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Preface

The first examples of Lie superalgebras appear in algebraic topology in the late 40’s
(the Whitehead product on homotopy groups is a Lie superalgebra bracket) and in
the context of deformation theory of complex structures (Nijenhuis, Frölicher and
Nijenhuis) in the late 50’s. Shortly after, Gerstenhaber, in a series of fundamental
papers, shed new light on the role of Lie superalgebras in his theory of deformation
of rings and algebras, while Spencer and his collaborators developed applications to
pseudogroup structures on manifolds.

A renewed interest in Lie superalgebras came from Physics in the early 70’s:
many examples arise naturally as “supersymmetries” for quantum field theories, e.g.
in theWess-Zuminomodel1. It was however Kac’s landmarkAdvances paper2 which
established the study of Lie superalgebras as a branch of Algebra in its own right.

Since then the subject has received dramatic developments, so that up to now
more than 900 papers having “Lie superalgebra” in their title can be counted in the
MathSciNet.

This volume originates from “Lie Superalgebras”, held in Roma, Istituto Nazio-
nale di Alta Matematica “Francesco Severi”, December 14-19, 2012.

It consists of original papers and/or extended expositions of the talks delivered at
the conference.

We believe that the contributions, kindly offered by the invited speakers, clearly
illustrate one of the most remarkable features of the theory of Lie superalgebras
which is, the astonishing range of its connections with other branches of Mathemat-
ics and Mathematical Physics.

It is our pleasure to thank Professor Vincenzo Ancona, President of Indam, the
Scientific Committee and the entire staff of Indam, for allowing us the opportunity
to gather so many specialists in such a highly stimulating meeting.

1 A thorough discussion of the role of Lie superalgebras up to the mid 70’s can be found in Corwin-
Ne’eman-Sternberg, Rev. Mod. Ph., 47, 575–603 (1975).
2 Kac, V.G.: Lie superalgebras. Advances in Math. 26(1) 8–96 (1977).
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vi Preface

By happy coincidence, the publication of this volume coincides with Victor Kac’s
seventieth birthday. It would be hard to believe that the theory of Lie superalgebras
would have progressed so far without his contribution in the field. With the consent
of all contributing authors, we would like to dedicate this volume to him.

Rehovot and Roma Maria Gorelik
September 2013 Paolo Papi
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Superbosonisation, Riesz superdistributions,
and highest weight modules

Alexander Alldridge and Zain Shaikh

Abstract Superbosonisation, introduced by Littelmann–Sommers–Zirnbauer, is a
generalisation of bosonisation, with applications in RandomMatrix Theory andCon-
densed Matter Physics. In this survey, we link the superbosonisation identity to Rep-
resentation Theory and Harmonic Analysis and explain two new proofs, one via the
Laplace transform and one based on a multiplicity freeness statement.

1 Introduction

Supersymmetry (SUSY) has its origins in Quantum Field Theory. It is usually as-
sociated with High Energy Physics, especially with SUGRA, where the fermionic
fields correspond to physical quantities, the mathematical incarnation of a (as yet,
hypothetical) fundamental phenomenon. However, beyond this fascinating and deep
theory, and its independent mathematical interest, SUSY also has applications in
quite different areas of physics, notably, in Condensed Matter.

Here, the generators of supersymmetry do not correspond to physical quantities.
Rather, they appear as effective symmetries of models for low-temperature limits
of the fundamental Quantum Field Theory. This idea goes under the name of the
Supersymmetry Method, and was developed by Efetov and Wegner [9].

Its particular merit is the possibility to derive, by the use of Harmonic Analysis on
certain symmetric superspaces, precise closed form expressions for statistical quan-
tities – such as the moments of the conductance of a metal with impurities [29,30] –
in a regime where the system becomes critical, for instance, exhibiting a transition
from localisation to diffusion, which is not tractable by other methods.
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Mathematical Institute, University of Cologne, Weyertal 86–90, 50931 Köln, Germany
e-mail: alldridg@math.uni-koeln.de
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M. Gorelik, P. Papi (eds.): Advances in Lie Superalgebras. Springer INdAM Series 7,
DOI 10.1007/978-3-319-02952-8_1, © Springer International Publishing Switzerland 2014



2 A. Alldridge and Z. Shaikh

In connection with the physics of thin wires, the subject was well studied in the
1990s; it has recently gained substantial new interest, since the ‘symmetry classes’
investigated in this context [4, 14, 31] have been found to occur as ‘edge modes’ of
certain 2D systems dubbed ‘topological insulators’ (resp. superconductors) [12].

Mathematically, several aspects of the method beg justification. One both sub-
tle and salient point is the transformation of certain integrals over flat superspace in
high dimension N→∞, which occur as expressions for statistical Green’s functions,
into integrals over a curved superspace of fixed rank and dimension – the latter being
more amenable to asymptotic analysis (by steepest descent or stationary phase). Tra-
ditionally, this step is performed by the use of the so-called Hubbard–Stratonovich
transformation, which is based on a careful deformation of the integration contour.

This poses severe analytical problems, which to the present day have only been
overcome in cases derived from randommatrix ensembles that follow the normal dis-
tribution [15]. To extend the Supersymmetry Method’s range beyond Gaussian dis-
order, for instance to establish universality for invariant random matrix ensembles,
a complementary tool was introduced, based on ideas of Fyodorov [13]: the Super-
bosonisation Identity of Littelmann–Sommers–Zirnbauer [21]. (A more complete
account of the history of superbosonisation is to be found in the introduction of [3].)

We now proceed to describe this identity. In general, it holds in the context of
unitary, orthogonal, and unitary-symplectic symmetry. We restrict ourselves to the
first case (of unitary symmetry), although our methods carry over to the other cases.

One considers the space W := Cp|q×p|q of square super-matrices and a certain
subsupermanifold Ω of purely even codimension, whose underlying (Riemannian
symmetric) manifold Ω0 is the product of the positive Hermitian p× p matrices
with the unitary q× q matrices. Let f be a superfunction defined and holomorphic
on the tube domain based on Herm+(p)×Herm(q). The superbosonisation identity
states ∫

Cp|q×n⊕Cn×p|q
|Dv| f (Q(v)) =C

∫
Ω
|Dy|Ber(y)n f (y), (1)

for some finite positive constant C, provided f has sufficient decay at infinity along
the manifoldΩ0. Here,Q is the quadratic mapQ(v) = vv∗, |Dv| is the flat Berezinian
density, and |Dy| is a Berezinian density onΩ , invariant under a certain natural tran-
sitive supergroup action we will specify below.

Remark that any GL(n,C)-invariant superfunction on Cp|q×n⊕Cn×p|q may be
written in the form f (Q(v)). Thus, a notable feature of the formula is that it puts the
‘hidden supersymmetries’ (from GL(p|q,C)) into evidence through the invariant
integral over the homogeneous superspace Ω where ‘manifest symmetries’ (from
GL(n,C)) enter via some character (namely, Ber(y)n).

A remarkable special case occurs when p = 0. Then Eq. (1) reduces to∫
C0|q×n⊕Cn×0|q

|Dv| f (Q(v)) =C
∫
U(q)
|Dy| det(y)−n f (y),

which is known as the Bosonisation Identity in physics. Notice that the left-hand side
is a purely fermionic Berezin integral, whereas the right-hand side is purely bosonic.
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Formally, it turns fermions ψψ̄ into bosons eiϕ . If in addition q = 1, we obtain the
Cauchy Integral Formula.

At the other extreme, if q= 0, thenΩ =Herm+(p), and Eq. (1) is a classical iden-
tity due to Ingham and Siegel [18, 26], well-known to harmonic analysts. It admits
a far-reaching generalisation in the framework of Euclidean Jordan algebras [11].
The first one to use it in the physics context that inspired superbosonisation was
Fyodorov [13]. Moreover, the right-hand side of the identity, viz.

〈Tn, f 〉 :=
∫
Herm+(p)

|Dy| det(y)n f (y)

is the so-called (unweighted) Riesz distribution. After suitable renormalisation, it
becomes analytic in the parameter n, a fact that was exploited in the analytic contin-
uation of holomorphic discrete series representations by Rossi and Vergne [10, 24].

This observation links the identity to equivariant geometry and Lie theoretic Repre-
sentation Theory, and this was our motivation to re-investigate the identity.

In this survey, we explain two new proofs of the superbosonisation identity, which
exploit these newly found connections. One of these proofs is based on Represen-
tation Theory. Namely, as it turns out, the two sides of the identity are given by
certain special relatively invariant functionals on two highest weight modules of the
Lie superalgebra g′ := gl(2p|2q,C), which are infinite dimensional for p > 0. Their
equality is an immediate consequence of a multiplicity one statement. We will ex-
plain the main ingredients of the proof; details shall be published elsewhere.

On the other hand, to actually identify the r.h.s. as a functional on the correspond-
ing representation requires the construction of an intertwining operator in the form
of a certain weighted Laplace transform Ln. This leads to another proof, based on
comparing Laplace transforms. The functional analytic details of this proof can be
found in [3]. Here, we only explain the main ideas.

Combining both points of view leads to further developments. Indeed, the rep-
resentations related to the superbosonisation identity depend on a parameter n≥ p.
Using functional equations, one may show that the r.h.s. is analytic as a distribution-
valued function of n. In a forthcoming paper, we shall use this fact to investigate the
analytic continuation of the representations.

In what follows, we use the terminology of supergeometry freely. For the reader’s
convenience, some basics are summarised in an Appendix.

2 The superbosonisation module

In this section, we define, by the use of Howe duality, a particular supermodule,
which will turn out to be intimately related to the superbosonisation identity.
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2.1 The oscillator representation

We begin by reviewing some standard material on the Weyl–Clifford algebra in a
formwell suited for our purposes. ConsiderV :=U⊕U ′ whereU :=Hom(Cn,Cp|q),
U ′ := Hom(Cp|q,Cn), and Hom(·, ·) denotes the set of all linear maps with its usual
Z/2Z grading. Then V ∗ =U∗ ⊕U ′∗. The supersymplectic form on V ⊕V ∗ is

s(a+ f ,b+g) := f (b)− (−1)|a||g|g(a),
where a,b∈V and f ,g∈V ∗ are homogeneous. The trace and supertrace forms allow
us to identify V ∗ = Hom(Cp|q,Cn)⊕Hom(Cn,Cp|q).

Let hV be the central extension of the Abelian Lie superalgebra V ⊕V ∗ by C de-
termined by s. Denoting the generator of C by 1, the non-zero bracket relations of
hV are [v,w] = s(v,w)1 for v,w ∈V ⊕V ∗. By definition, theWeyl–Clifford algebra is

WCl(V ) := U(hV )/(1−1),

where 1∈ hV ⊆U(hV ) and 1∈U(hV ) is the unit of the universal enveloping algebra.
Canonical spospospo subalgebra The Weyl–Clifford algebra inherits an ascending fil-
tration WCln(V ) from the tensor algebra

⊗
(V ⊕V ∗). The PBW theorem implies

that grWCl(V ) = S(V ⊕V ∗). Conversely, WCl(V ) inherits a canonical augmenta-
tion from U(hV ); moreover, the kernel of the canonical map

⊗
(V ⊕V ∗)→WCl(V )

is generated by quadratic relations without linear term, and it follows that there is
a canonical splitting of the map WCl(V )→ S(V ⊕V ∗) in degree two, the image of
which we denote by s.

On general grounds, we have [WCla(V ),WClb(V )]⊆WCla+b−1(V ), so grs pre-
serves the filtration; since, moreover,C1 is central inWCl(V ), s is a Lie superalgebra
and the degree one part gr1WCl(V )∼=V ⊕V ∗ ⊆WCl(V ) is an s-module. This sets
up an isomorphism s∼= spo(V ⊕V ∗), where the latter is the Lie subsuperalgebra of
gl(V ⊕V ∗) consisting of the endomorphisms leaving s infinitesimally invariant.

Oscillator module Let V ⊕V ∗ = X⊕Y be a complex polarisation of V ⊕V ∗. That
is, X and Y are maximal isotropic subspaces. The Weyl–Clifford algebra WCl(V )
has a module

SX := WCl(V )/WCl(V ) ·X = U(hV )⊗U(X⊕C1) C,

called the oscillator (or spinor) representation. Here,C is understood to be the mod-
ule of the Abelian Lie subsuperalgebra V ⊕C1⊆ hV on which 1 acts as the identity
and X acts by zero.

We have SX ∼= S(Y ) = C[X ] as modules over the Abelian Lie subsuperalgebra
Y of hV , where the action of Y on f ∈ C[X ] is by left multiplication and X acts by
superderivations. Since any f ∈C[X ], which is annihilated by X , is necessarily con-
stant, the maximal proper submodule of SX is zero, and SX is a simple module over
WCl(V ). Since s is a Lie subsuperalgebra of WCl(V ), SX is also an s-module.

The isomorphism class of SX as aWCl(V )-module does not depend on the choice
of the polarisation. For X :=V ,Y :=V ∗, we simply write S := SX =C[V ]. However,
we will need to choose other polarisations to accommodate the action of real forms.
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2.2 An application of Howe duality

Let GC := GL(n,C) be the complexification of the unitary group G = U(n). Define
an action of GC on V by g · (u,ϕ) := (ug−1,gϕ) for g ∈ GC, (u,ϕ) ∈V ; on V ∗, we
have the contragredient GC-action. The induced action of GC on V ⊕V ∗ is faithful
and preserves the form s; hence, it realises the Lie algebra g of GC as a subalgebra
of s.

Let g′ := zs(g) be the centraliser of g in s. Then g′ ∼= gl(2p|2q,C) and zs(g′) = g.
In other words, (g,g′) form a dual pair, see [17]. We shall henceforth decompose
elements of g′ as 2×2 block matrices with blocks of size p|q× p|q.

Howe’s celebrated duality [17, Theorem 8] yields the following conclusion:

Proposition 1 The g′-submoduleC[V ]GC =C[V ]G ofC[V ] formed by the GC-invar-
iant superpolynomials is simple.

In order to identify this representation, we introduce a triangular decomposition
of s= S2(V ⊕V ∗). Define

s+ := S2(V ), s0 :=V ⊗V ∗, s− := S2(V ∗).

This defines a Z-grading of s, i.e. s± are Abelian Lie subsuperalgebras, normalised
by the Lie subsuperalgebra s0, and [s+,s−]⊆ s0. We observe that g⊆ s0, so that it
preserves the triangular decomposition. Hence, g′ inherits a decomposition

p+ := g′+ := g′ ∩ s+, k := g′0 := g
′ ∩ s0, p− := g′− := g′ ∩ s−

from s. For Y ∈ g′ decomposed into blocks, labeled A,B,C,D from left to right and
top to bottom, we have (A,D) ∈ k, B ∈ g′+ andC ∈ g′−. Both of p± = g′± are Abelian
Lie superalgebras isomorphic to gl(p|q,C) as super-vector spaces. The subalgebra
k can also be characterised as largest subalgebra of g′ = gl(2p|2q,C) that preserves
the decomposition of V asU ⊕U ′, cf. [17].
Highest weight From the definitions, we see that the constants C1 ⊆ C[V ] are an-
nihilated by s+ and left invariant as a subspace by the action of s0. We have the
following result.

Proposition 2 The simple g′-moduleC[V ]GC has a highest weight. For a Borel sub-
superalgebra b ⊆ g′ contained in k⊕ p+, it is given as the restriction to a Cartan
subalgebra of the k-character λ defined by λ (diag(A,D)) := n

2 (str(D)− str(A)).

Let h be the Cartan subalgebra spanned by the elementary matrices EA
aa, E

D
dd ,

1≤ a,d ≤ p+q, the superscripts A and D referring to the upper left and lower right
block of g′, respectively. The basis δ1, . . . ,δ2p,ε1, . . . ,ε2q of h∗ is defined to be dual
to the ordered basis

EA
11, . . . ,E

A
pp,E

D
11, . . . ,E

D
pp,E

A
p+1,p+1, . . . ,E

A
p+q,p+q,E

D
p+1,p+1, . . . ,E

D
p+q,p+q.

Let b ⊆ g′ be the Borel subsuperalgebra determined uniquely by b∩ k being the
direct product of the standard Borels for k j, j = 1,2, and b∩ (p+⊕p−) = p+. Then
b is contained in the parabolic subalgebra k⊕p+, and its Dynkin diagram is:
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By standard facts [7], one obtains the following statement.

Proposition 3 The simple g′-module L(λ ) has finite dimension if and only if p = 0.

Note that the highest weight λ |h is integral or half-integral, depending on whether
n is even or odd. Moreover, L(λ ) is atypical whenever pq > 0.

3 A relatively invariant functional

In this section, we show how to realise the left hand side of the superbosonisation
identity as a relatively invariant functional on a globalisation of L(λ ).

In what follows, recall facts and definitions pertaining to supergroup pairs as sum-
marised in the Appendix.

3.1 Globalisation of the oscillator representation

In order to globalise the oscillator representation C[V ], we need to consider real
forms. We shall use the following concept, cf. [5, 8].

Definition 1 A real Z/2Z graded vector space U =U0̄⊕U1̄ with a fixed complex
structure onU1̄ will be called a cs vector space. Given a complex super-vector space
W , we call a cs vector subspaceU a cs form ofW ifW0̄ =U0̄⊕ iU0̄ andW1̄ =U1̄.

We introduce a cs form VR of V by positing

VR,0̄ := X0̄ :=V0̄∩Herm(n+ p) =
{
(L,L∗)

∣∣ L ∈ Cp×n},
where L∗ denotes conjugate transpose. ByV ∗R,0̄ := Y0̄ :=

{
(K∗,K)

∣∣ K ∈ Cp×n}, we
define a cs form of V ∗. Then X0̄⊕Y0̄ is a totally real polarisation of V0̄⊕V ∗̄0 .
Boson-boson sector Let F0 := L2(X0̄), where we take the Lebesgue measure
on VR,0̄ induced by the Euclidean form tr(LL∗). Consider the Heisenberg group
H0, i.e. the connected and simply connected real Lie group with Lie algebra
(VR,0̄×V ∗R,0̄× iR)∩hV0̄ . The Schrödinger model F0 of the oscillator representation
of H0 defines a representation of sp(X0̄⊕Y0̄,R), which integrates to a unitary rep-
resentation of the double cover Mp := Mp(X0̄⊕Y0̄,R) of Sp := Sp(X0̄⊕Y0̄,R)
[23, 27].

Let Ũ0 be the lift to Mp of the maximal compact subgroup of Sp. That is, we have
Ũ0 = U(np)×U(1) U(1), the

√
det double cover of U(np).

We consider ŜX0̄
, the formal power series ring on X0̄, and the Gaussian Γ 0 :=

e− trLL∗/2 ∈ ŜX0̄
. The action of hV0̄ extends to this space. Then Γ 0 is annihilated by

X0̄ ⊆ hV0̄ , where X0̄⊕Y0̄ is the totally complex polarisation of V0̄⊕V ∗̄0 given by

X0̄ :=
{
(L,K,−K,−L)

∣∣ L ∈ Cp×n,K ∈ Cn×p},
Y0̄ :=

{
(L,K,K,L)

∣∣ L ∈ Cp×n,K ∈ Cn×p}.
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Thus, we have that C[X0̄]Γ 0 = C[X0̄]e
− tr(LL∗)/2 ⊆ L2(X0̄) = F0 is the space of

Ũ0-finite vectors in F0, and as an hV0̄ - and (s0,Ũ0)-module, where we define s0 :=
sp(V0̄⊕V ∗̄0 ,C), it is isomorphic to SX0̄ = C[X0̄] [1, Lemma 4.1].

Fermion-fermion sector A similar argument applies to V1̄, the only difference be-
ing that real forms need not to be chosen. Indeed, setting X1̄ := V1̄, Y1̄ := V ∗̄1 , we
have a complex polarisation of V1̄ ⊕V ∗̄1 . Thus, F

1 := S(V ∗̄1 ) =
∧

(V ∗̄1 ) = SX1̄
as a

module of the Clifford algebra WCl(V1̄). It contains the Gaussian Γ 1 := etr(K1K2)/2,
whereK1 andK2, respectively, denote the identity ofC0|q×n =U ′∗1̄ andC0|n×q =U ∗̄1 .
Similar to the above, Γ 1 is annihilated by X1̄ ⊆ hV1̄ , where the spaces

X1̄ :=
{
(L,K,−K,−L)

∣∣ L ∈ C0|q×n,K ∈ Cn×0|q},
Y1̄ :=

{
(L,K,K,L)

∣∣ L ∈ C0|q×n,K ∈ Cn×0|q},
form a complex polarisation ofV1̄⊕V ∗̄1 . Since Γ 1 is invertible, we have C[X1̄]Γ 1 =
C[X1̄]e

tr(K1K2)/2 = F1, and as an hV1̄ -module, it is isomorphic to SX1̄ = C[X1̄].

Full graded picture Let X := X0̄⊕X1̄ and observe that X0̄⊕X1̄ = VR. By [23,
Lemma 5.4], we obtain that C[VR]Γ ⊆ F := F0⊗F1 is isomorphic to C[X ] as a
hV -module, where

Γ := Γ 0 ·Γ 1 = e−str(X2)/4, X =

⎛⎝ 0 L∗ K2

L 0 0
K1 0 0

⎞⎠ .

Moreover, let s1 := o(V1̄⊕V ∗̄1 ,C) and Ũ1
C be the complex Lie group that the Lie

algebra exponentiates to in the Clifford algebra WCl(V1̄) (i.e. the the complex spin
group Spin(nq,C), the simply connected double cover of SO(nq,C)). Then C[VR]Γ
is isomorphic to C[X ] as a ŨC-module, where ŨC := Ũ0

C×Ũ1
C and Ũ0

C is the com-
plexification of Ũ0. That is, Ũ0

C = GL(nq,C)×C× C
×, the

√
det double cover of

GL(nq,C). In summary, C[VR]Γ ∼= C[X ] as (s,ŨC)-modules.

3.2 Action on Schwartz superfunctions

Recall the terminology summarised in the Appendix. We consider VR as a cs mani-
fold, namely, the cs affine superspace associated with the cs vector space VR.

We define S (VR) := S (VR,0̄)⊗
∧
V ∗̄1 ⊆ Γ (OVR), where

S (VR,0̄) :=
{
f ∈ C ∞(VR,0̄)

∣∣∣∣ ∀p ∈ C[VR,0̄] :
∫
VR,0̄

|p(L) f (L)|2 dLdL̄ < ∞
}

is the Schwartz space of VR,0̄. We find that

C[VR]Γ ⊆S (VR)⊆ L2(VR,0)⊗∧V ∗̄1 = F.

Since the leftmost of these is the space of Ũ0× Ũ1
C-finite vectors of the Mp×U1

C-
module F , this is a chain of dense inclusions. In fact, S (VR) is the space of smooth
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vectors of F , considered as anMp×Ũ1
C =Mp(np,R)×Spin(nq,C)-module [16]. As

one easily checks, the action of s extends to S (VR), and this gives a representation
of the cs supergroup pair (s,Mp×Ũ1), for any real form Ũ1 of Ũ1

C.
Let |Dv| be the Berezinian density associated with the standard coordinate system

on VR (see the Appendix). Then we have the following fact.

Proposition 4 The Berezin integral defines a functional |Dv| on the space Γc(OVR)
of compactly supported superfunctions by 〈|Dv|, f 〉 := ∫VR |Dv| f (v). It has a unique
continuous extension to S (VR).

As s-modules, SV = C[V ] and SX = C[X ] are isomorphic. Since both Γ and U ,
U ′,U∗,U ′∗ are GC-invariant, we see that as g′-modules, we have

L(λ ) = C[V ]GC ∼= C[X ]GC ∼= C[VR]GCΓ .

Thus, the latter is a copy of L(λ ) inS (VR)G ⊆S (VR). Since |Dv| is invariant under
the compact group G, it is determined by its restriction to S (VR)G, which is deter-
mined by its values on C[VR]GΓ ∼= L(λ ), due to the density of C[VR]Γ ⊆S (VR).
In particular, the latter restriction is non-zero. Computing on compactly supported
superfunctions Γc(OVR)⊆S (VR), the following proposition readily follows.

Proposition 5 The functional |Dv| is k-relatively invariant for the character −λ .
Hence, its restriction to L(λ )∼= C[VR]GΓ spans the space Homk(L(λ ),C−λ ).

4 The Riesz superdistribution

In this section, we introduce a certain quadratic morphismQ, which pushes the Bere-
zin integration functional |Dv| forward to a superdistribution on (an integration cycle
in) End(Cp|q). Moreover, we define the Riesz superdistribution Rn and state the su-
perbosonisation identity as a relation between these superdistributions.

In what follows, recall the notion of S-valued points from the Appendix.

4.1 The super-Grassmannian and the integration cycle Ω

Consider the complex super-GrassmannianY :=Grp|q,2p|2q(C). Following [22] with
minor modifications, it is given as follows: Given a subset I ⊆ 2p|2q of p|q homo-
geneous indices, letUI be the superdomain with S-valued points

RI =
( p|q

K ZI
I 1

)
, (2)

where I indexes the rows containing the identity and K indexes the other rows.
Given another set J of p|q indices, let BJI be the p|q× p|q submatrix of RI formed

by the rows indexed by J. ThenUIJ is defined to be the maximal open subdomain of
UI on which BIJ is invertible. The equation ZJ = ZIB

−1
JI expresses the entries of ZJ

as rational functions of the entries of ZI . ThenY =Grp|q,2p|2q(C) is defined to be the
complex supermanifold obtained by gluing these data. We identify W := Cp|q×p|q
with the standard affine open patchUI0 , I0 = {p+1, . . . ,2p|q+1, . . . ,2q}.
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Supergroup actions Consider the complex Lie supergroup G′C := GL(2p|2q,C)
whose Lie superalgebra is g′. In the sequel we will write g ∈S G′C (for any cs mani-
fold S) in the form ( p|q p|q

p|q A B
p|q C D

)
. (3)

ThenG′C acts transitively on Grp|q,2p|2q(C) by left multiplication. For g∈S G′C given
in the form above and Z ∈S W , we have

g ·Z = (AZ+B)(CZ+D)−1 ∈S W, (4)

whenever CZ +D ∈S GL(p|q,C). In particular, the action of the complex super-
group KC :=GL(p|q,C)×GL(p|q,C), realised as a closed subsupergroup ofG′C by
requiring B=C = 0, leaves the affine patchW ⊆Y invariant. This also holds for the
closed subsupergroup P+ of G′C given by A = D = 1,C = 0.

Consider the closed Lie subsupergroup P− of G′C given by A = D = 1, B = 0.
Then for o0 := 0 ∈W ⊆ Y , the isotropy subsupergroup is G′C,o0

= KCP−, which
intersects trivially with P+. In particular, P+ acts simply transitively onW .

We define a cs form H of KC by specifying the real form H0 ⊆ KC,0 to be
GL(p,C)×U(q), embedded into KC,0 as the matrices diag(A,D,(A∗)−1,D′) with
A ∈ GL(p,C), D,D′ ∈ U(q). Since H is a closed subsupergroup of KC,cs, the or-
bit Ω := H.o1, where o1 is the identity matrix inW , is a closed cs submanifold of
Wcs. The isotropy supergroup Ho is the intersection (fibre product) of the diagonal
subsupergroup GL(p|q,C)cs with H. In particular, we have Ho1,0 = U(p)×U(q),
embedded diagonally into H, and Ω0

∼= Herm+(p)×U(q).

4.2 The Q morphism

We let a quadratic map Q :V →W be defined as

Q(L,L′) := LL′, L ∈ Cp|q×n,L′ ∈ Cn×p|q. (5)

It is clearly GC-invariant. It gives rise to a corresponding morphism of complex su-
permanifolds. Defining a cs formWR ofW by settingWR,0̄ := Herm(p)×Herm(q),
Q descends to a morphism VR→WR of cs manifolds.

Proposition 6 The pullback along the morphism Q induces a continuous linear
map Q� : S (WR)→S (VR). In fact, for Q�( f ) to lie in S (VR), it is sufficient for
f ∈ Γ (OWR) to have rapid decay at infinity along Herm+(p), i.e.

supz∈Herm+(p)
∣∣(1+‖z‖)N(D f )(z,w)

∣∣< ∞

for all w ∈ Herm(q), N ∈ N, and D ∈ S(W ). Here, D f denotes the natural action of
S(W ) by constant coefficient differential operators. In particular, Q#(|Dv|), defined
by 〈Q�(|Dv|), f 〉 := 〈|Dv|,Q�( f )〉 for f ∈S (WR), is a continuous linear functional
onS (WR)with support in the closure ofHerm+(p). Thus, it extends to a continuous
functional on the space of all f ∈ Γ (OWR) with rapid decay along Herm+(p).
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Moreover, note that we have

Q�(C[WR]e−str) = C[VR]GCΓ , (6)

since the GC-invariants of C[VR] are generated in degree two, cf. [21].
There is an action of a suitable twofold cover H̃ of the cs form H of KC on

the space S (VR). Explicitly, it can be written for any h̃ ∈S H̃ lying above h =
diag(A,D) ∈S H, f ∈S (VR), and (L,L′) ∈S VR, as

(h̃ · f )(L,L′) = Ber(A)n/2Ber(D)−n/2 f (D−1L,L′A).

Under the pullback Q�, this corresponds to the twisted action ·λ of H̃ on S (WR),
(h̃ ·λ f )(w) = Ber(A)n/2Ber(D)−n/2(h · f )(w), where the untwisted action of H is

(h · f )(w) := f (D−1wA). (7)

The subspaces C[VR]Γ and C[WR]e−str/2 are invariant for the induced k-action.

4.3 Statement of the theorem

In what follows, recall the facts on Berezin integration summarised in the Appendix.
The homogeneous cs manifold Ω = H.o1 = H/Ho1 is a locally closed cs sub-

manifold ofWcs. It admits a non-zero H-invariant Berezinian density |Dy| [2]. It can
given quite explicitly, see [3], and we follow the normalisation introduced there.

Observe that Ω has purely even codimension inWcs. Thus, we have a canonical
splitting Ω ∼= Ω0×W1̄, defining a retraction r of Ω , which we call standard.

Riesz superdistribution When n≥ p, define the functional Tn, called the Riesz su-
perdistribution, by

〈Tn, f 〉 :=
∫
Ω
|Dy|Ber(y)n f (y)

for any entire superfunction f ∈ Γ (OW ) that satisfies Paley–Wiener type estimates
along the tube Tbb := Herm+(p)+ iHerm(p), i.e.

supz∈Tbb
∣∣e−R‖ℑz‖(1+‖z‖)N(D f )(z,w)

∣∣< ∞ (8)

for anyD∈ S(W ),N ∈N,w∈Cq×q, and someR> 0. Here, wewriteℑz for 1
2i (z−z∗).

The integral is taken with respect to the standard retraction, and its convergence is
proved in [3].

Our terminology is explained by the fact that for q = 0, Tn coincides with the
unweighted Riesz distribution for the parameter n, see [11]. Using the super Laplace
transform and some Functional Analysis, one proves the following [3].

Proposition 7 Let n≥ p. Then the functional Tn extends continuously to the space
of all superfunctions of rapid decay along Herm+(p).
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Conical superfunctions and Gindikin ΓΓΓ function To state the superbosonisation
identity, we introduce the following set of rational superfunctions on W . For any
Z = (Zi j) ∈S W = gl(p|q,C) and 1≤ k≤ p+q, we consider the kth principal minor
[Z]k := (Zi j)1≤i, j≤k.

Whenever [Z]k is invertible, we set Δk(Z) := Ber([Z]k), and whenever all princi-
pal minors of Z are invertible andm = (m1, . . . ,mp+q) ∈ Zp+q, we define

Δm := Δm1−m2
1 · · ·Δmp+q−1−mp+q

p+q−1 Δmp+q
p+q . (9)

These functions are called conical superfunctions. They are characterised as the
unique rational superfunctions that are eigenfunctions of a suitable Borel [3].

Fix a superfunction f ∈ Γ (OΩ ) and x ∈S Wcs. Whenever the integral converges,
we define the Laplace transform of f at x by

L ( f )(x) :=
∫
Ω
|Dy|e−str(xy) f (y),

where we write |Dy| for the invariant Berezinian on Ω . All integrals will be taken
with respect to the standard retraction on Ω . Provided the integral exists, we define

ΓΩ (m) := L (Δm)(1) =
∫
Ω
|Dy|e−str(y)Δm(y), (10)

and call this the Gindikin Γ function of Ω . The following is proved in [3].

Proposition 8 Let O ⊆Wcs be the open cs submanifold on which all principal mi-
nors of Z are invertible. For x ∈S O, the integral L (Δm)(x−1) converges absolutely
if and only if m j > j−1 for j = 1, . . . , p. In this case, ΓΩ (m) exists, and we have

L (Δm)(x−1) = ΓΩ (m)Δm(x).

In fact, the function ΓΩ (m) can be determined explicitly, as follows, cf. [3].

Theorem 1 Let mj > j−1 for all j = 1, . . . , p. We have

ΓΩ (m) = (2π)
p(p−1)

2

p

∏
j=1

Γ (mj− j+1)
q

∏
k=1

Γ (q− k+1)
Γ (mp+k +q− k+1)

Γ (mp+k + k)
Γ (mp+k− p+ k)

.

In particular, ΓΩ (m) extends uniquely as a meromorphic function of m ∈ Cp+q.

Superbosonisation identity We can finally state the superbosonisation identity. To
that end, denote for n ≥ p: ΓΩ (n) := ΓΩ (n, . . . ,n) > 0, and let Rn := ΓΩ (n)−1Tn be
the normalised Riesz superdistribution. Then we have the following theorem [3,21].

Theorem 2 Let n ≥ p. Then we have Q�(|Dv|) =
√
πnpRn. For any holomorphic

superfunction f on the open subspace of W over Tbb +Cq×q, satisfying the estimate
in Eq. (8) for some R > 0 and any D ∈ S(W ), w ∈ Cq×q, and N ∈ N, we have∫

VR
|Dv| f (Q(v)) =

√
πnp

ΓΩ (n)

∫
Ω
|Dy|Ber(y)n f (y).

In particular, this applies to any f in the space C[WR]e−str/2 from Eq. (6).
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5 Proofs of the superbosonisation identity

We end this survey by explaining two proofs of the superbosonisation identity. The
first proof, which we only sketch briefly, makes heavy use of Functional Analysis
to reduce everything to a trivial computation. The second proof equates the Riesz
superdistribution Rn to a relatively invariant functional on a suitable representation
of g′ and uses some basic representation theory to prove the identity.

5.1 Analytic proof

One can prove the superbosonisation identity (i.e. Theorem 2) by computing the
super version of the Euclidean Laplace transform of both sides of the identity and
comparing the results. We give a brief sketch of the procedure; for a more detailed
discussion, in particular, of the relevant topologies, see [3, Appendix C].

The space of continuous linear functionals on S (WR) is denoted by S ′(WR).
Its elements are called tempered superdistributions. Clearly, S ′(WR) embeds con-
tinuously as a subspace into Γc(OWR)′. The elements in the image are characterised
as those functionals on Γc(OWR) that are continuous for the topology induced by
S (WR). Let μ ∈S ′(WR). One can show the following [3].

Proposition 9 There exists a largest open subspace γ◦S ′(μ) ⊆WR such that for
every cs manifold S and any w ∈S γ◦S (μ), we have e−str(w·)μ ∈ Γ (OS)⊗̂S ′(WR),
where ⊗̂ denotes the completed tensor product (w.r.t. the injective or, equivalently,
the projective tensor product topology).

Let z = x + iy ∈S Wcs where y ∈S WR and x ∈S γ◦S (μ) (this does not deter-
mine x,y uniquely). Then we define the Laplace transform of μ by L (μ)(z) :=
F (e−str(x·)μ)(y), where F denotes the Fourier transform. This definition makes
sense, since by a straightforward extension of Schwartz’s classical theory of the
Laplace transform, we have e−str(x·)μ ∈ Γ (OS)⊗̂S (WR), and hence the Fourier
transform (w.r.t.WR) is contained in the same space.

The following is a special case of results from [3].

Proposition 10 There is a holomorphic superfunction on the tube γ◦S (μ) + iWR
whose value at z is L (μ)(z). The superdistribution μ is determined by L (μ).

We now give an account of the analytic proof of the superbosonisation identity.

Proof. (of Theorem 2, analytic version) Let T ⊆W be the open subspace whose un-
derlying open set is Tbb +Cq×q, where we recall that Tbb = Herm+(p)+ iHerm(p).
For any z ∈S T such that all principal minors of z are invertible, we have

L (Tn)(z) = L (Δn,...,n)(z) = ΓΩ (n)Δn,...,n(z−1) = ΓΩ (n)Ber(z)−n,

in view of Proposition 8. Computing Gaussian Berezin integrals over affine super-
space gives L (Q�(|Dv|))(z) =

√
πnpBer(z)−n, proving the claim. ��
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5.2 Representation theoretic proof

We end our survey with a representation theoretic proof of the superbosonisation
identity. LetG′ be the cs formG′C with underlying Lie groupG′0 :=U(p, p)×U(2q).

Line bundle The k-character 2λ integrates to a character χ2λ (diag(A,D)) =
Ber(D)nBer(A)−n of KC. Extending χ2λ trivially to KCP−, we may define a holo-
morphic line bundle on the complex homogeneous superspace G′C/KCP− = Y by
L2λ := G′C×KCP

−
C χ2λ . We will also consider its restriction to D := G′.o0, where

o0 ∈W0 is the zero matrix. Observe that the underlying space of D is

D0 = U(p, p)/(U(p)×U(p))×U(2q)/(U(q)×U(q)).

Then G′C resp. G′ acts on sections of L2λ resp. L2λ |D. Denote the latter by π2λ .
On general grounds, the cocycle defining L2λ is χ2λ (s−1J sI)where sI :UI→G′C is

a local section of the KCP
−
C -principal bundle G′C→ Y . The transition matrix for the

super-Grassmannian Y onUIJ is given by ZJ = ZIB
−1
JI . A short calculation shows

s−1J sI =
(
1 0
0 B−1JI

)(
1 Z
0 1

)
∈UIJ KCP

−
C ,

so that the defining cocycle of L2λ is χ2λ (s−1J sI) = Ber(BJI)n.

Highest weight section We construct a global section |0〉 of the line bundle L2λ
as follows: In the trivialisation on UI given by sI , it is defined by |0〉I(ZI) =
Ber(sI(ZI))−n. It is not difficult to see that this indeed defines a global section of
L2λ , which on the standard affine patchW =UI0 is just the constant function 1.

Let Z ∈S D∩W and g ∈S G′ be such that g ·Z ∈S D∩W , i.e. the action remains
in the affine patch. Then the action of g on a section f of L2λ |D is given at Z by

π2λ (g) f (Z) = χ2λ (k(g,Z)) f (g−1 ·Z),

where

k(g,Z) :=
( p|q p|q

p|q (A−BD−1C)(1+ZD−1C)−1 0
p|q 0 CZ+D

)
∈S KC.

Since holomorphic sections of L2λ are determined by their restriction to W =UI0 ,
one computes that |0〉 is fixed by the action of P− and transforms under KC by the
character χ2λ . Therefore, there is a g′-equivariant map

M(2λ ) := U(g′)⊗k⊕p+ Cλ → Γ (D,L2λ |D)

from the parabolic Verma module, which maps the highest weight vector to |0〉.
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Construction of an intertwiner We define the weighted Laplace transform Ln by

Ln( f )(z) := ΓΩ (n)−1L ( fΔn,...,n)(z/2) = ΓΩ (n)−1
∫
Ω
|Dy|e−str(zy)/2 f (y)Ber(y)n,

whenever this makes sense. For h ∈S H, we have

Ln(h · f )(z) = χ2λ (h)Ln( f )(h−1 · z), (11)

where h · f denotes the untwisted H-action introduced in Eq. (7).
TheCayley transform is γ(Z) := (1+Z)(1−Z)−1, and theweighted Cayley trans-

form γn is defined by γn(F)(Z) :=Ber(1−Z)−nF(γ(Z)), when this makes sense. For
the diagonal subsupergroupK′C := diagGL(p|q,C) ofKC, γ isK′C-equivariant. Thus,
γn ◦Ln intertwines the k′-action by πn on Γ (D,L2λ |D) and the untwisted k′-action
on C[WR]e−str/2.

By Proposition 8, we have (γn ◦Ln)(e−str/2) = 1= |0〉|D∩W , and more generally,

(γn ◦Ln)(Δme
−str/2)(z) = (n)mΔm+n(1− z) (12)

form ∈ Zp+q with mj > j−1 for j ≤ p. Here,m+n := (m1 +n, . . . ,mp+q+n) and
(n)m := ΓΩ (n)−1ΓΩ (m+n). Then Δm is contained in C[WR] if and only if

m1 ≥ m2 ≥ ·· · ≥ mp ≥ 0, mp+1 ≤ mp+2 ≤ ·· ·mp+q ≤ 0. (13)

For thesem, ΓΩ (m+n) �= 0 if and only if in addition mp+1 ≥ p−n, by Theorem 1.
Those Δm that are polynomial are exactly the lowest weight vectors for the KC-

action on C[WR] [3]. Moreover, according to [25, Proposition 3.1], C[WR] is semi-
simple (and multiplicity free). Thus, we have a (k,H)-module decomposition

C[WR] =
⊕

m
End(Lp|q(μm)) =

⊕
m
C[WR]m,

where m runs over all multi-indices satisfying the assumptions of Eq. (13),
C[WR]m := U(k)Δm, and Lp|q(μm) is the simple finite-dimensional gl(p|q,C)-mo-
dule of highest weight μm :=−∑p

j=1mjδ j +∑p+q
j=p+1mjε j−p. By Eqs. (11) and (12),

and Ln( f e−str/2)(z) = Ln( f )(1− z), the summand C[WR]m is annihilated by Ln

if mp+1 < n− p and mapped injectively otherwise. Since e−str/2 is K′C-invariant,
γn ◦Ln is a split epimorphism of k′-modules from C[WR]e−str/2 onto its image.

We now give a second proof of the superbosonisation identity.

Proof. (of Theorem 2, representation theoretic version) We consider the untwisted
k-action on C[WR]e−str/2. By the invariance of |Dy|, the restriction of Rn defines an
element of Homk(C[WR]e−str/2,C−2λ ). Since Q� :C[WR]e−str/2⊗Cλ →C[VR]Γ is
a surjective k-equivariant map, we obtain an injection

Q� : Homk(C[VR]Γ ,C−λ )→ Homk(C[WR]e−str/2⊗Cλ ,C−λ )

by left exactness of the hom functor Homk(·, ·). The latter of these hom spaces is
Homk(C[WR]e−str/2,C−2λ ). Since γn ◦Ln(e−str/2) = |0〉, after Cayley transforma-
tion, we obtain a parabolic of g′ whose nilradical annihilates Ln(e−str/2).

In particular, the dimension of Homk(C[WR]e−str/2,C−2λ ) is at most one, and it
is spanned by both Q�(|Dv|) and Rn. Computing constants, the claim follows. ��



Superbosonisation, Riesz superdistributions, and highest weight modules 15

Appendix

Supergeometry We summarise some basic definitions from supergeometry.

Definition 2 AC-superspace is a pair X = (X0,OX )where X0 is a topological space
and OX is a sheaf of supercommutative superalgebras over C with local stalks. A
morphism f : X → Y of C-superspaces is a pair ( f0, f �) comprising a continuous
map f0 : X0→Y0 and a sheaf map f � : f−10 OY →OX , which is local in the sense that
f �(mY, f0(x))⊆mX ,x for any x, where mX ,x is the maximal ideal of OX ,x.

Global sections f ∈ Γ (OX ) of OX are called superfunctions. Due to the local-
ity condition, the value f (x) := f +mX ,x ∈ OX ,x/mX ,x is defined for any x. Open
subspaces of aC-superspace X are given by (U,OX |U), for any open subsetU ⊆ X0.

We consider two types of model spaces.

Definition 3 For a complex super-vector space V , we define OV := HV0̄ ⊗
∧

(V1̄)
∗

where H denotes the sheaf of holomorphic functions. The space (V0̄,OV ) is called
the complex affine superspace associated with V , and denoted by V .

If instead, V is a cs vector space (see Definition 1), then we define the sheaf
OV := C ∞

V0̄
⊗∧(V1̄)

∗, where C ∞ denotes the sheaf of complex-valued smooth func-
tions. The space (V0̄,OV ) is called the cs affine superspace associated with V , and
denoted by V . (The cs terminology is due to J. Bernstein.)

In turn, this gives two flavours of supermanifolds.

Definition 4 Let X be a C-superspace, whose underlying topological space X0 is
Hausdorff, and which admits a cover by open subspaces isomorphic to open sub-
spaces of some complex resp. cs affine superspace V , where V may vary. Then X is
called a complex supermanifold resp. a cs manifold.

Complex supermanifolds and csmanifolds form full subcategories of the category
of C-superspaces that admit finite products. The assignment sending the complex
affine superspace V to the cs affine superspace obtained by forgetting the complex
structure on V0̄ extends to a product-preserving cs-ification functor from complex
supermanifolds to cs manifolds; the cs-ification of X is denoted by Xcs.

This point of view is also espoused by Witten in recent work [28].

Supergroups and supergroup pairs We give some basic definitions on super-
groups. Details can be found in [6, 8, 22].

Definition 5 A complex Lie supergroup (resp. a cs Lie supergroup) is a group ob-
ject in the category of complex supermanifolds (resp. csmanifolds). A morphism of
(complex or cs) Lie supergroups is a morphism of group objects in the category of
complex supermanifolds (resp. csmanifolds). The cs-ification functor maps complex
Lie supergroups to cs Lie supergroups and morphisms of complex Lie supergroups
to morphisms of cs Lie supergroups.
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Definition 6 A complex (resp. cs) supergroup pair (g,G0) is given by a complex
(resp. real) Lie group G0 and a complex Lie superalgebra g, together with a mor-
phism Ad : G0→ Aut(g) of complex (resp. real) Lie groups such that g0̄ is the Lie
algebra ofG0 (resp. its complexification), Ad extends the adjoint action ofG0 on g0̄,
and [·, ·] extends dAd. A morphism of supergroup pairs (dφ ,φ0) consists of a mor-
phism φ0 of complex (resp. real) Lie groups and a morphism dφ of Lie superalgebras
that is φ0-equivariant for the Ad-actions, such that dφ extends d(φ0).

The following is well-known, cf. [6, 19, 20].

Proposition 11 There is an equivalence of the categories of complex (resp. cs) Lie
supergroups and of complex (resp. cs) supergroup pairs. It maps any Lie supergroup
to the pair consisting of its Lie superalgebra and its underlying Lie group.

Definition 7 A closed embedding of (complex resp. cs) Lie supergroups is called
a closed (complex resp. cs) subsupergroup. A closed supergroup subpair (h,H0)⊆
(g,G0) consists of a Lie subsuperalgebra h⊆ g and a closed subgroupH0 ⊆G0, such
that (h,H0) is a supergroup pair. Given a complex Lie supergroup G, a cs form of
G is a closed subsupergroup H of Gcs such that in the supergroup pairs (h,H0) and
(g,G0) of H resp. G, one has h= g. In this case, H0 is a real form of G0.

If G is a complex Lie supergroup with associated supergroup pair (g,G0), then
(g,H0), for a closed subgroup H0 ⊆ G0, is the supergroup pair of a cs form of G if
and only ifH0 is a real form of G0, or equivalently, if (g,H0) is a cs supergroup pair.
To define a cs form H of G, it thus suffices to specify a real form H0 ⊆ G0.

Points If C is any category, and X is an object of C, then an S-valued point (where
S is another object of C) is defined to be a morphism x : S→ X . Suggestively, one
writes x ∈S X in this case, and denotes the set of all x ∈S X by X(S).

For any morphism f : X → Y , one may define a set-map fS : X(S)→ Y (S) by

fS(x) := f (x) := f ◦ x ∈S Y, x ∈S X .

Taking the generic point x = idX ∈X X , the values f (x) completely determine f .
The following statement is known as Yoneda’s Lemma: For any collection of maps
fS : X(S)→ Y (S), there exists a morphism f : X → Y such that fS(x) = f (x) for
all x ∈S X if and only if fT (x(t)) = fS(x)(t), for all t : T → S. Here, x(t) are called
specialisations of x, so the condition states that ( fS) is invariant under specialisation.

Thus, the Yoneda embedding functor X �→ X(−) from C to [Cop,Sets] is fully
faithful. It preserves products, so if C admits finite products, it induces a fully faith-
ful embedding of the category of group objects in C into the category [Cop,Grp] of
group-valued functors. In other words, an object X of C is a group object if and only
if for any S, X(S) admits a group law that is invariant under specialisation.

Berezin integrals Let X be a cs manifold and BerX to the Berezinian sheaf. The
sheaf of Berezinian densities |Ber|X is the twist by the orientation sheaf. Given local
coordinates (xa) = (x,ξ ) onU , one may consider the distinguished basis |D(xa)| of
the module of Berezinian densities |Ber|X [22].
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A retraction is a morphism r : X → X0, left inverse to the canonical embedding
j : X0→ X . A system of coordinates (x,ξ ) of X is called adapted to r if x = r�(x0).
Given an adapted system, we write ω = |D(x,ξ )| f and f = ∑I⊆{1,...,q} r�( fI)ξ I for
unique fI ∈ Γ (OX0), where dimX = ∗|q. Then one defines ∫X/X0

ω := |dx0| f{1,...,q},
which is an ordinary density on X0. This quantity only depends on r, and not on
the choice of an adapted system of coordinates. If this density is absolutely inte-
grable on X0, then we say that ω is absolutely integrablewith respect to r, and define∫
X ω :=

∫
X0

∫
X/X0

ω . Unless suppω is compact, this quantity depends heavily on r.
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Homological algebra for osp(1/2n)

Kevin Coulembier

Abstract We discuss several topics of homological algebra for the Lie superalge-
bra osp(1|2n). First we focus on Bott-Kostant cohomology, which yields classical
results although the cohomology is not given by the kernel of the Kostant Laplace op-
erator. Based on this cohomology we can derive strong Bernstein-Gelfand-Gelfand
resolutions for finite dimensional osp(1|2n)-modules. Then we state the Bott-Borel-
Weil theorem which follows immediately from the Bott-Kostant cohomology by
using the Peter-Weyl theorem for osp(1|2n). Finally we calculate the projective di-
mension of irreducible and Verma modules in the category O .

1 Introduction

The Lie superalgebra osp(1|2n) plays an exceptional role in the theory of Lie super-
algebras, see [12]. Contrary to the other simple finite dimensional Lie superalgebras
the Harish-Chandra map yields an isomorphism Z(g) ∼= S(h)W . Closely related to
this observation is the fact that the category of finite dimensional representations is
semisimple. In other words, all integral dominant highest weights are typical and
every finite dimensional representation is completely reducible. As a consequence
the algebra of regular functions on a Lie supergroup with superalgebra osp(1|2n)
satisfies a Peter-Weyl decomposition.

Because of these extraordinary properties, the algebra osp(1|2n) and its represen-
tation theory is relatively well-understood, see e.g. [9,16,20]. In this paper we prove
that certain standard topics of homological algebra for osp(1|2n) allow elegant con-
clusions of the classical type. In particular the remarkable connection with the Lie
algebra so(2n+ 1), see e.g. [20], is confirmed. Another approach to the results in
the current paper would be to make use of the equivalence of categories proved by
Gorelik, since all regular integral blocks of osp(1|2n) are strongly typical.
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First we focus on cohomology of the nilradical n of the Borel subalgebra b with
values in finite dimensional osp(1|2n)-representations. Since the coboundary opera-
tor commutes with the Cartan subalgebra h these cohomology groups are h-modules.
For Lie algebras it can be proved that the cohomology is isomorphic to the kernel
of the Kostant Laplace operator, see [13]. This operator is equivalent to an element
of S(h)W . From the results in [1, 2, 13] it then follows that every weight in the ker-
nel of the Laplace operator (or equivalently in the cohomology) only appears with
multiplicity one in the space of cochains.

For Lie superalgebras in general the kernel of the Laplace operator is larger than
the cohomology groups, see [7], even for osp(1|2n) as we will see. We will also
find that the weights appearing in the cohomology groups appear inside the space
of cochains with multiplicities greater than one. We compute the cohomology by
quotienting out an exact subcomplex, such that the resulting complex is isomorphic
to that of so(2n+1).

We use this result to obtain Bott-Borel-Weil (BBW) theory for osp(1|2n). The
classical BBW result in [2] computes the sheaf cohomology on line bundles over the
flag manifold of a semisimple Lie group. In general it is a difficult task to compute
these cohomology groups for supergroups. BBW theory for the typical blocks was
obtained in [18]. Important further insight was gained in [10, 19, 22].

Since all blocks are typical for osp(1|2n) the BBW theorem for osp(1|2n) is in-
cluded in the results in [18]. The n-cohomology results mentioned above could then
be derived from the BBW result. Here we take the inverse approach because, de-
spite being more computational, it clearly reveals the mechanism that makes the
kernel of the Laplace operator larger than the cohomology groups, here caused by
non-isotropic odd roots. When the kernel of the Laplace operator coincides with
the cohomology it was proved in [7] that the irreducible modules of basic classi-
cal Lie superalgebras have a strong Bernstein-Gelfand-Gelfand (BGG) resolution
(see [1]).

In this paper we prove that finite dimensional modules of osp(1|2n) always pos-
sess a strong BGG resolution. As can be expected from [7] the main difficulty is
dealing with the property that the kernel of the Kostant Laplace operator is larger
than the cohomology. By making extensive use of the BGG theorem for osp(1|2n)
of [16] and our result on n-cohomologywe can overcome this difficulty. Other results
on BGG resolutions for basic classical Lie superalgebras were obtained in [4,5,7,8].

Finally we focus on the projective dimension of structural modules in the cate-
gory O for osp(1|2n). The main result is that the projective dimension of irreducible
and Verma modules with a regular highest weight is given in terms of the length of
the element of Weyl group making them dominant. In particular we obtain that the
global dimension of a regular block in O is 2n2.

The remainder of the paper is organised as follows. In Sect. 2 we introduce
some notations and conventions. The cohomology groups Hk(n,−) are calculated
in Sect. 3. This result is then used in Sect. 4 to derive BGG resolutions. In Sect. 5
the n-cohomology result is translated into a BBW theorem. In Sec. 6 the projective
dimensions in the category O are calculated. Finally there are two appendices. In
Appendix 1 the technical details of the computation of the n-cohomology are given.
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In Appendix 2 we state some facts about the BGG category O for basic classical Lie
superalgebras.

2 Preliminaries

For the complex basic classical Lie superalgebra g= osp(1|2n)we consider the sim-
ple positive roots

δ1−δ2,δ2−δ3, · · · ,δn−1−δn,δn
corresponding to the standard system of positive roots, see [12]. For this system, the
set of even positive roots is given by

Δ+
0

= {δi−δ j|1≤ i < j ≤ n}∪{δi +δ j|1≤ i≤ j ≤ n}
and the set of odd positive roots by

Δ+
1

= {δi|1≤ i≤ n}.

This leads to the value ρ = ∑n
j=1(n+ 1

2 − j)δ j for half the difference between the
sum of even roots and the sum of odd roots.

The Cartan subalgebra of osp(1|2n) is denoted by h. The subalgebra consisting
of positive (negative) root vectors is denoted by n (n). The corresponding triangular
decomposition is given by osp(1|2n) = n+h+n. The Borel subalgebra is denoted
by b= h+n.

The Weyl group W of osp(1|2n) is the same as for the underlying Lie algebra
sp(2n) (and isomorphic to the Weyl group of so(2n+1)), where the action is natu-
rally extended to include the odd roots of osp(1|2n). By the dotted action of w ∈W
on elements λ ∈ h∗ we mean the ρ-shifted action: w ·λ = w(λ +ρ)−ρ . Since the
Weyl group is the same as for the underlying Lie algebra, the notion of the Chevallay-
Bruhat ordering and the length |w|= l(w) of an element w∈W , remains unchanged.
However, the notion of strongly linked weights, see Sect. 5.1 in [11] or Sect. 10.4
in [17], should be interpreted with respect to ρ and not ρ0 (half the sum of the posi-
tive roots of sp(2n)). Through the identification of the Weyl groups and root lattices
of osp(1|2n) and so(2n+1), this shifted action coincides. In particular the charac-
ters of irreducible highest weights modules of osp(1|2n) and so(2n+ 1) coincide,
see e.g. [20].

The set of integral dominant weights is denoted by P+ ⊂ h∗. For each λ ∈ h∗
the corresponding Verma module is denoted byM(λ ) = U(g)⊗U(b)Cλ . Where Cλ
is the one dimensional b-module with properties HCλ = λ (H)Cλ for all H ∈ h and
nCλ = 0. The quotient of M(λ ) with respect to its unique maximal submodule is
irreducible and denoted by L(λ ). The module L(λ ) is finite dimensional if and only
if λ ∈P+. For each μ ∈ h∗ we denote the central character associated with it by
χμ : Z(g)→ C.

The spaces of k-chains for n-homology in an osp(1|2n)-moduleV are denoted by
Ck(n,V ) = Λ kn⊗V . These spaces are naturally h+n-modules where the action is
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the tensor product of the adjoint action and the restricted action on the osp(1|2n)-
module V . The boundary operator δ ∗k :Ck(n,V )→Ck−1(n,V ) is defined by

δ ∗k (Y ∧ f ) = −Y · f −Y ∧δ ∗k−1( f ) and δ ∗0 = 0,

for Y ∈ n and f ∈ Ck−1(n,V )), see e.g. [7]. This operator is an h-module mor-
phism and satisfies δ ∗k ◦ δ ∗k+1 = 0. The homology groups are defined as Hk(n,V ) =
kerδ ∗k /imδ ∗k+1 and are naturally h-modules. A general approach to the concept of
Lie superalgebra cohomology can e.g. be found in Chap. 16 in [16].

For an abelian category A , the right derived functors (see [21]) of the left exact
functor given by HomA (A,−), for A an object of A , are denoted by ExtkA (A,−),
where Ext1A (A,−) is also written as ExtA (A,−). When the category of finitely gen-
erated a-modules is considered, for some algebra a, the name of the category is
replaced by a.

3 Bott–Kostant cohomology

The main result of this section is the following description of the homology and
cohomology of the nilradical of the Borel subalgebra of osp(1|2n) or its dual, with
values in irreducible representations of osp(1|2n).
Theorem 1 The (co)homology of n and n in the irreducible finite dimensional
osp(1|2n)-representation L(λ ) is given by

Hk(n,L(λ )) =
⊕

w∈W (k)

Cw·λ Hk(n,L(λ )) =
⊕

w∈W (k)

C−w·λ

Hk(n,L(λ )) =
⊕

w∈W (k)

C−w·λ Hk(n,L(λ )) =
⊕

w∈W (k)

Cw·λ ,

with W (k) the set of elements of the Weyl group with length k, see Sect. 0.3 in [11].

One of these results implies the other three according to Lemma 6.22 in [6], Lemma
4.6 in [7] or Theorem 17.6.1 in [17]. The remainder of this section is devoted to prov-
ing the property for the n-homology, where the more technical steps in the proof are
given in Appendix 1.

For each root the corresponding space of root vectors is one dimensional. For
each positive root α ∈ Δ+, we fix one root vector with weight −α and denote it
by Yα ∈ n. We choose the normalisation such that [Yδi ,Yδi ] = Y2δi holds. Each el-
ement f ∈ Cd(n,V ) of the form f = Yα1 ∧ ·· · ∧Yαd ⊗ v for certain positive roots
α1, · · · ,αd and v ∈V is called a monomial. For convenience v will often be consid-
ered to be a weight vector. We say that f = Yα1 ∧·· ·∧Yαd ⊗ v contains a monomial
Yβ1 ∧·· ·∧Yβk ∈Λ kn if {β1, · · · ,βk} ⊂ {α1, · · · ,αd}.
Definition 1 The h-submodule of C•(n,V ) spanned by all monomials that do not
contain any Y2δi or Y

∧2
δi for i ∈ {1, · · · ,n} is denoted by R•(n,V ) and the subvec-

torspace spanned by all monomials that do contain a Y2δi or Y
∧2
δi is denoted by
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W•(n,V ), then
C•(n,V ) = R•(n,V )⊕W•(n,V ).

The subspaces A( j)
• and B( j)

• ofW•(n,V ) are defined as

A( j)
• = Span{Y∧2δ j ∧ f | f ∈C•(n,V ) contains no Y2δ j , Y2δi or Y

∧2
δi for i < j}

B( j)
• = Span{Y2δ j ∧ f | f ∈C•(n,V ) contains no Y2δi or Y

∧2
δi for i < j}.

The subspace R•(n,L(λ )) for λ ∈P+ ⊂ h∗ is isomorphic as an h-module to the
the corresponding full spaces of chains for the nilradical of so(2n+1) and the corre-
sponding representation of so(2n+1) with the same highest weight λ . In particular,
Rk(n,L(λ )) = 0 for k > n2.

Using the results in Appendix 1 we can prove that the homology ofC•(n,V ) can
essentially be described in terms of R•(n,V ). This is based on the fact that the ho-
mology of a complex does not change after quotienting out an exact complex:

Proposition 1 Let S• ⊂C•(n,V ) be an exact subcomplex (and h-submodule). The
operator d :C•(n,V )/S• →C•(n,V )/S• canonically induced from δ ∗ satisfies

H•(C/S)∼= kerdk/imdk+1
∼= kerδ ∗k /imδ ∗k+1

∼= H•(C)

as h-modules.

Proof. The operator d is defined as d( f + S) = δ ∗( f ) + S for f ∈ C•(n,V ). The
morphism

η : kerδ ∗ → kerd η( f ) = f +S

is well-defined. Since η(imδ ∗) ⊂ imd this descends to a morphism η̃ :
kerδ ∗/imδ ∗ → kerd/imd.

We prove that this is injective. Assume that f ∈ kerδ ∗\imδ ∗, we have to prove
that f is not of the form δ ∗(g)+ s for s ∈ S•. If f were of this form it immediately
would follow that s ∈ kerδ ∗ ∩ S• = imδ ∗ ∩ S• and therefore f ∈ imδ ∗, which is a
contradiction.

Finally we prove that η̃ is also surjective. Every element in kerdk/imdk+1 is rep-
resented by some a ∈C•(n,V ) such that δ ∗a = s ∈ S•. Since δ ∗s = 0 and S• forms
an exact complex, there is a certain s1 ∈ S• such that s = δ ∗s1. The element a− s1
is clearly inside kerδ ∗, so the proposition follows from η(a− s1) = a+S•.

Theorem 2 For any osp(1|2n)-module V , the subspace A• ⊂C•(n,V ) satisfies A•∩
kerδ ∗ = {0},

(A• ⊕δ ∗A•)∩R•(n,V ) = {0} and A• ⊕δ ∗A• ⊕R•(n,V ) =C•(n,V ).

Proof. The proofmakes use of the results in Lemma 3 andTheorem 7 inAppendix 1.
The property A• ∩kerδ ∗ = {0} follows immediately from Theorem 7. This im-

plies that A• ⊕δ ∗A• is in fact a direct sum, since δ ∗A• ⊂ kerδ ∗.
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If r = f +gwith r ∈ R•(n,V ), f ∈ A• and g∈ δ ∗A•, then φ(h) = 0 for any h∈ A•
such that δ ∗h = g, with φ the isomorphism defined in Theorem 7, and therefore
g = 0. Since A• ⊂W•(n,V ), r = f implies r = 0 = f according to Definition 1 and
we obtain (A• ⊕δ ∗A•)∩R•(n,V ) = {0}.

The last property follows from the previous one and dimensional considera-
tions. The first property in the theorem 7 implies that dimAk+1 = dimδ ∗Ak+1 =
dim(δ ∗A)k, together with Lemma 3 this yields dim(δ ∗A)k = dimBk. Therefore
dimAk + dim(δ ∗A)k + dimRk(n,V ) = dimCk(n,V ) according to Definition 1 and
Lemma 3.

Remark 1 Thus far the fact thatV is not just an h+n-module but also an osp(1|2n)-
module has not been used. Theorem 2 could therefore be used to calculate n-homol-
ogy with values in arbitrary finite dimensional h+n-modules.

Now we can give the proof of Theorem 1.

Proof. We calculate the Euler characteristic of the homology:
∑∞
i=0(−1)ichHi(n,L(λ ))

=
∞

∑
i=0

(−1)ich(Λin)chL(λ )

=
∏α∈Δ+

0
(1− e−α)

∏γ∈Δ+
1
(1+ eγ)

∏γ∈Δ+
1
(eγ/2 + e−γ/2)

∏α∈Δ+
0
(eα/2− e−α/2) ∑w∈W

(−1)|w|ew(λ+ρ)

= ∑
w∈W

(−1)|w|ew·λ ,

which is the technique through which Kostant obtained the Weyl character formula
from this type of cohomology in [13].

Now from Sect. 4 in [7] it follows that Hk(n,L(Λ)) ⊂ ker� with � the Kostant
Laplacian � on Ck(n,V ). This operator � is a quadratic element of U(h). From
Proposition 1 and Theorem 2 it follows that this property can be made stronger
to Hk(n,L(Λ)) ⊂ ker�Rk . The h-module Rk is isomorphic to the chains for Bott-
Kostant cohomology for so(2n+1). There the cohomology is well-known and equal
to the kernel of the Kostant Laplace operator, which takes the same form as for
osp(1|2n). Therefore the result in [13] and the observation of the connection be-
tween osp(1|2n) and so(2n+1) in Sect. 2 yields

Hk(n,L(λ ))⊂
⊕

w∈W (k)

Cw·λ .

The Euler characteristic then implies that these inclusions must be equalities.

The results on cohomology of n can be reinterpreted in terms of Ext-functors in
the category O as defined in Appendix 2.

Corollary 1 For g= osp(1|2n), λ ∈P+ and μ ∈ h∗, the property

ExtkO(M(μ),L(λ )) =

{
1 if μ = w ·λ with |w|= k

0 otherwise

holds.
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Proof. As in the classical case the Frobenius reciprocity HomO(U(g)⊗U(b)Cμ ,V )=
Homb(Cμ ,ResgbV ) holds for allV ∈O . This gives an equality of functors O→ Sets
and since the functor Resgb is exact we can take the right derived functor of both left
exact functors above to obtain

ExtkO(M(μ),V ) = Extkb(Cμ ,ResgbV )

If we use Homb(Cμ ,−) =Homh(Cμ ,−)◦Homn(C,−), the fact that Homh(Cμ ,−)
is exact and Extk(n,−) = Hk(n,−), see Lemma 4.7 in [7], we obtain

ExtkO(M(μ),V ) = Homh
(
Cμ ,Hk(n,V )

)
.

The corollary then follows from Theorem 1.

4 Bernstein–Gelfand–Gelfand resolutions

Themain result of this section is that all finite dimensional modules of osp(1|2n) can
be resolved in terms of direct sums of Verma modules. Such resolutions are known
as (strong) BGG resolutions and were discovered first for semisimple Lie algebras
in [1].

Theorem 3 Every finite dimensional representation L(λ ) of osp(1|2n) has a reso-
lution in terms of Verma modules of the form

0→
⊕

w∈W (n2)

M(w ·λ )→ ·· · →
⊕

w∈W ( j)

M(w ·λ )→ ·· ·

→
⊕

w∈W (1)

M(w ·λ )→M(λ )→ L(λ )→ 0.

In the remainder of this section we provide the results needed to prove Theorem 3.
Wewill make extensive use of the notions and results on the categoryO in Appendix
2.

First, we state the BGG theorem for osp(1|2n), which was proved by Musson in
Theorem 2.7 in [16]:

Theorem 4 (BGG theorem) For g= osp(1|2n) and λ ,μ ∈ h∗ it holds that [M(λ ) :
L(μ)] �= 0 if and only if μ ↑ λ (μ is strongly linked to λ ).

Using this we obtain the following corollary.

Corollary 2 Consider g= osp(1|2n) and μ ,λ ∈ h∗. If ExtO (M(μ),M(λ )) �= 0 then
μ ↑ λ but μ �= λ .

Proof. The property ExtO (M(μ),M(λ )) �= 0 holds if and only if there is a short ex-
act non-split sequence of the form M(λ ) ↪→M�M(μ) for an M ∈O . That μ �= λ
must hold follows immediately from the fact that otherwise M would contain two
highest weight vectors of weight λ , which both generate a Verma module.
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The remainder of the proof is then equivalent with the proof of Theorem 6.5
in [11]. We consider the projective cover P(μ) of M(μ), which exists and has a
standard filtration by Lemma 6. This filtration 0 = P0 · · · ⊂ P1 ⊂ ·· ·Pn = P satisfies
Pi/Pi−1 ∼= M(μi) with μ ↑ μi by the combination of Theorem 4 and Lemma 7.

The canonical map P(μ)→M(μ) extends to φ : P(μ)→M and since the exact
sequence does not split we obtain that for some i, φ(Pi)∩M(λ ) �= 0 while φ(Pi−1)∩
M(λ ) = 0. This implies that M(λ ) has a nonzero submodule which is a homomor-
phic image of M(μi) and therefore [M(λ ) : L(μi)] �= 0. Applying Theorem 4 again
yields μi ↑ λ .

These two results lead to μ ↑ λ .
Now we can prove the following consequence of this corollary.

Lemma 1 Consider w ∈W, λ ∈P+ and a module M with a standard filtration
where the occurring Verma modules are of the form M(w′ · λ ) with l(w′) ≥ l(w),
then

ExtO(M(w ·λ ),M) = 0.

Furthermore, any module S in Oχλ with standard filtration has a filtration of the

form S= S(0) ⊇ S(1) ⊇ ·· ·S(n2) ⊇ S(n2+1) = 0, where S( j)/S( j+1) is isomorphic to the
direct sum of Verma modules with highest weights u ·λ with u ∈W (n2− j).

Proof. The first statement is an immediate application of Corollary 2 ifM is a Verma
module. The remainder can then be proved by induction on the filtration length. As-
sume it is true for filtration length p−1 and M has filtration length p. Then there is
a short exact sequence

0→ N→M→M(wp ·λ )→ 0

for N having a standard filtration of the prescribed kind of length p−1 and l(wp)≥
l(w). Applying the functor HomO(M(w ·λ ),−) and its right derived functors gives
a long exact sequence

0→ HomO(M(w ·λ ),N)→ HomO(M(w ·λ ),M)→ HomO(M(w ·λ ),M(wp ·λ ))
→ ExtO(M(w ·λ ),N)→ ExtO(M(w ·λ ),M)→ ExtO(M(w ·λ ),M(wp ·λ ))→ ·· · .

Since ExtO(M(w ·λ ),N) = 0= ExtO(M(w ·λ ),M(wp ·λ )) by the induction step we
obtain ExtO(M(w ·λ ),M) = 0.

In order to prove the second claim we consider an arbitrary moduleK inOχλ with
a standard filtration,

K = K0 ⊃ K1 ⊃ ·· · ⊃ Kd = 0 with Ki/Ki+1
∼= M(w(i) ·λ ).

Consider an arbitrary i such that w(i) has the minimal length appearing in the set
{w( j), j = 0, · · · ,d− 1}, since ExtO(M(w(i) · λ ),Ki+1) = 0 by the first part of the
lemma it follows thatM(w(i))⊂Ki ⊂K. Therefore the direct sum of all these Verma
modules are isomorphic to a submodule of K. This submodule can be quotiented out
and the statement follows by iteration.
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As in [1] we start by constructing a resolution of L(λ ) in terms of modules in-
duced by the spaces of chains

C•(n,L(λ ))∼=Λ •n⊗L(λ )∼=Λ • (g/b)⊗L(λ ),

which will possess standard filtrations by construction. For the classical case, re-
stricting to the block in O which L(λ ) belongs to, exactly reduces from Ck(n,V )
to Hk(n,V ). Corollary 2 then already yields the BGG resolutions. In fact, accord-
ing to the results in [13] only one Casimir operator is needed for this reduction, the
quadratic one. Applying this procedure in the case of Lie superalgebras would how-
ever lead to a resolution in terms of the kernel of the Laplace operator, which is
still larger than the homology groups, as discussed in Sect. 3. In case the kernel of
the Laplace operator agrees with the cohomology, strong BGG resolutions for basic
classical Lie superalgebras always exist, according to the result in [7].

Lemma 2 For each finite dimensional representation L(λ ) of osp(1|2n), there is a
finite resolution of the form

· · · → Dk→ ·· · → D1→ D0→ L(λ )→ 0,

where each Dk has a standard filtration. Moreover Dk has a filtration Dk = S(0)
k ⊇

S(1)
k ⊇ ·· ·S(n2)

k ⊇ S(n2+1)
k = 0, where S( j)

k /S( j+1)
k is isomorphic to the direct sum of

Verma modules with highest weights w ·λ with l(w) = n2− j.

Proof. The first step of the construction is parallel to the classical case. We can
define an exact complex of g-modules of the form

· · · → U(g)⊗U(b) (Λ kg/b⊗L(λ ))→ ·· · →
U(g)⊗U(b) (Λ 1g/b⊗L(λ ))→ U(g)⊗U(b) L(λ )→ L(λ )→ 0

where the maps are given by the direct analogs of those in [1], or Sect. 6.3 in [11],
see also Eq. (4.1) in [5]. In fact it suffices to do this for L(λ ) trivial, since a straight-
forward tensor product can be taken afterwards.

Now we can restrict the resolution to the block of the category O correspond-
ing to the central character χλ , which still yields an exact complex. Lemma 1 then
implies that the modules which appear must be of the proposed form.

It remains to be proved that the resolution is finite. This follows from the observa-
tion that for k large enough all the weights appearing in Ck(n,L(Λ)) are lower than
those in the set {w(λ +ρ)−ρ|w ∈W}.

Now we can prove Theorem 3. Contrary to the classical case in [1], where the
BGG resolutions are constructed to obtain an alternative derivation for the Bott-
Kostant cohomology groups, we will need our result on the n-homology to derive
the BGG resolutions.

Proof. Since the modules appearing in the resolution in Lemma 2 have a filtra-
tion in terms of Verma modules, this corresponds to a projective resolution in the
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category of n-modules. This can therefore be applied to calculate the right derived
functors of the left exact contravariant functor Homn(−,C) acting on L(λ ), see [21].
These functors satisfy Extkn(L(λ ),C) = Hk(n,L(λ ))∗, see Lemma 4.6 and Lemma
4.7 in [7]. By applying this we obtain that the homology Hk(n,L(λ )) is equal to the
homology of the finite complex of h-modules

· · · → Dk/(nDk)→ ·· · → D1/(nD1)→ D0/(nD0)→ 0,

where the maps are naturally induced from the ones in Lemma 2.
The h-modules Dk/(nDk) are exactly given by all the highest weights of the

Verma modules appearing in the standard filtration of Dk. We take the largest k
such that the filtration of Dk contains a Verma module of highest weight w ·λ with
l(w) < k. Since such a weight can not be in Hk(n,L(λ )) by Theorem 1, it is not
in the kernel of the mapping Dk/(nDk)→ Dk−1/(nDk−1) (it is not in the image of
Dk+1/(nDk+1)→ Dk/(nDk) since we chose k maximal). We fix such a w · λ for
Dk with minimal l(w). According to Lemma 2 M(w · λ ) is actually a submodule
of Dk. Under the g-module morphism in Lemma 2 this submodule is mapped to a
submodule in Dk−1. The highest weight vector of M(w ·λ ) is mapped to a highest
weight vector inDk−1. Since the projection ontoDk−1/(nDk−1) is not zero this high-
est weight vector is not inside another Verma module. This implies that the quotient
of Dk−1 with respect to the image of M(w · λ ) still has a standard filtration. The
appearance of M(w ·λ ) in Dk and Dk−1 forms an exact subcomplex which can be
quotiented out and according to Proposition 1 the resulting complex is still exact.

This procedure can be iterated until the resolution in Lemma 2 is reduced to a
resolution of the form of Lemma 2 for which we use the same notations and where
it holds that S( j)

k = 0 if j > n2− k. In a similar step we can quotient out the Verma

submodules of S(n2−k)
k that do not contribute to Hk(n,L(λ )).

Then we can focus on the submodules S(n2−k)
k ⊂ Dk of the resulting complex.

Because of the link with the n-homology each of the highest weight vectors of the
Verma modules is not mapped to the highest weight vector of a Verma module in the
filtration ofDk−1. Theorem 4 implies that the image of a Vermamodule in S(n2−k)

k un-

der the composition of the map in Lemma 2 with the projection ontoDk−1/S
(n2−k+1)
k−1

must be zero since the filtration of Dk−1/S
(n2−k+1)
k−1 contains only Verma modules

with highest weight u ·λ with l(u)≥ k. So S(n2−k)
k gets mapped to S(n2−k+1)

k−1 ⊂Dk−1,
and thus there is a subcomplex of the desired form in Theorem 3. The complex orig-
inating from quotienting out this subcomplex is exact, which can again be seen from
the connection with n-homology. Therefore we obtain that the subcomplex of the
modules S(n2−k)

k must also be exact and Theorem 3 is proven.

5 Bott–Borel–Weil theory

In this section we use the algebraic reformulation of the result of Bott, Borel and
Weil in [2] for algebraic groups to describe the Bott–Borel–Weil theorem for the
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algebraic supergroupOSp(1|2n). This rederives the result for osp(1|2n) in Theorem
1 in [18].

Theorem 5 Consider g= osp(1|2n) andCλ the irreducible b-module with hC−λ =
−λ (h)C−λ .

• If λ is regular, there exists a unique element of the Weyl group W rendering
Λ := w(λ +ρ)−ρ dominant. In this case

Hk(G/B,G×BC−λ ) =

{
L(Λ) if |w|= k

0 if |w| �= k
.

• If λ is not regular, Hk(G/B,G×BC−λ ) = 0.

Proof. For any b-module the holomorphic sections of the flag manifold satisfy
H0(G/B,G×B V ) = Homb(C,V ⊗R) with the g× g-module R given by the al-
gebra of regular functions (the finite dual of the Hopf algebra U(g)) on OSp(1|2n),
see the proof of Lemma 2 in [10]. This algebra corresponds to the finite dual of
the super Hopf algebra U(g). The derived functors therefore satisfy Hk(G/B,G×B

V ) = Extkb(C,V ⊗R). Since R corresponds to the algebra of matrix elements, see
Lemma 3.1 in [22] and the category of finite dimensional osp(1|2n)-representations
is semisimple the Peter-Weyl type theorem

R =
⊕

Λ∈P+

L(Λ)×L(Λ)

follows immediately. Therefore BBW theory is expressed as

Hk(G/B,G×BC−λ ) =
⊕

Λ∈P+

Homh(Cλ ,Hk(n,L(Λ)))L(Λ).

The result then follows from Theorem 1.

6 Projective dimension inOOO of simple and Verma modules

In this section we calculate projective dimensions of simple and Verma modules in
O , which also gives the global dimension of the category O . For semisimple Lie
algebras this was obtained by Mazorchuk in a general framework to calculate pro-
jective dimensions of structural modules in [14]. Part of this approach extends im-
mediately to osp(1|2n), where the global dimension can actually be calculated from
the BGG resolutions in Theorem 3. However here, we follow an approach similar to
the classical one sketched in Sect. 6.9 in [11].

Theorem 6 For g = osp(1|2n) and λ ∈P+, the following equalities on the pro-
jective dimensions hold:

(i) p.d.M(w ·λ ) = l(w);
(ii) p.d.L(w ·λ ) = 2n2− l(w);
(iii) gl.d.Oχλ = 2n2.



30 K. Coulembier

Proof. By Lemma 8, statement (i) is true for w = 1, or l(w) = 0. Then we proceed
by induction on the length of w.

We use the general fact that if there is a short exact sequence of the form A ↪→
B�C then

p.d.A≤max{p.d.B, p.d.C−1} and p.d.C ≤max{p.d.A+1, p.d.B},
see [11,21].

Assume (i) holds for all w such that l(w) < k, then we take some w ∈W (k) and
denote the kernel of the canonical morphism P(w ·λ )�M(w ·λ ) by N. The module
N has a standard filtration and the components can be obtained from the combina-
tion of Theorem 4 and Lemma 7. Therefore we obtain p.d.N = l(w)−1. The short
exact sequence N ↪→ P(w · λ )� M(w · λ ) implies p.d.N ≤ p.d.M(w · λ )− 1 and
p.d.M(w ·λ )≤ p.d.N+1 and we obtain p.d.M(w ·λ ) = k.

