
Classical Lie superalgebras at infinity

Vera Serganova

Abstract We study certain categories of modules over direct limits of classical Lie
superalgebras. In many cases these categories are equivalent to similar categories
for classical Lie algebras. The functors establishing this equivalence can be used to
obtain a new result for representation theory of direct limits of Lie algebras.

1 Introduction

There are several generalizations of simple Lie algebras and superalgebras in the
infinite-dimensional case. In this paper, we discuss representations of locally simple
Lie algebras, i.e. Lie algebras and superalgebras we consider are the direct limits
g= lim→ gi of finite-dimensional simple Lie algebras (or superalgebras) gi. In partic-
ular, we are interested in the cases when g= sl(∞),so(∞) or sp(∞).

In [5] we tried to define a nice analogue of the category of finite-dimensional
modules for g. The most obvious analogue, the category of integrable modules, is
rather difficult to study. Even the problem of classifying simple modules involves
infinitely many continuous parameters.

On the other hand, g has a very natural class of representations in the tensor pow-
ers of the standard and costandard modules. In [2] we give an intrinsic definition of
a category Tg that contains all such representations. It turns out that Tg has many
remarkable properties. Although it is not semi-simple, it is a Koszul category in the
sense of [1]. That allows one to calculate extensions between simple modules and
their injective resolutions. We also prove that the categories Tg for g = so(∞) and
sp(∞) are equivalent. In the recent preprint [8] the same categories are studied from
slightly different point of view.
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The goal of the present paper is to define and study analogues of Tg for direct
limits of classical Lie superalgebras. As follows from the Kac classification, [4],
there are four such superalgebras sl(∞,∞), osp(∞,∞), P(∞) and Q(∞). We will see
that in the first three cases we do not obtain new categories. Namely, Tsl(∞,∞) is
equivalent to Tsl(∞), and Tosp(∞,∞) and TP(∞) are equivalent to To(∞). The latter fact
can be used to construct a direct equivalence functor To(∞)→ Tsp(∞). This result is
somewhat surprising, since it appears that these categories are easier than the cor-
responding categories for finite-dimensional superalgebras. The rather complicated
matter of atypical representations disappears after going to direct limits.

In the case ofQ(∞)we obtain a completely new category. It is interesting to study
it in detail.

2 Direct limits of classical Lie algebras

2.1 General and special Lie algebras at infinity

Let V and V∗ be countable-dimensional vector spaces with non-degenerate pairing
tr :V ⊗V∗ → C.

Definition 1 gl(∞) =V ⊗V∗ has a natural Lie algebra structure given by

[v1⊗u1,v2⊗u2] = tr(v2⊗u1)v1⊗u2− tr(v1⊗u2)v2⊗u1.

Ker(tr) = sl(∞) is a simple Lie subalgebra of gl(∞).

One can also realize g as a direct limit

sl(∞) = lim→ sl(n), gl(∞) = lim→ gl(n),

and identify gl(∞) with the space of infinite matrices (ai j)i, j∈N with finitely many
non-zero entries and sl(∞) with the subalgebra of traceless matrices in gl(∞).

It is clear that V and V∗ are simple g-modules. Furthermore, the classical Schur-
Weyl duality works in the infinite-dimensional case.

Theorem 1 (Schur-Weyl duality) Let g= gl(∞) or sl(∞). Then

V⊗n =
⊕
|λ |=n

V λ ⊗Yλ , V⊗n∗ =
⊕
|λ |=n

V λ
∗ ⊗Yλ ,

where λ runs the set of partitions of size n and Yλ denotes the corresponding irre-
ducible representation of Sn and V λ = πλ (V⊗n), where πλ is a Young projector with
the Young diagram λ .

However, the representation of g in the space of mixed tensorsV⊗n⊗V⊗m∗ is not
completely reducible in contrast with finite-dimensional case. Indeed, for instance,
the exact sequence of sl(∞)-modules

0→ sl(∞)→V ⊗V∗ → C→ 0



Classical Lie superalgebras at infinity 183

does not split. The following result gives a description of the g-module structure on
V⊗n⊗V⊗m∗ .

Theorem 2 ([6]) Let g= gl(∞) or sl(∞). Then

V⊗n⊗V⊗m∗ =
⊕

|λ |=n,|μ|=m

Ṽ λ ,μ ⊗ (Yλ �Yμ),

where each Ṽ λ ,μ =V λ ⊗V μ
∗ is an indecomposable g-module with irreducible socle

V λ ,μ and Yλ �Yμ is the exterior tensor product of irreducible Sn and Sm-modules.
The socle filtration of Ṽ λ ,μ is given by

sock(Ṽ λ ,μ)/sock−1(Ṽ λ ,μ) =
⊕
|γ|=k

Nλ
γ,λ ′N

μ
γ,μ ′V

λ ′,μ ′ .

Here Nλ
γ,λ ′ stand for Littlewood–Richardson coefficients.

The proof is based on the results of Howe, Tan and Willenbring [3] who calcu-
lated asymptotic decomposition of mixed tensor products in the finite-dimensional
case.

2.2 Orthogonal and symplectic Lie algebras

Assume now that a countable-dimensional vector spaceV has a non-degenerate sym-
metric (resp. skew-symmetric) form ω :V ⊗V → C.

Definition 2 so(∞) (resp. sp(∞)) is the Lie subalgebra of finite rank linear operators
in V preserving ω .

One can use identification

so(∞) =Λ 2(V ), sp(∞) = S2(V )

given by
Xv∧w(u) = ω(v,u)w−ω(u,w)v, ∀v,w,u ∈V. (1)

Another way to define g is via direct limits

so(∞) = lim→ so(n), sp(∞) = lim→ sp(n).

The representation of g in the tensor algebra T (V )were also described by Penkov
and Styrkas.

Theorem 3 ( [6]) Let g= so(∞) or sp(∞). Then

V⊗n =
⊕
|λ |=n

Ṽ λ ⊗Yλ ,

where each Ṽ λ is an indecomposable g-module with irreducible socle V λ .
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The socle filtration of Ṽ λ is given by

sock(Ṽ λ )/sock−1(Ṽ λ ) =
⊕
|γ|=k

Nλ
2γ,λ ′V

λ ′ ,

for g= so(∞), and

sock(Ṽ λ )/sock−1(Ṽ λ ) =
⊕
|γ|=k

Nλ
2γ⊥,λ ′V

λ ′ ,

for g= sp(∞).

3 The category TTTg

Definition 3 Let g = gl(∞) or sl(∞). A subalgebra k ⊂ g is a finite corank sub-
algebra if there exist finite dimensional subspaces W ⊂ V and W∗ ⊂ V∗ such that
the restriction of the canonical pairing to W ⊗W∗ → C is non-degenerate and k ⊃
g∩ (W⊥∗ ⊗W⊥).

