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Abstract. This paper describes an application of orthogonal nonneg-
ative matrix factorization (NMF) algorithm in blind image separation
(BIS) problem. The algorithm itself has been presented in our previous
work as an attempt to provide a simple and convergent algorithm for
orthogonal NMF, a type of NMF proposed to improve clustering capa-
bility of the standard NMF. When we changed the application domain
of the algorithm to the BIS problem, surprisingly good results were ob-
tained; the reconstructed images were more similar to the original ones
and pleasant to view compared to the results produced by other NMF
algorithms. Good results were also obtained when another dataset that
consists of unrelated images was used. This practical use along with its
convergence guarantee and implementation simplicity demonstrate the
benefits of our algorithm.
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1 Introduction

Orthogonal nonnegative matrix factorization (ONMF) is an NMF objective that
imposes orthogonality constraints on its factors. This objective was first intro-
duced by Ding at al. [I] as an attempt to improve clustering capability of the
standard NMF (SNMF) proposed by Lee and Seung [2/3]. In ref. [4]5], we pro-
posed a convergent algorithm for ONMF based on the work of Lin [6]. We also
showed that our ONMF algorithm can outperform the SNMF algorithm in doc-
ument clustering task.

In this paper, we will show that our ONMF algorithm can also be used in
blind image separation (BIS) problem; a task of recovering original images from
image mixtures. This finding, thus demonstrates another application domain of
the algorithm.

2 BIS Problem Statement in NMF

Let W € ]Rf *B denotes M-by-R nonnegative matrix which each of its column
w, contains an original image (for this purpose, every image must be of the
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same size and has been reshaped into the corresponding vector). In this work,
we assume that the mixing process is linear and involves only the original images.
Thus, this process can be modeled with:

A = WH,

where H € REXN denotes column normalized nonnegative mixing matrix, i.e.,
> hpen = 1, for ¥n. To recover W from A, the NMF technique can be employed:

A~ BC, (1)

where B € R¥ *B and C e REXN are nonnegative approximations to W and
H respectively. Thus, the task of recovering the original images turns into the
task of decomposing the mixture matrix A into basis matrix B and coefficient
matrix C which can be done using NMF' algorithms.

3 A Convergent Algorithm for ONMF

A brief description of the algorithm will be presented in this section. More details
including convergence analysis and experimental results in document clustering
can be found in ref. [4J5].

The algorithm was proposed to solve the following objective:

. 1 «
win J(B,C) = || A~ BC|} + § [oc” 1 2)
st. B>0,C >0,

where || X||r denotes the Frobenius norm of X, the first component of the right
hand side part denotes the SNMF objective, the second component denotes
the orthogonality constraint imposed on the rows of C, I denotes a compatible
identity matrix, and « denotes a regularization parameter to adjust the degree
of orthogonality of C. Algorithm [Il shows the convergent algorithm proposed in
[415] for finding a solution to the problem.
The following gives definitions for some notations used in the algorithm:
B = o b if VeJ(B®,CH) >0
max(biy, o) if VgJ(B®,CW) <0’

(
(
c£n> if VeJ (B, CW) >0
max( ( C(

™m —
i) o) if Ve (BEHD,CW) <0’

mnr

ek =

denote the modifications to avoid the zero locking with o is a small positive
number, B and C denote matrices that contain b,,,, and ¢, respectively,

VBJ(B(k), C(k)) —B® R T _ AC(k)T,
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Algorithm 1. A convergent algorithm for ONMF [4l/5]

Initialization, B©® >0 and C© > 0.
for k=0,...,K do

7 (k) k k
bgrlfi»l) - bg,’f} . bmr X VBJ(B( )7C( >)mr

in + 5
S +— 6
repeat
)ty X VB .G

Qrn + 05
(5%“) — 58” X step
until J(B*HD c*D) < j(BRHD k)

end for

VCJ(B(k+1),C(k)) _ B(}C+1)TB(1€+1)C(]€) o B(k+1)TA+
aCE R Tk _ aC(k),

p—BRHCkC®T,
Q = BEDTRHRHDGHE) 4 (EWERTER)

¢ denotes a small positive number to avoid division by zero, and step denotes

a positive constant that determines how fast 586 ) grows in order to satisfy the
nonincreasing property.