This proves (i). The result of (i) implies (ii) for l(w) = n2 since thenM(w ·λ ) =
L(w ·λ ) by Theorem 4. From this point on statement (ii) can also be proved by in-
duction, now using the short exact sequences of the form N ′ ↪→M(w ·λ )� L(w ·λ )
with N ′ the unique maximal submodule of M(w ·λ ).

The result of (ii) immediately implies (iii).

Remark 2 Since projective modules in the category O have a standard filtration, see
Lemma 6, a projective resolution ofV provides a complex with homology Hk(n,V ),
for any basic classical Lie superalgebra. In particular it follows that the projective
dimension of V in the category O is larger than or equal to the projective dimen-
sion as an n-module. In fact, for osp(1|2n), using the technique from the proof of
Proposition 2 in [14], and the result in Theorem 3, one obtains that the projective
dimension in O is at least twice the projective dimension as an n-module. The re-
sult for g = osp(1|2n) in Theorem 6 exactly states that this bound is actually an
equality.

Appendix 1: Structure of the space of chainsC•(n,V )C•(n,V )C•(n,V )

In this appendixwe obtain some technical results about the spacesC•(n,V ),R•(n,V ),
W•(n,V ),A• andB• as introduced in Sect. 3. HereV is a finite dimensional osp(1|2n)-
module, although the same results would hold for an arbitrary finite dimensional
h+n-module.

Lemma 3 The spaces {A( j)
• } and {B(k)

• } of Definition 1 are linearly independent.

For A• =
⊕n

j=1A
( j)
• and B• =

⊕n
j=1B

( j)
• it holds that

W•(n,V ) = A• ⊕B• and Ak
∼= Bk−1

as h-modules for k ∈ N.
Proof. Themonomials in the spacesW•(n,V ),A• andB• form bases of these spaces.
Therefore the proof can be written in terms of these monomials.
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For every monomial in the span of the spaces {A( j)
• } there is a certain k, such that

it contains Y∧2δk
but no Y2δi for i≤ k, which separates this space from the span of the

spaces {B( j)
• }. If for a j ∈ A( j)

• , the element ∑n
j=1 a j is zero we can prove that every

a j must be zero. If k is the lowest number such that ak is not zero, then ak contains
Y∧2δk

while none of the other terms contain this, therefore ak = 0.

Every monomial in W•(n,V ) contains some term Y2δi or some term Y∧2δ j . If the
lowest such i is strictly lower than the lowest such j, this monomial is inside A•, if
the lowest such i is higher or equal to the lowest such j the monomial is inside B•.
This provesW•(n,V ) = A• ⊕B•.

Finally the morphism A( j)
k → B( j)

k−1 defined by mapping Y∧2δ j ∧ f → Y2δ j ∧ f is
clearly well-defined and bijective for every j.

Definition 2 We introduce two subsets of the even positive roots Δ+
0
of osp(1|2n)

M = {δi−δ j|∀i < j} and P = {δi +δ j|∀i < j}.
The grading D on a monomial in C•(n,V ) is defined as

D(Yα1 ∧·· ·∧Yαd ⊗ v) = �{αk ∈M,k = 1, . . . ,d}− �{αk ∈ P,k = 1, . . . ,d}+D(v),

where D(v) = ∑n
i=1 μi for v a weight vector of weight ∑

n
i=1 μiδi.

Since the root vectors corresponding to the roots in M and P are even and V is
finite dimensional, the grading is finite and we define (C•(n,V )) [i] as the span of all
the monomials f that satisfy D( f ) = i. Also for subspaces L• ⊂C•(n,V ) we set

(L•) [i] = (C•(n,V )) [i]∩L• (1)

The following lemma follows immediately from the definition of the boundary
operator.

Lemma 4 The boundary operator δ ∗ :C•(n,V )→C•(n,V ) acting on a monomial
f with D( f ) = p yields δ ∗ f = ∑ j f j for monomials f j that satisfy D( f j)≤ p.

The following calculation will be crucial for computing the cohomology.

Lemma 5 For Y∧kδ j
∧ f ∈C•(n,V ) the boundary operator acts as

δ ∗(Y∧kδ j ∧ f ) = −1
2
k(k−1)Y2δ j ∧Y∧k−2δ j

∧ f

+ k(−1)kY∧k−1δ j
∧Yδ j · f +(−1)kY∧kδ j ∧δ ∗ f .

Proof. From the immediate calculation

δ ∗(Y∧kδ j ∧ f ) = −(k−1)Y2δ j ∧Y∧k−2δ j
∧ f

+ (−1)kY∧k−1δ j
∧Yδ j · f −Yδ j ∧δ ∗(Y∧k−1δ j

∧ f )

the statement can be proven by induction on k.
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The previous results can now be brought together to come to the main conclusion
of this appendix. The following result states that the coboundary operator maps the
subspaces A• bijectively to spaces isomorphic with B•.

Theorem 7 The morphism

φ : A• →C•(n,V )/(A• ⊕R•(n,V ))∼= B•

given by the composition of the boundary operator δ ∗ : A• → C•(n,V ) with the
canonical projection onto C•(n,V )/(A• ⊕R•(n,V )) is an isomorphism.

Proof. First we prove that the morphism φ (l) given by φ acting on the restriction to
(A•)[l] (as defined in Eq. (1)) composed with the restriction

C•(n,V )/(A• ⊕R•(n,V ))→ (C•(n,V )/(A• ⊕R•(n,V ))) [l]

is an isomorphism. We take a general element of (A•)[l] and expand it according to

the decomposition A• =
⊕n

j=1A
( j)
• in Definition 1:

h =
n

∑
j=1

Nj

∑
k=2

Y∧kδ j ∧h
( j)
k

where h( j)
k does not contain Yδ j , Y2δ j or Y

∧2
δi and Y2δi for i < j and D(h( j)

k ) = l. Ac-
cording to Lemma 5 the action of δ ∗ combined with projection onto C•(n,V )[l] is
given by

(δ ∗h) [l] = −1
2

n

∑
j=1

Nj

∑
k=2

k(k−1)Y2δ j ∧Y∧k−2δ j
∧h( j)

k

+
n

∑
j=1

Nj

∑
k=2

(−1)kY∧kδ j ∧
(
δ ∗h( j)

k

)
[l]

since degree of the monomials in the terms Y∧k−1δ j
∧Yδ j ·h

( j)
k is strictly lower than l.

Assume p is the smallest number for which h(n)
p is different from zero and assume

that h ∈ kerφ (l). The term Y2δn ∧Y∧p−2δn ∧ h(n)
p is not inside A• ⊕R•(n,V ) and h(n)

p

does not contain Yδn or any Y2δi or Y
∧2
δi . Therefore there is no other term appearing

in (δ ∗h) [l] to compensate this one and we obtain h(n)
k ≡ 0 for every k. Then from

similar arguments we obtain by induction that h( j)
k ≡ 0 must hold for every j and k,

so φ (l) is injective. The isomorphism Ak
∼= Bk−1 from Lemma 3, which can clearly

be refined to (Ak) [l]∼= (Bk−1) [l], then shows that injectivity implies surjectivity.
Lemma 4 implies that δ ∗ never raises degree, a property that is immediately in-

herited by φ . The combination of this with the fact that the grading is finite, leads to
the conclusion that φ is bijective since the {φ (l)} are.
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Appendix 2: Category O for basic classical Lie superalgebras

The BGG category O for a basic classical Lie superalgebra g is the full subcategory
of the category of g-modules of modules M that satisfy the conditions:

• M is a finitely generated U(g)-module.
• M is h-semisimple.
• M is locally U(n)-finite.

In this appendix we mention some properties of this category which are needed in
Sect. 4 and Sect. 6. For more details on category O for Lie (super)algebras, see
[1, 3, 11, 14, 15]. We use notations similar to the rest of the paper, but now for arbi-
trary basic classical Lie superalgebras.

The following results are due to Mazorchuk, see Proposition 1 and Theorem 2 in
[15], or Brundan, see Theorem 4.4 in [3].

Lemma 6 In the category O for basic classical Lie superalgebras each irreducible
representation L(μ) has a projective cover and each projective module in O has a
standard filtration.

The projective cover of L(λ ) is denoted by P(λ ) and is also the projective cover of
M(λ ).

Lemma 7 (BGG reciprocity) For a basic classical Lie superalgebra g the follow-
ing relation holds between the standard filtration of the projective module P(λ ) and
the Jordan-Hölder series of the Verma module M(μ):

(P(λ ) :M(μ)) = [M(μ) : L(λ )].

Proof. This is a special case of Corollary 4.5 in [3], but can also easily be proved
directly. Firstly, we have [M(μ) : L(λ )] = [M(μ)∨ : L(λ )]. For any module M ∈ O
it holds that [M : L(λ )] = dimHomO (P(λ ),M), since this is true for M irreducible
and HomO (P(λ ),−) is an exact functor and thus preserves short exact sequences.
Together this yields

[M(μ) : L(λ )] = dimHomO

(
P(λ ),M(μ)∨

)
.

The statement then follows from dimHomO (P(λ ),M(μ)∨) = (P(λ ) : M(μ)),
which can be proved similarly as Theorem 3.7 in [11].

If an integral dominant weight is the highest one inside the class of weights cor-
responding to a central character (which is always true for typical highest weights)
we obtain the classical result that the corresponding Verma module is projective.

Lemma 8 SupposeΛ ∈P+ is the highest weight inside the set {μ ∈ h∗|χμ = χΛ},
then M(Λ) is a projective module in O .

Proof. The proof does not change from the proof of Proposition 3.8 in [11] because
of the extra condition on χΛ .
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Finiteness and orbifold vertex operator algebras

Alessandro D’Andrea

Abstract In this paper, I investigate the ascending chain condition of right ideals in
the case of vertex operator algebras satisfying a finiteness and/or a simplicity condi-
tion. Possible applications to the study of finiteness of orbifold VOAs are discussed.

1 Introduction

It has been observed in many instances, see [10] and references therein, that a strong
finiteness condition on a (simple) vertex operator algebra, or VOA, is inherited by
subalgebras of invariant elements under the action of a reductive (possibly finite)
group of automorphisms. This amounts to a quantum version of Hilbert’s basis the-
orem for finitely generated commutative algebras, but is typically dealt with, in the
relevant examples, by means of invariant theory.

A big issue that needs to be addressed in all attempts towards proving the above
statement in a general setting is its failure in the trivial commutative case. A com-
mutative vertex algebra is nothing but a commutative differential algebra, and it has
long been known that both the noetherianity claim contained in Hilbert’s basis theo-
rem, and the finiteness property of invariant subalgebras, cannot hold for differential
commutative algebras. Counterexamples are easy to construct, and a great effort has
been spent over the years into finding the appropriate generalization of differential
noetherianity. Every investigation of finiteness of vertex algebras must first explain
the role played by noncommutativity and its algebraic consequences.

In this paper, I announce some results in this direction, and claim that every strong-
ly finitely generated simple vertex operator algebra satisfies the ascending chain con-
dition on its right ideals. Here, a VOA is simple if it has no nontrivial quotient VOAs,
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whereas the right ideals involved in the ascending chain conditions are subspaces
that are stable under both derivation and right multiplication with respect to the nor-
mally ordered product; even a simple VOA may have very many ideals of this sort,
and they are better suited for addressing finiteness conditions. Right noetherianity
of simple VOAs is the first algebraic property, as far as I know, that can be proved
on a general level, and explains an important difference between the commutative
and noncommutative situation.

The paper is structured as follows: in Sects. 2 and 3, I rephrase the vertex algebra
structure in the context of left-symmetric algebras, and describe how the normally
ordered product and the singular part of the Operator Product Expansion relate to
each other. In Sects. 4 and 5, I recall the concept of strong generators for a VOA,
and explain its interaction with Li’s filtration [9], and its generalization to structures
that are weaker than proper VOAs. Section 6 explains the role of what I call full ide-
als into proving some version of noetherianity for a VOA. Speculations on how to
use noetherianity in order to address strong finiteness of invariant subalgebras of a
strongly finitely generated VOA are given in Sect. 7. I thankfully acknowledge Vic-
tor Kac for his suggestion that Lemma 1 might be useful in the study of finiteness of
orbifold VOAs.

2 What is a vertex operator algebra?

2.1 Left-symmetric algebras

A left-symmetric algebra is a (complex) vector space A endowed with a bilinear
product · : A⊗A→ A which is in general neither commutative nor associative. The
associator (a,b,c)= (ab)c−a(bc)must however satisfy the following left-symmetry
axiom:

(a,b,c) = (b,a,c),

for every choice of a,b,c ∈ A. One may similarly define right-symmetric algebras
by requiring that (a,b,c) = (a,c,b). Clearly, an associative algebra is both left- and
right-symmetric. If A is any (non-commutative, non-associative) algebra, the com-
mutator [a,b] = ab−ba satisfies

[a, [b,c]] =
[[a,b],c]+ [b, [a,c]]+(b,a,c)− (a,b,c)− (c,a,b)+(a,c,b)+(c,b,a)− (b,c,a),

for all a,b,c ∈ A. When A is either left- or right-symmetric, this reduces to the ordi-
nary Jacobi identity

[a, [b,c]] = [[a,b],c]+ [b, [a,c]],

and the commutator thus defines a Lie bracket on A. In a left-symmetric algebra,
commutativity implies associativity, as

(a,b,c) = [c,a]b+a[c,b]− [c,ab]. (1)

A similar identity holds in the right-symmetric case.
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2.2 Differential graded left-symmetric algebras

A differential graded left-symmetric algebra (henceforth, a DGLsA) is a non-nega-
tively graded vector space A=⊕n≥0An, endowed with a unital left-symmetric prod-
uct · : A⊗A→ A, and a derivation ∂ : A→ A, satisfying:

• 1 ∈ A0;
• Am ·An ⊂ Am+n;
• ∂An ⊂ An+1.

Throughout the paper, we will assume all An to be finite-dimensional vector spaces.

Example 1 Let A=C[x], and set ∂ = x2d/dx. If we choose x to have degree 1, then
A is a differential graded commutative algebra, hence also a DGLsA.

2.3 Lie conformal algebras

A Lie conformal algebra is a C[∂ ]-module L endowed with a λ -bracket

R⊗R � a⊗b �→ [aλb] ∈ R[λ ]

satisfying

• [∂aλb] =−λ [aλb], [aλ ∂b] = (∂ +λ )[aλb];
• [aλb] =−[b−∂−λa];
• [aλ [bμc]]− [bμ [aλ c]] = [[aλb]λ+μc],

whenever a,b,c∈ R. Lie conformal algebras have been introduced in [8] and studied
in [5] in order to investigate algebraic properties of local families of formal distri-
butions. This notion, and its multi-variable generalizations [1], are deeply related to
linearly compact infinite-dimensional Lie algebras and their representation theory.

2.4 Vertex algebras

Let V be a complex vector space. A field on V is defined as a formal power series
φ(z)∈ (EndV )[[z,z−1]]with the property that φ(z)v∈V ((z)) =V [[z]][z−1], for every
v ∈V . In other words, if

φ(z) = ∑
i∈Z

φiz−i−1

then φn(v) = 0 for sufficiently large n.
A vertex algebra is a (complex) vector space V endowed with a linear state-field

correspondenceY :V → (EndV )[[z,z−1]], a vacuum element 1 and a linear (infinites-
imal) translation operator ∂ ∈ EndV satisfying the following properties:

• Field axiom. Y (v,z) is a field for all v ∈V .
• Locality. For every a,b ∈V one has

(z−w)N [Y (a,z),Y (b,w)] = 0

for sufficiently large N.



38 A. D’Andrea

• Vacuum axiom. The vacuum element 1 is such that

Y (1,z) = idV , Y (a,z)1≡ a mod zV [[z]],

for all a ∈V .
• Translation invariance. ∂ satisfies

[∂ ,Y (a,z)] = Y (∂a,z) =
d
dz

Y (a,z),

for all a ∈V .
One usually writes

Y (a,z) = ∑
j∈Z

a( j)z
− j−1.

and views the C-bilinear maps a⊗b �→ a( j)b, j ∈ Z, as products describing the ver-
tex algebra structure. The normally ordered product ab = :ab:= a(−1)b determines
all negatively labeled products as

j!a(− j−1)b = (∂ ja)(−1)b.

Non-negatively labeled products can be grouped in a generating series

[aλb] = ∑
n≥0

λ n

n!
a(n)b,

which is showed to define a Lie conformal algebra structure. The compatibility con-
ditions between the normally ordered product and the λ -bracket are well under-
stood [2, 6], and amount to imposing quasi-commutativity

[a,b] =
∫ 0

−∂
dλ [aλb], (2)

and the noncommutative Wick formula

[aλbc] = [aλb]c+b[aλ c]+
∫ λ

0
dμ [[aλb]μc]. (3)

As a consequence, the normally ordered product may fail to be associative. The
associator (a,b,c) := (ab)c−a(bc) can be expressed in the form

(a,b,c) =
(∫ ∂

0
dλ a

)
[bλ c]+

(∫ ∂

0
dλ b

)
[aλ c], (4)

hence it satisfies (a,b,c) = (b,a,c). V is therefore a left-symmetric algebra with
respect to its normally ordered product. Because of (1) and (2), one obtains com-
mutativity and associativity of the normally ordered product as soon as the λ -
bracket vanishes. The operator ∂ is a derivation of all products. As the normally
ordered product is non-associative, we will denote by : a1a2 . . .an : the product
a1(a2(. . .(an−1an) . . .)) obtained by associating on the right.
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2.5 Vertex operator algebras

In this paper, a vertex operator algebra (henceforth, a VOA) is a non-negatively
graded vector space V =

⊕
n≥0Vn, endowed with a vertex algebra structure such

that

• the normally ordered product and translation operator ∂ make V into a DGLsA;
• Tor(V ) =V 0 = C1;
• there exists a Virasoro element — i.e., an element ω ∈V 2 satisfying

[ωλω ] = (∂ +2λ )ω +
c
12

λ 31,

for some c ∈ C— such that [ωλa] = (∂ +nλ )a+O(λ 2), for all a ∈Vn.

As a consequence, V i
(n)V

j ⊂ V i+ j−n−1, ∂V i ⊂ V i+1. By TorV , I mean the torsion
of V when viewed as a C[∂ ]-module.

3 Interaction between normally ordered product and λ -bracket

As the structure of a vertex algebra is described by the normally ordered product,
along with the λ -bracket, it is interesting to figure out how much either product de-
termines the other.

3.1 The normally ordered product of a VOA determines the
λ -bracket

We know that the λ -bracket of elements in a vertex algebra V is polynomial in λ ,
and determines the commutator as in (2). If we choose elements c j ∈V so that

[aλb] =
n

∑
j=0

λ jc j,

then we may compute

[∂ ia,b] = (−1)i ·
n

∑
j=0

∫ 0

−∂
λ i+ jc jdλ =

n

∑
j=0

(−1) j ∂
i+ j+1c j

i+ j+1
,

hence

∂ n−i[∂ ia,b] =
n

∑
j=0

(−1) j
i+ j+1

·∂ n+ j+1c j. (5)

As soon as we are knowledgeable about the normally ordered product of the ver-
tex algebraV , we are able to compute the left-hand side of (5) for every i = 0, . . . ,n;
as coefficients of the right-hand sides form a non-degenerate matrix, we can then
solve (5) as a system of linear equations, and recover uniquely the values of
∂ n+ j+1c j, j= 0, . . . ,n. In other words, the normally ordered product determines each
coefficient c j up to terms killed by ∂ n+ j+1.
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We have already seen that every VOA is a DGLsA with respect to its normally
ordered product.

Theorem 1 A DGLsA structure may be lifted to a VOA structure in at most one
way.

Proof. It is enough to show that the normally ordered product uniquely determines
the λ -bracket. Let a ∈Vh,b ∈Vk. Then [aλb] is a polynomial in λ of degree at most
n = h+ k− 1. Proceeding as above, we may determine all of its coefficients up to
terms killed by some power of ∂ . However, TorV = C1, so [aλb] is determined up
to multiples of 1. By (4), we have

(a,u,b) =
(∫ ∂

0
dλ a

)
[uλb]+

(∫ ∂

0
dλ u

)
[aλb].

If we choose u so that u,a are C[∂ ]-linearly independent, we may now determine
unknown central terms in [aλb].

Such a choice of u is always possible, as we may assume without loss of gener-
ality that a /∈ TorV , otherwise [aλb] = 0 [5]; we may also assume that V has rank
at least two, otherwise, if a is non-torsion, unknown central terms in [aλa] can be
computed using

(a,a,a) = 2

(∫ ∂

0
dλ a

)
[aλa].

The value of [aλa] now uniquely determines the Lie conformal algebra structure.

3.2 The λ -bracket determines vertex algebra ideals

If A and B are subsets of V , define products

A ·B = spanC〈a(n)b |a ∈ A,b ∈ B,n ∈ Z},
�A,B� = spanC〈a(n)b |a ∈ A,b ∈ B,n≥ 0}.

If B is aC[∂ ]-submodule ofV , then A ·B,�A,B� are alsoC[∂ ]-submodules. If A,B are
both C[∂ ]-submodules of V , then A ·B = B ·A,�A,B� = �B,A�. A C[∂ ]-submodule
I ⊂ V is a vertex algebra ideal if I ·V ⊂ I; it is a Lie conformal algebra ideal if
�I,V �⊂ I. An element a ∈V is central if �a,V � = 0.

Lemma 1 ([3, 4]) If B,C ⊂ V are C[∂ ]-submodules, then �A,B� ·C ⊂ �A,B ·C�. In
particular, if X is a subset of V , then �X ,V � is an ideal of V .

This observation has an immediate drawback: every vertex algebraV is in particular
a Lie conformal algebra. If I is an ideal of this Lie conformal algebra structure, then
J = �I,V �⊂ I is an ideal of the vertex algebra V , which is certainly contained in I.
The induced λ -bracket on the quotient I/J is trivial. We may rephrase this by saying
that every Lie conformal algebra ideal of V sits centrally on a vertex algebra ideal.
In the case of a VOA, a stronger statement holds:
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Theorem 2 Let V be a VOA. A subspace 1 /∈ I ⊂V is an ideal for the vertex algebra
structure if and only if it is an ideal of the underlying Lie conformal algebra.

Proof. The grading of V is induced by the Virasoro element ω . We know that
�I,ω� ⊂ �I,V � ⊂ I, hence I must contain all homogeneous components of each of
its elements. However, if a∈V is a homogeneous element (of nonzero degree), then
a ∈ �a,ω�. This forces I to equal �I,V �, which is a vertex algebra ideal.

Remark 1 Notice that C1 is always a Lie conformal algebra ideal of V , but is never
an ideal of the vertex operator algebra structure.

3.3 Different notions of ideal in a vertex algebra

A vertex algebra structure is made up of many ingredients, that may stand by them-
selves to provide meaningful concepts. In particular, a vertex algebra is naturally en-
dowed with both a (differential) left-symmetric product, and a Lie conformal algebra
structure, and we may consider ideals with respect to each of the above structures.
To sum it up, we have

• vertex algebra ideals: ideals of the vertex algebra structure — closed under ∂ ,
: ab :, [aλb];

• Lie conformal algebra ideals: ideals of the Lie conformal algebra structure —
closed under ∂ , [aλb];

• DLs ideals: ideals of the differential left-symmetric structure — closed under ∂ ,
: ab :.

When V is a VOA, we have seen that the first two notions (more or less) coincide.
In what follows, we will mostly be concerned with simple VOAs, i.e., VOAs with
no nontrivial vertex ideals. Notice that even a simple VOA does possess many DLs
ideals. Both the normally ordered product and the differential ∂ increase the grading,
so that if a ∈Vh, then the DLs ideal generated by a is contained in ⊕n≥hVn.

We conclude that the only nontrivial concept in a simple VOA is that of DLs
ideal; thus, the term ideal will henceforth refer to DLs ideals alone. Notice that we
may distinguish between left, right and two-sided ideals, whereas vertex algebra and
Lie conformal algebra ideals are always two-sided.

4 Finiteness of VOAs

4.1 Strong generators of a VOA

When dealingwith finiteness of vertex algebras, the notion that has naturally emerged
in the (both mathematical and physical) literature depends only on the (differential)
left-symmetric algebra structure. A vertex algebra V is called strongly finitely gen-
erated if there exists a finite set of generators such that normally ordered products
of derivatives of the generators C-linearly spanV ; this is equivalent to being able to
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choose finitely many quantum fields so that every element ofV can be obtained from
the vacuum state by applying a suitable polynomial expression in the corresponding
creation operators. This definition makes no reference whatsoever to the λ -bracket;
when dealing with finiteness phenomena it is natural to only resort to concepts that
are independent of the Lie conformal algebra structure.

4.2 Hilbert’s Basissatz and the fundamental theorem of invariant
theory

If A=⊕n≥0An is a finitely generated commutative associative unital graded algebra,
and G is a reductive group acting on A by graded automorphisms, then the subalge-
bra AG of G-invariants is also finitely generated. Hilbert’s celebrated proof of this
fact uses noetherianity of A in an essential way: if I is the ideal of A generated by the
positive degree part AG

+ of AG, then any finite subset of AG
+ generating I as an ideal

is also a finite set of generators of AG as an algebra.

4.3 Does the orbifold construction preserve finiteness of a VOA?

It is natural to ask whether Hilbert’s strategy can be extended to the wider setting of
VOAs. Indeed, the mathematical and physical literature provide scattered example
of strongly finitely generated (simple) VOAs for which the invariant subalgebra rela-
tive to the action of a reductive group of graded automorphisms stays strongly finitely
generated. However, no general argument is known that applies to all examples.

A major difficulty in understanding the general algebraic aspect of the above phe-
nomena depend on its failure in commutative examples.We have seen that a commu-
tative VOA is nothing but a differential commutative associative algebra. However,
it is not difficult to provide examples of differentially finitely generated commuta-
tive associative algebras whose invariant part with respect to the action of a finite
group of graded automorphisms does not stay finitely generated.

The strongly finite generatedness of invariant subalgebra does therefore depend
on noncommutative quantum features, and any attempt to provide a general proof
must address the problem of understanding why the commutative case behaves so
differently.

4.4 Failure of noetherianity in the differential commutative setting
and non-finiteness of invariant subalgebras

Consider the commutative ring A = C[u(n),n ∈ N] of polynomials in the countably
many indeterminates u(n). Setting ∂u(n) = u(n+1) uniquely extends to a derivation of
A, thus making it into a differential commutative algebra.

Consider now the unique differential automorphism σ of A satisfying σ(u) =−u.
Then clearly σ(u(n)) = −u(n) and σ(u(n1) . . .u(nh)) = (−1)hu(n1) . . .u(nh). It is not
difficult to see that A〈σ〉 =C[u(i)u( j), i, j ∈N]. However, A〈σ〉 admits no finite set of
differential algebra generators.
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Remark 2 If we endow Awith a trivial λ -bracket, then A is an example of a commu-
tative vertex algebra. Notice that setting deg(u(n)) = n+1 provides Awith a grading
compatible with the vertex algebra structure. However, A is not a VOA as there is
no Virasoro element inducing this grading.

It is easy to adapt Hilbert’s argument to the differential commutative setting once
noetherianity is established. An inevitable consequence of the above counterexam-
ple is that the differential commutative algebra A must fail to satisfy the ascending
chain condition on differential ideals. This fact has long been known [11], and ef-
fort has been put into providing some weaker statement replacing and generalizing
noetherianity. We recall the following classical result:

Theorem 3 (Ritt) Let A be finitely generated as a differential commutative K-alge-
bra, where K is a field of characteristic zero. Then A satisfies the ascending chain
condition on its radical differential ideals.

In Ritt’s language, radical differential ideals are perfect, and generators of a perfect
ideal as an ideal (resp. as a perfect ideal) are called strong (resp. weak) generators.
The above statement claims that all perfect ideals have a finite set of weak generators,
but they may well fail to have a finite set of strong generators.

Under a different meaning of weak vs. strong generators, this difference of finite-
ness property shows up again in the context of VOAs.

5 An abelianizing filtration for VOAs

The problem of finding strong generators for a VOA can be addressed by using a
decreasing abelianizing filtration introduced1 in [9]. We recall here (a slight variant
of) its definition and some of its main properties. In what follows, if X ,Y ⊂ A are
subsets, we will set AB= spanC〈ab|a ∈ A,b∈ B〉. Notice that AB �= A ·B, in general.

5.1 Li’s filtration

If A is a DGLsA, set En(A),n ∈N, to be the linear span of all products (with respect
to all possible parenthesizations)

∂ d1a1 ∂ d2a2 . . . ∂ dhah,

where ai ∈ A are homogeneous elements, and d1 + . . .dh ≥ n. Also set En(A) = A if
n < 0. The Ei(A), i ∈ N, form a decreasing sequence

A = E0(A)⊃ E1(A)⊃ . . .⊃ En(A)⊃ . . .

of subspaces of A, and clearly satisfy

Ei(A)Ej(A) ⊂ Ei+ j(A); (6)

∂ Ei(A) ⊂ Ei+1(A). (7)

1 Li’s setting is more general than ours, as the grading is only assumed to be bounded from below.
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In particular, each Ei(A) is an ideal of A. If a ∈ Ei(A) \Ei+1(A), then we will say
that a has rank i, and will denote by [a] the element a+Ei+1(A) ∈ Ei(A)/Ei+1(A).

Lemma 2 If V is a VOA, then [Ei(V ),Ej(V )]⊂ Ei+ j+1(V ) for all i, j.

Proof. Follows immediately from (2).

Proposition 1 Let V be a VOA. Then [a][b] = [ab],∂ [a] = [∂a] make

grV =⊕i≥0Ei(V )/Ei+1(V )

into a graded commutative (associative) differential algebra.

Proof. Well definedness of the product is clear. Its commutativity follows from
Lemma 2. By (1), associativity follows from commutativity and left-symmetry of
the product in V . Finally, ∂ is well-defined, and its derivation property descends to
the quotient.

Remark 3 Li proves that, if V is a VOA, then grV can be endowed with a Poisson
vertex algebra structure [7]. However, we will not need this fact.

Theorem 4 (Li) Let X be a subset of homogeneous elements of a VOA V . Then X
strongly generates V if and only if elements [x],x∈ X , generate grV as a differential
commutative algebra.

In other words, a VOAV is strongly finitely generated if and only if grV is finitely
generated as a differential commutative algebra.

5.2 Strong generators of ideals

The problem of finding strong generators for a VOA is closely connected to that of
finding nice sets of generators for its ideals.

Recall that, if A is a DGLsA, I ⊂ A is a (two-sided, right) ideal of A if it is a
(two-sided, right) homogeneous differential ideal. We denote by (X)) the smallest
right ideal of A containing a given subset X ⊂ A, and similarly, by ((X)), the small-
est two-sided ideal containing X . A subspaceU ⊂ A is strongly generated by X ⊂U
ifU = (C[∂ ]X)A. When dealing with strongly generated ideals, we will henceforth
abuse notation and write XA for (C[∂ ]X)A.

We rephrase another of Li’s results as follows

Theorem 5 Let I be a right ideal of a VOA V . Then grI is a (differential) ideal of
grV , and X ⊂ V strongly generates I if and only if [x],x ∈ X , generate grI as a
differential ideal of grV .

We can easily apply this statement to elements of Li’s filtration.

Proposition 2 Let X be a set of homogeneous generators of a VOA V. Then Ed(V )
is strongly generated by monomials

: (∂ d1x1)(∂ d2x2) . . . (∂ dh−1xh−1)(∂ dhxh) :,

where xi ∈ X, and di > 0 satisfy d1 + · · ·+ dh = d. In particular, if V is finitely
generated, then Ed(V ) is a strongly finitely generated ideal.
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Proof. It follows immediately by noticing that En(V )/En+1(V ) is linearly generated
by classes of monomials

: (∂ d1x1)(∂ d2x2) . . . (∂ dh−1xh−1)(∂ dhxh) :,

where xi ∈ X , and di ≥ 0 satisfy d1 + · · ·+dh = n.

5.3 Weak vertex algebras

In order to construct and use Li’s filtration, we do not need the full power of VOAs.
Indeed, the Ei(A) always constitute a decreasing filtration of the DGLsA A and sat-
isfy (6), (7). In order to show that grA is commutative and associative, we also need

[Ei(A),Ej(A)]⊂ Ei+ j+1(A). (8)

This certainly holds in VOAs, but stays true under weaker conditions.

Definition 1 A weak VOA is a DGLsA A =⊕i≥0Ai satisfying (8).

Example 2

• Every non-negatively graded differential commutative (associative) algebra is a
weak vertex operator algebra.

• Every VOA is a weak vertex operator algebra.
• Let V be a VOA, I ⊂ V a two-sided ideal. Then V/I is a weak vertex operator

algebra: indeed, V/I is a DGLsA and constructing Li’s filtration commutes with
the canonical projection. Notice that V/I fails to be a VOA, unless I is a vertex
algebra ideal.

If A is a weak VOA, then ∂ dA ⊂ ⊕i≥dAi, hence En(A) ⊂ ⊕i≥nAi. Consequently,
∩nEn(A) = (0), and Ei(A)∩Aj = (0) as soon as i > j. Propositions 1, 2 and Theo-
rems 4, 5 easily generalize to the weak VOA setting.

Chains of inclusions between ideals in a weak VOA also behave nicely, due to
the following observation:

Lemma 3 Let I ⊂ J be right ideals of a weak VOA A satisfying grI = grJ. Then
I = J.

Proof. If X ⊂ I generates gr I as an ideal of grA, then it also generates grJ, hence
I = J = XA.

6 The ascending chain condition in a VOA

6.1 Full ideals

Definition 2 Let I be a right ideal of a VOA V . Then I is full if EN(V ) ⊂ I for
sufficiently large values of N.
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Full ideals are important because of the following key observation.

Theorem 6 Let V be a strongly finitely generated VOA, I ⊂ V a full right ideal.
Then I is a strongly finitely generated ideal.

Proof. As I is full, it contains EN(V ) for some N ≥ 0. Then Ī = I/EN(V ) is an ideal
of the quotient weak VOA V̄ =V/EN(V ).

Notice that if u1, . . . ,un are (strong) generators of V , then ū1, . . . , ūn generate V̄ ,
hence elements [ūi] generate grV̄ as a differential commutative associative algebra.
However, only finitely many derivatives of each [ūi] are nonzero. Therefore, grV̄ is
a finitely generated, and not just differentially finitely generated, commutative al-
gebra. By Hilbert’s basis theorem, the ideal gr Ī is finitely generated, and we may
apply the weak VOA version of Theorem 5 to show that I is strongly finitely gener-
ated modulo some EN(V ). However, Proposition 2 shows that all ideals EN(V ) are
strongly finitely generated, hence I is so too.

By using a variant of the argument in Sect. 3.1, one is able to prove the following
statement.

Lemma 4 Let I be a right ideal of the VOA V. Then I is full as soon as any one of
the following properties is satisfied

• I is nonzero and V is a simple VOA;
• I contains some derivative of the Virasoro element ω , provided that the central

charge is nonzero;
• I is two-sided, and contains some derivative of the Virasoro element ω .

6.2 Noetherianity

Proposition 3 Let V be a finitely generated VOA. Then V satisfies the ascending
chain condition on its full right ideals.

Proof. If
I1 ⊂ I2 ⊂ . . .⊂ In ⊂ In+1 ⊂ . . .

is an ascending sequence of full right ideals, set I = ∪nIn. Then I is a full ideal, and
we may use Theorem 6 to locate a finite X ⊂ I such that I = XV . Due to finiteness
of X , one may find N ≥ 0 such that X ⊂ IN . Then I = XV ⊂ IN .

All the following statements are now of immediate proof.

Theorem 7 Every simple VOA satisfies the ascending chain condition on its right
ideals.

Theorem 8 Let V be a VOA, X ⊂V a subset containing ∂ iω for some i ≥ 0. Then
there exists a finite subset X0 ⊂ X such that ((X)) = ((X0)).

Theorem 9 Let V be a simple VOA, X ⊂V. Then there exists a finite subset X0 ⊂ X
such that (X)) = (X0)).
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We may rephrase Theorem 7 by saying that every simple finitely generated VOA
is right-noetherian.

Remark 4 Notice that, unless V is associative (e.g., when V is commutative), sub-
spaces of the form XV may fail to be right ideals, so the above reasoning does not
prove that if

X1 ⊂ X2 ⊂ . . .⊂ Xn ⊂ Xn+1 ⊂ . . .

is an increasing family of subsets, then the corresponding sequence

X1V ⊂ X2V ⊂ . . .⊂ XnV ⊂ Xn+1V ⊂ . . .

stabilizes. In other words, we do not know whether a simple fintiely generated VOA
must satisfy the ascending chain condition also on its subspaces of the form XV .

Remark 5 Finite generation of every right ideal I in a simple finitely generated VOA
V is a strong claim. However, one often needs a stronger statements which may eas-
ily fail.

Say that I = (X)) or even I = XV . Then it is true that one may find a finite subset
X0 ⊂ I such that I = X0V , but there is no clear way to force X0 ⊂ X . The standard
proof of this fact would require the ascending chain condition in the stronger form
stated above.

7 Speculations on Hilbert’s approach to finiteness in the
VOA orbifold setting

7.1 Subspaces of the form XV

Let a,b be elements of a VOA V . Then (4) shows that (a,b,c) ∈ aV +bV for every
c ∈V . However, (a,b,c) = (ab)c−a(bc); as a(bc) ∈ aV , then (ab)c ∈ aV +bV for
all c ∈V . We can summarize this in the following statement:

Lemma 5 Let V be a VOA, X ⊂V a collection of homogeneous elements not con-
taining 1. Then XV = 〈X〉+V .

Proof. It is enough to show that if u is a product of (derivatives) of elements from
X , then uV ⊂ XV . This follows from the previous lemma and an easy induction on
the number of terms in the product.

Proposition 4 Let U ⊂ V be VOAs, X ⊂ V a collection of homogeneous elements
not containing 1. Then

X strongly generates U =⇒ U+ ⊂ XV =⇒ U+ ⊂ XV +VX .

The above implications can be reversed for certain classes of subalgebras.
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7.2 Split subalgebras

LetU ⊂V be VOAs.

Definition 3 U is a split subalgebra of V if there exists a graded C[∂ ]-submodule
decomposition V =U⊕M such thatUM ⊂M.

WheneverU is a split subalgebra ofV , there exists a C[∂ ]-linear splitting R :V →U
which is a homomorphism ofU-modules. The splitting clearly satisfies R2 = R, and
R(uv) = uR(v),R(vu) = R(v)u for every u ∈U,v ∈V .
Example 3 If G is a reductive group acting on the finitely generated VOA V by
graded automorphisms, then VG is a split subalgebra of V .

Theorem 10 Let U be a split subalgebra of the VOA V , X ⊂U a collection of ho-
mogeneous elements not containing 1. Then

U+ ⊂ XV +VX =⇒ X strongly generates U.

Proof. Let u ∈U be a homogeneous element of positive degree. As we know that
u ∈U+ ⊂ XV +VX , then there exist finitely many nonzero elements rix,s

i
x ∈V , that

we may assume homogeneous without loss of generality, such that

u = ∑
x∈X ,i∈N

rix∂
ix+∂ ixsix.

As R(u) = u, then also

u = ∑
x∈X ,i∈N

R(rix)∂ ix+∂ ixR(six).

In order to show that u can be expressed as a linear combination of products of el-
ements from X , it is enough to notice that R(rix),R(six) are homogeneous elements
fromU of lesser degree than u, and proceed by induction on the degree.

7.3 (Not quite) proving that the VOA orbifold construction
preserves finiteness

LetV be a simple finitely generated VOA, G a reductive group acting onV by auto-
morphisms. Then both the following statements hold:

• (VG
+ )) = (U)) for some finite setU ⊂VG

+ ;
• (VG

+ )) = XV for some finite set X ⊂ (VG
+ )).

We are however not able to show any of the following increasingly weaker state-
ments

• (VG
+ )) = XV for some finite set X ⊂VG

+ ,
• VG

+V = XV for some finite set X ⊂VG
+ ,

• VG
+V +VVG

+ = XV +VX for some finite set X ⊂VG
+ ,
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which would suffice to apply Theorem 10 to ensure finiteness ofVG. Such statements
depend on a stronger Noetherianity property than we are able to show.

Notice that the above proof of right Noetherianity of a simple finitely generated
VOA requires considering nonzero associators, thus resulting in a strictly noncom-
mutative statement. Noncommutative VOAs are however typically nonassociative,
and this may prevent subspaces of the form XV from being right ideals.

It is not clear how one should proceed to adapt Hilbert’s strategy to the VOA
setting. I would like to list a few (bad and good) facts one must necessarily cope
with.

• XV can fail to be an ideal of V .
• Furthermore, it is easy to construct examples of X ⊂V such that grXV is not an

ideal of V . The ideal property is likely to fail for subspaces gr(XV +VX) too.

However the proof of many statements does not require the full strength of ideals:

• A⊂ B,grA = grB =⇒ A = B holds for subspaces, not just ideals.
• If 1 ∈ �a,b�, then aV +Vb contains some ∂NV . However this does not seem to

guarantee fullness.
• If X ⊂V is non-empty, then (XV )V may fail to be an ideal, but is however full.
• If A⊂V is a subspace such that grA contains grEn(V ), then A contains En(V ).

It is also possible that strong finite generation of subspaces of the form XV may fail
in general, but can be proved in the special case of X =VG

+ .

Problem: understand what conditions ensure that a subspace XV +VX contain a
nonzero ideal.

References

1. Bakalov, B., D’Andrea, A., Kac, V.G.: Theory of finite pseudoalgebras. Adv. Math. 162, 1–
140 (2001)

2. Bakalov, B., Kac, V.G.: Field algebras. Int. Math. Res. Not. IMRN 3, 123–159 (2003)
3. D’Andrea, A.: A remark on simplicity of vertex algebras and Lie conformal algebras. J. Alge-

bra 319(5), 2106–2112 (2008)
4. D’Andrea, A.: Commutativity and associativity of vertex algebras. In: Doebner, H.-D., Do-

brev, V.K. (eds.) Lie Theory and its Applications in Physics VII. Heron Press, Sofia. Bulg. J.
Phys. 35(s1), 43–50 (2008)

5. D’Andrea, A., Kac, V.G.: Structure theory of finite conformal algebras. Selecta Math. (N.S.)
4(3), 377–418 (1998)

6. De Sole, A., Kac, V.G.: Finite vs. affine W-algebras. Jpn. J. Math. 1, 137–261 (2006)
7. Dong, C., Li, H.-S., Mason, G.: Vertex Lie algebras, vertex Poisson algebras and vertex al-

gebras. Recent developments in infinite-dimensional Lie algebras and conformal field the-
ory (Charlottesville, VA, 2000), pp. 69–96, Contemp. Math. Vol. 297. AMS, Providence, RI
(2002)

8. Kac, V.G.: Vertex algebras for beginners. Univ. Lect. Series Vol. 10, AMS (1996). 2nd ed.
(1998)

9. Li, H.-S.: Abelianizing vertex algebras. Comm. Math. Phys. 259(2), 391–411 (2005)
10. Linshaw, A.R.: A Hilbert theorem for vertex algebras. Transform. Groups 15(2), 427–448

(2010)
11. Ritt, J.F.: Differential algebras. Colloquium Publications Vol. 33. AMS (1950)



On classical finite and affine W-algebras

Alberto De Sole

Abstract This paper is meant to be a short review and summary of recent results
on the structure of finite and affine classical W-algebras, and the application of the
latter to the theory of generalized Drinfeld-Sokolov hierarchies.

1 Introduction

In Classical (Hamiltonian) Mechanics the phase space, describing the possible con-
figurations of a physical system, is a Poisson manifoldM. The physical observables
are the smooth functions on M with real values, and they thus form a Poisson alge-
bra (PA). The Hamiltonian equations, describing the time evolution of the system,
are written in terms of the Poisson bracket: du

dt = {h,u}, where h(x) ∈C∞(M) is the
Hamiltonian function (corresponding to the energy observable).

Whenwe quantize a classical mechanic theory we go to QuantumMechanics. The
observables become non commutative objects, and the Poisson bracket is replaced
by the commutator of these objects. Hence, the physical observables in quantumme-
chanics form an associative algebra (AA) A. The phase space is then described as
a representation V of A, and the Schroedinger’s equation, describing the evolution
of the physical system, is written in terms of this representation: dψ

dt =H(ψ), where
H ∈ A is the Hamiltonian operator.

Going from a finite to an infinite number of degrees of freedom, we pass from
classical and quantum mechanics to classical and quantum field theory respectively.
In some sense, the algebraic structure of the space of observables in a conformal field
theory is that of a vertex algebra (VA) [3], and its quasi-classical limit is known as
Poisson vertex algebra (PVA) [10].
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We can summarize the above observations in the following diagram of the alge-
braic structures of the four fundamental physical theories:

(1)

The arrows in the above diagram have the following meaning. If we have a fil-
tered associative algebra, its associated graded is automatically a Poisson algebra
called its classical limit. Similarly, if we have a filtered vertex algebra, its associ-
ated graded is a Poisson vertex algebra. Furthermore, starting from a positive energy
vertex algebra (respectively Poisson vertex algebra) we can construct an associative
algebra (resp. Poisson algebra) governing its representation theory, known as its Zhu
algebra, [36]. On the other hand, the processes of going from a classical theory to
a quantum theory (“quantization”), or from finitely many to infinitely many degrees
of freedom (“affinization”), do not correspond to canonical functors, and they are
represented in the diagram with dotted arrows.

W-algebras provide a very rich family of examples, parametrized by a simple
Lie algebra g and a nilpotent element f ∈ g, which appear in all the 4 fundamental
aspects in diagram (1):

(2)

Each of these classes of algebras was introduced and studied separately, with dif-
ferent applications in mind, and the relations between them became fully clear only
later.

Classical finite W-algebras

The classical finiteW-algebraWcl, f in(g, f ) is a Poisson algebra, which can be viewed
as the algebra of functions on the so-called Slodowy slice S (g, f ). It was introduced
by Slodowy while studying the singularities associated to the coadjoint nilpotent or-
bits of g, [33].
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Finite W-algebras

The first appearance of the finite W-algebras W f in(g, f ) was in a paper of Kostant,
[27]. He constructed the finite W-algebra for a principal nilpotent f ∈ g (in which
case it is commutative), and proved that it is isomorphic to the center of the univer-
sal enveloping algebraU(g). The construction was then extended in [28] for an even
nilpotent element f ∈ g. The general definition of finiteW-algebrasW f in(g, f ), for an
arbitrary nilpotent element f ∈ g, appeared much later, [31]. Starting with the work
of Premet, there has been a revival of interest in finite W -algebras in connection to
geometry and representation theory of simple finite-dimensional Lie algebras, and
the theory of primitive ideals (see [6, 30–32]).

Classical W-algebras

The classical (affine)W-algebrasWcl
z (g, f ) (depending on the parameter z∈F, where

F is the base field) were introduced, for a principal nilpotent element f , in the sem-
inal paper of Drinfeld and Sokolov [16]. They were introduced as Poisson alge-
bras of function on an infinite dimensional Poisson manifold, and they were used to
study KdV-type integrable bi-Hamiltonian hierarchies of PDE’s, nowadays known
as Drinfled Sokolov hierarchies. Subsequently, in the 90’s, there was an extensive
literature extending the Drinfeld-Sokolov construction of classical W-algebras and
the corresponding generalized Drinfeld-Sokolov hierarchies to other nilpotent el-
ements, [4, 8, 9, 17, 20, 21]. Only very recently, in [13], the classical W-algebras
Wcl

z (g, f ) were described as Poisson vertex algebras, and the theory of generalized
Drinfeld-Sokolov hierarchies was formalized in a more rigorous and complete way.

W-algebras

The first (quantum affine) W-algebra which appeared in literature was the so called
Zamolodchikov W3-algebra [35], which is the W-algebra associated to sl3 and its
principal nilpotent element f . It was introduced as a “non-linear” infinite dimen-
sional Lie algebra extending the Virasoro Lie algebra, describing the symmetries
of a conformal filed theory. After the work of Zamolodchikov, a number of papers
on affine W-algebras appeared in physics literature, mainly as “extended conformal
algebras”, i.e. vertex algebra extensions of the Virasoro vertex algebra. A review of
the subject up to the early 90’s may be found in the collection of a large number of
reprints on W-algebras [5]. The most important results of this period are in the work
by Feigin and Frenkel [18, 19], where the general construction of W-algebras, via
a quantization of the Drinfeld-Sokolov reduction, was introduced in the case of the
principal nilpotent element f . For example, if g = s�n, we get the Virasoro vertex
algebra for n= 2, and Zamolodchikov’s W3 algebra for n= 3. The construction was
finally generalized to an arbitrary nilpotent element f in [24–26]. In these paper,
W-algebras were applied to representation theory of superconformal algebras.

A complete understanding of the links among the four different appearances of
W-algebras in diagram (2) is quite recent. In [22] Gan and Ginzburg described the fi-
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niteW-algebras as a quantization of the Poisson algebra of functions on the Slodowy
slice. They thus proved that the classical finite W-algebra Wcl, f in(g, f ) can be ob-
tained as the classical limit of the finite W-algebra W f in(g, f ).

As mentioned earlier, the construction of the W-algebra Wk(g, f ), for a principal
nilpotent element f , due to Feigin and Frenkel [18], was obtained as a “quantization”
of the Drinfeld-Sokolov construction of the classical W-algebra Wcl

z (g, f ). But it is
only in [13] that the classical W-algebra Wcl

z (g, f ) is described as a Poisson vertex
algebra which can be obtained as classical limit of the W-algebra Wk(g, f ).

Furthermore, in [10] it is proved there that the (H-twisted) Zhu algebra
ZhuHWk(g, f ) is isomorphic to the corresponding finite W-algebra W f in(g, f ).
Hence, their categories of irreducible representations are equivalent. (This result was
independently proved in [1] for a principal nilpotent f .) A similar result for classical
W-algebras holds as well. It is also proved in the Appendix of [10] (in collaboration
with A. D’Andrea, C. De Concini and R. Heluani) that the quantum Hamiltonian
reduction definition of finite W-algebras is equivalent to the definition via the Whit-
taker models, which goes back to [27].

In the present paper we describe in more detail the “classical” part of diagram (2):
in Sect. 2 we describe the Poisson structure of the Slodowy slice and we introduce
the classical finite W-algebra Wcl, f in(g, f ). In order to describe its affine analogue,B
we first need to describe the classical finite W-algebra Wcl, f in(g, f ) as a Hamiltonian
reduction, which is done in Sect. 2.4. By taking the affine analogue of this construc-
tion, we obtain the classical W-algebra Wcl

z (g, f ). Finally, in Sect. 3.5 we describe,
following [13], how classical W-algebras are used to study the generalized Drinfeld-
Sokolov bi-Hamiltonian hierarchies.

2 Classical finite W-algebras

2.1 Poisson manifolds

Recall that, by definition, a Poisson manifold is a manifold M = Mn together with
a Poisson bracket {· , ·} on the algebra of functions C∞(M), making it a Poisson
algebra. By the Leibniz rule, we can write the Poisson bracket as

{ f (x),g(x)}=∑
i, j
Ki j(x)

∂ f
∂xi

∂g
∂x j

.

The bivector η = ∑i, j Ki j(x) ∂
∂xi
∧ ∂

∂x j
∈ Γ (

∧2TM) is the Poisson structure of the

manifold. With every function h ∈C∞(M) on a Poisson manifold M we associate a

Hamiltonian vector field Xh = ∑n
i, j=1K(x)i j

∂h(x)
∂xi

∂
∂x j

= {h, ·}, and the corresponding
Hamiltonian flow (or evolution):

dx
dt

= {h,x}= K(x)∇xh . (3)
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(This is the Hamiltonian equation associated to the Hamiltonian function h.) If we
start from a point x∈M and we follow all the possible Hamiltonian flows (3) through
x, we cover the symplectic leaf through x. The Poisson manifold M is then disjoint
union of its symplectic leaves: M = �αSα (which are symplectic manifolds).

It is natural to ask when a Poisson structure η on a Poisson manifold M induces
a Poisson structure on a submanifold N. Some sufficient condition is given by the
following

Proposition 1 (Va94) Suppose that, for every point x ∈ N, denoting by (S,ω) the
symplectic leaf of M through x, we have

(i) the restriction of the symplectic form ω(x) of TxS to TxN ∩ TxS is non-degen-
erate;

(ii) N is transverse to S, i.e. TxN+TxS = TxM.

Then, the Poisson structure on M naturally induces a Poisson structure on N, and
the symplectic leaf of N through x is N ∩S.

If g is a Lie algebra, the dual space g∗ has a natural structure of a Poisson mani-
fold. Indeed, the Lie bracket [· , ·] on g extends uniquely to a Poisson bracket on the
symmetric algebra S(g): if {xi}ni=1 is a basis of g, we have

{P,Q}=
n

∑
i, j=1

∂P
∂xi

∂Q
∂x j

[xi,x j] . (4)

We can think of S(g) as the algebra of polynomial functions on g∗. Hence, g∗ has
an induced structure of a Poisson manifold. In coordinates, if we think of {xi}ni=1

as linear functions, or local coordinates, on g∗, and we let {ξi = ∂
∂xi
}ni=1 be the dual

basis of g∗, then, by (4), the Poisson structure η ∈ Γ (
∧2Tg∗) evaluated at ξ ∈ g∗ is

η(ξ ) =
n

∑
i, j=1

ξ ([xi,x j])ξi∧ξ j =
n

∑
j=1

ad∗(x j)(ξ )∧ξ j ∈∧2(g∗) . (5)

By (5), the Hamiltonian vector field associated to a ∈ g is ad∗a, and the correspond-
ing Hamiltonian flow through ξ ∈ g∗ is Ad∗(eta)(ξ ). Hence, the symplectic leaves
of g∗ are the coadjoint orbits S = Ad∗G(ξ ) where G is the connected Lie group with
Lie algebra g. The Poisson structure on the coadjoint orbits Ad∗G(ξ ) is known as
Kirillov-Kostant Poisson structure. Its inverse is a symplectic structure. At the point
ξ ∈ g∗ it coincides with the following non-degenerate skewsymmetric form ω(ξ )
on ad∗g(ξ ):

ω(ξ )(ad∗(a)(ξ ),ad∗(b)(ξ )) = ξ ([a,b]) . (6)

2.2 The Poisson structure on the Slodowy slice

Let g be a reductive finite dimensional Lie algebra, and let f ∈ g be a nilpotent
element. By the Jacoboson-Morozov Theorem, f can be included in an sl2-triple



56 A. De Sole

{e,h = 2x, f}, see e.g. [7]. Let (· | ·) be a non-degenerate invariant symmetric bilin-
ear form on g, and let Φ : g

∼→ g∗ be the isomorphism associated to this bilinear
form: Φ(a) = (a| ·). We also let χ = Φ( f ) = ( f | ·) ∈ g∗.

The Slodowy slice [33] associated to this sl2-triple element is, by definition, the
following affine space

S = Φ( f +ge) =
{
χ +Φ(a)

∣∣a ∈ ge}⊂ g∗ . (7)

Let ξ =Φ( f +r), r ∈ ge, be a given point of the Slodowy slice. The tangent space
to the coadjoint orbit Ad∗G(ξ ) at ξ is Tξ (Ad∗G(ξ )) = ad∗(g)(ξ ) = Φ([ f + r,g]),
while the tangent space to the Slodowy slice at ξ is Tξ (S )!Φ(ge). Recalling (6),
one can check that the assumptions of Proposition 1 hold, [22]:

(i) The restriction of the symplectic form (6) to Tξ (Ad∗G(ξ ))∩Tξ (S ) is non-de-
generate. In other words, if a ∈ g is such that [ f + r,a] ∈ ge and a⊥ [ f + r,g]∩
ge, then a = 0.

(ii) The Slodowy slice S intersect transversally the coadjoint orbit at ξ , i.e. [ f +
r,g]+ge = g.

It then follows by Proposition 1 that S ⊂ g∗ is a Poisson submanifold, i.e. it has a
Poisson structure induced by the Kirillov-Kostant structure on g∗.

Definition 1 The classical finite W algebra Wcl, f in(g, f ) ! S(g f ) is the algebra of
polynomial functions on the Slodowy slice S .

Clearly, the dual space to Φ(ge) is g f . Hence, by the definition (7) of S , we can
identify Wcl, f in(g, f ), as a polynomial algebra, with the symmetric algebra over g f .
In fact, we can write down an explicit formula for the Poisson bracket of the classi-
cal finite W-algebra. We have the direct sum decomposition: g= [e,g]⊕g f , and, for
a ∈ g, we denote by a� its projection on g f . Let {qi}ki=1 be a basis of g

f consisting
of adx-eigenvectors, and let {qi}ki=1 be the dual basis of g

e. For i ∈ {1, . . . ,k}, we let
δ (i) ∈ 1

2Z be adx-eigenvalue of qi. By representation theory of sl2, a basis of g is{
qin := (ad f )nqi

∣∣∣n = 0, . . . ,2δ (i), i = 1, . . . ,k
}

, (8)

and let
{
qni

∣∣∣n = 0, . . . ,2δ (i), i = 1, . . . ,k
}
, be the dual basis of g. (Here and further

we let qi0 = qi and q0i = qi.)

Theorem 1 ([15]) The Poisson bracket on the classical finiteW-algebraWcl, f in(g, f )
is (p,q ∈ g f ):

{p,q}S = [p,q]+
∞

∑
s=1

k

∑
i1,...,is=1

d

∑
m1,...,ms=0

[p,qi1m1
]�[qm1+1

i1
,qi2m2

]� . . . [qms+1
is ,q]� .

Example 1 If q∈ g f0 = ge0, then [qm+1
i ,q]� = 0 for all i,m. Hence, {p,q}S = [p,q] ∈

g f .
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2.3 Classical Hamiltonian reduction

In order to define, in Sect. 3, the classical W-algebra Wcl
z (g, f ), i.e. affine analogue

of the classical finite W-algebra Wcl, f in(g, f ), it is convenient to describe the Pois-
son structure on the Slodowy slice S via a Hamiltonian reduction of g∗. In this
section we describe, in a purely algebraic setting, the general construction of the
classical Hamiltonian reduction of a Hamiltonian action of a Lie group N on a Pois-
son manifold P. In the next Sect. 2.4 we then describe the classical finite W-algebra
Wcl, f in(g, f ) as a Hamiltonian reduction.

Recall that the classical Hamiltonian reduction is associated to a Poissonmanifold
M, a Lie group N with a Hamiltonian action onM, and a submanifold O ⊂ n∗ which
is invariant by the coadjoint action of N. The corresponding Hamiltonian reduction
is, by definition, μ−1(O)

/
N, where μ : M→ n∗ is the moment map associated to the

Hamiltonian action of N on M. One shows that, indeed, μ−1(O)
/
N has a Poisson

structure induced by that ofM [23].
On a purely algebraic level, going to the algebras of functions, the classical Hamil-

tonian reduction can be defined as follows. Let (P, ·,{· , ·}) be a unital Poisson al-
gebra. Let n be a Lie algebra. Let φ : n→ P be a Lie algebra homomorphism, and
denote by φ : S(n)→ P the corresponding Poisson algebra homomorphism. Let I ⊂
S(n) be a subset which is invariant by the adjoint action of n, i.e. such that ad(n)(I)⊂
I. Consider the ideal Pφ(I) of P generated by φ(I). Note that, in general, Pφ(I) is
NOT a Poisson ideal, so the quotient space P/Pφ(I) has an induced structure of a
commutative associative algebra, but NOT of a Poisson algebra.

Definition 2 The Hamiltonian reduction of the Poisson algebra P associated to the
Lie algebra homomorphism φ : n→ P and to the adn-invariant subset I ⊂ S(n) is,
as a space,

W(P,n, I) :=
(
P/Pφ(I)

)n =
{
f ∈ P

∣∣∣{φ(n), f} ⊂ Pφ(I)
}/

Pφ(I) . (9)

Proposition 2 The Hamiltonian reduction W(P,n, I) has an induced structure of a
Poisson algebra.

Proof. First, it follows by the Leibniz rule that
{
f ∈ P

∣∣{φ(n), f} ⊂ Pφ(I)
} ⊂ P

is a subalgebra with respect to the commutative associative product of P, and, since
by assumption the set I is ad(n)-invariant, Pφ(I)⊂ { f ∈ P

∣∣{φ(n), f} ⊂ Pφ(I)
}
is

its ideal. Hence, the corresponding quotientW (P,n,S) has an induced commutative
associative product. We use the same argument for the Poisson structure: we claim
that

(i)
{
f ∈ P

∣∣{φ(n), f} ⊂ Pφ(I)
}⊂ Pφ(I) is a Lie subalgebra,

(ii) and that Pφ(I)⊂ { f ∈ P
∣∣{φ(n), f} ⊂ Pφ(I)

}
is its Lie algebra ideal.
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Suppose that f ,g∈ P are such that (adφ(n))( f )⊂ Pφ(I) and (adφ(n))(g)⊂ Pφ(I).
Then, by the Jacobi identity,

{φ(n),{ f ,g}} ⊂ {{φ(n), f},g}+{ f ,{φ(n),g}} ⊂ {Pφ(I),g}+{ f ,Pφ(I)}
⊂ P{φ(I),g}+P{ f ,φ(I)}+Pφ(I)⊂ P{φ(S(n)),g}+P{φ(S(n)), f}+Pφ(I)
⊂ P{φ(n),g}+P{φ(n), f}+Pφ(I)⊂ Pφ(I) .

In the second inclusion we used the assumption on f and g, in the third inclu-
sion we used the Leibniz rule, in the fourth inclusion we used the fact that, by
construction, I ⊂ S(n), in the fifth inclusion we used the Leibniz rule, and in the
last inclusion we used again the assumption on f and g. This proves claim (i).

For claim (ii), let f ∈ P be such that {φ(n), f} ⊂ Pφ(I). We have, with the same
line of arguments as above,

{Pφ(I), f} ⊂ P{φ(I), f}+Pφ(I)⊂ P{φ(S(n)), f}+Pφ(I)

⊂ P{φ(n), f}+Pφ(I)⊂ Pφ(I) .

2.4 The Slodowy slice via Hamiltonian reduction

Wewant to describe the classical finiteW-algebraWcl, f in(g, f ) introduced in Sect. 2.2
as a Hamiltonian reduction of the Poisson algebra S(g).

We have the adx-eigenspace decomposition g=
⊕

i∈ 1
2Z
gi. Letω be the following

non-degenerate skewsymmetric bilinear form on g 1
2
:

ω(u,v) = ( f |[u,v]) . (10)

Let �⊂ g 1
2
be a maximal isotropic subspace. Consider the nilpotent subalgebra

n= �⊕g≥1 ⊂ g . (11)

Since �⊂ g 1
2
is isotropic w.r.t. the bilinear form (10), we have ( f |[n,n]) = 0. Hence,

the subset

I =
{
n− ( f |n) ∣∣n ∈ n} ⊂ S(n) , (12)

is invariant by the adjoint action of n. Hence, we can consider the corresponding
Hamiltonian reduction (9) applied to the data (S(g),n, I).

Theorem 2 ([15]) The classical finite W-algebra Wcl, f in(g, f ) is isomorphic to the
Hamiltonian reduction of the Poisson algebra S(g), associated to the Lie algebra
n⊂ S(g) given by (11), and the adn-invariant subset I ⊂ S(n) in (12):

Wcl, f in(g, f )!W(S(g),n, I)

=
{
p ∈ S(g)

∣∣∣{n, p} ⊂ 〈n− ( f |n)〉n∈n
}/

S(g)〈n− ( f |n)〉n∈n
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In geometric terms, the restriction map μ : g∗ → n∗ is a map of Poisson mani-
folds (the moment map), and the corresponding dual map μ∗ : n→ g, is the inclusion
map. The element χ = ( f | ·)|n ∈ n∗ is a character of n, in the sense that χ([n,n]) = 0
(by the assumption that � is maximal isotropic). Hence, χ is fixed by the coadjoint
action of N, the Lie group of n. We can then consider the Hamiltonian reduction of
the Poisson manifold g∗, by the Hamiltonian action of N on g∗ given by the moment
map μ , associated to the N-fixed point χ ∈ g∗:

Ham.Red.(g∗,N,χ) = μ−1(χ)/N = Φ( f +n⊥)/N .

Theorem 2 can be then viewed as the algebraic analogue of the following result of
Gan and Ginzburg:

Theorem 3 ([22]) The coadjoint action N×S →Φ( f +n⊥) is an isomorphism of
affine varieties. The corresponding bijection

S ! μ−1(χ)/N = Ham.Red.(g∗,N,χ) ,

is an isomorphism of Poisson manifolds.

3 Classical W -algebras

3.1 Poisson vertex algebras

In this section we introduce the notions of Lie conformal algebra and of Poisson
vertex algebra. They are, in some sense, the “affine analogue” of a Lie algebra and
of a Poisson algebra respectively.

Definition 3 A Lie conformal algebra is a F[∂ ]-module R with a bilinear λ -bracket
[·λ ·] : R×R→ F[λ ]⊗R satisfying the following axioms:

(i) sesquilinearity: [∂aλb] =−λ [aλb], [aλ ∂b] = (∂ +λ )[aλb];
(ii) skewsymmetry: [aλb] =−[b−λ−∂a] (where ∂ is moved to the left);
(iii) Jacobi identity: [aλ [bμc]]− [bμ [aλ c]] = [[aλb]λ+μc].

Example 2 Let g be a Lie algebra with a symmetric invariant bilinear form (· | ·).
The corresponding current Lie conformal algebra is, by definition, R = F[∂ ]g⊕F,
with λ -bracket (s is a fixed element of g):

[aλb] = [a,b]+ (a|b)λ + z(s|[a,b]) , (13)

for a,b ∈ g, extended to R by saying that F is central, and by sesquilinearity. (The
term (a|b)λ is a 2-cocycle, defining a central extension, and z(s|[a,b]) is a trivial
2-cocycle.)

Definition 4 A Poisson vertex algebra is a commutative associative differential al-
gebra V (with derivation ∂ ) endowed with a Lie conformal algebra λ -bracket {·λ ·},
satisfying the Leibniz rule

{aλbc}= {aλb}c+{aλ c}b . (14)
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Note that by the skewsymmetry axiom and the left Leibniz rule (14) we get the right
Leibniz rule:

{abλ c}= {aλ+∂ c}→b+{bλ+∂ c}→a , (15)

where the arrow means that ∂ should be moved to the right.

Example 3 If R is a Lie conformal algebra, then S(R) has a natural structure of a
Poisson vertex algebra, with λ -bracket extending the one in R by the left and right
Leibniz rules.

Example 4 As a special case of Example 3, consider the current Lie conformal al-
gebra R = F[∂ ]g⊕F associated to the Lie algebra g and the symmetric invariant
bilinear form (· , ·), defined in Example 2. The affine Poisson vertex algebra is, by
definition, Vz(g) = S(F[∂ ]g), with λ -bracket (13), extended by sesquilinearity and
Leibniz rule. If {ui}ni=1 is a basis of g, the general formula for the λ -bracket is:

{PλQ}z =
n

∑
i, j=1

∑
m,n∈Z+

∂Q
∂u(n)

j

(λ +∂ )n(
[ui,u j]+ (ui|u j)(λ +∂ )+ z(s|[ui,u j])

)
(−λ −∂ )m

∂Q

∂u(n)
j

(λ +∂ )n .

This is the “affine analogue” of the usual Poisson algebra structure on S(g). It is a
1-parameter family of Poisson vertex algebras, depending on the parameter z ∈ F.
(Having a 1-parameter family is important for applications to the theory of integrable
systems.)

3.2 Hamiltonian reduction of Poisson vertex algebras

The classical Hamiltonian reduction construction described in Sect. 2.3 has an “affine
analogue” for Poisson vertex algebras.

Let (V ,∂ , ·,{·λ ·}) be a Poisson vertex algebra. Let R be a Lie conformal alge-
bra. Let φ : R→ V be a Lie conformal algebra homomorphism, which we extend
to a Poisson vertex algebra homomorphism φ : S(R)→ V . Let I ⊂ S(R) be a sub-
set which is invariant by the adjoint action of R, i.e. such that [Rλ I] ⊂ F[λ ]⊗ I.
Consider the differential algebra ideal 〈φ(I)〉V ⊂ V of V generated by φ(I). The
quotient space V /〈φ(I)〉V has an induced structure of a (commutative associative)
differential algebra (but NOT of a Poisson vertex algebra).

Definition 5 The Hamiltonian reduction of the Poisson vertex algebra V associ-
ated to the Lie conformal algebra homomorphism φ : R→ V and to the R-invariant
subset I ⊂ S(R) is, as a space,

W(V ,R, I) :=
(
V
/〈φ(I)〉V

)R
=
{
f ∈ V

∣∣∣{φ(a)λ f} ∈ F[λ ]⊗〈φ(I)〉V ∀a ∈ R
}/
〈φ(I)〉V .

(16)

Proposition 3 The Hamiltonian reduction W(V ,R, I) has an induced structure of
a Poisson vertex algebra.

Proof. It is analogue to the proof of Proposition 2.
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3.3 Construction of the classical W-algebras

In analogy with the construction, in Theorem 2, of the classical finite W-algebra
Wcl, f in(g, f ) via Hamiltonian reduction, we define its “affine analogue”, the classi-
cal W-algebra Wcl

z (g, f ), via a Hamiltonian reduction of the affine Poisson vertex
algebra Vz(g) as in Example 4.

Let, as in Sect. 2.4, g be a reductive finite dimensional Lie algebra, with a non-
degenerate symmetric bilinear form (· | ·). Let (e,h= 2x, f ) be an sl2-triple in g, and
consider the adx-eigenspace decomposition g=

⊕
i∈ 1

2Z
gi. Recall the definitions of

the bilinear formω on g 1
2
in (10), of the nilpotent subalgebra n⊂ g in (11), and of the

adn-invariant subset I = {n−( f |n)}n∈n ⊂ S(n), as in (12). Consider the current Lie
conformal algebra F[∂ ]n with λ -bracket {aλb}= [a,b] for a,b ∈ n, and extended to
R by sesquilinearity. It is obviously a Lie conformal subalgebra of Vz(g). Hence, the
inclusion S(F[∂ ]n)⊂ Vz(g) is a homomorphism of Poisson vertex algebras. Further-
more, the set I = {n− ( f |n)}n∈n ⊂ S(F[∂ ]n) is invariant by the λ -adjoint action of
F[∂ ]n. Let 〈n− ( f |n)〉n∈n ⊂ Vz(g) be the differential algebra ideal of Vz(g) gener-
ated by I = {n− ( f |n)}n∈n. We can consider the Hamiltonian reduction associated
to the data (Vz(g, f ),F[∂ ]n, I).

Definition 6 ([13]) The classical W-algebra is the following 1-parameter family
(parametrized by z ∈ F) of Poisson vertex algebras

Wcl
z (g, f )!W(Vz(g),F[∂ ]n, I)

=
{
P ∈ S(F[∂ ]g)

∣∣∣{aλP}z ∈ F[λ ]⊗〈n− ( f |n)〉n∈n∀a ∈ n
}/
〈n− ( f |n)〉n∈n .

It is convenient to give a description of the W-algebra as a subspace, rather than
as a quotient space. Let �′ ⊂ g 1

2
be a maximal isotropic subspace (w.r.t. ω) comple-

mentary to �. Hence, p= �′ ⊕g≤0 ⊂ g is a subspace complementary to n:

g= n⊕p= n⊥⊕p⊥ .

(We can thus identify p∗ = n⊥ and n∗ = p⊥.) Consider the differential algebra ho-
momorphism ρ : Vz(g)→ S(F[∂ ]p) given by

ρ(a) = πp(a)+( f |a) ∀a ∈ g .

Clearly, ker(ρ) = 〈n− ( f |n)〉n∈n. Then, the classical W-algebra can be equivalently
be defined as follows:

Wcl
z (g, f )!

{
P ∈ S(F[∂ ]p)

∣∣∣ρ({aλP}z) = 0 ∀a ∈ n
}

,

with λ -bracket
{PλQ}z,ρ = ρ{PλQ}z .

We can find explicit formulas for the λ -brackets of generators of Wcl(g, f ), in
analogy with the result of Theorem 1.
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Theorem 4 ( [15]) As a differential algebra, the classical W-algebra W cl
z (g, f )

is isomorphic to the algebra of differential polynomials over g f , i.e. Wcl
z (g, f ) !

S(F[∂ ]g f ). Moreover, the λ bracket on W f in
z (g, f ) is, using the notation in Theorem

1 (qi0 ,q j0 ∈ g f ):

{pλq}z =
∞

∑
s,t=0

k

∑
i1,...,is=1

k

∑
j1,..., jt=1

d

∑
m1,...,ms=0

d

∑
n1,...,nt=0(

[q j0 ,q
j1
n1 ]

�−δn1,0δ j1, j0(λ +∂ )
)
. . .
(
[qnt−1+1

jt−1 ,q jt
nt ]

�−δnt ,nt−1+1δ jt , jt−1(λ +∂ )
)(

[qms+1
is ,qnt+1

jt ]� +(qms+1
is |qnt+1

jt )(λ +∂ )+ z(s|[qms+1
is ,qnt+1

jt ]
)(

[qms−1+1
is−1 ,qisms

]� +δms,ms−1+1δis,is−1(λ +∂ )
)
. . .
(
[qi0 ,q

i1
m1

]� +δm1,0δi1,i0λ
)
.

(17)
(In the RHS, when s or t is 0, we replace m0 +1 or n0 +1 by 0.)

In the special case of classical W-algebras for principal and minimal nilpotent ele-
ments, Eq. (17) was proved in [14].

3.4 Application of Poisson vertex algebras to the theory of
Hamiltonian equations

Poisson vertex algebras can be used in the study of Hamiltonian partial differential
equations in classical field theory, and their integrability [2] (in the same way as
Poisson algebras are used to study Hamiltonian equations in classical mechanics).

The basic observation is that, if V is a Poisson vertex algebra with λ -bracket
{·λ ·}, then V /∂V is a Lie algebra, with Lie bracket

{∫ f ,∫ g}=
∫ { fλg}∣∣λ=0 ,

and we have a representation of the Lie algebra V /∂V on V , with the following
action

{∫ f ,g}= { fλg}
∣∣
λ=0 ,

We can then introduce Hamiltonian equations and integrals of motion in the same
way as in classical mechanics.

Definition 7 Given a Poisson vertex algebra V with λ -bracket {·λ ·}, the Hamilto-
nian equation with Hamiltonian functional

∫
h ∈ V /∂V is:

du
dt

= {hλu}
∣∣
λ=0 . (18)

An integral of motion for the Hamiltonian equation (18) is an element
∫
g ∈ V such

that
{∫ h,∫ g}=

∫ {hλg}∣∣λ=0 = 0 .

The element g∈ V is then called a conserved density. The usual requirement to have
integrability is that of having an infinite sequence

∫
g0 =

∫
h,
∫
g1,
∫
g2, . . . of linearly

independent integrals of motion in involution:∫ {gmλgn}
∣∣
λ=0 = 0 f orallm,n ∈ Z+ .
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Example 5 The famous KdV equation, describing the evolution of waves in shallow
water is

∂u
∂ t

= 3u
∂u
∂x

+ c
∂ 3u
∂x3

.

It is a bi-Hamiltonian equation, since it can bewritten in two compatible Hamiltonian
forms:

du
dt

=
{1
2
(u3 + cuu′′)λu

}
0

∣∣∣
λ=0

=
{1
2
u2 λu

}
1

∣∣∣
λ=0

,

on the differential algebra V = S(F[∂ ]u), with PVA λ -brackets

{uλu}0 = λ , {uλu}1 = u′+2uλ + cλ 3 .

Compatibility means that {·λ ·}z = {·λ ·}0+{·λ ·}1 is a 1-parameter family of PVA
λ -brackets.

The usual “trick” to construct a sequence
∫
gn, n∈Z+, of integrals ofmotion in in-

volution is the so called Lenard-Magri scheme: assuming we have a bi-Hamiltonian
equation

du
dt

=
{
h1λu

}
0 =
{
h0λu

}
1 ,

we try to solve the following recursion equation for
∫
gn, n≥ 0 (starting with g0 = h0

and g1 = h1), {
g0λu

}
0 = 0 ,

{
gn+1λu

}
0 =
{
gnλu

}
1 . (19)

(There are various “cohomological” arguments indicating that, often, such recursive
equations can be solved for every n, see e.g. [11, 12].) In this case, it was a simple
observation of Magri [29] that the solutions

∫
gn, n ∈ Z+, are integrals of motion in

involution w.r.t. both PVA λ -brackets {·λ ·}0 and {·λ ·}1, and therefore we get the
integrable hierarchy of bi-Hamiltonian equations

du
dtn

=
{
gnλu

}
0 .

3.5 Generalized Drinfeld-Sokolov bi-Hamiltonian integrable
hierarchies

Following the ideas of [16], we can prove that the Lenard-Magri scheme can be ap-
plied to construct integrable hierarchies of bi-Hamiltonian equations attached to the
classical W-algebras Wcl, f in

z (g, f ). For example, for g= sl2, we get the KdV hierar-
chy (cf. Example 5).

The basic assumption is that there exists a homogeneous (w.r.t. the adx-eigen-
space decomposition) element s ∈ ker(adn) such that f + s is a semisimple element
of g. Hence, f + zs is a semisimple element of g((z−1)), and we have the direct sum
decomposition g((z−1)) = h⊕h⊥, where

h := Kerad( f + zs) and h⊥ := Imad( f + zs) . (20)
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We define a 1
2Z-grading of g((z

−1)) by letting deg(z) =−d−1, if s ∈ gd . In partic-
ular, f + zs is homogenous of degree−1. We have the induced decompositions of h
and h⊥ (since f + zs is homogeneous):

h=
⊕̂

i∈ 1
2Z
hi and h⊥ =

⊕̂
i∈ 1

2Z
h⊥i . (21)

Consider the Lie algebra

g̃= F∂ �
(
g((z−1))⊗V (p)

)
,

where ∂ acts only on the second factor of the tensor product. Clearly, g((z−1))>0⊗
V (p) ⊂ g̃ is a pro-nilpotent subalgebra. Hence, for U(z) ∈ g((z−1))>0⊗V (p), we
have a well defined automorphism eadU(z) of g̃. Let {qi}i∈J be a basis of p, and let
{qi}i∈J be the dual basis of n⊥.
Theorem 5 ([13])

(a) There exist unique U(z) ∈ h⊥>0⊗V (p) and h(z) ∈ h>−1⊗V (p) such that

eadU(z)
(
∂ +( f + zs)⊗1+∑

i∈J
qi⊗qi

)
= ∂ +( f + zs)⊗1+h(z) . (22)

(b) For 0 �= a(z) ∈ Z(h), the coefficients gn, n ∈ Z+, of the Laurent series

g(z) = (a(z)⊗1|h(z)) ∈ V (p)((z−1)) , (23)

lie inW cl, f in
z (g, f )⊂V (p)modulo ∂V (p), and they satisfy the Lenard-Magri re-

cursion equations (19) for the PVA λ -brackets {·λ ·}0 = {·λ ·}z=0 and {·λ ·}1 =
d
dz{·λ ·}z

∣∣
z=0

Hence, we get an integrable hierarchy of bi-Hamiltonian equations, called the gen-
eralized Drinfeld-Sokolov hierarchy (w ∈W),

dw
dtn

= ρ{gnλw}0
∣∣
λ=0 , n ∈ Z+ .
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Q-type Lie superalgebras

Maria Gorelik and Dimitar Grantcharov

Abstract The purpose of this paper is to collect some recent results on the represen-
tation theory of Lie superalgebras of type Q. Results on the centres, simple weight
modules and crystal bases of these superalgebras are included.

1 Introduction

This paper is devoted to the Lie superalgebras of type Q, also known as queer or
strange Lie superalgebras. These Lie superalgebras, introduced by V. Kac in [13],
have attracted considerable attention of both mathematicians and physicists in the
last 40 years. They are especially interesting due to their resemblance to the gen-
eral linear Lie algebras gln on the one hand, and because of the unique properties of
their structure and representations on the other. By the term “Q-type superalgebras”
we mean four series of Lie superalgebras: q(n) (n ≥ 2) and its subquotients sq(n),
pq(n), psq(n) (the last one is a simple Lie superalgebra for n≥ 3, and in the notation
of [13] it is Q(n)).