If g= so(∞) or sp(∞), then k⊂ g is a finite corank subalgebra if there exists a finite
dimensional subspaceW ⊂V such that the restriction of ω onW is non-degenerate
and k⊃Λ 2(W⊥) or S2(W⊥) respectively.

We define Tg as a full subcategory of g-modules whose objects M satisfy the
following conditions

• M is integrable.
• For every m ∈M the annihilator of m in g is a finite corank subalgebra.
• M has finite length.

It is not difficult to see that Tg is closed under tensor product, hence it is a mono-
idal category. However, it is not rigid since there is no a reasonable duality functor
on Tg. The following results relate tensor representations of g with Tg.

Theorem 4 ([2])

• For g= gl(∞) or sl(∞) all (up to isomorphism) simple objects of Tg are V λ ,μ .
• For g= so(∞) or sp(∞) all (up to isomorphism) simple objects of Tg are V λ .
• Ṽ λ ,μ (respectively Ṽ λ ) are all up to isomorphism indecomposable injective inTg.

To prove injectivity of Ṽ λ ,μ we use the fact (proven in [5]) that for any integrable
g-moduleM, the integrable part ofM∗ is injective in the category of integrable mod-
ules. From this it is easy to see that the functor Γ from the category of all integrable
g-modules to Tg defined by

Γ (M) =
⋃

Mk

(where the union is taken over all finite corank k ⊂ g) maps an injective module in
the category of integrable modules to an injective module in Tg. On the other hand,
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by a direct calculation done in [2]

Γ (V⊗m⊗V⊗n∗ ) =
⊕

k≤m,l≤n
(V⊗k⊗V⊗l∗ )⊕c(k,l).

Note that Γ can be considered as a certain version of the Zuckerman functor [9].
There exists a Borel subalgebra b⊂ g such that all simple modules ofTg are high-

est weight modules. For instance, if g= sl(∞), considered as the algebra of matrices
(ai j)i, j∈N, we define a nonstandard total order on N by 1 < 3 < 5 < · · ·< 6 < 4 < 2
and positive roots εi−ε j for all i< j. The corresponding infinite “Dynkin diagram” is

◦−◦−·· ·−◦−◦.
Lemma 1 If S is a non-zero quotient of the Verma module and S ∈ Tg, then S is
simple.

To show that the the category Tg is Koszul we use the following

Lemma 2 ([2])

• If g= gl(∞) or sl(∞), then

Extk(V λ ,μ ,V ν ,κ) �= 0

implies |λ |− |ν |= |μ |− |κ|= k.
• If g= so(∞) or sp(∞), then

Extk(V λ ,V ν) �= 0

implies |λ |− |ν |= 2k.

Let T = T (V ) for g= so(∞) or sp(∞) and T =
⊕

m,n≥0V⊗m⊗V⊗n∗ for g= sl(∞)
or gl(∞). For g= gl(∞) or sl(∞) we set

A k
g =

⊕
m,n≥0

Homg(V⊗m⊗V⊗n∗ ,V⊗m−k⊗V⊗n−k∗ ), Ag =
⊕
k≥0

A k
g .

For g= so(∞) or sp(∞) set

A k
g =

⊕
n≥0

Homg(V⊗n,V⊗n−2k), Ag =
⊕
k≥0

A k
g .

Note that Ag is by definition a graded algebra. It does not have the identity but it is
a direct limit of unital algebras.

Theorem 5 ([2])

• The category Tg is antiequivalent to the category Ag-fmod of locally unitary
finite-dimensional Ag-modules.

• Ag is a direct limit of Koszul rings.
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For g= gl(∞) and sl(∞) the corresponding algebras Ag are the same. It is shown
in [2] that A 0

g =
⊕

m,n≥0C[Sn×Sm] and A 1
g is generated by contractions.

In this case one can prove that Ag is Koszul self-dual, i.e. (A!
g)op ! Ag. That

implies the following formulas for extensions between simple modules

dimExtk(V λ ′,μ ′ ,V λ ,μ) = ∑
|γ|=k

Nλ
γ,λ ′N

μ
γ⊥,μ ′ .

It is also shown in [2] that for g = so(∞) and sp(∞) A 0
g =

⊕
n≥0C[Sn] and A 1

g

is generated by contractions. Knowing this it is easy to obtain an isomorphism

Aso(∞) !Asp(∞).

The latter implies an equivalence of abelian categories Tsp(∞) and Tso(∞) by The-

orem 5. Under this equivalence V λ goes to V λ⊥ . It is proven in [8] that this is an
equivalence of monoidal categories. A different proof of this fact is given in the
next section.

4 Superalgebras

4.1 Direct limits of classical Lie superalgebras

Let V =V0⊕V1 be a superspace, both V0 and V1 are countable-dimensional. Below
we consider the following possibilities.

• There is a countable-dimensional V∗ and a non-degenerate pairing str :V ⊗V∗ →
C. Then we set gl(∞,∞) =V ⊗V∗ and sl(∞,∞) = Ker(str) with the commutator
defined in the same way as in the purely even case (with the usual sign con-
vention). Note that g = gl(∞,∞) has a Z-grading (compatible with Z2-grading)
g= g−1⊕g0⊕g1, where

g0 =V0⊗ (V0)∗ ⊕ (V1)∗ ⊗V1 ! (gl(∞))⊕ (gl(∞)),
g1 =V0⊗ (V1)∗, g−1 = (V0)∗ ⊗V1.

This grading naturally can be restricted to sl(∞,∞). The Lie superalgebra sl(∞,∞)
is simple since it can be obtained as a direct limit of simple Lie superalgebras.

• We fix an even non-degenerate symmetric form ω : S2(V ) → C and define
osp(∞,∞) as the subalgebra of operators in V of finite rank preserving ω . One
can identify osp(∞,∞) with Λ 2(V ) using (1). In this case

g0 = so(∞)⊕ sp(∞), g1 =V0⊗V1.

The Lie superalgebra osp(∞,∞) is simple because it is isomorphic to a direct limit
of finite-dimensional simple Lie superalgebras.
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• We fix an odd non-degenerate form ω : S2(V )→C and define the Lie superalge-
bra P(∞) as the subalgebra of linear operators of finite rank in V preserving ω .
The superalgebra P(∞) has a Z-grading g= g−1⊕g0⊕g1, with

g0 =V0⊗V1 g1 = S2(V0), g−1 =Λ 2(V1).

Note that g0 is isomorphic to gl(∞), V0 and V1 are standard and costandard rep-
resentation of g0. Furthermore, g1 (resp. g−1) is identified with S2(V0) (resp.
Λ 2(V1)) by setting

Xu,w(v) = (u,v)w+(w,v)u,

for any u,w ∈V0, v ∈V and

Xu,w(v) = (u,v)w− (w,v)u,

for any u,w∈V1, v∈V . Observe that P(∞) = lim→ P(n) is not a simple Lie algebra.