Numerically, as long as « is sufficiently small, then for each k-th iteration, the
inner repeat — until loop will only be executed once. Since in practice usually
« is set to be small, this inner loop can be opened to reduce the computational
cost. The code below gives a quick implementation of the algorithm in Matlab
codes for small a.

As shown, the computational complexity of the algorithm is O(M NR) per
iteration, thus is the same as the SNMF algorithm’s.

function [B,C] = nmfOrtho(A,r)

[m,n] = size(A); alpha = 0.1; maxiter = 100;
B = rand(m,r);

C = rand(r,n);

sigma = 1.0e-9; delta = sigma;

for iteration = 1 : maxiter

CCt = CxC’;
gradB = BxCCt - AxC’;
Bm = max (B, (gradB<0) *sigma) ;

B = B - Bm./(Bm*CCt+delta) .*gradB;
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BtB = B’x*B;

gradC = BtB*C + alphal*CCt*C - alphal*C - B’x*A;

Cm = max(C, (gradC<0)*sigma);

CmCmt = Cm*Cm’;

C = C - Cm./(BtB*Cm + alphal*CmCmt*Cm + delta).*gradC;
end

4 Experimental Results

The experiments were conducted using two image datasets. Each dataset consists
of four images of 400x350 pixels. The first dataset is the dataset that contains
related images, and the second contains unrelated images. Fig. [[land Blshow the
first and the second datasets respectively.

To create a mixture matrix A for each dataset, we generated a column nor-
malized matrix H € Rixg randomly. The resulting mixed images for the first
and the second datasets are shown in fig. Pl and @l respectively.

To recover the original images from the mixtures, the SNMF algorithm, the
constrained NMF (CNMF) algorithm [7]—a widely used NMF algorithm in im-
age unmixing research, extended Lee-Seung (ENMF) algorithm [§], and our
ONMF algorithm were used. We also tried a block principal pivoting based NMF
algorithm [9] which has a good convergence property and SMART algorithm [§]
which was specially designed for blind source separation problem. However, we
didn’t include the results due to the poor performances in our datasets. The
appendix shows the implementation of these algorithms with ¢ is defined as in
algorithm [II 8 in CNMF denotes the regularization parameter similar to o in
ONMF, and np and nc in ENMF denote the learning rates.

As there are parameters in CNMF, ONMF and ENMF, we repeatedly con-
ducted the experiments using different parameter values until satisfactory results
were obtained. Table [I] shows the values used in the experiments. The unmixed
images are shown in fig. Bl and fig. [0l for dataset I and dataset II respectively.

For dataset I, ONMF produced the most pleasant images to view for all cases,
followed by ENMF, CNMF and then SNMF. As shown in last row of fig. Bl every
image produced by ONMF has minimum interference from other images resulting
in the clearest images. ONMF also showed the best ability in detecting edges
(boundaries of distinct regions) and distinct regions as both components are
perceptually easiest to identify due to the more pronounced contrasts between

Table 1. Parameter values used in the experiments

Dataset a B nmB mNc
Dataset I 0.03 0.5 1 1
Dataset 11 0.03 1 1 1
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(a) (b) (c) (d)

Fig. 1. Dataset I: Related images

Fig. 2. Mixed images (dataset I)
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(a) (b) (c) (d)

Fig. 3. Dataset II: Unrelated images

(e) () (8) (h)

Fig. 4. Mixed images (dataset II)
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(p)

Fig. 5. Unmixed images for dataset 1. The first, second, third, and fourth row corre-
spond to SNMF, CNMF, ENMF, and ONMF respectively.
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Fig. 6. Unmixed images for dataset II. The first, second, third, and fourth row corre-
spond to SNMF, CNMF, ENMF, and ONMF respectively.



