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Abstract. Iterative Closest Point (ICP) is a popular point set registration 
method often used for rigid registration problems. Because of all points in ICP-
based method are processed at each iteration to find their correspondences, the 
method’s performance is bounded by this constraint. This paper introduces an 
alternative ICP-based method by considering only subset of points whose 
boundaries are determined by the context of the inputs. These subsets can be 
used to sufficiently derive spatial mapping of point’s correspondences between 
the source and target set even if points have been missing or modified slightly 
in the target set. A brief description of this method is followed by a comparative 
analysis of its performance against two ICP-based methods, followed by some 
experiments on its subset’s sensitivity and robustness against noise. 

Keywords: Iterative Closest Point (ICP), Correspondences, Transformation, 
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1 Introduction 

This paper describes an ICP-based method for point set registration by employing 
partial points instead of the whole set to find point correspondences. First, we 
examine ICP-based methods currently available in the literature to identify 
improvements and what weaknesses exist with such ICP-based variants. Next, the 
method of subset ICP that produces spatial mapping of point’s correspondences based 
only on the partial points is described. By using subset of points to set the boundaries 
for point registration, we achieve the following merits, (1) the point correspondence 
computation is reduced due to small mapping space with the order of complexity of 
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the cardinal of subsets X and Y respectively), (2) structural (shape) information is 
implicitly applied and (3) local minimum trap is avoided because the localization of 
closest points in the subset provide better estimate than those found in whole set. Such 
subset can be used to match ordered homologous points between the source and target 
set even if the points in the target have gone through slight modification or missing in 
some parts. We demonstrate the subset ICP algorithm, its Mathlab implementation, 
and briefly analyze its performance using sample data from [15] and [17]. 
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The algorithm explained in the remainder of this paper was based on our previous 
work presented in [16]. This paper expanded that work in three areas, first it explains 
the methods clearly with example, second it provides comparative study against ICP’s 
variants and CPD method, and finally it analyzes subset ICP method effectiveness in 
term of subset’s cardinality sensitivity and it’s robustness against noise. 

2 Background 

Point set registration is an important research topic in computer vision and image 
processing because of its applications in pattern recognition, shape reconstruction, 
object tracking and edge detection among others. With only the coordinate 
information of points, point set registration [1] is defined as to assign correspondences 
between two sets of points and to recover an optimal spatial mapping that matches 
one point set to the other so they are as close as possible to each other. Given two 
finite point sets 1 2{ , , , }

xNX x x x=   and 1 2{ , , , }
yNY y y y=  , where , n

i ix y R∈ , 

,x yN N are the cardinalities of set X  and Y respectively. The point set registration 

problem is to find a spatial transformation F , let 2|| ( ) || , 0x F y ε ε− = ≥ . Usually, 

point set Y is consecutively matched to set X  by iterative mappings. The cardinality 
of set is defined as the number of points in set. 

Iterative Closest Point (ICP) proposed in 1992 by Besl & McKay [2] and Chen & 
Medioni [3] is one of the most popular point set registration methods. It repeats two 
key steps until convergence is achieved: (1) to search for the correspondences based 
on the nearest distance criteria; (2) to determine a transformation based on current 
correspondence sets. However, it is an expensive computational algorithm because 
the correspondences need to be computed in each of iteration. Furthermore, the 
convergence is heavily depending on the initialization and it tends to converge to the 
local optimum. 

Some variants of ICP intend to select the most representative points to form data 
set to reduce the computation complexity. Ezra et. al [4] pointed out that the number 
of iterations of ICP has a polynomial relationship to the number of input points under 
the root mean squared (RMS) distance and one-sided Hausdorff distance. A coarse-to-
fine multi-resolution combined with the neighbor search technique [5] was introduced 
into ICP. A hierarchical selection point scheme was added into Picky ICP 

algorithm[6] that is an extension of ICP algorithm. Only every 2t th  point is selected 
to form “control point set” to perform Picky ICP, where 1t +  is the number of 
hierarchical levels. However, local search instead of an exhaustive (global) one is 
performed to obtain the correspondence pairs, which may overlook some coherent 
information. Especially, it is difficult to tradeoff between the time and the accuracy 
requirements. 