The Q-type Lie superalgebras are rather special in several aspects: their Cartan
subalgebras h are not abelian and have non-trivial odd part h1̄; they possess a non-
degenerate invariant bilinear form which is odd; and they do not have quadratic
Casimir elements. Because h1̄ �= 0, the study of highest weight modules of the Q-
type Lie superalgebras requires nonstandard technique, including Clifford algebra
methods. The latter are necessary due to the fact that the highest weight space of
an irreducible highest weight module L(λ ) has a Clifford module structure. This

M. Gorelik
Department of Mathematics, Weizmann Institute of Science, Rehovot 76100, Israel
e-mail: maria.gorelik@weizmann.ac.il

D. Grantcharov ( )
Department of Mathematics, University of Texas at Arlington, Arlington, TX 76021, USA
e-mail: grandim@uta.edu

M. Gorelik, P. Papi (eds.): Advances in Lie Superalgebras. Springer INdAM Series 7,
DOI 10.1007/978-3-319-02952-8_5, © Springer International Publishing Switzerland 2014



68 M. Gorelik and D. Grantcharov

peculiarity leads to the existence of two different candidates for a role of Verma
module of the highest weight λ ∈ h∗

0
: a moduleM(λ ) which is induced from a sim-

ple h0-module Cλ and a module N(λ ) which is induced from a simple h-module.
The character of M(λ ) nicely depends on λ , and following the kind suggestion of
J. Bernstein, we call M(λ ) a Verma module and N(λ ) a Weyl module. Each Verma
moduleM(λ ) has a finite filtration with the factors isomorphic toN(λ ) up to a parity
change; each Weyl module N(λ ) has a unique simple quotient, which we denote by
L(λ ). The simple highest weight gln-module of highest weight λ will be denoted
by L̇(λ ).

Note that from categorical point of view it is more natural to call N(λ ) Verma
modules since they are proper standard modules whereas M(λ ) are standard mod-
ules, see [2].

The representation theory of finite dimensional L(λ ) is well developed. In [24]
A. Sergeev established several important results, including a character formula of
L(λ ) for the so called tensor modules, i.e. submodules of tensor powers (Cn|n)⊗r of
the natural q(n)-module Cn|n. The characters of all simple finite-dimensional q(n)-
modules have been found by I. Penkov and V. Serganova in 1996 (see [21] and [22])
via an algorithm using a supergeometric version of the Borel-Weil-Bott Theorem.
This result was reproved by J. Brundan, [1] using a different approach. Very recently,
using Brundan’s idea and weight diagrams a character formula and a dimension for-
mula for a finite dimensional L(λ ) were provided by Y. Su and R.B. Zhang in [28].
On the other hand the character formula problem for infinite dimensional L(λ ) re-
mains largely open, see the conjecture in [1].

The centres of the universal enveloping algebras of the Q-type Lie supealgebras
were described by Sergeev and the first author in [5, 26]. An equivalence of cate-
gories of strongly typical q(n)-modules and categories of gln-modules were estab-
lished recently in [3].

The simple weight modules with finite weight multiplicities of all finite dimen-
sional simple Lie superalgebras were partly classified by Dimitrov, Mathieu, and
Penkov in [4]. The most interesting missing case in the classification of [4] is the
case of the queer Lie superalgebras psq(n). The classification in this case was com-
pleted in [6] using a new combinatorial tool - the star action. This action is a mixture
of the dot action and the regular action of W depending on the atypicality of the
weights.

The combinatorics of the queer Lie superalgebras is also very interesting. One im-
portant aspect of the Sergeev duality is the semisimplicity of the category of tensor
modules of q(n). This naturally raises the question of uniqueness and existence of a
crystal bases theory for this category. The crystal bases theory and the combinatorial
description of the crystals of the simple tensor modules were obtained in a series of
papers of the second author and J. Jung, S.-J. Kang, M. Kashiwara, M. Kim, [7–9].

The goal of the paper is to present a survey on the recent results on the represen-
tation theory of the Q-type Lie superalgebras discussed above.
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1.1 Content of the paper

The organization of the paper is as follows. In Sect. 2 we include some important
definitions and preliminary results. Section 3 is devoted to the description of the cen-
ters of the Lie superalgebras of type Q. In Sect. 4 we collect the main results related
to the classification of all simple weight q(n)-modules with finite weight multiplici-
ties. Automorphisms and affine Lie superalgebras of typeQ are discussed in Sect. 5.
The last section deals with the crystal base theory of the category of tensor repre-
sentations of q(n).

2 Preliminaries

The symbol Z≥0 stands for the set of non-negative integers and Z>0 for the set of
positive integers.

Let V = V0⊕V1 be a Z2-graded vector space. We denote by dimV the total di-
mension of V . For a homogeneous element u ∈V we denote by p(u) its Z2-degree;
in all formulae where this notation is used, u is assumed to be Z2-homogeneous.
For a subspace N ⊂ V we set Ni := N ∩Vi for i = 0̄, 1̄. Let Π be the functor which
switches parity, i.e. (ΠV )0 =V1,(ΠV )1 =V0. We denote by V⊕r the direct sum of
r-copies of V .

For a Lie superalgebra gwe denote byU (g) its universal enveloping algebra and
by S (g) its symmetric algebra.

Throughout the paper the base field is C and g= g0⊕g1 denote one (unless oth-
erwise specified, an arbitrary one) ofQ-type Lie superalgebras q(n),sq(n) for n≥ 2,
pq(n),psq(n) for n≥ 3.

2.1 Q-type Lie superalgebras

Recall that q(n) consists of the matrices with the block form

XA,B :=
(
A B
B A

)
where A,B are arbitrary n×n matrices; q(n)0 = {XA,0} ∼= gln, q(n)1 = {X0,B} and

[XA,0,XA′,0] = X[A,A′],0, [XA,0,X0,B] = X0,[A,B], [X0,B,X0,B′ ] = X0,BB′+B′B.

Define tr′ : q(n)→ C by tr′(XA,B) = trB. In this notation,

sq(n) : = {x ∈ q(n)| tr′ x = 0},
pq(n) : = q(n)/(Id),
psq(n) : = sq(n)/(Id),

where Id is the identity matrix.
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These definitions are illustrated by the following diagram:

Clearly, the category of pq(n)-modules (resp., psq(n)-modules) is the subcat-
egory of q(n)-modules (resp., of sq(n)-modules) which are killed by the identity
matrix Id.

The map (x,y) �→ tr′(xy) gives an odd non-degenerate invariant symmetric bilin-
ear form on q(n) and on psq(n).

For the quotient algebras pq(n),psq(n) we denote by XA,B the image of the cor-
responding element in the appropriate algebra.

For Q-type Lie superalgebras the set of even roots (Δ+
0
) coincides with the set

of odd roots (Δ+
1
). This phenomenon has two obvious consequence. The first one is

that all triangular decompositions of a Q-type Lie superalgebra are conjugate with
respect to inner automorphisms (this does not hold for other simple Lie superalge-
bras). The second one is that the Weyl vector ρ := 1

2 (∑α∈Δ+
0
α−∑α∈Δ+

1
α) is equal

to zero. We set ρ0 := 1
2 ∑α∈Δ+

0
α .

We choose the natural triangular decomposition: q(n) = n− ⊕ h⊕ n+ where h0
consists of the elements XA,0 where A is diagonal, h1 consists of the elements X0,B
where B is diagonal, and n+ (resp., n−) consists of the elements XA,B where A,B are
strictly upper-triangular (resp., lower-triangular). We consider the induced triangu-
lar decompositions of sq(n),pq(n),psq(n).

2.2 Notation

In the standard notation the set of roots of gln = q(n)0 can be written as

Δ+ = {εi− ε j}1≤i< j≤n

and the set of simple roots as π := {ε1 − ε2, . . . ,εn−1− εn}. Each root space has
dimension (1|1).

For α ∈ Δ+ let sα : h∗
0
→ h∗

0
be the corresponding reflection: sεi−ε j(εi) = ε j,

sεi−ε j(εk) = εk for k �= i, j. Denote by W the Weyl group of g0 that is the group
generated by sα : α ∈ Δ+. Recall thatW is generated by sα : α ∈ π .

The space h∗
0
has the standard non-degenerateW -invariant bilinear form: (εi,ε j)=

δi j.
Let Ers be the elementary matrix: Ers = (δirδs j)ni, j=1.
The elements

hi := XEii,0

form the standard basis of h0 for g= q(n),sq(n). We use the notation hi also for the
image of hi in the quotient algebras pq(n),psq(n).
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The elementsHi := X0,Eii (i= 1, . . . ,n) form a convenient basis of h1 ⊂ q(n); they
satisfy the relations [Hi,Hj] = 2δi jhi.

For each positive root α = εi− ε j we define α = εi + ε j, and

hα := hi−h j, hα := hi +h j, Hα := Hi−Hj,
eα := XEi j ,0, Eα := X0,Ei j ,
fα := XEji,0, Fα := X0,Eji .

All above elements are non-zero in sq(n),pq(n),psq(n) (since we excluded the cases
pq(2),psq(2)).

The elements hα ,eα , fα (α ∈ Δ+) span sln = [gln,gln]; the elements Eα (resp.,
Fα ) form the natural basis of n+

1
(resp., of n−

1
) and the elements Hα span h1∩sq(n).

For each α the elements hα ,eα , fα ,hα ,Hα ,Eα ,Fα span sq(2) and one has

[eα , fα ] = hα , [Eα ,Fα ] = hα , [Hα ,Hα ] = 2hα
[Eα , fα ] = [eα ,Fα ] = Hα .

Set
Q(π) := ∑

α∈Δ+
Zα , Q+(π) := ∑

α∈Δ+
Z≥0α .

Define a partial order on h∗
0
by ν ≥ μ iff ν−μ ∈ Q+(π).

2.3 The algebra U (((h)))

Let g be a Q-type Lie superalgebra. Denote by HC the Harish-Chandra projec-
tion HC : U (g)→ U (h) along the decomposition U (g) = U (h)⊕ (U (g)n+ +
n−U (g)).

The algebraU (h) is a Clifford superalgebra over the polynomial algebraS (h0):
U (h) is generated by the odd space h1 endowed by the S (h0)-valued symmetric
bilinear form b(H,H ′) = [H,H ′]. For each λ ∈ h∗

0
the evaluation of U (h) at λ is a

complex Clifford superalgebra. Notice that a non-degenerate complex Clifford su-
peralgebra is either the matrix algebra (if dimh1 is even) or the algebra Q(n) (this is
an associative algebra whose Lie algebra is q(n)), see [5] for details. In particular, it
possesses a supertrace which is even if dimh1 is even and odd if dimh1 is odd.

For λ ∈ h∗
0
let C(λ ) be the corresponding one-dimensional h0-module. Set

C �(λ ) := U (h)⊗h0 Cλ .

Clearly, C �(λ ) is isomorphic to a complex Clifford algebra generated by h1 en-
dowed by the evaluated symmetric bilinear form bλ (H,H ′) := [H,H ′](λ ). Set

c(λ ) := dimKerbλ .

For g = q(n), c(λ ) is the number of zeros among h1(λ ), . . . ,hn(λ ). The complex
Clifford algebra C �(λ ) is non-degenerate if and only if c(λ ) = 0.

Denote by E(λ ) a simple C �(λ )-module (up to a grading shift, such a module is

unique). One has dimE(λ ) = 2[
dimh1+1−c(λ )

2 ].
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2.4 Highest weight modules

Set b := h+ n+,b− := h+ n−. Endow C �(λ ) with the b-module structure via the
trivial action of n+. Set

M(λ ) := IndgbC �(λ ), N(λ ) := IndgbE(λ ).

Clearly,M(λ ) has a finite filtration with the factors isomorphic to N(λ ) up to parity
change. We call M(λ ) a Verma module and N(λ ) a Weyl module.

For a diagonalizable h0-module N and a weight μ ∈ h∗
0
denote by Nμ the cor-

responding weight space. Say that a module N has the highest weight λ if N =
∑μ≤λ Nμ and Nλ �= 0. If all weight spaces Nμ are finite-dimensional we put chN :=
∑μ dimNμeμ .

If N has a highest weight we denote by N the sum of all submodules which do
not meet the highest weight space of N. Recall that L(λ ) = N(λ )/N(λ ).

The following conjecture is based on a discussion with V. Mazorchuk.

Conjecture For any Q-type Lie superalgebra, and any nonzero weight λ ,
chL(λ )0 = chL(λ )1.

The above conjecture is verified for all but finitely many λ .

2.5 Example: n === 222

For sq(2) the Cartan algebra is spanned by the even elements h := hα ,h′ := hα and
the odd element H := Hα .

The module N(λ ) is simple if λ (h′) �= 0 and λ (h) �∈Z>0. If λ (h′) = 0, the simple
sq(2)-module coincides with the simple gl2-module Lgl2(λ ); if λ (h′) �= 0,λ (h) ∈
Z>0, then L(λ ) = Lgl(2)(λ )⊕2 if λ (h) = 1 and L(λ ) = Lgl(2)(λ )⊕2⊕Lgl(2)(λ−α)⊕2
if λ (h) �= 1. This can be illustrated by the following diagrams: the module L(λ ) for
λ (h′) �= 0,λ (h) = 1 is of the form

· ·
| |
· ·

and the module L(λ ) for λ (h′) �= 0,λ (h) = 4 is of the form

· ·
| |
· · · ·
| | | |
· · · ·
| |
· ·

where the dots on the same level represent the vectors of the same weight and the
difference between levels is equal to α ; the vertical lines correspond to the action of
fα (so the dots in the same column represent a simple gl2-module).
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All simple module over q(2),sq(2) and their quotients pq(2),psq(2) are classified
by V. Mazorchuk in [18].

3 Centres

3.1 Centre of enveloping algebra

A weight λ is called atypical if there exists α ∈ Δ such that hα(λ ) = 0. The centres
of the universal enveloping algebras ofQ-type Lie algebras is given by the following
theorem.

Theorem Let g be a Q-type Lie superalgebra, g �= pq(2),psq(2). The restriction
of HC to Z (g) is an algebra isomorphism Z (g) ∼−→ Z where Z is the set of W-
invariant polynomial functions on h∗

0
which are constant along each straight line

parallel to a root α and lying in the hyperplane hα(λ ) = 0. In other words,

Z := S (h0)W ∩
⋂
α∈Δ

Zα ,

where

Zα := { f ∈S (h0)| hα(λ ) = 0 =⇒ f (λ ) = f (λ − cα) ∀c ∈ C}.

The theorem is proven in [5, 26]. One has Z (U(q(n))) = Z (U(sq(n))) and
Z (U(pq(n))) = Z (U(psq(n))).

3.2 Strongly typical weights

An element a of an associative superalgebra U is called anticentral if ax −
(−1)p(x)(p(a)+1)xa = 0. We denote by A (U) the set of anticentral elements ofU .

Let g be a Q-type Lie superalgebra. The anticentre of the Clifford algebra U(h)
is equal to S (h0)Th, where the parity of Th is equal to the parity of dimh1 and

th := T 2
h =

{±h1 . . .hn for g= q(n),pq(n)
±∑h1 . . . ĥi . . .hn for g= sq(n),psq(n).

The Harish-Chandra projection provides a linear monomorpism HC : A (U(g))∼−→A (U(h)) and the image is equal to S (h0)WTg, where the parity of Tg is equal
to the parity of dimh1 and

HC(Tg) = Th ∏
α∈Δ+

0

hα .

We say that λ ∈ h∗
0
is strongly typical if (th∏α∈Δ+

0
hα)(λ ) �= 0. Note that λ is

strongly typical if and only if TgM(λ ) �= 0.
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3.3 Equivalence of categories

Let Og (resp., Og0 ) be the O-category for g and g0-respectively. We have the natu-
ral restriction functor Res :Og→Og0 which sends a g-moduleM =M0⊕M1 to the
g0-module M0, and its left adjoint functor Ind : Og0 → Og.

The action of the centres of the universal enveloping algebras lead to the block
decomposition Og =

⊕
Ogχ ,Og0 =

⊕
Og0χ̂ indexed by the central characters χ and

χ̂ respectively. This gives the projection and inclusions functors pro jχ : Og →
Ogχ , inclχ : Ogχ → Og and pro jχ̂ : Og→ Ogχ̂ , inclχ̂ : Ogχ̂ → Og.

We say that λ ∈ h∗
0
is regular (resp., dominant, integral) if λ (hα) �= 0 (resp.,

λ (hα) �∈ Z<0, λ (hα) ∈ Z) for each α ∈ Δ+.
If g = q(n), then a weight λ = (λ1, . . . ,λn) (λi := λ (hi)) is a regular dominant

strongly typical weight if and only if λ j−λi �∈ Z≥0 for j > i, λi +λ j �= 0 for j > i,
and λi �= 0 for all i.

Let χ (resp., χ̂) be the g (resp., g0) central character which corresponds to a strong-
ly typical weight λ (so L(λ ) ∈Ogχ , L̇(λ ) ∈Og0χ̂ ). We set Õgχ := Ogχ if dimh1 is odd;

if dimh1 is even one has a decomposition Ogχ = Õgχ ⊕Π(Õgχ ), whereΠ is the parity
change functor. Note that for an integral weight λ the blocks Og0χ̂ , Õgχ are indecom-
posable.

The functors F := pro jχ ◦ Ind ◦ inclχ̂ : Og0χ̂ → Õgχ and G := pro jχ̂ ◦Res◦ inclχ :

Õgχ →Og0χ̂ are adjoint. The main result of [3] is that for a regular dominant strongly
typical weight λ both functors F and G decompose in direct sums of k copies of
some functors F1 : Og0χ̂ → Õgχ and G1 : Õgχ → Og0χ̂ respectively and the functors
F1,G1 are mutually inverse equivalences of categories.

4 Bounded, cuspidal and weight modules of q(((nnn)))

4.1 Bounded weights

We call a weight λ ∈ h∗̄0 bounded if the set of weight multiplicities of L(λ ) is uni-
formly bounded, i.e. there exists a constantC such that the dimL(λ )ν <C for all ν .
Conditions when λ is bounded are obtained in [6]. These conditions are formulated
in terms of the ∗-action, see below.

4.1.1 Definition

For λ ∈ h∗̄0 and α ∈ π we set sα ·λ := sα(λ +ρ0)−ρ0 and

sα ∗λ =
{
sαλ if λ (hα) �= 0,
sα ·λ if λ (hα) = 0.

For i = 1, . . . ,n−1 we set si ∗λ := sαi ∗λ .
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Note that sα ∗ sα ∗λ = λ and sα ∗ sβ ∗λ = sβ ∗ sα ∗λ if (α ,β ) = 0. Therefore the

group W̃ generated by the symbols s1, . . . ,sn−1 subject to the relations s2i = 1, sis j =
s jsi for i− j > 1 acts on h∗̄0 via ∗-action. Note that W̃ is an infinite Coxeter group.

4.1.2 Description of bounded weights

Recall that gln-module L̇(λ ) is finite-dimensional if and only if si ·λ < λ for each
i = 1, . . . ,n−1 (the partial order was introduced in §2.2).

The q(n)-module L(λ ) is finite-dimensional if and only if for each i= 1, . . . ,n−1
one has (λ ,εi−εi+1)∈Z>0 or (λ ,εi) = (λ ,εi+1) = 0, see [20], which can be rewrit-
ten as si ∗λ < λ for each i = 1, . . . ,n−1.

For each weight μ there exists a sequence μ = μ0 < μ1 < μ2 < .. . < μs such that
μi+1 = ski ∗μi for some ki ∈ {1,2, . . . ,n−1} and μs isW∗-maximal (i.e., si ∗μ �< μ
for each i). We call such sequence aW∗-increasing string starting at μ .

Bounded weights for gln were described in [17]. For an integral weight μ the
conditions on μ being bounded can be reformulated as follows: μ is bounded if and
only if

(i) there exists a unique increasingW -string μ = μ0 < μ1 < μ2 < .. . < μs;
(ii) the set {i : si · μ j = μ j} is empty for j < s and has cardinality at most one for

j = s.

In [6] we proved that the same description for bounded weights is valid for q(n)
if we change the dot action by the ∗-action. The non-integral bounded weights can
be also described in terms of the ∗-action.

4.2 Example: the case nnn === 333

4.2.1 The case gl333

Consider first the case gl3. There are three types ofW -orbitsW ·λ for integral λ : the
trivial orbit for λ +ρ0 = (a,a,a) (these weights are not bounded), the regular orbits
which contain six elements (each element has a trivial stabilizer) and singular or-
bits which contain three elements (the stabilizer of each element is Z2). The regular
orbits are of the form:
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The non-trivial singular orbits are of the form:

(or the same with interchanged s1,s2).
The edges of the diagrams correspond to simple reflections s1,s2 and the upper

vertex in a given edge is bigger with respect to the partial order. We say that a vertex
is a top (resp., bottom) vertex if there is no edge ascending (resp., descending) from
this vertex.

Note that L̇(λ ) is finite-dimensional if and only if λ is represented by a top vertex
which belongs to n− 1 edges. Hence L̇(λ ) is finite-dimensional if and only if λ is
the top vertex in the regular orbit (the diagram above).

The increasing strings are represented by the paths going in upward direction, for
instance s1s2s1 ·λ < s2s1 ·λ < s1λ < λ . The condition (i) for a given vertex means
that there exists a unique ascending path; the condition (ii) means that each vertex
in this path, except the top one, belongs to n−1 edges and the top one belongs to at
least n−2 edges.

We see that all non-bottom vertices represent bounded weights for gl3.

4.2.2 The case q(((333)))

We now look at the W̃ -orbits in the case q(3). There are 6 types of W̃ -orbits, which
we describe below (up to the interchange s1 and s2).

(1) The trivial orbit corresponds to the case λ = (a,a,a),a �= 0; these weights are
not bounded.

(2) The orbits of the form
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(3) The orbit

(4) The orbits of the form

(5) The orbits of the form

with λ ′ = λ +α1.

(6) The orbits of the form

with λ ′ = λ +α1.
We see that L(λ ) is finite-dimensional if and only if λ is a top vertex in one of

the orbits (2), (3) or the right top (the highest) vertex in (5); the bounded weights
correspond to the non-bottom vertices in the orbits (2)–(6).
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4.3 Cuspidal and weight modules

Definition LetM be a q(n)-module.
(i) We call M a weight module if M =

⊕
λ∈h∗̄

0
Mλ and dimMλ < ∞ for every

λ ∈ h∗̄0.
(ii) We callM a cuspidal module ifM is a weight module and every nonzero even

root vector eα ∈ q(n)α acts injectively onM for every α ∈ Δ .

Remark In many cases the condition dimMλ < ∞ in (i) is not included in the defi-
nition of a weight module. We include this condition for convenience.

The following theorem is proved in [4] and reduces the classification of all simple
weight modules of q(n) to all simple cuspidal modules of q(n). For the definition of
“parabolically induced” we refer the reader to [4].

Theorem Every simple weight q(n)-module is parabolically induced from a cus-
pidal module over q(n1)⊕ . . .⊕ q(nk), for some positive integers n1, . . . ,nk with
n1 + . . .+nk = n.

To classify all simple cuspidal modules we used the so called “twisted localiza-
tion” technique - we present every simple cuspidal as a twisted localization of a
highest weight module. Some details are listed below.

4.3.1 Twisted localization

SetU :=U(q(n)). Then Fα := { f nα | n ∈ Z≥0} ⊂U satisfies Ore’s localization con-
ditions because ad fα acts locally finitely on U . Let DαU be the localization of U
relative to Fα , and for a q(n)-module M, set Dα M = DαU ⊗U M. For x ∈ C and
u ∈DαU we set

Θx(u) := ∑
i≥0

(
x
i

)
(ad fα)i(u) f−iα ,

where
(x
i

)
= x(x−1)...(x−i+1)

i! . Since ad fα is locally nilpotent on DαU , the sum above
is actually finite. Note that for x ∈ Z we haveΘx(u) = f xαu f

−x
α . For a DαU-module

M by Φx
αM we denote the DαU-module M twisted by the action

u · vx := (Θx(u) · v)x,

where u ∈DαU , v ∈M, and vx stands for the element v considered as an element of
Φx

αM. In particular, vx ∈Mλ+xα whenever v ∈Mλ . Set Dx
α M := Φx

α(Dα M).
The classification of the simple cuspidal q(n)-modules is obtained in the follow-

ing theorem proved in [6]. This together with the description of the bounded weights
completes the classification of all simple weight q(n)-modules. The uniqueness part
of the theorem involves the definition of a bounded weight type and it is skipped
here.
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4.3.2 Theorem

Let M be a simple cuspidal q(n)–module. Then there is a bounded weight λ ,
and a tuple (x1, . . . ,xn−1) of n− 1 complex nonintegral numbers such that M !
Dx1

α1 Dx2
α1+α2

. . .D
xn−1
α1+...+αn−1 L(λ ).

5 Automorphisms of q(((nnn))) and affine Lie superalgebra q(((nnn)))(2)

5.1 Automorphisms of Q-type Lie superalgebra

Although the Q-type superalgebras are not invariant with respect to the supertrans-

position, they are invariant with respect to the q-supertransposition σq :
(

A B
B A

)
�→(

At ζBt

ζBt At

)
, where ζ = ζ4 ∈ C is a fixed primitive 4th root of unity.

Let g be aQ-type Lie superalgebra. The natural homomorphismsGLn(C)→Autg
given by X �→ AdR(X ,X), where

AdR(X ,X)
(
A B
B A

)
=
(
XAX−1 XBX−1
XBX−1 XAX−1

)
induces an embedding PSLn(C)→ Autg. In the light of [10, 23] one has Autg =
PSLn(C)×Z4, where Z4 is generated by −σq.

5.2 Affine Lie superalgebra q(((nnn)))(2)

Recall that semisimple Lie algebras are finite-dimensional Kac-Moody algebras and
affine Lie algebras are Kac-Moody algebras of finite growth. Each affine Lie algebra
is a (twisted or non-twisted) affinization of a finite-dimensional Kac-Moody algebra;
this means that an affine Lie algebra can be described in terms of a finite-dimensional
Kac-Moody algebra and its finite order automorphism, see [14, Chap. VI–VIII]. The
Cartan matrices of finite-dimensional and affine Lie algebras are symmetrizable [14,
Chap. IV].

The superalgebra generalization of Kac-Moody algebras was introduced in [13];
see [12,30] for details. Call a Kac-Moody superalgebra affine if it has a finite growth
and symmetrizable if it has a symmetrizable Cartan matrix. The affine symmetriz-
able Lie superalgebras are classified in [23, 29], and, as in Lie algebra case, they
are (twisted or non-twisted) affinizations of finite-dimensional Kac-Moody super-
algebras. Non-symmetrizable affine Lie superalgebras were described in [12]. The
classification includes two degenerate superalgebras, one family of constant rank
and one series q(n)(2). The superalgebras of the series are twisted affinizations of
sq(n) corresponding to the automorphism σ2

q : a �→ (−1)p(a)a.
A symmetrizable affine Lie superalgebra has an even non-degenerate invariant

bilinear form and a Casimir element. The Q-type Lie superalgebras and the affine
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Kac-Moody algebra q(n)(2) do not have even invariant bilinear forms, but have odd
ones.

An interesting feature of q(n)(2) is that any Verma module is reducible; more pre-
cisely ifM(λ ) is a Verma module over q(n)(2) andM(λ ) is its maximal submodule
(i.e., L(λ ) = M(λ )/M(λ )), thenM(λ )λ−2δ �= 0, where δ is the minimal imaginary
root of q(n)(2). The proof is given in [11].

5.2.1 Description of q(((nnn)))(2)

We introduce q(n)(1) := L (sq(n))⊕CD, where L (sq(n)) := sq(n)⊗C[t±1] is
the loop superalgebra, D acts on L (sq(n)) by [D,x⊗ tk] = kx⊗ tk. Note that
sq(n), q(n)(1) are not Kac-Moody superalgebras since their Cartan subalgebras con-
tain odd elements.

Let ε be an automorphism of sq(n) given by ε(x) := (−1)p(x)x, i.e. ε = σ2
q . We

extend ε to q(n)(1) by ε(t) =−t, ε(D) = D. Then q(n)(2) is the quotient of the sub-
algebra (q(n)(1))ε of elements fixed by ε by the abelian ideal∑i�=0CXI,0⊗ t2i, where
I stands for the n× n identity matrix (see Sect. 2.1 for notation). We may identify
q(n)(2) with the vector space

sln⊗C[t±1]⊕CK⊕CD,

where K := XI,0 and

q(n)(2)
0

= gln⊕CD⊕ ( ∑
k∈Z\{0}

sln× t2k)

= sln⊗C[t±2]⊕CK⊕CD, q(n)(2)
1

= sln⊗ tC[t±2];

the commutator is given by

[x⊗ tk,y⊗ tm] =

⎧⎪⎪⎨⎪⎪⎩
(xy− yx)⊗ tk+m,

if km is even,
[x⊗ tk,y⊗ tm] = ι(xy+ yx)⊗ tk+m +2δ−k,m tr(xy)K,

if km is odd,

where ι : gln→ sln is the natural map ι(x) := x− tr(x)I/n.

6 Crystal bases of q(((nnn)))

6.1 The quantum queer superalgebra

Let F = C((q)) be the field of formal Laurent series in an indeterminate q and let
A = C[[q]] be the subring of F consisting of formal power series in q. For k ∈ Z≥0,
we define

[k] =
qk−q−k

q−q−1
, [0]! = 1, [k]! = [k][k−1] · · · [2][1].
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For an integer n≥ 2, let P = Zε1⊕·· ·⊕Zεn and P∨ = Zh1⊕·· ·⊕Zhn. Then h0̄ =
C⊗Z P∨.
Definition The quantum queer superalgebra Uq(q(n)) is the unital superalgebra
over F generated by the symbols ei, fi, Ei, Fi (i = 1, . . . ,n− 1), qh (h ∈ P∨), Hj

( j = 1, . . . ,n) with the following defining relations.

q0 = 1, qhqh
′
= qh+h′ (h,h′ ∈ P∨),

qheiq
−h = qαi(h)ei (h ∈ P∨),

qh fiq
−h = q−αi(h) fi (h ∈ P∨),

qhHj = Hjq
h,

ei f j− f jei = δi j
qhi−hi+1 −q−hi+hi+1

q−q−1
,

eie j− e jei = fi f j− f j fi = 0 if |i− j|> 1,

e2i e j− (q+q−1)eie jei + e je
2
i = 0 if |i− j|= 1,

f 2i f j− (q+q−1) fi f j fi + f j f
2
i = 0 if |i− j|= 1,

H2
i =

q2hi −q−2hi
q2−q−2

,

HiHj +HjHi = 0 (i �= j),

Hiei−qeiHi = Eiq
−hi ,

Hi fi−q fiHi =−Fiqhi ,
eiFj−Fjei = δi j(Hiq

−hi+1 −Hi+1q
−hi),

Ei f j− f jEi = δi j(Hiq
hi+1 −Hi+1q

hi),
eiEi−Eiei = fiFi−Fi fi = 0,

eiei+1−qei+1ei = EiEi+1 +qEi+1Ei,

q fi+1 fi− fi fi+1 = FiFi+1 +qFi+1Fi,

e2i E j− (q+q−1)eiE jei +Eje
2
i = 0 if |i− j|= 1,

f 2i Fj− (q+q−1) fiFj fi +Fj f
2
i = 0 if |i− j|= 1.

The generators ei, fi (i= 1, . . . ,n−1), qh (h∈ P∨) are regarded as even and Ei, Fi
(i = 1, . . . ,n−1), Hj ( j = 1, . . . ,n) as odd. From the defining relations, it is easy to
see that the even generators together with H1 generate the whole algebraUq(q(n)).

The superalgebra Uq(q(n)) is a bialgebra with the comultiplication
Δ : Uq(q(n))→Uq(q(n))⊗Uq(q(n)) defined by

Δ(qh) = qh⊗qh for h ∈ P∨,

Δ(ei) = ei⊗q−hi+hi+1 +1⊗ ei,
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Δ( fi) = fi⊗1+qhi−hi+1 ⊗ fi,

Δ(H1) = H1⊗qh1 +q−h1 ⊗H1.

6.2 The category O≥0int .

AUq(q(n))-moduleM is called a weight module ifM has a weight space decompo-
sition M =

⊕
μ∈P

Mμ , where

Mμ =
{
m ∈M ;qhm = qμ(h)m for all h ∈ P∨

}
,

and dimMμ < ∞ for every μ . The set of weights of M is defined to be

wt(M) = {μ ∈ P ;Mμ �= 0} .

6.2.1 Definition

A weightUq(q(n))-module V is called a highest weight module with highest weight
λ ∈ P if V λ is finite-dimensional and satisfies the following conditions:

(i) V is generated by V λ ,
(ii) eiv = Eiv = 0 for all v ∈V λ . i = 1, . . . ,n−1.

6.2.2 Strict partitions

Set

P≥0 ={λ = λ1ε1 + · · ·+λnεn ∈ P ; λ j ∈ Z≥0 for all j = 1, . . . ,n},
Λ+ ={λ = λ1ε1 + · · ·+λnεn ∈ P≥0 ; λi ≥ λi+1 and λi = λi+1 implies

λi = λi+1 = 0 for all i = 1, . . . ,n−1}.
Note that each element λ ∈ Λ+ corresponds to a strict partition λ = (λ1 > λ2 >
· · ·> λr > 0). Thus we will often call λ ∈Λ+ a strict partition.

6.2.3 Example

Let

V =
n⊕
j=1

Fv j⊕
n⊕
j=1

Fv j

be the vector representation of Uq(q(n)). The action of Uq(q(n)) on V is given as
follows:

eiv j = δ j,i+1vi, eiv j = δ j,i+1vi, fiv j = δ j,ivi+1, fiv j = δ j,ivi+1,

Eiv j = δ j,i+1vi, Eiv j = δ j,i+1vi, Fiv j = δ j,ivi+1, Fiv j = δ j,ivi+1,

qhv j = qε j(h)v j, qhv j = qε j(h)v j, Hiv j = δ j,iv j, Hiv j = δ j,iv j.
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Note that V is an irreducible highest weight module with highest weight ε1 and
wt(V) = {ε1, . . . ,εn}.

6.2.4 Definition

We defineO≥0int to be the category of finite-dimensional weight modulesM satisfying
the following conditions:

(i) wt(M)⊂ P≥0;
(ii) for any μ ∈ P≥0 and i ∈ {1, . . . ,n} such that μ(hi) = 0, we have Hi|Mμ = 0.

The following proposition is proved in [7].

6.2.5 Proposition

Any irreducible Uq(q(n))-module in O≥0int appears as a direct summand of a tensor
power of V.

6.3 Crystal bases in O≥0int

LetM be aUq(q(n))-module inO≥0int . For i= 1,2, . . . ,n−1, we define the even Kashi-
wara operators onM in the usual way. That is, for a weight vector u ∈Mλ , consider
the i-string decomposition of u:

u = ∑
k≥0

f (k)i uk,

where eiuk = 0 for all k≥ 0, f (k)i = f ki /[k]!, and define the even Kashiwara operators
ẽi, f̃i (i = 1, . . . ,n−1) by

ẽiu = ∑
k≥1

f (k−1)i uk,

f̃iu = ∑
k≥0

f (k+1)
i uk.

On the other hand, we define the odd Kashiwara operators H̃1, Ẽ1, F̃1 by

H̃1 = qh1−1H1,

Ẽ1 =−(e1H1−qH1e1)qh1−1,

F̃1 =−(H1 f1−q f1H1)qh2−1.

For conveniencewewill use the following notation e1̄ =E1, f1̄ =F1, ẽ1̄ = Ẽ1, f̃1̄ =
F̃1.

Recall that an abstract gl(n)-crystal is a set B together with the maps ẽi, f̃i : B→
B�{0}, ϕi,εi : B→ Z�{−∞} (i= 1, . . . ,n−1), and wt : B→ P satisfying the con-
ditions given in [16]. For an abstract gl(n)-crystal B and λ ∈ P, we set Bλ = {b ∈
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B | wt(b) = λ}. We say that an abstract gl(n)-crystal is a gl(n)-crystal if it is realized
as a crystal basis of a finite-dimensional integrableUq(gl(n))-module. In particular,
we have εi(b) = max{n ∈ Z≥0 ; ẽni b �= 0} and ϕi(b) = max{n ∈ Z≥0 ; f̃ ni b �= 0} for
any b in a gl(n)-crystal B.

6.3.1 Crystal basis

Definition Let M =
⊕

μ∈P≥0 Mμ be a Uq(q(n))-module in the category O≥0int . A
crystal basis of M is a triple (L,B, lB = (lb)b∈B), where

(i) L is a free A-submodule ofM such that

(1) F⊗A L ∼−−→M,
(2) L =

⊕
μ∈P≥0 Lμ , where Lμ = L∩Mμ ,

(3) L is stable under the Kashiwara operators ẽi, f̃i (i = 1, . . . ,n−1), H̃1, Ẽ1,
F̃1.

(ii) B is a finite gl(n)-crystal together with the maps Ẽ1, F̃1 : B→ B�{0} such that
(1) wt(Ẽ1b) = wt(b)+α1, wt(F̃1b) = wt(b)−α1,
(2) for all b,b′ ∈ B, F̃1b = b′ if and only if b = Ẽ1b′.

(iii) lB = (lb)b∈B is a family of C-vector spaces such that

(1) lb ⊂ (L/qL)μ for b ∈ Bμ ,
(2) L/qL =

⊕
b∈B lb,

(3) H̃1lb ⊂ lb,
(4) for i = 1, . . . ,n−1,1, we have

(1) if ẽib = 0 then ẽilb = 0, and otherwise ẽi induces an isomorphism
lb ∼−−→ lẽib.

(2) if f̃ib = 0 then f̃ilb = 0, and otherwise f̃i induces an isomorphism
lb ∼−−→ l f̃ib.

As proved in [8], for every crystal basis (L,B, lB) of a Uq(q(n))-module M we
have Ẽ2

1 = F̃2
1 = 0 as endomorphisms on L/qL.

6.3.2 Example

Let

V =
n⊕
j=1

Fv j⊕
n⊕
j=1

Fv j

be the vector representation of Uq(q(n)). The action of Uq(q(n)) on V is given as
follows:
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eiv j = δ j,i+1vi, eiv j = δ j,i+1vi, fiv j = δ j,ivi+1, fiv j = δ j,ivi+1, Eiv j = δ j,i+1vi, Eiv j =
δ j,i+1vi,Fiv j = δ j,ivi+1,Fiv j = δ j,ivi+1, qhv j = qε j(h)v j, qhv j = qε j(h)v j,Hiv j = δ j,iv j,
Hiv j = δ j,iv j.

Set

L =
n⊕
j=1

Av j⊕
n⊕
j=1

Av j,

l j = Cv j⊕Cv j, and let B be the crystal graph given below:

Here, the actions of f̃i (i = 1, . . . ,n− 1) are expressed by i-arrows and of F̃1 by
an 1̄-arrow. Then (L,B, lB = (l j)nj=1) is a crystal basis of V.

6.3.3 Tensor product rule

The tensor product rule for the crystal bases in the category O≥0int is given by the
following theorem (Theorem 2.7 in [8]).

Theorem Let Mj be a Uq(g)-module in O≥0int with crystal basis (Lj,Bj, lB j) ( j =
1,2). Set B1⊗B2 = B1×B2 and

lB1⊗B2 = (lb1 ⊗ lb2)b1∈B1,b2∈B2 .

Then
(L1⊗A L2,B1⊗B2, lB1⊗B2)

is a crystal basis of M1⊗F M2, where the action of the Kashiwara operators on
B1⊗B2 are given as follows.

ẽi(b1⊗b2) =

{
ẽib1⊗b2 if ϕi(b1)≥ εi(b2),
b1⊗ ẽib2 if ϕi(b1) < εi(b2),

f̃i(b1⊗b2) =

{
f̃ib1⊗b2 if ϕi(b1) > εi(b2),
b1⊗ f̃ib2 if ϕi(b1)≤ εi(b2),

(1)

Ẽ1(b1⊗b2) =

⎧⎪⎨⎪⎩
Ẽ1b1⊗b2 if 〈h1,wtb2〉= 0,

〈h2,wtb2〉= 0,

b1⊗ Ẽ1b2 otherwise,

F̃1(b1⊗b2) =

⎧⎪⎨⎪⎩
F̃1b1⊗b2 if 〈h1,wtb2〉= 0,

〈h2,wtb2〉= 0,

b1⊗ F̃1b2 otherwise.

(2)
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6.3.4 Abstract crystal

Definition An abstract q(n)-crystal is a gl(n)-crystal together with the maps
Ẽ1, F̃1 : B→ B�{0} satisfying the following conditions:

(a) wt(B)⊂ P≥0,
(b) wt(Ẽ1b) = wt(b)+α1, wt(F̃1b) = wt(b)−α1,
(c) for all b,b′ ∈ B, F̃1b = b′ if and only if b = Ẽ1b′,
(d) if 3≤ i≤ n−1, we have

(i) the operators Ẽ1 and F̃1 commute with ẽi and f̃i;
(ii) if Ẽ1b ∈ B, then εi(Ẽ1b) = εi(b) and ϕi(Ẽ1b) = ϕi(b).

Recall that W is the Weyl group of gln. The Weyl group action on an abstract
q(n)-crystal B is the action ofW on gln-crystal B, which is given in [15].

Let B1 and B2 be abstract q(n)-crystals. The tensor product B1⊗B2 of B1 and B2

is defined to be the gl(n)-crystal B1⊗B2 together with the maps Ẽ1, F̃1 defined by
(2). Then it is an abstract q(n)-crystal. Note that⊗ satisfies the associative axiom on
the set of abstract q(n)-crystals.

6.3.5 Example

(a) If (L,B, lB) is a crystal basis of aUq(q(n))-moduleM in the category O≥0int , then
B is an abstract q(n)-crystal.

(b) The crystal graph B is an abstract q(n)-crystal.
(c) By the tensor product rule, B⊗N is an abstract q(n)-crystal. When n = 3, the
q(n)-crystal structure of B⊗B is given below:

Let B be an abstract q(n)-crystal. For i = 1, . . . ,n−1, we set

wi = s2 · · ·sis1 · · ·si−1.

Thenwi is the shortest element inW such thatwi(αi) =α1. We define the odd Kashi-
wara operators Ẽi, F̃i (i = 2, . . . ,n−1) by

Ẽi = Sw−1i
Ẽ1Swi , F̃i = Sw−1i

F̃1Swi .
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6.3.6 Definition

Let B be an abstract q(n)-crystal.

(a) An element b ∈ B is called a gl(n)-highest weight vector if ẽib = 0 for 1 ≤ i ≤
n.

(b) An element b ∈ B is called a highest weight vector if ẽib = Ẽib = 0 for 1≤ i≤
n.

(c) An element b∈ B is called a lowest weight vector ifw0b is a q(n)-highest weight
vector, where w0 is the element ofW of longest length.

The description of the set of the highest (and hence of the lowest) weight vectors
in B⊗N for N > 0 is given by the following proposition (see Theorem 4.6 (c) in [8]).

6.3.7 Proposition

An element b0 inB⊗N is a highest weight vector if and only if b0 = 1⊗ f̃1 · · · f̃ j−1b for
some j, and some highest weight vector b in B⊗(N−1) such that wt(b0) = wt(b)+ε j
is a strict partition.

The following uniqueness and existence theorem is one of the main results in [8].

6.3.8 Theorem

(a) Let λ ∈Λ+ be a strict partition and letM be a highest weightUq(q(n))-module
with highest weight λ in the category O≥0int . If (L,B, lB) is a crystal basis of M,
then Lλ is invariant under K̃i :=qhi−1Hi for all i= 1, . . . ,n. Conversely, ifMλ is
generated by a freeA-submodule L0λ invariant under K̃i (i= 1, . . . ,n), then there
exists a unique crystal basis (L,B, lB) of M such that

(i) Lλ = L0λ ,
(ii) Bλ = {bλ},
(iii) L0λ/qL0λ = lbλ ,
(iv) B is connected.

Moreover, B, as an abstract q(n)-crystal depends only on λ . Hence wemay write
B = B(λ ).

(b) The q(n)-crystal B(λ ) has a unique highest weight vector bλ and unique lowest
weight vector lλ .

A combinatorial description of the crystal bases in terms of semistandard decom-
position tableaux has been obtained in [9].
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Weight modules of DDD(((222,,,111,,,ααα)))

Crystal Hoyt

Abstract Let g be a basic Lie superalgebra. A weight moduleM over g is called fi-
nite if all of its weight spaces are finite dimensional, and it is called bounded if there
is a uniform bound on the dimension of a weight space. The minimum bound is
called the degree ofM. For g= D(2,1,α), we prove that every simple weight mod-
uleM is bounded and has degree less than or equal to 8. This bound is attained by a
cuspidal module M if and only if M belongs to a (g,g0̄)-coherent family L(λ )μΓ for
some typical module L(λ ). Cuspidal modules which correspond to atypical modules
have degree less than or equal to 6 and greater than or equal to 2.

1 Introduction

Basic Lie superalgebras are a natural generalization of simple finite dimensional Lie
algebras, and their finite dimensional modules have been studied extensively [9,14].
In this case, every simple g-module is a highest weight module with respect to each
choice of simple roots of g, and moreover, there exist various character formulas
which help one “count” the dimension of each weight space of the module. A nat-
ural generalization of this setting is to the study of (possibly) infinite dimensional
modules that have finite dimensional weight spaces, namely, finite weight modules.
However, since these modules are not necessarily highest weight with respect to any
choice of the set of simple roots, the question arises how to characterize and classify
all such simple modules.

In [13], Mathieu gave an answer to this problem for simple Lie algebras by relat-
ing to each simple finite weight module M a corresponding simple highest weight
module L(λ ) such that M is the twisted localization of L(λ ), that is, M ∼= L(λ )μΓ .
Grantcharov extended this result to cover classical Lie superalgebras in [8]. Using

C. Hoyt ( )
Department of Mathematics, Technion - Israel Institute of Technology, Haifa 32000, Israel
e-mail: hoyt@tx.technion.ac.il

M. Gorelik, P. Papi (eds.): Advances in Lie Superalgebras. Springer INdAM Series 7,
DOI 10.1007/978-3-319-02952-8_6, © Springer International Publishing Switzerland 2014



92 C. Hoyt

this characterization one can gain information about a simple finite weight module
M from the corresponding simple highest weight module L(λ ), including the calcu-
lation of its degree (see (1)). Moreover, this is a major step towards the classification
of simple finite weight modules.

In addition, one must determine which simple highest weight modules L(λ ) can
appear in this correspondence. These are themodules which have uniformly bounded
weight multiplicities, the so called “bounded modules”. Then one should determine
the simplicity conditions for themodules L(λ )μΓ and the isomorphisms between them.
For simple Lie algebras this problem was completely solved by Mathieu in [13], but
the general problem remains open for basic Lie superalgebras. For modules with
a strongly typical central character, this description can be derived from results of
Gorelik, Penkov and Serganova [3,15,16], however the situation is not surprisingly
more difficult when the central character is atypical.

One can further reduce the classification problem to that of classifying “cuspidal
modules” using Theorem 1 (Fernando [2]; Dimitrov, Mathieu, Penkov [1]). A cusp-
idal module is a simple finite weight g-module that is not parabolically induced from
any proper parabolic subalgebra p⊂ g. These modules can be characterized in terms
of their support and in terms of the action of g.

In this paper, we focus on the family of Lie superalgebras D(2,1,α) which are
defined by one complex parameterα ∈C\{0,−1} and study their finite weightmod-
ules. For g= D(2,1,α), every simple weight module is a finite weight module, and
moreover it is bounded! Indeed, here g0̄ = sl2×sl2×sl2, so a simple weight module
V for g0̄ is just the tensor product V = V1⊗V2⊗V3 of simple sl2 weight modules.
Now each simple sl2 weight module Vi has one dimensional weight spaces, since
the Casimir element h2 + 2h+ f e acts by a scalar. Hence, V also has one dimen-
sional weight spaces. Now any simple weight module of g can be realized as the
quotient of an induced module Indgg0̄V =U(g)⊗g0̄V , whereV is a simple g0̄ weight
module. The claim then follows from the fact thatU(g1̄) is finite dimensional (here
dimU(g1̄) = 256).

For g = D(2,1,α), we prove that every Verma module is bounded and has de-
gree less than or equal to 8. It then follows from a result of Grantcharov that simple
(finite) weight modules are also bounded of degree less than or equal to 8. We show
that the dimensions of the weight spaces of a cuspidal g-module are constant on Q0̄-
cosets and we calculate this degree. We prove that a cuspidal g-module has degree
8 if and only if it is “typical”. We prove that ifM is an “atypical” cuspidal g-module
then 2≤ deg M ≤ 6. We determine the conditions on λ and Γ that are necessary for
L(λ )μΓ to be a cuspidal module. It remains to determine the restrictions on μ ∈ C3

and isomorphisms between these modules.

2 Basic Lie superalgebras

A simple finite dimensional Lie superalgebra g = g0̄⊕ g1̄ is called basic if g0̄ is a
reductive Lie algebra, and there exists an even non-degenerate (symmetric) invari-
ant bilinear form on g. These are the Lie superalgebras: sl(m|n) for m �= n, psl(n|n),
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osp(m|2n), F(4), G(3) and D(2,1,α), a ∈C\{0,−1}, and finite-dimensional sim-
ple Lie algebras. A basic Lie superalgebra can be represented by a Dynkin diagram,
though not uniquely.

Let g be a basic Lie superalgebra, and fix a Cartan subalgebra h ⊂ g0̄ ⊂ g. We
have a root space decomposition g = h⊕⊕α∈Δ gα . For each set of simple roots
Π ⊂ Δ , we have a corresponding set of positive roots Δ+ = Δ+

0̄
∪Δ+

1̄
and a tri-

angular decomposition g = n− ⊕ h⊕ n+. This induces a triangular decomposition
of g0̄, namely, g0̄ = n−

0̄
⊕ h⊕ n+

0̄
. Let Π0̄ denote the corresponding set of simple

roots for g0̄. The root lattice of g (resp. g0̄) is defined to be Q = ∑α∈Π Zα (resp.
Q0̄ = ∑α∈Π0̄

Zα). Let ρ0 = 1
2 ∑α∈Δ+

0̄
α , ρ1 = 1

2 ∑α∈Δ+
1̄
α and ρ = ρ0−ρ1. Denote

by U(g) (resp. U(g0̄)) the universal enveloping algebra of g (resp. g0̄). See [9, 14]
for definitions and more details.

2.1 Finite weight modules

A g-moduleM is called aweight module if it decomposes into a direct sum of weight
spacesM =⊕μ∈h∗Mμ , whereMμ = {m∈M | h.m= μ(h)m for all h∈ h}. A weight
module M is called finite if dim Mμ < ∞ for all μ ∈ h∗. Define the support of M to
be the set

Supp M = {μ ∈ h∗ | dim Mμ �= 0}.
The module M is called bounded if the exists a constant c such that dim Mμ < c

for all μ ∈ h∗. Recall that a g-moduleM =M0̄⊕M1̄ is alsoZ/2Z-graded. The degree
of M is defined to be

degM = maxμ∈h∗dim(M)μ , (1)

and we define the graded degree of M to be (d0,d1), where

di = maxμ∈h∗dim(Mī)μ for i ∈ {0,1}.

Remark 1 Clearly, max{d0,d1}≤ degM≤ d0+d1. However, ifM is a weight mod-
ule that can be generated by a single weight vector (i.e. simple or highest weight
module), then each weight space ofM is either purely even or purely odd, and so in
this case deg M = max{d0,d1}.

Let M(λ ) denote the Verma module of highest weight λ ∈ h∗ with respect to a
set of simple rootsΠ , and let L(λ ) denote its unique simple quotient [14]. It is clear
that M(λ ) and L(λ ) are finite weight modules, but they are not always bounded.

For each β ∈ Π an odd isotropic root (i.e. (β ,β ) = 0), we have an odd reflec-
tion of the set of simple roots rβ :Π →Π ′ satisfying Π ′ = (Π \{β})∪{−β} [12].
Moreover, for a simple highest weight module LΠ (λ ) there exists λ ′ ∈ h∗ such that
LΠ ′(λ ′) = LΠ (λ ). In particular, λ ′ = λ −β if (λ ,β ) �= 0, while λ ′ = λ otherwise
[11]. Using even and odd reflections one can move between all the different choices
of simple roots for a basic Lie superalgebra g [17]. Moreover, one can move between
two different Dynkin diagrams of g using only odd reflections.
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A simple highest weight module L(λ ) is called typical if (λ +ρ,α) �= 0 for all
α ∈ Δ1̄, and atypical otherwise. The notion of typicality is preserved by an odd re-
flection of the set of simple roots, that is, given an odd reflection rβ : Π → Π ′ and
LΠ ′(λ ′) = LΠ (λ ), then LΠ ′(λ ′) is typical iff LΠ (λ ) is typical [11, 17].

It was shown by Penkov and Serganova that if g is a basic Lie superalgebra, then
the category of representations of g with a fixed generic typical central character
is equivalent to the category of representations of g0̄ with a certain corresponding
central character [15,16]. This equivalence of categories was extended to representa-
tions of gwith a fixed strongly typical central character by Gorelik in [3]. In the case
that the root system of g is reduced (α ,kα ∈ Δ implies k = ±1) all typical central
characters are strongly typical.

2.2 Cuspidal modules

A Z-grading of g is a decomposition g=⊕ j∈Zg( j) satisfying [g(i),g( j)]⊂ g(i+ j)
and h ⊂ g(0). A subalgebra p ⊂ g is called a parabolic subalgebra if there exists a
Z-grading of g such that p = ⊕ j≥0g( j). In this case, l = g(0) is a Levi subalgebra
and n=⊕ j≥1g( j) is the nilradical of p.

Let p= l⊕n be a parabolic subalgebra of g, and let S be a simple p-module. Then
Mp(S) := IndgpS has a unique simple quotient Lp(S). The module Lp(S) is said to be
parabolically induced. A simple g-module is called cuspidal if it is not parabolically
induced from any proper parabolic subalgebra p⊂ g.

Theorem 1 (Fernando [2]; Dimitrov, Mathieu, Penkov [1]) Let g be a basic Lie
superalgebra. Any simple finite weight g-module is obtained by parabolic induction
from a cuspidal module of a Levi subalgebra.

This theorem is an important step towards the classification of all simple finite
weight modules. It reduces the general classification problem to that of classifying
cuspidal modules.

Theorem 2 (Fernando [2]) If g is a finite dimensional simple Lie algebra that ad-
mits a cuspidal module, then g is of type A or C.

Theorem 3 (Dimitrov, Mathieu, Penkov [1]) Only the following basic Lie super-
algebras admit a cuspidal module: psl(n|n), osp(m|2n) with m≤ 6, D(2,1,α) with
α ∈ C\{0,−1}, sl(n), sp(2n).

The following theorem gives a characterization of cuspidal g0̄-modules.

Theorem 4 (Fernando [2]) Let g0̄ be a reductive Lie algebra, and let M be a sim-
ple finite weight g0̄-module. Then M is cuspidal iff Supp M is exactly one Q coset iff
ad xα is injective for all α ∈ Δ , xα ∈ gα .

Corollary 1 Let g0̄ be a reductive Lie algebra. If M is a cuspidal g0̄-module, then
M is bounded and dim Mμ = deg M for all μ ∈ Supp M.
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These conditions are too strict when g is a basic Lie superalgebra, and so the
following definitions were introduced in [1]. A finite weight module M is called
torsion-free if the monoid generated by

injM = {α ∈ Δ0̄ | xα ∈ gα acts injectively onM}
is a subgroup of finite index inQ. A finite weight moduleM is called dense if SuppM
is a finite union of Q′-cosets, for some subgroup Q′ of finite index in Q.

Theorem 5 (Dimitrov, Mathieu, Penkov [1]) Let g be a basic Lie superalgebra,
and let M be a simple finite weight g-module. Then M is cuspidal iff M is dense iff
M is torsion free.

The following lemmas are proven in [13].

Lemma 1 Let g0̄ be a reductive Lie algebra. Any bounded g0̄-module has finite
length.

Lemma 2 Let g be a basic Lie superalgebra. If M is a simple finite weight g-module,
then for each α ∈Δ0̄ the action of x∈ gα on M is either injective or locally nilpotent.

For each g0̄-module N, let

Ñ := Indgg0̄(N).

Theorem 6 (Dimitrov, Mathieu, Penkov [1]) (i) For any finite cuspidal g0̄-module
N, the module Ñ contains at least one and only finitely many non-isomorphic cusp-
idal submodules.
(ii) For any finite cuspidal g-module M, there is at least one and only finitely many
non-isomorphic cuspidal g0̄-modules such that M ⊂ Ñ.

2.3 Coherent families

LetC(h) denote the centralizer of h inU(g0̄). A (g,g0̄)-coherent family of degree d
is a finite weight g-module M such that dim Mμ = d for all λ ∈ h∗ and the function
μ �→ Tr u|Mμ is polynomial in μ , for all u ∈C(h) [6, 7, 13].

Example 1 (Mathieu [13]) Let g = sl2 and fix a ∈ C. Define a module V (a) =
⊕s∈CCxs with the following sl2 action.

e �→ x2 d/dx+ax e.xs = (a+ s)xs+1

f �→ −d/dx+a(1/x) f .xs = (a− s)xs−1

h �→ 2x d/dx h.xs = (2s)xs

For each a∈C,V (a) is a sl2-coherent family. For each [μ ]∈C/Zwith represen-
tative μ ∈ h∗,

V (a)[μ] :=⊕n∈ZCxμ+n

is a submodule, which is simple and cuspidal if and only if μ±a �∈ Z.



96 C. Hoyt

Let Γ = {γ1, . . . ,γk} ⊂ Δ+
0̄

be a set of commuting roots, and for each γi ∈ Γ
choose fi ∈ g−γi . LetUΓ be the localization ofU(g) at the set { f ni | n ∈ N,γi ∈ Γ }.
If Γ ⊂ inj L(λ ), define the localization of L(λ ) at Γ to be the module L(λ )Γ :=
UΓ ⊗U(g) L(λ ). Then L(λ ) is a submodule of L(λ )Γ and deg L(λ )Γ = deg L(λ ).

Now for each μ ∈ Ck, we define a new module L(λ )μΓ whose underlying vec-
tor space is L(λ )Γ , but with a new action of g defined as follows. For u ∈UΓ and
x ∈ L(λ )μΓ ,

u · x := Φμ
Γ (u)v,

where

Φμ
Γ (u) = ∑

0≤i1,...,ik

(
μ1
i1

)
. . .

(
μk
ik

)
ad( f1)i1 . . .ad( fk)ik(u) f

−i1
1 . . . f−ikk .

Note that this sum is finite for each choice of u. The module L(λ )μΓ is called the
twisted localization of L(λ ) with respect to Γ and μ , and it is a (g,g0̄)-coherent
family of degree d = deg L(λ ).

Theorem 7 (Mathieu [13]; Grantcharov [8]) Let g be a basic Lie superalgebra.
Each simple finite weight g-module M is a twisted localization of a simple highest
weight module Lb(λ ) for some Borel subalgebra b ⊂ g and λ ∈ h∗. In particular,
M ∼= Lb(λ )μΓ for some μ ∈ C and set of commuting even roots Γ .

Remark 2 IfM is a cuspidal or bounded module, then Lb(λ ) is necessarily bounded.

3 The Lie superalgebra D(2,1,α)

For each α ∈ C \ {0,−1}, the Lie superalgebra g = D(2,1,α) can be realized as a
contragredient Lie superalgebra g(A) with Cartan matrix

A =

⎛⎝ 0 1 α
1 0 −α−1
α −α−1 0

⎞⎠ , (2)

set of simple roots Π = {β1,β2,β3} with parity (1,1,1), generating set

{ei ∈ gβi , fi ∈ g−βi ,hi ∈ h | i = 1,2,3}
and defining relations [9]. Then g0̄ = sl2× sl2× sl2 is 9-dimensional with

Π0̄ = {β1 +β2,β1 +β3,β2 +β3},
and g1̄ is the 8-dimensional g0̄-module given by tensoring three copies of the stan-
dard representation of sl2. Our choice of Π induces a triangular decomposition Δ =
Δ+∪Δ− where

Δ+
0̄ = {β1 +β2,β1 +β3,β2 +β3} and Δ+

1̄ = {β1,β2,β3,β1 +β2 +β3}. (3)
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Remark 3 For g=D(2,1,α), the even root lattice Q0̄ is a sublattice of index 2 inQ.

D(2,1,α) has four different Dynkin diagrams.

Remark 4 The Cartan matrix A in (2) is equivalent to the diagram on the left, and
corresponds to Δ+ given in (3). Most of our computations will be with respect to
this choice of the set of simple roots, since here ρ = 0 and since no set of simple
roots of g= D(2,1,α) contains a set of simple roots for g0̄.

3.1 Finite weight modules for D(2,1,α)

In this section we study finite weight modules for the basic Lie superalgebra
D(2,1,α).

It was shown in [1] that every simple finite weightmodule is obtained by parabolic
induction from a cuspidal module Lp(S) with p= l⊕n, such that either l is a proper
reductive subalgebra of g0̄ = sl2× sl2× sl2 or l = g. Cuspidal modules for sl2 are
classified in Example 1, and all cuspidal modules for sl2× sl2 can be obtained by
tensoring two cuspidal sl2-modules together, namely,

V (a1)[μ1]⊗V (a2)[μ2] with μi±ai, �∈ Z, i = 1,2.

So it remains to describe the cuspidal modules for g = D(2,1,α). The following
theorems will help us realize these modules.

Theorem 8 Let g= D(2,1,α). For each set of positive roots Δ+ and each λ ∈ h∗,
the Verma module M(λ ) is bounded. Moreover, M(λ ) has degree 8 and graded de-
gree (8,8).

Proof. The dimensions of the weight spaces of M(λ ) are given by the coefficients

of the character formula ch M(λ ) = eλ+ρ

eρR = eλ R1
R0
, where R0 =Πα∈Δ+

0̄
(1−e−α) and

R1 = Πα∈Δ+
1̄
(1+ e−α). Since eρR is invariant under odd reflections, it is sufficient

to prove the theorem with respect to Δ+ from (3).

chM(λ ) = eλ
(1+ e−β1)(1+ e−β2)(1+ e−β3)(1+ e−β1−β2−β3)

(1− e−β1−β2)(1− e−β1−β3)(1− e−β2−β3)

= eλ (1+ e−β1)(1+ e−β2)(1+ e−β3)(1+ e−β1−β2−β3)

·

⎛⎜⎝ ∑
k1,k2,k3∈N:

k1+k2+k3 is even

e−k1β1−k2β2−k3β3

⎞⎟⎠
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So form1,m2,m3 ∈N sufficiently large, the (λ−m1β1−m2β2−m3β3)weight space
of M(λ ) is purely even with dimension

(4
0

)
+
(4
2

)
+
(4
4

)
= 8 when m1 +m2 +m3 is

even, (which corresponds to a choice of an even number of odd roots from Δ−
1̄
), and

it is purely odd with dimension
(4
1

)
+
(4
3

)
= 8 when m1 +m2 +m3 is odd, (corre-

sponding to a choice of an odd number of odd roots from Δ−
1̄
).

Corollary 2 A highest weight module is bounded and has degree less than or equal
to 8.

Since every simple weight module ofD(2,1,α) is a finite weight module, we can
combine Theorem 7 with Corollary 2 to obtain the following.

Theorem 9 For g = D(2,1,α), any simple weight module M is bounded and has
degree less than or equal to 8.

Remark 5 In Theorem 9, we do not assume that M is a highest weight module.

Let Δ+ be as in (3), and letα1 = β2+β3,α2 = β1+β3,α3 = β1+β2, so thatΠ0̄ =
{α1,α2,α3}. Then for each αi ∈Π0̄, i= 1,2,3, we have an sl2-triple {Ei,Fi,Hi}with
Ei ∈ gαi , Fi ∈ g−αi andHi = [Ei,Fi] satisfying αi(Hi) = 2. For each λ ∈ h∗, i= 1,2,3,
let λi = λ (hi) and ci = λ (Hi). Then

c1 =
λ2 +λ3
−α−1

, c2 =
λ1 +λ3

α
, c3 = λ1 +λ2. (4)

Theorem 10 Let g = D(2,1,α) and let Δ+ be as in (3). Then for each λ ∈ h∗, we
have that inj L(λ ) = Δ−

0̄
if and only if c1,c2,c3 �∈ Z≥1 and at most one of λ1,λ2,λ3

equals zero.

Proof. LetΠ denote the set of simple roots of Δ+. Then Fi acts injectively on L(λ )
if and only if given a set of simple roots Π ′ containing αi which can be obtained by
a sequence of odd reflections from Π , we have that λ ′(Hi) �∈ Z≥0, where λ ′ ∈ h∗
satisfies LΠ ′(λ ′) = LΠ (λ ).

Now if λi,λ j = 0, then fiv = 0 and f jv = 0 imply Fkv = [ fi, f j]v = 0. Hence,
if F1,F2,F3 act injectively on L(λ ), then at most one of λ1,λ2,λ3 equals zero. By
reflecting at β j we get Π ′ = {−β j,αi,αk} where i �= j �= k. If β j is a typical root
(λ j �= 0) then Fi acts injectively iff (λ − β j)(Hi) = ci − 1 �∈ Z≥0, and Fk acts in-
jectively iff (λ − β j)(Hk) = ck − 1 �∈ Z≥0. Hence, if at least two of λ1,λ2,λ3 are
non-zero, it follows that F1,F2,F3 act injectively iff c1,c2,c3 �∈ Z≥1.

Remark 6 Let Δ+ be as in (3), then L(λ ) is typical if and only if λ1,λ2,λ3 �= 0 and
λ1 +λ2 +λ3 �= 0.

Theorem 11 Let g = D(2,1,α), and suppose that L(λ ) is a simple highest weight
module with respect to some decomposition Δ =Δ+∪Δ−, which satisfies inj L(λ )=
Δ−
0̄
. Then L(λ ) = M(λ ) iff L(λ ) is typical.
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Proof. Since each of these properties is a module property that is preserved under
odd reflections, it suffices to prove the theorem with respect to Δ+ in (3). By Theo-
rem 10, we have inj L(λ ) = Δ−

0̄
implies λ (Hi) �∈ Z≥1 for each αi ∈ Δ+

0̄
. Hence,

2(λ +ρ,αi)
(αi,αi)

=
2(λ ,αi)
(αi,αi)

= λ (Hi) �∈ Z≥1,

where the first equality is due to the fact that ρ = 0 for our choice of Δ+, and
the second equality is given by the identification of h with h∗. The claim now
follows from computing the Shapovalov determinant using the formula given in
[5, Sect. 1.2.8]. Since (β ,β ) = 0 for β ∈ Δ1̄, we conclude that M(λ ) is simple if
and only if (λ +ρ,β ) �= 0 for all β ∈ Δ1̄.

3.2 Cuspidal modules for DDD(((222,,,111,,,ααα)))

The following theorem gives a characterization of cuspidal modules for D(2,1,α).

Theorem 12 Let g = D(2,1,α), and let M be a simple weight g-module. The fol-
lowing are equivalent:

1. M is cuspidal;
2. Supp M is exactly one Q coset;
3. xα acts injectively for all α ∈ Δ0̄, xα ∈ gα .
Corollary 3 Let g=D(2,1,α). If M is a cuspidal g-module, then dim Mλ = dim Mμ
for all λ −μ ∈ Q0̄.

For g= D(2,1,α) it follows from [3], that for typical central characters we have
a 1−1 correspondence between cuspidal g-modules and cuspidal g0̄-modules. Here
we describe cuspidal g0̄-modules.

Theorem 13 Let g0̄ = sl2×sl2×sl2. Then the cuspidal g0̄-modules are as follows:

V μ
a :=V (a1)[μ1]⊗V (a2)[μ2]⊗V (a3)[μ3] a,μ ∈ C3, μi±ai, �∈ Z, i = 1,2,3 (5)

Moreover, Supp V μ
a = Q+μ and deg V μ

a = 1.

We have two ways to realize cuspidal modules. The first method is by decom-
posing the modules Ñ appearing in Theorem 6, since each simple subquotient of
Ñ is cuspidal. It follows from the PBW theorem that deg Ṽ μ

a = 27, so we see from

Theorem 9 that Ṽ μ
a is far from simple. Alternatively, one could determine simplicity

conditions for the modules L(λ )μΓ appearing in Theorem 7.
Here we calculate the degree of a cuspidal g-module L(λ )μΓ using the results from

Sect. 3.1 and Shapovalov determinants for the moduleM(λ ) [4, 5, 10].

Theorem 14 Let g = D(2,1,α), and suppose that L(λ )μΓ is a (simple) cuspidal
g-module for some simple highest weight module L(λ ) for Δ = Δ+ ∪Δ−, where
Γ ⊂ Δ−

0̄
and μ ∈ C3. Then
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1. Γ = inj L(λ ) = Δ−
0̄
, and if Δ+ is as in (3) then Theorem 10 applies;

2. deg L(λ )μΓ = 8 iff L(λ ) is typical iff L(λ ) has graded degree (8,8);
3. if L(λ ) is atypical, then 2≤ deg L(λ )μΓ ≤ 6;
4. if (λ ,β ) = 0 for some simple odd root β , then deg L(λ )μΓ ≤ 4.
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On SUSY curves
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Abstract We give a summary of some elementary results in the theory of super Rie-
mann surfaces (SUSY curves), which are mostly known, but are not readily avail-
able in the literature. In particular, we give the classification of all genus 0 SUSY-1
curves and touch on the case of genus 1. We also briefly discuss the related topic of
Π -projective spaces.

1 Introduction

In this note we give a summary of some elementary results in the theory of super Rie-
mann surfaces (SUSY curves), which are mostly known, but are not readily available
in the literature. Our main source is Manin, who has provided a terse introduction
to this subject in [12]. More recently Freund and Rabin have given important results
on the uniformization (see [14]) and Witten has written an account of the state of the
art of this subject, from the physical point of view, in [19].

The paper is organized as follows.
In Sects. 2 and 3, we are g oing to recall briefly the main definitions of superge-

ometry and study in detail the examples of super projective space and Π -projective
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2 Preliminaries

We are going to briefly recall some basic definitions of analytic supergeometry. For
more details see [6, 9, 12, 13, 18] and the classical references [3, 5].

Let our ground field be C.
A superspace S = (|S|,OS) is a topological space |S| endowed with a sheaf of

superalgebras OS such that the stalk at a point x ∈ |S|, denoted by OS,x, is a local
superalgebra.

A morphism φ : S −→ T of superspaces is given by φ = (|φ |,φ ∗), where |φ | :
|S| −→ |T | is a map of topological spaces and φ ∗ : OT −→ φ∗OS is such that
φ ∗x (m|φ |(x))⊆mx wherem|φ |(x) andmx are the maximal ideals in the stalks OT,|φ |(x)
and OS,x respectively.

The superspace Cp|q is the topological space Cp endowed with the following
sheaf of superalgebras. For any open subsetU ⊂ Cp

OCp|q(U) = HolCp(U)⊗∧(ξ1, . . . ,ξq),

where HolCp denotes the complex analytic sheaf on Cp and ∧(ξ1, . . . ,ξq) is the ex-
terior algebra in the variables ξ1, . . . ,ξq.

A supermanifold of dimension p|q is a superspace M = (|M|,OM) which is lo-
cally isomorphic to Cp|q, as superspaces. A morphism of supermanifolds is simply
a morphism of superspaces.

All of our supermanifolds and supermanifold morphisms are assumed to be
smooth.

We now look at an important example of supermanifold, namely the projective
superspace.

Let Pm =Cm+1 \{0}/∼ be the ordinary complex projective space of dimension
m with homogeneous coordinates z0, . . . ,zm; [z0, . . . ,zm] denotes as usual an equiv-
alence class in Pm. Let {Ui}i=1,...,m be the affine cover Ui = {[z0, . . . ,zm] |zi �= 0},
Ui
∼=Cm. On eachUi we take the global ordinary coordinates ui0, . . . , û

i
i, . . .u

i
m, uk :=

zk/zi (ûii means we are omitting the variable uii from the list). We now want to define
the sheaf of superalgebras OUi on the topological spaceUi:

OUi(V ) = HolUi(V )⊗∧(ξ i
1, . . .ξ

i
n), V open inUi,

where HolUi is the sheaf of holomorphic functions onUi and ξ i
1, . . .ξ

i
n are odd vari-

ables.
As one can readily check Ui = (Ui,OUi) is a supermanifold, isomorphic to Cm|n.

We now define the morphisms φi j :Ui∩U j �→Ui∩U j, where the domain is thought
as an open submanifold of Ui, while the codomain as an open submanifold of U j.
The φi j’s are completely determined by the ordinary morphisms, together with the
choice of m even and n odd sections in OUi(Ui∩Uj). We write:

φi j : (ui0, . . . , û
i
i, . . .u

i
m,ξ i

1, . . . ,ξ
i
n) �→

(
ui1
uij

, . . . ,
1

uij
, . . . ,

uim
uij

,
ξ i
1

uij
, . . . ,

ξ i
n

uij

)
(1)
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where on the right hand side the 1/uij appears in the i
th position and the jth position

is omitted. As customary in the literature, the formula (1) is just a synthetic way to
express the pullbacks:

φ ∗i j(u
j
k) =

uik
uij

, 0≤ k �= j ≤ m, φ ∗i j(ξ
j
l ) =

ξ i
l

uij
, 0≤ l ≤ n.

One can easily check that the φi j’s satisfy the compatibility conditions:

φi jφki = φ jk, on Ui∩U j ∩Uk

hence they allow us to define uniquely a sheaf, denoted with OPm|n , hence a super-
manifold structure on the topological space Pm. The supermanifold (Pm,OPm|n) is
called the projective space of dimension m|n.

One can replicate the same construction and obtain more generally a superman-
ifold structure for the topological space: P(V ) :=V \{0}, where V in any complex
super vector space.

We now introduce the functor of points approach to supergeometry.
The functor of points of a supermanifold X is the functor (denoted with the same

letter) X : (smflds)o −→ (sets), X(T ) = Hom(T,X), X( f )φ = f ◦φ . The functor of
points characterizes completely the supermanifold X : in fact, two supermanifolds
are isomorphic if and only if their functor of points are isomorphic. This is one of
the statements of Yoneda’s Lemma, for more details see [6, Chap. 3].

The functor of points approach allows us to retrieve some of the geometric intu-
ition. For example, let us consider the functor P : (smflds)o −→ (sets) associating
to each supermanifold T the locally free subsheaves of O

m+1|n
T of rank 1|0, where

O
m+1|n
T := (C⊕m⊕ (ΠC)⊕n)⊗OT . 1 P is defined in an obvious way on the mor-

phism: any morphism of supermanifolds φ : T −→ S defines a corresponding mor-
phism of the structural sheaves φ ∗ : OS −→ φ∗OT , so that also P(φ) is defined.

The next proposition allows us to identify the functor Pwith the functor of points
of the super projective space Pm|n.

Proposition 1 There is a one-to-one correspondence between the two sets:

P(T )←→ Pm|n(T ), T ∈ (smflds)

which is functorial in T . In other words P is the functor of points of Pm|n(T ).

Proof. We briefly sketch the proof, leaving to the reader the routine checks. Let us
start with an element in P(T ), that is a locally free sheaf FT ⊂ O

m+1|n
T of rank 1|0.

We want to associate to FT a T -point of Pm|n that is a morphism T −→ Pm|n. First
cover T with Vi so that FT |Vi is free. Hence:

FT (Vi) = span{(t0, . . . , tm,θ1, . . . ,θn)} ⊂ O
m+1|n
T (Vi)

1 We may denote the linear superspace C⊕m⊕ (ΠC)⊕n simply with Cm|n whenever it is clear it is
not the complex supermanifold introduced at the beginning of this section.
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where we assume that the section ti ∈ OT (Vi) is invertible without loss of general-
ity, since the rank of FT is 1|0 (this assumption may require to change the cover).
Hence:

FT (Vi) = span{(t0/ti, . . . ,1, . . . , tm/ti,θ1/ti, . . . ,θn/ti)} .
Any other basis (t ′1, . . . , t

′
m+1, θ ′1, . . . ,θ ′n) of FT (Vi) is a multiple of (t0, . . . , tm,

θ1, . . . ,θn) by an invertible section on Vi, hence we have:

t ′j/t
′
i = t j/ti θ ′k/t

′
i = θk/ti.

Thus the functions t j/ti,θk/ti, which a priori are only defined on open subsets where
FT is a free module, are actually defined on the whole of the open set where ti is
invertible, being independent of the choice of basis for FT (Vi).
We have then immediately a morphism of supermanifolds fi : Vi −→Ui ⊂ Pm|n:

f ∗i (ui1) = t0/ti, . . . , f
∗
i (uim) = tm/ti, f ∗i (ξ i

1) = θ1/ti, . . . , f ∗i (ξ i
n) = θn/ti (2)

where Vi = (Vi,OT |Vi) and Ui = (Ui,OPm|n |Ui). It is immediate to check that the fi’s
agree on Vi∩V j, so they glue to give a morphism f : T −→ Pm|n.

As for the vice versa, consider f : T −→ Pm|n and define Vi = | f |−1(Ui). The
morphism f |Vi corresponds to the choice of m even and n odd sections in OT (Vi):
v1, . . . ,vm, η1, . . . ,ηn. We can then define immediately the free sheaves FVi ⊂
OT |m+1|n

Vi
of rank 1|0 on each of the Vi as

FVi(V ) := span{(v1|V , . . . ,1, . . .vm|V ,η1|V , . . . ,ηn|V )},
(1 in the ith position). As one can readily check the FVi glue to give a locally free

subsheaf of O
m+1|n
T .

We now want to define the Π -projective line which represents in some sense a
generalization of the super projective space of dimension 1|1 that we defined previ-
ously.

Let P1 =C2 \{0}/∼ be the ordinary complex projective line with homogeneous
coordinates z0, z1. Define, as we did before, the following supermanifold structure
on eachUi belonging to the open cover {U0,U1} of P1: OUi(V ) = HolUi(V )⊗∧(ξ ),
V open inUi, i = 1,2, so that Ui = (Ui,OUi) is a supermanifold isomorphic to C1|1.
At this point, instead of the change of chart φ12, we define the following transition
map (there is only one such):

ψ12 : U0∩U1 −→ U0∩U1

(u,ξ ) �→
(
1
u ,− ξ

u2

)
.

As one can readily check, this defines a supermanifold structure on the topologi-
cal space P1 and we call this supermanifold the Π -projective line P1|1Π = (P1,OP1Π ).

Alternatively, this supermanifold can be constructed by taking OP1 ⊕ΠO(1) to
be the structure sheaf.

In the next section we will characterize its functor of points.



On SUSY curves 105

3 The ΠΠΠ -projective line

In this section we want to take advantage of the functor of points approach in order
to give a more geometric point of view on the Π -projective line and to understand
in which sense it is a generalization of the super projective line, whose functor of
points was described in the previous section. (See [12, Chap. 2, Sect. 8.5] for a fur-
ther discussion on the geometry of the Π -projective spaces more generally). Let us
start with an overview of the ordinary geometric construction of the projective line.

The topological space P1 consists of the 1-dimensional subspaces of C2, that is
P1 =C2 \{0}/∼, where (z0,z1)∼ (z′0,z

′
1) if and only if (z0,z1) = λ (z′0,z

′
1), λ ∈C×.

In other words, the equivalence class [z0,z1] ∈ P1 consists of all the points in C2

which are in the orbit of (z0,z1) under the action of C× by left (or right) multi-
plication.

Now we go to the functor of points of P1|1. A T -point of P1|1 locally is a
1|0-submodule of O

1|1
T (V ) (V is a suitably chosen open in T ). So it is locally an

equivalence class [z0,z1,η0,η1] where we identify two quadruples (z0,z1,η0,η1)∼
(z′0,z

′
1,η ′0,η ′1) if and only if zi = λ z′i and ηi = λη ′i , i = 0,1, λ ∈ OT (V )×. In other

words, exactly as we did before for the case of P1, we identify those elements in
C2|1(T ) that belong to the same orbit of the multiplicative group of the complex

field G1|0
m (T )∼= C×(T ).2 It makes then perfect sense to generalize this construction

and look at the equivalence classes with respect to the action of the multiplicative su-
pergroup G1|1

m , which is the supergroup with underlying topological space C×, with
one global odd coordinate and with group law (in the functor of points notation):

(a,α .) · (a′,α .′) = (aa′+α .α .′,aα .′+α .a′).