Its commutator is a simple ideal SP(∞) of all traceless matrices in P(∞).

• Let J :V →V be an odd operator such that J2 =−1. The Lie superalgebraQ(∞) is
the centralizer of J in gl(∞,∞). As in the finite-dimensional case g0 = gl(∞) and
g1 is the adjoint representation of g0. Note that Q(∞) = lim→ Q(n) is not simple.

It contains a simple ideal SQ(∞) of odd codimension 1 consisting of operators
X such that str(XJ) = 0. Note that in contrast with all other cases, SQ(∞) is the
direct limit of SQ(n), but SQ(n) are not simple.

We leave to the reader the definition of finite corank subalgebras in this case.

4.2 TgTgTg for Lie superalgebras

Now let g denote one of the Lie superalgebras defined in the previous section. Let
Tg be a full subcategory of g-modules M satisfying the following three conditions:

(1) M is integrable over g0, and therefore over g,
(2) the annihilator of every vector inM is a finite corank subalgebra in g,
(3) M has finite length over g0.

It is clear that Tg is an abelian monoidal category. If g �=Q(∞), in order to avoid the
annoying but not essential parity chasing we allow morphisms which change parity,
i. e. the standard functor Π changing the parity is an isomorphism in our category.
In fact, it is not difficult to show that if g �= Q(∞), then

Tg = T+
g ⊕T−g

with Π : T+
g → T−g defining an equivalence of categories. Threfore, admitting odd

isomorphisms in the category Tg is the same as studying T+
g instead of Tg.
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4.3 Orthosymplectic superalgebra

Let g= osp(∞,∞). The goal of this subsection is to prove the following

Theorem 6 The monoidal categories Tg, Tsp(∞) and Tso(∞) are equivalent.

We start with studying tensor powers of the standard representation V . If M is a
g-module and k⊂ g is a subalgebra, thenMk denotes the space of k-invariants inM.

Lemma 3 (a) (V⊗n)so(∞) =V⊗n1 and (V⊗n)sp(∞) =V⊗n0 .
(b) V⊗n0 or V⊗n1 generates V⊗n over g.

Proof. We have the obvious isomorphism of g0-modules

V⊗n !
⊕

p+q=n

(V⊗p0 ⊗V⊗q1 )⊕C(n,p).

The identity
(V⊗p0 ⊗V⊗q1 )so(∞) = (V⊗p0 )so(∞)⊗V⊗q1

together with the fact that (V⊗p0 )so(∞) = 0 for p �= 0 imply (V⊗n)so(∞) = V⊗n1 . The
second statement of (a) is similar.

Now we prove that V⊗n0 generates V⊗n. Assume that the statement is not true.
Define the grading onV⊗n by setting the degree of a homogeneous indecomposable
tensor u= u1⊗·· ·⊗un equal the number of ui ∈V1. Pick up an indecomposable u of
minimal degree that does not belong toU(g)V⊗n0 . Then k = deg(u) > 0 and ui ∈V1
for some i. Pick up e,e′ ∈V0 such that (e,e′) = 1, (e,u1) = · · ·= (e,un) = 0. Then

u =±Xe∧ui(u1⊗·· ·⊗ui−1⊗ e′ ⊗ui+1⊗ . . .un)+ v,

for some v of degree k−2. Note that deg(u1⊗·· ·⊗ui−1⊗e′ ⊗ui+1⊗ . . .un) = k−1.
Hence both v and (u1⊗·· ·⊗ui−1⊗e′ ⊗ui+1⊗ . . .un) belong toU(g)V⊗n0 . Therefore
u∈U(g)V⊗n0 . Contradiction. In the same way one can prove thatV⊗n1 generatesV⊗n
over g.

Let
T (V ) =

⊕
n≥0

V⊗n, T≥m(V ) =
⊕
n≥m

V⊗n, T≤m(V ) =
⊕
n≤m

V⊗n.

A linear operator X ∈ Endk(V ) is called bounded if the there are n and m such that
T≥n(V )⊂ KerX and ImX ⊂ T≤m(V ).

We denote by Ag the subalgebra of all bounded operators in Endg(T (V )). Note
that Ag =

⊕
m,n≥0Homg(V⊗m,V⊗n). By Aso(∞) (resp. Asp(∞)) we denote the alge-

bras of bounded operators in Endso(∞)(T (V0)) (resp. Endsp(∞)(T (V0))).
Lemma 3 (a) implies that there are natural homomorphisms

ρso : Ag→Aso(∞), ρsp : Ag→Asp(∞)

given by the restriction to T (V )sp(∞) and T (V )so(∞) respectively.
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Lemma 4 Both ρso and ρsp are isomorphisms.

Proof. Injectivity of ρso and ρsp follows from Lemma 3 (b). To prove surjectiv-
ity recall from [2] that Aso(∞) (resp. Asp(∞)) are generated by permutation groups
acting on V⊗n0 (resp. V⊗n1 ) and contractions. Both permutations and contraction are
defined on T (V ) and hence lie in the image of ρso (resp. ρsp).

Let λ be a partition and πλ be the corresponding Young projector in C[Sn]. We
define

Ṽ λ = πλ (V⊗n), Ṽ0
λ = πλ (V⊗n0 ), Ṽ1

λ = πλ (V⊗n1 ).

Recall that the socles of Ṽ0
λ and Ṽ1

λ are simple g0-modules. We denote them V λ
0

and V λ
1 respectively.

Lemma 5 (a) V λ
0 ⊗V μ

1 is a simple g0-module.
(b) Every simple module in Tg0 is isomorphic to V λ

0 ⊗V μ
1 for some partitions λ

and μ .
(c) Ṽ λ

0 ⊗Ṽ μ
1 is indecomposable injective in Tg0 with socle equal to V

λ
0 ⊗V μ

1 .

Proof. (a) can be proven by the standard argument using the Jacobson density theo-
rem. Let v=∑m

j=1 e j⊗ f j �= 0 for some linearly independent e j ∈V λ
0 and f j ∈V λ

1 . Let

u= e⊗ f . SinceV λ
0 andV μ

1 are simple there exist X ∈U(so(∞)) and Y ∈U(sp(∞))
such that X(e1) = e,Y ( f1) = f andX(e j) =Y ( f j) = 0 for j> 1. Hence u=X⊗Y (v).
Thus any non-zero v generates the whole V λ

0 ⊗V μ
1 .