Other techniques to overcome the limitations of ICP include an evolutionary 
computation that was used to optimize the initial parameters of ICP. This method 
mainly motivated by the global optimization nature of evolutionary approaches [7]. 
Expectation Maximization (EM) algorithm combined ICP named as EM-ICP [8, 9] is 
used to handle noise and large data clouds. Multiple layer forward-feed neural 
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network [10] is an alternative rigid point set registration method when the 
correspondences are estimated well. With Lie algebra viewpoint, a generalized ICP 
was proposed to deal with affine registration [11]. However, this method can neither 
reduce the computation cost nor avoid the risk of local minima. Rusinkiewicz & 
Levoy [12] presented an exhaustive and comparative summary for the state-of-the-art 
ICP variants.  

Probabilistic methods such as Gaussian Mixture Model [1, 13], Robust Point 
Matching (RPM) [14, 15] are developed to solve point set registration problem. The 
probabilistic methods usually perform better than the conventional ICP, especially, in 
the presence of noise and outliers. However, the accurate registration results are at the 
cost of complex procedure and high computation complexity. 

3 ICP-Based Registration Methods 

In this section, subset ICP method is introduced first, where an example is used to 
demonstrate clearly its registration process. Next, two ICP-based methods 
respectively referred to as ICP-1 and ICP-2 are briefly explained. Their description is 
relevant for comparing the differences in the approach of finding correspondences and 
later in comparing the results in Section 3.1. 

3.1 The Subset-ICP 

Subset ICP algorithm starts by partitioning the source set X and the target set Y into 
multiple disjoints subsets, resulting in k pairs of subsets. The number of subset is 
determined by the size of the inputs but it is bounded by the minimum of cardinality 
of set X and Y. The algorithm works by iterating through the number of subset k and 
in each iteration, the algorithm performs a standard ICP method on each point in 
subset pair. Then, a spatial mapping in the form of rotation R and translation T are 
derived from current iteration, before they are applied to the target set Y. This process 
is repeated until a convergence or terminal condition is met. The registration 
procedure of subset-ICP is summarized in Fig 1. 
 

 

Fig. 1. Pseudo-code of subset-ICP algorithm 

Inputs : point set X with cardinality m and Y with cardinality n
Initialize R0  I, T0  0, i  1 
X is partitioned into k subsets, X = X1 + X2 + … + Xk 
Y is partitioned into k subsets, Y = Y1 + Y2 + … + Yk, 1 < k < min(m,n) 
While i < k and MSE(X ,Y) > threshold 
 For all points in subset Xi and Yi 
 Calculate the correspondences based on Euclidean distance in subset Xi and Yi 
 Compute and Update transformation Ri and Ti 
 Apply Ri and Ti to set Y and all its subsets Y1, Y2, …, Yk 
 Accumulate rotation R and translation T 
 End ICP-iteration 
 Calculate MSE for X and Y 
End subset-iteration 
Outputs : rotation R and translation T that matches all points in set Y 
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Fig. 2 illustrates the working of subset ICP for a simple example where only 
translation is needed to register point set X and Y. Assuming we have an input set X = 
{1, 2, 3, 4} and Y = {5, 6, 7, 8} with equal cardinality i.e. m = n = 4. In this case, both 
X and Y is uniformly partitioned into two subsets, k = 2 such as X1={1, 2}, X2={3, 4} 
and Y1={5, 6},Y2={7, 8}. Note that an arbitrary choice of partition can be chosen (as 
we later show in subsection 3.2), however we should avoided the two worse cases, 
that is when the subset contains a single point or when there is only a single subset. At 
first iteration, i.e. k = 1 the closest points of X1 = {1, 2} to Y1 are the points {5, 5} 
respectively hence, the neighbor set is NX(Y) = {5}. In this example, the translation T 
is derived from the mean values of the set, thus given their values are 1.5 and 5, T = 
1.5-5 = -3.5. Applying translation to set Y we updated the values for subsets Y1 = {1.5, 
2.5} and Y2 = {3.5, 4.5}. Since the MSE of X and Y is not met, the same process is 
repeated for subset pair X2 = {3, 4} and Y2 = {3.5, 4.5}. Now the neighbor set is NX(Y) 
= {3.5, 4.5}, with the mean values of 3.5 and 4, thus the translation is T = 3.5-4 = -
0.5.Updating Y with T we get Y1 = {1, 2} and Y2 = {3, 4}, which are exactly matching 
the points in set X. This also denotes that convergence has been met and thus ending 
the procedure. 