G1|1
m is naturally embedded into GL(1|1), the complex general linear supergroup via

the morphism (in the functor of points notation):

G1|1
m (T ) −→ GL(1|1)(T )

(a,α .) �→
(
a α .
α . a

)
.

This is precisely the point of viewwe are taking in constructing theΠ -projective line:
we identify T -points in C2|2 which lie in the same G1|1

m orbit, but instead of looking
simply at rank 1|1 submodules of C2|2(T ) we look at a more elaborate structure,

which is matching very naturally theG1|1
m action onC2|2. This structure is embodied

by the condition of φ -invariance for a suitable odd endomorphism φ ofC2|2, that we
shall presently see. For more details see Appendix 6.

Consider now the supermanifoldC2|2, and the odd endomorphism φ onC2|2 given
in terms of the standard homogeneous basis {e0,e1|E0,E1} of the super vector space

2 All of our arguments here take place for an open cover of T in which a T point corresponds to a
free sheaf and not just a locally free one. For simplicity of exposition we omit to mention the cover
and the necessary gluing to make all of our argument stand.
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underlying C2|2 by: ⎛⎜⎜⎝
0 0 1 0
0 0 0 1
1 0 0 0
0 1 0 0

⎞⎟⎟⎠ .

We note that φ 2 = 1.
In analogy with the projective superspace, we now consider the functor PΠ :

(smflds)o −→ (sets), where

PΠ (T ) := {rank 1|1 locally free, φ -invariant subsheaves of O
2|2
T }.

Here the action of φ is extended to O
2|2
T = C2|2⊗COT , by acting on the first factor,

and C2|2 is a linear superspace.

Lemma 1 LetFT ∈PΠ (T ). Then there exist an open cover {Vi} of T , whereFT (Vi)
is free and a basis e, E of FT (Vi) such that φ(e) = E ,φ(E ) = e.

Proof. Since FT is locally free, there exist an open cover {Vi} of T , where FT (Vi)
is free with basis, say, e′, E ′. LetΨ be the matrix of φ |Vi in this basis. Since φ 2 = 1,
we haveΨ 2 = 1, which implies thatΨ has the form:

Ψ :=
(

α a
a−1 −α

)
with a ∈O∗T (Vi)0, α ∈OT (Vi)1. Let P ∈ GL(1|1)(OT (Vi)) be the matrix:

P :=
(

a−1 0
−a−1α 1

)
P is invertible because a is, and one calculates that PΨP−1 = Φ , so P gives the
desired change of basis.

Proposition 2 There is a one-to-one correspondence between the two sets:

PΠ (T )−→ P1|1Π (T ), T ∈ (smflds)

which is functorial in T . In other words PΠ is the functor of points of P1|1Π .

Proof. We briefly sketch the proof, leaving to the reader the routine checks. Let
us consider a locally free sheaf FT ⊂ O

2|2
T of rank 1|1 in PΠ (T ), invariant under

φ . We want to associate to each such FT a T -point of P1|1Π (T ), that is, a morphism

f : T −→ P1|1Π .
First we cover T with Vi, so that FT |Vi is free. By Lemma 1 there exists a basis

e, E of FT (Vi) such that φ(e) = E , φ(E ) = e.
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Representing e, E using the basis {e0,E0,e1,E1} of C2|2, we have:

FT (Vi) = span{e = (s0,σ0,s1,σ1), E = (σ0,s0,σ1,s1)}
for some sections s j,σ j in OT (Vi). Since the rank of FT is 1|1, either s0 or s1 must
be invertible. Let us call V0 the union of the Vi for which s0 is invertible and V1 the
union of the Vi for which s1 is invertible.

Hence, we can make a change of basis of FT (Vi) by right multiplying the col-
umn vectors representing e and E in the given basis, by a suitable element gi ∈
GL(1|1)(OT (Vi)) obtaining:

FT (V0) = span {(1,0,s1s−10 −σ1σ0s
−2
0 , σ1s

−1
0 − s1σ0s

−2
0 ),

(0,1,σ1s
−1
0 − s1σ0s

−2
0 , s1s

−1
0 −σ1σ0s

−2
0 )},

FT (V1) = span {(s0s−11 −σ0σ1s
−2
1 , σ0s

−1
1 − s0σ1s

−2
1 ,1,0),

(σ0s
−1
1 − s0σ1s

−2
1 , s0s

−1
1 −σ0σ1s

−2
1 ,0,1)},

g0 =
(

s−10 −σ0s
−2
0

−σ0s
−2
0 s−10

)
, g1 =

(
s−11 −σ1s

−2
1

−σ1s
−2
1 s−11

)
.

Suppose now {e′,E ′} := {(s′0,σ ′0,s′1,σ ′1),(σ ′0,s′0,σ ′1,s′1)} is another basis of
FT (Vi) such that φ(e′) = E ′,φ(E ′) = e′. The sections in OT (Vi) we have obtained,
namely:

v0 = s1s
−1
0 −σ1σ0s

−2
0 , ν0 = σ1s

−1
0 − s1σ0s

−2
0

v1 = s0s
−1
1 −σ0σ1s

−2
1 , ν1 = σ0s

−1
1 − s0σ1s

−2
1

are independent of the choice of such a basis. This can be easily seen with an argu-
ment very similar to the one in Proposition 1.

Hence we have well-defined morphisms of supermanifolds fi : Vi −→Ui ⊂ P1|1Π :

f ∗0 (u0) = v0, f ∗0 (ξ0) = ν0
f ∗0 (u1) = v1, f ∗0 (ξ1) = ν1

where Vi = (Vi,OT |Vi) and Ui = (Ui,OP1|1Π
|Ui), while (ui,ξi) are global coordinates

on Ui
∼=C1|1. A small calculation shows that the fi’s agree on V0∩V1, in fact as one

can readily check:

(1,0,v0,ν0)∼
(

1
v0

,
−ν0
v20

,1,0

)
and similarly for (v1,ν1,1,0), which corresponds to the transition map for P1|1Π we

defined in Sec. 2. So the fi’s glue to give a morphism f : T −→ P1|1Π .

For the converse, consider f : T −→ P1|1Π and define Vi = | f |−1(Ui). We can de-

fine immediately the sheaves FVi ⊂O
2|2
Vi

on each of the Vi as we did in the proof of
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Proposition 1:

FV0 = span {(1,0, t0,τ0),(0,1,τ0, t0)}
FV1 = span {(t1,τ1,1,0),(τ1, t1,0,1)}

where ti = f ∗(ui),τi = f ∗(ξi). The FVi so defined are free of rank 1|1 (by inspection
there are no nontrivial relations between the generators), and φ -invariant by con-
struction. Finally, one checks that the relations t1 = t−10 ,τ1 =−t−20 τ0 imply that the

FVi glue on V0∩V1 to give a locally free rank 1|1 subsheaf of O
2|2
T .

4 Super Riemann surfaces

In this section we give the definition of super Riemann surface and we examine some
elementary, yet important properties.

Much of the material we discuss in this section is contained, though not so explic-
itly, in Chap. 2 of [12]; see also the article [2]. Further key results on the geometry
of super Riemann surfaces may be found in the work of Rabin and his collaborators
(see e.g. [4,14,15]). The moduli of SUSY-1 curves is a well-studied subject; we re-
fer the reader to [16] where the deformation theory of complex analytic superspaces
and coherent sheaves on superspaces is developed and used to prove the existence
of the universal deformation of a given SUSY-1 curve (X ,D).

Definition 1 A 1|1-super Riemann surface is a pair (X ,D), where X is a 1|1-dimen-
sional complex supermanifold, and D is a locally direct (and consequently locally
free, by the super Nakayama’s lemma) rank 0|1 subsheaf of the tangent sheaf TX
such that:

D⊗D −→ TX/D

Y ⊗Z �→ [Y,Z] (modD)

is an isomorphism of sheaves. Here [ , ] denotes the super Lie bracket of vector fields.
The distinguished subsheaf D is called a SUSY-1 structure on X , and 1|1-super Rie-
mann surfaces are thus alternatively referred to as SUSY-1 curves. We shall refer to
SUSY 1-structures simply as SUSY structures.

We say that X has genus g if the underlying topological space |X | has genus g.
Definition 2 Let (X ,D), (X ′,D ′) be SUSY-1 curves, and F : X → X ′ a biholomor-
phic map of supermanifolds. F is a isomorphism of SUSY curves, or simply a SUSY
isomorphism, if (dF)p(Dp) = D ′|F |(p) for all reduced points p ∈ |X |. Here (dF)p
denotes the differential of F at p, Dp ⊂ TpX (resp. D ′q) the stalk of the subsheaf D
(resp. D ′) at p (resp. q).

Example 1 Let us consider the supermanifold C1|1, with global coordinates z, ζ to-
gether with the odd vector field:

V = ∂ζ +ζ∂z.



On SUSY curves 109

If D = span{V}, D is a SUSY structure on C1|1 sinceV ,V 2 span TC1|1. As we will
see, this is the unique (up to SUSY isomorphism) SUSY structure on C1|1.

We now want to relate the SUSY structures on a supermanifold and the canonical
bundle of the reduced underlying manifold. It is important to remember that for a
supermanifold X of dimension 1|1, OX ,0 = OX ,red; that is, the even part of its struc-
tural sheaf coincides with its reduced part. This is of course not true for a generic
supermanifold.

We start by showing that any SUSY structure can be locally put into a canonical
form.

Lemma 2 Let (X ,D) be a SUSY-1 curve, p a topological point in Xred. Then there
exists an open set U containing p and a coordinate system W = (w,η) for U such
that D |U = span {∂η +η∂w}.
Proof. Since D is locally free, there exists a neighborhood U of p on which D =
span {D}, where D is some odd vector field; by shrinking U , we may assume it is
also a coordinate domain with coordinates (z,ζ ). Since X has only one odd coor-
dinate, we have D = f (z)∂ζ + g(z)ζ∂z for some holomorphic even functions f , g.
So:

D2 = [D,D]/2 = g(z)∂z +g f ′ζ∂ζ .

Since D, D2 form a local basis for the OX -module TX , we have

a11D+a12D
2 = ∂z, a21D+a22D

2 = ∂ζ .

If we substitute the expression for D and D2 we obtain:

g(a11ζ +a12) = 1, a21 f = 1−a22g f
′ζ

from which we conclude that both f and g must be units.
We now show that we can find a new coordinate system (possibly shrinking U)

so that D can be put in the desired form. We will assume such a coordinate system
exists, then determine a formula for it and this formula will give us the existence. Let
w= w(z), η = h(z)ζ be the new coordinate system, where w and h are holomorphic
functions. By the chain rule, we have:

∂z = w′(z)∂w +h′(z)ζ∂η , ∂ζ = h(z)∂η .

We now set D = ∂η +η∂w and substituting we have:

D = ∂η +η∂w = f h∂η +gh−1ηw′(z)∂w

which holds if and only if the system of equations:

f h = 1, gw′ = h

has a solution for w,h. By shrinking our original coordinate domain, we may assume
it is simply connected. Then since f and g are units, the system has a solution, by
standard facts from complex analysis. We leave to the reader the easy check that
(w,η) is indeed a coordinate system.
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Definition 3 Let (X ,D) be a SUSY-1 curve,U an open set. Any coordinate system
(w,η) onU having the property of Lemma 2 is said to be compatiblewith the SUSY
structure D . Any open set U that admits a D-compatible coordinate system is said
to be compatible with D .

Definition 4 Let Xred be an ordinary Riemann surface, KXred its canonical bundle. A
theta characteristic is a pair (L ,α), where L is a holomorphic line bundle on Xred,
and α a holomorphic isomorphism of line bundles α . : L ⊗L −→ KXred . An iso-
morphism of theta characteristics (L ,α), (L ′,α ′) is an isomorphism φ : L →L ′
of line bundles such that α ′ ◦φ⊗2 = α . Some authors also call a theta characteristic
of Xred a square root of the canonical bundle KXred .

Definition 5 A super Riemann pair, or SUSY pair for short, is a pair (Xr,(L ,α))
where Xr is an ordinary Riemann surface, and (L ,α) is a theta characteristic on Xr.
An isomorphism of SUSY pairs F : (Xr,(L ,α))→ (X ′r,(L ′,α ′)) is a pair ( f ,φ)
where f : Xr→ X ′r is a biholomorphism of ordinary Riemann surfaces, and φ :L ′ →
f∗(L ) is an isomorphism of theta characteristics on X ′r .

For the sake of brevity, we will occasionally omit writing the isomorphism α
in describing a super Riemann pair. The following theorem, a version of which is
stated in Chap. 2, Prop. 2.3 (cf. [12, Chap. 2, Ex. 2.4]), shows that the data of super
Riemann surface and of super Riemann pair are completely equivalent.

Theorem 1 Let (X ,D) be a SUSY-1 curve. Then (Xred,OX ,1) is a SUSY pair, where
OX ,1 is regarded as an OX ,0-line bundle. Furthermore, if F := ( f , f #) : (X ,D)→
(X ′,D ′) is a SUSY-isomorphism, then ( f , f #|OX ,1) : (Xred,OX ,1)→ (X ′red,OX ′,1) is an
isomorphism of SUSY pairs.

Conversely, suppose (Xr,(L ,α)) is a SUSY pair. Then there exists a structure
of SUSY-1 curve (XL ,DL ) on Xr, such that the SUSY pair associated to (XL ,D)
equals (Xr,(L ,α)). Any isomorphism of SUSY pairs (Xr,(L ,α))→ (X ′r,(L ′,α ′))
induces a SUSY-isomorphism XL → XL ′ .

Proof. First we show that if X is a 1|1-complex supermanifold with a SUSY struc-
ture, then the OX ,0-line-bundle OX ,1 is a square root of the canonical bundle KXred .

By Lemma 2, X has an open cover by compatible coordinate charts. If (z,ζ ) and
(w,η) are two such coordinate charts, then

Dz = ∂ζ +ζ∂z, Dw = ∂η +η∂w

with Dz = h(z)Dw, h(z) �= 0. If w = f (z) and η = g(z)ζ a small calculation implies
that f ′(z) = g2, that is, O⊗2X ,1 and KXred have the same transition functions for this

covering, hence there is an isomorphism O⊗2X ,1 → KXred . If F := ( f , f #) : (X ,D)→
(X ′,D ′) is a SUSY-isomorphism of SUSY-1 curves with underlying Riemann sur-
face Xred, then one checks that f #|OX ′,1 : OX ′,1 → f∗(OX ,1) is an isomorphism of
line bundles. Covering X with an atlas of compatible coordinate charts, transferring
this atlas to a compatible atlas on X ′ by F , and comparing the transition functions
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for f∗(OX ,1) and OX ′,1 in this atlas as above, we obtain the desired isomorphism of
theta characteristics.

Conversely, if we have a theta characteristic α : L ⊗2→ KXred , we define a sheaf
of supercommutative rings OXL

on |X |, the topological space underlying Xred, by
setting:

OXL
= OXred ⊕L

with multiplication ( f ,s) · (g, t) = ( f g, f t +gs). One checks that OXL
so defined is

a sheaf of local supercommutative rings, using the standard fact that a supercommu-
tative ring A is local if and only if its even part A0 is local. By taking a local basis χ
of L in a trivialization, and sending ( f ,gχ) to f +gη , we see that OXL

so defined
is locally isomorphic to OXred ⊗Λ [η ] and hence (Xred,OXL

) is a supermanifold.

The SUSY structure is defined as follows. Let z be a coordinate for Xred on an open
set U . By shrinking U we may assume OL (U) is free. Then there is some basis ζ
of OL (U) such that α(ζ ⊗ζ ) = dz; then z,ζ so defined are coordinates for XL on
U . We set the SUSY structure onU to be that spanned by DZ := ∂ζ +ζ∂z.

We will show the local SUSY structure thus defined is independent of our choices
and hence is global on X . Suppose w is another coordinate on U , and η a basis of
OL (U) such that α(η ⊗η) = dw. Then w = f (z),η = g(z)ζ , with f ′ a unit in U .
Since dw = f ′(z)dz, we have:

α(η⊗η) = g2α(ζ ⊗ζ )
= f ′(z)dz

from which it follows that g2 = f ′; in particular, g is also a unit. Then by the chain
rule, ∂ζ + ζ∂z = g(∂η + η∂w), hence DZ and DW span the same SUSY structure
onU .

Now suppose (X ′r,L ′) is another SUSY pair, isomorphic to (X ,L ) by ( f ,φ).
Then φ will induce an isomorphism of analytic supermanifolds ψ : XL −→ XL ′ ,
since f : XL ,red→ XL ′,red is an isomorphism, and f∗(OXL ,1) ∼= OXL ′ ,1 via the iso-
morphism φ of theta characteristics. Now we check we have a SUSY isomorphism.
This may be done locally: given a point p ∈ Xred one chooses coordinates (z,ζ ) and
(z′,ζ ′) around p that are compatible with the SUSY-1 structures on XL and XL ′ , so
that DZ := ∂ζ +ζ∂z (resp. DZ′ := ∂ζ ′+ζ ′∂z′ ) locally generate the SUSY structures.
In these coordinates the reader may check readily that dψ(DZ |p) = DZ′ |p.

Theorem 1 has the following important immediate consequence.

Corollary 1 A 1-dimensional complex manifold Xred carries a SUSY structure if
and only if X admits a theta characteristic.

Remark 1 One can prove, via a direct argument using cocycles, that any compact
Riemann surface S admits a theta characteristic, using the fact that the Chern class
is c1(KS) = 2− 2g (i.e. it is divisible by 2 hence KS admits a square root). Hence
SUSY-1 curves exist in abundance: any compact Riemann surface admits at least
one structure of SUSY-1 curve.
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Theorem 1 has also the following important consequences:

Proposition 3 Up to SUSY-isomorphism, there is a unique SUSY-1 structure on
C1|1, namely, that defined by the odd vector field:

V = ∂ζ +ζ∂z,

where (z,ζ ) are the standard linear coordinates on C1|1.

Proof. The reduced manifold ofC1|1 isC. It is well known that all holomorphic line
bundles on C are trivial. This implies there exists only one theta characteristic for C
up to isomorphism, namely (OC,11⊗2). The essential point in verifying this unique-
ness is that any automorphism of trivial line bundles on C is completely determined
by an invertible entire function on C, and such a function always has an invertible
entire square root. Hence by Theorem 1, there is only one SUSY-1 structure on C
up to isomorphism. For the last statement of the theorem, see Example 1.

The next example shows that Lemma 2 is a purely local result.

Example 2 Consider the vector field:

Z = ∂ζ + ezζ∂z.

Z is an odd vector field on C1|1 defining a SUSY structure on C1|1. The previous
proposition implies that the SUSY structure defined by Z is isomorphic to that de-
fined by V = ∂ζ + ζ∂z. However, it does not imply that there exists a global coor-

dinate system (w,η) for C1|1 in which Z takes the form ∂η +η∂w. In fact suppose
such a global coordinate system w = f (z),η = g(z)ζ existed. Then:(

f ′ 0
g′ζ g

)(
ezζ
1

)
=
(
η
1

)
from which we conclude that g = 1, f ′ = e−z. Hence f = −e−z + c, but since f is
not one-to-one, this contradicts the assumption that (w,η) is a coordinate system on
all of C1|1. This shows that Lemma 2 cannot be globalized even in the simple case
of C1|1, even though C1|1 has a unique SUSY structure up to SUSY isomorphism.

5 Super Riemann surfaces of genus zero and one

In this section we want to provide some classification results on SUSY curves of
genus zero and one. The next proposition provides a complete classification of com-
pact super Riemann surfaces of genus zero and shows the existence of a genus zero
1|1 compact complex supermanifold, namely the Π -projective line, that does not
admit a SUSY structure.
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Proposition 4 1. P1|1 admits a unique SUSY structure, up to SUSY-isomorphism.
More generally, if X is a supermanifold of dimension 1|1 of genus zero, then X
admits a SUSY structure if and only if X is isomorphic to P1|1.

2. P1Π admits no SUSY structure.

Proof. To prove (1), recall the well-known classification of line bundles on P1:
Pic(P1) is a free abelian group of rank one, generated by the isomorphism class of
the hyperplane bundle O(1), and KP1 ∼= O(−2).

Hence, up to isomorphism, there is a unique theta characteristic on P1, namely
(O(−1),ψ) where ψ is any fixed isomorphism of line bundles O(−1)⊗2→O(−2).
Similar to Proposition 3, the proof of this uniqueness reduces to the problem of
lifting a given global automorphism of O(−1)⊗2 ∼= O(−2) to an automorphism of
O(−1). This requires the fact that End(L) = L∗ ⊗L = O for any line bundle L, and
that H0(P1,O) = C. In particular, any global automorphism of O(−1)⊗2 is given
by multiplication by an invertible scalar, which has an invertible square root in C;
this is the desired automorphism of O(−1).

Considering now the statement (2), by Theorem 1, if X = P1|1Π admitted a SUSY-
1 structure, we would have OX ,1

∼= O(−1). Using the coordinates from Sect. 2, we
see that OX ,1

∼= O(−2). This is a contradiction.
We now turn to the study of genus one SUSY curves.

In ordinary geometry a compact Riemann surface X of genus one, that is an el-
liptic curve, is obtained by quotienting C by a lattice L ∼= Z2. It is easily seen that
any such lattice L is equivalent, under scalar multiplication, to a lattice of the form
L0 := span{1,τ}, where τ lies in the upper half plane. Two lattices L0 = span{1,τ}
and L′0 = span{1,τ ′}, are equivalent, i.e., yield isomorphic elliptic curves, if and
only if τ and τ ′ lie in the same orbit of the group Γ = PSL2(Z), where the action is
via linear fractional transformations:

τ �→ aτ +b
cτ +d

.

A fundamental domain for this action is:

D = {τ ∈ C | Im(τ) > 0, |Re(τ)| ≤ 1/2, |τ | ≥ 1}.

We now want to generalize this picture to the super setting. Our main reference
will be [14]. The reader may wish to consult Chap. 2., Sect. 7 of [12], where the
universal families of genus 1 SUSY-1 curves are constructed and embedded into
Π -projective spaces by means of super theta functions.

We start by observing the ordinary action of Z2 ∼= L0 = 〈A0,B0〉 on C is given
explicitly by:

A0 : z �→ z+1, B0 : z �→ z+ τ .

In [14] Freund and Rabin take a similar point of view in constructing a super Rie-
mann surface: they define even super elliptic curves as quotients of C1|1 by Z2 =
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〈A,B〉, acting by:

A :(z,ζ ) �→ (z+1,±ζ )
B :(z,ζ ) �→ (z+ τ ,±ζ ).

In this section, we will justify their choice of these particular actions by showing
they are the only reasonable generalizations of the classical actions of Z2 on C.

In Sect. 4 we proved that onC1|1 there exists, up to isomorphism, only one SUSY
structure, corresponding to the vector field V = ∂ζ + ζ∂z. We now want to charac-
terize all possible SUSY automorphisms preserving this SUSY structure.

We start with some lemmas.

Lemma 3 Let X be a 1|1 complex supermanifold and ω ,ω ′ be holomorphic 1|0 dif-
ferential forms on X such that ker(ω),ker(ω ′) are 0|1 distributions. Then ker(ω) =
ker(ω ′) if and only if ω ′ = tω for some invertible even function t(z).

Proof. The⇐ implication is clear. To prove the⇒ implication, we can reduce to a
local calculation. Suppose now that ker(ω) = ker(ω ′). Given any point p in X , fix
an open neighborhoodU � p where TX |U is free. As D is locally a direct summand,
it is locally free of rank 0|1, by the super Nakayama’s lemma (see [18]) and D |U has
a local complement E ⊂ TX |U (shrinkingU , if needed).

Let us use the notation OU = OX |U and O(U) = OU(U). As E is also a direct
summand of TX |U , it is also a free OU -module (again possibly shrinkingU) hence
must be of rank 1|0. Hence we have a local splitting TX |U = D ⊕ E of free OU -
modules. Let Z be a basis for D |U ,W a basis for E ; thenW,Z form a basis for TX |U .
ω |U :OTX (U)→OU(U) induces an even linear functionalωp : TpX→C on the tan-
gent space at p, and the splitting TX |U = D ⊕E induces a corresponding splitting
TpX = Dp⊕Ep of super vector spaces, with dim(Dp) = 0|1, dim(Ep) = 1|0, such
that ker(ωp) =Dp and span(Wp) = Ep. By linear algebra, ωp|Ep is an isomorphism;
in particular, ωp(Wp) is a basis for C = Op/Mp. The super Nakayama’s lemma then
implies that ω(W ) generates OU as OU -module (again shrinking U if necessary),
which is true if and only if ω(W ) is a unit; the same is true for ω(W ′).

We now show that the ratio ω ′(W )/ω(W ) ∈ O∗U,0 is independent of the local
complement E and the choice ofW , so that it defines an invertible even function t
on all of X . Suppose E ′ is another local complement to D onU , andW ′ a local basis
for E ′. We have as before that Z,W ′ form a basis of TX |U . Then ω(W ′),ω ′(W ′) are
invertible inOU by the above argument, andW ′= bW +βZ with b∈O∗U,0, β ∈OU,1.

ω(W ′)
ω ′(W ′)

=
bω(W )+βω(Z)
bω ′(W )+βω ′(Z)

=
ω(W )
ω ′(W )

.

Note here that we have used the hypothesis ker(ω) = ker(ω ′) to conclude ω(Z) =
ω ′(Z) = 0.

Finally, we verify that ω ′ = tω ; this can again be done locally since t is now
known to be globally defined. The argument is left to the reader.
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The odd vector field V = ∂ζ +ζ∂z defining our SUSY structure D is dual to the
differential form ω := dz−ζ dζ . As one can readily check D = span{V}= ker(ω).

Lemma 4 An automorphism F : C1|1→ C1|1 is a SUSY automorphism if and only
if F∗(ω) = t(z)ω for some invertible even function t(z).

Proof. Unraveling the definitions, one sees that F preserves the SUSY structure if
and only if

ker(F∗(ω))p = ker(ω)p

for each p ∈ X . We claim that the latter is true if and only if ker(F∗(ω)) = ker(ω).
One implication is clear. Conversely, suppose that ker(F∗(ω))p = ker(ω)p for each
p ∈ X . By a standard argument using the super Nakayama’s Lemma, ker(F∗(ω)) =
ker(ω) in a neighborhood of p for any point p, hence ker(ω) = ker(F∗(ω)). The
result then follows by Lemma 3.

We are now ready for the result characterizing all of the SUSY automorphisms
of C1|1.

Proposition 5 Let (z,ζ ) be the standard linear coordinates on C1|1, and let C1|1
have the natural SUSY-1 structure defined by the vector field V = ∂ζ + ζ∂z. The
SUSY automorphisms of C1|1 are precisely the endomorphisms F of C1|1 such that:

F(z,ζ ) = (az+b,±√aζ )

where a ∈ C∗,b ∈ C, and√a denotes either of the two square roots of a.

Proof. Let F be such an automorphism, and z,ζ the standard coordinates on
C1|1. Then F(z,ζ ) = ( f (z),g(z)ζ ) for some entire functions f ,g of z. Similarly,
F−1(z,ζ ) = (h(z),k(z)ζ )) for some entire functions h,k. Since F and F−1 are in-
verses, f is a biholomorphic automorphism of C1|0, hence linear by standard facts
from complex analysis: f (z) = az+b for some a,b∈C, a �= 0; the same is true for h.

So by the Lemma 4, F preserves the SUSY-1 structure on C1|1 if and only if
F∗(ω) = t(z)ω . We calculate:

F∗(dz−ζ dζ ) = d f −F∗(ζ )d(gζ )

= f ′ dz−g2ζ dζ .

Equating this with t(z)ω , we see t = f ′ = g2. Thus g2 = a, so in particular g is
constant. Hence:

F(z,ζ ) = (az+b,cζ )

where c2 = a, a ∈ C\{0}, b ∈ C. Conversely, one checks that any morphism
C1|1→ C1|1 of the above form is an automorphism, and that it preserves the SUSY
structure.
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From our previous proposition, we conclude immediately that the only actions of
Z2 on C1|1 that restrict to the usual action on the reduced space C are of the form:

A :(z,ζ ) �→ (z+1,±ζ )
B :(z,ζ ) �→ (z+ τ ,±ζ ),

since the actions of A and B must be by automorphisms of the form:

(z,ζ ) �→ (az+b,±√aζ )

and in this case, a must be taken to be 1. This justifies the choice made in [14].

Remark 2 One can show that the functor of SUSY-preserving automorphisms of the
functor of points of C1|1 is represented by a complex supergroup Aut(C1|1). How-
ever, in this work, we have only described the C-points of this supergroup.

Remark 3 Using Theorem 1, we see that the SUSY structures on Xred correspond
one-to-one to isomorphism classes of theta characteristics on Xred. It is well-known
from the theory of elliptic curves over C that an elliptic curve Xred has four distinct
theta characteristics, up to isomorphism. Regarding Xred as an algebraic group, these
theta characteristics correspond to the elements of the subgroup of order 2 in Xred.

As noted in [11], one can define the parity of a theta characteristic L as
dimH0(Xred,L )(mod 2). This is a fundamental invariant of the theta characteris-
tic (cf. [1] where the parity is shown to be stable under holomorphic deformation).
The isomorphism class of the trivial theta characteristic OXred is distinguished from
the other three by its parity: it has odd parity, the others have even parity. The odd
case is therefore fundamentally different from the perspective of supergeometry, and
is best studied in the context of families of super Riemann surfaces; families of odd
super elliptic curves are considered in, for instance, [11, 14, 15, 19].

In [14], Rabin and Freund also describe a projective embedding of the SUSY
curve defined by C1|1/〈A, B〉 using the classical Weierstrass function ℘ and the
function℘1 defined as℘2

1 =℘−e1 (as usual e1 =℘(ωi) with ω1 = 1/2, ω2 = τ/2
and ω3 = (1+τ)/2). IfU0,U1,U2 is the open cover of P2|3(C) described in Sect. 2,
onU2 the embedding is defined as:

C1|1/〈A, B〉 −→ U2 ⊂ P2|3(C)

(z,ζ ) �→ [℘(z),℘′(z),1,℘1(z)ζ ,℘′1(z)ζ ,℘1(z)℘(z)ζ ].

In [14], they describe also the equations of the ideal inU2 corresponding to the SUSY
curve in this embedding:

y2 = 4x3−a1x2−a2, 2(x− e1)η2 = yη1

yη2 = 2(x− e2)(x− e3)η1 η3 = xη1

where (x,y,η1,η2,η3) are the global coordinates onU2
∼=C2|3. One can readily com-

pute the homogeneous ideal in the ring C[x0,x1,x2,ξ1,ξ2,ξ3] associated with the
given projective embedding. It is generated by the equations:

x21x2 = 4x30−a1x20x2−a2x32, 2(x0x2− e1x22)ξ2 = x1x2ξ1
x1x2ξ2 = 2(x0− e2x2)(x0− e3x2)ξ1 ξ3x2 = x0ξ1.
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6 ΠΠΠ -Projective geometry revisited

We devote this appendix to reinterpret the Π -projective line, discussed in Sect. 3,
through the superalgebra D.

Let D denote the super skew field, D= C[θ ], θ odd and θ 2 =−1. As a complex
super vector space of dimension 1|1, D= {a+bθ |a,b ∈C}, thus it has a canonical
structure of analytic supermanifold, and its functor of points is:

T �→ D(T ) := (D⊗O(T ))0 = D0⊗O(T )0⊕D1⊗O(T )1.

Let D× be the analytic supermanifold obtained by restricting the structure sheaf of
the supermanifold D to the open subset D\{0}.
D× is an analytic supergroup and its functor of points is:

T �→ D×(T ) := (D⊗O(T ))∗0

where (D⊗O(T ))∗0 denotes the invertible elements in (D⊗O(T ))0;
As a supergroupD× is isomorphic toG1|1

m , which is the supergroup with underly-
ing topological space C×, described in Sect. 3. The isomorphism between G1|1

m and
D× simply reads as:

(a,α .) �→ a+θα .

Notice that G1|1
m (hence D×) is naturally embedded into GL(1|1), the complex gen-

eral linear supergroup via the morphism (in the functor of points notation):

D×(T ) ∼= G1|1
m (T ) −→ GL(1|1)(T )

a+θα . ∼= (a,α .) �→
(
a α .
α . a

)
.

Before we continue this important characterization ofΠ -projective geometry due
to Deligne, let us point out that while G1|1

m ∼= D× are commutative supergroups, the
commutative algebraD=C[θ ] is not a commutative superalgebra, because if it were,
then θ 2 = 0 and not θ 2 = −1 as we have instead. This is an important fact, which
makesΠ -projective supergeometry more similar to non commutative geometry than
to regular supergeometry.

We now want to relate more closely the Π -projective supergeometry with D.

Lemma 5 A right action of D on a complex super vector space V is equivalent to
the choice of an odd endomorphism φ of V such that φ 2 = 1.

Proof. Let V be a right D-module. A right action of D= C[θ ] is an antihomomor-
phism f : D→ End(V ), which corresponds to a left action of the opposite algebra
Do = C[θ o], (θ o)2 = 1 (End(V ) denotes all of the endomorphisms of V , not just
the parity preserving ones). Such actions are specified once we know the odd endo-
morphisms ψ and φ corresponding respectively to θ and θ o. Hence explicitly right
multiplication by θ gives rise to an odd endomorphism φ such that φ 2 = 1, by:

φ(v) := (−1)|v|v ·θ .
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Conversely, given a super vector space V and an odd endomorphism φ of square 1,
we can define a right D-module structure on V by:

v · (a+bθ) := v ·a+(−1)|v|φ(v) ·b.

Given any complex supermanifold X , there is a sheaf D of superalgebras, defined
byD(U) := OX (U)⊗CD, for any open setU ⊆ |X |. Then a sheaf of right (resp. left)
D-modules on X is a sheaf of right (resp. left) modules for the sheaf D; a morphism
F →F ′ of sheaves of D-modules is simply a sheaf morphism that intertwines the
D-actions on F ,F ′. A sheaf of D-modules F is locally free of D-rank n if F is
locally isomorphic to Dn.

Lemma 6 Let X be a complex supermanifold and let U be an open set. If V is a
free D(U)-module of D-rank 1, AutD(V )∼= D×(U).

Proof. SinceV is free ofD-rank 1, we may reduce to the caseV =D(U) as rightD-
modules, where this identification is obvious: f �→ f (1) ∈D×(U) for f ∈AutD(V ).

We are now ready to reinterpret the functor of points of the Π -projective line.

Proposition 6 Let the notation be as above.

PΠ (T ) = {locally free, D-rank 1 right D-subsheaves FT ⊆ O
2|2
T }

In other words, the functor of points of the Π -projective line associates to each

supermanifold T the set of locally free right D-subsheaves of rank 1|0 of O2|2
T .

Proof. (Sketch). The right action on FT of D corresponds to the right action of D
on C2|2⊗OT occurring on the first term through the left multiplication by the odd
endomorphism φ , (see Lemma 5). Hence the φ -invariant subsheaves are in one to

one correspondence with the rightD-subsheaves ofO2|2
T . Notice furthermore that by

Lemma 6, the change of basis of the free module FT (Vi) we used in 2, corresponds
to right multiplication by an element of G1|1

m ∼= D×, that is the natural left action of
D× on the locally free, D-rank 1 sheaf FT (Vi) by automorphisms.

Remark 4 The generalization from C× action on Cn (see the construction of ordi-
nary projective space Sect. 2) to G1|1

m ∼= D× action on Cn|n gives us naturally the
odd endomorphism φ , which is used to construct the Π -projective space and ul-
timately it is the base on which Π -projective geometry is built. The introduction
of the skew-field D, D× ∼= G1|1

m is not merely a computational device, but suggest
a more fundamental way to think about Π -projective geometry. We are unable to
provide a complete treatment here, but we shall do so in a forthcoming paper.
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Dirac operators and the very strange formula
for Lie superalgebras

Victor G. Kac, Pierluigi Möseneder Frajria and Paolo Papi

Abstract Using a super-affine version of Kostant’s cubic Dirac operator, we prove
a very strange formula for quadratic finite-dimensional Lie superalgebras with a re-
ductive even subalgebra.

1 Introduction

The goal of this paper is to provide an approach to the strange and very strange
formulas for a wide class of finite-dimensional Lie superalgebras. Let us recall what
these formulas are in the even case. Let g be a finite-dimensional complex simple Lie
algebra. Fix a Cartan subalgebra h⊂ g and let Δ+ be a set of positive roots for the set
Δ of h-roots in g. Let ρ = 1

2 ∑α∈Δ+ α be the correspondingWeyl vector. Freudenthal
and de Vries discovered in [6] the following remarkable relation between the square
length of ρ in the Killing form κ and the dimension of g:

κ(ρ,ρ) =
dimg
24

.

They called this the strange formula. It can be proved in several very different ways
(see e.g. [2,5]), and it plays an important role in the proof of theMacdonald identities
for the powers of the η-function. Indeed, the strange formula enters as a transition
factor between the Euler product ϕ(x) = ∏∞

i=1(1− xi) and Dedekind’s η-function
η(x) = x

1
24ϕ(x).
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In [8] Kac gave a representation theoretic interpretation of the Macdonald iden-
tities as denominator identities for affine Lie algebras. Moreover, using modular
forms, he provided in [10] general specializations of them and a corresponding tran-
sition identity, named the very strange formula. Here the representation theoretic
interpretation of the formulas involves an affine Lie algebra, which is built up from
a simple Lie algebra endowed with a finite order automorphism. To get the very
strange formula from a “master formula” it was also required that the characteris-
tic polynomial of the automorphism has rational coefficients. A more general form,
with no rationality hypothesis, is proved in [14], where it is also used to estimate
the asymptotic behavior at cusps of the modular forms involved in the character of
a highest weight module. Let us state this version of the very strange formula, for
simplicity of exposition, in the case of inner automorphisms. Let σ be an automor-
phism of order m of type (s0,s1, . . . ,sn;1) (see [11, Chap. 8]). Let g = ⊕ j̄∈Z/mZ g

j

be the eigenspace decomposition with respect to σ . Define λs ∈ h∗ by κ(λs,αi) =
si
2m , 1≤ i≤ n, where {α1, . . . ,αn} is the set of simple roots of g. Then

κ(ρ−λs,ρ−λs) =
dimg
24
− 1

4m2

m−1
∑
j=1

j(m− j)dimg j. (1)

Much more recently, we provided a vertex algebra approach to this formula (in a
slightly generalized version where an elliptic automorphism is considered, cf. [12])
as a byproduct of our attempt to reproduce Kostant’s theory of the cubic Dirac op-
erator in affine setting. Our proof is based on two main ingredients:

(a) An explicit vertex algebra isomorphismVk(g)⊗F(g)∼=Vk+g,1(g), whereVk(g)
is the universal affine vertex algebra of noncritical level k, g is the dual Cox-
eter number,Vk,1(g) is the universal super-affine vertex algebra and F(g) is the
fermionic vertex algebra on g viewed as a purely odd space.

(b) A nice formula for the λ -bracket of the Kac-Todorov Dirac field G ∈Vk+g,1(g)
with itself.

Indeed, using (a), we can let the zero mode G0 of G act on representations of
Vk(g)⊗F(g). Since we are able to compute G0 v⊗ 1, where v is a highest weight
vector of a highest weight module for the affinization of g, the expression for [GλG]
obtained in step (b) yields a formula which can be recast in the form (1) (cf. [12,
Sect. 6]).

Now we discuss our work in the super case. A finite-dimensional Lie superal-
gebra g = g0⊕ g1 is called quadratic if it carries a supersymmetric bilinear form
(i.e. symmetric on g0, skewsymmetric on g1, and g0 is orthogonal to g1), which is
non-degenerate and invariant. We say that a complex quadratic Lie superalgebra g
is of basic type if g0 is a reductive subalgebra of g. In Theorem 1 we prove a very
strange formula (cf. (55)) for basic type Lie superalgebras endowed with an inde-
composable elliptic automorphism (see Definition 1) which preserves the invariant
form. When the automorphism is the identity, this formula specializes to the strange
formula (54), which has been proved for Lie superalgebras of defect zero in [10] and
for general basic classical Lie superalgebras in [13], using case by case combinato-
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rial calculations. The proof using the Weyl character formula as in [6] or the proof
using modular forms as in [14] are not applicable in this setting.

Although the proof proceeds along the lines of what we did in [12] for Lie al-
gebras, we have to face several technical difficulties. We single out two of them.
First, we have to build up a twisted Clifford-Weil module for F(g); this requires a
careful choice of a maximal isotropic subspace in g0. In Sect. 2 we prove that the
class of Lie superalgebras of basic type is closed under taking fixed points of au-
tomorphisms and in Sect. 3 we show that Lie superalgebras of basic type admit a
triangular decomposition. This implies the existence of a “good” maximal isotropic
subspace.

Secondly, the isomorphism in (a) is given by formulas which are different from
the even case, and this makes the computation of the square of the Dirac field under
λ -bracket subtler. We have also obtained several simplifications of the exposition
given in [12].

Some of our results have been (very sketchily) announced in [15].

2 Setup

Throughout the paper, g= g0⊕g1 is a finite dimensional Lie superalgebra of basic
type. This means that

1. g0 is a reductive subalgebra of g, i.e., the adjoint representation of g0 on g is
completely reducible;

2. g is quadratic, i.e., g admits a nondegenerate invariant supersymmetric bilinear
form (·, ·).

Note that condition (1) implies that g0 is a reductive Lie algebra and that g1 is com-
pletely reducible as a g0-module. Examples are given by the simple basic classical
Lie superalgebras and the contragredient finite dimensional Lie superalgebras with a
symmetrizable Cartan matrix (in particular, gl(m,n)). There are of course examples
of different kind, like a symplectic vector space regarded as a purely odd abelian Lie
superalgebra. An inductive classification is provided in [1].

We say that g is (·, ·)-irreducible if the form restricted to any proper ideal is dege-
nerate.

Definition 1 An automorphism σ of g is said indecomposable if g cannot be de-
composed as an orthogonal direct sum of two nonzero σ -stable ideals.

We say that σ is elliptic if it is diagonalizable with modulus 1 eigenvalues.

Let σ be an indecomposable elliptic automorphism of g which is parity preserv-
ing and leaves the form invariant. If j ∈ R, set j̄ = j+Z ∈ R/Z. Set g j̄ = {x ∈ g |
σ(x) = e2π

√−1 jx}. Let h0 be a Cartan subalgebra of g0.

Proposition 1 If g is of basic type, then g0 is of basic type.

Proof. Since σ is parity preserving, it induces an automorphism of g0. Since g0 is
reductive, we have that g00 is also reductive. Since σ preserves the invariant bilinear
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form, we have that (gi,g j) �= 0 if and only if i = − j. Thus (·, ·)|g0×g0 is nondegen-
erate. Since g00 is reductive, h

0 is abelian, thus it is contained in a Cartan subalgebra
h of g. Since g1 is completely reducible as a g0-module, h acts semisimply on g1,
hence h0 acts semisimply on g01. Thus g

0
1 is a semisimple g00-module. ��

It is well-known (see e.g. [11]) that we can choose as Cartan subalgebra for g
the centralizer h of h0 in g0. In particular we have that σ(h) = h. If a is any Lie
superalgebra, we let z(a) denote its center.

3 The structure of basic type Lie superalgebras

The goal of this section is to prove that a basic type Lie superalgebra g admits a
triangular decomposition. We will apply this result in the next sections to g0, which,
by Proposition 1, is of basic type.

Since g0 is reductive, we can fix a Cartan subalgebra h ⊂ g0 and a set of posi-
tive roots for g0. If λ ∈ h∗, let hλ be, as usual, the unique element of h such that
(hλ ,h) = λ (h) for all h ∈ h. Let V (λ ) denote the irreducible representation of g0
with highest weight λ ∈ h∗.

Then we can write

g= (h+[g0,g0])⊕ ∑
λ∈h∗

V (λ ). (2)

Decompose now the Cartan subalgebra h of g as

h= h′ ⊕h′′, h′ = h∩ [g,g].

Let Mtriv be the isotypic component of the trivial [g0,g0]-module in g1. Decom-
pose it into isotypic components for g0 as

Mtriv =⊕λ∈ΛM(λ ) = M(0)⊕M′triv, (3)

whereM′triv =⊕0�=λ∈ΛM(λ ). Then

g(1) := [g,g]

= (h′+[g0,g0])⊕ ∑
0�=λ∈h∗

V (λ )

= (h′+[g0,g0])⊕M′triv⊕ ∑
λ∈h∗,dimV (λ )>1

V (λ ). (4)

Lemma 1 If in decomposition (2) we have that dimV (λ ) = 1 for some λ ∈ h∗, then
λ (h′) = 0.

Proof. Let h ∈ h′. If h ∈ [g0,g0] the claim is obvious; if h ∈ [g1,g1] then we may
assume that h = [xμ ,x−μ ] = hμ , μ being a h-weight of g1. Assume first μ±λ �= 0.
Then, for vλ ∈V (λ ), we have

0 = [v−λ , [vλ ,xμ ]] = μ(hλ )xμ − [vλ , [v−λ ,xμ ]] = μ(hλ )xμ (5)
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so that μ(hλ ) = 0 or λ (hμ) = 0. It remains to deal with the case μ =±λ . We have

[[vλ ,v−λ ],v±λ ] =±||λ ||2v±λ .

This finishes the proof, since ||λ ||2 = 0. Indeed, [vλ ,vλ ] is a weight vector of weight
2λ . This implies either λ = 0, and we are done, or [vλ ,vλ ] = 0. In the latter case
||λ ||2vλ = [[vλ ,v−λ ],vλ ] = 0 by the Jacobi identity. ��
In turn, by Lemma 1,

g(2) := [g(1),g(1)]

= (h′+[g0,g0])⊕ ( ∑
λ∈h∗,dimV (λ )>1

V (λ )).

Finally define
g= g(2)/(z(g)∩g(2)).

Lemma 2

1. The radical of the restriction of the invariant form to g(2) equals z(g)∩g(2).
2. g is an orthogonal direct sum of quadratic simple Lie superalgebras.

Proof. It suffices to show that if x ∈ g(2) belongs to the radical of the (restricted)
form, then it belongs to the center of g. We know that (x, [y,z]) = 0 for all y,z ∈
g(1); invariance of the form implies that [x,y] belongs to the radical of the form
restricted to g(1). This in turn means that ([x,y], [w, t]) = 0 for all w, t ∈ g. There-
fore, 0 = ([x,y], [w, t]) = ([[x,y],w], t)∀ t ∈ g. Since the form on g is nondegener-

ate, we have that [x,y] ∈ z(g) for any y ∈ g(1). If x ∈ g1 and y ∈ g(1)0 , then [x,y] ∈
z(g)∩ (∑λ∈h∗,λ|h′ �=0V (λ )) = {0}. This imples that x commutes with g(1)0 . Since x ∈
∑λ∈h∗,λ|h′ �=0V (λ ), we have x = 0. If x ∈ g0, then, if y ∈∑λ∈h∗,λ|h′ �=0V (λ ), we have

[x,y] ∈ z(g)∩ (∑λ∈h∗,λ|h′ �=0V (λ )) = {0}. If y ∈ g(2)0 , then [x,y] ∈ [g0,g0]∩ z(g) =

{0}. So x ∈ z(g(2)). This implies that x ∈ h′, so it commutes also with Mtriv and h,
hence x ∈ z(g), as required.

To prove the second statement, it suffices to show that there does not exist an
isotropic ideal in g. Indeed, if this is the case and i is a minimal ideal, then by min-
imality either i ⊆ i⊥ or i∩ i⊥ = {0}. Since we have excluded the former case, we
have g = i⊕ i⊥ with i a simple Lie superalgebra endowed with a non degenerate
form and we can conclude by induction.

Suppose that i is an isotropic ideal. If x ∈ g(2), we let π(x) be its image in g.
If i1 �= {0}, we have that there is π(V (λ )) ⊂ i1. We can choose an highest weight
vector vλ in V (λ ) and a vector v−λ ∈ g1 of weight −λ such that (vλ ,v−λ ) = 1.
Then π(hλ ) = [π(vλ ),π(v−λ )] ∈ i. Note that hλ �∈ z(g). In fact, since dimV (λ ) > 1,
λ|h∩[g0,g0] �= 0. On the other hand, if [hλ ,g(2))] �= 0, then there is 0 �= vμ ∈ (g(2))μ
such that [hλ ,vμ ] = λ (hμ)vμ �= 0. In particular π(vμ) ∈ i. Choose v−μ ∈ (g(2))−μ
such (vμ ,v−μ) �= 0. Then π(v−μ) = − 1

λ (hμ ) [π(hλ ),π(v−μ)] ∈ i. But then i is not
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isotropic. It follows that hλ ∈ z(g(2)) = z(g)∩ g(2), which is absurd. Then i = i0,
hence i ⊂ z(g

0
). Since [i,g

1
] = 0, we have that π−1(i) ⊂ z(g(2)). Since z(g(2)) =

z(g)∩g(2), we have i= {0}. ��

At this point we have the following decomposition:

g= (h+[g0,g0]) ⊕ ∑
λ∈h∗,dimV (λ )>1

V (λ )⊕Mtriv.

Let, as in the proof of Lemma 2, π : g(2)→ g be the projection. Since z(g)∩ [g0,g0] =
0, we see that [g0,g0] = π([g0,g0]), hence we can see the set of positive roots for g0
as a set of positive roots for g

0
. By Lemma 2, we have

g=
k⊕

i=1

g(i), (6)

with g(i) simple ideals. It is clear that g acts on g and that the projection π inter-

twines the action of g0 on g
(2)
1 with that on g

1
. Since [g0,g0] = π([g0,g0]), we see

that g(i)1 is a [g0,g0]-module. Since the decomposition (6) is orthogonal, we see that
the [g0,g0]-modules g(i)1 are inequivalent. It follows that that z(g0) stabilizes g(i)1,
thus g(i)1 is a g0-module.

We now discuss the g0-module structure of g(i)1. By the classification of simple
Lie superalgebras, either g(i)1 = V (i) with V (i) self dual irreducible g

0
-module or

there is a polarization (with respect to (·, ·)) g(i)1 = V ⊕V ∗ with V an irreducible
g
0
-module. In the first case g(i)1 is an irreducible g0-module. In the second case,

since the action of h is semisimple, g(i) decomposes as V1(i)⊕V2(i), with Vj(i)
( j = 1,2) irreducible g0-modules. If V1(i) is not self dual, then the decomposition
g(i) = V1(i)⊕V2(i) is a polarization. If V1(i) = V1(i)∗ and V2(i) = V2(i)∗ then the
center of g0 acts trivially on g(i)1, thus V and V ∗ are actually g0-modules. We can
therefore choose V1(i) =V and V2(i) =V ∗.

The simple ideals g(i) are basic classical Lie superalgebras. By the classification
of such algebras (see [9]) there is a contragredient Lie superalgebra g̃(i) such that
g(i) = [g̃(i), g̃(i)]/z([g̃(i), g̃(i)]). Choose Chevalley generators {ẽ j, f̃ j} j∈J(i) for g̃(i).
Let e j, f j be their image in g(i).

We claim that e j, f j are h-weight vectors. The vectors e j, f j are root vectors for

g(i). If the roots of e j, f j have multiplicity one, then, e j, f j must be h-stable, hence

they are h-weight vectors. If there are roots of higher multiplicity then g(i) is of
type A(1,1). Let d be the derivation on g(i) defined by setting d(g

0
) = 0, d(v) = v

for v ∈ V1(i), and d(v) = −v for v ∈ V2(i). Then it is not hard to check that g̃(i) =
Cd⊕Cc⊕g(i) with bracket defined as in Exercise 2.10 of [11]. If the roots of e j, f j
have multiplicity two, then ẽ j, f̃ j are odd root vectors of g̃(i). In particular ẽ j is in
V1(i) and f̃ j is in V2(i). This implies that e j is in V1(i) and f

j
is in V2(i). Since z(g0)
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acts as multiple of the identity on V1(i) and V2(i), we see that e j, f j are h-weight
vectors also in this case.

Since π restricted to [g0,g0]+g
(2)
1 is an isomorphism, we can define e j, f j to be

the unique elements of [g0,g0] + g
(2)
1 such that π(e j) = e j and π( f j) = f

j
. Since

e j, f j are h-weight vectors, we have that e j, f j are root vectors for g.

Set J = ∪iJ(i). We can always assume that the positive root vectors of g
0
are in

the algebra spanned by {e j | j ∈ J}.
Let α j ∈ h∗ be the weight of e j. We note that the weight of f j is −α j for any

j ∈ J. One way to check this is the following: if j ∈ J(i), there is an invariant form
< ·, · > on g̃(i) such that < ẽ j, f̃ j >�= 0. Since g(i) is simple, the form (·, ·) is a
(nonzero) multiple of the form induced by < ·, ·>. In particular (e j, f j) �= 0. Since

(e j, f j) = (e j, f j), we see that the root of f j is −α j.

Subdivide Λ in (3) as Λ = {0}∪Λ+ ∪Λ− with Λ+ ∩Λ− = /0 and Λ− = −Λ+

(which is possible since the form (·, ·) is nondegenerate on M′triv). Choose a basis
{eλi | i = 1, . . . ,dimM(λ )} inM(λ ) for λ ∈Λ+ and let { f λi } ⊂M(−λ ) be the dual
basis. Also (·, ·)|M(0)×M(0) is nondegenerate, hence we can find a polarizationM(0)=
M+⊕M−. Let {e0i } and { f 0i } be a basis ofM+ and its dual basis inM−, respectively.

We now check that relations

[ei, f j] = δi jhi, i, j ∈ J [ei, f λj ] = [eλi , f j] = 0, j ∈ J [eλi , f μj ] = δλ ,μδi, jhλi ,

hold for {e j, f j} j∈J ∪ {eλi , f λi }λ∈Λ+∪{0}. Assume now i �= j, i, j ∈ J. Then, since

[ei, f j] = 0, [ei, f j] ∈ z(g)∩g(2) ⊂ h′. This implies that αi = α j so [ei, f j] ∈ Chαi . If

ei is even then αi is a root of g0 so π(hαi) �= 0, hence [ei, f j] = 0. If ei is odd and
π(hαi) = 0, since [ei, f i] = (ei, f i)π(hαi) = 0, we have that [ei, f j] = 0 for any j ∈ J.
In particular, ei is a lowest weight vector for g0. On the other hand, since hαi ∈ z(g),
we have in particular thatα(hαi) = 0 for any root of g0. This implies thatCei is stable
under the adjoint action of g

0
. This is absurd since g

1
does not have one-dimensional

g
0
-submodules.

If λ ,μ ∈Λ+∪{0}, then [eλi , f μj ] is in the center of g0, hence [eλi , f μj ] = δi, jδλ ,μhλ .

Moreover it is obvious that [eλh , f j] = [e j, f λh ] = 0 if e j, f j are even. It remains to
check that [eλh , f j] = [e j, f λh ] = 0 when e j, f j are odd.

This follows from the more general

Lemma 3
[Mtriv,g

(2)
1 ] = 0.

Proof. Choose x ∈ M(λ ) and y ∈ V (μ) with dimV (μ) > 1. It is enough to show
that ([x,y],z) = 0 for any z ∈ g0. Observe that, since Cx and V (μ)∗ are inequivalent
as g0-modules, we have that (x,V (μ)) = 0. Since ([x,y],z) = (x, [y,z]) and [y,z] is in
V (μ), we have the claim. ��

The outcome of the above construction is that we have a triangular decomposition

g= n+h+n−, (7)
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where n (resp. n−) is the algebra generated by {e j, | j ∈ J}∪{eλi | λ ∈ Λ+ ∪{0}}
(resp. { f j, | j ∈ J}∪{ f λi | λ ∈Λ+∪{0}}). By Lemma 3, we see that [eλh ,e j] = 0. It
follows that

n= ntriv⊕ e,
where ntriv is the algebra generated by {eλi | λ ∈ Λ+ ∪ {0}} and e is the algebra
generated by {e j, | j ∈ J}. Notice that

ntriv = M+⊕ ∑
λ∈Λ+

M(λ ).

This follows from the fact that the right hand side is an abelian subalgebra. Since
e⊂ g(2), we have the orthogonal decomposition

n= M+⊕ ( ∑
λ∈Λ+

M(λ ))⊕ (n∩g(2)). (8)

Choose any maximal isotropic subspace h+ in h. The previous constructions im-
ply the following fact.

Lemma 4 h+ +n is a maximal isotropic subspace in g.

Proof. We first prove that n is isotropic. By (8), it is enough to check that M+⊕
(∑λ∈Λ+ M(λ )) and (n∩g(2)) are isotropic. By construction M+ is isotropic. More-
over, if λ �= −μ , then M(λ )∗ and M(μ) are inequivalent, thus (M(λ ),M(μ)) = 0.
This implies thatM(λ ) is isotropic if λ �= 0 and (M(λ ),M(μ)) = 0 if λ �= μ , λ ,μ ∈
Λ+∪{0}.

If x,y∈ n∩g(2) and π(x)∈ g(i), π(y)∈ g( j)with i �= j, then (x,y) = (π(x),π(y))
= 0. If i = j, let p : [g̃(i), g̃(i)]→ g(i) be the projection. Let ñ(i) be the algebra
spanned by the {ẽ j} j∈J(i). Then π(x),π(y) ∈ p(ñ(i)). Recall that the weights of ñ(i)
are a set of positive roots for g̃(i), and, since g̃(i) is contragredient α and−α cannot
be both positive roots for g̃(i). This implies that ñ(i) is an isotropic subspace of g̃(i)
for any invariant form of g̃(i). Since g(i) is simple, (·, ·) is induced by an invariant
form on g̃(i) so p(ñ(i)) is isotropic.

Clearly, (h,n) = (h,n∩g0) = 0, since n∩g0 is the nilradical of a Borel subalge-
bra. Note that (n,g) = (n,n−) so n and n− are non degenerately paired. Thus n is a
maximal isotropic subspace of n+n−. Since h and n+n− are orthogonal, the result
follows. ��
Proposition 2

g= n⊕h⊕n−. (9)

Proof. Having (7) at hand, it remains to prove that the sum is direct. This follows
from Lemma 4: indeed, if x ∈ n∩n−, then x would be in the radical of the form. ��

4 The universal super affine vertex algebra

Set ḡ = Pg, where P is the parity reversing functor. In the following, we refer the
reader to [3] for basic definitions and notation regarding Lie conformal and vertex
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algebras. In particular, for the reader’s convenience we recallWick’s formula, which
will be used several times in the following. LetV be a vertex algebra and a,b,c∈V ;
then

[aλ : bc :] = : [aλb]c : +p(a,b) : b[aλ c] : +
∫ λ

0
[[aλb]μc]dμ . (10)

Consider the Lie conformal superalgebraR= (C[T ]⊗g)⊕(C[T ]⊗ ḡ)⊕CK⊕CK̄
with λ -brackets (a,b ∈ g, a,b are the corresponding elements of g):

[aλb] = [a,b]+λ (a,b)K, (11)

[aλ b̄] = [a,b], [āλb] = p(b)[a,b], (12)

[āλ b̄] = (b,a)K̄, (13)

K, K̄ being even central elements. LetV (R) be the corresponding universal envelop-
ing vertex algebra, and denote by Vk,1(g) its quotient by the ideal generated by K−
k|0〉 and K−|0〉. The vertex algebra Vk,1(g) is called the universal super affine ver-
tex algebra of level k. The relations are the same used in [12] for even variables. We
remark that the order of a,b in the r.h.s. of (13) is relevant.

Recall that one defines the current Lie conformal superalgebraCur(g) as

Cur(g) = (C[T ]⊗g)+CK

with T (K ) = 0 and the λ -bracket defined for a,b ∈ 1⊗g by
[aλb] = [a,b]+λ (a,b)K , [aλK ] = [KλK ] = 0.

Let V (g) be its universal enveloping vertex algebra. The quotient Vk(g) of V (g) by
the ideal generated by K − k|0〉 is called the level k affine vertex algebra.

If A is a superspace equipped with a skewsupersymmetric bilinear form < ·, · >
one also has the Clifford Lie conformal superalgebra

C(A) = (C[T ]⊗A)+CK

with T (K ) = 0 and the λ -bracket defined for a,b ∈ 1⊗A by

[aλb] =< a,b > K , [aλK ] = [K λK ] = 0.

Let V be the universal enveloping vertex algebra of C(A). The quotient of V by
the ideal generated by K − |0〉 is denoted by F(A). Applying this construction to
g with the form < ·, · > defined by < a,b >= (b,a) one obtains the vertex algebra
F(g).

We define the Casimir operator of g asΩg =∑i x
ixi if {xi} is a basis of g and {xi}

its dual basis w.r.t. (·, ·) (see [9, pag. 85]). Since Ωg commutes with any element of
U(g), the generalized eigenspaces of its action on g are ideals in g. Observe that Ωg
is a symmetric operator: indeed

(Ωg(a),b) =∑
i
([xi, [xi,a]],b) =∑

i
−p(xi, [xi,a])([[xi,a],xi],b)

=∑
i

p(xi)([a,xi], [xi,b]) =∑
i

p(xi)(a, [xi, [xi,b]]) = (a,Ωg(b)).
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Since Ωg is symmetric, the generalized eigenspaces provide an orthogonal decom-
position of g. Moreover, since σ preserves the form, we have that σ ◦Ωg = Ωg ◦σ ,
hence σ stabilizes the generalized eigenspaces. Since σ is assumed to be indecom-
posable, it follows that that Ωg has a unique eigenvalue. Let 2g be such eigenvalue.
If the form (·, ·) is normalized as in [13, (1.3)], then the number g is called the dual
Coxeter number of g.

Lemma 5 If Ωg−2gI �= 0 then g= 0. Moreover, in such a case, Ωg(g) is a central
ideal.

Proof. Let g=∑k
S=1 g(S) be a orthogonal decomposition in (·, ·)-irreducible ideals.

Clearly Ωg(g(i)) ⊂ g(i), hence we can assume without loss of generality that g is
(·, ·)-irreducible.

If x is in the center of g, then x is orthogonal to [g,g], so, if g= [g,g], then gmust
be centerless. In particular, in this case, g = g is a sum of simple ideals, but, being
(·, ·)-irreducible, it is simple. SinceΩg−2gI is nilpotent, we have that (Ωg−2gI)(g)
is a proper ideal of g, hence Ωg = 2gI.

Thus, ifΩg−2gI �= 0, we must have g �= [g,g]. Since g �= [g,g], the form becomes
degenerate when restricted to [g,g] and its radical is contained in the center of g. It
follows that the center of g is nonzero. ClearlyΩg acts trivially on the center, hence
g = 0.

Since g(2) is an ideal of g, clearly Ωg acts on it. Since Ωg(z(g)) = 0, this ac-
tion descends to g. Recall that we have g =

⊕k
i=1 g(i), with g(i) simple ideals. We

already observed that these ideals are inequivalent as g0-modules, thus Ωg(g(i))⊂
g(i). SinceΩg(g(i)) is a proper ideal, we see thatΩg(g) = 0. ThusΩg(g(2))⊂ z(g)∩
g(2). We now check that Ωg(Mtriv) = 0. Let x ∈ M(λ ). If xi ∈ g(2)1 , by Lemma 3,
[xi,x] = 0. If xi ∈M(μ)with μ �=−λ , then [xi,x] = 0. If xi ∈M(−λ ), then [xi, [xi,x]] =
(xi,x)[xi,hλ ] = (xi,x)‖λ‖2xi = 0. It follows that Ωg(x) =Ωg0(x) = ‖λ‖2x = 0. The
final outcome is that Ωg(g1)⊂ z(g)∩g(2) ⊂ h′. Thus, since Ωg preserves parity,

Ωg(g1) = {0}. (14)

It follows that Ωg(g0) = Ωg(g) is an ideal of g contained in g0. Since Ωg is nilpo-
tent, Ωg(g) is a nilpotent ideal, hence it intersects trivially [g0,g0]. It follows that
[Ωg(g),g0] = 0. SinceΩg(g) is an ideal contained in g0, [Ωg(g),g1]⊂ g1∩g0 = {0}
as well. The result follows. ��
Remark 1 Note that we have proved the following fact: if a basic type Lie super
algebra g is centerless and (·, ·)-irreducible then g is simple (cf. [1, Theorem 2.1]).

SetCg = Ωg−2gIg.

Proposition 3 Assume k+ g �= 0. Let {xi} be a basis of g and let {xi} be its dual
basis w.r.t. (·, ·). For x ∈ g set

x̃ = x− 1
2∑i

: [x,xi]xi : +
1

4(k+g)
Cg(x). (15)
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The map x �→ x̃, y �→ y, induces an isomorphism of vertex algebras Vk(g)⊗F(g)∼=
Vk+g,1(g).

Proof. Set α = 1
4(k+g) . Fix a,b ∈ g. Since, by Lemma 5, Cg(b) is central, we get,

from Wick formula (10), that

[aλ b̃] = [aλb]− 1
2∑

i
[aλ : [b,xi]xi :]+αλ (a,Cg(b))K

= [aλb]− 1
2∑

i

(: [aλ [b,xi]]xi : +p(a, [b,xi]) : [b,xi][aλ x
i] :)

− 1
2∑i

∫ λ

0
[[aλ [b,xi]]μxi]dμ +αλ (a,Cg(b))K

= [aλb]− 1
2∑

i

(: [a, [b,xi]]xi : +p(a, [b,xi]) : [b,xi] [a,xi] :)

− 1
2∑i

λ (xi, [a, [b,xi]])K+αλ (a,Cg(b))K.

Using the invariance of the form and Jacobi identity, we have

[aλ b̃] = [aλb]− 1
2∑

i
(: [a, [b,xi]]xi :−p(a,b) : [b, [a,xi]]xi :)

− 1
2∑i

λ (xi, [a, [b,xi]])K+αλ (a,Cg(b))K

= [aλb]− 1
2∑

i
: [[a,b],xi]xi :

− 1
2∑i

λ (a, [xi, [xi,b]])K+αλ (a,Cg(b))K

= [aλb]− 1
2∑

i
: [[a,b],xi]xi :−1

2
λ (a,Ωg(b))K+αλ (a,Cg(b))K. (16)

Next we prove that

[aλ b̃] = 0. (17)

By Lemma 5 and (10),

[aλ b̃] = [aλb]− 1
2∑

i

[aλ : [b,xi]xi :]

= p(b)[a,b]− 1
2∑

i
(: [aλ [b,xi]]xi : +p(a, [b,xi]) : [b,xi][aλ x

i] :)

= p(b)[a,b]− 1
2∑

i

(([b,xi],a)xi + p(a, [b,xi])(xi,a)[b,xi])

= p(b)[a,b]− 1
2 (p(b)[a,b]+ p(b)[a,b]) = 0.



132 V.G. Kac et al.

We now compute [ãλ b̃]. Using (17), we find [ãλ b̃] = [aλ b̃] +α [Cg(a)λ b̃], hence,
by (16)

[ãλ b̃] = [aλb]− 1
2∑

i

: [[a,b],xi]xi :− 1
2λ (a,Ωg(b))K+αλ (a,Cg(b))K+

+α [Cg(a)λ b̃]

= [aλb]− 1
2∑

i
: [[a,b],xi]xi :− 1

2λ (a,Ωg(b))K+αλ (a,Cg(b))K+

+α([Cg(a)λb]− 1
2∑

i

: [[Cg(a),b],xi]xi :)

−α(
1
2
λ (Cg(a),Ωg(b))K+αλ (Cg(a),Cg(b))K).

By Lemma (5), [Cg(a),b] = 0. SinceΩg(b)∈ [g,g] andCg(a) is central, we have
(Cg(a),Ωg(b)) = 0.

The term (Cg(a),Cg(b)) is zero as well: if g �= 0, then, by Lemma 5, Cg(b) = 0,
and, if g = 0, as above, (Cg(a),Cg(b)) = (Cg(a),Ωg(b)) = 0. Thus, we can write

[ãλ b̃] = [aλb]− 1
2∑

i
: [[a,b],xi]xi :− 1

2λ (a,Ωg(b))K+αλ (a,Cg(b))K+

+α([Cg(a),b]+λ (Cg(a),b)K)

= [aλb]− 1
2∑

i
: [[a,b],xi]xi :− 1

2λ (a,Ωg(b))K+αλ (a,Cg(b))K+

+λ (Cg(a),b)K).

In the last equality we used the fact that Cg(a) is central.
Since Ωg (hence Cg) is symmetric, we have

[ãλ b̃] = [aλb]− 1
2∑

i

: [[a,b],xi]xi :− 1
2λ (a,Ωg(b))K+2αλ (a,Cg(b))K.

Note that Cg([a,b]) = 0. In fact, for any z ∈ g,
(Cg([a,b]),z) = ([a,b],Cg(z)) = (a, [b,Cg(z)]) = 0.

It follows that [aλb]− 1
2 ∑i : [[a,b],xi]xi := [a,b] +λ (a,b)K− 1

2 ∑i : [[a,b],xi]xi :=˜[a,b]+λ (a,b)K. Hence

[ãλ b̃] = ˜[a,b]+λ (a,b)K− 1
2λ (a,Ωg(b))K+2αλ (a,Cg(b))K

= ˜[a,b]+λ (a,b)K−λg(a,b)K− 1
2λ (a,Cg(b)K

+2αλ (a,Cg(b)K).

Thus, in Vk+g,1(g), we have

[ãλ b̃] = ˜[a,b]+λ (a,b)(k+g)−λg(a,b)− 1
2λ (a,Cg(b))|0〉

+2αλ (a,Cg(b))(k+g)|0〉
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so, recalling that α = 1
4(k+g) , we get

[ãλ b̃] = ˜[a,b]+λk(a,b).

We can now finish the proof as in Proposition 2.1 of [12]. ��
Remark 2 If g �= 0, as in Proposition 2.1 of [12], the map x �→ x̃, y �→ y, K �→ K−
gK, K �→ K defines a homomorphism of Lie conformal algebrasCur(g)⊗F(g)→
V (R). In particular, if g �= 0, Propositon 3 holds true for any k ∈ C.

Let A be a vector superspace with a non-degenerate bilinear skewsupersymmet-
ric form (·, ·) and σ an elliptic operator preserving the parity and leaving the form
invariant. If r ∈ R let r̄ = r+Z ∈ R/Z. Let Ar̄ be the e2πir eigenspace of A. We
set L(σ ,A) = ⊕μ∈ 1

2+r̄(t
μ ⊗Ar̄) and define the bilinear form < ·, · > on L(σ ,A) by

setting < tμ ⊗a, tν ⊗b >= δμ+ν ,−1(a,b).
If B is any superspace endowed with a non-degenerate bilinear skewsupersym-

metric form < ·, ·>, we denote by W (B) be the quotient of the tensor algebra of B
modulo the ideal generated by

a⊗b− p(a,b)b⊗a−< a,b >, a,b ∈ B.

We now apply this construction to B = L(σ ,A) to obtain W (L(σ ,A)). We choose a
maximal isotropic subspace L+ of L(σ ,A) as follows: fix a maximal isotropic sub-
space A+ of A0̄, and let

L+ =
⊕

μ>− 1
2

(tμ ⊗Aμ̄)⊕ (t−
1
2 ⊗A+).

We obtain a W (L(σ ,A))-module CW (A) = W (L(σ ,A))/W (L(σ ,A))L+ (here
CW stands for “Clifford-Weil").

Note that −IA induces an involutive automorphism ofC(A) that we denote by ω .
Set τ = ω ◦σ . Then we can define fields

Y (a,z) = ∑
n∈ 1

2+r̄

(tn⊗a)z−n−1, a ∈ Ar̄,

where we let tn ⊗ a act on CW (A) by left multiplication. Setting furthermore
Y (K ,z) = IA, we get a τ-twisted representation of C(A) on CW (A) (that descends
to a representation of F(A)).

Take now A = g, and let σ be an automorphism of g as in Sect. 2. Let g0 =
n0 ⊕ h0 ⊕ n0− be the triangular decomposition provided by Proposition 2 applied

to g0. Choosing an isotropic subspace h+ of h0 we can choose the maximal isotropic
subspace of g0 provided by Lemma 4 and construct the corresponding Clifford-Weil
module CW (g), which we regard as a τ-twisted representation of F(g).

In light of Proposition 3, given a σ -twisted representation M of Vk(g), we can
form σ ⊗ τ-twisted representation X(M) = M⊗CW (g) of Vk+g,1(g).
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In the above setting, we choose M in a particular class of representations arising
from the theory of twisted affine Lie superalgebras. We recall briefly their construc-
tion and refer the reader to [12] for more details.

Let L′(g,σ) = ∑ j∈R(t j⊗ g j)⊕CK. This is a Lie superalgebra with bracket de-
fined by

[tm⊗a, tn⊗b] = tm+n⊗ [a,b]+δm,−nm(a,b)K, m,n ∈ R,

K being a central element.
Let (h0)′ = h0+CK. If μ ∈ ((h0)′)∗, we set μ = μ|h0 . Set n′ = n0+∑ j>0 t

j⊗g j.
FixΛ ∈ ((h0)′)∗. A L′(g,σ)-moduleM is called a highest weight module with high-
est weight Λ if there is a nonzero vector vΛ ∈M such that

n′(vΛ ) = 0, hvΛ =Λ(h)vΛ for h ∈ (h0)′, U(L′(g,σ))vΛ = M. (18)

Let Δ j be the set of h0-weights of g j. If μ ∈ (h0)∗ and m is any h0-stable sub-
space of g, then we let mμ be the corresponding weight space. Denote by Δ 0 the set

of roots (i. e. the nonzero h0-weights) of g0. Set Δ 0
+ = {α ∈ Δ 0 | n0α �= {0}}.

Since n0 and n0− are non degenerately paired, we have that −Δ 0
+ = {α ∈ Δ 0 |

(n−)α �= {0}}. By the decomposition (9) we have Δ 0 = Δ 0
+∪−Δ 0

+.
Set

ρ0 =
1
2 ∑
α∈Δ0

+

(sdimn0α)α , ρ j =
1
2 ∑

α∈Δ j

(sdimg jα)α if j �= 0, (19)

ρσ = ∑
0≤ j≤ 1

2

(1−2 j)ρ j. (20)

Finally set

z(g,σ) =
1
2 ∑
0≤ j<1

j(1− j)
2

sdimg j. (21)

Here and in the following we denote by sdimV the superdimension dimV0−dimV1
of a superspace V =V0⊕V1.

If X is a twisted representation of a vertex algebra V (see [12, § 3]) and a ∈ V j,
we let

YX (a,z) = ∑
n∈ j

aX(n)z
−n−1

be the corresponding field. As explained in [12], a highest weight module M for
L′(g,σ) of highest weight Λ becomes automatically a σ -twisted representation of
Vk(g) where k =Λ(K).

Set

Lg =
1
2∑i

: xixi :∈Vk(g), (22)

Lg =
1
2∑i

: T (xi)xi :∈ F(g). (23)

We can now prove (cf. [12, Lemma 3.2]):
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Lemma 6 If M is a highest weight module for L′(g,σ) with highest weight Λ and
Λ(K) = k then

∑
i
:Cg(xi)xi :M(1) (vΛ ) =Λ(Cg(hΛ ))vΛ (24)

(Lg)M(1)(vΛ ) =
1
2
(Λ +2ρσ ,Λ)vΛ + kz(g,σ)vΛ . (25)

Proof. We can and do choose {xi} so that xi ∈ gsi , for some si ∈R/Z. Let A be any
parity preserving operator on g which commutes with σ . In particular A preserves
g j for any j ∈ R. By (3.4) of [12], we have

∑
i

: A(xi)xi :M(1) =∑
i

(
∑

n<−si
A(xi)M(n)(xi)

M
(−n) + ∑

n≥−si
p(xi)(xi)M(−n)A(xi)M(n)

)

− ∑
r∈Z+

( −si
r+1

)
(A(xi)(r)(xi))

M
(−r). (26)

We choose si ∈ [0,1), thus

∑
i
: A(xi)xi :M(1) (vΛ ) =

∑
i
(p(xi)(xi)M(si)A(xi)M(−si) + si[A(xi),xi]M(0)− k

(−si
2

)
(A(xi),xi))(vΛ ),

which we can rewrite as

∑
i
(A(xi)M(−si)(xi)

M
(si) +(si−1)[A(xi),xi]M(0)− k(

(−si
2

)
− si)(A(xi),xi))(vΛ ) =

∑
i:si=0

A(xi)M(0)(xi)
M
(0)(vΛ )+∑

i

((si−1)[A(xi),xi]M(0)− k

(
si
2

)
(A(xi),xi))(vΛ ).

Assume now that A=Cg. Then, sinceCg(xi) is central, [Cg(xi),xi] = 0. Note also
that ∑i:si= j(Cg(xi),xi) is the supertrace of (Cg)|g j . Since Cg is nilpotent, we obtain
that ∑i:si= j(Cg(xi),xi) = 0. Thus

∑
i
:Cg(xi)xi :M(1) (vΛ ) = ∑

i:si=0
Cg(xi)M(0)(xi)

M
(0)(vΛ ).

We choose the basis {xi} by choosing, for each α ∈ Δ 0 ∪{0}, a basis {(xα)i}
of g0α . Set {xiα} to be its dual basis in (g)−α . If x ∈ gα , then 0 = Cg([h,xα ]) =
α(h)Cg(xα). If α �= 0 then this implies Cg(xα) = 0. If α = 0 and (xα)i ∈ g1, then,
by (14), we have thatCg((xα)i) = 0 as well. This implies that, if {hi} is an orthonor-
mal basis of h0,

∑
i

:Cg(xi)xi :M(1) (vΛ ) =∑
i

Cg(hi)M(0)(hi)
M
(0)(vΛ )

=∑
i

Λ(Cg(hi))Λ(hi)vΛ =Λ(Cg(hΛ ))vΛ .



136 V.G. Kac et al.

Let now A = Id. Clearly we can assume that the basis {(xα)i} of g0α is the union
of a basis of n0α and a basis of (n0−)α if α ∈ Δ 0

+, while, if α = 0, we can choose the
basis {(xα)i} to be the union of a basis of n0α , a basis of (n0−)α and an orthonormal
basis {hi} of h0. We can therefore write

∑
i:si=0

xi(0)(xi)(0) = 2(hρ0)(0) +∑
i
(hi)2(0) +2 ∑

(xα )i∈n0α
(xiα)(0)((xα)i)(0).

We find that

∑
i
: xixi :

M
(1) (vΛ ) = (Λ +2ρ0,Λ)vΛ + k( ∑

0< j<1

j(1− j)
2

sdimg j)vΛ

+ ∑
i:si>0

si[xi,xi]M(0)(vΛ ).

In order to evaluate ∑i:si>0 si[xi,xi]M(0)(vΛ ), we observe that

∑
i:si=s

[xi,xi] = ∑
i:si=1−s

p(xi)[xi,xi] =− ∑
i:si=1−s

[xi,xi].

This relation is easily derived by exchanging the roles of xi and xi. Hence

∑
i:si>0

si[xi,xi] = ∑
i: 12>si>0

si[xi,xi]+ ∑
i:1>si>

1
2

si[xi,xi]

= ∑
i: 12>si>0

si[xi,xi]+ ∑
i:0<si<

1
2

(si−1)[xi,xi]

=− ∑
i: 12>si>0

(1−2si)[xi,xi].

We can choose xi in g
si
α so that [xi,xi] =−p(xi)hα , hence

∑
i

si[xi,xi] = ∑
i:0<si<

1
2

2(1−2si)hρsi , (27)

hence

∑
i
si[xi,xi]M(0)(vΛ ) = ∑

i:0<si<
1
2

(1−2si)(2ρsi ,Λ)vΛ .

This completes the proof of (24).