Orthogonal Nonnegative Matrix Factorization for Blind Image Separation 33

Table 2. SNR measures for dataset 1

Algorithm Fig 1 Fig 2 Fig 3 Fig 4 Total
SNMF 4.011 4.729 5.607 7.107 21.45
CNMF 3.909 5.322 5.487 4.530 19.25
ENMF 5.723 6.466 6.718 5.883 24.79
ONMF 8.290 7.871 8.889 8.044 33.09

Table 3. SNR measures for dataset II

Algorithm Fig 1 Fig 2 Fig 3 Fig 4 Total
SNMF 5.338 3.361 12.47 3.086 24.26
CNMF 5.259 3.833 8.372 4.324 21.79
ENMF 5.891 4.165 10.56 5.010 25.63
ONMF  7.364 5.654 10.81 6.915 30.74

different regions and smoother pixels within a region. These facts can also be
captured by using SNR, (signal-to-noise-ratio). The following formula gives the
definition of SNR.

Wi — br”%

SNR = —101log
O wel%

)

where w,. and b, denote r-th column of W and B respectively. Table 2 shows
SNR measures between the original images and the reconstructed images. As
shown, in term of SNR, ONMF confidently outperformed other algorithms as
well.

In dataset IT where the images are unrelated, the recovering tasks were more
difficult to perform as the mixed images are less informative than the mixed
images of dataset I (one can easily point out that there are four different images
from fig. 2] but it’s not clear how many images represented by fig. H). Regardless,
as shown in fig. [l all NMF algorithms seemed to be successful in unmixing those
images (except ENMF which seemed to fail to recover the second image). The
quality of unmixing, however, is different as reflected by the SNR values shown
in table Bl In this case, overall our algorithm performed the best. Only in the
Lena image, SNMF outperformed our algorithm.

5 Conclusion

We have shown an application of our ONMF algorithm in image unmixing prob-
lem in which the algorithm could work well both in the dataset of related images
and dataset of unrelated images. In the dataset of related images, our algorithm
worked very well in which it produced very clear images and hence are pleasant
to view. In the dataset of unrelated images, in overall the algorithm still per-
formed the best. However, since the source images fig. @l are less informative than
the source images fig. [} all algorithms produced rather unclear images compared
to the reconstructions of the first dataset.
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Our algorithm also had the best ability to detect boundaries between distinct
regions which were often blurred in the results of other algorithms. The more
pronounced contrasts between different regions and smoother pixels within a
region were also observed in the results of our algorithm which contributed to
the overall quality of the reconstruction.

When the unmixing performance was quantified using SNR, in general our
algorithm could confidently outperform other algorithms since only in the Lena
image, the algorithm failed to perform the best.

The good performance of the proposed algorithm in the BIS problem can be
thought as a result of enforcing orthogonality in the coefficient matrix C which
in the same time also enforcing independency in the basis matrix B so that each
column of B tends to contain more information of individual image from the
mixtures.
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Appendix

Algorithm 2. The SNMF algorithm [3].

Initialization, B(®) > 0 and c(®) > o.

for k =0,..., K do
k
p(RHD) (k) (AcMT)
mr TR et e®T) 4
SR (B BE+FDTA)
N N (B(k+1)TB(k+1)c(k))Tn 45
end for

Algorithm 3. The CNMF algorithm [7].

Initialization, B(0) > 0 and c(®) > o.

for k =0,...,K do

p(FD) (k) (ACE)

mr mr (B(k)c(k)c(k)T)mr +4

JRHD (B (BHR+DT n)

" " (BRADT KD ) 4 soR)) |+ 6
end for

Algorithm 4. The ENMF algorithm [§].

Initialization, B(0) > 0 and c(®) > o.
for k=0,..., K do

(B(k)c(k)T _ Ac(k)T)"”.
(B(k)c(k)c(k)T)mr +5

k k k
S ) e BETUT (BEFDTC® —a))
3% T T NOCE (g DT R G(R) 4 s

r

k41 k k
B o(h) — mpol)

n

end for
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