 

        
Fig. 2. The registration procedure of subset-ICP on the given data 

3.2 Two ICP-Based Algorithms 

ICP-1: ICP-1 is the original ICP algorithm from [2]. Two point sets are given which 
describe the shape of an object. For each point of one set, search for its closest points 
in another set to form the correspondence set. Based on the first set and its 
correspondences set, the rotation matrix and translation vector are computed using 
optimization combined with statistical technique, such as PCA. The correspondences 
and the transformation are updated iteratively until the stop conditions are satisfied. 

ICP-2: ICP-2 is an improved version of ICP as presented in [6]. ICP-2 improves 
the solution set in ICP-1 by removing redundant points that satisfied the nearest 
point’s condition. It only kept one point with the shortest distance [6]. For instance, if 
a point b from the source set is the closest point to four other points in template set, 
says a1, a2, a3, and a4, point a2 is chosen as the winner if it has the shortest distance 
to point b, i.e (a 2, b) min{ (a1, b), (a 2, b), (a 3, b), (a 4, b)}d d d d d= . 

The main difference between ICP-1 and ICP-2 is whether the mapping relation 
between the template set and the correspondences set is bijection (also known as one-
to-one mapping) or not.  
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4 Experiments 

In this section, experiments are carried out on 2D data to analyze subset ICP’s 
performance with respect to its accuracy, robustness and computational time. 
Elephant shape is taken from part B of CE-Shape-1 [17], whereas the fish and 
blessing data are taken from [15]. In our experiments, when there are no outliers, the 
cardinality of the target point set is equal to the cardinality of the template point set. 
The performance measure is the global mean square error (MSE) on all points instead 
of the correspondence pairs. We also qualitatively show the results in visual form to 
complement the quantitative analysis. 

4.1 Comparing ICP-Based Point Registration Methods 

Fig. 3 shows the registration results of ICP-1, ICP-2 and subset-ICP when tested 
against three cases of fish data as described below: 

• Case 1: the source data (in blue pentagram marks) is synthesized by a slight 
linear transformation 

• Case 2: the source data is produced by the larger rigid transformation. 
• Case 3: Gaussian noises added into the source data to deteriorate its shape 

The template shape is presented as red circle where its points are kept unchanged in 
the experiments.  

 

Fig. 3. The registration results on fish data for three ICP-based methods. The original data sets 
are in the first row. The matching results of ICP-1 are shown in the second row, those of ICP-2 
are in the third row, and the last row is the subset-ICP registration results. Note that the 
transformed source data is still depicted by the blue pentagram marks 
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Table 1. The Mean Square Errors and execution time of three methods on fish data 

MSE (cm) Time (seconds) 

 ICP-1 ICP-2 Subset-ICP ICP-1 ICP-2 Subset-ICP 
Case 1 0.0854 0.0224 4.545e-016 0.0587 0.0690 0.0121 
Case 2 0.3691 5.022e-016 4.459e-016 0.0294 0.0811 0.0057 
Case 3 0.3484 0.5188 0.044 0.3927 0.3048 0.3574 

 
The results in Fig.3 indicate that the subset ICP algorithm achieves significantly 

better matching accuracy than ICP-1 and ICP-2 algorithms, while it is also superior in 
term of MSE and execution time (Table 1) over the two algorithms. The higher MSE 
of the ICP-1 and ICP-2 algorithms are due to them falling into local minima. Subset 
ICP is also robust against Gaussian noise (Case 3) compare to ICP-1 and ICP-2. In 
Case 3, ICP-2 took less execution time than the other two algorithms but as shown in 
Fig.3 the result is only partially matched. 

Further tests of the subset ICP algorithm were performed and compared against 
Coherent Point Drift (CPD) method – an efficient point set registration for both rigid 
and non-rigid points based on Gaussian Mixture Model [1]. Registration results from 
the two data sets are shown in Fig.4. 

 

 

Fig. 4. The matching results of the elephant data and the Chinese’s blessing character 
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For Chinese’s blessing character, subset ICP algorithm achieves approximately the 
same level of accuracy as the rigid-CPD algorithm. However, for Case 2 of Elephant 
data, where its template has been rotated and translated slightly more than for Case 1 
transformation, our method is able to register the template and source set properly. 