5 Dirac operators

As in the previous section {xi} is a homogeneous basis of g and {xi} is its dual basis.
The following element of Vk,1(g):

Gg =∑
i
: xixi :−1

3∑i, j
: [xi,x j]x jxi : (28)
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is called the affine Dirac operator. It has the following properties:

[aλGg] = λka, [aλGg] = a. (29)

By the sesquilinearity of the λ -bracket, we also have

[(Gg)λa] = p(a)k(λa+T (a)), [(Gg)λa] = p(a)a. (30)

If g is purely even,Gg is the Kac-Todorov-Dirac field considered in [12] and in [3] as
an analogue of Kostant’s cubic Dirac operator. It can be proved, by using a suitable
Zhu functor π :Vk,1(g)→U(g)⊗W (g), that π(Gg) is the Dirac operator considered
by Huang and Pandzic in [7].

Write for shortness G instead of Gg. We want to calculate [GλG]. We proceed in
steps. Set

θ(x) =
1
2∑i

: [x,xi]xi :, (31)

and note that
G =∑

i
: xixi :− 2

3∑
i
: θ(xi)xi : . (32)

We start by collecting some formulas.

Lemma 7

[aλ θ(b)] = θ([a,b])+
1
2
λ (a,Ωg(b)), (33)

[aλ θ(b)] = p(b)[a,b], (34)

[θ(a)λb] = θ([a,b])+
1
2
λ (a,Ωg(b)), (35)

[θ(a)λb] = [a,b], (36)

[θ(a)λ θ(b))] = θ([a,b])+
1
2
λ (a,Ωg(b)), (37)

[θ(a)λ ∑
i
: xixi :] =−∑

i
: (xi−θ(xi))[xi,a] : +

3
2
λΩg(a), (38)

[θ(a)λ ∑
i
: θ(xi)xi :] =

3
2
λΩg(a), (39)

∑
i

: xiθ(xi) :=∑
i

: θ(xi)xi :, (40)

∑
i

: θ(xi)θ(xi) := 0. (41)

Proof. Formulas (33) and (34) have been proven in the proof of Proposition 3. For-
mulas (35) and (36) are obtained by applying sesquilinearity of the λ -bracket to (33)
and (34). From (36) and (12) one derives that

[aλ (b−θ(b))] = [(b−θ(b))λa] = 0, (42)
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hence [θ(a)λ (b− θ(b))] = 0. This implies (37). Using Wick’s formula (10), (35),
and (36) we get

[θ(a)λ ∑
i
: xixi :] =∑

i
(: θ([a,xi])xi : +p(a,xi) : xi[a,xi] :)+

3
2
λΩg(a).

Note that

∑
i
: θ(xi)[xi,a] :=∑

i
: θ([a,xi])xi : (43)

so (38) follows. Likewise

[θ(a)λ ∑
i
: θ(xi)xi :] =∑

i
(: θ([a,xi])xi : +p(a,xi) : θ(xi)[a,xi] :)+

3
2
λΩg(a).

so, by (43), (39) follows as well. For (40), it is enough to apply formula (1.39) of [3]
and (33). Finally,

∑
i

: θ(xi)θ(xi) : = 1
2∑

i,r

: θ(xi) : [xi,xr]xr ::= 1
2 ∑
i,r,s

: θ(xi)([xi,xr],xs) : xsxr ::

= 1
2 ∑
i,r,s

: θ(xi)(xi, [xr,xs]) : xsxr ::= 1
2∑

r,s
: θ([xr,xs]) : xsxr ::

and

∑
r,s

: θ([xr,xs]) : xsxr :: =∑
r,s
−p(xr,xs)p(xs,xr) : θ([xs,xr]) : xrxs ::

=−∑
r,s

p(xs)p(xr) : θ([xs,xr]) : xrxs ::

=−∑
r,s

: θ([xs,xr]) : xrxs :: .

so (41) holds. ��

We start our computation of [GλG]. First observe that, by (30),

∑
i

[Gλ : xixi :] =∑
i

: xixi : +k∑
i

: T (xi)xi : +k
λ 2

2
sdimg. (44)

Next we compute [Gλ ∑i : θ(xi)xi :]. By (32), (38), and (39),

[θ(a)λG] =−∑
i
: (xi−θ(xi))[xi,a] : +

1
2
λΩg(a)

and, by sesquilinearity,

[Gλ θ(a)] = p(a)∑
i

: (xi−θ(xi))[xi,a] : +p(a)
1
2
(λ +T )(Ωg(a)) (45)
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By Wick’s formula, (45), and (30),

[Gλ ∑
i
: θ(xi)xi :] =∑

i, j
:: (x j−θ(x j))[x j,xi] : xi :)

+
1
2∑i

p(xi)(λ +T ) :Ωg(xi)xi : +∑
i
: θ(xi)xi :

+∑
i, j

∫ λ

0
[: (x j−θ(x j))[x j,xi] :μ xi]dμ

+
1
2∑i

p(xi)
∫ λ

0
[(λ +T )(Ωg(xi))μxi]dμ).

Let us compute the terms of the above sum one by one. By formula (1.40) of [3],
and (42) above, we have

∑
i, j

:: (x j−θ(x j))[x j,xi] : xi :=∑
i, j

: (x j−θ(x j)) : [x j,xi]xi ::

+∑
i, j

∫ T

0
dλ : (x j−θ(x j))[[x j,xi]λ x

i] :

= 2∑
j

: (x j−θ(x j))θ(x j) :−∑
i, j

∫ T

0
dλ : (x j−θ(x j))([xi,xi],x j) :

= 2∑
j
: (x j−θ(x j))θ(x j) :

Note that ∑i p(xi) :Ωg(xi)xi := 0. Indeed

∑
i

p(xi) :Ωg(xi)xi : =∑
i

:Ωg(xi)xi :=∑
i,r

(Ωg(xi),xr) : xrxi :

=∑
i,r

(xi,Ωg(xr)) : xrxi :=∑
r
: xrΩg(xr) :

=∑
r
p(xr) :Ωg(xr)xr :=−∑

r
p(xr) :Ωg(xr)xr.

Using formula (1.38) of [3] and (42) above we see that

∑
i, j

∫ λ

0
[: (x j−θ(x j))[x j,xi] :μ xi]dμ =∑

i, j

∫ λ

0
(x j−θ(x j))(x j, [xi,xi])dμ = 0.

Finally, since Ωg−2gId is nilpotent, it has zero supertrace, hence

∑
i
p(xi)

∫ λ

0
[(λ +T )(Ωg(xi))μxi]dμ =∑

i
p(xi)

∫ λ

0
λ (xi,Ωg(xi))dμ = gλ 2sdimg.

It follows that

[Gλ ∑
i
: θ(xi)xi :] = 2∑

j
: (x j−θ(x j))θ(x j) : +∑

i
: θ(xi)xi : +

g
2
λ 2sdimg.
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Using (40) and (41), we can conclude that

[Gλ ∑
i
: θ(xi)xi :] = 3∑

i
: xiθ(xi) :−3

2∑i
: θ(xi)θ(xi) : +

g
2
λ 2sdimg,

Combining this with (44), the final outcome is that

[GλG] =∑
i
: (xi−θ(xi))(xi−θ(xi)) : +k∑

i
: T (xi)xi : +

λ 2

2
(k− 2g

3
)sdimg. (46)

Since x−θ(x) = x̃− 1
4kCg(x) = x̃− 1

4kC̃g(x) we have that

∑
i
: (xi−θ(xi))(xi−θ(xi)) : =∑

i
: (x̃i− 1

4kCg(x
i))(x̃i− 1

4kCg(xi)) :

=∑
i

: x̃ix̃i :− 1
2k∑

i

: C̃g(xi)x̃i : .

We used the fact, that, since Cg is symmetric, ∑i : C̃g(xi)x̃i := ∑i : x̃
iC̃g(xi) : and,

since C2
g = 0, ∑i : C̃g(xi)C̃g(xi) := 0. Thus (46) can be rewritten as

[GgλGg] =∑
i
(: x̃ix̃i :− 1

2k : C̃g(x
i)x̃i : +k : T (xi)xi :)+

λ 2

2
(k− 2g

3
)sdimg. (47)

Identifying Vk,1(g) with Vk−g(g)⊗F(g) we have that (47) can be rewritten as

[GgλGg] = 2Lg⊗|0〉− 1
2k∑

i
:Cg(xi)xi :⊗|0〉+2k|0〉⊗Lg+ λ 2

2 (k− 2
3g)sdimg.

(48)
Recall that, given a highest weight representation M of L′(g,σ), we constructed

a σ ⊗ τ-twisted representation X = X(M) of Vk,1(g). Setting (Gg)Xn = (Gg)X(n+1/2),

we can write the field YX (Gg,z) as

YX (Gg,z) = ∑
n∈Z

GX
n z
−n− 3

2 .

Using the fact that (GX
0 )2 = 1

2 [G
X
0 ,GX

0 ] and (48), we have

(GX
0 )2=(Lg− 1

4k∑
i
:Cg(xi)xi :)M(1)⊗ICW(g)−kIM⊗(Lg)CW (g)

(1) − 1
16 (k− 2

3g)(sdimg) IX.

(49)
From now on we will write a(n) instead of a

V
(n) when there is no risk of confusion

for the twisted representation V .

Lemma 8 In CW (g), if x ∈ gs and n > 0, we have θ(x)(n) ·1 = 0.

Proof. Choose the basis {xi} of g, so that xi ∈ gsi . We can clearly assume s,si ∈
[0,1). We apply formula (3.4) of [12] to get

θ(x)(n) = ∑
i,m<s+si− 1

2

[x,xi](m)x
i
(n−m−1)− p(x,xi)p(x)p(xi) ∑

i,m≥s+si− 1
2

xi(n−m−1)[x,xi](m)

−∑
i

(
s+ si− 1

2
1

)
[[x,xi](0)x

i](n−1).
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Ifm< s+si− 1
2 , then n−m−1> n−s−si− 1

2 . Since n∈ s, n> 0 and s∈ [0,1), we
have n−s≥ 0. Thus n−m−1>−si− 1

2 . Since si ∈ [0,1) and n−m−1∈−si+ 1
2 , we

see that n−m−1≥−si+ 1
2 >− 1

2 . It follows that x
i
(n−m−1) ·1= 0. Ifm> s+si− 1

2 ,

thenm>− 1
2 so [x,xi](m) ·1= 0. Since [[x,xi](0)x

i] = (xi, [x,xi])|0〉, we see that, since
n > 0, [[x,xi](0)x

i](n−1) = 0. We therefore obtain that

θ(x)(n) =−p(x,xi)p(x)p(xi)∑
i
xi
(n−s−si− 1

2 )
[x,xi](s+si− 1

2 )
.

If s > 0 or si > 0 then [x,xi](s+si− 1
2 )
·1 = 0, so we can assume s = 0 and get that

θ(x)(n) =−p(x,xi)p(x)p(xi) ∑
i:si=0

xi
(n− 1

2 )
[x,xi](− 1

2 )
=− ∑

i:si=0

[x,xi](− 1
2 )
xi
(n− 1

2 )
.

Observing that, since n > 0, xi
(n− 1

2 )
·1 = 0 we get the claim. ��

Lemma 9 In CW (g) we have that

∑
i, j:si=s j=0

p([xi,x j],x j)(x j)(− 1
2 )

([xi,x j])(− 1
2 )

(xi)(− 1
2 )
·1 = 6(hρ0)(− 1

2 )
·1.

Proof. Clearly we can choose the basis {xi} of g0 to be homogeneous with respect
to the triangular decomposition g0 = n0⊕h0⊕n0−. We can also assume that the xi
are h0-weight vectors. Let μi be the weight of xi. Set b0 = h0⊕n0 and b0− = h0⊕n0−.
Then

∑
i, j:si=s j=0

p([xi,x j],x j)(x j)(− 1
2 )

([xi,x j])(− 1
2 )

(xi)(− 1
2 )
·1

= ∑
i, j:xi∈b0−,s j=0

p([xi,x j],x j)(x j)(− 1
2 )

([xi,x j])(− 1
2 )

(xi)(− 1
2 )
·1

= ∑
i, j:xi∈b0−,s j=0

([xi,x j])(− 1
2 )

(x j)
(− 1

2 )
(xi)(− 1

2 )
·1

+ ∑
i, j:xi∈b0−,s j=0

p([xi,x j],x j)([xi,x j],x j)(xi)(− 1
2 )
·1.

Since [x j,x j] ∈ h0, we have that

∑
i, j:xi∈b0−,s j=0

p([xi,x j],x j)([xi,x j],x j)(xi)(− 1
2 )
·1 =

− ∑
i, j:si=s j=0

(xi, [x j,x j])(xi)(− 1
2 )
·1 = 0.
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It follows that

∑
i, j:si=s j=0

p([xi,x j],x j)(x j)(− 1
2 )

([xi,x j])(− 1
2 )

(xi)(− 1
2 )
·1

= ∑
i, j:xi∈b0−,s j=0

([xi,x j])(− 1
2 )

(x j)
(− 1

2 )
(xi)(− 1

2 )
·1

= ∑
i, j:xi,∈b0−,s j=0

p(xi,x j)([xi,x j])(− 1
2 )

(xi)(− 1
2 )

(x j)
(− 1

2 )
·1

+ ∑
i:xi∈b0−

([xi,xi])(− 1
2 )
·1.

Since∑i:xi∈b0−([x
i,xi])(− 1

2 )
·1=∑i:xi∈n− p(xi)(h−μi)(− 1

2 )
·1= 2(hρ0)(− 1

2 )
·1, we need

only to check that

∑
i, j:xi,∈b0−,s j=0

p(xi,x j)([xi,x j])(− 1
2 )

(xi)(− 1
2 )

(x j)
(− 1

2 )
·1 = 4(hρ0)(− 1

2 )
·1. (50)

Now

∑
i, j:xi,∈b0−,s j=0

p(xi,x j)([xi,x j])(− 1
2 )

(xi)(− 1
2 )

(x j)
(− 1

2 )
·1 =

∑
i, j:xi,∈b0−,s j=0

p(xi)([x j,xi])(− 1
2 )

(xi)(− 1
2 )

(x j)(− 1
2 )
·1 =

∑
i, j:xi,x j∈b0−

p(xi)([x j,xi])(− 1
2 )

(xi)(− 1
2 )

(x j)(− 1
2 )
·1 =

∑
i, j:xi,x j∈b0−

p(xi)(xi)(− 1
2 )

(x j)(− 1
2 )

([x j,xi])
(− 1

2 )
·1

+ ∑
i, j:xi,x j∈b0−

p(xi)(xi, [x j,xi])(x j)(− 1
2 )
·1

+ ∑
i, j:xi,x j∈b0−

p(xi)p([x j,xi],xi)(xi)(− 1
2 )

(x j, [x j,xi]) ·1.

Since [x j,xi] ∈ b0− only when x j,xi ∈ h0, we see that
∑

i, j:xi,x j∈b0−
p(xi)(xi)(− 1

2 )
(x j)(− 1

2 )
([x j,xi])

(− 1
2 )
·1 = 0.

Moreover both

∑
i, j:xi,x j∈b0−

p(xi)(xi, [x j,xi])(x j)(− 1
2 )
·1

and

∑
i, j:xi,x j∈b0−

p(xi)p([x j,xi],xi)(xi)(− 1
2 )

(x j, [x j,xi]) ·1

are equal to∑xi∈b0−([x
i,xi])(− 1

2 )
·1= 2(hρ0)(− 1

2 )
·1. This proves (50), hence the state-

ment. ��
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6 The very strange formula

We are interested in calculating GX
0 (vΛ ⊗1), vΛ being a highest weight vector of a

L′(g,σ)-module M with highest weight Λ such that Λ(K) = k−g.
Since σ preserves the form (·, ·), we have that σΩg = Ωgσ . It follows that Ωg

stabilizes g j for any j. Recall, furthermore, that Ωg(g) is contained in the radical of
the form restricted to [g,g]. In particular Ωg(g) ⊂ h. We can therefore choose the

maximal isotropic subspace h+ of h0 so that Ωg(g0)⊂ h+. With this choice we are
now ready to prove the following result.

Proposition 4
GX
0 (vΛ ⊗1) = vΛ ⊗ (hΛ+ρσ )

(− 1
2 )
·1. (51)

Proof. Since Cg is symmetric, we can rewrite GX
0 as

GX
0 =∑

i
: x̃ixi :( 12 )

+ 1
3∑

i
: θ(xi)xi :( 12 )

− 1
4k∑

i
: x̃iCg(xi) :( 12 )

.

With easy calculations one proves that

∑
i
: x̃ixi :( 12 ) (vΛ ⊗1) = vΛ ⊗ (hΛ )(− 1

2 ) ·1. (52)

Next we observe that, since Cg(x) ∈ h+ when x ∈ g0, we have that

∑
i
: x̃iCg(xi) :( 12 )

(vΛ ⊗1) = 0. (53)

It remains to check the action of ∑i : θ(xi)xi :( 12 )
on 1. Choose the basis {xi} of g,

so that xi ∈ gsi . We can clearly assume si ∈ [0,1). We apply formula (3.4) of [12] to
get

∑
i
: θ(xi)xi :( 12 )

= ∑
i,m<−si

θ(xi)(m)(xi)(−m− 1
2 )

+ ∑
i,m≥−si

(xi)(−m− 1
2 )
θ(xi)(m)

−∑
i

(−si
1

)
[xi,xi](− 1

2 )
.

If m < −si then −m > 0 so (xi)(−m− 1
2 )
· 1 = 0. Since si ∈ [0,1), if m > −si then

m > 0. By Lemma 8, θ(xi)(m) ·1 = 0. Thus

∑
i

: θ(xi)xi :( 12 )
=∑

i

(xi)(si− 1
2 )
θ(xi)(−si) +∑

i

si[xi,xi](− 1
2 )

=∑
i

θ(xi)(−si)(xi)(si− 1
2 )

+∑
i

p(xi)[xi,xi](− 1
2 )

+∑
i

si[xi,xi](− 1
2 )

.
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If si > 0 then (xi)(si− 1
2 )
·1 = 0. Observe also that ∑i p(xi)[xi,xi](− 1

2 )
= 0. Thus

∑
i
: θ(xi)xi :( 12 )

= ∑
i:si=0

θ(xi)(0)(xi)(− 1
2 )

+∑
i
si[xi,xi](− 1

2 )
.

Now, applying formula (3.4) of [12], we get

θ(xi)(0) =
1
2 ∑
j,m<s j− 1

2

([xi,x j])(m)(x
j)(−m−1) + 1

2 p([x
i,x j],x j) ∑

j,m≥s j− 1
2

(x j)(−m−1)([xi,x j])(m)

− 1
2∑

j

(
s j− 1

2
1

)
(x j, [xi,x j])ICW(g).

hence

θ(xi)(0)(xi)(− 1
2 )
·1 = 1

2 ∑
j,m<s j− 1

2

([xi,x j])(m)(x
j)(−m−1)(xi)(− 1

2 )
·1

+ 1
2 p([x

i,x j],x j) ∑
j,m≥s j− 1

2

(x j)(−m−1)([xi,x j])(m)(xi)(− 1
2 )
·1

− 1
2∑

j

(
s j− 1

2
1

)
(x j, [xi,x j])(xi)(− 1

2 )
·1.

Ifm< s j− 1
2 , then−m−1≥−s j + 1

2 >− 1
2 . It follows that (x

j)(−m−1)(xi)(− 1
2 )
·1=

p(x j,xi)(xi)(− 1
2 )

(x j)(−m−1) ·1= 0. If s j > 0 andm≥ s j− 1
2 or s j = 0 andm> s j− 1

2 ,

then ([xi,x j])(m)(xi)(− 1
2 )
·1 = p([xi,x j],xi)(xi)(− 1

2 )
([xi,x j])(m) ·1 = 0. Thus

∑
i:si=0

θ(xi)(0)(xi)(− 1
2 )
·1 = 1

2 ∑
i, j:si=s j=0

p([xi,x j],x j)(x j)(− 1
2 )

([xi,x j])(− 1
2 )

(xi)(− 1
2 )
·1

− 1
2 ∑
i:si=0, j

(
s j− 1

2
1

)
(x j, [xi,x j])(xi)(− 1

2 )
·1.

Next we compute

∑
i:si=0, j

(
s j− 1

2
1

)
(x j, [xi,x j])(xi)(− 1

2 )
·1 =

− ∑
i:si=0, j

(
s j− 1

2
1

)
p(x j,xi)([x j,x j],xi)(xi)(− 1

2 )
·1 =

−∑
i, j

(
s j− 1

2
1

)
([x j,x j],xi)(xi)(− 1

2 )
·1 =
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−∑
j

(
s j− 1

2
1

)
[x j,x j](− 1

2 )
·1

=−∑
j
s j[x j,x j](− 1

2 )
.

The final outcome is that

∑
i

: θ(xi)xi :( 12 )
·1 = 1

2 ∑
i, j:si=s j=0

p([xi,x j],x j)(x j)(− 1
2 )

([xi,x j])(− 1
2 )

(xi)(− 1
2 )
·1

+ 3
2∑

i
si[xi,xi](− 1

2 )
·1.

By (27), we see that

∑
i:0≤si<1

si[xi,xi] = 2 ∑
0< j≤ 1

2

hρ j .

Combining this observation with Lemma 9, we see that

1
3∑

i
: θ(xi)xi :( 12 )

·1 = (hρσ )
(− 1

2 )
·1.

This, together with (52) and (53), gives the statement. ��
Theorem 1 Let g be a basic type Lie superalgebra and let σ be an indecompos-
able elliptic automorphism preserving the bilinear form. Let 2g be the eigenvalue
of the Casimir operator in the adjoint representation. Let ρσ be defined by (20) and
z(g,σ) by (21). Set ρ = ρId . Then we have:

(Strange formula)

||ρ||2 =
g
12

sdimg. (54)

(Very strange formula)

||ρσ ||2 = g(
sdimg
12
−2z(g,σ)). (55)

Remark 3 If z(g) is non-zero, then it contains an eigenvector of the Casimir operator
with zero eigenvalue, hence g = 0, and the very strange formula amounts to saying
that ρσ is isotropic.

Proof. Let {vi}i∈Z+ be a basis ofCW (g) with v0 = 1. Write (Lg)CW (g)
(1) ·1 = ∑i civi.

IfM0 is a highest weight module with highest weightΛ =−ρσ +kΛ0 then L
g
(1)(vΛ ⊗

1) = ∑ci(vΛ ⊗vi) with the coefficents ci that do not depend on k. By Proposition 4,
G0(vΛ ⊗1) = 0. Applying (49) and Lemma 6, we find that

0 = (−1
2
‖ρσ‖2 +(k−g)z(g,σ)− 1

4kρσ (Cg(hρσ ))− 1
16 (k−

2g
3

)sdimg)(vΛ ⊗1)

−∑
i

cik(vΛ ⊗ vi).
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Since this equality holds for any k, we see that ci = 0 if i > 0. Moreover the coeffi-
cient of vΛ ⊗1 must vanish. This coefficient is

1
k

(
− 1

4ρσ (Cg(hρσ ))+ k(−1
2
‖ρσ‖2−gz(g,σ)+ g

24 sdimg)+ k2(z(g,σ)− 1
16 sdimg− c0)

)
,

so, again by the genericity of k, we obtain

ρσ (Cg(hρσ )) = 0, (56)

−1
2
‖ρσ‖2−gz(g,σ)+ g

24 sdimg= 0, (57)

z(g,σ)− 1
16 sdimg= c0. (58)

Formula (57) is (55) which specializes clearly to (54) when σ = Ig. ��
As byproduct of the proof of Theorem 1 we also obtain

Proposition 5

1. (Lg)CW (g)
0 ·1 = z(g,σ)− 1

16 sdimg.
2. If M is a highest weight L(g)′-module with highest weight Λ , then

(GX
0 )2(vΛ ⊗1) =

1
2

(
(Λ +2ρσ ,Λ)− 1

2kΛ(Cg(hΛ ))+
g
12

sdimg−2gz(g,σ)
)

(vΛ ⊗1). (59)

Proof. We saw in the proof of Proposition 1 that (Lg)CW(g)
0 ·1 = c0 and (58) gives

our formula for c0.
Again by (49) and Lemma 6,

G2
0(vΛ ⊗1) = (

1
2
(Λ +2ρσ ,Λ)− 1

4kΛ(Cg(Λ))+(k−g)z(g,σ))vΛ ⊗1

− 1
16 (k−

2g
3

)sdimg(vΛ ⊗1)vΛ ⊗1− kvΛ ⊗ (Lg)CW (g)
0 ·1).

Using the first equality we get the second claim. ��
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Parabolic category O for classical Lie
superalgebras

Volodymyr Mazorchuk

Abstract We compare properties of (the parabolic version of) the BGG category
O for semi-simple Lie algebras with those for classical (not necessarily simple) Lie
superalgebras.

1 Introduction

Category O for semi-simple complex finite dimensional Lie algebras, introduced
in [2], is a central object of study in the modern representation theory (see [21]) with
many interesting connections to, in particular, combinatorics, algebraic geometry
and topology. This category has a natural counterpart in the super-world and this
super version Õ of category O was intensively studied (mostly for some particular
simple classical Lie superalgebra) in the last decade, see e.g. [3–6, 15, 19] or the
recent books [7, 33] for details.

The aim of the present paper is to compare some basic but general properties of
the category O in the non-super and super cases for a rather general classical super-
setup. We mainly restrict to the properties for which the non-super and super cases
can be connected using the usual restriction and induction functors and the biadjunc-
tion (up to parity change) between these two functors is our main tool. The paper also
complements, extends and gives a more detailed exposition for some results which
appeared in [1, Sect. 7].

The original category O has a natural parabolic version which first appeared in
[35]. We start in Sect. 2 by setting up an elementary approach (using root system
geometry) to the definition of a parabolic category O for classical finite dimensional
Lie superalgebras. In Sect. 3 we define the parabolic category Õω and describe its
basic categorical properties, including simple objects and blocks. In Sect. 4 we ad-
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dress the natural stratification on Õω and its consequences, in particular, existence
of tilting modules and estimates for the finitistic dimension, proving the following:

Theorem 1 Category Õω has finite finitistic dimension.

Finally, in Sect. 5 we address properties of Õω which are based upon projective-
injective modules in this category. This includes an Irving-type theorem describing
socular constituents of Verma modules and an analogue of Soergel’s Struktursatz.
As the last application we prove that category Õω is Ringel self-dual.

2 Preliminaries

2.1 Classical Lie superalgebras

Wework overC and setN= {1,2,3, . . .},Z+ = {0,1,2,3 . . .}. For a Lie (super)alge-
bra a we denote byU(a) the corresponding enveloping (super)algebra.

Let g= g0⊕g1 be a Lie superalgebra over C. From now on we assume that g is
classical in the sense that g0 is a finite dimensional reductive Lie algebra and g1 is
a semi-simple finite dimensional g0-module. We do not require g to be simple. We
denote by g-smod the abelian category of g-supermodules. Morphisms in g-smod
are homogeneous g-homomorphisms of degree 0.

Example 1 The general linear superalgebra gl(Cm|n) of the super vector space
Cm|n = Cm

0
⊕Cn

1
with respect to the usual super-commutator of linear operators.

Fix the standard bases in Cm
0
and Cn

1
and gl(Cm|n) becomes isomorphic to the super-

algebra gl(m|n) of (n+m)× (n+m) matrices naturally divided into n× n, n×m,
m×n and m×m blocks, under the usual super-commutator of matrices.

Example 2 The subsuperalgebra qn of gl(n|n) consisting of all matrices of the form(
A B
B A

)
. (1)

The even part corresponds to B = 0 while the odd part corresponds to A = 0.

Example 3 Let a be any finite dimensional reductive Lie algebra and V any semi-
simple finite dimensional a-module. Set g0 := a, g1 := V and g(a,V ) := g0⊕ g1.
Setting [g1,g1] = 0 and considering the natural action of the Lie algebra g0 on the
g0-module g1 defines on g(a,V ) the structure of a Lie superalgebra, which is called
the generalized Takiff superalgebra associated with a and V . These superalgebras
appear in [20].
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2.2 Natural categories of supermodules via restriction

Consider g0 as a purely even Lie superalgebra. Then g0-smod is equivalent to the
direct sum of an even and an odd copy of g0-mod in the obvious way:

g0-smod∼= (g0-mod)0⊕ (g0-mod)1.

Further, we have the usual restriction functor

Resgg0 : g-smod→ g0-smod.

For any subcategory C in g0-mod we now can define the category C̃ (the notation
follows [33]) as the subcategory in g-smod consisting of all objects and morphisms
which are sent to (C)0⊕ (C)1 by Res

g
g0
.

The functor Resgg0 is exact and has both the left adjoint

Indgg0 :=U(g)⊗U(g0) − : g0-smod→ g-smod

and the right adjoint

Coindgg0 := HomU(g0)
(U(g),−) : g0-smod→ g-smod.

Furthermore, by [18, Theorem 3.2.3] we have

Indgg0
∼= Π dimg1 ◦Coindgg0 , (2)

where Π is the functor which changes the parity (see e.g. [18]). If the subcategory
C above is isomorphism-closed and stable under tensoring with the g0-module

∧
g1,

then Indgg0 maps C to C̃ .

2.3 Weight (super)modules

Fix some Cartan subalgebra h0 in g0. Since the Lie algebra g0 is reductive, the alge-
bra h0 is commutative and contains the (possibly zero) center of g0. A g0-module V
is called a weight module (with respect to h0) provided that the action of h0 on V is
diagonalizable. Put differently, the module V is weight if we have a decomposition

V ∼=
⊕
λ∈h∗

0

Vλ , where Vλ := {v ∈V |h · v = λ (h)v for all h ∈ h0}.

The space Vλ is called the weight space of V corresponding to a weight λ . For a
weight module V the support of V is the set

supp(V ) = supph0(V ) := {λ ∈ h∗0|Vλ �= 0}.

Denote byW the full subcategory in g0-mod consisting of all weight modules.
Note thatW is both isomorphism-closed and closed under the usual tensor product
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of g0-modules. Furthermore, since g1 is a semi-simple finite dimensional g0-module,
we have g1 ∈W and thus

∧
g1 ∈W. This implies thatW is stable under tensoring

with
∧
g1.

Now we can consider the corresponding category W̃ of weight g-supermodules
and from Sect. 2.2 we obtain that (Indgg0 ,Res

g
g0

,Coindgg0) restricts to an adjoint triple
of functors betweenW and W̃.

Example 4 We have g0 ∈W and g∈ W̃, where g0 and g are the adjoint module and
supermodule, respectively.

2.4 Parabolic and triangular decompositions

This is inspired by [9]. Consider the real vector space H := Rsupp(g0). The set
R0 := supp(g0) \ {0} is a root system in H and we let W be the corresponding
Weyl group and (·, ·) the usualW -invariant inner product on H . For a fixed ω ∈H
we have a parabolic decomposition

g0 = nω,−
0
⊕ lω0 ⊕n

ω,+
0

(3)

of g0, where

n
ω,−
0

=
⊕
α∈R0

(α,ω)<0

(g0)λ , lω0 =
⊕

α∈R0∪{0}
(α,ω)=0

(g0)λ , n
ω,+
0

=
⊕
α∈R0

(α,ω)>0

(g0)λ .

The subalgebra pω
0
:= lω

0
⊕nω,+

0
is a parabolic subalgebra of g0, n

ω,+
0

is the nilpotent
radical of pα

0
and lω

0
is the corresponding Levi subalgebra. In the case (α ,ω) �= 0

for all α ∈ R0, we have l
ω
0

= h0, moreover, bω
0
:= h0⊕nω,+

0
is a Borel subalgebra

of g0 and the decomposition (3) is a triangular decomposition of g0 in the sense
of [32]. For nonzero ω1,ω2 ∈H say that ω1 and ω2 are equivalent if the parabolic
decompositions of g0 corresponding to ω1 and ω2 coincide. Then the equivalence
classes are exactly the (nonzero) facets of the simplicial cone decomposition of H
as described e.g. in [36, § 1.2].

Consider the derived Lie algebra g′
0
:= [g0,g0] of g0 and let h′

0
:= g′

0
∩ h0. Set

R′
0
:= supph′

0
(g0) \ {0} and H ′ := RR′

0
. Then the set R′

0
is again a root system in

H ′ (of the same type as R0). Moreover, there is the obvious canonical isomorphism
R′
0
∼= R0 of root systems which induces an isomorphism H ′ ∼= H of vector spaces.

Using this isomorphism we identify H ′ and H .
Let R′

1
:= supph′

0
(g1) ⊂H ′. Then the same ω ∈H = H ′ leads to the decom-

position
g1 = nω,−

1
⊕ lω1 ⊕n

ω,+
1

, (4)

where

n
ω,−
1

=
⊕
α∈R1

(α,ω)<0

(g1)λ , lω1 =
⊕
α∈R1

(α,ω)=0

(g1)λ , n
ω,+
1

=
⊕
α∈R1

(α,ω)>0

(g1)λ .
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Setting
nω,± := nω,±

0
⊕nω,±

1
and lω := lω0 ⊕ lω1 ,

and combining (3) and (4) we obtain the following parabolic decomposition of g
corresponding to ω :

g := nω,−⊕ lω ⊕nω,+. (5)

Here pω := lω⊕nω,+ is a parabolic subalgebra with the “nilpotent radical” nω,+ and
the “Levi subalgebra” lω .

Set R′ := R′
0
∪R′

1
. If the only α ∈ R′ satisfying (α ,ω) = 0 is α = 0, then decom-

position (5) is called a triangular decomposition. An important difference with the
Lie algebra case is that even in the case of a triangular decomposition we might have
lω �= h0.

Example 5 Let g = qn for n > 1, and h0 be the subalgebra of all matrices of the
form (1) for which B = 0 and A is diagonal. Choose any ω such that nω,+

0
consists

of all matrices of the form (1) for which B = 0 and A is upper triangular. Then nω,−
0

consists of all matrices of the form (1) for which B = 0 and A is lower triangular; h1
consists of all matrices of the form (1) for which A = 0 and B is diagonal; nω,+

1
con-

sists of all matrices of the form (1) for which A = 0 and B is upper triangular; nω,−
1

consists of all matrices of the form (1) for which A = 0 and B is lower triangular. In
this case the “Cartan subalgebra” h := lω is not commutative.

Equivalence classes of elements from H ′ which give rise to the same parabolic
decomposition of g define a simplicial cone decomposition of H ′ which refines the
one defined for g0 above.

3 Parabolic category Õ and its elementary properties

3.1 Parabolic categories Oω and Õω

Fix an ω as above and consider the corresponding parabolic decompositions of g0
and g, given by (3) and (5), respectively. Denote byOω = g0Oω the full subcategory
of g0-mod consisting of all modules M which are

• finitely generated,
• decompose into a direct sum of simple finite dimensional lω

0
-modules,

• are locally nω,+
0

-finite in the sense that dim(U(nω,+
0

)v) < ∞ for all v ∈M.

The category Oω is the pω
0
-parabolic version of the BGG category O . The original

category O was defined in [2] (it corresponds to the situation when the decomposi-
tion (3) is a triangular decomposition), and the parabolic version was defined in [35].
We also refer to [21] for more details. We will drop the superscript g0 if it is clear
from the context.
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The category Oω is isomorphism-closed and stable under tensoring with simple
finite dimensional g0-modules. Hence the corresponding category Õω = gÕω of g-
modules leads us to the nice situation described at the end of Subsection 2.2 (we will
drop the superscript g if it is clear from the context). Alternatively, the category Õω

can be described as the full subcategory of g-smod consisting of all supermodules
M which are

• finitely generated,
• decompose into a direct sum of simple finite dimensional lω

0
-modules,

• are locally nω,+-finite in the sense that dim(U(nω,+)v) < ∞ for all v ∈M.

Note that it is really lω
0
and not lω in the second condition.

3.2 Elementary categorical properties of Õω

Proposition 1

(a) Õω is a Serre subcategory of W̃, in particular, Õω is abelian.
(b) Every object of Õω has finite length as a g-module.
(c) Õω has enough projective modules.
(d) Õω has enough injective modules.
(e) All morphism spaces in Õω are finite dimensional.
(f) For every i and any M,N ∈ Õω we have dimExti

Õω (M,N) < ∞.

Proof. Claim (a) follows directly from the definitions. To prove claim (b) we just
observe that eachM ∈ Õω is in Oω , when considered as a g0-module. In particular,
it has finite length already as a g0-module (see e.g. [35, Proposition 3.3] or [2, 21]).

Because of claim (b), to prove claims (c) and (d) it is enough to prove that each
simple object in Õω has both a projective cover and an injective envelope. We prove
the first claim and the second one is proved similarly. Let L ∈ Õω be simple and let
P ∈ Oω be a projective cover of (Resgg0 L)0 (see e.g. [35, Corollary 4.2] or [2, 21]
for existence of projective covers in Oω ), which we may assume to be nonzero up
to parity change. Then, by adjunction, we have

0 �= Homg0
(
P,(Resgg0 L)0

)
= Homg

(
Indgg0 P,L

)
.

As Indgg0 is left adjoint to the exact functor Resgg0 , the former functor maps projec-

tive objects to projective objects. Hence Indgg0 P is a projective object in Õω which
surjects onto L.

Claim (e) follows directly from the definition and the fact that all morphism spaces
in Oω are finite dimensional (again, see e.g. [35, Sects. 3 and 4] or [2, 21]). Claim
(f) follows from claims (c) and (e) considering projective resolutions. ��
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3.3 Simple objects in Õω

For each simple finite-dimensional lω
0
-module V we have the corresponding gener-

alized Verma module

M(ω ,V ) :=U(g0)
⊗

U(lω
0
⊕nω ,+

0
)

V,

where nω,+
0

V = 0. This module lies in Oω and has a unique simple quotient de-

noted L(ω ,V ). Let I ω,0
0

denote the set of isomorphism classes of simple finite-

dimensional lω
0
-modules. As lω

0
is reductive, the set I ω,0

0
is well-understood, see

e.g. [10, 21]. Furthermore, by [35, Proposition 3.3], the set

I ω
0 :=

{
L(ω ,V )|V ∈I ω,0

0

}
is a full set of representatives of isomorphism classes of simple objects in Oω (and
in this sense I ω,0

0
and I ω

0
are canonically identified). Denote by I ω

1
an odd copy

of I ω
0
. Now a rough description of simple objects in Õω is given by the following:

Proposition 2 Let L be a simple object in Õω . Then there is V ∈I ω,0
0

such that L

is a quotient of Indgg0 L(ω ,V ) up to parity change.

Proof. As Resgg0 L ∈Oω and each object in Oω has finite length, Resgg0 L has a sim-

ple subobject, which is isomorphic to L(ω ,V ) for someV ∈I ω,0
0

by the above (and
which we may assume to be even up to parity change). By adjunction, we have

0 �= Homg0
(
L(ω ,V ),(Resgg0 L)0

)
= Homg

(
Indgg0 L(ω ,V ),L

)
.

and the claim follows. ��
We denote by I ω the set of isomorphism classes of simple objects in Õω . De-

fine a binary relation Ω ⊂ I ω × (I ω
0
∪I ω

1
) (here the last union is automatically

disjoint) by (L,L(ω ,V )) ∈ Ω if L(ω ,V ) is isomorphic to a submodule of Resgg0 L.
Then Ω is finitary in the sense that for each L ∈I ω the set

{L(ω ,V ) ∈I ω
0 ∪I ω

1 |(L,L(ω ,V )) ∈Ω}
is non-empty and finite, moreover, for each L(ω ,V ) ∈I ω

0
∪I ω

1
the set

{L ∈I ω |(L,L(ω ,V )) ∈Ω}
is non-empty and finite. Unfortunately, in the general case Ω is not a function in
any direction. Anyway, I ω can be considered as a “finite cover” of I ω

0
in some

sense. Put differently, the set I ω is only “finitely more complicated” than the very
well-understood set I ω

0
. An alternative description of I ω which uses lω will be

given in Proposition 6.
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3.4 Blocks of Õω

Let ∼ be the minimal equivalence relation on I ω
0

which contains all pairs (L,L′) ∈
I ω

0
×I ω

0
such that Ext1Oω (L,L′) �= 0. For an equivalence class X ∈ I ω

0
/ ∼ let

Oω(X ) denote the Serre subcategory of Oω generated by simples in X . Then we
have the usual decomposition

Oω ∼=
⊕

X ∈I ω
0

/∼
Oω(X )

into a direct sumof indecomposable subcategories, called blocks ofOω . Every equiv-
alence class X is finite as there are only finitely many (up to isomorphism) simple
highest weight g0-modules for each given central character, see [10, Chap. 7] for
details.

Let ≈ be the minimal equivalence relation on I ω which contains all pairs
(L,L′) ∈ I ω ×I ω such that Ext1

Õω (L,L′) �= 0. For an equivalence class X ∈
I ω/ ≈ let Õω(X ) denote the Serre subcategory of Õω generated by simples in
X . Then we have the decomposition

Õω ∼=
⊕

X ∈I ω/≈
Õω(X )

into a direct sum of indecomposable subcategories, called blocks of Õω . For exam-
ple, an explicit description of blocks for g= gl(m|n) can be found in [6].

Proposition 3 Each X ∈I ω/≈ is at most countable.

Proof. Let L ↪→ N � L′ be a non-split extension in Õω(X ) with L,L′ simple.
Take some λ ∈ supp(N) such that Nλ �= Lλ . Then N =U(g)Nλ and it follows that
supp(N)⊂ λ +ZR′, in particular, we have both supp(L)⊂ λ +ZR′ and supp(L′)⊂
λ +ZR′. Therefore supp(N ′)⊂ λ +ZR′ for any N ′ ∈ Õω(X ). Note that λ +ZR′ is
an at most countable set.

Simples inOω are classified by their highest weight (see [35, Proposition 3.3]), in
particular, there are only at most countably many simple objects in Oω with support
in λ +ZR′. Now each simple in Õω(X ) has, as a g0-module and up to parity change,
some simple submodule L(ω ,V ) from Oω with support in λ +ZR′ and hence is a
quotient of Indgg0 L(ω ,V ) (see Proposition 2). The module Indgg0 L(ω ,V ) has finite
length by Proposition 1(b). Since we have only at most countably many L(ω ,V ) to
start with, the claim follows. ��

For each L ∈ I ω fix an indecomposable projective cover P(L) of L (which ex-
ists by Proposition 1(c)). For X ∈I ω/≈ let P̃ω(X ) denote the full subcategory
of Õω with objects P(L), L ∈X . From Proposition 1 it follows that the C-linear
category P̃ω(X ) has the following properties:
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• for each L ∈X we have Hom
P̃ω (X )(P(L),P(L′)) �= 0 for at most finitely many

L′ ∈X ;
• for each L ∈X we have Hom

P̃ω (X )(P(L′),P(L)) �= 0 for at most finitely many

L′ ∈X .

We also set P̃ω =
⋃

X ∈I ω/≈
P̃ω(X ).

Let P̃ω(X )op be the category, opposite to P̃ω(X ). Consider the category
P̃ω(X )op-fmod of finite dimensional P̃ω(X )op-modules, that is the category of
C-linear functors

F : P̃ω(X )op→ C-mod

satisfying the condition ∑L∈X dim(F(P(L))) < ∞. Now from the standard abstract
nonsense (see e.g. [17]), we have:

Proposition 4 For X ∈I ω/≈ the categories Õω(X ) and P̃ω(X )op-fmod are
equivalent.

3.5 Duality

The category Oω has the standard simple preserving duality �, that is a contravari-
ant anti-equivalence which preserves isomorphism classes of simple objects (see [21,
Sect. 3.2] for details). This duality lifts to Õω in the obvious way (and will also be
denoted by �), however, because of (2), simple modules are preserved by the lifted
duality � only up to a possible parity change. We note also that some simple modules
in Õω might be stable under Π (that is, isomorphic, in Õω , to their parity changed
counterparts). We will not need any explicit criterion for when � preserves simples
strictly or only up to parity change, we refer the reader to [13] for the qn-example.

4 Stratification

4.1 Standard and proper standard objects

The superalgebra lω is a classical Lie superalgebra in the sense of Sect. 2.1. The

category l
ω
0 O0 is just the category of semi-simple finite dimensional lω

0
-modules.

Consider now the category l
ω
Õ0 which has all the properties described in Proposi-

tion 1. Furthermore, we have:

Proposition 5 Projective and injective modules in l
ω
Õ0 coincide.

Proof. It is enough to show that the indecomposable projective cover of each sim-
ple object in l

ω
Õ0 is injective and that the indecomposable injective envelope of each

simple object in l
ω
Õ0 is projective. We will prove the first claim an the second is

proved similarly. From the proof of Proposition 1(c) it follows that the indecompos-
able projective cover of each simple object in l

ω
Õ0 is a direct summand of a module
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of the form Indgg0 P, where P is projective in l
ω
0 O0. The latter category is semi-simple

and hence P is also injective. Now (2) implies that, up to parity change, the module
Indgg0 P is isomorphic to Coindgg0 P where P is injective. Then the module Coindgg0 P
is injective as Coindgg0 is right adjoint to an exact functor (and thus sends injective
modules to injective modules). The claim follows. ��

Denote by lI ω the set of isomorphism classes of simple objects in l
ω
Õ0. For

V ∈ lI ω denote by V̂ the indecomposable projective cover of V in l
ω
Õ0 (note that

the module V̂ is also injective by Proposition 5 but it does not have to coincide with
the indecomposable injective envelope of V ). Set nω,+V = nω,+V̂ = 0. Define the
proper standard or generalized Verma g-module

Δ(V ) :=U(g)
⊗

U(lω⊕nω ,+)

V

and the standard g-module

Δ(V ) :=U(g)
⊗

U(lω⊕nω ,+)

V̂ .

Since the parabolic induction from lω ⊕nω,+ to g is exact, Proposition 1(b) implies
that each standard module has a finite filtration whose subquotients are proper stan-
dard modules (these subquotients do not have to be isomorphic one to the other).

Proposition 6 Let V ∈ lI ω .

(a) The module Δ(V ) has simple top denoted by L(V ).
(b) The module L(V ) is also the simple top of Δ(V ).
(c) The set {L(V )|V ∈ lI ω} is a full set of representatives of isomorphism classes

of simple objects in Õω .

Proof. For λ ,μ ∈ h∗
0
write λ ≤ω μ if and only if μ − λ ∈ Z+supp(lω ⊕ nω,+).

Now for λ ∈ supp(V ) the unique maximal submodule of Δ(V ) is the sum of all sub-
modules M of Δ(V ) which satisfy the following condition: μ ∈ supp(M) implies
μ <ω λ . This implies claim (a) and claim (c) follows from the definition of Õω and
the universal property of induced modules. Claim (b) follows from claim (a) and
definitions. We refer the reader to [10, Chap. 7] for similar properties of the usual
Verma modules written with all details. ��

Proposition 6(c) allows us to canonically identify lI ω and I ω . From the proof
of Proposition 6(a) it follows that the simple top L(V ) has composition multiplicity
one in Δ(V ).

4.2 Stratified structure

Theorem 2 Each projective module in Õω has a standard filtration, that is a filtra-
tion whose subquotients are isomorphic to standard modules.
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Proof. This claim is proved similarly to e.g. [16, Proposition 3] or [13, Theorem 12].
As mentioned above, each projective object in Õω is a direct summand of a mod-
ule of the form Indgg0 P where P is projective in Oω . Similarly to [2] one shows
that existence of a standard filtration is and additive property, that is inherited by all
direct summands. Each projective in Oω has a Verma filtration, that is a filtration
whose subquotients are isomorphic to Verma modules. Hence it is enough to show
that each module of the form Indgg0 M(λ ), where M(λ ) is a usual Verma module,
has a standard filtration. The induction from g0 to g can be factorized via lω . From
Proposition 5 it thus follows that the module Indgg0 M(λ ), when considered as an
lω -module, is a direct sum of projective-injective modules in l

ω
Õ0. Moreover, by

construction, the module Indgg0 M(λ ) is free of finite rank over U(nω,−). Take an
lω -direct summand N of Indgg0 M(λ ) of maximal possible weight (with respect to
the order≤ω introduced in the previous subsection). From the universal property of
induced modules and the fact that Indgg0 M(λ ) is free over U(nω,−) it follows that
U(g)N is a direct sum of standard modules. Furthermore,U(g)N, when considered
as an lω -module, is a direct sum of projective-injective objects in l

ω
Õ0. This implies

that U(g)N is a direct summand of Indgg0 M(λ ) as an lω -module. Now the proof is
completed by induction with respect to ≤ω . ��

Combination of Proposition 6 and Theorem 2means that each P̃ω(X ) is weakly
properly stratified in the sense of [11] (in particular, it is standardly stratified in the
sense of [8]).

Using �we define proper costandardmodules as �-duals of proper standard mod-
ules.We also define costandardmodules as �-duals of standard modules. Then every
costandard module has a proper costandard filtration, that is a filtration whose sub-
quotients are isomorphic to proper costandard modules. The �-dual of Theorem 2
says that each injective module in Õω has a costandard filtration, that is a filtration
whose subquotients are isomorphic to costandard modules.

The �-dual of Proposition 6 says that all costandard and proper costandard mod-
ules have simple socle. For V ∈ lI ω we denote by ∇(V ) and ∇(V ) the costandard
and proper costandard modules with simple socle L(V ), respectively. We denote
by F (Δ) the full subcategory of Õω consisting of all modules having a standard
filtration and define F (Δ ), F (∇) and F (∇) similarly.

By standard arguments (see e.g. [11, 12]), the fact that P̃ω(X ) is weakly prop-
erly stratified is equivalent to the following homological orthogonality:

Corollary 1 For V,V ′ ∈ lI ω we have

ExtiO(Δ(V ),∇(V ′))∼=
{
C, if V ∼=V ′ and i = 0;

0, otherwise.

Using � one obtains a similar homological orthogonality between proper standard
and costandard modules. As a consequence of this, for N ∈F (Δ) and V ∈ lI ω the
number of occurrences of Δ(V ) as a subquotient of a standard filtration of N does
not depend on the choice of the filtration and will be denoted by (N : Δ(V )).
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Weakly proper stratification of P̃ω(X ) also implies the following standard char-
acterization of modules with (proper) (co)standard filtration (see [11, 34]):

Corollary 2

(a) F (Δ) = {M ∈ Õω |Exti
Õω (M,∇(V )) = 0 for any V ∈ lI ω and i > 0}.

(b) F (∇) = {M ∈ Õω |Exti
Õω (Δ(V ),M) = 0 for any V ∈ lI ω and i > 0}.

(c) F (Δ) = {M ∈ Õω |Exti
Õω (M,∇(V )) = 0 for any V ∈ lI ω and i > 0}.

(d) F (∇) = {M ∈ Õω |Exti
Õω (Δ(V ),M) = 0 for any V ∈ lI ω and i > 0}.

For a simple L we denote by [N : L] the composition multiplicity of L in N. An-
other standard corollary is the following BGG-reciprocity:

Corollary 3 For V,V ′ ∈ lI ω we have

(P(V ) : Δ(V ′)) = [∇(V ′) : L(V )].

For example, description of the stratified structure of the categoryO for the queer
Lie superalgebra qn can be found with all details in [13].

4.3 Tilting modules

An object in Õω is called a tilting or cotiltingmodule if it belongs to F (Δ)∩F (∇)
or F (∇) ∩F (Δ), respectively. We have the following standard description of
(co)tilting modules (see [11, 27, 31, 34]):

Proposition 7

(a) Each (co)tilting module is a direct sum of indecomposable (co)tilting modules.
(b) For every V ∈ lI ω there is a unique (up to isomorphism) indecomposable tilt-

ing module T (V ) such that Δ(V ) ↪→ T (V ) and the cokernel of this embedding
has a standard filtration.

(c) T (V ) is also cotilting.

Proof. From Corollary 2 it follows that all categories F (Δ), F (∇), F (∇) and
F (Δ) are fully additive. This implies claim (a). Uniqueness of T (V ) follows from
Corollary 1 by standard arguments, e.g. as in [34]. To prove existence, recall that it
is well-known, see e.g. [21], that Oω has tilting modules, that is �-self-dual modules
with (generalized) Verma flag. Inducing these up to g gives �-self-dual (up to parity
change) modules with standard filtration. Now existence of T (V ) follows by track-
ing the highest weight (with respect to ≤ω ), which proves claim (b). Furthermore,
by construction, all these induced modules belong to the category F (Δ)∩F (∇)∩
F (∇)∩F (Δ ), which proves claim (c). ��

The standard useful property of tilting modules (see [11, 34]) is that every mod-
ule with standard filtration has a finite coresolution by tilting modules. Furthermore,
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every module with a proper costandard filtration has a (possibly infinite) resolution
by tilting modules.

For eachV ∈ lI ω we fix some T (V ) as given by Proposition 7(b). Denote by T̃ ω

the full subcategory of Õω with objects T (V ),V ∈ lI ω . Similarly, forX ∈ lI ω/≈
we denote by T̃ ω(X ) the full subcategory of Õω with objects T (V ), V ∈X .

4.4 Finitistic dimension

As an application of tilting module in the subsection we obtain a bound for the fini-
tistic dimension of Õω which, in particular, implies Theorem 1. Let C be an abelian
category with enough projectives. The global dimension gl.dim(C ) is defined as the
supremum of projective dimensions p.dim(X) taken over all objects X ∈ C . The
finitistic dimension fin.dim(C ) is defined as the supremum of p.dim(X) taken over
all objects in X ∈ C for which p.dim(X) < ∞. It is known that the global dimension
of the category Oω is finite and hence coincides with the finitistic dimension of Oω

(finiteness follows from [35] and [37] and explicit bounds and different interpreta-
tions can be found in [14,24, 26, 28, 30]). For Õω we have:

Theorem 3

fin.dim(Õω) = 2 · max
V∈lI ω

p.dim(T (V ))≤ gl.dim(Oω).

Proof. Let us prove the inequality first. We start with the claim that all injective
modules in Õω have finite projective dimension. Indeed, this is obviously true for
injectives in Oω . Given a finite projective resolution of an injective I in Oω , we can
induce this resolution up to Õω and obtain a finite projective resolution of Indgg0 I in

Õω . As any injective in Õω is a direct summand of some Indgg0 I, we have our claim.
Moreover, as a bonus we even have that max

V∈lI ω
p.dim(I(V ))≤ gl.dim(Oω).

Similarly one shows that all projective modules in Õω have finite injective di-
mension. Now we claim that every M ∈ Õω has finite projective dimension if and
only if it has finite injective dimension. By symmetry, it is enough to prove the “if”
statement. Let

0→ I0→ I1→ ·· · → Ik→ 0

be an injective resolution of M. Each Is, s = 0, . . . ,k, has a finite projective resolu-
tion by the above. Substituting each Is by its projective resolution (using the iterated
cone construction, see e.g. [30]), we get a finite complex of projective modules with
unique non-zero homology M concentrated in position 0. Deleting all trivial direct
summands we obtain a finite projective resolution ofM and henceM has finite pro-
jective dimension.

Next we claim that fin.dim(Õω) = max
V∈lI ω

p.dim(I(V )). Note that the right hand

side is bounded by gl.dim(Oω) by the above. Set N := max
V∈lI ω

p.dim(I(V )). Assume

that X ∈ Õω is such that p.dim(X) > N. Consider a short exact sequence

X ↪→ I� Y (6)
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Then, because of the dimension shift in the long exact sequence obtained by apply-
ing to (6) the functor Hom(−,L(V )), V ∈ lI ω , we get p.dim(Y ) > p.dim(X). At
the same time, X has finite injective dimension by the above and hence the injec-
tive dimension of Y is strictly smaller then the injective dimension of X . Proceeding
inductively we get an injective module of projective dimension greater thanN, a con-
tradiction. This completes the proof of the inequality fin.dim(Õω)≤ gl.dim(Oω).

Now let us prove the equality

max
V∈lI ω

p.dim(I(V )) = 2 · max
V∈lI ω

p.dim(T (V )). (7)

First we claim that the right hand side of (7) is finite. Indeed, it is finite in the case
of Oω . Having a projective resolution of a tilting module in Oω , we can induce
this resolution up to Õω and get a projective resolution of the induced tilting mod-
ule. Since, by the highest weight argument, each tilting module is a direct summand
of an induced tilting module, we have our claim. Now the proof is completed as
in [30, Theorem 1]. ��

Wenote one important difference between Õω andOω , namely the fact addressed
in Sect. 3.4 that blocks ofOω are described by finite dimensional associative algebras
while blocks of Õω are described, in general, only by infinite dimensional associa-
tive algebras with local units. This fact makes Theorem 3 non-trivial and, to some
extend, surprising.

5 Projective-injective modules and their applications

5.1 Irving-type theorems

Category Oω has a lot of projective-injective modules with remarkable properties,
see [22] and [37]. These extend to Õω as follows. For V ∈ lI ω let us denote by
I(V ) the indecomposable injective envelope of L(V ) in Õω .

Theorem 4 Let V ∈ lI ω . Then the following assertions are equivalent:

(i) P(V ) is injective.
(ii) P(V ) is isomorphic to I(V ) up to parity change.
(iii) L(V ) occurs in the socle of a projective-injective module in O .
(iv) L(V ) occurs in the top of a projective-injective module in O .
(v) L(V ) occurs in the socle of some standard module.
(vi) L(V ) occurs in the socle of some proper standard module.

Proof. Equivalence of claims (4) and (4) follows by applying �. Equivalence of
claims (4) and (4) follows from Proposition 5 and the fact that every standard mod-
ule has a proper standard filtration. Claim (4) obviously implies claim (4). Each
projective-injectivemodule has a standard filtration and hence claim (4) implies claim
(4). That claim (4) implies claim (4) is obvious and the reverse application would
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follow from the fact that claim (4) implies claim (4). It is left to prove that claim (4)
implies claim (4).

Assume claim (4). The module Δ(V ), when restricted to g0, has a Verma flag.
Therefore, by themain result of [22], we have Resgg0 Δ(V ) ↪→ I, where I is projective-
injective in Oω . Adjunction gives a non-zero map Δ(V )→ Indgg0 I. This map is in-
jective as it is non-zero when restricted to the socle (which is not annihilated by the
induction). The module Indgg0 I is projective since I is projective and Indgg0 is left
adjoint to an exact functor. The module Indgg0 I is injective since I is injective and
Indgg0 is right adjoint to an exact functor by (2). This proves claim (4). Note that
every projective module is tilting and hence self-dual with respect to �. Now claim
(4) follows applying �. ��

5.2 Dominance dimension

The next application of projective modules is the dominance dimension property,
described for Oω in [25, 38].

Proposition 8 Every projective P in Õω admits a two step coresolution

0→ P→ X1→ X2,

where both X1 and X2 are projective-injective.

Proof. This property is obviously additive. From the proof of Proposition 1 it fol-
lows that every projective in Õω is a direct summand of a module induced from
a projective module in Oω . Induction is exact and preserves both projective and
injective modules (the latter because of (2)). Hence the claim follows from the cor-
responding property of Oω , see [25, 38]. ��

5.3 Soergel’s Struktursatz

Denote by Q̃ω the full subcategory of P̃ω whose objects are both projective and
injective in Õω . As a corollary from Proposition 8, we have the following analogue
of Soergel’s Struktursatz, see [37], for Õω .

Theorem 5 The bifunctor

Φ := Hom
P̃ω (−,−) : (P̃ω)op× Q̃ω → C-mod

induces a functor Φ̃ : (P̃ω)op→ Q̃ω -mod and the latter functor is full and faithful.

Proof. Mutatis mutandis the proof of [1, Theorem 4.4]. ��

5.4 Ringel self-duality

Our final application of the above is the following statement about Ringel self-duality
of Õω :
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Theorem 6 For any X ∈ lI ω/≈ the categories T̃ ω(X ) and P̃ω(X ) are can-
onically isomorphic.

Proof. For simplicity, we prove the claim in the case when ω is such that the de-
composition (3) is a triangular decomposition. The general case can be dealt with
using e.g. the approach of [29, Sect. 10.4].

Simples in the categoryOω which occur as socles of projective-injective modules
are exactly the simple objects of maximal Gelfand-Kirillov dimension (this follows
from [22, Proposition 4.3] and [23, Chap. 8]). Furthermore, forω as described above
simple modules in Oω of maximal Gelfand-Kirillov dimension are tilting. Recall
that the functor Indgg0 is given by a tensor product (over C) with a finite dimensional
vector space and hence preserves Gelfand-Kirillov dimension. Therefore, applying
Indgg0 and taking into account that it maps projective-injective modules to projective-
injective modules, we get that simples which occur as socles of projective-injective
modules Õω are again exactly the simple objects of maximal Gelfand-Kirillov di-
mension.

Given two modules M and N, the trace of M in N is the sum of images of all
homomorphisms from M to N. For a projective module P ∈ Oω denote by P′ the
trace in P of all projective injective modules in Oω . As mentioned in the previous
paragraph, for our choice of ω the socle of a dominant Verma module in Oω (which
is also projective) is a tilting module. Using translation functors we obtain that P′ is
a tilting module for any projective P. Applying Indgg0 and using the previous para-
graph, we get the same property for Õω .

For any P1,P2 ∈ P̃ω(X ) any homomorphism from P1 to P2 restricts to a homo-
morphism from P′1 to P′2. From Theorem 5 it follows that this restriction is, in fact,
an isomorphism. This implies that P′1 is an indecomposable tilting module and that
P′1 ∼= P′2 if and only if P1 ∼= P2. Taking into account the previous paragraph, renam-

ing P into P′ defines an isomorphism from P̃ω(X ) to T̃ ω(X ). This completes
the proof. ��

Acknowledgements The research is partially supported by the Swedish Research Council and the
Royal Swedish Academy of Sciences.

References

1. Andersen, H.H., Mazorchuk, V.: Category O for quantum groups. Preprint arxiv:1105.5500,
to appear in JEMS.

2. Bernstein, I., Gelfand, I., Gelfand, S.: A certain category of g-modules. Funkcional. Anal. i
Prilozen. 10(2), 1–8 (1976)

3. Brundan, J.: Kazhdan-Lusztig polynomials and character formulae for the Lie superalgebra
gl(m|n). J. Amer. Math. Soc. 16(1), 185–231 (2003)

4. Brundan, J.: Kazhdan-Lusztig polynomials and character formulae for the Lie superalgebra
q(n). Adv. Math. 182(1), 28–77 (2004)

5. Cheng, S.-J., Lam, N., Wang, W.: Brundan-Kazhdan-Lusztig conjecture for general linear Lie
superalgebras. Preprint arXiv:1203.0092



Parabolic category O for classical Lie superalgebras 165

6. Cheng, S.-J., Mazorchuk, V., Wang, W.: Equivalence of blocks for the general linear Lie su-
peralgebra. Preprint arXiv:1301.1204

7. Cheng, S.-J., Wang, W.: Dualities and Representations of Lie Superalgebras. Graduate Studies
in Mathematics, Vol. 144. American Mathematical Society (2012)

8. Cline, E., Parshall, B., Scott, L.: Stratifying endomorphism algebras. Mem. Amer. Math. Soc.
124(591) (1996)

9. Dimitrov, I., Mathieu, O., Penkov, I.: On the structure of weight modules. Trans. Amer. Math.
Soc. 352(6), 2857–2869 (2000)

10. Dixmier, J.: Enveloping algebras. Revised reprint of the 1977 translation. Graduate Studies in
Mathematics, Vol. 11. American Mathematical Society, Providence, RI (1996)

11. Frisk, A.: Two-step tilting for standardly stratified algebras. Algebra Discrete Math. 3, 38–59
(2004)

12. Frisk, A.: Dlab’s theorem and tilting modules for stratified algebras. J. Algebra 314(2), 507–
537 (2007)

13. Frisk, A.: Typical blocks of the category O for the queer Lie superalgebra. J. Algebra Appl.
6(5), 731–778 (2007)

14. Frisk, A., Mazorchuk, V.: Properly stratified algebras and tilting. Proc. London Math. Soc. A
(3) 92(1), 29–61 (2006)

15. Frisk, A., Mazorchuk, V.: Regular strongly typical blocks of Oq. Comm. Math. Phys. 291
(2009), .

16. Futorny, V., König, S., Mazorchuk, V.: Categories of induced modules and standardly strati-
fied algebras. Algebr. Represent. Theory 5(3), 259–276 (2002)

17. Gabriel, P.: Indecomposable representations. II. Symposia Mathematica, Vol. XI (Convegno
di Algebra Commutativa, INDAM, Rome, 1971), pp. 81–104. Academic Press, London (1973)

18. M. Gorelik; On the ghost centre of Lie superalgebras. Ann. Inst. Fourier (Grenoble) 50(6),
1745–1764 (2000)

19. Gorelik, M.: Strongly typical representations of the basic classical Lie superalgebras. J. Amer.
Math. Soc. 15(1), 167–184 (2002)

20. Greenstein, J., Mazorchuk, V.: On Koszul duality for generalized Takiff algebras and super-
algebras. To appear.

21. Humphreys, J.E.: Representations of semisimple Lie algebras in the BGG category O . Grad-
uate Studies in Math., Vol. 94. American Mathematical Society, Providence, RI (2008)

22. Irving, R.: Projectivemodules in the categoryOS: self-duality. Trans. Amer.Math. Soc. 291(2),
701–732 (1985)

23. Jantzen, J.C.: Einhüllende Algebren halbeinfacher Lie-Algebren. Ergebnisse der Mathematik
und ihrer Grenzgebiete, Vol. 3. Springer-Verlag, Berlin Heidelberg (1983)

24. Khomenko, O., Koenig, S., Mazorchuk, V.: Finitistic dimension and tilting modules for strat-
ified algebras. J. Algebra 286(2), 456–475 (2005)

25. König, S., Slungård, I., Xi, C.: Double centralizer properties, dominant dimension, and tilting
modules. J. Algebra 240(1), 393–412 (2001)

26. Mazorchuk, V.: On finitistic dimension of stratified algebras. Algebra Discrete Math. 2004(3),
77–88 (2004)

27. Mazorchuk, V.: Koszul duality for stratified algebras II. Standardly stratified algebras. J. Aust.
Math. Soc. 89(1), 23–49 (2010)

28. Mazorchuk, V., Parker, A.: On the relation between finitistic and good filtration dimensions.
Comm. Algebra 32(5), 1903–1916 (2004)

29. Mazorchuk, V., Stroppel, C.: Categorification of (induced) cell modules and the rough struc-
ture of generalised Verma modules. Adv. Math. 219(4), 1363–1426 (2008)

30. Mazorchuk, V., Ovsienko, S.: Finitistic dimension of properly stratified algebras. Adv. Math.
186(1), 251–265 (2004)

31. Miemietz, V., Turner, W.: Homotopy, homology, and GL2. Proc. Lond. Math. Soc. (3) 100(2),
585–606 (2010)

32. Moody, R., Pianzola, A.: Lie algebras with triangular decompositions. CanadianMathematical
Society Series of Monographs and Advanced Texts. A Wiley-Interscience Publication. John
Wiley & Sons, Inc., New York (1995)



166 V. Mazorchuk

33. Musson, I.: Lie superalgebras and enveloping algebras. Graduate Studies in Mathematics,
Vol. 131. American Mathematical Society, Providence, RI (2012)

34. Ringel, C.M.: The category of modules with good filtrations over a quasi-hereditary algebra
has almost split sequences. Math. Z. 208(2), 209–223 (1991)

35. Rocha-Caridi, A.: Splitting criteria for g-modules induced from a parabolic and the Bernstein-
Gelfand-Gelfand resolution of a finite-dimensional, irreducible g-module. Trans. Amer. Math.
Soc. 262(2), 335–366 (1980)

36. Saito, K.: Polyhedra Dual to the Weyl Chamber. Publ. RIMS, Kyoto Univ. 40, 1337–1384
(2004)

37. Soergel, W.: Kategorie O , perverse Garben und Moduln über den Koinvarianten zur Weyl-
gruppe. J. Amer. Math. Soc. 3(2), 421–445 (1990)

38. Stroppel, C.: Category O: quivers and endomorphism rings of projectives. Represent. Theory
7, 322–345 (2003)



On Kostant’s theorem for Lie superalgebras

Elena Poletaeva

Abstract We study finiteW -algebras for even regular (principal) nilpotent elements
for classical Lie superalgebras. We give the precise description of the principal fi-
nite W -algebra for the exceptional simple Lie superalgebra D(2,1;α) and obtain
partial results for osp(1|2n). We show that the principal finiteW -algebra for the Lie
superalgebra Q(n) is isomorphic to a factor algebra of the super-Yangian of Q(1).

1 Introduction

The finiteW-algebras are certain associative algebras associated to a complex semi-
simple Lie algebra g and a nilpotent element e∈ g. They are quantizations of Poisson
algebras of functions on the Slodowy slice at e to the orbitAd(G)e, where g= Lie(G)
[5, 11]. Due to recent results of I. Losev, A. Premet and others,W -algebras play a
very important role in description of primitive ideals [8, 11].

It is a result of B. Kostant that for a regular nilpotent element e, the finite W -
algebra coincides with the center ofU(g) [7].

Finite W -algebras for semi-simple Lie algebras were introduced by A. Premet
[11] (see also [8]). We adopt A. Premet’s definition of finiteW -algebra for simple
Lie superalgebras, and study the case when e is an even regular (principal) nilpotent
element. Kostant’s result does not hold in this case.

In [10] we obtained the precise description of the principal finiteW -algebras for
regular e for classical Lie superalgebras of Type I and defect one. In this work we de-
scribe the principal finiteW -algebra for the exceptional Lie superalgebra D(2,1;α)
and obtain partial results for osp(1|2n).

It was observed byC. Briot and E. Ragoucy that certain finiteW -algebras based on
gl(m|n) can be realized as truncations of the super-Yangian of gl(m|n) [1]. J. Brown,
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J. Brundan and S. Goodwin have recently described the principal finiteW -algebras
for g = gl(m|n) as certain truncations of a shifted version of the super-Yangian of
gl(1|1) [3].

In this work we show that the principal finiteW -algebra for the Lie superalgebra
Q(n) is isomorphic to a factor algebra of the super-Yangian of Q(1).
All results for Q(n), D(2,1;α) and osp(1|2n) are joint work with V. Serganova.

2 Preliminaries

Let g be a finite-dimensional semi-simple or reductive Lie algebra over C, (·|·) be a
non-degenerate invariant symmetric bilinear form.

Definition 1 An element e ∈ g is nilpotent if and only if ade is a nilpotent endo-
morphism of g.

Example 1 g= gl(n).

e ∈ gl(n) is nilpotent if and only if e is an n×n-matrix with eigenvalues zero.

Definition 2 A nilpotent element e ∈ g is called regular nilpotent if and only if
ge = Ker(ade) attains the minimal dimension, which is equal to rankg.

Theorem 1 (Jacobson-Morozov) Associated to a nonzero nilpotent element e ∈ g,
there always exists {e,h, f} which satisfy

[e, f ] = h, [h,e] = 2e, [h, f ] =−2 f .

Proof. Induction on dimg, see [4].

Definition 3 (A Dynkin Z-grading) Let sl(2) =< e,h, f >. The eigenspace de-
composition of the adjoint action

adh : g−→ g

provides a Z-grading:

g=⊕ j∈Zg j, g j = {x ∈ g | adh(x) = jx}.

Properties

(1) e ∈ g2,
(2) ade : g j −→ g j+2 is injective for j ≤−1,
(3) ade : g j −→ g j+2 is surjective for j ≥−1,
(4) ge ⊂⊕ j≥0g j,
(5) (gi|g j) = 0 unless i+ j = 0,
(6) dimge = dimg0 +dimg1.
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Definition 4 (A good Z-grading) A Z-grading g= ⊕ j∈Zg j for a semi-simple Lie
algebra g is called a good Z-grading for e, if it satisfies the conditions (1)–(3).

For a reductive g, there is an additional condition: the center of g is in g0.
A goodZ-grading g=⊕ j∈Zg j is called even, if g j = 0 unless j is an even integer.

Remark 1 Properties (4)–(6) remain to be valid for every good Z-grading of g.

Proof. See [14].

3 Definition of finite W-algebras

FiniteW -algebras for semi-simple or reductive Lie algebras were introduced by A.
Premet [11] (see also [8]).

Let g be a reductive Lie algebra, (·|·) be a non-degenerate invariant symmetric
bilinear form, e be a nilpotent element in g. Let g = ⊕ j∈Zg j be a good Z-grading
for e, and let χ ∈ g∗ be defined by χ(x) := (x|e) ∀x ∈ g.

Define a bilinear form on g−1 as follows

(x,y) := ([x,y]|e) = χ([x,y]) ∀x,y ∈ g−1.

Remark 2 The bilinear form on g−1 is skew-symmetric and non-degenerate.

Proof. The skew-symmetry follows by definition. The non-degeneracy follows from
the bijection

ade : g−1 −→ g1
and the identity

(x,y) = (x|[y,e]).
Hence dimg−1 is even.

�

Pick a Lagrangian (i.e. a maximal isotropic) subspace l of g−1 with respect to the
form (·, ·). Then dim l = 1

2 dimg−1. Let m = (⊕ j≤−2g j)⊕ l. The restriction of χ to
m

χ :m−→ C

defines a one-dimensional representation Cχ =< v> ofm thanks to the Lagrangian
condition on l. Let Iχ be the left ideal ofU(g) generated by a−χ(a) for a ∈m.

Definition 5 The generalized Whittaker module is

Qχ :=U(g)⊗U(m)Cχ ∼=U(g)/Iχ .
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Definition 6 The finite W-algebra associated to the nilpotent element e is

Wχ := EndU(g)(Qχ)op.

Remark 3 Wχ can be identified as the space of Whittaker vectors inU(g)/Iχ .
Let π :U(g)→U(g)/Iχ be the natural projection, and let y ∈U(g). Then

Wχ = (Qχ)adm = {π(y) ∈U(g)/Iχ | [a,y] ∈ Iχ ∀a ∈m}.

The multiplication is given by

π(y1)π(y2) = π(y1y2)

for yi ∈U(g) such that [a,yi] ∈ Iχ ∀a ∈m and i = 1,2.

Remark 4 The isoclasses of finite W -algebras do not depend on Lagrangian sub-
space l ([5]) and good Z-grading ([2]).

Example 2 Let e = 0. Then χ = 0, g0 = g,m= 0.

Qχ =U(g), Wχ =U(g).

Theorem 2 (B. Kostant (1978)) For a regular nilpotent element e ∈ g, Wχ ∼= Z(g),
the center of U(g), see [7].

Definition 7 (Kazhdan filtration onWWWχ ) Let g be a reductive Lie algebra with a
Dynkin Z-grading, let m= (⊕ j≤−2g j)⊕ l.
Let n⊂ g be an adh-invariant subspace such that g=m⊕n. Then

Wχ = {X ∈U(g)/U(g)m∼= S(n) | aXv = χ(a)Xv ∀a ∈m}.

For any y ∈ n, let wt(y) be the weight of y with respect to adh and

deg(y) = wt(y)+2.

The degree function deg induces a Z-grading on S(n). This grading defines a filtra-
tion onWχ .

Theorem 3 (A. Premet) The associated graded algebra Gr(Wχ) is isomorphic to
S(ge).

Idea of Proof. Introduce the map

P :Wχ −→ S(ge).

For X ∈Wχ ⊂ S(n) the term P(X) of highest degree and highest weight belongs to
S(ge), see [11].
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Example 3 g= gl(n).

Form: (a|b) = tr(ab).

e =

⎛⎜⎜⎜⎜⎜⎜⎝
0 1 0 0 0 0
0 0 1 0 0 0
0 0 0 · · · 0 0
0 0 0 0 1 0
0 0 0 0 0 1
0 0 0 0 0 0

⎞⎟⎟⎟⎟⎟⎟⎠ , f =

⎛⎜⎜⎜⎜⎜⎜⎝
0 0 0 0 0 0

n−1 0 0 0 0 0
0 2(n−2) 0 · · · 0 0
0 0 · · · 0 0 0
0 0 0 · · · 0 0
0 0 0 0 n−1 0

⎞⎟⎟⎟⎟⎟⎟⎠ ,

h = diag(n−1,n−3, . . . ,3−n,1−n).
e is a regular nilpotent element, h defines an even Dynkin Z-grading of g whose

degrees on the elementary matrices Ei j are⎛⎜⎜⎜⎜⎜⎜⎝
0 2 4 6 · · · 2n−2
−2 0 2 4 · · · 2n−4
−4 −2 0 2 · · · 2n−6
−6 −4 −2 0 · · · 2n−8
· · · · · · · · · · · · · · · · · ·

2−2n · · · −6 −4 −2 0

⎞⎟⎟⎟⎟⎟⎟⎠
z = diag(1, . . . ,1) is the center of gl(n).

ge =< z,e,e2,e3, . . . ,en−1 >, dimge = n.

m=
n⊕
j≥2
g2−2 j, χ(Ei+1,i) = 1, χ(Ei+k,i) = 0 if k ≥ 2.

Wχ is a polynomial algebra generated by n elements:

π(z),π(Ω2),π(Ω3), . . . ,π(Ωn),

where Ωk is the k-th Casimir element of gl(n):

Ωk = ∑
i1,i2,...,ik

Ei1i2Ei2i3 . . .Eiki1 .

The generators ofWχ can be identified with elements of ge as follows:

π(z) P−→ z,

1
k
π(Ωk)

P−→ ek−1 f or k = 2, . . . ,n.

4 Finite W-algebras for Lie superalgebras

In the case of Lie superalgebras, finiteW -algebras were studied by mathematicians
and physicists in the following works [1, 3, 10, 14, 15].



172 E. Poletaeva

Let g be a classical simple Lie superalgebra, i.e. g= g0̄⊕g1̄, g0̄ is a reductive Lie
algebra, and g has an invariant supersymmetric bilinear form. Let e ∈ g0̄ be an even
nilpotent element, and we fix sl(2) =< e,h, f >.

The definition of Wχ given in section 3 makes sense, however the Theorem of
Kostant does not hold in this case sinceWχ must have a non-trivial odd part, and the
center ofU(g) is even. Kazhdan filtration onWχ can be defined exactly as in the Lie
algebra case.

Proposition 1 Gr(Wχ) is supercommutative.

Remark 5 If dim(g−1)1̄ is even, then one can construct the similar map

P :Wχ −→ S(ge)

by taking the monomials of the highest degree and the highest weight.
If dim(g−1)1̄ is odd, then there exists an odd element θ in g−1∩ l⊥ such that
π(θ) ∈Wχ and π(θ)2 = 1.

In this work we study the principal finite W -algebras, which are the finite W -
algebras associated to even regular nilpotent elements.

5 The case of g=== QQQ(((nnn)))

In this section, we consider the principal finiteW -algebraWχ for the Lie superalgebra
Q(n). We construct a complete set of generators ofWχ . We also make a conjecture
about the principal finiteW -algebra for g for the case when dim(g−1)1̄ is even.

By definition

Q(n) = {
(
A B
B A

)
| A,B are n×n matrices}.

Let ei, j and fi, j be standard bases in A and B respectively.
g admits an odd non-degenerate g-invariant supersymmetric bilinear form

(x|y) := otr(xy) for x,y ∈ g,

where otr

(
A B
B A

)
= trB.

Let sl(2) =< e,h, f >, where

e =
n−1
∑
i=1

ei,i+1, h = diag(n−1,n−3, . . . ,3−n,1−n), f =
n−1
∑
i=1

i(n− i)ei+1,i.
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e is a regular nilpotent element, h defines an even Dynkin Z-grading of g, whose
degrees on the elementary matrices are⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 2 · · · 2n−2 0 2 · · · 2n−2
−2 0 · · · 2n−4 −2 0 · · · 2n−4
· · · · · · · · · · · · · · · · · · · · · · · ·

2−2n · · · · · · 0 2−2n · · · · · · 0
0 2 · · · 2n−2 0 2 · · · 2n−2
−2 0 · · · 2n−4 −2 0 · · · 2n−4
· · · · · · · · · · · · · · · · · · · · · · · ·

2−2n · · · · · · 0 2−2n · · · · · · 0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
.

Let E = ∑n−1
i=1 fi,i+1, thus E is an odd element. Let χ ∈ g∗ be defined by

χ(x) := (x|E). Note that

gE = {z,e,e2, . . . ,en−1 | H0,H1, . . . ,Hn−1}, dim(gE) = (n|n),

where H0 = ∑n
i=1(−1)i+1 fi,i, H1 = ∑n−1

i=1 (−1)i fi,i+1, . . . Hn−1 = (−1)n+1 f1,n,
z = ∑n

i=1 ei,i, m=⊕n
j=2g2−2 j, and it is generated by ei+1,i, fi+1,i where

i = 1, . . . ,n−1; χ(ei+1,i) = 1, χ( fi+1,i) = 0.

