimentally
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well characterized and involves an important biological CaM partner in the muscle
tissue. The calculations were validated with a comparison between calculated and
NMR-derived structural and dynamical properties. The results of the calculations
[80] provide novel insights into the mechanism of protein/peptide recognition: it
was shown that the process is associated with a free energy gain similar to that
experimentally measured for the CaM complex with the homologous smooth muscle
MLCK peptide [82]. The simulations suggested that CaM binding is dominated
by entropic effects, in agreement with previous proposals. Furthermore, it was
demonstrated that the large flexibility of the conserved methionine side chains
play a key role in the binding mechanism. Finally, a rationale is provided for the
experimental observation that in all CaM complexes the C-terminal domain seems to
be hierarchically more important in establishing the interaction. The metadynamics
simulation in this work has provided a first step toward predicting the complete
energetics of the molecular recognition of CaM and CNG channels.

18.4 Bitter Taste Receptors: Conformational Fluctuations
of Agonist Binding by Multiscale Simulations

Functional assay-validated bioinformatics approaches, complemented with molec-
ular docking, have recently provided structural insights on agonist/bitter receptor
interactions [34, 83, 84]. In particular, for the TAS2R38 receptor – one of the
most widely characterized bitter receptors at the genetic level [36, 85] – the
responses of the different receptor mutants have been measured upon application
of increasing concentrations of agonists such as PTC and PROP (Fig. 18.4a).
These pieces of information were included in the generation of the model of the
ligand/receptor adduct, providing insights into structure/function relationships [34].
The modeling/blind-dockingprocedure allowed us to capture just one of the residues
involved in binding [34] and the use of a knowledge-guided docking potential, as
that of Haddock [86, 87], improved the description of the binding cavity. To improve
the accuracy of our predictions, recently we have developed an hybrid Molecular
Mechanics/Coarse-Grained (MM/CG) approach tailored for GPCRs (see Appendix
and Fig. 18.4b, c) [88]. One-microsecond long MM/CG simulations allowed for
conformational fluctuations of the complexes. These fluctuations eventually lead
to poses consistent with most of the experiments carried out for this research.
These consisted in functional calcium-imaging experiments [34, 88], in which
the responses of the different proposed receptor mutants were measured upon
application of increasing concentrations of agonists. Hence, the MM/CG approach
allowed a description of the system with an unprecedented level of detail for a low-
sequence identity homology model. In perspective, the protocol described in Ref.
[88], that includes extensive MM/CG simulations on homology models combined
with site-directed mutagenesis experiments, could be applied to different members
of the bitter taste receptors as well as other receptors from the GPCR superfamily.
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Fig. 18.4 (a) Schematic structure of PTC and PROP, agonists of the hTAS2R38 receptor. (b, c)
Molecular Mechanics/Coarse-grained system set-up. (b) Schematic representation of the regions
defined in the MM/CG model. The MM, I and CG regions are colored in dark gey, grey, and light
grey, respectively. (c) MM/CG representation of the hTAS2R38 receptor in complex with PTC.
Water molecules and residues belonging to the MM and I regions are represented as lines. The
agonist atoms are represented as grey spheres. The protein C’ atoms are represented in order to
show the protein backbone (Adapted from Ref. [88])

18.5 Conclusions and Perspective

Our computing studies on the bitter taste and olfactory receptors have been
presented here with a twofold scope. First, we show, as done by many other groups
(see Ref. [89] for a recent review and references within it), that even without
experimental structural information, one can obtain good accuracy in predicting
binding poses of GPCR by combining available biological data with computational
techniques. Second, we have described our first attempt at investigating pathways at
the molecular level. This is a necessary and crucial step towards understanding the
behavior of biological systems [90]. Most importantly, multi-scale approaches will
strongly impact on pharmaceutical sciences and toxicology, elucidating the drugs’
effect on entire pathways, rather than on single biomolecules [91–93].

Appendix: Molecular Mechanics/Coarse-Grained
Hybrid Approach

Coarse-grained (CG)-based MD approaches allow the study of longer timescales
than all-atom force field simulations [94, 95]. The reduction of the number of
degrees of freedom makes the model computationally very efficient, allowing a
reduction of the simulation time by ca. 2–3 orders of magnitude compared to
full atom force fields [96]. Unfortunately, without a detailed description of the
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side-chains, as in cases such as GPCRs, these approaches cannot describe in
detail the intermolecular ligand/protein interactions. Thus a possible solution to
this problem may be to combine atomistic with CG modeling [97–101]. Indeed,
a hybrid/multi-scale approach in which different representations of the system
are modeled concurrently was proposed, i.e. Molecular Mechanics/Coarse-Grained
(MM/CG) simulations. In this kind of procedure, a coupling scheme is needed to
connect the boundary of the different models. This approach has been developed
for proteins by several groups, including ours [99–102]. In our scheme, a region
of interest (i.e. the active site of an enzyme, MM region) is treated at molecular
level using an atomistic force field and the protein frame is described at CG level
using a Go-like model. Recently we modified and extended the use of the method,
previously developed for soluble enzymes, to the case of GPCRs [103] in which
the presence of the lipid bilayer must be imposed. In addition, one has to avoid
that water from the binding site diffuses into the hydrophobic regions of the lipid
bilayer. The accuracy of the new version of our MM/CG method was established by
comparing MM/CG simulations with all-atom MD calculations on the human “2AR
(h“2AR) [103], in complex with two different ligands: the co-crystallized ligand and
inverse agonist S-Carazolol (S-Car) [5] and its agonist R-Isoprenaline (R-ISO). The
MM region consisted of 476 and 486 atoms, while the overall system was made of
only 4,597 and 4,587 atoms, for the h“2AR/S-Car and h“2AR/R-ISO complexes,
respectively. This allowed us to simulate more than 70 ns/day on 16 CPUs, which
is a speed up of 15 times compared to the MD simulations of the same system. The
trajectory obtained with our MM/CG scheme are able to reproduce the key structural
features of the active site found in the MD simulations [104]. With these results, due
to both its low cost and high reliability, using the MM/CG methodology emerges as
a useful approach to study the ligand cavity of these proteins [103], indeed we have
extensively used it for characterizing the binding cavity of the human TAS2R38
bitter taste receptor (see above).
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