4.2 Sensitivity Analysis of the Subset’s Partition 

The subset ICP method relies heavily on subset for registering points in its input set. 
Thus, it is interesting to study how sensitive is the subset’s cardinality in influencing 
the algorithm’s performance. Fig. 5 and Fig. 6 respectively show the MSE and 
execution time of the algorithm when tested with Elephant data where the cardinality 
of the subset is varied from 1 to 451. 
 

 

Fig. 5. The MSE of subset-ICP in the elephant data 

 

Fig. 6. The execution time of subset-ICP in the elephant data 
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The results provide the following general observations, first low MSE is recorded 
when the cardinality of the subset is small as illustrated in the initial graph’s plot in 
Fig.5. In contrast, the opposite trend is exhibited when the size of subset is increased. 
A few exceptions to this pattern were also evidenced in the plot. For instance, for 
subset’s cardinality 16 and 17 (and also for some other cardinal’s values), there is a 
“spike” in the MSE plot thus nullifying the general pattern observed earlier. Fig.6 
provides a confirmation on this observation for Case 2 with cardinal 17, where the 
two set were incorrectly matched. One possible answer to this flaw is due to the use of 
absolute orientation algorithm to find the least square distance between corresponding 
points. That is a larger error distance will have a large effect on the total score, this 
happen when the source point set is farther away from the template point set. 
Secondly, the graph plot in Fig.6 does not show any significant pattern between the 
cardinality of subset and their effect on execution time. This is expected because  
the convergence rate of the algorithm is predominantly determined by the quality of 
the selected points rather than by their quantity. Thus we may conclude that the 
algorithm is robust against the cardinality of subset, if the source point set is closer to 
the template point set, otherwise it is susceptible and hence sensitive to the cardinality 
of subset. 

 

Fig. 7. Registration results of subset-ICP based on different cardinalities of subset 
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4.3 Noise Robustness 

Robustness test evaluates the subset ICP’s ability to cope against outlier points (often 
referred to as noise). In this test, different proportions of Gaussian noise were 
introduced into the fish’s template data. In the experiments we fixed the subset’s 
cardinal, and recorded the registration errors as shown in Table 2. The logarithmic 
scaling on y-axis allows the behaviour for small MSEs (of case b), to be seen in Fig.8. 

Table 2. The MSE on fish data with different ratio Gaussian noise 

r 0.02 0.05 0.1 0.15 0.2 0.3 0.4 0.5 
a 3.85e-16 5.50e-16 5.37e-16 4.81e-16 6.86e-16 0.023 0.023 5.65e-16 
b 6.50e-16 7.76e-16 6.59e-16 5.85e-16 9.62e-16 0.022 4.21e-16 7.60e-16 

 
In Table 2, r is the noise proportion to the number of points on the fish’s template 

data set. The letter a denotes, the noise data were appended at the back of the last 
point of the template data set. While letter b indicates the noise data were inserted in 
front of the first point of the template data set. Based on Table 2, we can see that the 
registration error is kept quite low with the increasing of Gaussian noise proportion. 

 

 

Fig. 8. MSE (in cm) of subset-ICP method as Gaussian noise proportion is varied (for case b) 
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Table 3. The p values of t-test 

Group P value (for error) P value (for speed) 

A 115.92 10−×  0.3026 

B 63.3 10−×  0.2647 

C 77.14 10−×  0.2683 

 
As summarized in Table 3, the outliers affect significantly the registration error but 

the computation complexity is not significantly affected. The experimental results 
verify that for the sample data set used, subset IP method is robust against noise.  

5 Conclusion 

In this paper, a subset-based ICP method is proposed to handle rigid point set 
registration, which is an effective method for the larger rotation and less even without 
overlapping of two point sets. The merits of the proposed method stem from partial 
points instead of total points to find the correspondences. The registration 
performances are determined by the cardinality of subset when two point sets are 
fixed. In other words, the way of partition the entire data set influence heavily the 
success of the subset-ICP. Experiments are performed to indicate that subset-ICP 
method is an effective and robust registration method. More works will be done to 
prove and to explore how we can acquire an optimal partitioning scheme to generate 
subsets. 
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