In [13] A. Sergeev defined by induction the elements e(m)
i, j and f (m)

i, j belonging to
U(Q(n)):

e(m)
i, j = ∑n

k=1 ei,ke
(m−1)
k, j +(−1)m+1∑n

k=1 fi,k f
(m−1)
k, j ,

f (m)
i, j = ∑n

k=1 ei,k f
(m−1)
k, j +(−1)m+1∑n

k=1 fi,ke
(m−1)
k, j .

Then

[ei, j,e
(m)
k,l ] = δ j,ke

(m)
i,l −δi,le

(m)
k, j , [ei, j, f

(m)
k,l ] = δ j,k f

(m)
i,l −δi,l f

(m)
k j , (1)

[ fi, j,e
(m)
k,l ] = (−1)m+1δ j,k f

(m)
i,l −δi,l f

(m)
k, j , [ fi, j, f

(m)
k,l ] = (−1)m+1δ j,ke

(m)
i,l +δi,le

(m)
k, j .

Proposition 2 (A. Sergeev) The elements ∑n
i=1 e

(2m+1)
i,i generate Z(Q(n)), see [13].

Lemma 1 π(e(m)
n,1 ) and π( f (m)

n,1 ) are Whittaker vectors.

Proof. By (1) we have

[ei, j,e
(m)
n,1 ] = [ fi, j,e

(m)
n,1 ] = [ei, j, f

(m)
n,1 ] = [ fi, j, f

(m)
n,1 ] = 0

for all i > j. In other words e(m)
n,1 , f (m)

n,1 ∈U(g)adm. ��

Theorem 4 Wχ has n even generators: π(e(n+k−1)
n,1 ) and n odd generators:

π( f (n+k−1)
n,1 ), k = 1, . . . ,n.
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Corollary 1 The natural homomorphism U(g)adm −→Wχ is surjective.

Let p :=⊕ j≥0g j. Let f=< ei,i, fi,i | i = 1, . . . ,n >, and let ϑ :U(p)−→U(f) be
the Harish-Chandra homomorphism.

Proposition 3 The Harish-Chandra homomorphism is injective.

Denote
xi = ei,i, ξi = (−1)i+1 fi,i.

Theorem 5 Under the Harish-Chandra homomorphism:

ϑ(π(e(n+k−1)
n,1 )) = [∑i1≥i2≥...≥ik(xi1 +(−1)k+1ξi1) . . .(xik−1 −ξik−1)(xik +ξik)]even,

ϑ(π( f (n+k−1)
n,1 )) = [∑i1≥i2≥...≥ik(xi1 +(−1)k+1ξi1) . . .(xik−1 −ξik−1)(xik +ξik)]odd .

Theorem 6

π(e(n+1)
n,1 ) = π(

1
2

n

∑
i=1

e2i,i +
n−1
∑
i=1

ei,i+1 +∑
i< j

(−1)i− j fi,i f j, j +
1
2
z2− z).

One can define odd generators Φ0, . . . ,Φn−1 of Wχ as follows:

Φ0 = π( f (n)n,1 ) = π(H0),

Φ1 = [π(e(n+1)
n,1 ),Φ0],

. . .

Φn−1 = [π(e(n+1)
n,1 ),Φn−2].

Then

[Φm,Φp] = 0, if m+ p is odd,

[Φm,Φp] ∈ Z(Q(n)), if m+ p is even.

Lemma 2 For odd m and p we have

[π(e(n+m)
n,1 ),π(e(n+p)

n,1 )] = 0.

We set

zi = π(e(n+i)
n,1 ) for odd i,

zi = [Φ0,Φi] for even i.

Theorem 7 Elements z0, . . . ,zn−1 are algebraically independent in Wχ . Together
with Φ0, . . . ,Φn−1 they form a complete set of generators in Wχ .

Conjecture 1 In the case when dim(g−1)1̄ is even, it is possible to find a set of gen-
erators of the principal finite W -algebra for g such that even generators commute,
and the commutators of odd generators are in Z(g).
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6 Super-Yangian of QQQ(((nnn)))

In this section, we describe the principal finiteW -algebra forQ(n) as a factor algebra
of the super-Yangian of Q(1).

The super-Yangian Y (Q(n)) was studied by M. Nazarov and A. Sergeev in [9].
Y (Q(n)) is the associative unital superalgebra over C with the countable set of gen-
erators

T (m)
i j where m = 1,2, . . . and i, j =±1,±2, . . . ,±n.

The Z2-grading of the algebra Y (Q(n)) is defined as follows:

p(T (m)
i j ) = p(i)+ p( j), where p(i) = 0 if i > 0, and p(i) = 1 if i < 0.

To write down defining relations for these generators we employ the formal series
in Y (Q(n))[[u−1]]:

Ti, j(u) = δi j ·1+T (1)
i, j u

−1 +T (2)
i, j u

−2 + . . . .

Then for all possible indices i, j,k, l we have the relations

(u2− v2)[Ti, j(u),Tk,l(v)] · (−1)p(i)p(k)+p(i)p(l)+p(k)p(l) (2)

= (u+ v)(Tk, j(u)Ti,l(v)−Tk, j(v)Ti,l(u))

−(u− v)(T−k, j(u)T−i,l(v)−Tk,− j(v)Ti,−l(u)) · (−1)p(k)+p(l),

where v is a formal parameter independent of u, so that (2) is an equality in the
algebra of formal Laurent series in u−1,v−1 with coefficients in Y (Q(n)).
For all indices i, j we also have the relations

Ti, j(−u) = T−i,− j(u). (3)

Note that the relations (2) and (3) are equivalent to the following defining relations:

([T (m+1)
i, j ,T (r−1)

k,l ]− [T (m−1)
i, j ,T (r+1)

k,l ]) · (−1)p(i)p(k)+p(i)p(l)+p(k)p(l) (2’)

= T (m)
k, j T

(r−1)
i,l +T (m−1)

k, j T (r)
i,l −T (r−1)

k, j T (m)
i,l −T (r)

k, j T
(m−1)
i,l

+(−1)p(k)+p(l)(−T (m)
−k, jT

(r−1)
−i,l +T (m−1)

−k, j T (r)
−i,l +T (r−1)

k,− j T (m)
i,−l −T (r)

k,− jT
(m−1)
i,−l )

T (m)
−i,− j = (−1)mT (m)

i, j (3’)

where m,r = 1, . . . and T (0)
i j = δi j.

Theorem 8 There exists a surjective homomorphism:

ϕ : Y (Q(1))−→Wχ

defined as follows:

ϕ(T (k)
1,1 ) = (−1)kπ(e(n+k−1)

n,1 ), ϕ(T (k)
−1,1) = (−1)kπ( f (n+k−1)

n,1 ), for k = 1,2, . . . .
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7 The case of g=DDD(((222,,,111;;;ααα)))

In this section, we describe the principal finite W -algebra for the exceptional Lie
superalgebra D(2,1;α) in terms of generators and relations. We follow the con-
struction of this Lie superalgebra given by M. Scheunert [12].

Let σ1,σ2,σ3 be complex numbers such that σ1 +σ2 +σ3 = 0.
By definition, Γ (σ1,σ2,σ3) = Γ0̄⊕Γ1̄, where

Γ0̄ = sl(2)1̄⊕ sl(2)2̄⊕ sl(2)3̄,
Γ1̄ =V1⊗V2⊗V3,

sl(2)i =< Xi,Hi,Yi >, Vi =< ei, fi >, i = 1,2,3,
Pi :Vi×Vi→ sl(2)i is sl(2)i-invariant bilinear mapping:
Pi(ei,ei) = 2Xi, Pi( fi, fi) =−2Yi, Pi(ei, fi) = Pi( fi,ei) =−Hi.
ψi is a non-degenerate skew-symmetric form on Vi:

ψi(ei, fi) = 1.

[Γ0̄,Γ1̄] is the natural representation, [Γ1̄,Γ1̄] is given by

[x1⊗ x2⊗ x3,y1⊗ y2⊗ y3] = σ1ψ2(x2,y2)ψ3(x3,y3)P1(x1,y1)+
σ2ψ1(x1,y1)ψ3(x3,y3)P2(x2,y2)+σ3ψ1(x1,y1)ψ2(x2,y2)P3(x3,y3),

where xi,yi ∈Vi.

Remark 6 The superalgebra Γ (σ1,σ2,σ3) is simple if and only if σi �= 0 for i =
1,2,3. Γ (σ1,σ2,σ3) ∼= Γ (σ ′1,σ ′2,σ ′3) if and only if the sets {σ ′i } and {σi} are ob-
tained from each other by a permutation and multiplication of all elements of one
set by a nonzero complex number (see [12]).
Γ (σ1,σ2,σ3) is a one-parameter family of deformations of osp(4|2).
Γ (1,−1−α ,α)∼= D(2,1;α), where α �= 0,−1 (see [6]).

We consider the non-degenerate invariant supersymmetric bilinear form on g given
as follows:

(Xi,Yi) = 1
σi , (Hi,Hi) = 2

σi ,

(e1⊗ e2⊗ e3, f1⊗ f2⊗ f3) =−2, (e1⊗ e2⊗ f3, f1⊗ f2⊗ e3) = 2,

(e1⊗ f2⊗ e3, f1⊗ e2⊗ f3) = 2, ( f1⊗ e2⊗ e3,e1⊗ f2⊗ f3) = 2.

Let sl(2) =< e,h, f >, where

e = X1 +X2 +X3, h = H1 +H2 +H3, f = Y1 +Y2 +Y3.

Then e is a regular nilpotent element, and h defines a Dynkin Z-grading of g:
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g=⊕3
j=−3g j, where

g3 =< e1⊗ e2⊗ e3 >, g2 =< X1,X2,X3 >,

g1 =< e1⊗ e2⊗ f3,e1⊗ f2⊗ e3, f1⊗ e2⊗ e3 >,

g0 =< H1,H2,H3 >, g−1 =< e1⊗ f2⊗ f3, f1⊗ e2⊗ f3,e1⊗ e2⊗ f3 >,

g−2 =< Y1,Y2,Y3 >, g−3 =< f1⊗ f2⊗ f3 > .

Note that dim(ge) = (3|3), ge = (ge)0̄⊕ (ge)1̄, where

(ge)0̄ =< X1,X2,X3 >,

(ge)1̄ =< e1⊗ f2⊗ e3− e1⊗ e2⊗ f3, f1⊗ e2⊗ e3− e1⊗ e2⊗ f3,e1⊗ e2⊗ e3 > .

Note that

m= g−3⊕g−2⊕ l, l=< e1⊗ f2⊗ f3 >,

m is generated by Y1,Y2,Y3 and e1⊗ f2⊗ f3. Also,

χ(Yi) =
1
σi

for i = 1,2,3, and χ(e1⊗ f2⊗ f3) = 0.

θ = f1⊗ e2⊗ f3− f1⊗ f2⊗ e3 ∈ g−1∩ l⊥, π(θ) ∈Wχ , π(θ)2 =−2.
Even generators ofWχ are

C1 = π(2X1 +σ1( 12H
2
1 −H1)),

C2 = π(2X2 + 1
2σ2H2

2 +( f1⊗ e2⊗ f3)(e1⊗ e2⊗ f3)),
C3 = π(2X3 + 1

2σ3H2
3 +( f1⊗ f2⊗ e3)(e1⊗ f2⊗ e3)).

Odd generators ofWχ are
R1 = π(2(e1⊗ f2⊗ e3− e1⊗ e2⊗ f3)+σ1H1( f1⊗ e2⊗ f3− f1⊗ f2⊗ e3)),
R2 = π(2( f1⊗ e2⊗ e3− e1⊗ e2⊗ f3)

+(σ1H1−σ3H3)( f1⊗ e2⊗ f3)−σ2H2( f1⊗ f2⊗ e3)),
R3 = π(4(e1⊗ e2⊗ e3)−σ1H1R2−4σ1( f1⊗ e2⊗ f3)X1
−2(σ1H1(e1⊗ e2⊗ f3)+σ2H2(e1⊗ f2⊗ e3)+σ3H3(e1⊗ e2⊗ f3))),

and π(θ).

Note that the quadratic Casimir element of g is

Ω = Σ 3
i=1(

σi

2
H2
i +2Xi)− (e1⊗e2⊗ f3)( f1⊗ f2⊗e3)− (e1⊗ f2⊗e3)( f1⊗e2⊗ f3).

Hence

π(Ω) =C1 +C2 +C3− 1
2
R1π(θ).
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Theorem 9 The principal finiteW-algebraWχ is generated by even elements π(Ω),
C1 and C2, and odd element π(θ). The relations are

[C1,C2] = 0, [π(θ),Ci] = Ri∓ σi
2 π(θ), i = 1,2,

[C2,R1] =−σ2
2 R1 +R3, [C1,R2] = σ1

2 R2 +R3,

[Ri,Ri] = 8σiCi−2σiRiπ(θ), i = 1,2,

[R1,R2] =−4(σ1C2 +σ2C1 +σ3π(Ω))+(σ1R2 +σ2R1)π(θ),
[Ri,π(θ)] =∓2σi, i = 1,2, [π(θ),π(θ)] =−4,

[π(Ω),π(θ)] = 0, [π(Ω),Ci] = 0, i = 1,2, [π(Ω),Ri] = 0, i = 1,2,3.

8 The case of g=== osp(((111|||222nnn)))
In this section, we present partial results for the principal finite W -algebra for
osp(1|2n) and make a conjecture for this case.

Form: (a|b) =−str(ab).
We use the following notations for some elementary matrices in osp(1|2n):⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 s1 s2 . . . sn r1 r2 . . . rn
r1 h1 x1 . . . . . . p1 . . . . . . . . .
. . . y1 h2 x2 . . . .. p2 . . . . . .
. . . . . . . . . . . . xn−1 . . . . . . . . . . . .
rn . . . . . . yn−1 hn . . . . . . . . . pn
s1 q1 . . . . . . . . . h1 y1 . . . . . .
. . . . . . q2 . . . . . . x1 h2 y2 · · ·
. . . . . . . . . . . . . . . . . . . . . . . . yn−1
sn . . . . . . . . . qn . . . . . . xn−1 hn

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
.

Let sl(2) =< e,h, f >, where e = (x1 + . . .xn−1)+ pn,
h = diag(0|2n−1,2n−3, . . . ,3,1;−2n+1,−2n+3, . . . ,−3,−1),
f = (∑n−1

k=1 k(2n− k)yk)+n2qn.
Note that e is a regular nilpotent element, and h defines a Dynkin Z-grading of g
whose degrees on the elementary matrices are⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 −2n+1 . . . −3 −1 2n−1 . . . 3 1
2n−1 0 2 . . . . . . 4n−2 . . . 2n+2 2n

. . . −2 0 2 . . . 4n−4 . . . 2n 2n−2
3 . . . . . . 0 2 . . . . . . 6 4
1 . . . −4 −2 0 2n . . . 4 2

−2n+1 −4n+2 . . . −2n−2 −2n 0 −2 . . . . . .
. . . −4n+4 . . . −2n −2n+2 2 0 . . . −4
−3 . . . . . . −6 −4 . . . . . . 0 −2
−1 −2n . . . −4 −2 . . . . . . 2 0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
.
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Note that dimge = (n|1), (ge)1̄ =< r1 >, g−1 =< θ >, where θ = sn, dimg−1 = 1.
m=⊕ j≤−2g j, where g−2 =< yi,qn >, i = 1, . . . ,n−1.
m is generated by yi,qn; χ(yi) = 2, for i = 1, . . . ,n−1, and χ(qn) = 1.
Note that π(θ) ∈Wχ , π(θ)2 =−1.
Conjecture 2 The principal finiteW -algebraWχ is generated by the first n Casimir
elements in Z(g) and odd elements π(θ) and R, where R is induced by r1 so that

[R,R] ∈ Z(g), [R,π(θ)] ∈ Z(g), [π(θ),π(θ)] =−2.
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Classical Lie superalgebras at infinity

Vera Serganova

Abstract We study certain categories of modules over direct limits of classical Lie
superalgebras. In many cases these categories are equivalent to similar categories
for classical Lie algebras. The functors establishing this equivalence can be used to
obtain a new result for representation theory of direct limits of Lie algebras.

1 Introduction

There are several generalizations of simple Lie algebras and superalgebras in the
infinite-dimensional case. In this paper, we discuss representations of locally simple
Lie algebras, i.e. Lie algebras and superalgebras we consider are the direct limits
g= lim→ gi of finite-dimensional simple Lie algebras (or superalgebras) gi. In partic-
ular, we are interested in the cases when g= sl(∞),so(∞) or sp(∞).

In [5] we tried to define a nice analogue of the category of finite-dimensional
modules for g. The most obvious analogue, the category of integrable modules, is
rather difficult to study. Even the problem of classifying simple modules involves
infinitely many continuous parameters.

On the other hand, g has a very natural class of representations in the tensor pow-
ers of the standard and costandard modules. In [2] we give an intrinsic definition of
a category Tg that contains all such representations. It turns out that Tg has many
remarkable properties. Although it is not semi-simple, it is a Koszul category in the
sense of [1]. That allows one to calculate extensions between simple modules and
their injective resolutions. We also prove that the categories Tg for g = so(∞) and
sp(∞) are equivalent. In the recent preprint [8] the same categories are studied from
slightly different point of view.
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The goal of the present paper is to define and study analogues of Tg for direct
limits of classical Lie superalgebras. As follows from the Kac classification, [4],
there are four such superalgebras sl(∞,∞), osp(∞,∞), P(∞) and Q(∞). We will see
that in the first three cases we do not obtain new categories. Namely, Tsl(∞,∞) is
equivalent to Tsl(∞), and Tosp(∞,∞) and TP(∞) are equivalent to To(∞). The latter fact
can be used to construct a direct equivalence functor To(∞)→ Tsp(∞). This result is
somewhat surprising, since it appears that these categories are easier than the cor-
responding categories for finite-dimensional superalgebras. The rather complicated
matter of atypical representations disappears after going to direct limits.

In the case ofQ(∞)we obtain a completely new category. It is interesting to study
it in detail.

2 Direct limits of classical Lie algebras

2.1 General and special Lie algebras at infinity

Let V and V∗ be countable-dimensional vector spaces with non-degenerate pairing
tr :V ⊗V∗ → C.

Definition 1 gl(∞) =V ⊗V∗ has a natural Lie algebra structure given by

[v1⊗u1,v2⊗u2] = tr(v2⊗u1)v1⊗u2− tr(v1⊗u2)v2⊗u1.

Ker(tr) = sl(∞) is a simple Lie subalgebra of gl(∞).

One can also realize g as a direct limit

sl(∞) = lim→ sl(n), gl(∞) = lim→ gl(n),

and identify gl(∞) with the space of infinite matrices (ai j)i, j∈N with finitely many
non-zero entries and sl(∞) with the subalgebra of traceless matrices in gl(∞).

It is clear that V and V∗ are simple g-modules. Furthermore, the classical Schur-
Weyl duality works in the infinite-dimensional case.

Theorem 1 (Schur-Weyl duality) Let g= gl(∞) or sl(∞). Then

V⊗n =
⊕
|λ |=n

V λ ⊗Yλ , V⊗n∗ =
⊕
|λ |=n

V λ
∗ ⊗Yλ ,

where λ runs the set of partitions of size n and Yλ denotes the corresponding irre-
ducible representation of Sn and V λ = πλ (V⊗n), where πλ is a Young projector with
the Young diagram λ .

However, the representation of g in the space of mixed tensorsV⊗n⊗V⊗m∗ is not
completely reducible in contrast with finite-dimensional case. Indeed, for instance,
the exact sequence of sl(∞)-modules

0→ sl(∞)→V ⊗V∗ → C→ 0
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does not split. The following result gives a description of the g-module structure on
V⊗n⊗V⊗m∗ .

Theorem 2 ([6]) Let g= gl(∞) or sl(∞). Then

V⊗n⊗V⊗m∗ =
⊕

|λ |=n,|μ|=m

Ṽ λ ,μ ⊗ (Yλ �Yμ),

where each Ṽ λ ,μ =V λ ⊗V μ
∗ is an indecomposable g-module with irreducible socle

V λ ,μ and Yλ �Yμ is the exterior tensor product of irreducible Sn and Sm-modules.
The socle filtration of Ṽ λ ,μ is given by

sock(Ṽ λ ,μ)/sock−1(Ṽ λ ,μ) =
⊕
|γ|=k

Nλ
γ,λ ′N

μ
γ,μ ′V

λ ′,μ ′ .

Here Nλ
γ,λ ′ stand for Littlewood–Richardson coefficients.

The proof is based on the results of Howe, Tan and Willenbring [3] who calcu-
lated asymptotic decomposition of mixed tensor products in the finite-dimensional
case.

2.2 Orthogonal and symplectic Lie algebras

Assume now that a countable-dimensional vector spaceV has a non-degenerate sym-
metric (resp. skew-symmetric) form ω :V ⊗V → C.

Definition 2 so(∞) (resp. sp(∞)) is the Lie subalgebra of finite rank linear operators
in V preserving ω .

One can use identification

so(∞) =Λ 2(V ), sp(∞) = S2(V )

given by
Xv∧w(u) = ω(v,u)w−ω(u,w)v, ∀v,w,u ∈V. (1)

Another way to define g is via direct limits

so(∞) = lim→ so(n), sp(∞) = lim→ sp(n).

The representation of g in the tensor algebra T (V )were also described by Penkov
and Styrkas.

Theorem 3 ( [6]) Let g= so(∞) or sp(∞). Then

V⊗n =
⊕
|λ |=n

Ṽ λ ⊗Yλ ,

where each Ṽ λ is an indecomposable g-module with irreducible socle V λ .
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The socle filtration of Ṽ λ is given by

sock(Ṽ λ )/sock−1(Ṽ λ ) =
⊕
|γ|=k

Nλ
2γ,λ ′V

λ ′ ,

for g= so(∞), and

sock(Ṽ λ )/sock−1(Ṽ λ ) =
⊕
|γ|=k

Nλ
2γ⊥,λ ′V

λ ′ ,

for g= sp(∞).

3 The category TTTg

Definition 3 Let g = gl(∞) or sl(∞). A subalgebra k ⊂ g is a finite corank sub-
algebra if there exist finite dimensional subspaces W ⊂ V and W∗ ⊂ V∗ such that
the restriction of the canonical pairing to W ⊗W∗ → C is non-degenerate and k ⊃
g∩ (W⊥∗ ⊗W⊥).

If g= so(∞) or sp(∞), then k⊂ g is a finite corank subalgebra if there exists a finite
dimensional subspaceW ⊂V such that the restriction of ω onW is non-degenerate
and k⊃Λ 2(W⊥) or S2(W⊥) respectively.

We define Tg as a full subcategory of g-modules whose objects M satisfy the
following conditions

• M is integrable.
• For every m ∈M the annihilator of m in g is a finite corank subalgebra.
• M has finite length.

It is not difficult to see that Tg is closed under tensor product, hence it is a mono-
idal category. However, it is not rigid since there is no a reasonable duality functor
on Tg. The following results relate tensor representations of g with Tg.

Theorem 4 ([2])

• For g= gl(∞) or sl(∞) all (up to isomorphism) simple objects of Tg are V λ ,μ .
• For g= so(∞) or sp(∞) all (up to isomorphism) simple objects of Tg are V λ .
• Ṽ λ ,μ (respectively Ṽ λ ) are all up to isomorphism indecomposable injective inTg.

To prove injectivity of Ṽ λ ,μ we use the fact (proven in [5]) that for any integrable
g-moduleM, the integrable part ofM∗ is injective in the category of integrable mod-
ules. From this it is easy to see that the functor Γ from the category of all integrable
g-modules to Tg defined by

Γ (M) =
⋃

Mk

(where the union is taken over all finite corank k ⊂ g) maps an injective module in
the category of integrable modules to an injective module in Tg. On the other hand,
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by a direct calculation done in [2]

Γ (V⊗m⊗V⊗n∗ ) =
⊕

k≤m,l≤n
(V⊗k⊗V⊗l∗ )⊕c(k,l).

Note that Γ can be considered as a certain version of the Zuckerman functor [9].
There exists a Borel subalgebra b⊂ g such that all simple modules ofTg are high-

est weight modules. For instance, if g= sl(∞), considered as the algebra of matrices
(ai j)i, j∈N, we define a nonstandard total order on N by 1 < 3 < 5 < · · ·< 6 < 4 < 2
and positive roots εi−ε j for all i< j. The corresponding infinite “Dynkin diagram” is

◦−◦−·· ·−◦−◦.
Lemma 1 If S is a non-zero quotient of the Verma module and S ∈ Tg, then S is
simple.

To show that the the category Tg is Koszul we use the following

Lemma 2 ([2])

• If g= gl(∞) or sl(∞), then

Extk(V λ ,μ ,V ν ,κ) �= 0

implies |λ |− |ν |= |μ |− |κ|= k.
• If g= so(∞) or sp(∞), then

Extk(V λ ,V ν) �= 0

implies |λ |− |ν |= 2k.

Let T = T (V ) for g= so(∞) or sp(∞) and T =
⊕

m,n≥0V⊗m⊗V⊗n∗ for g= sl(∞)
or gl(∞). For g= gl(∞) or sl(∞) we set

A k
g =

⊕
m,n≥0

Homg(V⊗m⊗V⊗n∗ ,V⊗m−k⊗V⊗n−k∗ ), Ag =
⊕
k≥0

A k
g .

For g= so(∞) or sp(∞) set

A k
g =

⊕
n≥0

Homg(V⊗n,V⊗n−2k), Ag =
⊕
k≥0

A k
g .

Note that Ag is by definition a graded algebra. It does not have the identity but it is
a direct limit of unital algebras.

Theorem 5 ([2])

• The category Tg is antiequivalent to the category Ag-fmod of locally unitary
finite-dimensional Ag-modules.

• Ag is a direct limit of Koszul rings.
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For g= gl(∞) and sl(∞) the corresponding algebras Ag are the same. It is shown
in [2] that A 0

g =
⊕

m,n≥0C[Sn×Sm] and A 1
g is generated by contractions.

In this case one can prove that Ag is Koszul self-dual, i.e. (A!
g)op ! Ag. That

implies the following formulas for extensions between simple modules

dimExtk(V λ ′,μ ′ ,V λ ,μ) = ∑
|γ|=k

Nλ
γ,λ ′N

μ
γ⊥,μ ′ .

It is also shown in [2] that for g = so(∞) and sp(∞) A 0
g =

⊕
n≥0C[Sn] and A 1

g

is generated by contractions. Knowing this it is easy to obtain an isomorphism

Aso(∞) !Asp(∞).

The latter implies an equivalence of abelian categories Tsp(∞) and Tso(∞) by The-

orem 5. Under this equivalence V λ goes to V λ⊥ . It is proven in [8] that this is an
equivalence of monoidal categories. A different proof of this fact is given in the
next section.

4 Superalgebras

4.1 Direct limits of classical Lie superalgebras

Let V =V0⊕V1 be a superspace, both V0 and V1 are countable-dimensional. Below
we consider the following possibilities.

• There is a countable-dimensional V∗ and a non-degenerate pairing str :V ⊗V∗ →
C. Then we set gl(∞,∞) =V ⊗V∗ and sl(∞,∞) = Ker(str) with the commutator
defined in the same way as in the purely even case (with the usual sign con-
vention). Note that g = gl(∞,∞) has a Z-grading (compatible with Z2-grading)
g= g−1⊕g0⊕g1, where

g0 =V0⊗ (V0)∗ ⊕ (V1)∗ ⊗V1 ! (gl(∞))⊕ (gl(∞)),
g1 =V0⊗ (V1)∗, g−1 = (V0)∗ ⊗V1.

This grading naturally can be restricted to sl(∞,∞). The Lie superalgebra sl(∞,∞)
is simple since it can be obtained as a direct limit of simple Lie superalgebras.

• We fix an even non-degenerate symmetric form ω : S2(V ) → C and define
osp(∞,∞) as the subalgebra of operators in V of finite rank preserving ω . One
can identify osp(∞,∞) with Λ 2(V ) using (1). In this case

g0 = so(∞)⊕ sp(∞), g1 =V0⊗V1.

The Lie superalgebra osp(∞,∞) is simple because it is isomorphic to a direct limit
of finite-dimensional simple Lie superalgebras.
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• We fix an odd non-degenerate form ω : S2(V )→C and define the Lie superalge-
bra P(∞) as the subalgebra of linear operators of finite rank in V preserving ω .
The superalgebra P(∞) has a Z-grading g= g−1⊕g0⊕g1, with

g0 =V0⊗V1 g1 = S2(V0), g−1 =Λ 2(V1).

Note that g0 is isomorphic to gl(∞), V0 and V1 are standard and costandard rep-
resentation of g0. Furthermore, g1 (resp. g−1) is identified with S2(V0) (resp.
Λ 2(V1)) by setting

Xu,w(v) = (u,v)w+(w,v)u,

for any u,w ∈V0, v ∈V and

Xu,w(v) = (u,v)w− (w,v)u,

for any u,w∈V1, v∈V . Observe that P(∞) = lim→ P(n) is not a simple Lie algebra.

Its commutator is a simple ideal SP(∞) of all traceless matrices in P(∞).

• Let J :V →V be an odd operator such that J2 =−1. The Lie superalgebraQ(∞) is
the centralizer of J in gl(∞,∞). As in the finite-dimensional case g0 = gl(∞) and
g1 is the adjoint representation of g0. Note that Q(∞) = lim→ Q(n) is not simple.

It contains a simple ideal SQ(∞) of odd codimension 1 consisting of operators
X such that str(XJ) = 0. Note that in contrast with all other cases, SQ(∞) is the
direct limit of SQ(n), but SQ(n) are not simple.

We leave to the reader the definition of finite corank subalgebras in this case.

4.2 TgTgTg for Lie superalgebras

Now let g denote one of the Lie superalgebras defined in the previous section. Let
Tg be a full subcategory of g-modules M satisfying the following three conditions:

(1) M is integrable over g0, and therefore over g,
(2) the annihilator of every vector inM is a finite corank subalgebra in g,
(3) M has finite length over g0.

It is clear that Tg is an abelian monoidal category. If g �=Q(∞), in order to avoid the
annoying but not essential parity chasing we allow morphisms which change parity,
i. e. the standard functor Π changing the parity is an isomorphism in our category.
In fact, it is not difficult to show that if g �= Q(∞), then

Tg = T+
g ⊕T−g

with Π : T+
g → T−g defining an equivalence of categories. Threfore, admitting odd

isomorphisms in the category Tg is the same as studying T+
g instead of Tg.
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4.3 Orthosymplectic superalgebra

Let g= osp(∞,∞). The goal of this subsection is to prove the following

Theorem 6 The monoidal categories Tg, Tsp(∞) and Tso(∞) are equivalent.

We start with studying tensor powers of the standard representation V . If M is a
g-module and k⊂ g is a subalgebra, thenMk denotes the space of k-invariants inM.

Lemma 3 (a) (V⊗n)so(∞) =V⊗n1 and (V⊗n)sp(∞) =V⊗n0 .
(b) V⊗n0 or V⊗n1 generates V⊗n over g.

Proof. We have the obvious isomorphism of g0-modules

V⊗n !
⊕

p+q=n

(V⊗p0 ⊗V⊗q1 )⊕C(n,p).

The identity
(V⊗p0 ⊗V⊗q1 )so(∞) = (V⊗p0 )so(∞)⊗V⊗q1

together with the fact that (V⊗p0 )so(∞) = 0 for p �= 0 imply (V⊗n)so(∞) = V⊗n1 . The
second statement of (a) is similar.

Now we prove that V⊗n0 generates V⊗n. Assume that the statement is not true.
Define the grading onV⊗n by setting the degree of a homogeneous indecomposable
tensor u= u1⊗·· ·⊗un equal the number of ui ∈V1. Pick up an indecomposable u of
minimal degree that does not belong toU(g)V⊗n0 . Then k = deg(u) > 0 and ui ∈V1
for some i. Pick up e,e′ ∈V0 such that (e,e′) = 1, (e,u1) = · · ·= (e,un) = 0. Then

u =±Xe∧ui(u1⊗·· ·⊗ui−1⊗ e′ ⊗ui+1⊗ . . .un)+ v,

for some v of degree k−2. Note that deg(u1⊗·· ·⊗ui−1⊗e′ ⊗ui+1⊗ . . .un) = k−1.
Hence both v and (u1⊗·· ·⊗ui−1⊗e′ ⊗ui+1⊗ . . .un) belong toU(g)V⊗n0 . Therefore
u∈U(g)V⊗n0 . Contradiction. In the same way one can prove thatV⊗n1 generatesV⊗n
over g.

Let
T (V ) =

⊕
n≥0

V⊗n, T≥m(V ) =
⊕
n≥m

V⊗n, T≤m(V ) =
⊕
n≤m

V⊗n.

A linear operator X ∈ Endk(V ) is called bounded if the there are n and m such that
T≥n(V )⊂ KerX and ImX ⊂ T≤m(V ).

We denote by Ag the subalgebra of all bounded operators in Endg(T (V )). Note
that Ag =

⊕
m,n≥0Homg(V⊗m,V⊗n). By Aso(∞) (resp. Asp(∞)) we denote the alge-

bras of bounded operators in Endso(∞)(T (V0)) (resp. Endsp(∞)(T (V0))).
Lemma 3 (a) implies that there are natural homomorphisms

ρso : Ag→Aso(∞), ρsp : Ag→Asp(∞)

given by the restriction to T (V )sp(∞) and T (V )so(∞) respectively.
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Lemma 4 Both ρso and ρsp are isomorphisms.

Proof. Injectivity of ρso and ρsp follows from Lemma 3 (b). To prove surjectiv-
ity recall from [2] that Aso(∞) (resp. Asp(∞)) are generated by permutation groups
acting on V⊗n0 (resp. V⊗n1 ) and contractions. Both permutations and contraction are
defined on T (V ) and hence lie in the image of ρso (resp. ρsp).

Let λ be a partition and πλ be the corresponding Young projector in C[Sn]. We
define

Ṽ λ = πλ (V⊗n), Ṽ0
λ = πλ (V⊗n0 ), Ṽ1

λ = πλ (V⊗n1 ).

Recall that the socles of Ṽ0
λ and Ṽ1

λ are simple g0-modules. We denote them V λ
0

and V λ
1 respectively.

Lemma 5 (a) V λ
0 ⊗V μ

1 is a simple g0-module.
(b) Every simple module in Tg0 is isomorphic to V λ

0 ⊗V μ
1 for some partitions λ

and μ .
(c) Ṽ λ

0 ⊗Ṽ μ
1 is indecomposable injective in Tg0 with socle equal to V

λ
0 ⊗V μ

1 .

Proof. (a) can be proven by the standard argument using the Jacobson density theo-
rem. Let v=∑m

j=1 e j⊗ f j �= 0 for some linearly independent e j ∈V λ
0 and f j ∈V λ

1 . Let

u= e⊗ f . SinceV λ
0 andV μ

1 are simple there exist X ∈U(so(∞)) and Y ∈U(sp(∞))
such that X(e1) = e,Y ( f1) = f andX(e j) =Y ( f j) = 0 for j> 1. Hence u=X⊗Y (v).
Thus any non-zero v generates the whole V λ

0 ⊗V μ
1 .

(b) Let M ∈ Tg0 be simple. Then M as an so(∞)-module lies in a slightly bigger
category T̂so(∞) of modules satisfying (1) and (2). Therefore M contains a subquo-

tient isomorphic to V λ
0 for some λ . Since M is simple M = V λ

0 ⊗W , where W is
some simple module in T̂sp(∞). HenceW =V μ

1 for some partition μ .
(c) Injectivity of Ṽ λ

0 in Tso(∞) implies injectivity of Ṽ λ
0 ⊗ Ṽ μ

1 in Tso(∞). By the

same reason Ṽ λ
0 ⊗Ṽ μ

1 is injective in Tsp(∞). For any simple V λ ′
0 ⊗V μ ′

1 we have that
an exact sequence

0→ Ṽ λ
0 ⊗Ṽ μ

1 →M→V λ ′
0 ⊗V μ ′

1 → 0

splits over so(∞) and sp(∞). Hence it splits over g0. That proves injectivity of Ṽ λ
0 ⊗

Ṽ μ
1 . Irreducibility of the socle follows from the identity

Homg0(V
λ ′
0 ⊗V μ ′

1 ,Ṽ λ
0 ⊗Ṽ μ

1 )! Homso(∞)(V
λ ′
0 ,Ṽ λ

0 )⊗Homsp(∞)(V
μ ′
1 ,Ṽ μ

1 ).

We define functors Rso : Tg→ Tso(∞) and Rsp : Tg→ Tsp(∞) by

Rso(M) = Msp(∞), Rsp(M) = Ms0(∞).

Lemma 6 If M ∈ Tg and M �= 0, then Rso(M) �= 0 and Rsp(M) �= 0.
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Proof. Let L ! V λ
0 ⊗V μ

1 be a simple submodule in socg0(M) with maximal |λ |.
Consider the natural morphism θ : L⊗g1→M of g0-modules given by θ(u⊗Xw) =
Xw(u). Then socg0(Imθ) has only constituents V κ

0 ⊗V ν
1 with |κ|< |λ |. Therefore if

u⊗w ∈ L is such that u = πλ (u1⊗·· ·⊗un), w ∈V⊗|μ| and e⊗ f ∈V0⊗V1 is such
that (e,ui) = 0 for all i = 1, . . . ,n, then

θ(u⊗w⊗ e⊗ f ) = Xe∧ f (u⊗w) = 0. (2)

Pick up e,e′ ∈V0, f , f ′ ∈V1 such that (e,ui) = (e′,ui) = 0 for all i= 1, . . . ,n, (e,e′) =
1 and ( f , f ′) = 0. Then Xf∧ f ′ = [Xe∧ f ,Xe′∧ f ′ ]. By (2) Xf∧ f ′(u⊗w) = 0. It is easy to
see that Xf∧ f ′ for all orthogonal f , f ′ generate sp(∞) we obtain sp(∞)w = 0. Hence
μ = 0, i.e. L⊂ Rso(M).

The proof that Rsp(M) �= 0 is similar.

Now we are ready to describe simple objects in Tg. Let λ be a partition with
|λ |= n. Choose a Cartan subalgebra h such that the roots of g are as inD(∞,∞). The
even roots of g are {±εi± ε j|i, j > 0, i �= j}∪{±δi±δ j|i, j > 0} and the odd roots
are {±(εi±δ j|i, j > 0}. Let b be the Borel subalgebra defined by the set of positive
roots

{εi± ε j|i < j}∪{δi±δ j|i < j}∪{2δi|i > 0}∪{εi±δ j|i, j > 0}.
LetV λ denote the simple highest weight module with highest weight λ =∑λiεi. We
introduce the standard order on weights by setting λ ≤ μ if μ−λ is a non-negative
integral linear combination of positive roots.

Lemma 7 V λ ∈ Tg. Any simple object in Tg is isomorphic to V λ for some parti-
tion λ .

Proof. Recall that V λ
0 is a highest weight module over so(∞). Hence there exists a

unique up to proportionality v ∈V λ
0 ⊂ Ṽ λ of weight λ =∑λiεi. An easy calculation

shows that n(v) = 0. By Frobenius reciprocity there exists a non-zero homomor-
phism ψ from the Verma module Mλ to Ṽ λ . The image of ψ has a unique simple
quotient isomorphic to V λ . Thus V λ ∈ Tg.

Now letM ∈ Tg be a simple module. Pick up a g0-submodule L!V λ
0 in Rso(M)

with maximal |λ |. Then a non-zero v ∈ L of weight λ is annihilated by n. Therefore
M !V λ .

Lemma 8 Let M ∈ Tg be a non-zero quotient of the Verma module Mλ for some
partition λ . Then M !V λ .

Proof. Suppose that the statement is false. Then there exists V μ ⊂M with μ < λ .
Let vμ ∈V μ be a highest vector of weight μ and vλ be a non-zero vector of weight
λ . Then vμ ∈U(n−)vλ and therefore vμ ∈U(n−∩g′)vλ for some finite-dimensional
g′= osp(2p,2q)⊂ g.Without loss of generality wemay assume p> 2q+ |μ |. There-
fore the quadratic Casimir element inU(g′) has the same eigenvalue on vμ and vλ .
This is impossible since (λ +ρ,λ +ρ) �= (μ +ρ,μ +ρ) if p > 2q+ |μ |, here ρ is
the half sum of even positive roots minus the half sum of odd positive roots of g′.
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Lemma 9 Let
0→V λ →M→V μ → 0

be a non-split exact sequence in Tg, then μ < λ in the standard order. Furthermore,
|μ |< |λ |.
Proof. If μ and λ are not comparable then a vector of weight μ spans in M a sub-
module isomorphic to V μ and the sequence splits. Since M ∈ Tg0 , M is semisimple
over h, the sequence also splits in the case μ = λ . If μ > λ , thenM is a quotient of the
Verma module Mμ . By Lemma 8M !V μ . Therefore the only possibility is μ < λ .
Note that this implies |μ | ≤ |λ |. We claim that |μ |< |λ |. Indeed, let |μ |= |λ |. For
any module N set N+ be the span of all weight spaces of weights ∑aiεi +∑b jδ j

with ∑ai = |λ |. If k ! gl(∞) be the subalgebra in g generated by the roots of the
form εi− ε j, then N+ is obviously k-stable. It is easy to see that (V λ )+ and (V μ)+

are simple k-submodules in the tensor algebra of the standard k-module. Therefore

0→ (V λ )+→M+→ (V μ)+→ 0

splits over k. But then the original sequence must split as well by Lemma 8.

Lemma 10 Ṽ λ is injective in Tg.

Proof. It is sufficient to prove that for any μ an exact sequence

0→ Ṽ λ →M→V μ → 0

of modules in Tg splits. If |μ | ≥ |λ |, then the sequence splits by Lemma 9, as |μ | ≥
|ν | for any simple subquotient V ν in Ṽ λ . Hence we may assume |μ |< |λ |.

By Lemma 5 Ṽ λ is injective in Tg0 . Therefore the sequence splits over g0. Thus,
we can write M =V μ ⊕Ṽ λ as a g0-module. The action of g1 is given by X(u,w) =
(Xu,c(u⊗X)+Xw) for any u ∈ V μ ,w ∈ Ṽ λ , X ∈ g1 and some c ∈ Homg0(V

μ ⊗
g1,Ṽ λ ). By Lemma 5

socg0Ṽ
λ =

⊕
(ν ,ν ′)

V ν
0 ⊗V ν ′

1

for some set of pairs (ν ,ν ′) such that |ν |+ |ν ′|= |λ |. Therefore we have

c(V μ
0 ⊗g1)∩ socg0Ṽ λ =

⊕
ν
V ν
0 ⊗V1,

where the summation is taken over some set of partitions ν such that |ν |= |λ |−1.
If u ∈V μ

0 , then
c(u⊗Xe∧ f ) =∑aνπν(u⊗ e)⊗ f ,

for some aν ∈ C. We claim that in fact all aν = 0. Indeed, assume aν �= 0. Let
u= πλ (u1⊗·· ·⊗un)∈V λ

0 for some linearly independent isotropic mutually orthog-
onal u1, . . . ,un. For any e ∈ V0 linearly independent of u1, . . . ,un and any non-zero
f ∈ V1, we have c(u⊗Xe∧ f ) �= 0. But then the annihilator of u ∈ M is not a finite
corank subalgebra, hence M is not in Tg. Contradiction.
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Thus, c(V μ
0 ⊗ g1) = 0. Let vμ ∈ V μ

0 be the highest vector. Then (vμ ,0) ∈ M is
n-invariant. Consider the submodule N ⊂M generated by (vμ ,0). By Lemma 8 N !
V μ . Therefore the exact sequence splits.

Corollary 1 The socle of Ṽ λ coincides with V λ .

Proof. Follows from Lemma 6 and 7 since Rso(Ṽ λ ) = Ṽ λ
0 .

Corollary 2
Rso(V λ ) =V λ

0 , Rsp(V λ ) =V λ⊥
1 . (3)

Proof. By Corollary 1 and Lemma 10

V λ =
⋂

ϕ∈Homg(Ṽλ ,T≤|λ |−1(V ))

Kerϕ .

Therefore Lemma 4 implies the statement.

One can prove as in [2] that Tg is antiequvivalent to the category of locally uni-
tary finite-dimensionalAg- modules. Therefore Lemma 4 implies thatTosp(∞,∞) and
Tso(∞) are equivalent abelian categories.

Define now the functors Sso :Tso(∞)→Tg and Ssp :Tsp(∞)→Tg as follows. Let
M ∈ Tso(∞) (resp. Tsp(∞)). By I(M) we denote the induced moduleU(g)⊗U(g0) M,
where we define the action of sp(∞) (resp. so(∞)) on M to be trivial. We set

Sso(M) = I(M)/(
⋂

ϕ∈Homg(I(M),T(V ))

Kerϕ),

respectively
Ssp(M) = I(M)/(

⋂
ϕ∈Homg(I(M),T(V ))

Kerϕ).

Observe that Homg(I(M),T≥n(V )) =Homg0(M,T≥n(V )) = 0 for sufficiently large
n. Thus, Sso(M) (resp. Ssp(M)) have finite length over g0 and hence lie in Tg. It is
not hard to see that Sso(M) (resp. Ssp(M)) is themaximal quotient of I(M) belonging
to Tg. Hence by Frobenius reciprocity

Homg(Sso(M),N)! Homso(∞)(M,Rso(N)),

Homg(Ssp(M),N)! Homsp(∞)(M,Rsp(N)). (4)

Proposition 1 The functors Sso (resp. Ssp) and Rso (resp. Rsp) are mutually inverse
equivalences between Tso(∞) (resp. Tsp(∞)) and Tg.

Proof. A functor F : Tg → Tso(∞) establishing an equivalence can be taken as
a composition of F1 : Ag-fmod → Tso(∞) and F2 : Tg → Ag-fmod, where F1 =
HomAg(·,T (V0)) and F2 = Homg(·,T (V )). Lemma 4 implies Rso = F1 ◦F2. Since
Sso is left adjoint to Rso by (4), Sso must be inverse of Rso by general nonsense.

The case of sp(∞) is similar.
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To prove Theorem 6 we claim the following.

Proposition 2 The functors Sso (resp. Ssp) and Rso (resp. Rsp) are equivalences of
monoidal categories.

The proof of the above Proposition amounts to showing that Rso and Rsp preserve
tensor products. It is an easy consequence of the following curious fact. We leave
its proof to the reader.

Lemma 11 Let k = gl(∞),sl(∞),so(∞),sp(∞). In the category Tk the functor of
invariants preserves tensor product. In other words, (M⊗N)k = Mk⊗Nk.

4.4 The case of gl(∞,∞)gl(∞,∞)gl(∞,∞)

The case g= gl(∞,∞) is similar to the case of osp(∞,∞). Therefore we only state the
results omitting the proofs. Recall that the even part g0 is a direct sum of two copies
of gl(∞). Let k=V0⊗(V0)∗ and l=V1⊗(V1)∗. We define the functors Rk :Tg→Tk,
Rl : Tg→ Tl by Rk(M) = Ml, Rl(M) = Mk and S : Tgl(∞)→ Tgl(∞|∞) by

S(M) = I(M)/(
⋂

ϕ∈Hom(I(M),T(V⊕V∗))
Kerϕ ,

where I(M) =U(g)⊗U(g0) M.
It is not hard to see that S is left adjoint to Rk and Rl.

Theorem 7 The functors Rk and S establish an equivalence of monoidal categories
Tgl(∞,∞) and Tgl(∞).

Note that the composition S◦Rl : Tk→ Tl defines an autoequivalence of the cat-
egory Tgl(∞) that sends V

λ ,μ →V λ⊥,μ⊥ .

4.5 The case of PPP(((∞∞∞)))

It turns out that for g= P(∞) the category Tg is also equivalent to Tso(∞) and hence
to Tsp(∞) and Tosp(∞|∞). However, the proof is different in this case.

We claim that any module M in Tg can be equipped with Z-grading M =
⊕

Mk

such that giMk ⊂ Mk+2i. Indeed, note that any simple g0-subquotient of M is iso-
morphic V λ ,μ

0 , and we assign to it degree |λ |− |μ|.
Define a functor R : Tg→ Tg0 by

R(M) = Mg1 .

Lemma 12 (a) For any M ∈ Tg, R(M) �= 0.
(b) If M is simple then R(M) is simple.
(c) If R(M)! R(L) for two simple M,L ∈ Tg, then M ! L.

Proof. SinceM has finite length over g0 there exists a maximal k such thatMk �= 0.
Then g1(Mk)⊂Mk+2 = 0. That proves (a).
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(b) Let k be maximal such that Mk �= 0. If N is a proper submodule in Mk, then
U(g)N =U(g−1)N is a proper submodule inM since (U(g)N)k = N. ThereforeMk

is a simple g0-module. If R(M)i �= 0 for some i < k, then U(g)(R(M)i) is a proper
non-zero submodule in M. Hence if M is simple, then R(M) = Mk is simple.

(c) It is clear that bothM and L are simple quotients of the parabolically induced
module U(g)⊗U(g0⊕g1) R(M). But the latter has a unique simple quotient. Hence
(c).

Lemma 13 Let M ∈ Tg.
(a) If V λ

0 ⊂M is an embedding of g0-modules, then V λ
0 ⊂ R(M).

(b) Any simple submodule in R(M) is isomorphic to V λ
0 for some partition λ .

Proof. (a) Consider the map ψ : g1⊗V λ
0 →M defined by ψ(X⊗v) = Xv. Suppose

|λ |= k. Consider linearly independent u1, . . . ,uk ∈V0. Then u= πλ (u1⊗·· ·⊗uk)∈
V λ
0 is not zero. Moreover, for any w,v ∈V0 we have

ψ(Xw,v⊗u) =∑
ν
aνπν(w⊗ v⊗u)

for some ν obtained from λ by adding two boxes not in the same column and some
aν ∈ C. Note that if some aν �= 0, then for any w,v such that u1, . . . ,uk,v,w are lin-
early independent, we have ψ(Xw,v⊗ u) �= 0. But then the annihilator of v ∈ V λ

0 is
not of finite corank. Hence ψ = 0, i.e. V λ

0 ⊂ R(M).
(b) Let L be a simple g0-submodule in R(M). Then L ! socg0(V

λ
0 ⊗V μ

1 ). We
want to show that μ = 0. Assume the opposite. Consider the g0-homorphism ψ :
L⊗g−1→M given by ψ(w⊗X) = X(w) for all X ∈ g−1,w ∈ L. Since the annihi-
lator of any vector inM has finite corank we have

ψ(socg0(L⊗g−1)) = 0. (5)

Let w ∈ L be of the form

w = πλ (v1⊗·· ·⊗ vn)⊗πμ(u1⊗·· ·⊗um),

where vi ∈V0,u j ∈V1 are linearly independent, n = |λ |,m = |μ |, (vi,u j) = 0 for all
i≤ n, j≤m. Let f1, f2 ∈V1 be orthogonal to v1, . . . ,vn and linearly independent with
u1, . . . ,um. By (5)

ψ(w⊗Xf1, f2) = Xf1, f2(w) = 0. (6)

Let e ∈V0. Then for any v ∈V0,u ∈V1 we have
[Xe,e,Xf1, f2 ](v) = 2(( f1,v)( f2,e)− ( f2,v)( f1,e))e,
[Xe,e,Xf1, f2 ](u) = 2(e,u)(( f1,e) f2− ( f2,e) f1).

(7)

Pick up e ∈V0, f1, f2 ∈V1 such that (e, f1) = 1,(e, f2) = 0, (e,u1) = 1 and (e,ui) =
0 for i > 1. Then by (6) [Xe,e,Xf1, f2 ](w) = 0 and by (7)

[Xe,e,Xf1, f2 ](w) = 2πλ (v1⊗·· ·⊗ vn)⊗πμ( f2⊗u2⊗·· ·⊗um) �= 0.

Contradiction.
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Corollary 3 For any simple M ∈ Tg, R(M)!V λ
0 for some λ .

We use the notation V λ for the simple M ∈ Tg with R(M) =V λ
0 .

We will prove now that V⊗n is injective in Tg. Consider the action of Sn on V⊗n
such that an adjacent transposition σi,i+1 acts by

σi,i+1(v1⊗·· ·⊗ vn) = (−1)p(vi)p(vi+1)v1⊗·· ·⊗ vi+1⊗ vi⊗·· ·⊗ vn.

This action commutes with the action of g.

Proposition 3 (a) R(V⊗n) = (V0)⊗n;
(b) socV⊗n =U(g0)(V⊗n0 );
(c) Endg(V⊗n) = Endg0(V

⊗n
0 ) = C[Sn];

(d) V⊗n =
⊕
|λ |=n Ṽ

λ ⊗Yλ , where Yλ is the irreducible Sn-module associated to λ
and Ṽ λ is an indecomposable module with socle V λ .

Proof. (a) Consider V⊗n as a g0-module. It splits into indecomposable sumands
V0μ ⊗V1ν with |μ |+ |ν |= n. Hence the statement follows from Lemma 13(b)

(b) ByLemma 12(a) and (a) eachV μ
0 ⊂V⊗n0 generates a simple submodule. There-

fore (b) follows from (a).
(c) The restriction map: Endg(V⊗n)→ Endg0(V

⊗n
0 ) =C[Sn]; is obviously surjec-

tive. We claim that the quotient of V⊗n by the socle can have only simple subquo-
tients V μ for |μ | < n. Indeed, if V μ is a simple subquotient of V⊗n, then V μ

0 is a
simple g0-subquotient of V⊗n. Hence |μ | ≤ n. On the other hand, if |μ | = n, then
V μ
0 ⊂ V⊗n0 ⊂ socV⊗n. Therefore any ϕ ∈ Endg(V⊗n) that kills the socle must be

zero. That implies injectivity of the restriction map.
(d) is a consequence of (c) and (b).

Note that (b) also implies

Corollary 4 If Homg(V⊗n,V⊗m) �= 0, then n−m is non-negative even.

Lemma 14 Let M ∈ Tg, V λ
0 ⊂ R(M) generates M, then M !V λ .

Proof. Let |λ |= n. Consider the parabolically inducedmoduleK =U(g)⊗U(g0⊕g1)
V λ
0 . We have an isomorphism K ! Λ(g−1) ⊗ V λ

0 of g0-modules. Let N0 =
socg0(g−1 ⊗V λ

0 ). First, we show that g1(N0) = 0. For this we fix the Borel sub-
algebra of g0 such that all tensor modules are highest weight modules (see [2] and
Sect. 3). If v ∈ V λ

0 is a highest vector, Y ∈ g−1 is a highest vector with respect to
the adjoint action of g0, then Y ⊗ v generates N0 (as a g0-module). Let X ∈ g1, then
X(Y ⊗v) = 1⊗ [X ,Y ]v. By a straightforward check [X ,Y ]v= 0. Thus, g1(Y ⊗v) = 0
and hence the whole N0 is annihilated by g1.

Now let N ⊂ K be the submodule generated by N0 and Q = K/N. Let π : K→ Q
denote the natural projection. Note that the annihilator of π(1⊗v) is of finite corank.
SinceU(g)π(1⊗v) =Q,Q satisfies (1) and (2). Note thatM is a quotient of K. Con-
sider the natural projection σ : K → M. If σ(N0) �= 0, then Zσ(1⊗ v) �= 0 for any
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Z ∈ g−1, that contradicts our assumption M ∈ Tg, as σ(1⊗ v) does not have the
annihilator of finite corank. Hence σ(N0) = 0 and therefore M is a quotient of Q.

Note that although K /∈ Tg, it is still equipped with the Z-grading such that
Kn−2k = Λ k(g−1)⊗V λ

0 . Hence both N and Q are also graded. We claim that for
all μ and k > 0

Homg0(V
μ
0 ,Qn−2k) = 0. (8)

Indeed, Nn−2k is generated by Λ k−1(g−1)(Y ⊗ v) over g0. Any weight vector in
Λ k−1(g−1)(Y ⊗v) has weight ∑aiεi with at least two negative ai and hence belongs
to soc2k−1g0

Kn−2k. But then

Nn−2k ⊂ soc2k−1g0
Kn−2k.

Therefore we have an embedding of g0-modules

socg0Q
n−2k ⊂ (soc2kg0K

n−2k)/Nn−2k.

All g0-simple subquotients of soc2kg0K
n−2k are of the form socg0(V

μ
0 ⊗V ν

1 ) with
|ν | ≥ 1. Hence (8).

Now we can prove that Q is simple and hence isomorphic to V λ . Indeed, it is
equivalent to proving that R(Q) =V λ

0 . Suppose the latter is false, i.e. R(Q)n−2k �= 0
for some k > 0. By Lemma 13(a) there exists μ such that V μ

0 ⊂ R(Q)n−2k. But this
contradicts (8).

Theorem 8 Ṽ λ is the injective hull of V λ in Tg.

Proof. It suffices to prove that any exact sequence in Tg of the form

0→ Ṽ λ →M→V μ → 0

splits. Since Ṽ λ is injective in Tg0 the sequence splits over g0. In particular, we have
an embeddingV μ

0 ⊂M of g0-modules. By Lemma 13(a)V μ
0 ⊂ R(M). By Lemma 14

V μ
0 generates V μ ⊂M. Hence the statement.

The above theorem and Proposition 3(d) imply

Corollary 5 V⊗n is injective in Tg.

Recall that Ag denotes the subalgebra of all bounded operators in Endg(T (V )).
Theorem 8 implies

Corollary 6 Tg is antiequivalent to the category of locally unitary finite-dimensio-
nal modules over Ag.

By Corollary 4 we have a Z-grading

Ag =
⊕
i≥0

A i
g, A i

g =
⊕
n≥0

Homg(V⊗n,V⊗n−2i).
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By Proposition 3
A 0
g =

⊕
n≥0
C[Sn].

For any 1≤ i < j ≤ n define τni j ∈ Homg(V⊗n,V⊗n−2) by the formula

τni j(v1⊗·· ·⊗ vn) = (−1)s(vi,v j)v1⊗·· ·⊗ v̂i⊗·· ·⊗ v̂ j⊗·· ·⊗ vn,

where s = (p(vi)+ p(v j))(p(v1)+ · · ·+ p(vi−1))+ p(v j)(p(vi+1)+ · · ·+ p(v j−1)).

Lemma 15 {τni j} for all n > 1 and 1≤ i < j ≤ n form a basis in A 1
g .

Proof. It is sufficient to show that for a fixed n, the set {τni j} for all 1 ≤ i < j ≤ n

is a basis in Homg(V⊗n,V⊗n−2). Linear independence is straightforward. To prove
that {τni j} span Homg(V⊗n,V⊗n−2) consider the homomorphism

ρ : Homg(V⊗n,V⊗n−2)→ Homg0((V
⊗n)n−2,(V⊗n−2)n−2)

defined by restriction to the n−2-th graded component. Since (V⊗n−2)n−2 =V⊗n−20
generates the socle of V⊗n−2, this homomorphism is injective. Write

(V⊗n)n−2 =
n⊕

k=1

Mk,

where Mk =V⊗k−10 ⊗V1⊗V⊗n−k0 . Any ψ ∈ Homg0((V
⊗n)n−2,V⊗n−20 ) can be writ-

ten in the form ∑aklθ l
k where θ

l
k :Mk→V⊗n−20 is the restriction of τnkl toMk if k < l

or τnlk if k > l. If ψ lies in the image of ρ , then ψ = ρ(φ) and therefore

ψ(Xf1, f2(v1⊗·· ·⊗ vn)) = Xf1, f2φ(v1⊗·· ·⊗ vn) = 0 (9)

for any v1, . . . ,vn, f1, f2 ∈V0. Choose v1, . . . ,vn ∈V0, f1, f2 ∈V1 so that (vi, f1)= 0 for
any i �= k, (vi, f2) = 0 for any i �= l, (vk, f1) = (vl , f2) = 1. Then (9) implies akl = alk.
Therefore ψ = ρ(∑k<l aklτnkl). The result follows now from injectivity of ρ .

Lemma 16 Let λ+ (resp. λ−) denote the set of all μ obtained from λ by adding
(resp. removing) one box. Then we have the following exact sequence

0→
⊕
ν∈λ+

V ν →V λ ⊗V →
⊕
μ∈λ−

V μ → 0.

Proof. Assume |λ |= n. From embedding V λ ⊗V ⊂V⊗n+1 we have

R(V λ ⊗V ) =V λ
0 ⊗V0 =

⊕
ν∈λ+

V ν
0 .

Let M be the submodule in V λ ⊗V generated by R(V λ ⊗V ). Then M =
⊕

ν∈λ+V ν

by Lemma 14 and Pierri rule. Let S= (V λ ⊗V )/M and π :V λ ⊗V → S be the natural
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projection. Then S is generated by π(V λ
0 ⊗V1). Moreover, π(V λ

0 ⊗V1) ⊂ R(S). By
Lemma 13(b) and [5]

π(V λ
0 ⊗V1)⊂

⊕
μ∈λ−

V μ
0 .

To see that
π(V λ

0 ⊗V1) =
⊕
μ∈λ−

V μ
0

observe that the set {τn+1
j,n+1|1 ≤ j ≤ n} spans Homg0(V

λ
0 ⊗ V1,V

n−1
0 ). Since

τn+1
j,n+1(M) = 0 for all j ≤ n we have

M∩ (V λ
0 ⊗V1)⊂ socg0(V

λ
0 ⊗V1)

Now the statement follows from Lemma 14.

Lemma 17

socV⊗n =
⋂

ϕ∈Homg(V⊗n,V⊗n−2)
Kerϕ =

⋂
1≤i< j≤n

Kerτni j.

Proof. The inclusion
socV⊗n ⊂

⋂
1≤i< j≤n

Kerτni j

is trivial since V⊗n0 ⊂ Kerτni j for all i, j and socV⊗n is generated by V⊗n0 .
We prove equality by induction in n. Let Xn =

⋂
1≤i< j≤nKerτni j. By induction

assumption we have

Xn ⊂ Xn−1⊗V = (socV⊗n−1)⊗V.

Using the previous lemma one can easily see that there is an exact sequence

0→ socV⊗n→ Xn−1⊗V → Z→ 0,

where Z is a direct sum of some V μ with |μ |= n−2. By the above exact sequence
it is sufficient to check

(socV⊗n)n−2 =
⋂

1≤i< j≤n
Kerτni j ∩ (V⊗n)n−2.

Our calculation in the proof of Lemma 15 implies that⋂
1≤i< j≤n

Kerτni j ∩ (V⊗n)n−2 = g−1V⊗n0 .

Hence the statement.

Lemma 18 Ag is generated by A 0
g and A 1

g .



Classical Lie superalgebras at infinity 199

Proof. Let ϕ ∈ Homg(V⊗n,V⊗n−2k) for k > 1. Then socV⊗n ⊂ Kerϕ . Let M =
V⊗n/socV⊗n. By Lemma 17⊕

1≤i< j≤n
τni j :V⊗n→ (V⊗n−2)⊕n(n−1)/2

defines the embeddingM ⊂ (V⊗n−2)⊕n(n−1)/2. By injectivity of V⊗n−2k there exists
ψ ∈ Homg((V⊗n−2)⊕n(n−1)/2,V⊗n−2k) such that

ϕ = ψ ◦ (
⊕

1≤i< j≤n
τni j).

Hence
ϕ = ∑

1≤i< j≤n
ψi j ◦ τni j

for some ψi j ∈ Homg(V⊗n−2,V⊗n−2k). Now the statement easily follows by induc-
tion in k.

Theorem 9 The graded algebras AP(∞) and Aso(∞) are isomorphic. Hence the cat-
egories TP(∞), Tso(∞), Tsp(∞) and Tosp are all equivalent.

It is an open problem to construct directly a functorTP(∞)→Tso(∞) that preserves
tensor product.

Finally, let us observe that we know very little about finite-dimensional represen-
tations of P(n). In particular, characters of simple modules and extensions between
simple modules are unknown. On the other hand, in TP(∞) these questions are easy
to answer. Is it possible to use information about representations of P(∞) to make
some progress in the finite-dimensional case?

5 The case of the queer Lie superalgebra QQQ(((nnn)))

5.1 Sergeev duality

In this section we assume g= Q(∞). Let us recall the analogue of Schur–Weyl du-
ality result in this case. It is due to Sergeev [7].

Let Hn be the semidirect product of C[Sn] and the Clifford algebra Cliffn with
generators pi, i = 1, . . . ,n satisfying the relations

p2i =−1, pip j + p j pi = 0.

Define the action of Hn on V⊗n as follows

si,i+1(v1⊗·· ·⊗vi⊗vi+1⊗·· ·⊗vn) = (−1)p(vi)p(vi+1)(v1⊗·· ·⊗vi+1⊗vi⊗·· ·⊗vn),

pi(v1⊗·· ·⊗ vi⊗·· ·⊗ vn) = (−1)p(v1)+···+p(vi−1)(v1⊗·· ·⊗ J(vi)⊗·· ·⊗ vn).
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One can show (see [7]) that Hn !Un⊗Cliffn for a certain finite-dimensional al-
gebra Un. The category of finite-dimensional representations of Un is equivalent to
the category of projective representations of Sn. Irreducible representations ofUn are
enumerated by strict partitions.

Theorem 10 ([7]) Hn is the centralizer of Q(∞) in V⊗n. There is a decomposition

V⊗n =
⊕

2−δ (λ )V λ ⊗Tλ ,

here summation is taken over all strict partitions of size n, Tλ is the irreducible
Hn-module corresponding to the strict partition λ , δ (λ ) is the parity of the length
of λ .

The coefficient 2−δ (λ ) appears in the case when dimEndQ(∞)(Vλ ) = (1|1). For
example, the second tensor power of the standard representation V has a decompo-
sition

V ⊗V = S2(V )⊕Λ 2(V ).

But S2(V )!Λ 2(V ) asQ(∞)-modules because p1p2(S2(V )) =Λ 2(V ). There is only
one strict partition λ = (2,0, . . . ,0) of size 2, δ (λ ) = 1. The reader will check that
H2 has an irreducible 4-dimensional module (in the category ofZ2-graded modules).

5.2 The category TQ(∞)TQ(∞)TQ(∞)

Let us consider the mixed tensor module

T =
⊕
m,n≥0

V⊗n⊗V⊗m∗

We claim that T is an injective cogenerator in the category TQ(∞).

Lemma 19

V⊗n⊗V⊗m∗ =
⊕

|λ |=n,|μ|=m

2−max(δ (λ ),δ (μ))Ṽ λ ,μ ⊗ (Tλ �Tμ),

where Ṽ λ ,μ is an indecomposable injective module in Tg with simple socle V λ ,μ .

Define the graded subalgebraAQ(∞)⊂EndQ(∞)(T ) generated by
⊕

n,m≥0Hn⊗Hm

and all contractions in HomQ(∞)(V⊗n⊗V⊗m∗ ,V⊗n−1⊗V⊗m−1∗ ).

Conjecture Let g= Q(∞).

• V λ ,μ (for pairs of strict partitions (λ ,μ)) are all up to isomorphism simple objects
in Tg.

• Ṽ λ ,μ are all up to isomorphism indecomposable injective objects in Tg.
• Ag is a direct limit of self-dual Koszul rings.
• Tg is antiequivalent to the category of finite dimensional (locally unitary) Ag-

modules.
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• The socle filtration of Ṽ λ ,μ is given by

sock(Ṽ λ ,μ) =
⊕
|γ|=k

Rλ
γ,λ ′R

μ
γ,μ ′V

λ ′,μ ′ .

Here Rλ
γ,λ ′ stand for the Littlewood–Richardson coefficients for the Lie superal-

gebra Q(∞).

Note that an analogue of Howe, Tan, Willenbring result for Q(N) for N >> 0 is
difficult to get since there is no complete reducibility. On the other hand, even if we
had such result, it is unclear how to proceed to ∞, because we “loose” some simple
constituents at ∞.

For instance, SQ(n) has a one dimensional center for every n but

SQ(∞) = lim→ SQ(n)

is simple.
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Classical W-algebras within the theory of
Poisson vertex algebras

Daniele Valeri

Abstract We review the Poisson vertex algebra theory approach to classical W-
algebras. First, we provide a description of the Drinfeld-Sokolov Hamiltonian re-
duction for the construction of classicalW-algebras within the framework of Poisson
vertex algebras andwe establish, under certain sufficient conditions, the applicability
of the Lenard-Magri scheme of integrability and the existence of the corresponding
integrable hierarchy of bi-Hamiltonian equations. Then we provide a Poisson vertex
algebra analogue of the Gelfand-Dickey construction of classicalW-algebras and we
show the relations with the Drinfeld-Sokolov Hamiltonian reduction. It will be also
shown that classical W-algebras are the Poisson vertex algebras which are of interest
from the conformal field theory point of view.

1 Introduction

Classical (also quantum)W-algebras appear in many areas of mathematics andmath-
ematical physics. One of the first appearance of W-algebras as mathematical objects
is related to the conformal field theory. The main problem of the conformal field the-
ory is a description of fields having conformal symmetry. Only in dimension two,
the group of conformal diffeomorphisms is rich enough to give rise to a meaningful
theory.

After the fundamental paper by Belavin, Polyakov and Zamolodchikov [3] it was
realized by Zamolodchikov [19] that extended symmetries in two dimensional con-
formal field theory in general do not give rise to algebras with linear defining rela-
tions. He constructed the so-called W3-algebra, which is an extension of the Vira-
soro algebra obtained adding one primary field of conformal weight 3. Later, this
construction was generalized by Fateev and Lukyanov [12] to construct what are
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known as Wn-algebras. Roughly speaking, these algebras are non-linear extensions
of the Virasoro algebra obtained by adding primary fields.

The key point in the construction of the algebras Wn by Fateev and Lukyanov
was the relation between W -algebras and integrable systems. They identified the
Wn-algebras with the so-called second Poisson structure of the n-th (or generalized)
Korteweg-de Vries (KdV) type equation (the KdV equation corresponds to n = 2).

These Poisson structures are known as Gelfand-Dickey algebras [15] and are ob-
tained as Poisson algebras of local functionals on a suitable space of differential op-
erators. More general, one can consider the larger space of pseudodifferential oper-
ators. The corresponding Poisson structure is related to the Kadomtsev-Petviashvili
(KP) equation and the n-th KdV equations can be obtained with a reduction proce-
dure from the equations of the KP hierarchy (see the lecture notes [10] for a good
reference).

The fact that classical W-algebras have in general non-linear defining relations
puts them outside of the scope of the Lie algebra theory. However, the deep connec-
tion with Lie algebras reveals in the seminal paper by Drinfeld and Sokolov [11]: a
classical W-algebra is associated to a simple Lie algebra and its principal nilpotent
element slightly modifying the general scheme of the Hamiltonian reduction by a
group action. Moreover, they constructed an integrable hierarchy of bi-Hamiltonian
equations related to this classical W-algebra.

In [2], Barakat, De Sole and Kac explained the relation between Poisson vertex
algebras and Hamiltonian equations and proved that Poisson vertex algebras pro-
vide a very convenient framework to study Hamiltonian systems (in particular bi-
Hamiltonian systems).

These tools were used in [18] to develop the theory of classical W-algebras in
the Poisson vertex algebra framework. This leads to a better understanding of the
Poisson structure underlying classical W-algebras and to a generalization of results,
both in Gelfand-Dickey and Drinfeld-Sokolov approach (see [7]), to the study of in-
tegrability of Hamiltonian equations. The aim of this paper is to review the Poisson
vertex algebra theory approach to classical W-algebras.

The paper is organized as follows. In Sect. 2 we review, following [2], the ba-
sic definitions and notations of the Poisson vertex algebra theory and its application
to the theory of integrable bi-Hamiltonian equations. As the main application, we
show how to apply successfully the Lenard-Magri scheme of integrability for the
affine Poisson vertex algebras.

Section 3 is mainly devoted to present the definition of classical W-algebras in
the Poisson vertex algebra framework. First, we review the results of [7] about the
description of the Drinfeld and Sokolov Hamiltonian reduction using the Poisson
vertex algebra theory. We will show that the Drinfeld-Sokolov Hamiltonian group
action on the phase space is encoded by (the exponential of) a Lie conformal alge-
bra action on a suitable differential subalgebra of the affine Poisson vertex algebra
and we will give sufficient conditions in order to apply successfully the Lenard-
Magri scheme of integrability. Finally, we show how to define a Poisson vertex al-
gebra analogue of the Gelfand-Dickey approach to classicalW-algebras andwe show
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how this construction is related to the Drinfeld-Sokolov Hamiltonian reduction ap-
proach.

2 Poisson vertex algebras and Hamiltonian equations

In this section we review the connection between Poisson vertex algebras and the
theory of Hamiltonian equations as laid down in [2]. As the main application we
explain how to use the Lenard-Magri scheme of integrability in order to get an inte-
grable hierarchy of the Hamiltonian equations for affine Poisson vertex algebras.

2.1 Poisson vertex algebras

By a differential algebra we mean a unital commutative associative algebra V over
C with a derivation ∂ , that is a C-linear map from V to itself such that, for a,b ∈ V

∂ (ab) = ∂ (a)b+a∂ (b) .

In particular ∂1 = 0.

Definition 1 Let V be a differential algebra. A λ -bracket on V is a C-linear map
V ⊗V → C[λ ]⊗V , denoted by f ⊗ g→ { fλg}, satisfying sesquilinearity ( f ,g ∈
V ):

{∂ fλg}=−λ{ fλg}, { fλ ∂g}= (λ +∂ ){ fλg} , (1)

and the left and right Leibniz rules ( f ,g,h ∈ V ):

{ fλgh} = { fλg}h+{ fλh}g,
{ f hλg} = { fλ+∂g}→h+{hλ+∂g}→ f ,

where we use the following notation: if { fλg}= ∑n∈Z+ λ ncn, then

{ fλ+∂g}→h = ∑
n∈Z+

cn(λ +∂ )nh ∈ V [λ ] .

We say that the λ -bracket is skew-symmetric if

{gλ f}=−{ f−λ−∂g} , (2)

where, now, { f−λ−∂g}=∑n∈Z+(−λ −∂ )ncn (if there is no arrow we move ∂ to the
left).

Definition 2 A Poisson vertex algebra is a differential algebra V endowed with a
λ -bracket which is skew-symmetric and satisfies the following Jacobi identity in
V [λ ,μ ] ( f ,g,h ∈ V ):

{ fλ{gμh}}−{gμ{ fλh}}= {{ fλg}λ+μh} . (3)
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In this paper we consider Poisson vertex algebra structures on an algebra of differ-
ential polynomials V in the variables {ui}i∈I :

V = C[u(n)
i | i ∈ I,n ∈ Z+] ,

where ∂ is the derivation defined by ∂ (u(n)
i ) = u(n+1)

i , i ∈ I,n ∈ Z+. In this case,
thanks to sesquilinearity and Leibniz rules, the λ -brackets {uiλu j}, i, j ∈ I, com-
pletely determine the λ -bracket on the whole differential algebra V as stated by the
following theorem.

Theorem 1 ([2, Theorem 1.15]) Let V be an algebra of differential polynomials
in the variables {ui}i∈I , and choose {uiλu j} ∈ C[λ ]⊗V , i, j ∈ I.

(a) The Master Formula

{ fλg}= ∑
i, j∈Im,n∈Z+

∂g

∂u(n)
j

(λ +∂ )n{uiλ+∂u j}→(−λ −∂ )m
∂ f

∂u(m)
i

(4)

defines a λ -bracket on V with given {uiλu j}, i, j ∈ I.
(b) The λ -bracket (4) on V satisfies the skew-symmetry condition (2) provided that

the same holds on generators (i, j ∈ I):

{uiλu j}=−{u j−λ−∂ui} , (5)

(c) Assuming that the skew-symmetry condition (5) holds, the λ -bracket (4) satisfies
the Jacobi identity (3), thus making V a Poisson vertex algebra, provided that
the Jacobi identity holds on any triple of generators (i, j,k ∈ I):

{uiλ {u jμ uk}}−{u jμ {uiλ uk}}= {{uiλu j}λ+μuk} . (6)

In Sect. 3 we will define classical W -algebras in terms of representations of Lie
conformal algebras. Let us recall here the definitions [16].

Definition 3 (a) A Lie conformal algebra is a C[∂ ]-module R with a C-linear map
{·λ ·} : R⊗R→ C[λ ]⊗R satisfying (1), (2) and (3).

(b) A representation of a Lie conformal algebra R on aC[∂ ]-module V is a λ -action
R⊗V →C[λ ]⊗V , denoted a⊗g �→ aρ

λ g, satisfying sesquilinearity, (∂a)
ρ
λ g=

−λaρ
λ g, a

ρ
λ (∂g) = (λ + ∂ )aρ

λ g, and Jacobi identity aρ
λ (bρ

μ g)− bρ
μ (aρ

λ g) =
{aλb}ρλ+μ g (a,b ∈ R, g ∈ V ).

2.2 Affine Poisson vertex algebras

Let g be a Lie algebra over C with a non-degenerate symmetric invariant bilinear
form κ , and let s be an element of g. The affine Poisson vertex algebra V (g,κ,s), as-
sociated to the triple (g,κ,s), is the algebra of differential polynomialsV = S(C[∂ ]g)
(where C[∂ ]g is the free C[∂ ]-module generated by g and S(R) denotes the symmet-
ric algebra over the C-vector space R) together with the λ -bracket given by

{aλb}z = [a,b]+κ(a | b)λ + zκ(s | [a,b]) for a,b ∈ g ,z ∈ C . (7)
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It is easy to check that skew-symmetry condition (2) holds for any pair of elements
of g and Jacobi identity holds for any triple of elements of g. Hence, by Theorem 1,
we can extend the λ -bracket (7) to the whole differential algebra V using the Master
Formula (4). We want to emphasize the fact that we have a one-parameter family of
λ -brackets if we think at z as a parameter (this will be useful in the applications to
the theory of integrable bi-Hamiltonian equations). Indeed, for any a,b ∈ g, we can
write {aλb}z = {aλb}0− z{aλb}∞, where

{aλb}0 = [a,b]+κ(a | b)λ and {aλb}∞ =−κ(s|[a,b]) . (8)

Let {ui}i∈I be a basis of g (hence, as a differential algebra, V =C[u(n)
i | i ∈ I,n ∈

Z+]) and let {ui}i∈I be the dual basis with respect to κ , namely κ(ui | u j) = δi j, for
all i, j ∈ I. Let us consider the following element of V :

L =
1
2∑i∈I

uiu
i +∂x ∈ V , (9)

where x ∈ g, and let a ∈ g be such that [x,a] = ma, for m ∈ C. Then, it is an easy
exercise in λ -bracket calculus to prove that

{Lλa}z = (∂ +(1−m)λ )a−κ(a | x)λ 2− z([s,a]+mκ(s | a)λ ) , (10)

{LλL}z = (∂ +2λ )L−κ(x | x)λ 3− z(∂ +2λ )[s,x] . (11)

2.3 Poisson vertex algebras of conformal field theory type

Definition 4 Let V be a Poisson vertex algebra. An element L ∈ V is called a Vira-
soro element of central charge c ∈ C if

{LλL}= (∂ +2λ )L+ cλ 3 .

An element a ∈ V is called an L-eigenvector of conformal weight Δa ∈ C if

{Lλa}= (∂ +Δaλ )a+O(λ 2) .

It is called a primary element of conformal weight Δa if {Lλa}= (∂ +Δaλ )a.

Definition 5 A Poisson vertex algebra is of conformal field theory type if, as a dif-
ferential algebra, it is an algebra of differential polynomials in a Virasoro element
and some primary elements.

Let us assume that the element x ∈ g appearing in (9) is semisimple. Then, we have
the adx-eigenspace decomposition g=⊕m∈Cgm. By (11), we see that L is a Virasoro
element (for the z = 0 λ -bracket) and by (10) that any element a ∈ gm is a primary
element (for the z = 0 λ -bracket) of conformal weight Δa = 1−m, provided that
κ(a | x) = 0.
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2.4 Hamiltonian equations

The relation between Poisson vertex algebras and systems of Hamiltonian equations
is based on the following simple observation.

Proposition 1 Let V be a Poisson vertex algebra. The 0-th product on V induces
a well defined Lie algebra bracket on the quotient space V

/
∂V :

{∫ f ,∫ g}=
∫ { fλg}|λ=0 , (12)

where
∫
: V → V

/
∂V is the canonical quotient map. Moreover, we have a well

defined Lie algebra action of V
/
∂V on V by derivations of the commutative asso-

ciative product on V , commuting with ∂ , given by

{∫ f ,g}= { fλg}|λ=0 .