(b) Let M ∈ Tg0 be simple. Then M as an so(∞)-module lies in a slightly bigger
category T̂so(∞) of modules satisfying (1) and (2). Therefore M contains a subquo-

tient isomorphic to V λ
0 for some λ . Since M is simple M = V λ

0 ⊗W , where W is
some simple module in T̂sp(∞). HenceW =V μ

1 for some partition μ .
(c) Injectivity of Ṽ λ

0 in Tso(∞) implies injectivity of Ṽ λ
0 ⊗ Ṽ μ

1 in Tso(∞). By the

same reason Ṽ λ
0 ⊗Ṽ μ

1 is injective in Tsp(∞). For any simple V λ ′
0 ⊗V μ ′

1 we have that
an exact sequence

0→ Ṽ λ
0 ⊗Ṽ μ

1 →M→V λ ′
0 ⊗V μ ′

1 → 0

splits over so(∞) and sp(∞). Hence it splits over g0. That proves injectivity of Ṽ λ
0 ⊗

Ṽ μ
1 . Irreducibility of the socle follows from the identity

Homg0(V
λ ′
0 ⊗V μ ′

1 ,Ṽ λ
0 ⊗Ṽ μ

1 )! Homso(∞)(V
λ ′
0 ,Ṽ λ

0 )⊗Homsp(∞)(V
μ ′
1 ,Ṽ μ

1 ).

We define functors Rso : Tg→ Tso(∞) and Rsp : Tg→ Tsp(∞) by

Rso(M) = Msp(∞), Rsp(M) = Ms0(∞).

Lemma 6 If M ∈ Tg and M �= 0, then Rso(M) �= 0 and Rsp(M) �= 0.
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Proof. Let L ! V λ
0 ⊗V μ

1 be a simple submodule in socg0(M) with maximal |λ |.
Consider the natural morphism θ : L⊗g1→M of g0-modules given by θ(u⊗Xw) =
Xw(u). Then socg0(Imθ) has only constituents V κ

0 ⊗V ν
1 with |κ|< |λ |. Therefore if

u⊗w ∈ L is such that u = πλ (u1⊗·· ·⊗un), w ∈V⊗|μ| and e⊗ f ∈V0⊗V1 is such
that (e,ui) = 0 for all i = 1, . . . ,n, then

θ(u⊗w⊗ e⊗ f ) = Xe∧ f (u⊗w) = 0. (2)

Pick up e,e′ ∈V0, f , f ′ ∈V1 such that (e,ui) = (e′,ui) = 0 for all i= 1, . . . ,n, (e,e′) =
1 and ( f , f ′) = 0. Then Xf∧ f ′ = [Xe∧ f ,Xe′∧ f ′ ]. By (2) Xf∧ f ′(u⊗w) = 0. It is easy to
see that Xf∧ f ′ for all orthogonal f , f ′ generate sp(∞) we obtain sp(∞)w = 0. Hence
μ = 0, i.e. L⊂ Rso(M).

The proof that Rsp(M) �= 0 is similar.

Now we are ready to describe simple objects in Tg. Let λ be a partition with
|λ |= n. Choose a Cartan subalgebra h such that the roots of g are as inD(∞,∞). The
even roots of g are {±εi± ε j|i, j > 0, i �= j}∪{±δi±δ j|i, j > 0} and the odd roots
are {±(εi±δ j|i, j > 0}. Let b be the Borel subalgebra defined by the set of positive
roots

{εi± ε j|i < j}∪{δi±δ j|i < j}∪{2δi|i > 0}∪{εi±δ j|i, j > 0}.
LetV λ denote the simple highest weight module with highest weight λ =∑λiεi. We
introduce the standard order on weights by setting λ ≤ μ if μ−λ is a non-negative
integral linear combination of positive roots.

Lemma 7 V λ ∈ Tg. Any simple object in Tg is isomorphic to V λ for some parti-
tion λ .

Proof. Recall that V λ
0 is a highest weight module over so(∞). Hence there exists a

unique up to proportionality v ∈V λ
0 ⊂ Ṽ λ of weight λ =∑λiεi. An easy calculation

shows that n(v) = 0. By Frobenius reciprocity there exists a non-zero homomor-
phism ψ from the Verma module Mλ to Ṽ λ . The image of ψ has a unique simple
quotient isomorphic to V λ . Thus V λ ∈ Tg.

Now letM ∈ Tg be a simple module. Pick up a g0-submodule L!V λ
0 in Rso(M)

with maximal |λ |. Then a non-zero v ∈ L of weight λ is annihilated by n. Therefore
M !V λ .

Lemma 8 Let M ∈ Tg be a non-zero quotient of the Verma module Mλ for some
partition λ . Then M !V λ .

Proof. Suppose that the statement is false. Then there exists V μ ⊂M with μ < λ .
Let vμ ∈V μ be a highest vector of weight μ and vλ be a non-zero vector of weight
λ . Then vμ ∈U(n−)vλ and therefore vμ ∈U(n−∩g′)vλ for some finite-dimensional
g′= osp(2p,2q)⊂ g.Without loss of generality wemay assume p> 2q+ |μ |. There-
fore the quadratic Casimir element inU(g′) has the same eigenvalue on vμ and vλ .
This is impossible since (λ +ρ,λ +ρ) �= (μ +ρ,μ +ρ) if p > 2q+ |μ |, here ρ is
the half sum of even positive roots minus the half sum of odd positive roots of g′.
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Lemma 9 Let
0→V λ →M→V μ → 0

be a non-split exact sequence in Tg, then μ < λ in the standard order. Furthermore,
|μ |< |λ |.
Proof. If μ and λ are not comparable then a vector of weight μ spans in M a sub-
module isomorphic to V μ and the sequence splits. Since M ∈ Tg0 , M is semisimple
over h, the sequence also splits in the case μ = λ . If μ > λ , thenM is a quotient of the
Verma module Mμ . By Lemma 8M !V μ . Therefore the only possibility is μ < λ .
Note that this implies |μ | ≤ |λ |. We claim that |μ |< |λ |. Indeed, let |μ |= |λ |. For
any module N set N+ be the span of all weight spaces of weights ∑aiεi +∑b jδ j

with ∑ai = |λ |. If k ! gl(∞) be the subalgebra in g generated by the roots of the
form εi− ε j, then N+ is obviously k-stable. It is easy to see that (V λ )+ and (V μ)+

are simple k-submodules in the tensor algebra of the standard k-module. Therefore

0→ (V λ )+→M+→ (V μ)+→ 0

splits over k. But then the original sequence must split as well by Lemma 8.

Lemma 10 Ṽ λ is injective in Tg.

Proof. It is sufficient to prove that for any μ an exact sequence

0→ Ṽ λ →M→V μ → 0

of modules in Tg splits. If |μ | ≥ |λ |, then the sequence splits by Lemma 9, as |μ | ≥
|ν | for any simple subquotient V ν in Ṽ λ . Hence we may assume |μ |< |λ |.

By Lemma 5 Ṽ λ is injective in Tg0 . Therefore the sequence splits over g0. Thus,
we can write M =V μ ⊕Ṽ λ as a g0-module. The action of g1 is given by X(u,w) =
(Xu,c(u⊗X)+Xw) for any u ∈ V μ ,w ∈ Ṽ λ , X ∈ g1 and some c ∈ Homg0(V

μ ⊗
g1,Ṽ λ ). By Lemma 5

socg0Ṽ
λ =

⊕
(ν ,ν ′)

V ν
0 ⊗V ν ′

1

for some set of pairs (ν ,ν ′) such that |ν |+ |ν ′|= |λ |. Therefore we have

c(V μ
0 ⊗g1)∩ socg0Ṽ λ =

⊕
ν
V ν
0 ⊗V1,

where the summation is taken over some set of partitions ν such that |ν |= |λ |−1.
If u ∈V μ

0 , then
c(u⊗Xe∧ f ) =∑aνπν(u⊗ e)⊗ f ,

for some aν ∈ C. We claim that in fact all aν = 0. Indeed, assume aν �= 0. Let
u= πλ (u1⊗·· ·⊗un)∈V λ

0 for some linearly independent isotropic mutually orthog-
onal u1, . . . ,un. For any e ∈ V0 linearly independent of u1, . . . ,un and any non-zero
f ∈ V1, we have c(u⊗Xe∧ f ) �= 0. But then the annihilator of u ∈ M is not a finite
corank subalgebra, hence M is not in Tg. Contradiction.
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Thus, c(V μ
0 ⊗ g1) = 0. Let vμ ∈ V μ

0 be the highest vector. Then (vμ ,0) ∈ M is
n-invariant. Consider the submodule N ⊂M generated by (vμ ,0). By Lemma 8 N !
V μ . Therefore the exact sequence splits.

Corollary 1 The socle of Ṽ λ coincides with V λ .

Proof. Follows from Lemma 6 and 7 since Rso(Ṽ λ ) = Ṽ λ
0 .

Corollary 2
Rso(V λ ) =V λ

0 , Rsp(V λ ) =V λ⊥
1 . (3)

Proof. By Corollary 1 and Lemma 10

V λ =
⋂

ϕ∈Homg(Ṽλ ,T≤|λ |−1(V ))

Kerϕ .

Therefore Lemma 4 implies the statement.

One can prove as in [2] that Tg is antiequvivalent to the category of locally uni-
tary finite-dimensionalAg- modules. Therefore Lemma 4 implies thatTosp(∞,∞) and
Tso(∞) are equivalent abelian categories.

Define now the functors Sso :Tso(∞)→Tg and Ssp :Tsp(∞)→Tg as follows. Let
M ∈ Tso(∞) (resp. Tsp(∞)). By I(M) we denote the induced moduleU(g)⊗U(g0) M,
where we define the action of sp(∞) (resp. so(∞)) on M to be trivial. We set

Sso(M) = I(M)/(
⋂

ϕ∈Homg(I(M),T(V ))

Kerϕ),

respectively
Ssp(M) = I(M)/(

⋂
ϕ∈Homg(I(M),T(V ))

Kerϕ).

Observe that Homg(I(M),T≥n(V )) =Homg0(M,T≥n(V )) = 0 for sufficiently large
n. Thus, Sso(M) (resp. Ssp(M)) have finite length over g0 and hence lie in Tg. It is
not hard to see that Sso(M) (resp. Ssp(M)) is themaximal quotient of I(M) belonging
to Tg. Hence by Frobenius reciprocity

Homg(Sso(M),N)! Homso(∞)(M,Rso(N)),

Homg(Ssp(M),N)! Homsp(∞)(M,Rsp(N)). (4)

Proposition 1 The functors Sso (resp. Ssp) and Rso (resp. Rsp) are mutually inverse
equivalences between Tso(∞) (resp. Tsp(∞)) and Tg.

Proof. A functor F : Tg → Tso(∞) establishing an equivalence can be taken as
a composition of F1 : Ag-fmod → Tso(∞) and F2 : Tg → Ag-fmod, where F1 =
HomAg(·,T (V0)) and F2 = Homg(·,T (V )). Lemma 4 implies Rso = F1 ◦F2. Since
Sso is left adjoint to Rso by (4), Sso must be inverse of Rso by general nonsense.

The case of sp(∞) is similar.
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To prove Theorem 6 we claim the following.

Proposition 2 The functors Sso (resp. Ssp) and Rso (resp. Rsp) are equivalences of
monoidal categories.

The proof of the above Proposition amounts to showing that Rso and Rsp preserve
tensor products. It is an easy consequence of the following curious fact. We leave
its proof to the reader.

Lemma 11 Let k = gl(∞),sl(∞),so(∞),sp(∞). In the category Tk the functor of
invariants preserves tensor product. In other words, (M⊗N)k = Mk⊗Nk.

4.4 The case of gl(∞,∞)gl(∞,∞)gl(∞,∞)

The case g= gl(∞,∞) is similar to the case of osp(∞,∞). Therefore we only state the
results omitting the proofs. Recall that the even part g0 is a direct sum of two copies
of gl(∞). Let k=V0⊗(V0)∗ and l=V1⊗(V1)∗. We define the functors Rk :Tg→Tk,
Rl : Tg→ Tl by Rk(M) = Ml, Rl(M) = Mk and S : Tgl(∞)→ Tgl(∞|∞) by

S(M) = I(M)/(
⋂

ϕ∈Hom(I(M),T(V⊕V∗))
Kerϕ ,

where I(M) =U(g)⊗U(g0) M.
It is not hard to see that S is left adjoint to Rk and Rl.

Theorem 7 The functors Rk and S establish an equivalence of monoidal categories
Tgl(∞,∞) and Tgl(∞).

Note that the composition S◦Rl : Tk→ Tl defines an autoequivalence of the cat-
egory Tgl(∞) that sends V

λ ,μ →V λ⊥,μ⊥ .

4.5 The case of PPP(((∞∞∞)))

It turns out that for g= P(∞) the category Tg is also equivalent to Tso(∞) and hence
to Tsp(∞) and Tosp(∞|∞). However, the proof is different in this case.

We claim that any module M in Tg can be equipped with Z-grading M =
⊕

Mk

such that giMk ⊂ Mk+2i. Indeed, note that any simple g0-subquotient of M is iso-
morphic V λ ,μ

0 , and we assign to it degree |λ |− |μ|.
Define a functor R : Tg→ Tg0 by

R(M) = Mg1 .

Lemma 12 (a) For any M ∈ Tg, R(M) �= 0.
(b) If M is simple then R(M) is simple.
(c) If R(M)! R(L) for two simple M,L ∈ Tg, then M ! L.