This motivates the following definition.

Definition 6 Let V be a Poisson vertex algebra.

(a) Elements of V
/
∂V are called local functionals.

(b) Given a local functional
∫
h ∈ V

/
∂V , the corresponding Hamiltonian equation

is
du
dt

= {∫ h,u} (13)

(c) A local functional
∫
f ∈ V

/
∂V is called an integral of motion of equation (13)

if
∫
h and

∫
f are in involution:

{∫ h,∫ f}= 0 .

(d) Equation (13) is called integrable if there exists an infinite sequence
∫
f0 =∫

h,
∫
f1,
∫
f2, . . . , of linearly independent integrals of motion in involution,

namely such that

{∫ fn,∫ fm}= 0, for all n,m ∈ Z+.

The corresponding integrable hierarchy of Hamiltonian equations is

du
dtn

= {∫ fn,u}, n ∈ Z+ . (14)

2.5 Compatible Poisson vertex algebras and Lenard-Magri scheme
of integrability

Definition 7 Two λ -brackets on a differential algebra V , say {·λ ·}0 and {·λ ·}∞,
are compatible if any their C-linear combination defines a Poisson vertex algebra
structure on V .

Remark 1 For affine Poisson vertex algebras defined in Sect. 2.2, the λ -brackets
{·λ ·}0 and {·λ ·}∞ given by (8) are compatible.
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Let V be an algebra of differential polynomials in the variables {ui}i∈I endowed
with two compatible λ -brackets {·λ ·}0 and {·λ ·}∞. According to the Lenard-Magri
scheme of integrability [17] (see also [2]), in order to obtain an infinite sequence of
integrals of motion, one needs to find a sequence { fn}n∈Z+ ⊂ V such that

{ fnλui}0|λ=0 = { fn+1λui}∞|λ=0 , for all n ∈ Z+, i ∈ I . (15)

Indeed, if this is the case, it follows easily that the elements
∫
fn, n ∈ Z+, form an

infinite sequence of local functionals in involution: {∫ fm,
∫
fn}0 = {∫ fm,

∫
fn}∞ = 0,

for all m,n ∈ Z+. According to Definition 6(d), we get the corresponding integrable
hierarchy of Hamiltonian equations (14) (in fact bi-Hamiltonian) provided that the
local functionals

∫
fn, n ∈ Z+, span an infinite dimensional subspace of V

/
∂V .

2.6 Application of the Lenard-Magri scheme of integrability for
affine Poisson vertex algebras

As an application of the Lenard-Magri scheme of integrability, we construct inte-
grable hierarchies of bi-Hamiltonian equations (13) for affine Poisson vertex alge-
bras defined in Sect. 2.2

Let g be a finite-dimensional Lie algebra with a non-degenerate symmetric in-
variant bilinear form κ , let s be an element of g, and let V = S(C[∂ ]g). Recall from
Remark 1 that we have two compatible λ -brackets on V :

{aλb}0 = [a,b]+κ(a | b)λ and {aλb}∞ =−κ(s|[a,b]) ,

for a,b ∈ g and extended to the whole V using the Master Formula (4). Let {ui}i∈I
be a basis of g, hence V =C[u(n)

i | i ∈ I,n ∈ Z+]. According to the previous section
our goal is to find a sequence fn ∈ V , n ∈ Z+, such that the Lenard-Magri recursion
relation (15) holds. We will do this under the assumption that s ∈ g is a semisimple
element and denote h = ker(ads) ⊂ g (it is clearly a subalgebra). By invariance of
the bilinear form κ we have that h⊥ = im(ads), and that g= ker(ads)⊕ im(ads).

Let us introduce the operator of variational derivative δ
δu :

V
/
∂V → g⊗V , de-

fined by δ f
δu = ∑i∈I ui⊗ δ f

δui
, where

δ f
δui

= ∑
n∈Z+

(−∂ )n
∂ f

∂u(n)
i

,

for any i∈ I and f ∈V (it is easy to prove that δ
δu ◦∂ = 0). Then, using the generating

series

F(z) = ∑
n∈Z+

δ fn
δu

z−n

it is shown in [7] that solving (15) is equivalent to solve the following equation:

[L(z),F(z)] = 0, [s⊗1,F0] = 0 , (16)
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(here F0 = δ f0
δu ) where L(z) = ∂ +∑i∈I ui⊗ ui + zs⊗ 1, with {ui}i∈I being the dual

basis with respect to κ , and the commutator is extended to g⊗V in the obvious way
(and componentwise to (g⊗V )((z−1))).

The solution of the above problem will be achieved in Propositions 2 and 3 below
(due to Drinfeld and Sokolov [11]) which are a short reformulation of Propositions
2.3 and 2.4 of [7] (where one can find further details). Proposition 2 shows us how
to construct a series F(z) = ∑n∈Z+ Fnz

−n ∈ (g⊗V ) [[z−1]] which satisfies (16) and

Proposition 3 shows that, for any n ∈ Z+, Fn = δ fn
δu , for some fn ∈ V .

Proposition 2 There exist formal series U(z) ∈ (g⊗V )[[z−1]]z−1 and h(z) ∈ (h⊗
V )[[z−1]] such that

L0(z) = eadU(z)(L(z)) = ∂ + zs⊗1+h(z) . (17)

Let a∈ Z(h) (the center of h), and letU(z)∈ (g⊗V )[[z−1]]z−1, h(z)∈ (h⊗V )[[z−1]]
solve equation (17). Then

F(z) = e−adU(z)(a⊗1) ∈ (g⊗V )[[z−1]] (18)

solves (16), namely [s⊗1,F0] = 0 and [L(z),F(z)] = 0.

Proposition 3 LetU(z)∈ (g⊗V )[[z−1]]z−1 and h(z)∈ (h⊗V )[[z−1]] be a solution
of equation (17). Then the formal power series F(z)∈ (g⊗V )[[z−1]] defined in (18)
(where a ∈ Z(h)) satisfies F(z) = δ f (z)

δu , where∫
f (z) =

∫
κ(a⊗1 | h(z)) ∈ V

/
∂V [[z−1]] .

According to the discussion of Sect. 2.5 we found a sequence of local functionals∫
fn ∈ V

/
∂V in involution. In order to get an integrable hierarchy of Hamiltonian

equations (14) we need to show that these local functionals span an infinite dimen-
sional subspace in V

/
∂V . This is true provided that a ∈ Z(h)\Z(g). We refer to

Corollary 2.9 in [7] for the proof of this fact.

Example 1 (The N-wave equation) Let g = glN , with the bilinear form κ(A | B) =
tr(AB), and let s = diag(s1, . . . ,sN) be a diagonal matrix with distinct eigenvalues.
Then h= ker(ads) is the abelian subalgebra of diagonal N×N matrices, and h⊥ =
im(ads) consists of N×N matrices with zeros along the diagonal. Let {Ei j}Ni, j=1 be
the basis of glN given by elementary matrices.

It is possible to compute recursively the Hamiltonian functionals in involution
associated to the non-scalar element a= diag(a1, . . . ,aN)∈ Z(h) = h. The first three
of them are (the terms with zero denominator are dropped from the sums):∫

f0 =
∫
∑
k

akEkk,
∫

f1 =
∫
∑
k,α

akEkαEαk
sk− sα

,∫
f2 =

∫
∑

α,β ,k

akEkαEαβEβk

(sk− sα)(sk− sβ )
−∑

α,k

ak
(
EkαE ′αk +EkαEαkEkk

)
(sk− sα)2

.
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The first two equations of the corresponding hierarchy of bi-Hamiltonian equations
(14) are (1≤ i, j ≤ N):

dEi j

dt0
= (ai−a j)Ei j,

dEi j

dt1
= γi jE ′i j +∑

k

(γik− γk j)EikEk j ,

where γi j = ai−a j
si−s j for i �= j and γi j = 0 for i = j. The last equation is known as the

N-wave equation.

3 Classical W-algebras

In this section we provide a description of the Drinfeld-Sokolov Hamiltonian re-
duction [11] for the construction of classical W-algebras within the framework of
Poisson vertex algebras following [7]. We show how this approach is related to the
original definition of Drinfeld and Sokolov. Indeed, in this context, the gauge group
action on the phase space is translated in terms of (the exponential of) a Lie con-
formal algebra action on the space of functions. We thus obtain two compatible
λ -brackets for classical W-algebras, that we will use to apply successfully (under
some futher assumptions) the Lenard-Magri scheme of integrability.

Finally, following [18], we want to define the Poisson vertex algebra analogue of
the Gelfand-Dickey (first and second) Hamiltonian structure on the space of (pseudo)
differential operators [10]. We show that we have an isomorphism with some clas-
sical W-algebras obtained with the Drinfeld-Sokolov Hamiltonian reduction.

3.1 Setup

Throughout the rest of the paper we make the following assumptions.
Let g be a finite-dimensional Lie algebra over the field C with a non-degenerate

symmetric invariant bilinear form κ , and let us assume that ( f ,h = 2x,e) ⊂ g is an
sl2-triple. Then we have the adx-eigenspace decomposition

g=
⊕
i∈ 1

2Z

gi . (19)

Clearly, f ∈ g−1, h ∈ g0 and e ∈ g1.
There is a well-defined skew-symmetric bilinear form ω on g 1

2
defined by

ω(a,b) = κ( f | [a,b]), a,b ∈ g 1
2
,

which is non-degenerate since ad f : g 1
2
→ g− 1

2
is bijective. We fix an isotropic

subspace l ⊂ g 1
2
(with respect to ω) and we denote by l⊥ω = {a ∈ g 1

2
| ω(a,b) =

0 for all b ∈ l} ⊂ g 1
2
its symplectic complement with respect to ω . We consider the

following nilpotent subalgebras of g:

m= l⊕g≥1 ⊂ n= l⊥ω ⊕g≥1 ,

where g≥1 =
⊕

i≥1 gi.
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3.2 The Poisson vertex algebra structure

Let us fix s ∈ g and let us consider the affine Poisson vertex algebra V (g,κ,s) (see
Sect. 2.2). We recall that, as a differential algebra, it is V (g) = S(C[∂ ]g), with λ -
bracket on generators given by (7).

We let J̃ = 〈m−κ( f | m) | m ∈ m〉V (g) be the differential ideal generated by
the elements m−κ( f | m), for m ∈m. Note that this is not a Poisson vertex algebra
ideal. Indeed, for example, if a ∈ g1 is such that κ( f | a) = 1, then a−1 lies in J̃ ,
but the coefficient of λ in { fλa−1} is 1, which does not lie in J̃ . Let us define

W̃z =
{
p ∈ V (g)

∣∣∣{aλ p}z ∈ J̃ [λ ] ∀a ∈ n
}
⊂ V (g) .

Lemma 1 (a) If p ∈ W̃z and q ∈ J̃ , then {pλq}z, {qλ p}z ∈ J̃ [λ ].
(b) W̃z ⊂ V (g) is a Poisson vertex subalgebra.
(c) If s ∈ ker(adn), then the differential subalgebra W̃z ⊂ V (g) does not depend on

z (while its Poisson vertex algebra structure depends) and J̃ ⊂ W̃z.

Proof. To prove (a) we note that any element of J̃ is a finite sum of elements of
the form r∂ i(m−κ( f |m)), with r ∈ V (g), m ∈m, and i ∈ Z+. Then we get, by the
Leibniz rule and sesquilinearity,

{pλq}z = ∑{pλ r∂ i(m−κ( f | m))}z =

= ∑{pλ r}z∂ i(m−κ( f | m))+∑r(λ +∂ )i{pλm}z ∈ J̃ [λ ] ,

since p ∈ W̃z and m ∈ m ⊂ n. From the fact that J̃ is a differential ideal, using
skew-commutativity we get also {qλ p}z ∈ J̃ [λ ].

For (b), first we prove that W̃z ⊂ V (g) is a differential subalgebra. Indeed, if
p, q ∈ W̃z and a ∈ n, we have {aλ pq}z = p{aλq}z +q{aλ p}z ∈ J̃ [λ ], proving that
pq lies in W̃ , and {aλ ∂ p}z = (λ + ∂ ){aλ p}z ∈ J̃ [λ ], proving that ∂ p lies in W̃z.
Next, we show that W̃z is closed for the λ -bracket. Let a ∈ n and p, q ∈ W̃z. By the
Jacobi identity we have

{aλ{pμq}z}z = {pμ{aλq}z}z +{{aλ p}zλ+μq}z .

By (a) both terms in the right hand side lie in J̃ [λ ,μ ]. Hence {pλq}z ∈ W̃z[λ ].
Finally, let us prove (c). The first assertion follows from the fact that, under the

assumption s ∈ ker(adn), we have {aλ p}z = {aλ p}0, for all a ∈ n and p ∈ V (g).
Hence, we are left to prove that J̃ ⊂ W̃z. By the Leibniz rule and sesquilinearity
this reduces to the fact that elements of the form m−κ( f | m), with m ∈ m, lie in
W̃z. Take a ∈ n, then

{aλm−κ( f | m)}z = {aλm}z = [a,m] ,

since, by assumption, s ∈ ker(adn). On the other hand, we have [a,m] ∈ [l, l⊥ω ]⊕(⊕ j>1g j
)⊂ J̃ , proving that m−κ( f | m) ∈ W̃z. ��
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If s ∈ ker(adn), by the above lemma, J̃ ⊂ W̃z is a Poisson vertex algebra ideal.
Hence, the quotient space has an induced Poisson vertex algebra structure.

Definition 8 The quotient Poisson vertex algebra

W = W̃z
/
J̃

is called classical W-algebra.

Remark 2 It follows from Lemma 1(c) that we have a one-parameter family of λ -
brackets on the quotient differential algebraW, if we think at z as a parameter. In liter-
ature, the name classicalW-algebra is referred to the Poisson vertex algebra structure
corresponding to the case z = 0. As we will see, though, the λ -bracket correspond-
ing to the case z=∞, plays an important role in obtaining an integrable hierarchy of
bi-Hamiltonian equations associated to the classical W-algebra.

In order to prove the equivalence with the Drinfeld-Sokolov Hamiltonian reduction
and to explore better the structure of the classical W-algebras we need to be able to
explicitly compute the induced λ -bracket in W.

3.3 Equivalence with Drinfeld-Sokolov Hamiltonian reduction

Note that, since, by assumption, [s,n] = 0,C[∂ ]n⊂V (g) is a Lie conformal subalge-
bra (see Definition 3), with the λ -bracket {aλb}z = [a,b], a,b ∈ n (it is independent
on z).

Let g = m⊕ p, where p ⊂ g≤ 1
2
is an arbitrary subspace of g complementary to

m. Consider the differential subalgebra V (p) = S(C[∂ ]p) of V (g), and denote by
ρ : V (g)� V (p), the differential algebra homomorphism defined on generators by

ρ(a) = πp(a)+κ( f | a), a ∈ g , (20)

where πp : g� p is the projection map with kernel m.

Lemma 2 (a) We have a representation of the Lie conformal algebra C[∂ ]n on the
differential subalgebra V (p)⊂ V (g) given by (a ∈ n, g ∈ V (p)):

aρ
λ g = ρ{aλg}z (21)

(note that the RHS is independent of z since, by assumption, s ∈ ker(adn)).
(b) Let W ⊂ V (p) be the subspace killed by the Lie conformal algebra action of
C[∂ ]n:

W = V (p)C[∂ ]n =
{
g ∈ V (p)

∣∣aρ
λ g = 0 for all a ∈ n} . (22)

The map {·λ ·}z,ρ : W ⊗W → C[λ ]⊗W given by

{gλh}z,ρ = ρ{gλh}z (23)

defines a Poisson vertex algebra structure on W (which is equivalent to Defini-
tion 8).



214 D. Valeri

Thus we can give the following equivalent definition.

Definition 9 The classical W-algebra is the differential algebra W defined by (22)
with the Poisson vertex algebra structure given by (23).

Remark 3 The Poisson vertex algebra W can be constructed in the same way for an
arbitrary choice of s in g (taking the Lie conformal subalgebra C[∂ ]n⊕C of V (g).
However the differential algebra W is independent of the choice of z∈C if and only
if [s,n] = 0. As already stated in Remark 2, this independence of z is very important
in constructing integrable hierarchies of bi-Hamiltonian equations, since there we
need to view z as a formal parameter.

Let us fix a basis {qi}i∈P of p. We can find an explicit formula for the λ -bracket in
W as follows. Recalling the Master Formula (4) and using (20) and the definition
(7) of the λ -bracket in V , we get (g,h ∈W ):

{gλh}z,ρ = {gλh}0,ρ − z{gλh}∞,ρ ,

where

{gλh}ε,ρ = ∑
i, j∈P

m,n∈Z+

∂h
∂q(n)

j

(λ +∂ )n{qiλ+∂q j}ε,ρ→(−λ −∂ )m
∂g

∂q(m)
i

,

with ε = {0,∞} and
{qiλq j}0,ρ = πp[qi,q j]+κ(qi | q j)λ +κ( f | [qi,q j]), (24)

{qiλq j}∞,ρ = −κ(s | [qi,q j]) , (25)

for i, j ∈ P.
In [11], Drinfeld and Sokolov defined the classical W-algebra as the subspace

W ⊂ V (p) consisting of gauge invariant differential polynomials. A gauge trans-
formation is, by definition, a change of variables formula q= (qi)i∈P �→ qa = (qai )i∈P,
for a ∈ n⊗V (p) (see [11] or [7] for a precise definition). Hence, g ∈ V (p) belongs
to W if and only if g(qa) = g(q) for all a ∈ n⊗V (p). Here and further we use the
following notation: for g∈ V (p) and r = (ri)i∈P ⊂ V (p), we let g(r) be the differen-
tial polynomial in qi obtained replacing q(m)

i by ∂mri in the differential polynomial
g.

We claim that the space of gauge invariant differential polynomials coincides
with the space W defined in (22). The key observation is that the action of the gauge
group g �→ g(qa) ∈ V (p) is obtained by exponentiating the Lie conformal algebra
action of C[∂ ]n on V (p) given by (21). This is given by the following result.

Theorem 2 For every a⊗h ∈ n⊗V (p) and g ∈ V (p), we have

g(qa⊗h) = ∑
n∈Z+

(−1)n
n!

(aρ
λ1

. . .aρ
λn g)

(∣∣
λ1=∂h

)
. . .
(∣∣

λn=∂h
)
,

where, for a polynomial p(λ1, . . . ,λn) = ∑cλ i1
1 . . .λ in

n , we denote

p(λ1, . . . ,λn)
(∣∣

λ1=∂h1
)
. . .
(∣∣

λn=∂hn
)

=∑c(∂ i1h1) . . .(∂ inhn) .
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Finally, it follows by a straightforward computation, using (24) and (25), that the
Lie algebra structure on the quotient space W

/
∂W , defined by (12), coincides with

the Lie algebra structure defined on the space of gauge invariant local functionals
in [11].

3.4 Structure of classical W-algebras

Using the description of the classical W-algebras in terms of gauge invariance, it is
possible to prove, following the ideas of Drinfeld and Sokolov, that the differential
algebra W is an algebra of differential polynomials in r = dimker(ad f ) variables,
and it is possible to provide an algorithm to find explicit generators.

Theorem 3 Assume that g f ⊂ p (this is the case, for example, if p⊂ g is compatible
with the adx-eigenspace decomposition (19)), and let {v j} j∈J is a basis of g f . Then
the differential algebra W ⊂ V (p) is the algebra of differentials polynomials in the
variables w j, j ∈ J, where wj = v j +g j ∈ V (p).
The differential polynomials g j ∈V (p) satisfy some properties of homogeneity with
respect to the conformal weight grading of V (p) (see [7]). Furthermore, it is proved
that classical W -algebras contain a Virasoro element L and a basis (as differential
algebras) of L-eigenvectors.

Proposition 4 Consider the Poisson vertex algebra W with the λ -bracket {·λ ·}z,ρ
defined by Eq. (23).

(a) There exists an element L ∈W such that the λ -bracket of L with itself is

{LλL}z,ρ = (∂ +2λ )L−κ(x | x)λ 3 +2κ( f | s)zλ .

In particular, L ∈ W is Virasoro element for z = 0 (or for arbitrary z provided
that κ( f | s) = 0) of central charge c =−κ(x | x).

(b) Assume that p ⊂ g is compatible with the adx-eigenspace decomposition (19),
and consider the generators w j = v j + g j ∈ W, j ∈ J provided by Theorem 3,
where {v j} j∈J is a basis of g f consisting of adx-eigenvectors: [x,v j] = (1−
Δ j)v j, j ∈ J (with Δ j ≥ 1). Then wj is an L-eigenvector of conformal weight Δ j

for z = 0.
(c) The Poisson vertex algebraW, with the λ -bracket {gλh}z,ρ , is independent of the

choice of the isotropic subspace l ⊂ g 1
2
for z = 0, and for arbitrary z, provided

that s ∈ ker(adg≥ 1
2
) is fixed.

If we assume l⊂ g 1
2
to be a maximal isotropic subspace, then the Virasoro element

L∈W is the image of the Virasoro element of affine Poisson vertex algebras defined
in (9) via the map ρ in (20).

3.5 Integrable hierarchies of Hamiltonian equations for classical
W-algebras

Slightly modifying the argument used to prove applicability of the Lenard-Magri
scheme of integrability for affine Poisson vertex algebras it is possible (under some
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assumptions on the nilpotent element f ∈ g) to apply successfully the Lenard-Magri
scheme of integrability for classical W-algebras endowed with the compatible λ -
brackets described in (24) and (25). The first result in this direction appeared in the
original paper of Drinfeld and Sokolov.

Theorem 4 ([11]) If f ∈ g is principal nilpotent, then there exists an infinite se-
quence of linearly independent local functionals

∫
f0,
∫
f1, . . . ∈W

/
∂W such that

{∫ fn,∫ fm}0,ρ = {∫ fn,∫ fm}∞,ρ = 0 ,

for all n,m ∈ Z+.

Later this result was improved in the papers [4–6,13,14] using the theory of Heisen-
berg subalgebras of Kac-Moody algebras. In [7] it is proved the following result.

Theorem 5 If f +zs is semisimple in g((z−1)), then there exists an infinite sequence
of linearly independent local functionals

∫
f0,
∫
f1, . . . ∈W

/
∂W such that

{∫ fn,∫ fm}0,ρ = {∫ fn,∫ fm}∞,ρ = 0 ,

for all n,m ∈ Z+.

We note that if f is principal nilpotent, then eθ ∈ ker(adn) (eθ being the highest root
vector) and f +zeθ is semisimple in g((z−1)) thus recovering Theorem 4. Moreover,
we point out that the freedom in the choice of l ⊂ g 1

2
(see Proposition 4(c)) gives

more chances to find s ∈ ker(adn) such that the hypotheses of Theorem 5 are satis-
fied.

3.6 Examples of classical W-algebras and corresponding
integrable hierarchies of Hamiltonian equations

3.6.1 The KdV hierarchy

Let g= sl2 with standard generators f ,h = 2x,eWith respect to the adx-eigenspace
decomposition (19), we have n=m= Ce. We fix the subspace p= Ch⊕C f ⊂ sl2
complementary tom. Since g f =C f , by Theorem 3,W ⊂V (p) is the algebra of dif-
ferential polynomials in one generator, say L, of the form L= f +g, where g∈V (p).
By an explicit computation, we find

L = f − 1
2c

x2 +∂x ∈ V (p) ,

where c =−κ(x | x). Let us assume s = e ∈ ker(adn). Then the λ -bracket of L with
itself is given by (see Proposition 4)

{LλL}z,ρ = (2λ +∂ )L+ cλ 3−4cλ z .

The z = 0 λ -bracket is known as the Virasoro-Magri λ -bracket, while the z = ∞ λ -
bracket is known as the Gardner-Faddeev-Zakharov λ -bracket (up to the factor 4c).
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It is also possible to compute explicitly the first terms of the series of integrals of
motion. We get

∫
f0 =

∫
L and the corresponding Hamiltonian equation is dL

dt0
= L′.

The next integral ofmotion is
∫
f1 =

∫ 1
8cL

2 and the correspondingHamiltonian equa-
tion is the Korteweg-de Vries equation

dL
dt1

=
1
4
(L′′′+

3
c
LL′) .

3.6.2 The Boussinesq hierarchy

Let g= sl3 and fix κ(a | b) = c tr(ab), c ∈ C∗, for a,b ∈ sl3. Let f ∈ sl3 be its prin-
cipal nilpotent element and let us choose s = eθ , where θ is the highest weight root.
Then W = S(C[∂ ]L⊕C[∂ ]w3) with λ -bracket

{LλL}z,ρ = (∂ +2λ )L−2cλ 3,

{Lλw3}z,ρ = (∂ +3λ )w3 +3czλ ,

{w3λw3}z,ρ =
1
3c

(2λ +∂ )L2− 1
6
(λ +∂ )3L− 1

6
λ 3L

−1
4
λ (λ +∂ )(2λ +∂ )L+

c
6
λ 5 .

The first integral of motion is
∫
f0 =

∫
w3 and the corresponding Hamiltonian equa-

tion is {
Lt = 2w′3
w3t =− 1

6L
′′′+ 2

3cLL
′

from which we can eliminate w3 and get the Boussinesq equation

Ltt =−1
3

(
L(4)− 4

c
(LL′)′

)
.

3.6.3 Minimal nilpotent element case in sl3sl3sl3

In g = sl3, we can also consider f = e−θ to be the lowest root vector. In this case
g 1

2
�= 0. Let us assume l = C(eα + eβ ) ⊂ g 1

2
(l is maximal isotropic), where α and

β are the simple roots of sl3, and let us choose s= eα +eβ . We get W = S(C[∂ ]L⊕
C[∂ ]ϕ⊕C[∂ ]ψ±) with λ -bracket

{LλL}z,ρ = (2λ +∂ )L− c
2
λ 3,

{Lλψ±}z,ρ = (
3
2
λ +∂ )ψ±+

3
2
czλ ,

{Lλϕ}z,ρ = (λ +∂ )ϕ ,

{ψ±λψ±}z,ρ = 0,

{ψ+λψ−}z,ρ = −L+
1
3c

ϕ2− 1
2
(2λ +∂ )ϕ + cλ 2,

{ψ±λϕ}z,ρ = ±3ψ±±3cz,

{ϕλϕ}z,ρ = 6cλ .
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Since f + zs satisfies the hypothesis of Theorem 5 we can find a sequence of lin-
early independent integrals of motion in involution. The first integral of motion is∫
f0 =

∫
(ψ+ +ψ−) and the corresponding Hamiltonian equation is⎧⎪⎪⎨⎪⎪⎩

Lt = 1
2 (ψ+ +ψ−)′

ϕt = 3(ψ+−ψ−)
(ψ+)t = L− 1

3cϕ
2− 1

2ϕ
′

(ψ−)t = −L+ 1
3cϕ

2− 1
2ϕ
′.

The corresponding hierarchy of Hamiltonian equations is known as fractional KdV
hierarchy (see [1]). We note that we can eliminate L and ψ± from the system and
get the equation

ϕ ′′ =−1
3

(
ϕtttt +

4
c
(ϕϕt)t

)
,

which, up to rescaling, is the Boussinesq equation with derivatives in x and t ex-
changed.

We can also consider l= 0 and s = eθ . Then we get the following λ - bracket for
the generators of W :

{LλL}z,ρ = (2λ +∂ )L− c
2
λ 3 +2czλ ,

{Lλψ±}z,ρ = (
3
2
λ +∂ )ψ±,

{Lλϕ}z,ρ = (λ +∂ )ϕ ,

{ψ±λψ±}z,ρ = 0,

{ψ+λψ−}z,ρ = −L+
1
3c

ϕ2− 1
2
(2λ +∂ )ϕ + cλ 2− cz,

{ψ±λϕ}z,ρ = ±3ψ±,

{ϕλϕ}z,ρ = 6cλ .

As stated in Proposition 4 (c) we note that λ -bracket corresponding to z = 0 does
not change for different choices of the isotropic subspace l⊂ g 1

2
(but it does change

for arbitrary z with the change of s). Also in this case, f + zs satisfies the hypothe-
sis of Theorem 5 and we get the corresponding integrable hierarchy of Hamiltonian
equations. The first two integrals of motion are∫
f0 =

∫ (
L− 1

12c
ϕ2
)
and

∫
f1 =

∫ ( 1
2c

(ψ+ψ ′− −ψ ′+ψ−)− 1
2c2

ϕψ+ψ−− 1
4c

f 20
)

.

After performing a Dirac reduction (see [9]) we can set ϕ = 0 and the first non-trivial
equation is ⎧⎪⎨⎪⎩

dψ±
dt1

= ψ ′′′± −αLψ ′± −
α
2
ψ±L′ ± 2

3
α2ψ±ψ+ψ−

dL
dt1

=
1
4
L′′′ −αLL′+α

(
ψ+ψ ′′− −ψ ′′+ψ−

)
where α = 3

2c ∈ C∗.
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Remark 4 The explicit formula for the λ -bracket on the generators of the classical
W -algebra corresponding to a simple Lie algebra g and a minimal nilpotent element
f ∈ g is computed in [8]. In the same paper there is the classification of all the ele-
ments s ∈ ker(adn) such that f + zs ∈ g((z−1)) is semisimple and the computation
of the first non-trivial equations of the corresponding integrable hierarchies (which
exist by Theorem 5).

3.7 Gelfand-Dickey algebras

LetV be a differential algebrawith a derivation ∂ .We consider the algebraV ((∂−1))
of formal pseudodifferentials operators with coefficients in V , with multiplication
defined by

∂ n ◦a = ∑
k∈Z+

(
n
k

)
a(k)∂ n−k (26)

for any n ∈ Z and a ∈A . It can easily be verified that multiplication given by (26)
is associative, thus making the space of formal pseudodifferential operators an as-
sociative algebra with unity.

The algebra of formal pseudodifferential operators has a natural anti-homomorph-
ism, which we denote by ∗, called formal adjoint, defined by f ∗ = f , for f ∈A , and
∂ ∗ =−∂ .

The symbol of a pseudodifferential operator A(∂ ) = ∑an∂ n ∈ V ((∂−1)) is the
formal Laurent seriesA(z)=∑anzn ∈V ((z−1)), obtained replacing ∂ with z, where z
is an indeterminate commuting with V . This gives us a bijective map V ((∂−1))−→
V ((z−1)) which is not an algebra homomorphism. If we consider the symbol of the
multiplication rule (26) we get, for any n ∈ Z and a ∈ V , the well known binomial
formula

(z+∂ )na = ∑
k∈Z+

(
n
k

)
a(k)zn−k . (27)

This allows us to write a closed formula for the associative product in V ((∂−1)) in
terms of the corresponding symbols. For A(∂ ),B(∂ ) ∈ V ((∂−1)), it is given by the
following

(A◦B)(z) = A(z+∂ )B(z) ,

where, for any n ∈ Z, we expand (z+∂ )n as in (27), namely in non-negative powers
of ∂ .

Let us fix N ∈ Z+ and let us consider V = S(⊕i≥−NC[∂ ]ui) be the algebra of
differential polynomials in infinitely many variables ui, i≥−N. We let, for c ∈ C,

L(∂ ) = ∂N +u−N∂N−1 + . . .+u−1 + c+u0∂−1 + . . . ∈ V ((∂−1)) .

Proposition 5 For all i, j ≥ −N let us define {uiλu j}c ∈ V [λ ] via the generating
series

{L(z)λL(w)}c = L(z)iz(z−w−λ −∂ )−1L(w)
−L(w+λ +∂ )iz(z−w−λ −∂ )−1L∗(λ − z) , (28)
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(where iz means we should expand in negative powers of z, and the expansions
of L(w+ λ + ∂ ) and L∗(λ − z) are done according to the binomial formula (27),
namely we expand in non-negative powers of λ + ∂ ). Then (28) defines a Poisson
vertex algebra structure on V .

Proof. We note that by Theorem 1(b) and (c), in order to prove the proposition, it
suffices to check equations (5) and (6) for all i, j,k ≥ −N. Using the symbol L(z)
these equations become, respectively,

{L(z)λL(w)}c =−{L(w)−λ−∂L(z)}c (29)

and

{L(z)λ{L(w)μL(t)}c}c−{L(w)μ{L(z)λL(t)}c}c = {{L(z)λL(w)}cλ+μL(t)}c .
(30)

By an easy computation we get

−{L(w)−λ−∂L(z)}c = L(z)iw(z−w−λ −∂ )−1L(w)
−L(w+λ +∂ )iw(z−w−λ −∂ )−1L∗(λ − z) .

Hence, (29) is equivalent to the identity

L(w+λ +∂ )δ (z−w−λ −∂ )L∗(λ − z) = L(z)δ (z−w−λ −∂ )L(w) , (31)

where
δ (z−w) = ∑

k∈Z
zkw−k−1 ∈ C[[z,z−1,w,w−1]]

is the formal δ -function. The identity (31) follows easily applying the properties of
the formal δ -function (which can be found in [16]). The Jacobi identity (30) follows
by a straightforward computation using again the properties of the formal δ -function
(see [18]). ��
We remark that we have a one-parameter family of λ -brackets if we think at c as a
parameter. For c= 0 we recover the so-called second Gelfand-Dickey Poisson struc-
ture, while for c=∞we recover the first Gelfand-Dickey Poisson structure (see [18]
for further details).

Let I = 〈ui | i ∈ Z+〉 be the differential ideal in V generated by ui, for i ∈ Z+.
It can be proved it is also a Poisson vertex algebra ideal. Thus we can consider the
quotient Poisson vertex algebra WN

∼= V
/
I .

Theorem 6 There is a Poisson vertex algebra isomorphism between WN and the
classical W -algebra defined in Definition 9 for g = glN, f ∈ g principal nilpotent,
κ(a | b) =− tr(ab), for all a,b ∈ g, and s = eθ .

A similar result can be proved for any classical Lie algebra (see [18]).

Acknowledgements I wish to thank Maria Gorelik and Paolo Papi for inviting me to give a talk
at the “Lie superalgebras” conference, and INDAM for the kind hospitality.
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Vertex operator superalgebras and odd trace
functions

Jethro van Ekeren

Abstract We begin by reviewing Zhu’s theorem on modular invariance of trace
functions associated to a vertex operator algebra, as well as a generalisation by the
author to vertex operator superalgebras. This generalisation involves objects that we
call ‘odd trace functions’.We examine the case of theN = 1 superconformal algebra.
In particular we compute an odd trace function in two different ways, and thereby
obtain a new representation theoretic interpretation of a well known classical identity
due to Jacobi concerning the Dedekind eta function.

1 Introduction

One of themost significant theorems in the theory of vertex operator algebras (VOAs)
is the modular-invariance theorem of Zhu [17]. The theorem states that under favour-
able circumstances the graded dimensions of certain modules over a VOA are mod-
ular forms for the group SL2(Z). The favourable circumstances are that the VOA
be rational, C2-cofinite, and be graded by integer conformal weights (we define all
terms in Sect. 2 and state Zhu’s theorem fully in Sect. 3 below).

Numerous generalisations of Zhu’s theorem have appeared in the literature: to
twisted modules over VOAs [2], to vertex operator superalgebras (VOSAs) and their
twisted modules [3, 4] (see also [8]), to intertwining operators for VOAs [6, 13], to
twisted intertwining operators [16], and to non rational VOAs [14].

In [15] the present author relaxed the assumption of integer conformal weights of
V to allow arbitrary rational conformal weights. This work was carried out in the set-
ting of twisted modules over a rationalC2-cofinite VOSA. Actually it is worth noting
that in that paper the condition ofC2-cofiniteness was also relaxed slightly, allowing
applications to some interesting examples such as affine VOAs at admissible level.
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One of the features of [15] is the appearance of odd trace functions (see Sect. 4
for the definition) which are to be included alongside the more usual (super)trace
functions in order to achieve modular invariance. Although similar in many ways,
these odd traces differ from (super)traces in that they act nontrivially on odd ele-
ments of a vector superspace, whereas the (super)trace must always vanish on such
elements. The results of [15] are reviewed in Sect. 4 (for simplicity in the special
case of Ramond twisted modules).

In the present work, in Sect. 6, we compute an odd trace function for a particular
example: the N = 1 superconformal minimal model of central charge c = −21/4.
We evaluate the odd trace function on the superconformal generator (which is an
odd element of conformal weight 3/2), using the strong constraint of its modular
invariance. The odd trace function in question equals the weight 3/2 modular form
η(τ)3, where η(τ) is the well known Dedekind eta function.

We then give a different proof of this equality (up to an ambiguity of signs) us-
ing a BGG resolution and some simple combinatorics. The result is a representation
theoretic interpretation of the classical identity

η(τ)3 = q1/8 ∑
n∈Z

(4n+1)qn(2n+1)

similar in spirit, but a little different, to the celebrated proof coming from the affine
Weyl-Kac denominator identity [9, Chap. 12].

2 Definitions

For us a vertex superalgebra [5, 10] is a quadruple V, |0〉,T,Y where V is a vector
superspace, |0〉 ∈V an even vector, T :V →V an even linear map, and Y :V ⊗V →
V ((z)), denoted u⊗ v �→ Y (u,z)v = ∑n∈Z u(n)vz

−n−1, is also even. These data are to
satisfy the following axioms.

• The unit identities Y (|0〉,z) = IV and Y (u,z)|0〉|z=0 = u.
• The translation invariance identity Y (Tu,z) = ∂zY (u,z).
• The Cousin property that the three expressions

Y (u,z)Y (v,w)x p(u,v)Y (v,w)Y (u,z)x, and Y (Y (u,z−w)v,w)x,

which are elements of V ((z))((w)), V ((w))((z)), and V ((w))((z−w)), are im-
ages of a single element ofV [[z,w]][z−1,w−1,(z−w)−1] under natural inclusions
into those three spaces.

An equivalent definition, more convenient for some applications, is the following.
A vertex superalgebra is a triple V, |0〉,Y where these data are as above, but satisfy
the following axioms.

• The unit identities |0〉(n)u = δn,−1u, u(−1)|0〉= u and u(n)|0〉= 0 for n > 0.
• The Borcherds identity (also known, in a different notation, as the Jacobi identity)

B(u,v,x;m,k,n) = 0 for all u,v,x ∈V , m,k,n ∈ Z,
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where

B(u,v,x;m,k,n) = ∑
j∈Z+

(
m
j

)
(u(n+ j)v)(m+k− j)x

− ∑
j∈Z+

(−1) j
(
n
j

)[
u(m+n− j)v(k+ j)− (−1)np(u,v)v(k+n− j)u(m+ j)

]
x.

A vertex algebra is a purely even vertex superalgebra.
Let V be a vertex superalgebra. A V -module is a vector superspace M with a

vertex operation YM :V ⊗M→M((z)) such that

YM(|0〉,z) = IM, and B(u,v,x;m,k,n) = 0 (1)

for all u,v ∈V , x ∈M, m,k,n ∈ Z.
For the present theory we require the extra structure of a conformal vector. This

is a vector ω ∈ V such that its modes Ln = ω(n−1) ∈ EndV furnish V with a repre-
sentation of the Virasoro algebra, i.e.,

[Lm,Ln] = (m−n)Lm+n +δm,−n
m3−m
12

c

(here c ∈ C is an invariant of V called the central charge), L0 is diagonal with real
eigenvalues bounded below, and L−1 = T . We call a vertex superalgebra with con-
formal vector a vertex operator superalgebra or VOSA, and we use the term VOA
to distinguish the purely even case.

A V -module M is called a positive energy module if L0 ∈ EndM acts diagonally
with eigenvalues bounded below. In particularV is a positive energyV -module. The
eigenvalues of L0 ∈ EndV are called conformal weights, and if L0u = Δu we write

Y (u,z) = ∑
n∈Z

u(n)z
−n−1 = ∑

n∈−Δ+Z
unz
−n−Δ

(so that un = u(n−Δ+1)). The zero mode u0 ∈ EndM attached to u ∈V is special be-
cause it commutes with L0 and thus preserves the eigenspaces of the latter. A VOSA
V is said to be rational if its category of positive energy modules is semisimple, i.e.,
it contains finitely many irreducible objects, and any object is isomorphic to a direct
sum of irreducible ones.

The condition of C2-cofiniteness is an important finiteness condition of vertex
(super)algebras introduced by Zhu. We say that V is C2-cofinite if

dim
(
V/V(−2)V

)
< ∞.
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3 The theorem of Zhu

Now we come to the theorem of Zhu [17].

Theorem 1 (Zhu) Let V be a VOA (i.e., purely even VOSA) such that:

• V is rational;
• the conformal weights of V lie in Z+;
• V is C2-cofinite.

We associate to each irreducible positive energy module M, and u ∈V, the series
SM(u,τ) = TrM u0q

L0−c/24,

convergent for q = e2πiτ of modulus less than 1. There is a grading V =⊕∇∈Z+V[∇]
such that for u ∈V[∇] the span C (u) of the (finitely many) functions SM(u,τ) defined
above is modular invariant of weight ∇, i.e.,

(cτ +d)∇ f

(
aτ +b
cτ +d

)
∈ C (u) for all f (τ) ∈ C (u) and

(
a b
c d

) ∈ SL2(Z).

Here is an outline of the proof of Zhu’s theorem.

1. Introduce a space C of maps S(u,τ) :V ×H → C linear in V and holomorphic
in H = {τ ∈C|Imτ > 0} satisfying certain axioms, this space is called the ‘con-
formal block’ of V or the space of conformal blocks of V . The definition of C
can be understood in terms of elliptic curves and their moduli [5].

2. It is automatic from its definition that C admits an action of the group SL2(Z),
namely,

[S ·A](u,τ) = (cτ +d)−∇uS(u,Aτ),
where ∇ is the grading mentioned above.

3. It is proved by direct calculation that TrM uM0 q
L0−c/24 is a conformal block (at

least as a formal power series).
4. Using the C2-cofiniteness condition, one shows that any fixed S ∈ C satisfies

some differential equation, and consequently is expressible as a power series in
q (whose coefficients are linear maps V → C).

5. The lowest order coefficient C0 :V → C in the series expansion factors to a cer-
tain quotient Zhu(V ) of V . This quotient has the structure of a unital associative
algebra, andC0 is symmetric, i.e., C0(ab) =C0(ba).

6. There is a natural bijection

irreducible positive energy V -modules←→ irreducible Zhu(V )-modules,

and so if V is rational, Zhu(V ) is finite dimensional semisimple. Thus we can
write C0 = ∑N αN TrN where the sum is over irreducible Zhu(V )-modules and
αN ∈ C.

7. Write the corresponding sum ∑N αNSM where M is the V -module associated to
N. Subtract this conformal block from S.

8. One can repeat the process and show that S is exhausted by trace functions in a
finite number of steps.
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4 Generalisation to the supersymmetric case, and to rational
conformal weights

Results described in this section are drawn from [15].
Many examples of interest, especially in the supersymmetric case, are graded by

noninteger conformal weights. So it is first necessary (and of independent interest)
to relax the condition of integer conformal weights in Theorem 1. Therefore let V
be a VOA whose conformal weights lie inQ (and are bounded below) rather than in
Z+, and which satisfies the other conditions of the theorem. Then the trace functions
SM(u,τ) and their span C (u) are defined as before. There exists a certain rational
grading V = ⊕∇∈QV[∇] in place of the usual integer grading. It is then true that for
u ∈V[∇] the space C (u) is invariant under the weight ∇ action1, not of SL2(Z), but
of its congruence subgroup

Γ1(N) = {(a b
c d

) ∈ SL2(Z)|b≡ 0 mod N, and a≡ d ≡ 1 mod N}.

Here N is the least common multiple of the denominators of conformal weights of
vectors in V . This number is finite because of the condition ofC2-cofinitness.

It is possible to achieve invariance under the whole of SL2(Z) by altering our def-
inition of V -module. Define a Ramond twisted V -module to be a vector superspace
M together with fields

YM(u,z) = ∑
n∈−Δu+Z

u(n)z
−n−1 = ∑

n∈Z
unz
−n−Δ

satisfying (1) for all m ∈ −Δu +Z, k ∈ −Δv +Z, n ∈ Z. Notice that the ranges of
indices of the modes are modified so that u ∈V always possesses integrally graded
modes un ∈ EndM, and in particular always possesses a zero mode. Let us call a
VOA Ramond rational if its category of positive energy Ramond twisted modules
is semisimple.

Let V be a Ramond rational, C2-cofinite VOA with rational conformal weights
bounded below. Attach the trace function

SM(u,τ) = TrM u0q
L0−c/24

to u ∈ V and M an irreducible positive energy Ramond twisted V -module, and let
C (u) be the span of all such trace functions. Then for u ∈ V[∇] the space C (u) is
invariant under the weight ∇ action of the full modular group SL2(Z).

The previous paragraph stated a result for VOAs. Upon passage from VOAs to
VOSAs, one might expect the claim to hold with trace functions simply replaced
by supertrace functions SM(u,τ) = STrM u0qL0−c/24. This would be true, except for
an interesting subtlety which can be traced to Step 5 of the proof outline given in
Sect. 3.

1 The precise definition of the action involves choices of roots of unity in general. See [15] for
details.
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In the present situation it is appropriate to replace the usual Zhu algebra with a
certain superalgebra (which we also refer to as the Zhu algebra and denote Zhu(V ))
introduced in the necessary level of generality in [1]. If V is Ramond rational then
Zhu(V ) is finite dimensional and semisimple. The lowest coefficient C0 of the se-
ries expansion of a conformal block now descends to a supersymmetric function on
Zhu(V ), i.e., C0(ab) = p(a,b)C0(ba).

The classification of pairs (A,ϕ), where A is a finite dimensional simple superal-
gebra (over C) and ϕ is a supersymmetric function on A, is as follows:

• A = End(N) for some finite dimensional vector superspace N, and ϕ is a scalar
multiple of STrN ;

• A= End(P)[θ ]/(θ 2−1)where P is a vector space and θ is an odd indeterminate,
and ϕ is a scalar multiple of a �→ TrP(aθ).

The first case is the analogue of the usual Wedderburn theorem. The superalgebra of
the second case is known as the queer superalgebra and is often denoted Qn (where
n = dimP). Clearly we have

Qn
∼= {(X Y

Y X ) |X ,Y ∈Matn(C)
}

,

and the unique up to a scalar factor supersymmetric function on Qn is (X Y
Y X ) �→ TrY ,

which is known as the odd trace.
Roughly speaking modular invariance will hold for C (u) defined as the span of

supertrace functions together with apropriate analogues of odd trace functions. More
precisely:

Definition 1 Let V be a Ramond rational, C2-cofinite VOSA with rational confor-
mal weights bounded below. Let A be a simple component of Zhu(V ), N the corre-
sponding uniqueZ2-graded irreducible module, andM the corresponding irreducible
positive energy Ramond twistedV -module. If A∼= End(P)[θ ]/(θ 2−1) is queer then
letΘ :M→M denote the lift toM of the map θ : N→ N of multiplication by θ . In
this case we define the odd trace function

SM(u,τ) = TrM u0ΘqL0−c/24.

If A is not queer then we define the supertrace function

SM(u,τ) = STrM u0q
L0−c/24.

Now we can state the main theorem: it is Theorem 1.3 of [15] applied to the special
case of untwisted characters of Ramond twisted V -modules.

Theorem 2 ([15]) Let V be a VOSA as in Definition 1, and let C (u) be the span of
the supertrace functions and odd trace functions attached to all irreducible positive
energy Ramond twisted V-modules. There exists a grading V =⊕∇∈QV[∇] such that
for u ∈V[∇] the space C (u) is invariant under the weight ∇ action of SL2(Z).

In the next two sections we view some examples of odd trace functions.
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5 Example: The neutral free fermion

This example is considered more fully in [15], the interested reader may refer there
for further details.

We consider the Lie superalgebras Atw (resp. Auntw)

(⊕nCψn)⊕C1

where the direct sum ranges over n ∈ 1/2+Z (resp. n ∈ Z). Here the vector 1 is
even, ψn is odd. The commutation relations in both cases are

[ψm,ψn] = δm,−n1.

We introduce the Fock module

V =U(Atw)⊗U(Atw+ )C|0〉,

where
Atw

+ = C1⊕ (⊕n≥1/2Cψn)

and C|0〉 is the Atw
+ -module on which 1 acts as the identity and ψn acts trivially.

It is well known [10] thatV can be given the structure of aVOSA. TheVirasoro el-
ement isω = 1

2ψ−3/2ψ−1/2|0〉with central charge c= 1/2. The vectorψ =ψ−1/2|0〉
has conformal weight 1/2 and associated vertex operator

Y (ψ ,z) = ∑
n∈1/2+Z

ψnz
−n−1/2.

Ramond twisted V -modules are, in particular, modules over the untwisted Lie
superalgebra Auntw. In fact the unique irreducible positive energy Ramond twisted
V -module is

M =U(Auntw)⊗U(Auntw+ ) (Cv+Cv)

where
Auntw

+ = C1⊕ (⊕n≥0Cψn)

and Cv+Cv is the Auntw
+ -module on which 1 acts as the identity, ψn acts trivially for

n > 0, ψ0v = v and ψ0v = v/2. We note that V is C2-cofinite and Ramond rational
(as well as being rational).

The (Ramond) Zhu algebra of V is explicitly isomorphic to the queer superalge-
bra Q1 =C[θ ]/(θ 2 = 1) via the map [|0〉] �→ 1, [ψ ] �→ √2θ . Thus the lowest graded
piece M0 = Cv+Cv of M is a Q1-module.

The corresponding odd trace function is

SM(u,τ) = TrM u0ΘqL0−c/24

where Θ : M → M is as in Definition 1. By unwinding that definition we see that
Θ :mw �→mψ0w, where w is v or v, and the monomial m ∈U(Auntw/Auntw

+ ).
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The odd trace function SM(u,τ) vanishes on u = |0〉 (indeed on all even vectors
ofV ), but it acts nontrivially on the odd vector ψ (which is pure of Zhu weight 1/2).
Therefore SM(ψ ,τ)must be a modular form on SL2(Z) of weight 1/2 (with possible
multiplier system).

Indeed one may verify that ψ0Θ acts as (−1)length(m) on the monomial vector
mw, and so

SM(ψ ,τ) = q−c/24qL0|M0(1−q1)(1−q2) · · ·

= q1/24
∞

∏
n=1

(1−qn) = η(τ)

(here we have used that c = 1/2, and that L0|M0 = 1/16). We have recovered the
well known Dedekind eta function η(τ) which is indeed a modular form on SL2(Z)
of weight 1/2.

6 Example: The NNN === 111 superconformal algebra

First we recall the definition of the Neveu-Schwarz Lie superalgebra NStw, and its
Ramond-twisted variant NSuntw (which is often called the Ramond superalgebra).

Definition 2 As vector superspaces the Lie superalgebras NStw (resp. NSuntw) are

(⊕n∈ZCLn)⊕ (⊕mCGm)⊕CC
where the direct sum ranges overm∈Z (resp.m∈ 1/2+Z). HereC and Ln are even,
Gm is odd. The commutation relations in both cases are

[Lm,Ln] = (m−n)Lm+n +
m3−m
12

δm,−nC,

[Gm,Ln] = (m− n
2
)Gm+n,

[Gm,Gn] = 2Lm+n +
1
3
(m2− 1

4
)δm,−nC,

(2)

with C central.

As usual we introduce the Verma NStw-module

Mtw(c,h) =U(NStw)⊗U(NStw+ )Cvc,h

where

NStw+ = CC+⊕n≥0CLn +⊕m≥1/2CGm,

and Cvc,h is the NStw+ -module on which C acts by c ∈ C, L0 acts by h ∈ C,
and higher modes act trivially. It is well known [10, 11] that the quotient NSc =
Mtw(c,0)/U(NStw)G−1/2vc,0 is a VOSA of central change c, as is the irreducible
quotient NSc.
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We shall also require the (generalised) Verma NSuntw-modules

M(c,h) =U(NSuntw)⊗U(NSuntw+ ) Sc,h

and their irreducible quotients L(c,h) (we omit the superscript untw) where

NSuntw+ = CC+⊕n≥0CLn +⊕m≥0CGm,

and Sc,h is the NSuntw+ -module characterised by:

Sc,h = Cvc,h with G0vc,h = 0 if h = c/24,
Sc,h = Cvc,h +CG0vc,h if h �= c/24,

with C = c, L0 = h, and positive modes acting trivially in both cases.
A clear summary of the representations of NSc andNSc can be found in [12]. Here

we focus on the Ramond twisted representations and shall often omit the adjective
‘Ramond twisted’. Generically NSc =NSc is irreducible and all the NSuntw-modules
L(c,h) acquire the structure of positive energy NSc-modules. For certain values of
c though, NSc is a nontrivial quotient of NSc and the irreducible positive energy
NSc-modules are finite in number and are all of the form L(c,h). In fact, NSc is a
(Ramond) rational VOSA when

c = cp,p′ =
3
2

(
1− 2(p′ − p)2

pp′

)
for p, p′ ∈ Z>0 with p < p′, p′ − p ∈ 2Z and gcd( p′−p

2 , p) = 1. In this case the
irreducible positive energy NSc-modules are precisely the NSuntw-modules L(c,h)
where

h = hr,s =
(rp′ − sp)2− (p′ − p)2

8pp′
+

1
16

for 1≤ r ≤ p−1 and 1≤ s≤ p′ −1 with r− s odd.
Let c be one of these special values from now on. The irreducible Zhu(NSc)-

modules are precisely the lowest graded pieces of the modules L(c,h) introduced
above. The lowest graded piece is of dimension 1 if h = c/24 (there is clearly at
most one such module for any fixed value of c), and is of dimension 1|1 if h �= c/24.
It is known that Zhu(NSc) is supercommutative (it is a quotient of Zhu(NSc) ∼=
C[x,θ ]/(θ 2− x+ c/24) where x is even and θ odd). Therefore the simple compo-
nents of Zhu(NSc) with the 1|1-dimensional modules are all copies of the queer
superalgebra Q1, and the component with the 1-dimensional module (if it exists)
is C.

Let us consider the case c = −21/4 (so p = 2, p′ = 8) for which the two ir-
reducible positive energy modules are Mi = L(c,hi) where h1 = −3/32 and h2 =
−7/32 = c/24. The first of these is the unique queer module. Theorem 2 tells us
that the supertrace function SM2(u,τ) and the odd trace function SM1(u,τ) together
span an SL2(Z)-invariant space whose weight is the Zhu weight of u. Assume further
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that u ∈V is odd. Then SM2(u,τ) vanishes as the supertrace of an odd element. But
SM1(u,τ) need not vanish, and it will be a modular form (with multiplier system).

Unwinding Definition 1 we see thatΘ :mvc,h �→mG0vc,h wherem is an element
ofU(NSuntw/NSuntw+ ), and

SM1(u,τ) = TrM1 u0ΘqL0−c/24.

The VOSA NSc possesses a distinguished element ν = G−3/2|0〉 of conformal
weight 3/2, it satisfies ν0 = G0. It turns out that ν is of pure Zhu weight 3/2 and so
by the above remarks

F(τ) := TrM1 G0ΘqL0−c/24

is a modular form of weight 3/2. On the top level of M1, G0Θ = G2
0 = h− c/24 =

1/8, so the top level contribution to F(τ) is 1
4q

1/8. This is already enough informa-
tion to determine F(τ) completely. The cube of the Dedekind eta function is q1/8

times an ordinary power series in q, so the quotient f (τ) = F(τ)/η(τ)3 is a holo-
morphic modular form of weight 0 for SL2(Z), possibly with a multiplier system.
Since the q-series of f has integer powers of q we have f (Tτ) = f (τ), and since
S2 = 1 we have only the possibilities f (Sτ) =± f (τ). But in SL2(Z) we have the re-
lation (ST )3 = 1, so if S acted by−1 on f wewould have f (τ) = f (−T 3τ) =− f (τ).
Hence f (Sτ) = f (τ) and, since it is a genuine holomorphic modular form on SL2(Z),
we have f (τ) = 1. Thus

F(τ) = η(τ)3/4. (3)

We next compute F(τ) using representation theory. We obtain (up to some un-
determined signs) the following well known classical identity of Jacobi

η(τ)3 = q1/8 ∑
n∈Z

(4n+1)qn(2n+1). (4)

We begin by considering the trace of G0ΘqL0 on the Verma moduleM(c,h). The
action of G0Θ on the monomial

mv = Lm1 · · ·LmsGn1 · · ·Gnt v,

where m1 ≤ . . .≤ ms ≤−1, n1 < .. . < nt ≤−1, and v is vc,h or G0vc,h, looks like

mG0v �→ G0mG0v = (−1)tmG2
0v+ reduced terms.

Reduced terms resulting from a single use of the commutation relations are of the
same length as m, but contain different numbers of the symbols L and G. Reduced
terms resulting from more than one use of the commutation relations are strictly
shorter thanm. Therefore none of these terms contribute to the trace. Considermono-
mials m as above with a fixed value of N = ∑s

i=1mi +∑t
j=1 n j. A simple generating

function argument shows that if N > 0 then the number of such monomials with t
even is the same as the number with t odd. Thus the only nonzero term in TrG0ΘqL0

is the leading term.
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It is known that L(c =−21/4,h0 =−3/32) has a BGG resolution

0← L(c,h0)←M(c,h0)←M(c,h1)⊕M(c,h−1)←M(c,h2)⊕M(c,h−2)← ·· · ,
where hn =−3/32−n(2n+1) for all n ∈ Z, and that allM(c,hk) are naturally em-
bedded in M(c,h0) [7]. We therefore identify each Verma module with its image
in M(c,h0). The trace we seek is given as an alternating sum over the terms in the
resolution.

From this we see already that the only nonzero coefficients in the q-expansion of
η(τ)3 must be for powers q1/8−n(2n+1). We can also easily determine the coefficients
up to a sign. Indeed we have Θ 2 = h0− c/24 = 1/8, while the operator G0|M(c,hk)

preserves the top piece Sk ofM(c,hk) and squares to h2k−c/24. Therefore the oper-
ator (G0Θ)|Sk (which is diagonal on the 1|1-dimensional space Sk) squares to

(hk− c/24)2/8 = [(4k+1)/8]2 .

This matches perfectly with (4). To determine the signs of the coefficients directly it
seems to be necessary to know some further information about the singular vectors,
it would be nice to find a simpler derivation.

Of course similar arguments may be applied to other rational NSc and their mod-
ules. If L0 happens to take the value c/24 on one of the levels of a module then the
arguments potentially become more intricate.
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Serre presentations of Lie superalgebras

Ruibin Zhang

Abstract We prove an analogue of Serre’s theorem, which describes presentations
in terms of Chevalley generators and Serre type relations for the finite dimensional
simple contragredient Lie superalgebras relative to all possible choices of Borel sub-
algebras.

1 Introduction

Awell known theorem of Serre gave presentations of finite dimensional semi-simple
Lie algebras in terms of Chevalley generators and Serre relations. It was generalised
to Kac-Moody algebras with symmetrisable Cartan matrices by Gabber and Kac [7].
The theorem and its generalisations now provide the standard method to present sim-
ple Lie algebras and Kac-Moody algebras [13], as well as the associated quantised
universal enveloping algebras [4, 11, 20].

A natural question is how to present simple Lie superalgebras with Cartan matri-
ces in a similar way. Surprisingly this did not receive much attention until quantised
universal enveloping superalgebras [2, 25, 29, 34] became popular in the early 90s
because of their applications in a variety of areas such as low dimensional topol-
ogy [19, 27, 30], integrable models in physics [2, 33, 34] and noncommutative ge-
ometry [21, 31, 32]. It turned out that beside the usual Serre relations, higher order
relations are required to present simple Lie superalgebras. These higher order rela-
tions still remain somewhat mysterious.

It was Kac who first realised the necessity of higher order Serre relations. Leites
and Serganova [18] treated the relations for slm|n in the distinguished root system
(i.e., with simple roots defined relative to the distinguished Borel subalgebra). The
corresponding quantum relations for Uq(slm|n) were constructed in [5,23]. Yamane
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[25] wrote down higher order quantum Serre relations for quantised universal en-
veloping superalgebras of finite dimensional simple Lie superalgebras in the dis-
tinguished root systems and some other root systems. In the ensuing years, further
work was done to find defining relations of contragredient Lie superalgebras (i.e.,
with Cartanmatrices) by Leites and collaborators [1,8,9] and byYamane [26]. Leites
and coworkers used computers to construct relations, while Yamane used odd reflec-
tions. The relations (in the classical limit) in [25, 26] and in [8] look very different,
and it is not clear how to prove their equivalence.

The key problem is whether the relations constructed so far are complete, that
is, whether they are sufficient to define the Lie superalgebras. The methods used
in [1, 8, 9, 25, 26] to find relations does not automatically address the problem; a
separate treatment is required. As discussed in [8, §1], completeness of the relations
in [8] was checked by computers for finite dimensional simple contragredient Lie
superalgebras, but remained an open problem in the infinite dimensional case. A
proof for the completeness of the classical analogues of the relations in [25, 26] is
still lacking.

Therefore there is the need of a systematic treatment of Serre presentations for
the finite dimensional simple contragredient Lie superalgebras relative to all pos-
sible choices of Borel subalgebras. We give such a treatment here, and present the
analogue of Serre’s theorem, Theorem 3.3. The completeness of the relations in The-
orem 3.3 is established in Theorem 3.2.

The approach used here is different from those of [1, 8, 9] and [25, 26] both con-
ceptually and technically. It is quite elementary and has the advantage of automati-
cally generating a complete and minimal set of relations. Conceptually the approach
is quite transparent in the sense that one can see how the defining relations arise.
It also provides an alternative approach to Serre’s theorem for finite dimensional
semi-simple Lie algebras, see Remark 5.2.

Let us briefly explain our method. Given a realisation of the Cartan matrix A =
(ai j) of a simple contragredient Lie superalgebra with the set of simple roots Πb =
{α1, . . . ,αr}, we introduce an auxiliary Lie superalgebra g̃, which is generated by
Chevalley generators {ei, fi, hi | i = 1,2, . . . ,r} subject to quadratic relations only
(see Definition 3.1, where more informative notation is used). Let r be theZ2-graded
maximal ideal of g̃ that intersects trivially the Cartan subalgebra spanned by all hi.
Then L := g̃/r is the simple Lie superalgebra which we started with in all cases
except in type A(n,n) where L is sln+1|n+1 (see Theorem 3.1).

We introduce a Z2-graded ideal s of the auxiliary Lie superalgebra, which is gen-
erated by explicitly given generators. Amain result proved in Theorem 3.2 states that
s= r, or equivalently, g := g̃/s∼= L. From this result, we deduce a super analogue of
Serre’s theorem, Theorem 3.3, which gives presentations of the finite dimensional
simple contragredient Lie superalgebras relative to all possible choices of Borel sub-
algebras.

The completeness of the relations in Theorem 3.3 is guaranteed by Theorem 3.2.
The proof of Theorem 3.2 makes use of a Z-grading of g̃, which descends to L and
g to give Z-gradings to these Lie superalgebras. Write L =⊕kLk and g=⊕kgk with
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respect to the Z-gradings. Lemma 3.3 states that L0 ∼= g0 as Lie superalgebras and
Lk ∼= gk as g0-modules for all k �= 0. Then Theorem 3.2 follows from this lemma.

The unconventional Serre relations can now be understood as arising from two
sources: the conditions for g±1 to be irreducible g0-modules; and the requirement
that [g±1,g±1] = L±2 and similar requirements at other degrees.

Compared with [25, 26] (in the q→ 1 limit), we have more relations, which are
needed for presenting exceptional Lie superalgebras with non-distinguished Borel
subalgebras. The relations obtained from [25, 26] in the q→ 1 limit agree with the
corresponding subset of relations in the present paper. Our relations look quite dif-
ferent from those in [8].

The organisation of the paper is as follows. Section 2 reviews Kac’s classification
of finite dimensional simple classical Lie superalgebras [12], and also clarifies cer-
tain subtle points about Cartan matrices and Dynkin diagrams in this context. Sec-
tion 3 contains the statements of the main results, Theorem 3.2 and Theorem 3.3,
which give presentations of contragredient Lie superalgebras in arbitrary root sys-
tems. The proof of Theorem 3.2, which implies Theorem 3.3 as a corollary, is given
by using the key lemma, Lemma 3.3. Sections 4 and 5 are devoted to the proof of
the key lemma. An outline of the proof is given in Sect. 4.2 to explain its concep-
tual aspects. We end the paper with a discussion of possible generalisation of the
method developed here to affine Kac-Moody superalgebras to construct Serre type
presentations in Sect. 6.

Two appendices are also included. AppendixA gives the root systems andDynkin
diagrams of all simple contragredient Lie superalgebras [3, 6, 12]. The material is
used throughout the paper, and is also necessary in order to make precise the descrip-
tion of Dynkin diagrams in non-distinguished root systems. Appendix B describes
the structure of some generalised Verma modules of lowest weight type and their
irreducible quotients, which enter the proof of Lemma 3.3.

2 Finite dimensional simple Lie superalgebras

In this section, we present some background material, and clarify some issues about
Cartan matrices and Dynkin diagrams of Lie superalgebras.

2.1 Finite dimensional simple Lie superalgebras

We work over the field C of complex numbers throughout the paper.

2.1.1 Classification

A Lie superalgebra g is a Z2-graded vector space g = g0̄⊕ g1̄ endowed with a bi-
linear map [ , ] : g×g−→ g, (X ,Y ) �→ [X ,Y ], called the Lie superbracket, which is
homogeneous of degree 0, graded skew-symmetric and satisfies the super Jacobian
identity. The even subspace g0̄ of g is a Lie algebra in its own right, which is called
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the even subalgebra of g. The odd subspace g1̄ forms a g0̄-module under the restric-
tion of the adjoint action defined by the Lie superbracket. If g0̄ is a reductive Lie
algebra and g1̄ is a semi-simple g0̄-module, g is called classical [12, 22].

The classification of the finite dimensional simple Lie superalgebras was com-
pleted in the late 70s. The theorem below is taken from the foundational paper [12]
of Kac, which is still the best reference on Lie superalgebras. Historical information
and further references on the classification can be found in [15, 16] (also see [22]).

Theorem 2.1 The finite dimensional simple classical Lie superalgebras comprise
of the simple contragredient Lie superalgebras

A(m,n), B(0,n), B(m,n), m > 0, C(n), n > 2, D(m,n), m > 1,

F(4), G(3), D(2,1;α), α ∈ C\{0,−1},
and simple strange Lie superalgebras P(n) and Q(n) (n≥ 1).

The simple contragredient Lie superalgebras admit non-degenerate invariant bi-
linear forms, while the strange Lie superalgebras P(n) and Q(n) do not. In the re-
mainder of the paper, we shall consider only contragredient simple Lie superalge-
bras.

The A, B, C and D series are essentially the special linear and orthosymplectic
Lie superalgebras, which are familiar examples of Lie superalgebras. The excep-
tional Lie superalgebras F(4),G(3) and D(2,1;α) are less well-known, but one can
understand their structures given the description of their roots in Appendix A.1.

Let g = g0̄⊕ g1̄ be a simple contragredient Lie superalgebra, and choose a Car-
tan subalgebra h for g, which by definition is just a Cartan subalgebra of g0̄. Denote
by gα the root space of the root α , and call α even (resp. odd) if gα ⊂ g0̄ (resp.
gα ⊂ g1̄). Denote by Δ0 and Δ1 the sets of the even and odd roots respectively,
and set Δ = Δ0∪Δ1. Let ( , ) : h∗ ×h∗ −→C denote the Weyl group invariant non-
degenerate symmetric bilinear form on h∗, where theWeyl group of g is by definition
the Weyl group of g0̄. A root β will be called isotropic if (β ,β ) = 0. Note that all
isotropic roots are odd.

A Borel subalgebra of g is a maximal soluble Lie super subalgebra containing a
Borel subalgebra of g0̄. A new feature in the present context is that Borel subalge-
bras are not always conjugate under the Weyl groups. All the conjugacy classes of
Borel subalgebras were given in [12, pp. 51–52] and [13, Proposition 1.2]. In par-
ticular, Kac described a particularly convenient Borel subalgebra, which he called
distinguished, for each simple contragredient Lie superalgebra. We shall call a root
system with the set of simple roots determined by this Borel subalgebra the distin-
guished root system. In this case, there exists only one odd simple root.

2.1.2 Cartan matrices and Dynkin diagrams

The precise forms of the Cartan matrices and Dynkin diagrams will be crucial in
Sect. 3. However, there do not exist canonical definitions for them in the Lie super-
algebra setting, thus we spell out the details of our definitions here.
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Let Πb = {α1,α2, . . . ,αr} be the set of simple roots of a simple contragrediant
Lie superalgebra g relative to a Borel subalgebra b. The Cartan matrix and Dynkin
diagram provide a convenient way to describe Πb. We define a Cartan matrix in the
following way. Denote byΘ ⊂{1,2, . . . ,r} the subset such that αt ∈Δ1 for all t ∈Θ .
Let l2m be the minimum of |(β ,β )| for all non-isotropic β ∈Δ if g �=D(2,1;α). If g is
D(2,1;α), let l2m be the minimum of all |(β ,β )|> 0 (β ∈ Δ ), which are independent
of the arbitrary parameter α . Let

κ =
{
0, if g is of type B,
1, otherwise;

di =

{
(αi,αi)

2 , if (αi,αi) �= 0,
l2m
2κ , if (αi,αi) = 0.

Introduce the matrices

B = (bi j)ri, j=1, bi j = (αi,α j),

D = diag(d1, . . . ,dr),

then the Cartan matrix A associated to the set of simple roots Πb is defined by

A = D−1B.

When it is necessary to indicate the dependence onΘ , we write (A,Θ) for the Cartan
matrix.

Note that if αi is non-isotropic, ait = 2(αi,αt )
(αi,αi)

is a non-positive integer for all t.

However, if αt is isotropic, then at j = 2
l2m

(αt ,α j) can be an integer of any sign or

zero (except in type D(2,1;α)). If bi j �= 0, we define

sgni j = sign of bi j. (2.1)

As we shall see in Sect. 2.2, these signs provide the additional information required
to recover a Cartan matrix from its Dynkin diagram.

Remark 2.1 Our definition of the Cartan matrix differs from the usual one due to
Kac [12]. In Kac’s definition, if bss = 0, then ds = (αs,αs+k) for the smallest k such
that ds �= 0. Note that in our definition, none of the signs sgni j is lost.

The Dynkin diagram associated with (A,Θ) consists of r nodes, which are con-
nected by lines. The i-th node is coloured white if i �∈Θ , black if i ∈Θ but αi is not
isotropic, and grey if αi is isotropic.

If (A,Θ) is of typeD(2,1;α), the Dynkin diagram is obtained by simply connect-
ing the i-th and j-th nodes by one line if ai j �= 0 and write bi j at the line.

In all other cases, we join the i-th and j-th nodes by ni j lines, where

ni j = max(|ai j|, |a ji|), if aii +a j j ≥ 2;

ni j = |ai j|, if aii = a j j = 0.

When the i-th and j-th nodes are not both grey, say, the i-th one is not grey, and
connected by more than one lines, we draw an arrow pointing to the j-th node if
−ai j = 1 and pointing to the i-th node if −ai j > 1.

The Dynkin diagrams of the simple contragredient Lie superalgebras are given in
the tables in Appendix A.2.
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2.2 Comments on Dynkin diagrams

From the Cartan matrices in our definition, one can recover the corresponding root
systems. Dynkin diagrams also uniquely represent Cartan matrices, except in the
cases of osp4|2 and sl2|2. The Dynkin diagrams of these superalgebras relative to the
distinguished root systems are exactly the same, but the two Lie superalgebras are
non-isomorphic.

This problem can be resolved by incorporating the signs sgni j defined by (2.1) in
the Dynkin diagram, e.g., by placing sgni j at the line(s) connecting two grey nodes
i and j. Then the modified Dynkin diagrams are respectively given by

sl2|2: � � �− +

, osp4|2: � � �− −
. (2.2)

As we shall see, the signs enter the construction of higher order Serre relations.
In this paper we did not include the additional information of these signs in the

definition of Dynkin diagrams, as they would make the diagrams look cumbersome.
Also, there is no ambiguity about the signs in all the other Dynkin diagrams.

Similar signs were also discussed in [26].
Recall that if we remove a subset of vertices (i.e., nodes) and all the edges con-

nected to these vertices from a Dynkin diagram of a semi-simple Lie algebra, we
obtain the Dynkin diagram of another semi-simple Lie algebra of a smaller rank.
This corresponds to taking regular subalgebras. In the context of Lie superalgebras,
the notion of regular subalgebras still exists, but some explanation is required at the
level of Dynkin diagrams.

Definition 2.1 Call a sub-diagram Γ ′ of a Dynkin diagram Γ full if for any two
nodes i and j in Γ ′, the edges between them in Γ , the arrows on the edges, and also
the bi j labels of the edges when Γ is of type D(2,1;α), are all present in Γ ′.

Consider for example the Dynkin diagram

� > �
�

��
�

�
�

�

�

of F(4), which has the following full sub-diagrams beside others:

� > � �, � �.
(2.3)

Note that none of these appears in Tables 1 and 2.
The reason is that the sub-matrices in the Cartan matrix of F(4) associated with

these full sub-diagrams are not Cartan matrices in the strict sense. The problem lies
in the definition of ai j when the node i is grey, which involves the number �m. The �m
for F(4) is not the correct ones for the full sub-diagrams. By properly renormalising
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the bilinear forms on the weight spaces associated with them, the full sub-diagrams
can be cast into the form

� � �, � �,

which are respectively Dynkin diagrams for sl3|1 and sl2|1.
We call the Dynkin diagrams in Table 1 and Table 2 standard, and the ones like

those in (2.3) non-standard.
We mention that if a Lie superalgebra g is contained as a regular subalgebra in

another Lie superalgebra, defining relations of g can in principle be extracted from
relations of the latter by considering sub-diagrams of Dynkin diagrams. However,
this involves subtleties, as we have just discussed, and requires more care than hith-
erto exercised in the literature.

3 Presentations of Lie superalgebras

In this section, we generalise Serre’s theorem for simple Lie algebras to simple con-
tragredient Lie superalgebras, obtaining presentations for such Lie superalgebras in
terms of Chevalley generators and defining relations.

3.1 An auxiliary Lie superalgebra

We start by defining an auxiliary Lie superalgebra following the strategy of [14]. Let
(A,Θ) with A = (ai j)ri, j=1 be the Cartan matrix of one of the simple contragredient
Lie superalgebras relative to a given Borel subalgebra b. LetΠb be the set of simple
roots relative to this Borel subalgebra.

Definition 3.1 Let g̃(A,Θ) be the Lie superalgebra generated by homogeneous gen-
erators ei, fi,hi (i = 1,2, . . . ,r), where es, fs for all s ∈Θ are odd while the rest are
even, subject to the following relations

[hi,h j] = 0,

[hi,e j] = ai je j, [hi, f j] =−ai j f j,
[ei, f j] = δi jhi, ∀i, j.

(3.1)

Let ñ+ (resp. ñ−) be the subalgebra generated by all ei (resp. all fi) subject to the
relevant relations, and h = ⊕r

i=1Chi, the Cartan subalgebra. Then it is well known
and easy to prove (following the reasoning of [14, §1]) that g̃(A,Θ) = ñ+⊕h⊕ ñ−.
The Lie superalgebra is graded g̃(A,Θ) =⊕ν∈Qg̃ν by Q = ZΠb, with g̃0 = h. Note
that ñ+ν (rep. ñ−−ν ) is zero unless ν ∈ QN, where N = {1,2, . . .} and QN = NΠb,
that is,

ñ+ =⊕ν∈QN ñ
+
ν , ñ− =⊕ν∈QN ñ

−
−ν . (3.2)

Let r(A,Θ) be the maximal Z2-graded ideal of g̃(A,Θ) that intersects h trivially.
Set r± = r(A,Θ)∩ ñ±. Then r(A,Θ) = r+⊕r−. The following fact follows from the
maximality of r(A,Θ).
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Lemma 3.1 Let Σ = Σ+ ∪ Σ− with Σ± ⊂ ñ± be a subset of g̃(A,Θ) consisting
of homogeneous elements. If [ fi,Σ+] ⊂ CΣ+ and [ei,Σ−] ⊂ CΣ− for all i, then
Σ ⊂ r(A,Θ).

Proof. It follows from the definition of Σ that the ideal generated by r(A,Θ)∪Σ
intersects h trivially, hence must be equal to r(A,Θ) by the maximality of the lat-
ter. ��
In particular, if X± ∈ ñ± satisfy [ fi,X+] = 0, and [ei,X−] = 0 for all i, then they
belong to ñ± respectively.

Let us define the Lie superalgebra

L(A,Θ) :=
g̃(A,Θ)
r(A,Θ)

.

We have the following result.

Theorem 3.1 Let g be a finite dimensional simple contragredient Lie superalge-
bra, and let (A,Θ) be the Cartan matrix of g relative to a given Borel subalgebra.
Then L(A,Θ) is isomorphic to g unless g= A(n,n), and in the latter case L(A,Θ)∼=
sln+1|n+1.

Proof. This follows from Kac’s classification [12] of the simple contragredient Lie
superalgebras (see Theorem 2.1) except in the case of A(n,n). In the latter case, we
have detA= 0. Therefore, L(A,Θ) contains a 1-dimensional center, and the quotient
of L(A,Θ) by the center is A(n,n). Hence L(A,Θ) is isomorphic to sln+1|n+1. ��

3.2 Main theorem

3.2.1 Standard and higher order Serre elements

Let us first define some elements of g̃(A,Θ), which will play a crucial role in study-
ing the presentation of Lie superalgebras.

We shall call the following elements the standard Serre elements:

(adei)
1−ai j(e j), (ad fi)

1−ai j( f j), for i �= j, with aii �= 0 or ai j = 0;

[es,es], [ fs, fs], for ass = 0.

We also introduce higher order Serre elements if the Dynkin diagram of (A,Θ) con-
tains full sub-diagrams of the following kind:

1. × � ×
j t k

with sgn jt sgntk = −1, the associated higher order Serre ele-
ments are

[et , [e j, [et ,ek]]], [ ft , [ f j, [ ft , fk]]];

2. × � > �
j t k

, the associated higher order Serre elements are

[et , [e j, [et ,ek]]], [ ft , [ f j, [ ft , fk]]];
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3. × � > �
j t k

, the associated higher order Serre elements are

[et , [e j, [et ,ek]]], [ ft , [ f j, [ ft , fk]]];

4. � �< �
j t k

, the associated higher order Serre elements are

[[e j,et ], [[e j,et ], [et ,ek]]],
[[ f j, ft ], [[ f j, ft ], [ ft , fk]]];

5. × � �< �
i j t k

, the associated higher order Serre elements are

[[ei, [e j,et ]], [[e j,et ], [et ,ek]]],
[[ fi, [ f j, ft ]], [[ f j, ft ], [ ft , fk]]];

6. ×�
�

�
�

�

�

i

t

s

, the associated higher order Serre elements are

[et , [es,ei]]− [es, [et ,ei]],
[ ft , [ fs, fi]]− [ fs, [ ft , fi]];

7. � > �< � �
1 2 3 4

, which is a Dynkin diagram of F(4), the associ-
ated higher order Serre elements are

[E, [E, [e2, [e3,e4]]]],
[F, [F, [ f2, [ f3, f4]]]],

where E = [[e1,e2], [e2,e3]] and F = [[ f1, f2], [ f2, f3]];

8. � > � �< �
1 2 3 4

, which is a Dynkin diagram of F(4), the associ-
ated higher order Serre elements are

[[e1,e2], [[e2,e3], [e3,e4]]− [[e2,e3], [[e1,e2], [e3,e4]],
[[ f1, f2], [[ f2, f3], [ f3, f4]]− [[ f2, f3], [[ f1, f2], [ f3, f4]];

9. � > � �
k t j

, which only appears in Dynkin diagrams of F(4), the
associated higher order Serre elements are

[et , [e j, [et ,ek]]],
[ ft , [ f j, [ ft , fk]]];
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10. �
i

�
�

�
�

�
�

�j

�
k

, which only appears in one of the Dynkin diagrams of F(4),

the associated higher order Serre elements are

2[ei, [ek,e j]]+3[e j, [ek,ei]],
2[ fi, [ fk, f j]]+3[ f j, [ fk, fi]];

11. � �< �
1 2 3

, which is one of the Dynkin diagrams of G(3), the as-
sociated higher order Serre elements are

[[e1,e2], [[e1,e2], [[e1,e2], [e2,e3]]]],
[[ f1, f2], [[ f1, f2], [[ f1, f2], [ f2, f3]]]];

12. �< �< �,
1 2 3

which is one of the Dynkin diagrams of G(3), the as-
sociated higher order Serre elements are

[[e2,e1], [e3, [e2,e1]]]− [[e2,e3], [[e1,e1],e2]],
[[ f2, f1], [ f3, [ f2, f1]]]− [[ f2, f3], [[ f1, f1], f2]];

13. �
1

�
�

�
�

��
�3

�2

�
� , which is one of the Dynkin diagrams of G(3), the associated

higher order Serre elements are

[e2, [e3,e1]]−2[e3, [e2,e1]],
[ f2, [ f3, f1]]−2[ f3, [ f2, f1]];

14. ��
�

�
�

1

α

−(1+α)

�

�
,

which is one of the Dynkin diagram for D(2,1;α).