Proof. SinceM has finite length over g0 there exists a maximal k such thatMk �= 0.
Then g1(Mk)⊂Mk+2 = 0. That proves (a).
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(b) Let k be maximal such that Mk �= 0. If N is a proper submodule in Mk, then
U(g)N =U(g−1)N is a proper submodule inM since (U(g)N)k = N. ThereforeMk

is a simple g0-module. If R(M)i �= 0 for some i < k, then U(g)(R(M)i) is a proper
non-zero submodule in M. Hence if M is simple, then R(M) = Mk is simple.

(c) It is clear that bothM and L are simple quotients of the parabolically induced
module U(g)⊗U(g0⊕g1) R(M). But the latter has a unique simple quotient. Hence
(c).

Lemma 13 Let M ∈ Tg.
(a) If V λ

0 ⊂M is an embedding of g0-modules, then V λ
0 ⊂ R(M).

(b) Any simple submodule in R(M) is isomorphic to V λ
0 for some partition λ .

Proof. (a) Consider the map ψ : g1⊗V λ
0 →M defined by ψ(X⊗v) = Xv. Suppose

|λ |= k. Consider linearly independent u1, . . . ,uk ∈V0. Then u= πλ (u1⊗·· ·⊗uk)∈
V λ
0 is not zero. Moreover, for any w,v ∈V0 we have

ψ(Xw,v⊗u) =∑
ν
aνπν(w⊗ v⊗u)

for some ν obtained from λ by adding two boxes not in the same column and some
aν ∈ C. Note that if some aν �= 0, then for any w,v such that u1, . . . ,uk,v,w are lin-
early independent, we have ψ(Xw,v⊗ u) �= 0. But then the annihilator of v ∈ V λ

0 is
not of finite corank. Hence ψ = 0, i.e. V λ

0 ⊂ R(M).
(b) Let L be a simple g0-submodule in R(M). Then L ! socg0(V

λ
0 ⊗V μ

1 ). We
want to show that μ = 0. Assume the opposite. Consider the g0-homorphism ψ :
L⊗g−1→M given by ψ(w⊗X) = X(w) for all X ∈ g−1,w ∈ L. Since the annihi-
lator of any vector inM has finite corank we have

ψ(socg0(L⊗g−1)) = 0. (5)

Let w ∈ L be of the form

w = πλ (v1⊗·· ·⊗ vn)⊗πμ(u1⊗·· ·⊗um),

where vi ∈V0,u j ∈V1 are linearly independent, n = |λ |,m = |μ |, (vi,u j) = 0 for all
i≤ n, j≤m. Let f1, f2 ∈V1 be orthogonal to v1, . . . ,vn and linearly independent with
u1, . . . ,um. By (5)

ψ(w⊗Xf1, f2) = Xf1, f2(w) = 0. (6)

Let e ∈V0. Then for any v ∈V0,u ∈V1 we have
[Xe,e,Xf1, f2 ](v) = 2(( f1,v)( f2,e)− ( f2,v)( f1,e))e,
[Xe,e,Xf1, f2 ](u) = 2(e,u)(( f1,e) f2− ( f2,e) f1).

(7)

Pick up e ∈V0, f1, f2 ∈V1 such that (e, f1) = 1,(e, f2) = 0, (e,u1) = 1 and (e,ui) =
0 for i > 1. Then by (6) [Xe,e,Xf1, f2 ](w) = 0 and by (7)

[Xe,e,Xf1, f2 ](w) = 2πλ (v1⊗·· ·⊗ vn)⊗πμ( f2⊗u2⊗·· ·⊗um) �= 0.

Contradiction.
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Corollary 3 For any simple M ∈ Tg, R(M)!V λ
0 for some λ .

We use the notation V λ for the simple M ∈ Tg with R(M) =V λ
0 .

We will prove now that V⊗n is injective in Tg. Consider the action of Sn on V⊗n
such that an adjacent transposition σi,i+1 acts by

σi,i+1(v1⊗·· ·⊗ vn) = (−1)p(vi)p(vi+1)v1⊗·· ·⊗ vi+1⊗ vi⊗·· ·⊗ vn.

This action commutes with the action of g.

Proposition 3 (a) R(V⊗n) = (V0)⊗n;
(b) socV⊗n =U(g0)(V⊗n0 );
(c) Endg(V⊗n) = Endg0(V

⊗n
0 ) = C[Sn];

(d) V⊗n =
⊕
|λ |=n Ṽ

λ ⊗Yλ , where Yλ is the irreducible Sn-module associated to λ
and Ṽ λ is an indecomposable module with socle V λ .

Proof. (a) Consider V⊗n as a g0-module. It splits into indecomposable sumands
V0μ ⊗V1ν with |μ |+ |ν |= n. Hence the statement follows from Lemma 13(b)

(b) ByLemma 12(a) and (a) eachV μ
0 ⊂V⊗n0 generates a simple submodule. There-

fore (b) follows from (a).
(c) The restriction map: Endg(V⊗n)→ Endg0(V

⊗n
0 ) =C[Sn]; is obviously surjec-

tive. We claim that the quotient of V⊗n by the socle can have only simple subquo-
tients V μ for |μ | < n. Indeed, if V μ is a simple subquotient of V⊗n, then V μ

0 is a
simple g0-subquotient of V⊗n. Hence |μ | ≤ n. On the other hand, if |μ | = n, then
V μ
0 ⊂ V⊗n0 ⊂ socV⊗n. Therefore any ϕ ∈ Endg(V⊗n) that kills the socle must be

zero. That implies injectivity of the restriction map.
(d) is a consequence of (c) and (b).

Note that (b) also implies

Corollary 4 If Homg(V⊗n,V⊗m) �= 0, then n−m is non-negative even.

Lemma 14 Let M ∈ Tg, V λ
0 ⊂ R(M) generates M, then M !V λ .

Proof. Let |λ |= n. Consider the parabolically inducedmoduleK =U(g)⊗U(g0⊕g1)
V λ
0 . We have an isomorphism K ! Λ(g−1) ⊗ V λ

0 of g0-modules. Let N0 =
socg0(g−1 ⊗V λ

0 ). First, we show that g1(N0) = 0. For this we fix the Borel sub-
algebra of g0 such that all tensor modules are highest weight modules (see [2] and
Sect. 3). If v ∈ V λ

0 is a highest vector, Y ∈ g−1 is a highest vector with respect to
the adjoint action of g0, then Y ⊗ v generates N0 (as a g0-module). Let X ∈ g1, then
X(Y ⊗v) = 1⊗ [X ,Y ]v. By a straightforward check [X ,Y ]v= 0. Thus, g1(Y ⊗v) = 0
and hence the whole N0 is annihilated by g1.

Now let N ⊂ K be the submodule generated by N0 and Q = K/N. Let π : K→ Q
denote the natural projection. Note that the annihilator of π(1⊗v) is of finite corank.
SinceU(g)π(1⊗v) =Q,Q satisfies (1) and (2). Note thatM is a quotient of K. Con-
sider the natural projection σ : K → M. If σ(N0) �= 0, then Zσ(1⊗ v) �= 0 for any
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Z ∈ g−1, that contradicts our assumption M ∈ Tg, as σ(1⊗ v) does not have the
annihilator of finite corank. Hence σ(N0) = 0 and therefore M is a quotient of Q.

Note that although K /∈ Tg, it is still equipped with the Z-grading such that
Kn−2k = Λ k(g−1)⊗V λ

0 . Hence both N and Q are also graded. We claim that for
all μ and k > 0

Homg0(V
μ
0 ,Qn−2k) = 0. (8)

Indeed, Nn−2k is generated by Λ k−1(g−1)(Y ⊗ v) over g0. Any weight vector in
Λ k−1(g−1)(Y ⊗v) has weight ∑aiεi with at least two negative ai and hence belongs
to soc2k−1g0

Kn−2k. But then

Nn−2k ⊂ soc2k−1g0
Kn−2k.

Therefore we have an embedding of g0-modules

socg0Q
n−2k ⊂ (soc2kg0K

n−2k)/Nn−2k.

All g0-simple subquotients of soc2kg0K
n−2k are of the form socg0(V

μ
0 ⊗V ν

1 ) with
|ν | ≥ 1. Hence (8).

Now we can prove that Q is simple and hence isomorphic to V λ . Indeed, it is
equivalent to proving that R(Q) =V λ

0 . Suppose the latter is false, i.e. R(Q)n−2k �= 0
for some k > 0. By Lemma 13(a) there exists μ such that V μ

0 ⊂ R(Q)n−2k. But this
contradicts (8).

Theorem 8 Ṽ λ is the injective hull of V λ in Tg.

Proof. It suffices to prove that any exact sequence in Tg of the form

0→ Ṽ λ →M→V μ → 0

splits. Since Ṽ λ is injective in Tg0 the sequence splits over g0. In particular, we have
an embeddingV μ

0 ⊂M of g0-modules. By Lemma 13(a)V μ
0 ⊂ R(M). By Lemma 14

V μ
0 generates V μ ⊂M. Hence the statement.

The above theorem and Proposition 3(d) imply

Corollary 5 V⊗n is injective in Tg.

Recall that Ag denotes the subalgebra of all bounded operators in Endg(T (V )).
Theorem 8 implies

Corollary 6 Tg is antiequivalent to the category of locally unitary finite-dimensio-
nal modules over Ag.

By Corollary 4 we have a Z-grading

Ag =
⊕
i≥0

A i
g, A i

g =
⊕
n≥0

Homg(V⊗n,V⊗n−2i).
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By Proposition 3
A 0
g =

⊕
n≥0
C[Sn].

For any 1≤ i < j ≤ n define τni j ∈ Homg(V⊗n,V⊗n−2) by the formula

τni j(v1⊗·· ·⊗ vn) = (−1)s(vi,v j)v1⊗·· ·⊗ v̂i⊗·· ·⊗ v̂ j⊗·· ·⊗ vn,

where s = (p(vi)+ p(v j))(p(v1)+ · · ·+ p(vi−1))+ p(v j)(p(vi+1)+ · · ·+ p(v j−1)).

Lemma 15 {τni j} for all n > 1 and 1≤ i < j ≤ n form a basis in A 1
g .

Proof. It is sufficient to show that for a fixed n, the set {τni j} for all 1 ≤ i < j ≤ n

is a basis in Homg(V⊗n,V⊗n−2). Linear independence is straightforward. To prove
that {τni j} span Homg(V⊗n,V⊗n−2) consider the homomorphism

ρ : Homg(V⊗n,V⊗n−2)→ Homg0((V
⊗n)n−2,(V⊗n−2)n−2)

defined by restriction to the n−2-th graded component. Since (V⊗n−2)n−2 =V⊗n−20
generates the socle of V⊗n−2, this homomorphism is injective. Write

(V⊗n)n−2 =
n⊕

k=1

Mk,

where Mk =V⊗k−10 ⊗V1⊗V⊗n−k0 . Any ψ ∈ Homg0((V
⊗n)n−2,V⊗n−20 ) can be writ-

ten in the form ∑aklθ l
k where θ

l
k :Mk→V⊗n−20 is the restriction of τnkl toMk if k < l

or τnlk if k > l. If ψ lies in the image of ρ , then ψ = ρ(φ) and therefore

ψ(Xf1, f2(v1⊗·· ·⊗ vn)) = Xf1, f2φ(v1⊗·· ·⊗ vn) = 0 (9)

for any v1, . . . ,vn, f1, f2 ∈V0. Choose v1, . . . ,vn ∈V0, f1, f2 ∈V1 so that (vi, f1)= 0 for
any i �= k, (vi, f2) = 0 for any i �= l, (vk, f1) = (vl , f2) = 1. Then (9) implies akl = alk.
Therefore ψ = ρ(∑k<l aklτnkl). The result follows now from injectivity of ρ .

Lemma 16 Let λ+ (resp. λ−) denote the set of all μ obtained from λ by adding
(resp. removing) one box. Then we have the following exact sequence

0→
⊕
ν∈λ+

V ν →V λ ⊗V →
⊕
μ∈λ−

V μ → 0.

Proof. Assume |λ |= n. From embedding V λ ⊗V ⊂V⊗n+1 we have

R(V λ ⊗V ) =V λ
0 ⊗V0 =

⊕
ν∈λ+

V ν
0 .

Let M be the submodule in V λ ⊗V generated by R(V λ ⊗V ). Then M =
⊕

ν∈λ+V ν

by Lemma 14 and Pierri rule. Let S= (V λ ⊗V )/M and π :V λ ⊗V → S be the natural
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projection. Then S is generated by π(V λ
0 ⊗V1). Moreover, π(V λ

0 ⊗V1) ⊂ R(S). By
Lemma 13(b) and [5]

π(V λ
0 ⊗V1)⊂

⊕
μ∈λ−

V μ
0 .

To see that
π(V λ

0 ⊗V1) =
⊕
μ∈λ−

V μ
0

observe that the set {τn+1
j,n+1|1 ≤ j ≤ n} spans Homg0(V

λ
0 ⊗ V1,V

n−1
0 ). Since

τn+1
j,n+1(M) = 0 for all j ≤ n we have

M∩ (V λ
0 ⊗V1)⊂ socg0(V

λ
0 ⊗V1)

Now the statement follows from Lemma 14.