We label the left, top and bottom nodes by 1,2 and 3 respectively. The higher
order Serre elements are

α [e1, [e2,e3]]+(1+α)[e2, [e1,e3]],
α [ f1, [ f2, f3]]+(1+α)[ f2, [ f1, f3]].

Remark 3.1 The Dynkin diagrams of D(2,1) and D(2,1;α) in their respective dis-
tinguished root systems are not among the full sub-diagrams listed above.
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Remark 3.2 Diagram 9 above is a non-standard diagram of sl3|1 (see Sect. 2.2).

Denote by S +(A,Θ) (resp. S −(A,Θ)) the set of all the standard and higher
order Serre elements (if defined) which involve generators ek (resp. fk) only. Set
S (A,Θ) = S +(A,Θ)∪S −(A,Θ). We have the following result.

Lemma 3.2 The set S (A,Θ) is contained in the maximal ideal r(A,Θ) of g̃.

Proof. Direct calculations show that

[ fi,S +(A,Θ)]⊂ CS +(A,Θ), [ei,S −(A,Θ)]⊂ CS −(A,Θ), ∀i.
Hence S (A,Θ) ⊂ r(A,Θ) by Lemma 3.1. We leave out the details of the calcula-
tions. ��
Definition 3.2 Let s(A,Θ) be the Z2-graded ideal of g̃(A,Θ) generated by the ele-
ments of S (A,Θ).

Then s(A,Θ)⊂ r(A,Θ) by Lemma 3.2. Define the Lie superalgebra

g(A,Θ) :=
g̃(A,Θ)
s(A,Θ)

. (3.3)

There exists a natural surjective Lie superalgebramap g(A,Θ)−→ L(A,Θ).We shall
show that it is in fact an isomorphism.

3.2.2 Z-gradings

Let us discuss Z-gradings for the Lie supealgebras g(A,Θ) and L(A,Θ). Fix a pos-
itive integer d ≤ r, where r is the size of A. We assign degrees to the generators of
g̃(A,Θ) as follows:

deg(h j) = 0, ∀ j,
deg(ei) = deg( fi) = 0, ∀i �= d,

deg(ed) =−deg( fd) = 1.

(3.4)

This introduces a Z-grading to the auxiliary Lie superalgebra g̃(A,Θ), which is not
required to be compatible with the Z2-grading upon reduction modulo 2. In view of
the Q-grading of g̃(A,Θ) and (3.2), the maximal ideal r(A,Θ) is Z-graded. Since
all elements in S (A,Θ) are homogeneous with respect to the Z-grading, s(A,Θ) is
Z-graded as well.

The Lie superalgebra L(A,Θ) inherits a Z-grading from g̃(A,Θ) and r(A,Θ).
Write L(A,Θ) =⊕k∈ZLk. Since the roots of L(A,Θ) are known, we have a detailed
understanding of all Lk as L0-modules.

The Lie superalgebra g(A,Θ) inherits a Z-grading from g̃(A,Θ) and s(A,Θ).
Write g(A,Θ) = ⊕k∈Zgk, where gk is the homogeneous component of degree k.
Note that g1 (resp. g−1) generates gk (resp. g−k) for all k > 0. Thus if gp = 0 (resp.
g−p = 0) for some p > 0, then gq = 0 (resp. g−q = 0) for all q > p. Also each gk
forms a g0-module in the obvious way.
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We have the following result.

Lemma 3.3 (Key lemma) There exist Z-gradings for g(A,Θ) and L(A,Θ) deter-
mined by some d such that g0 = L0 as Lie superalgebras and gk = Lk as g0-modules
for all nonzero k ∈ Z.

This lemma is essential for establishing Theorem 3.2 below. Its proof is elemen-
tary but very lengthy, thus we relegate it to later sections. Here we consider some
general properties of the Lie superalgebras g(A,Θ) and L(A,Θ), which will signifi-
cantly simplify the proof of Lemma 3.3.

Recall that an anti-involution ω of a Lie superalgebra a is a linear map on a satis-
fyingω([X ,Y ]) = [ω(Y ),ω(X)] for all X ,Y ∈ a, andω2 = ida. The Lie superalgebra
g̃(A,Θ) admits an anti-involution defined by

ω(ei) = fi, ω( fi) = ei, ω(hi) = hi, ∀i.

Note that ω(S +) ⊂ −S − ∪S − and ω(S −) ⊂ −S + ∪S +, where S ± =
S ±(A,Θ) and−S ± are respectively the sets consisting of the negatives of the ele-
ments of S ±. Therefore, ω descents to an anti-involution on g(A,Θ), which sends
gk to g−k for all k ∈ Z and provides a g0-module isomorphism between g−k and the
dual space of gk.

The anti-involution of g̃(A,Θ) also descends to an anti-involution of L(A,Θ),
which maps Lk to L−k for all k ∈ Z, and provides an isomorphism between the L0-
module L−k and the dual L0-module of Lk.

Therefore, if g0 = L0 and gk = Lk for all k > 0 as g0-modules, the existence of the
anti-involutions immediately implies that g−k = L−k for all k > 0. Hence in order to
prove Lemma 3.3, we only need to show that it holds for all k > 0.

The arguments above may be summarised as follows.

Lemma 3.4 If g0 =L0 as Lie superalgebras and gk =Lk for all k> 0 as g0-modules,
then Lemma 3.3 holds.

This result will play an essential role in the proof of Lemma 3.3.

3.2.3 Main theorem

The following theorem is the main result of this paper.

Theorem 3.2 The Lie superalgebra g(A,Θ) coincides with L(A,Θ), or equivalently,
the ideal s(A,Θ) of g̃(A,Θ) is equal to the maximal ideal r(A,Θ).

Proof. Note that Lemma 3.3 immediately implies the claim. Indeed, we have al-
ready shown in Lemma 3.2 that s(A,Θ) ⊂ r(A,Θ), and this is an inclusion of Z-
graded ideals of g̃(A,Θ). If s(A,Θ) �= r(A,Θ), there would exist a surjective Lie
superalgebra homomorphism g(A,Θ) −→ L(A,Θ) with a nonzero kernel. Thus for
some k, the degree-k homogeneous components ofL(A,Θ) and g(A,Θ) are not equal.
This contradicts Lemma 3.3. ��
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3.3 Presentations of Lie superalgebras

Since the generators of the Z2-graded ideal s(A,Θ) are known explicitly, Theo-
rem 3.2 provides a presentation for each simple contragredient Lie superalgebra and
sln+1|n+1 in an arbitrary root system. We have the following result for the Lie super-
algebra L(A,Θ).

Theorem 3.3 The Lie superalgebra L(A,Θ) is generated by the generators ei, fi
and hi (1≤ i≤ r), where ei and fi are odd if i ∈Θ , and even otherwise, subject to
the quadratic relations

[hi,h j] = 0,

[hi,e j] = ai je j, [hi, f j] =−ai j f j,
[ei, f j] = δi jhi, ∀i, j;

(3.5)

standard Serre relations

(adei)
1−ai j(e j) = 0,

(ad fi)
1−ai j( f j) = 0, for i �= j, with aii �= 0 or ai j = 0;

[et ,et ] = 0, [ ft , ft ] = 0, for att = 0;

(3.6)

and higher order Serre relations if the Dynkin diagram of (A,Θ) contains any of the
following diagrams as full sub-diagrams:

1. × � ×
j t k

with sgn jt sgntk =−1, the associated higher order Serre rela-
tions are

[et , [e j, [et ,ek]]] = 0, [ ft , [ f j, [ ft , fk]]] = 0;

2. × � > �
j t k

, the associated higher order Serre relations are

[et , [e j, [et ,ek]] = 0, [ ft , [ f j, [ ft , fk]]] = 0;

3. × � > �
j t k

, the associated higher order Serre relations are

[et , [e j, [et ,ek]]] = 0, [ ft , [ f j, [ ft , fk]]] = 0;

4. � �< �
j t k

, the associated higher order Serre relations are

[[e j,et ], [[e j,et ], [et ,ek]]] = 0,

[[ f j, ft ], [[ f j, ft ], [ ft , fk]]] = 0;

5. × � �< �
i j t k

, the associated higher order Serre relations are

[[ei, [e j,et ]], [[e j,et ], [et ,ek]]] = 0,

[[ fi, [ f j, ft ]], [[ f j, ft ], [ ft , fk]]] = 0;
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6. ×�
�

�
�

�

�

i

t

s

, the associated higher order Serre relations are

[et , [es,ei]]− [es, [et ,ei]] = 0,

[ ft , [ fs, fi]]− [ fs, [ ft , fi]] = 0;

7. � > �< � �
1 2 3 4

, the associated higher order Serre relations are

[E, [E, [e2, [e3,e4]]]] = 0,

[F, [F, [ f2, [ f3, f4]]]] = 0,

where E = [[e1,e2], [e2,e3]] and F = [[ f1, f2], [ f2, f3]];

8. � > � �< �
1 2 3 4

, the associated higher order Serre relations are

[[e1,e2], [[e2,e3], [e3,e4]]− [[e2,e3], [[e1,e2], [e3,e4]] = 0,

[[ f1, f2], [[ f2, f3], [ f3, f4]]− [[ f2, f3], [[ f1, f2], [ f3, f4]] = 0;

9. � > � �
k t j

, the associated higher order Serre relations are

[et , [e j, [et ,ek]]] = 0,

[ ft , [ f j, [ ft , fk]]] = 0;

10. �
i

�
�

�
�

�
�

�j

�
k

, the associated higher order Serre relations are

2[ei, [ek,e j]]+3[e j, [ek,ei]] = 0,

2[ fi, [ fk, f j]]+3[ f j, [ fk, fi]] = 0;

11. � �< �
1 2 3

, the higher order Serre relations are

[[e1,e2], [[e1,e2], [[e1,e2], [e2,e3]]]] = 0,

[[ f1, f2], [[ f1, f2], [[ f1, f2], [ f2, f3]]]] = 0;

12. �< �< �,
1 2 3

the higher order Serre relations are

[[e2,e1], [e3, [e2,e1]]]− [[e2,e3], [[e1,e1],e2]] = 0,

[[ f2, f1], [ f3, [ f2, f1]]]− [[ f2, f3], [[ f1, f1], f2]] = 0;



Serre presentations of Lie superalgebras 249

13. �
1

�
�

�
�

��
�3

�2

�
� , the higher order Serre relations are

[e2, [e3,e1]]−2[e3, [e2,e1]] = 0,

[ f2, [ f3, f1]]−2[ f3, [ f2, f1]] = 0;

14.
��

�

�
�

1

α

−(1+α)

�

�
, the higher order Serre relations are

α [e1, [e2,e3]]+(1+α)[e2, [e1,e3]] = 0,

α [ f1, [ f2, f3]]+(1+α)[ f2, [ f1, f3]] = 0,

where the left node is labeled by 1, the top node by 2 and bottom one by 3.

When (A,Θ) is given in the distinguished root system, Theorem 3.3 simplifies
considerably. We have the following result.

Theorem 3.4 Let (A,Θ) withΘ = {s} be the Cartan matrix of a contragredient Lie
superalgebra in the distinguished root system. Then L(A,Θ) is generated by ei, fi,hi
(i = 1,2, . . . ,r), where es and fs are odd and the rest even, subject to
the quadratic relations

[hi,h j] = 0,

[hi,e j] = ai je j, [hi, f j] =−ai j f j,
[ei, f j] = δi jhi, ∀i, j;

(3.7)

standard Serre relations

(adei)
1−ai j(e j) = 0,

(ad fi)
1−ai j( f j) = 0, for i �= j, aii �= 0;

[es,es] = 0, [ fs, fs] = 0, for ass = 0;

(3.8)

and higher order Serre relations

[es, [es−1, [es,es+1]]] = 0, [ fs, [ fs−1, [ fs, fs+1]]] = 0, (3.9)

if the Dynkin diagram of A contains a full sub-diagram of the form

� � �
s−1 s s+1

with sgns−1,ssgns,s+1 =−1, or � � > �
s−1 s s+1

.

Remark 3.3 Note the importance of the signs sgni j in the above theorem. There are
higher order Serre relations associated with the first Dynkin diagram in (2.2), but
none with the second. The Dynkin diagrams in (2.2) are respectively those of sl2|2
and osp4|2 in their distinguished root systems. The Lie superalgebraD(2,1;α) in the
distinguished root system has no higher order Serre relations either.
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4 Proof of key lemma for distinguished root systems

Throughout this section, we assume that the Cartan matrix (A,Θ) is associated with
the distinguished root system of a simple Lie superalgebra. Thus Θ contains only
one element, which we denote by s. To simplify notation, we write g̃(A) for g̃(A,Θ),
g(A) for g(A,Θ), and L(A) for L(A,Θ).

4.1 The proof

The proof of Lemma 3.3will make essential use of Lemma 3.4. Define theZ-gradings
for g(A) and L(A) as in Sect. 3.2.2 by taking d = s.

Lemma 4.1 As reductive Lie algebras, g0 = L0.

Proof. In this case, both g0 and L0 are generated by purely even elements. Let g′0 =
[g0,g0] and L′0 = [L0,L0] be the derived algebras. Then by Serre’s theorem for semi-
simple Lie algebras g′0 = L′0. Now the claim immediately follows. ��

We now consider the g0-modules g1 and L1.

Remark 4.1 For convenience, we continue to use ei, hi and fi to denote the images
of these elements in g(A).

Examine the following relations in g(A):

[hi,es] = aises, [ fi,es] = 0, (adei)
1−aises = 0, ∀i �= s. (4.1)

The first two relations imply that es is a lowest weight vector of the g0-module
g1, with weight αs. Since ais are non-positive integers for all i �= s, by [10, Theo-
rem 21.4], the third relation implies that g1 is an irreducible finite dimensional g0-
module. The relations (4.1) also hold in L(A). This immediately shows the following
result.

Lemma 4.2 Both g1 and L1 are irreducible g0-modules, and g1 = L1.

Note that g2 is generated by g1, that is g2 = [g1,g1]. By induction one can show
that gk+1 = (adg1)

k (g1) for all k ≥ 1. If gi = 0 for some i > 1, then g j = 0 for
all j ≥ i. We have the g0-module decomposition g1⊗g1 = S2s (g1)⊕∧2s (g2), where
S2s (g1) denotes the second Z2-graded symmetric power, and ∧2s (g1) the second Z2-
graded skew power, of g1.

Remark 4.2 Throughout the paper, we use Sks(V ) and∧ks(V ) to denote theZ2-graded
symmetric and skew symmetric tensors of rank k in the Z2-graded vector space V ,
and Sk(V ) and ∧k(V ) to denote the usual symmetric and skew symmetric tensors of
rank k, ignoring the Z2-grading of V .
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We have the following result:

Lemma 4.3 The Lie superbracket defines a surjective g0-map g1⊗g1 −→ g2, X ⊗
Y �→ [X ,Y ]. The g0-submodule S2s (g1) is in the kernel of this map, and ∧2s (g1) is
mapped surjectively onto g2.

Proof. For any X ,Y ∈ g1, an element Z ∈ g0 acts on X⊗Y by

Z · (X⊗Y ) = [Z,X ]⊗Y +X ⊗ [Z,Y ].

The Lie superbracket maps Z · (X ⊗Y ) to [[Z,X ],Y ] + [X , [Z,Y ]] = [Z, [X ,Y ]]. This
proves the first claim. The second claim follows from the Z2-graded skew symmetry
of the Lie superbracket. ��

Therefore, the g0-mapΨ : ∧2s (g1)−→ g2 defined by the composition

∧2s (g1) ↪→ g1⊗g1 [ , ]−→ g2
is also surjective, where the map on the left is the natural embedding. The struc-
ture of ∧2s (g1) as a g0-module can be understood; this enables us to understand the
structure of g2.

Recall that in the distinguished root systems, L2 = 0 if L(A) is of type I, and
L2 �= 0 but L3 = 0 if L(A) is of type II. Thus in order to show that gk = Lk for all
k > 0, it remains to prove that g2 = 0 if the Cartan matrix A is of type I, and g2 = L2
and g3 = 0 if A is of type II. In view of Lemma 3.4, the proof of Lemma 3.3 is done
once this is accomplished.

The rest of the proof will be based on a case by case study. Let us start with the
type I Lie superalgebras.

4.1.1 The case of slm|nslm|nslm|n

If the Cartan matrix A is that of slm|n, the Lie superalgebra g(A) has g0 = glm⊕ sln,
and g1 ∼= Cm⊗Cn

up to parity change, where Cm denotes the natural module for
glm, and C

n
denotes the dual of the natural module for sln. Assuming that both m

and n are greater than 1. Then ∧2s (g1) = S2(Cm)⊗S2(Cn)⊕∧2(Cm)⊗∧2(Cn).
The lowest weight vectors of the irreducible submodules are respectively given

by
v(2) :=es⊗ es;

v(12) :=es−1,s+2⊗ es,s+1 + es,s+1⊗ es−1,s+2

− (es−1,s+1⊗ es,s+2 + es,s+2⊗ es−1,s+1),

where s = m, and

es,s+1 = es, es,s+2 = [es,es+1],
es−1,s+1 = [es−1,es], es−1,s+2 = [es−1,es,s+2].
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We haveΨ(v(2)) = [es,es] = 0 by one of the standard Serre relations. It follows
that the entire irreducible g0-submodule S2(Cm)⊗S2(Cn) is mapped to zero. In par-
ticular, we have

[es−1,s+2,es,s+1]+ [es−1,s+1,es,s+2] = 0. (4.2)

The first term of (4.2) vanishes by the higher order Serre relation; this in turn
forces the second term to vanish as well. Hence

Ψ(v(12)) = [es−1,s+2,es,s+1]− [es−1,s+1,es,s+2] = 0.

Therefore, v(12) is in the kernel ofΨ , implying that the entire submodule ∧2(Cm)⊗
∧2(Cn) is mapped to zero byΨ . This shows that g2 = 0, and hence gk = 0 for all
k ≥ 2.

Note that if min(m,n) = 1, say, n = 1, ∧2s (g1) is irreducible as g0-module and is
equal to S2(Cm)⊗C. The above proof obviously goes through but in a much sim-
plified fashion.

Therefore, we have proved that gk = Lk for all k ≥ 2 in the case L(A) = slm|n.

4.1.2 The case ofCCC(((nnn+++111))) with nnn >>> 111

In this case, g0 = sp2n⊕C and g1 = C2n. The Z2-graded skew symmetric tensor
∧2s (g1) is an irreducible g0-module with the lowest weight vector e1 ⊗ e1. Since
Ψ(e1⊗ e1) = [e1,e1] = 0 by the standard Serre relation, it immediately follows that
gk = 0 for all k ≥ 2.

4.1.3 The case of DDD(((mmm,,,nnn))) with mmm >>> 222

In this case, g0 = gln⊕so2m, and g1 is isomorphic to Cn⊗C2m as g0-module (up to
parity) with en being the lowest weight vector. Let us first assume that n > 1. Then
we have

∧2s (g1) = S2(Cn)⊗ S2(C2m)
C

⊕∧2(Cn)⊗∧2(C2m)⊕S2(Cn)⊗C.

Lowest weight vectors of the first two irreducible submodules can be explicitly con-
structed in exactly the same way as in the case of slm|n. The same arguments used
there also show that the Lie superbracket maps both submodules to zero. Hence
g2 ∼= S2(Cn)⊗C. Inspecting the roots ofD(m,n) given in Appendix A.1, we can see
that g2 = L2.

Let us examine g2 in more detail. We use notation from Appendix A.1 for roots
of the Lie superalgebra D(m,n). Let Xδi±εp , where 1 ≤ i ≤ n and 1 ≤ p ≤ m, be a
weight basis of g1. Then in g2, we have

[Xδi−εp ,Xδ j−εq ] = [Xδi+εp ,Xδ j+εq ] = 0, ∀i, j, p,q,
[Xδi+εp ,Xδ j−εq ] = 0, ∀i, j, p �= q,

(4.3)
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and there exist scalars ci j,pq such that

[Xδi−εp ,Xδ j+εp ] = ci j,pq[Xδi+εp ,Xδ j−εp ] �= 0, ∀i, j, p,q.

By multiplying the elements Xδi±εp by appropriate scalars if necessary, we may as-
sume

[Xδi−εp ,Xδ j+εp ] = [Xδi−εq ,Xδ j+εq ], ∀i, j, p,q,
which we denote by Xδi+δ j . Then the subset of Xδi+δ j with 1 ≤ i ≤ j ≤ n forms a
basis of g2.

Now we consider g3. It immediately follows from (4.3) that [Xδi+δ j ,Xδk±εp ] = 0
for all k, p and i≤ j, that is,

g3 = [g1,g2] = 0. (4.4)

Hence gk = 0 for all k ≥ 3.
When n= 1, the proof goes through much more simply. This completes the proof

of Lemma 3.3 for the case of D(m,n) with m > 2.
In contrast to the type I case, the complication here is that g3 needs to be analysed

separately as g2 �= 0.

4.1.4 The case of DDD(((222,,,nnn)))

In this case, g0 = gln⊕sl2⊕sl2, and g1 =Cn⊗C2⊗C2. The Z2-graded skew sym-
metric rank two tensor ∧2s (g1) decomposes into the direct sum of four irreducible
g0-modules if n > 1:

∧2s (g1) =Ln(2)⊗L2(2)⊗L2(2)⊕Ln(1,1)⊗L2(2)⊗L2(0)

⊕Ln(1,1)⊗L2(0)⊗L2(2)⊕Ln(2)⊗L2(0)⊗L2(0).

If n = 1, then Ln(1,1) = 0, the two modules in the middle are absent.
The lowest weight vectors of the first three submodules can be easily worked out.

Below we give the explicit formulae for their images under the Lie superbracket. Let

es;s+1 = [es,es+1], es;s+2 = [es,es+2], es−1;s = [es−1,es],
es−1;s+1 = [es−1,es;s+1], es−1;s+2 = [es−1,es;s+2].

Then the images of the lowest weight vectors are given by

[es,es], [es−1;s+1,es]− [es−1;s,es,s+1], [es−1;s+2,es]− [es−1;s,es,s+2]. (4.5)

We have the Serre relation [es,es] = 0. This implies that the entire irreducible
submodule Ln(2)⊗L2(2)⊗L2(2) is mapped to zero by the Lie superbracket.

In the case n > 1, this in particular implies

[es−1;s+1,es]+ [es−1;s,es,s+1] = 0, [es−1;s+2,es]+ [es−1;s,es,s+2] = 0.
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Note that [es−1;s+1,es] = 0 and [es−1;s+2,es] = 0 are the two higher order Serre rela-
tions involving es. Thus all the four terms on the left hand sides of the above equa-
tions should vanish separately. It then follows that the second and third elements
in (4.5) are zero, that is, the lowest weight vectors of the irreducible submodules
Ln(1,1)⊗L2(2)⊗L2(0) and Ln(1,1)⊗L2(0)⊗L2(2) are in the kernel of the Lie superbracket.
Thus both irreducible submodules are mapped to zero by the Lie superbracket. The
above analysis is vacuous if n = 1.

Therefore, g2 ∼= Ln(2)⊗L2(0)⊗L2(0), and this shows that g2 ∼= L2.
To analyse g3, we note that equation (4.4) still holds here as can be shown by

adapting the arguments in the m > 2 case. This completes the proof in this case.

4.1.5 The case of BBB(((mmm,,,nnn)))

When m≥ 1, the proof is much the same as in the case of D(m,n) with m > 2. We
omit the details.

If m= 0, then g0 = gln, g1 =Cn and g2 ∼= ∧2s (g1)∼= L2. Every root vector in g1 is
of the form [X ,es] for some positive root vector X ∈ g0, where s= n. Thus it follows
from the relation (ades)

3(es−1) = 0 that [g1, [es,es]] = 0. Since [es,es] is a g0 lowest
weight vector of g2, this implies g3 = 0.

Remark 4.3 The Lie superalgebra B(0,n) is essentially the same as the ordinary Lie
algebra Bn. As a matter of fact, the corresponding quantum supergroup is isomor-
phic to the smash product of Uq(Bn)with the group algebra of Zn

2 [17,28]. The usual
proof of Serre presentations for semi-simple Lie algebras (see, e.g., [10]) works for
B(0,n). We gave the alternative proof here for the sake of uniformity.

4.1.6 The case of FFF(((444)))

Let us order the nodes in the Dynkin diagram from the right to left:

� �< � �
4 3 2 1

.

We may express the simple roots as α1 = ε1− ε2, α2 = ε2− ε3, α2 = ε3 and α4 =
1
2

(
δ −ε1−ε2−ε3

)
. The symmetric bilinear form on the weight space is defined in

Appendix A.1, where further details about roots of F(4) are given.
The first three simple roots are the standard simple roots of so7, thus g0 = so7⊕

gl1. The subspace g1 is an irreducible g0-module, which has e4 as a lowest weight
vector, and restricts to the spinor module for so7. Now ∧2s (g1) decomposes into the
direct sum of two irreducibles g0-submodules, one of which is 1-dimensional, the
other is 35-dimensional with lowest weight vector e4⊗ e4.

The Serre relation [e4,e4] = 0 implies that the 35-dimensional submodule is in
the kernel of the Lie superbracket, and hence g2 is 1-dimensional. A basis element
for g2 is E = [e4,eα4+ε1+ε2+ε3 ].
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For any weight β of g1, we use eβ ∈ g1 to denote a basis vector of the associated
weight space, and set eα4 = e4. Then we have

[eβ ,E] = 0, for all odd positive root β . (4.6)

This is trivially true for β = α4 or α4 +ε1 +ε2 +ε3. For β = α4 +ε1 or α4+εi +ε j
(i �= j), we have [eβ ,E] = [[eβ ,eα4 ],eα4+ε1+ε2+ε3 ]− [eα4 , [eβ ,eα4+ε1+ε2+ε3 ]], where
both terms vanish as they involve images in g2 of elements in the 35-dimensional
submodule of ∧2s (g1). Therefore, gk = {0} for all k ≥ 3.

4.1.7 The case of GGG(((333)))

In this case, g0 is isomorphic to the reductive Lie algebra G2⊕gl1, and g1 is an irre-
ducible g0-module which restricts to the 7-dimensional irreducible G2-module. The
Z2-graded skew symmetric tensor ∧2s (g1) decomposes into the direct sum L(2α1)⊕
L(0) of two irreducible g0-submodules. The submodule L(2α1) has e1⊗e1 as lowest
weight vector, thus its image under the Lie superbracket is zero by the Serre relation
[e1,e1] = 0. The submodule L(0) is 1-dimensional. Since the Lie superbracket maps
∧2s (g1) surjectively to g2, we immediately conclude that dimg2 = 1.

Let X = e2α2+α3 be the root vector of G2 ⊂ g associated with the positive root
2α2 +α3. Then e+ := [X , [X ,e1]] is the highest weight vector of g1 as a g0-module.
Since g2 is one-dimensional, it must be spanned by E = [e1,e+].

If eβ ∈ g1 is a weigh vector not proportional to e1 or e+, both [eβ ,e1] and [eβ ,e+]
vanish since they lie in the image of L(2α1) ⊂ ∧2s (g1) under the Lie superbracket.
Hence [eβ ,E] = 0. We also have [e+,e+] = 0, and the Serre relation [e1,e1] = 0.
Thus [e1,E] = [e+,E] = 0. Therefore, [g1,E] = 0, which implies gk = {0}, for all
k ≥ 3.

4.1.8 The case of DDD(((222,,,111;;;ααα)))

We have g0 = sl2⊕sl2⊕gl1, and g1 ∼=C2⊗C2. The tensor ∧2s (g1) decomposes into
the direct sum of two irreducible g0-submodules,

∧2s (g1) = L(2;2)⊕L(12;12), L(2;2) = L(2)⊗L(2), L(12;12) = L(12)⊗L(12).

The notation here only reflects the sl2⊕ sl2-module structure, as there is no need to
specify the gl1-action explicitly (see Remark 4.4 below).

We have dimL(2;2) = 9 and dimL(12;12) = 1. The lowest weight vector for L(2;2)
is v(2) = e1⊗ e1. Let

e−− = e1, e+− = [e1,e2], e−+ = [e1,e3], e++ = [e+−,e3],

v(12) = e−−⊗ e++ + e++⊗ e−−− e+−⊗ e−+− e−+⊗ e+−.

Then the vector v(12) spans L(12;12).
The Lie superbracket maps L(2;2) to zero because [e1,e1] = 0. Note that the ele-

ment [e−−,e++]+ [e+−,e−+] belongs to the image of L(2;2), thus is zero. Hence g2
is spanned by E = [e−−,e++]. Now it is easy to show that [E,g1] = 0.
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Remark 4.4 This proof is essentially the same as that in the case of D(2,1), except
for that the gl1 subalgebra of g0 acts on g1 by different scalars in the two cases. How-
ever, this scalar is not important in the proof of Lemma 3.3, and that is the reason
why we did not specify it explicitly.

4.2 Comments on the proof

Let us recapitulate the proof of Lemma 3.3 in the distinguished root systems.

1. By Lemma 3.4, the proof of Lemma 3.3 is reduced to showing that the parabolic
subalgebras g(A)≥0 and L(A)≥0 are the same.

2. The elements {hs}∪{hi,ei, fi | i �= s} and those defining relations of g(A) obeyed
by them give a Serre presentation for the reductive Lie algebra g0. Then it essen-
tially follows from Serre’s theorem that g0 = L0, see Lemma 4.1.

3. Given item (2), it suffices to show that g(A)>0 =⊕k>0gk and L(A)>0 =⊕k>0Lk
are isomorphic as g0-modules.

4. Equation (4.1) gives the necessary and sufficient conditions for g1 to be a finite
dimensional irreducible g0-module with lowest weight αs, hence g1 = L1 as g0-
modules.

5. The standard and higher order Serre relations involving es are conditions imposed
on g0-lowest weight vectors of [g1,g1], which are the necessary and sufficient to
guarantee that g2 = L2.

6. The fact that g3 = 0 follows (trivially in the type I case) from the result on g2
and graded skew symmetry of the Lie superbracket, thus no additional relations
are required. The vanishing of g3 implies that for all k ≥ 3, gk = 0, and hence
gk = Lk.

In non-distinguished root systems, one can still prove Lemma 3.3 by following
a similar strategy, as we shall see in the next section. However, there are important
differences in several aspects.

There aremany suchZ-gradings as defined in Sect. 3.2.2 for the Lie superalgebras
g(A,Θ) and L(A,Θ). This works to our advantage.

Given any such Z-grading g(A,Θ) =⊕k∈Zgk, the degree zero subspace g0 forms
a Lie superalgebra, which is not an ordinary Lie in general. Thus the requirement
that g1 be an irreducible g0-module is much more difficult to implement, and usu-
ally leads to unfamiliar higher order Serre relations.

In general g3 �= 0. In order for gk to be equal to Lk for k ≥ 3, higher order Serre
relations are needed at degree k ≥ 3.

5 Proof of key lemma for non-distinguished root systems

In this section we prove Lemma 3.3 in non-distinguished root systems by follow-
ing a similar strategy as that in Sect. 4. In particular, Lemma 3.4 will be used in an
essential way.
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Assume that the Cartan matrix A is of size r× r. Fix a positive integer d ≤ r, we
consider the correspondingZ-gradings for g(A,Θ) and L(A,Θ) defined in Sect. 3.2.2.
We shall first establish that g0 = L0. Since the roots of L(A,Θ) are known explicitly
(see Appendix A.1), we have a complete understanding of the g0-module structure
of every Lk. Thus once we have a description of the weight spaces of each gk as
g0-module for all k > 0, an easy comparison with the root spaces of Lk will enable
us to prove the key lemma.

Remark 5.1 In the proof of Lemma 3.3 given below, we shall only describe the
weight spaces of gk (k > 0), and leave out the easy step of comparing them with
those of Lk in most cases.

For convenience, we introduce the parity map p : {1,2, . . . ,r} −→ {0,1} such
that p(i) = 1 if i ∈Θ and p(i) = 0 otherwise. Then ei and fi are odd if p(i) = 1, and
even if p(i) = 0.

5.1 Proof in type A

We use induction on the rank r together with the help of Lemma 3.4 to prove
Lemma 3.3 and Theorem 3.3.

If r = 2, the Dynkin diagram in the non-distinguished root system has two grey
nodes. In this case, there exists no relation between e1 and e2, and [e1,e2] is another
positive root vector. Note that [e1, [e1,e2]] = 0 and [e2, [e1,e2]] = 0 by the graded
skew symmetry of the Lie superbracket. Thus Lemma 3.3 is valid and g(A,Θ) =
L(A,Θ)

When r > 2, we take d = r. Then g′0 = [g0,g0] is a special linear superalgebra of
rank r−1 by the induction hypothesis, and thus g0 is a general linear superalgebra.

Define the following elements of g0:

Xi j = adei · · ·ade j−2(e j−1), i < j ≤ r, (5.1)

where Xj, j+1 = e j. In view of the general linear superalgebra structure of g0, we
conclude that g1 is isomorphic to the irreducible g0-module with lowest weight αr

(which is in fact the natural module possibly upon a parity change) if and only if

[Xik, [Xjr,er]] = 0, j �= k.

By using the g0-action, we can show that these conditions are equivalent to the re-
lation

[er−1, [[er−2,er−1],er]] = 0 (5.2)

and the relevant relations in (3.1). For p(r−1) = 1, (5.2) is a higher order Serre rela-

tion associated with the sub-diagram × � ×
r-2 r-1 r

with sgnr−2,r−1 =−sgnr−1,r.
If p(r−1) = 0, it can be derived from

[er−1, [er−1,er]] = 0, (5.3)

which is a standard Serre relation.
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Consider ∧2sg1, which is an irreducible g0-module. The lowest weight vector is

er⊗ er, if p(r) = 1, or

er⊗ [er−1,er]− [er−1,er]⊗ er, if p(r) = 0.

Thus g2 = 0 if and only if

[er,er] = 0, if p(r) = 1, or

[er, [er,er−1]] = 0, if p(r) = 0,
(5.4)

both of which are standard Serre relations. This proves that Lemma 3.3, and hence
Theorem 3.2, are valid at rank r.

Remark 5.2 The proof presented here includes an alternative proof for Serre’s the-
orem in the case of sln. This can be generalised to all finite dimensional simple Lie
algebras. In particular, the proof for the other classical Lie algebras can be extracted
from the next two sections.

5.2 Proof in type B

Consider the first Dynkin diagram of type B in Table 2, where the last (that is, r-th)
node is white, and take d = r. In this case, g0 is a general linear superalgebra, and
we have already obtained a Serre presentation for it in Sect. 5.1.

We require g1 be isomorphic to the irreducible g0-module with lowest weight αr,
which is in fact the natural module for g0. This is achieved by relations formally the
same as (5.2) or (5.3).

As g0-module, g2 is isomorphic to ∧2sg1, which is irreducible with the lowest
weight vector E := [er, [er,er−1]]. Now g3 = 0 if and only if [E,g1] = 0. This in
particular requires that

(ader)
3 (er−1) = 0. (5.5)

We shall show that this in fact is the necessary and sufficient condition.
If p(r−1) = 1, then [E, [er−1,er]] = 0 trivially since [er−1,er−1] = 0 in g0. For

K = [er−2, [er−1,er]], we also have [K,E] = 0. This follows from [K,er−1] = 0, which
is one of the higher order Serre relations associated with a sub-diagram of type A.
Applying ader to it twice and using (5.5), we obtain the desired relation. These re-
lations imply that [X ,E] = 0 for all X ∈ g1 in this case. If p(r−1) = 0, the fact that
[X ,E] = 0, for all X ∈ g1, follows from

[[er−1,er], [[er−1,er],er]] = 0,

which can be derived from (5.5).
The other Dynkin diagram (where the last node is black) can be treated in essen-

tially the same way. We omit the details.
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5.3 Proof in types C and D

The Dynkin diagrams of typeC formally have the same forms as two of the Dynkin
diagrams ofD. The only difference is in the numbers of grey nodes, see Remark Ap-
pendix A.1. This enables us to treat both types of Lie superalgebras simultaneously.

5.3.1 Case 1

Consider the Dynkin diagram

× × . . . × ×< �.

We label the nodes from left to right, thus the r-th node is the one at the right end.
Set d = r, then g0 is a general linear superalgebra.

As a g0-module, g1 is generated by er. We require it be isomorphic to the irre-
ducible module Lαr with lowest weight αr. Appendix B.2 describes the structure of
the generalised Verma module Vαr with lowest weight αr and the irreducible quo-
tient Lαr . We immediately see that the relevant relations in (3.1) and the relations

[Xir, [Xjr, [Xkr,er]]] = 0, ∀i≤ j ≤ k ≤ r−1, (5.6)

are necessary and sufficient conditions to guarantee that g1 ∼= Lαr . Here Xir are ele-
ments of g0 defined by (5.1). The conditions (5.6) are equivalent to

[er−1, [er−1, [er−1,er]]] = 0, if er−1 is even,
[Xr−2,r, [Xr−2,r, [er−1,er]]] = 0, if er−1, er−2 are both odd,
[Xr−3,r, [Xr−2,r, [er−1,er]]] = 0, if er−1 is odd, er−2 is even

(5.7)

because of the g0-action. Here Remark Appendix B.1 is also in force.
Note that the different situations where the relations apply are mutually exclu-

sive. The first relation is a standard Serre relation. The second and third are higher
order Serre relations respectively associated with the sub-diagrams

� �< � or × � �< �.

Recall that g2 is the image of ∧2sg1 under the Lie superbracket. As g0-module,
∧2sg1 is irreducible with the lowest weight vector er⊗ [er−1,er]− [er−1,er]⊗er. Thus
g2 = 0 if and only if

[er, [er,er−1]] = 0. (5.8)

This is again a standard Serre relation.
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5.3.2 Case 2

Now we consider the case with the Dynkin diagram

× × . . . × ×
�

�

�
�

�

�.

Let us first assume that r= 3.We have the Dynkin diagram of osp2|4 (resp. osp4|2)
if p(1) = 0 (resp. p(1) = 1). Label by 1 the node marked by ×, and take d = 1. The
diagram obtained by deleting this node is

� �.

This is a non-standard diagram of osp2|2 ∼= sl2|1. Equation (3.1) by itself suffices to
define this Lie superalgebra.

Now g0 = osp2|2⊕gl1 (isomorphic to gl2|1). Let b0 be the Borel subalgebra of g0
generated by f2, f3 and all hi, and define the lowest weight Verma module Vα1 :=
U(g0)⊗U(b−0 )Cα1 for g0, whereCα1 is the irreducible b0-module with lowest weight
α1. Direct computations show that the maximal submoduleMα1 is generated by the
vector (e2e3− e3e2)⊗ 1. The irreducible quotient Lα1 is four dimensional, with a
basis consisting of the images of 1⊗1, e2⊗1, e3⊗1, and [e2,e3]⊗1. Its restriction
to osp2|2 is the natural module.

We need g1 ∼= Lα1 , possibly up to a parity change depending on the parity of e1.
From the description ofVα1 andMα1 above, we see that the necessary and sufficient
conditions are the relevant quadratic relations involving e1 in (3.1), and

[e2, [e3,e1]]− [e3, [e2,e1]] = 0. (5.9)

Note that this is a higher order Serre relation associated with the sub-diagram (6)
given in Theorem 3.3.

To proceed further, we need to specify the parity of e1.
If e1 is even, the Lie superalgebra L(A,Θ) is osp2|4. Now ∧2sg1 is the direct sum

of a seven dimensional indecomposable g0-submodule and a one dimensional g0-
submodule. The seven dimensional submodule is generated by the two lowest weight
vectors

e1⊗ [e2,e1]− [e2,e1]⊗ e1, e1⊗ [e3,e1]− [e3,e1]⊗ e1,

and the one dimensional submodule by

[e2,e1]⊗ [e3,e1]+ [e3,e1]⊗ [e2,e1]+ e1⊗ [[e2,e3],e1]− [[e2,e3],e1]⊗ e1.

In this case, we need g2 to be isomorphic to a one dimensional g0-modulewithweight
2α1 +α2 +α3. Thus the seven dimensional indecomposable submodule of ∧2sg1 is
sent to zero by the Lie superbracket, or equivalently,

[e1, [e1,e2]] = 0, [e1, [e1,e3]] = 0, (5.10)
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which are standard Serre relations. The image of the one dimensional submodule is
g2, which is spanned by

[[e1,e2], [e1,e3]]− [e1, [e1, [e2,e3]]] =−[[e1,e2], [e1,e3]],

where (5.10) is used to obtain the identity. By using (5.9) and (5.10), one can easily
show that [g2,g1] = 0, and hence g3 = 0.

If e1 is odd, the Lie superalgebra L(A,Θ) is osp4|2. By dimension counting,
we need g2 = 0. Now ∧2sg1 is also a direct sum of a seven dimensional inde-
composable g0-submodule and a one dimensional submodule. Given the condition
[e1,e1] = 0, the seven dimensional submodule vanishes automatically under the
Lie superbracket, and the image of the one dimensional submodule is spanned by
[[e1,e2], [e1,e3]]. Taking the Lie superbraket of e1 with both sides of (5.9), we obtain
[[e1,e2], [e1,e3]] = 0. Hence g2 = 0.

Now assume r≥ 4. We take d = r−3, then g0 is the direct sum of a general linear
superalgebra and osp4|2 or osp2|4.

If er−2 is even, the condition that g1 is an irreducible g0-module of lowest weight
αr−3 is given by the relevant relations in (3.1),

[er−2, [er−2,er−3]] = 0,

and also

[er−4, [er−4,er−3]] = 0, if p(r−4) = 0,

[er−4, [er−5, [er−4,er−3]]] = 0, if p(r−4) = 1.
(5.11)

As g0-module, ∧2sg1 is the direct sum of three irreducibles. The osp2|4 subalgebra
of g0 acts trivially on one of the irreducible submodules, and g2 is isomorphic to
it. The necessary and sufficient conditions for the Lie superbracket to annihilate the
other two irreducible submodules are

[er−3, [er−3,er−2]] = 0, [er−3, [er−3,er−4]] = 0, if p(r−3) = 0,

[er−3,er−3] = 0, [er−3, [er−4, [er−3,er−2]]] = 0, if p(r−3) = 1,
(5.12)

as can be shown by examining lowest weight vectors of the submodules.

Remark 5.3 Let E = [[er−3,er−2],er−1] and E ′ = [[er−3,er−2],er]. Then at least one
of the vectors [X ,E] and [X ,E ′] vanishes for any X ∈ g1.

Let v denote a lowest weight vector of g2. We can take v= [E,E ′] if er−3 is even,
and v= [[er−4,E],E ′] if er−3 is odd. Then by Remark 5.3, we have [v,X ] = 0 for any
X ∈ g1. Hence g3 = 0.

If er−2 is odd, the condition that g1 is an irreducible g0-module of lowest weight
αr−3 translates into the relations (5.11),

[er−2, [[er−2,er−1],er−3]] = 0,

[er−2, [[er−2,er],er−3]] = 0,
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plus the relevant relations in (3.1). Here we have used some facts about generalised
Verma modules for osp4|2.

As g0-module, ∧2sg1 is again a direct sum of three irreducibles. One of them re-
stricts to a direct sum of one dimensional osp4|2-modules, and g2 is isomorphic to
it. The other two irreducibles are both mapped to zero by the Lie superbracket. The
necessary and sufficient condition for this to happen is still (5.12).

Note that Remark 5.3 remains valid in the present case if we define E and E ′ in
the same way. Let v = [E,E ′] if er−3 is odd, and v = [[er−4,E],E ′] if er−3 is even.
Then v is a nonzero lowest weight vector of g2. It follows from Remark 5.3 that
[v,X ] = 0 for any X ∈ g1. Hence g3 = 0.

5.3.3 Case 3

Finally we consider the Dynkin diagram

× × . . . × ×
�

�
�

�
� �,

assuming that there are at least two grey nodes (as otherwise this would correspond
to the distinguished root system of type D). This forces r ≥ 4.

This case is quite easy, thus we shall be brief. We choose d to be the largest in-
teger such that p(d) = 1. Then g0 is the direct sum of a general linear superalgebra
and an even dimensional orthogonal Lie algebra.

From Sect. 5.1, we see that the necessary and sufficient conditions for ed (which
must be odd) to generate an irreducible g0-module are the relevant relations in (3.1)
and the higher order Serre relation involving ed associated with the following sub-

diagram × � �
d-1 d

of the Dynkin diagram if p(d−1) = 1. Note that if d = 2,
this becomes vacuous.

As g0-module, g1 is the tensor product of the natural modules VA and VD respec-
tively for the general linear superalgebra and orthogonal algebra contained in g0.
Here VD is purely even, and the grading of VA gives rise to the grading of g1.

Now ∧2sg1 ∼= ∧2s (VA)⊗
(
S2(VD)/C

)⊕ S2s (VA)⊗ ∧2(VD)⊕ ∧2s (VA)⊗ C as g0-
module. The images of the first two irreducibles under the Lie superbracket are set
to zero by the relation [ed ,ed ] = 0 and the higher order Serre relation(s) associated

with the sub-diagram(s) of the form × � �
d-1 d

. Note that if d < r−2, there
is only one such diagram, but there are two if d = r−2, as the last node can be (r−1)
or r. We have g2 ∼= ∧2s (VA)⊗C.

One can show that [g2,g1] = 0 by using the same arguments as those in Sect. 4.1.3
and Sect. 4.1.4, thus g3 = 0.



Serre presentations of Lie superalgebras 263

5.4 Proof in type FFF(((444)))

Now we turn to F(4), which is considerably more complicated than the other types
of Lie superalgebras.

5.4.1 Case 1

Consider first the root system corresponding to the Dynkin diagram

� > �< � �
1 2 3 4

.

We take d = 2. Then g0 = sl2⊕ gl3. The standard Serre relations plus the relevant
relations in (3.1) are the necessary and sufficient conditions rendering the g0-module
g1 irreducible. We have g1 ∼= C2⊗C3 up to a parity change.

As g0-module, ∧2sg1 is a direct sum of two irreducibles. The condition [e2,e2] = 0
forces one of the irreducibles to be in the kernel of themap∧2sg1−→ g2. Thus g2 is an
irreducible g0-module generated by the lowest weight vector E = [[e1,e2], [e2,e3]].
We have g2 = C⊗∧2(C3).

Now g3 = [g2,g1]∼=C2⊗Cwith a basis consisting of vectors [E, [e2, [e3,e4]]] and
[E, [E ′,e4]], where E ′ = [e1, [e2,e3]]. One immediately sees that

[g3,e2] = C[E, [E,e4]],

which generates g4 = C⊗C3.
To consider g5, we only need to look at [g4,g1]. If X ∈ g1 is any lowest weight

vector for sl2 ⊂ g0, the higher order Serre relation associated with the Dynkin dia-
gram (see diagram (7) in Theorem 3.3) renders [g4,X ] = 0. Since the sl2 subalgebra
of g0 acts trivially on g4, it follows that [g4,g1] = 0, that is, g5 = 0.

5.4.2 Case 2

For the Dynkin diagram

� > � �< �
1 2 3 4

,

we also take d = 2 as in the previous case. Then g0 = gl2⊕ sp4. The relevant rela-
tions in (3.1) and standard Serre relations guarantee that e2 generates an irreducible
g0-module, which is isomorphic to the tensor productC2⊗C4 of the natural modules
for gl2 and sp4 up to a parity change.

Now ∧2sg1 decomposes into the direct sum of three irreducible g0-modules,
which are respectively isomorphic to S2(C2)⊗ S2(C4), ∧2(C2)⊗ (∧2(C2)/C) and
∧2(C2)⊗C. The necessary and sufficient conditions for the Lie superbracket to map
the first and the third submodules to zero are [e2,e2] = 0 and the higher order Serre
relation

[[e1,e2], [[e2,e3], [e3,e4]]− [[e2,e3], [[e1,e2], [e3,e4]] = 0 (5.13)
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associated with the Dynkin diagram (see diagram (8) in Theorem 3.3). Now g2 is

isomorphic to ∧2(C2)⊗ ∧2(C2)
C with lowest weight vector

E = [[e1,e2], [e2,e3]].

Formally [g2,g1] decomposes into the direct sum of two irreducibles, respectively
having lowest weight vectors

[E,e2], [e2, [E, [e3,e4]]].

The first vector vanishes by [e2,e2] = 0. The second vector is the supercommutator
of e2 with the left hand side of (5.13), thus is also zero. This shows that g3 = 0.

5.4.3 Case 3

Consider the Dynkin diagram

� �< � �.
4 3 2 1- +

We take d = 4, and delete the 4-th node from the diagram to obtain

�< � �.
3 2 1

This is a non-standard diagram for sl1|3, where the double edges can be got rid of
by a normalisation of the bilinear form on the weight space thus are immaterial. The
presentation for sl1|3 involves no higher order Serre relation. We have g0 = gl1|3.

Let p be the lower triangular maximal parabolic subalgebra of g0 with Levi sub-
algebra l := gl3⊕ gl1. Let L0α4

= Cv0 be the 1-dimensional p-module with lowest
weight α4, which is assume to be a purely odd superspace. Since α4 is a typical g0
weight, the generalised Verma module Vα4 = U(g0)⊗U(p) L

0
α4

is irreducible, i.e.,
Lα4 =Vα4 . It is multiplicity free, and the set of weights is given by

Δ+\{Δ+(g0)∪Δ+
2

}
, (5.14)

where Δ+ is the set of the positive roots of F(4) relative to the Borel subalgebra
under consideration, Δ+(g0) is the set of the positive roots of the subalgebra g0, and

Δ+
2 =

{
1
2
(δ + ε1 + ε2 + ε3), εi + ε j, i �= j

}
. (5.15)

The g0-module ∧2s Lα4 is not semi-simple. To avoid the laborious task of deter-
mining the indecomposable submodules, we simply examine the l lowest weight
vectors in ∧2s Lα4 . Of particular importance to us are the vectors

z1 :=v0⊗ v0;

z2 :=e3v0⊗ [e2,e3]e3v0− [e2,e3]e3v0⊗ e3v0;

z3 :=v0⊗ e3v0− e3v0⊗ v0;

w1 :=v0⊗ [e2,e3]e3v0 +[e2,e3]e3v0⊗ v0;

w2 :=v0⊗ [e1, [e2,e3]][e2,e3]e3v0− [e1, [e2,e3]][e2,e3]e3v0⊗ v0.
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The space of l-lowest weight vectors of ∧2s Lα4 is spanned by w1, w2 and the l-
lowest weight vectors in the g0-submoduleM generated by z1 and z2. It is important
to observe that w1 and w2 are not in M, but w1 ∈U(g0)w2. Furthermore, one can
verify that ∧2s Lα4/M is multiplicity free with the set of weights Δ+

2 .
Now we take v0 = e4 and require p act on it by the adjoint action. Then g1 = Lα4 .

We require that the Lie superbracket maps z1 and z2 to zero. This leads to the fol-
lowing relations:

[e4,e4] = 0;

[[e3,e4], [[e3,e4], [e2,e3]]] = 0.
(5.16)

Under the first condition, the Lie superbracket automatically maps z3 to zero. Note
that the second relation in equation (5.16) is the desired higher order Serre relation
associated with the sub-diagram

� �< �.

The vectors w1 and w2 have non-zero images under the Lie superbracket, and we
have g2 ∼= ∧2s Lα4/M. By considering the possible l-lowest weight vectors, we can
show that [g1,g2] = 0, thus g3 = 0.

Now the proof of Lemma 3.3 in this case is completed by comparing the weights
in (5.14) and (5.15) with the roots in L1 and L2.

5.4.4 Case 4

Consider the Dynkin diagram

� > �� ��
�

1 2 3

4

.

Take d = 1, then g0 = osp2|4⊕gl1. The presentation of osp2|4 relative to the Dynkin
diagram

�� ��
�

has been constructed, thus the defining relations among ei, fi,hi for i > 1 are all
known. The parabolic subalgebra of osp2|4 defined in Appendix B.1 together with
the ideal gl1 form a parabolic of g0. Then e1 spans a 1-dimensional module for this
parabolic, which induces a generalised Verma moduleVα1 of lowest weight type for
g0. The structure ofVα1 can be understood by using results of Sect. B.1. In particular,
imposing the condition (B.1.1), which in the present case reads

[e2, [[e2,e3],e1]] = 0, (5.17)

sends Vα1 to the irreducible quotient, which is g1. Note that (5.17) is a higher or-
der Serre relation associated with diagram (9) in Theorem 3.3. It is a non-standard
diagram of sl1|3.
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Now g1 is 10-dimensional. A basis for it can be deduced from Sect. B.1. For every
vector b in this basis, we have [b,e1] = 0. This holds trivially for most basis vectors,
but for b = [e2, [[[e1,e2],e3],e4]], we have

[e1,b] = [[[e1,e2],e3], [[e1,e2],e4]]

=
1
2

(ade1)
2 [[e2,e3], [e2,e4]].

One can deduce from the defining relations for osp2|4 that [[e2,e3], [e2,e4]] = 0, hence
[b,e1] = 0. This implies that the commutators of e1 with all the remaining basis vec-
tors are zero. Therefore, g2 = [g1,g1] = 0.

5.4.5 Case 5

In the case of the Dynkin diagram

� > �
�

��
�

�
�

�

�

1 2

3

4

,

we take d = 4 and delete the 4-th node to obtain the diagram

� > � �
1 2 3

,

which is a non-standard diagram of sl1|3. Thus we have a relation formally the same
as (5.17).

Now g0 = gl1|3. The Verma module of lowest weight type for g0 generated by
e4 contains the primitive vector 2[e2, [e3,e4]]− 3[[e2,e3],e4], which generates the
maximal submodule. Thus the higher order Serre relation

2[e2, [e3,e4]]−3[[e3,e2],e4] = 0, (5.18)

associated with diagram (10) in Theorem 3.3, is all that is needed to guarantee that
g1 is an irreducible g0-module. This module is typical relative to the distinguished
Borel subalgebra, and has dimension 8.

Restricted to a module for gl3 ⊂ g0, the even subspace of g1 is the direct sum
of the natural gl3-module and a 1-dimensional module, while the odd subspace is
the direct sum of the dual natural module (twisted by a scalar) and a 1-dimensional
module.

Now consider [g1,g1]. We can easily work out its decomposition into irreducible
gl3-submodules. The corresponding gl3 lowest weight vectors can be worked out,
which include the following vectors:

[e2,e2],
(
ad[e2,e4]

)2 [e2,e1], [[e2,e4], [e3,e4]].

It follows from the higher order Serre relation (5.18) that

[[e2,e4], [e3,e4]] = 0.
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Now we impose the relations

[e2,e2] = 0,
(
ad[e2,e4]

)2 [e2,e1] = 0,

where the first is a standard Serre relation, and the second is a higher order Serre
relations associated with

� > � �
1 2 4

.

Under these conditions, all other gl3 lowest vectors in [g1,g1] vanish, except(
ad[e2,e4]

)2
e1, [[e3,e4], [[e1,e2], [e2,e4]]],

where the first one is actually a g0 lowest weight vector. It generates a 4-dimensional
irreducible g0-module containing the second vector. This module is isomorphic to
the dual of the natural g0-module twisted by a scalar. This gives us g2 = [g1,g1]. We
can further show that [g2,e4] = 0, hence g3 = 0.

5.5 Proof in type GGG(((333)))

5.5.1 Case 1

Consider the Dynkin diagram

� �< �
1 2 3

.

We take d = 3, then g0 = gl2|1. Let Vα3 be the lowest weight Verma module for
g0 = gl2|1 with lowest weight α3. Denote by v0 the lowest weight vector, which is
assumed to be even. Then the maximal submodule of Vα3 is generated by e1v0 and
e2[e1,e2]3v0. The irreducible quotient Lα3 is multiplicity free and has weights

α3 + k(α1 +α2), k = 0,1,2,3,

α3 + p(α1 +α2)+α2, p = 0,1,2.

In fact Lα3 is isomorphic to the third Z2-graded symmetric power of the natu-
ral module for g0 tensored with a 1-dimensional module. Thus ∧2s Lα3 is completely
reducible; it is the direct sum of two irreducibles.

Nowwe take v0 to be e3, and let g0 act on it by the adjoint action. Then the genera-
tors of the maximal submodule ofVα3 in this case are

(
ad[e1,e2]

)3 [e2,e3] and [e1,e3].
Thus [e1,e3] = 0 and the higher order Serre relation(

ad[e1,e2]
)3 [e2,e3] = 0 (5.19)

(associated with diagram (11) in Theorem 3.3) render g1 = Lα3 .
One of the irreducible submodules of ∧2sg1 has a lowest weight vector of the form

e3⊗ [e2,e3]− [e2,e3]⊗e2. We require that this submodule be in the kernel of the Lie
superbracket. This leads to the standard Serre relation [e3, [e3,e2]] = 0.
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The other irreducible submodule of∧2sg1 is mapped surjectively onto g2. A lowest

weight vector of g2 is given by X := ade3
(
ad[e1,e2]

)2 [e2,e3]. This irreducible module
is 4-dimensional and has weights

−(2ε3− ε1− ε2), δ + ε2− ε3, δ + ε1− ε3, 2δ ,

in the notation explained in Appendix A.1. It is easy to see that [X ,X ] = 0 for all
X ∈ g1. Thus g3 = 0.

By examining the weights of g1 and g2, we see that Lemma 3.3 holds.

5.5.2 Case 2

Consider the Dynkin diagram

�< �< �
1 2 3

.

We take d = 1, and delete the first node from the Dynkin diagram to obtain

�< �.

This is a nonstandard diagram for sl1|2, which can be cast into the usual Dynkin di-
agram of sl1|2 in the distinguished root system by normalising the bilinear form on
the weight space. Note that no higher order Serre relations are required to present
this Lie superalgebra. We have g0 = gl1|2.

Now the g0 Kac module of lowest weight type generated by e1 is typical thus
irreducible, hence g1 ∼= Lα1 with basis

e1, [e2,e1], [[e2,e3],e1], [[e2,e3], [e2,e1]].

As g0-module ∧2sg1 is the direct sum of two irreducible typical submodules, respec-
tively generated by the lowest weight vectors e1⊗ e1 and v− 1

2v
′, where

v = e1⊗ [[e2,e3], [e2,e1]]+ [[e2,e3], [e2,e1]]⊗ e1,

v′ = [e2,e1]⊗ [e3, [e2,e1]]− [e3, [e2,e1]]⊗ [e2,e1].

We require that v− 1
2v
′ and thus the g0-submodule generated by it be mapped to zero

by the Lie superbracket. This leads to

[[e2,e1], [e3, [e2,e1]]− [[e2,e3], [[e1,e1],e2]] = 0,

which is one of the higher order Serre relations associated with the Dynkin diagram
(see diagram (12) in Theorem 3.3). Therefore, g2 ∼= L2α1 and has a basis

[e1,e1], [[e1,e1],e2], [e3, [[e1,e1],e2]], [[e2,e3], [[e1,e1],e2]].

Now we consider [g2,g1]. One can easily see that (ade1)
3 e2 is a g0 lowest weight

vector. We require that the g0-submodule generated by it be zero, hence we have the
standard Serre relation

(ade1)
3 e2 = 0.
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This leaves g3 = [g2,g1] to be an indecomposable g0-module cyclically generated by
the lowest weight vector [[e1, [e2,e3]], [[e1,e1],e2]], which is 7-dimensional and mul-
tiplicity free. One can easily write down a basis for this module. We should remark
that no g0 lowest weight vector in g3 is annihilated by all fi for i = 1,2,3.

One can show by direct computations that [e1,g3] = 0 and [[e1,e1],g2] = 0. Hence
g4 = 0.

An inspection of the weight spaces of gi for 1≤ i≤ 3 shows that they agree with
those of Li for 1≤ i≤ 3. This completes the proof in this case.

5.5.3 Case 3

The final case of G(3) is the diagram

�
�

�
�

�
��

�

�
�

�
1

2

3

.

We take d = 3, then g0 = gl2|1. The g0 Kac module of lowest weight generated by
e3 is atypical. We set the primitive vector to zero to obtain

2[[e1,e2],e3]− [e2, [e1,e3]] = 0,

which is a higher order Serre relation in the present case. Then g1 is an irreducible
g0-module with lowest weight α3, which is isomorphic to the third Z2-graded sym-
metric power of the natural module for g0 twisted by a scalar. It has 3 odd and 4 even
dimensions. A basis for g1 is given by

e3, [e1,e3], [e1, [e1,e3]], [e2,e3],
[[e1,e2],e3], [[e1,e2], [e1,e3]], [[e1,e2], [e1, [e1,e3]]].

The rest of the analysis is similar to Sect. 5.5.1. Now∧2sg1 is the direct sum of two
irreducible g0-submodules. The images of theirs lowest weight vectors in [g1,g1] are
repectively [e3,e3] and E = [[e1,e3], [e1,e3]]. Both generate typical g0-submodules,
which respectively have dimensions 20 and 4. The standard Serre relation [e3,e3] = 0
removes the 20-dimensional submodule, thus g2 is the 4-dimensional irreducible g0-
module generated by E.

We can also show that g3 = 0 without imposing further relations. Inspecting the
weights of g1 and g2, we see that the claim of Lemma 3.3 indeed holds.

5.6 Proof in type DDD(((222,,,111;;;ααα)))

The Dynkin diagrams having only one grey node can be treated in exactly the same
way as for the distinguished root system, thus we shall consider only the diagram
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with three gray nodes here. Set d = 3, then g0 = gl2|1. The g0 Verma module of
lowest weight type generated by e3 contains the primitive vector

α [e1, [e2,e3]]+(1+α)[e2, [e1,e3]],

which in fact generates the maximal submodule. The higher order Serre relation re-
quires this vector to be zero. This is equivalent to taking the irreducible quotient of
the Verma module, and we obtain g1. A basis for g1 is

e3, [e1,e3], [e2,e3], [e1, [e2,e3]].

An easy computation using the higher order Serre relation shows that [g1,e3] = 0.
Hence g2 = 0. A quick inspection on the weights of g1 shows that Lemma 3.3 indeed
holds in this case.

6 Remarks on affine Lie superalgebras

Wewish to mention that the generalisation of the method to affine Lie superalgebras
is in principle straightforward conceptually. Consider, for example, the untwisted
affine superalgebra ĝ of a contragredient Lie superalgebra g. We want to present ĝ
with the standard generators ei, fi,hi with 0≤ i≤ r and relations. Here the generators
ei, fi,hi with 1≤ i≤ r are those for g. By results of earlier sections, we may assume
that all the Serre relations and higher order ones obeyed by ei and fi with 1≤ i≤ r
are given.

We introduce the standard Z-grading of ĝ by decreeing that all h j and ei, fi with
1 ≤ i ≤ r have degree 0, but e0 and f0 have degrees 1 and −1 respectively. Then
ĝ = ⊕k∈Zĝk, with ĝ0 = g⊕ gl1. Now we require that as ĝ0-modules, all ĝk are iso-
morphic to g. The (necessary and sufficient) conditions meeting this requirement
give rise to the defining relations of ĝ.

To illustrate how this may work, we consider the untwisted affine algebra ĝ =
ŝlr+1. The relations

[e1, [e1,e0]] = 0, [er, [er,e0]] = 0, [ei,e0] = 0, i �= 1,r

arise from the requirement that ĝ1 be an irreducible ĝ0-module. In [ĝ1, ĝ1], there are
ĝ0 lowest weight vectors [[e1,e0],e0] and [[er,e0],e0], which have weights different
from any roots of g = slr+1. Thus the condition that ĝ2 is isomorphic to g as g0-
module requires

[[e1,e0],e0] = 0, [[er,e0],e0] = 0.

Now we have derived all the Serre relations needed for e0, and those for f0 can be
similarly obtained. Together with relations defining g, these relations define ĝ.

We hope to treat the affine superalgebras on another occasion.
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Appendix A Dynkin diagrams

We describe the Dynkin diagrams for both the distinguished and non-distinguished
root systems in this Appendix. The roots of all the simple contragedient Lie super-
algebras will also be listed [12, 13].

A.1 Roots

Let εi (i = 1,2, . . . ,k) and δ j ( j = 1,2, . . . , l) be a basis of a real vector space E(k, l)
equipped with a non-degenerate symmetric bilinear form. Then for each simple con-
tragredient Lie superalgebra g, the dual space h∗ of the Cartan subalgebra is ei-
ther C⊗R E(k, l) for appropriate k, l or a subspace thereof, which inherits a non-
degenerate bilinear form that is Weyl group invariant.

For the series A, B,C or D, the bilinear form is defined by

(εi,εi′) = δii′ , (δ j,δ j′) =−δ j j′ , (εi,δ j) = 0, ∀i, i′, j, j′.

The roots of the simple contragredient Lie superalgebras can be described as fol-
lows.

A(m|n):

Δ0 = {εi− εi′ | i, i′ ∈ [1,m+1], i �= i′}∪{δ j−δ j′ | j, j′ ∈ [1,n+1], j �= j′},
Δ1 = {±(εi−δ j) | i ∈ [1,m+1], j ∈ [1,n+1]},

where [1,N] denotes {1, . . . ,N} for any positive integer N.

B(0,n):
Δ0 = {±δ j±δ j′ , ±2δ j | j, j′ ∈ [1,n], j �= j′},
Δ1 = {±δ j | j ∈ [1,n]}.

B(m,n), m > 1:

Δ0 = {±εi± εi′ , ±εi | i, i′ ∈ [1,m], i �= i′}
∪{±δ j±δ j′ , ±2δ j | j, j′ ∈ [1,n], j �= j′},

Δ1 = {±εi±δ j,±δ j | i ∈ [1,m], j ∈ [1,n]},

C(n+1):
Δ0 = {±δ j±δ j′ , ±2δ j | j, j′ ∈ [1,n], j �= j′},
Δ1 = {±ε1±δ j | j ∈ [1,n]}.

D(m,n), m > 1:

Δ0 ={±εi± εi′ | i, i′ ∈ [1,m], i �= i′}
∪{±δ j±δ j′ , ±2δ j | j, j′ ∈ [1,n], j �= j′},

Δ1 ={±εi±δ j | i ∈ [1,m], j ∈ [1,n]}.
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F(4):

Δ0 = {±εi± ε j, ±εi | i, j = 1,2,3, i �= j}∪{±δ},

Δ1 =
{
1
2

(± ε1± ε2± ε3±δ
)}

,

(δ ,δ ) =−6, (εi,ε j) = 2δi j, (εi,δ ) = 0, ∀i, j = 1,2,3.

G(3):

Δ0 ={εi− ε j,±(2εk− εi− ε j) | 1≤ i, j,k ≤ 3,pairwise distinct}
∪{±2δ},

Δ1 ={±δ +(εi− ε j), ±δ | i �= j},
(δ ,δ ) =−2, (εi,ε,) = δi j, (εi,δ ) = 0, ∀i, j = 1,2,3.

D(2,1;α), α ∈ C\{0,−1}:
Δ0 = {±2εi | i = 1,2}∪{±2δ},
Δ1 = {±δ ± ε1± ε2},

(ε1,ε1) = 1, (ε2,ε2) = α , (δ ,δ ) =−(1+α), (εi,δ ) = 0, ∀i.
Denote by Π = {α1, . . . ,αr} the set of simple roots of g elative to the distin-

guished Borel subalgebra. We have

A(m|n) : Π = {ε1− ε2, . . . ,εm− εm+1,εm+1−δ1,δ1−δ2, . . . ,δn−δn+1};
B(0,n) : Π = {δ1−δ2, . . . ,δn−1−δn,δn};
B(m,n),m > 1 :

Π = {δ1−δ2, . . . ,δn−1−δn,δn− ε1,ε1− ε2, . . . ,εm−1− εm, εm};
C(n+1) : Π = {ε1−δ1, δ1−δ2, . . . ,δn−1−δn,2δn};
D(m,n),m > 1 :

Π = {δ1−δ2, . . . ,δn−1−δn,δn− ε1, ε1− ε2,ε2− ε3, . . . ,εm−1− εm,εm−1 + εm};

F(4) : Π =
{
1
2
(ε1 + ε2 + ε3 +δ ), −ε1, ε1− ε2, ε2− ε3

}
;

G(3) : Π = {δ − ε1 + ε3, ε1− ε2, 2ε2− ε1− ε3};
D(2,1;α),α ∈ C\{0,−1} : Π = {δ − ε1− ε2, 2ε1, 2ε2}.

Note that there is a unique simple root, which we denote by αs, in each Π . Thus
Θ = {s}.

The simple roots relative to other Borel subalgebras can be obtained by using odd
reflections [24]. Let Πb = {α1, . . . ,αr} be the set of simple roots relative to a given
Borel subalgebra b⊂ g. Take any isotropic odd simple root αt ∈Πb, and define the
odd reflection st by

st(αt) =−αt ,

st(αi) = αi +αt , if i �= t and ait �= 0,

st(αi) = αi, if i �= t and ait = 0.
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Then st(Πb) = {st(α1), . . . ,st(αr)} is the set of simple roots relative to another Borel
subalgebra, which is not Weyl group conjugate to b. Further odd reflections can be
defined with respect to isotropic roots in st(Πb), which turn st(Πb) into sets of sim-
ple roots relative to other Borel subalgebras. All the distinct sets obtained this way
correspond bijectively to the conjugacy classes of Borel subalgebras.

A.2 Dynkin diagrams

A.2.1 Dynkin diagrams in distinguished root systems

The Dynkin diagrams in the distinguished root systems are listed in Table 1 below,
where r is the number of nodes and s is the element of Θ . Note that the form of
Dynkin diagrams in the distinguished root systems is quite uniform in the literature.
Table 1 is essentially the corresponding table in [12] with a slight modification in
the Dynkin diagram for D(2,1;α).

Table 1 Dynkin diagrams in distinguished root systems

Lie superalgebra Dynkin Diagram r s

A(m,n) � ... � � � ... � m+n+1 m+1

B(m,n)
m > 0

� ... � � � ... � > � m+n n

B(0,n) � � ... � � > � n n

C(n)
n > 2

� � ... � �< � n 1

D(m,n)
m > 1

� ... � � � ... ���
��

�

�
m+n n

F(4) � �< � � 4 1

G(3) � �< � 3 1

D(2,1;α) ���−1

−α

��

�

�
3 1
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A.2.2 Dynkin diagrams in non-distinguished root systems

Table 2 gives the Dynkin diagrams of the non-distinguished root systems. A nice
graphical explanation can be found in [3, §4] (see also [6]) on how to obtain the
Dynkin diagrams in Table 2 by applying odd reflections to those in Table 1.

Table 2 Dynkin diagrams in non-distinguished root systems

Lie superalgebra Dynkin Diagram

A(m,n) × × . . . × ×

B(m,n)
m > 0 × × . . . × × > �

× × . . . × × > �

C(n) � . . . � � � � . . . � �<

� . . . � �
�

�

�
�

�

�

D(m,n)
m > 1

× × . . . × ×
�

�
�

�
� �

× × . . . × ×
�

�

�
�

�

�

× × . . . × × < �

F(4) � > �< � �

� �< � �

� > � �< �

� > �
�

��
�

�
�

�

�
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� > �� ��
�

G(3) � �< �

�< �< �

�
�

�
�

�
��

�

�
�

�

D(2,1;α) �
�

�

�
�

−1

1+α

�

�

�
�

�

�
�

−α

1+α

�

�

�
�

�

�
�

1

α

�

−(1+α)

�

In the diagrams in Table 2, a node marked with × can be white or grey. How-
ever, the precise rule for assigning colours requires the knowledge of the simple
roots, which are described below.

A(m,n). An ordering (E1,E2, . . . ,Em+n+2) of εi and δ j is called admissible if εi ap-
pears before εi+1 for all i and δ j before δ j+1 for all j. Each admissible ordering corre-
sponds to one Weyl group conjugate class of Borel subalgebras, with the associated
simple roots given by Ea−Ea+1 (1≤ a≤m+n+1). In particular, the distinguished
Borel corresponds to the admissible ordering such that all the εi appear before the
δ j. Let us define [Ea] (a = 1,2, . . . ,m+ n+ 2) by [Ea] = 0 (resp. [Ea] = 1) if Ea is
some εi (resp. δ j). The a-th node from the left in the Dynkin diagram is associated
with the simple root Ea−Ea+1, which is white if [Ea] = [Ea+1] and grey otherwise.
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B(m,n), m > 0. Let (E1,E2, . . . ,Em+n) be an admissible ordering of εi (i = 1, . . . ,m)
and δ j ( j = 1, . . . ,n). Then the corresponding simple roots are

E1−E2, . . . ,Em+n−1−Em+n,Em+n.

The first Dynkin diagram corresponds to the case Em+n = εm. The a-th node (a <
m+ n) from the left is associated with the simple root Ea−Ea+1, which is white if
[Ea] = [Ea+1] and grey otherwise. The second Dynkin diagram corresponds to the
case Em+n = δn. The colours of the nodes marked × are assigned in the same way
as in type A.

C(n). We have already specified the colours of the nodes in the Dynkin diagrams, but
it is still useful to have an explicit description of the simple roots. Let (E1,E2, . . . ,En)
be an admissible ordering of δ j ( j = 1, . . . ,n−1) and ε1. The first Dynkin diagram
corresponds to the case with En = δn−1, where simple roots are given by

E1−E2, . . . ,En−1−En,2En.

The second Dynkin diagram corresponds to the case with En = ε1, where the simple
roots are given by

E1−E2, . . . ,En−1−En,En−1 +En.

The colours of the nodes marked with ×’s are assigned in the same way as in type
A and type B.

D(m,n). Let (E1,E2, . . . ,Em+n) be an admissible ordering of εi (i = 1, . . . ,m) and δ j

( j = 1, . . . ,n). If Em+n−1 = εm−1 and Em+n = εm, or Em+n−1 = δn and Em+n = εm,
the simple roots are given by

E1−E2, . . . ,Em+n−1−Em+n,Em+n−1 +Em+n.

The first Dynkin diagram corresponds to the former case, while the second Dynkin
diagram corresponds to the latter. If Em+n−1 = δn−1 and Em+n = δn, the simple roots
are given by

E1−E2, . . . ,Em+n−1−Em+n,2Em+n.

The third Dynkin diagram corresponds to this case.
We assign colours to the nodes marked with × in the same way as in the other

cases.

Remark Appendix A.1 There are at least three grey nodes in the Dynkin diagrams
of type D(m,n) in Table 2, but in each of the Dynkin diagrams of type C(n), there
are only two grey nodes which are always next to each other.

Appendix B Presentations of irreducible modules

In general it is hard to give an explicit description of a finite dimensional irreducible
module for a Lie superalgebra as the quotient of a (generalised) Verma module in
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a form similar to [10, Theorem 21.4] in the context of ordinary semi-simple Lie al-
gebras. However, this is possible in some special cases, e.g., the natural module for
glm|n in arbitrary root systems as discussed in Sect. 5.1. Here are two further cases,
which are used in the proof of Lemma 3.3.

B.1 An irreducible osp2|4osp2|4osp2|4-module

Let g be the Lie superalgebra osp2|4 with the choice of Borel subalgebra correspond-
ing to the Dynkin diagram

�� ��
�

1 2

3

.

We present g in the standard fashion using Chevalley generators ei, fi,hi (i= 1,2,3)
and relations with the higher order Serre relations being those associated with dia-
gram (6) in Theorem 3.3. To be specific, we denote by αi the simple roots and take

(α1,α3) = (α2,α3) =−1, (α1,α2) = 2, (α3,α3) = 2.

Let p be the parabolic subalgebra generated by all the generators but e1. Then p =
l⊕u with l= gl2|1 and u spanned by

ζ1 := e1, ζ2 := [e1,e3],
X1 := [e1,e2], X2 := [[e1,e2],e3], X3 := [[[e1,e2],e3],e3].

Given the irreducible p-module L
0
λ = Cv0 with lowest weight λ such that

(λ ,α2) = 0, (λ ,α3) = 0, (λ ,α1) =−2,

we construct the generalised Verma moduleV λ =U(g)⊗U(p)L
0
λ . Then the maximal

submodule Mλ of V λ is given by

Mλ =U(g)ζ1X1v0. (B.1.1)

The irreducible quotient Lλ =V λ/Mλ is 10-dimensional with a basis

v0, X1v0, X2v0, X3v0, X1X3v0,
ζ1v0, ζ1X2v0, ζ1X3v0, ζ1X1X3v0, ζ1ζ2v0.

B.2 Graded symmetric tensor for glm|nglm|nglm|n
Let g = glm|n and set r = m+ n− 1. Choose an arbitrary homogeneous basis for

the natural module Cm|n with the last element being odd. We regard g as consist-
ing of matrices relative to this basis. Take the subalgebra consisting of the upper
triangular matrices as the Borel subalgebra, which corresponds to an admissible or-
dering (E1,E2, . . . ,Em+n) of εi (1 ≤ i ≤ m) and δ j (1 ≤ j ≤ n) with Em+n = δn. See
Appendix A.2 for more details.



278 R.B. Zhang

Let l, u and u be subalgebras respectively spanned by matrix units er+1,r+1 and
ei j with 1 ≤ i, j ≤ r, by ei,r+1 with 1 ≤ r, and by er+1,i with 1 ≤ r. Set p = l⊕ u,
which is a parabolic subalgebra, and g= p⊕u.

For λ = 2δn, we consider the generalised VermamoduleV λ :=U(g)⊗U(p)Cλ of
lowest weight type, where Cλ denotes the irreducible p-module with lowest weight
λ . Let v0 denote a generator of Cλ , then

frv0 = 0,

eiv0 = 0, fiv0 = 0, 1≤ i≤ r−1,

e j jv0 = 2δ j,r+1v0, 1≤ j ≤ r+1,

(B.2.1)

where ei = ei,i+1 and fi = ei+1,i.
NowV λ ∼=U(u)⊗Cλ as l-module, whereU(u) = Ss(u), the Z2-graded symmet-

ric algebra of u. This superalgebra has aZ-grading with u having degree 1. It induces
a natural Z-grading on V λ . The unique maximal submodule Mλ of V λ is the direct
sum of the homogeneous subspaces of degrees greater than or equal to 3, which is
generated by U(u)3⊗Cλ , the homogeneous subspace of degree 3. The irreducible
quotient Lλ of V λ is isomorphic to the Z2-graded symmetric tensor of the natural
g-module at rank 2.

The natural l action onU(u) (obtained by generalising the adjoint action) respects
the Z-grading. In the present case, each homogeneous component is in fact an irre-
ducible submodule. We are interested in U(u)3. If u3 is a nonzero lowest weight
vector ofU(u)3, thenMλ is generated over g by u3⊗Cλ . The form of u3 depends on
the ordering of the basis for Cm|n. Denote by Ei j ∈U(g) the image of ei j ∈ g under
the natural embedding. The u3 can be expressed as follows:

u3 = E3
r,r+1, if Er,r+1 is even;

u3 = E2
r−1,r+1Er,r+1, if both Er,r+1 and Er−1,r are odd;

u3 = Er−2,r+1Er−1,r+1Er,r+1, if Er,r+1 is odd but Er−1,r is even.

(B.2.2)

Remark Appendix B.1 The third case becomes vacuous if r= 2; and both the second
and third cases are vacuous if r = 1.

The irreducible quotient Lλ =V λ/Mλ is isomorphic to the graded skew symmet-
ric rank two tensor ∧2s (Cm|n) of the natural g-module.
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