Lemma 17

socV⊗n =
⋂

ϕ∈Homg(V⊗n,V⊗n−2)
Kerϕ =

⋂
1≤i< j≤n

Kerτni j.

Proof. The inclusion
socV⊗n ⊂

⋂
1≤i< j≤n

Kerτni j

is trivial since V⊗n0 ⊂ Kerτni j for all i, j and socV⊗n is generated by V⊗n0 .
We prove equality by induction in n. Let Xn =

⋂
1≤i< j≤nKerτni j. By induction

assumption we have

Xn ⊂ Xn−1⊗V = (socV⊗n−1)⊗V.

Using the previous lemma one can easily see that there is an exact sequence

0→ socV⊗n→ Xn−1⊗V → Z→ 0,

where Z is a direct sum of some V μ with |μ |= n−2. By the above exact sequence
it is sufficient to check

(socV⊗n)n−2 =
⋂

1≤i< j≤n
Kerτni j ∩ (V⊗n)n−2.

Our calculation in the proof of Lemma 15 implies that⋂
1≤i< j≤n

Kerτni j ∩ (V⊗n)n−2 = g−1V⊗n0 .

Hence the statement.

Lemma 18 Ag is generated by A 0
g and A 1

g .
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Proof. Let ϕ ∈ Homg(V⊗n,V⊗n−2k) for k > 1. Then socV⊗n ⊂ Kerϕ . Let M =
V⊗n/socV⊗n. By Lemma 17⊕

1≤i< j≤n
τni j :V⊗n→ (V⊗n−2)⊕n(n−1)/2

defines the embeddingM ⊂ (V⊗n−2)⊕n(n−1)/2. By injectivity of V⊗n−2k there exists
ψ ∈ Homg((V⊗n−2)⊕n(n−1)/2,V⊗n−2k) such that

ϕ = ψ ◦ (
⊕

1≤i< j≤n
τni j).

Hence
ϕ = ∑

1≤i< j≤n
ψi j ◦ τni j

for some ψi j ∈ Homg(V⊗n−2,V⊗n−2k). Now the statement easily follows by induc-
tion in k.

Theorem 9 The graded algebras AP(∞) and Aso(∞) are isomorphic. Hence the cat-
egories TP(∞), Tso(∞), Tsp(∞) and Tosp are all equivalent.

It is an open problem to construct directly a functorTP(∞)→Tso(∞) that preserves
tensor product.

Finally, let us observe that we know very little about finite-dimensional represen-
tations of P(n). In particular, characters of simple modules and extensions between
simple modules are unknown. On the other hand, in TP(∞) these questions are easy
to answer. Is it possible to use information about representations of P(∞) to make
some progress in the finite-dimensional case?

5 The case of the queer Lie superalgebra QQQ(((nnn)))

5.1 Sergeev duality

In this section we assume g= Q(∞). Let us recall the analogue of Schur–Weyl du-
ality result in this case. It is due to Sergeev [7].

Let Hn be the semidirect product of C[Sn] and the Clifford algebra Cliffn with
generators pi, i = 1, . . . ,n satisfying the relations

p2i =−1, pip j + p j pi = 0.

Define the action of Hn on V⊗n as follows

si,i+1(v1⊗·· ·⊗vi⊗vi+1⊗·· ·⊗vn) = (−1)p(vi)p(vi+1)(v1⊗·· ·⊗vi+1⊗vi⊗·· ·⊗vn),

pi(v1⊗·· ·⊗ vi⊗·· ·⊗ vn) = (−1)p(v1)+···+p(vi−1)(v1⊗·· ·⊗ J(vi)⊗·· ·⊗ vn).
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One can show (see [7]) that Hn !Un⊗Cliffn for a certain finite-dimensional al-
gebra Un. The category of finite-dimensional representations of Un is equivalent to
the category of projective representations of Sn. Irreducible representations ofUn are
enumerated by strict partitions.

Theorem 10 ([7]) Hn is the centralizer of Q(∞) in V⊗n. There is a decomposition

V⊗n =
⊕

2−δ (λ )V λ ⊗Tλ ,

here summation is taken over all strict partitions of size n, Tλ is the irreducible
Hn-module corresponding to the strict partition λ , δ (λ ) is the parity of the length
of λ .

The coefficient 2−δ (λ ) appears in the case when dimEndQ(∞)(Vλ ) = (1|1). For
example, the second tensor power of the standard representation V has a decompo-
sition

V ⊗V = S2(V )⊕Λ 2(V ).

But S2(V )!Λ 2(V ) asQ(∞)-modules because p1p2(S2(V )) =Λ 2(V ). There is only
one strict partition λ = (2,0, . . . ,0) of size 2, δ (λ ) = 1. The reader will check that
H2 has an irreducible 4-dimensional module (in the category ofZ2-graded modules).

5.2 The category TQ(∞)TQ(∞)TQ(∞)

Let us consider the mixed tensor module

T =
⊕
m,n≥0

V⊗n⊗V⊗m∗

We claim that T is an injective cogenerator in the category TQ(∞).

Lemma 19

V⊗n⊗V⊗m∗ =
⊕

|λ |=n,|μ|=m

2−max(δ (λ ),δ (μ))Ṽ λ ,μ ⊗ (Tλ �Tμ),

where Ṽ λ ,μ is an indecomposable injective module in Tg with simple socle V λ ,μ .

Define the graded subalgebraAQ(∞)⊂EndQ(∞)(T ) generated by
⊕

n,m≥0Hn⊗Hm

and all contractions in HomQ(∞)(V⊗n⊗V⊗m∗ ,V⊗n−1⊗V⊗m−1∗ ).

Conjecture Let g= Q(∞).

• V λ ,μ (for pairs of strict partitions (λ ,μ)) are all up to isomorphism simple objects
in Tg.

• Ṽ λ ,μ are all up to isomorphism indecomposable injective objects in Tg.
• Ag is a direct limit of self-dual Koszul rings.
• Tg is antiequivalent to the category of finite dimensional (locally unitary) Ag-

modules.
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• The socle filtration of Ṽ λ ,μ is given by

sock(Ṽ λ ,μ) =
⊕
|γ|=k

Rλ
γ,λ ′R

μ
γ,μ ′V

λ ′,μ ′ .

Here Rλ
γ,λ ′ stand for the Littlewood–Richardson coefficients for the Lie superal-

gebra Q(∞).

Note that an analogue of Howe, Tan, Willenbring result for Q(N) for N >> 0 is
difficult to get since there is no complete reducibility. On the other hand, even if we
had such result, it is unclear how to proceed to ∞, because we “loose” some simple
constituents at ∞.

For instance, SQ(n) has a one dimensional center for every n but

SQ(∞) = lim→ SQ(n)

is simple.
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