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Abstract. In rational secret sharing, parties may prefer to mislead oth-
ers in believing a wrong secret as the correct one over everybody obtain-
ing the secret (i.e. a fair outcome). Prior rational secret reconstruction
protocols for non-simultaneous channel only address the case where a
fair outcome is preferred over misleading and hence are fair but not cor-
rect. Asharov and Lindell (2010) proposed the first and the only protocol
that takes care of both the preferences. In this paper, we propose a new
rational secret sharing protocol that addresses both the preferences and
is fair and correct in the non-simultaneous channel model. Additionally,
it is independent of the utility of misleading. Each rational party is given
a list of sub-shares of shares of the actual secret and fake shares. In each
round of the protocol each party sends the current element in its list
to the other party and then reconstructs a share from the sub-shares
obtained. The main idea is to use a checking share which is a share of
the original secret as a protocol–induced membership auxiliary informa-
tion to check whether the shares obtained till a certain round can be
used to reconstruct the correct secret. We overcome the disadvantages
of the presence of auxiliary information by using the time-delayed en-
cryption scheme used by the protocol of Lysyanskaya and Segal (2010)
that tolerates players with arbitrary side information. In our case, the
side information used is not arbitrary but introduced by the mecha-
nism/protocol designer to put all players on equal footing. We show that
our protocol is in computational strict Nash equilibrium in the presence
of protocol-induced auxiliary information.

1 Introduction

Since the introduction of the concept of rational players in (t, n) threshold secret
sharing by [6], the area which henceforth came to be known as rational secret
sharing (RSS) and its application in secure multiparty computation (known as
rational multi-party computation or RMPC) has attracted a lot of fruitful re-
search [1, 2, 5, 7–9, 13, 15–17, 19–21]. Briefly, the RSS problem is as follows.
Each of n players P1, P2, . . . , Pn is given a share of a secret s by a dealer. The
secret can be reconstructed if at least any t of them cooperate. However, the
point of contention is that each player wishes to learn the secret himself while
allowing as few others as possible to learn the correct value. What strategy will
each player need to adopt so that each player comes to know the secret?
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Inherent to the RSS problem is the problem of achieving fairness. Each player
wants to obtain the secret alone and is unfair to others i.e. for each player, the
utility of obtaining the secret alone (UTN ) is the maximum. The other utilities
of a rational party are that of everybody obtaining the secret (UTT ), that of
nobody obtaining the secret (UNN) and that of everybody else obtaining the
secret (UNT ). So each player has a preference of UTN > UTT > UNN > UNT .
The desirable outcome of the secret reconstruction game is the fair one in which
everybody obtains the secret. A rational secret reconstruction scheme or protocol
is a strategy for each player suggested by the protocol designer such that this fair
outcome can be obtained and there is no incentive for any player to deviate from
this strategy. Nash equilibrium and its variants (computational Nash, strict Nash
etc) are the most used equilibrium concepts in this context. Much of the RSS
literature [2, 6, 15, 21] focusses on obtaining fair rational secret reconstruction
mechanisms under different assumptions such as the type of communication
channel present (simultaneous/ non-simultaneous) or the nature of the dealer
(online/offline). We present a brief comparative summary of such protocols in
Table 1. The basic assumption about the preference UTN > UTT > UNN > UNT

of rational players is common to all the RSS protocols proposed so far (hence,
we do not mention this separately in Table 1). In some cases, there are some
special assumptions (which we mention in Table 1, under ‘Special Preferences ’)
about the nature of players (for eg., [16] assumes a rational majority along with
a minority of honest players) and their preferences. These special preferences are
related to the correctness of the secret obtained ([2]).

Parties in a rational secret reconstruction mechanism may often be considered
to derive some positive utility frommisleading other players into believing a wrong
value to be the correct secret when it itself obtains nothing (UNF ). A fair recon-
struction protocol gives the utility of UTT to each player. Therefore it is also cor-
rect as long as UNF < UTT . However, when parties prefer misleading others over
everybody obtaining the correct secret (i.e. UNF ≥ UTT ), a fair rational secret
reconstruction protocol for the non-simultaneous channel model does not remain
correct (we shall soon discuss why this is so). Unfortunately, this problem has re-
ceived very little attention from researchers and this can be easily identified from
Table 1. [2] proposed the first and the only correct and fair rational secret recon-
struction protocol for the case when both scenarios may hold in the (2, 2) setting.
Prior to their work, all works on rational secret sharing either assumed the exis-
tence of simultaneous broadcast channel [5, 6] (where this problem does not exist)
or assumed that rational parties prefer everybody to obtain the output of the pro-
tocol than misleading others [9, 15, 21]. We therefore aim to design a correct and
fair rational secret reconstruction protcol in the non-simultaneous channel.

A desirable property of any rational secret reconstruction scheme is utility-
independence. If a particular RSS scheme is dependent on utility values of players
then it requires the protocol designer to be able to accurately estimate the utility
values or at least the range of these values in order to set the appropriate param-
eters during the execution of that RSS scheme. The work of [2] has extensively
dealt with the property of utility-independence. It proposes a (t, n) (where n ≥ 3,
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2 < t ≤ n) rational secret reconstruction protocol which is completely utility-
independent (i.e. the protocol designer is not required to know any utility value)
in the simultaneous channel model. However, [2] also showed that, in the non-
simultaneous channel model, there does not exist any (2, 2) fair rational secret re-
construction protocol that is independent of the utility value UNF . Consequently,
the (2, 2) correct and fair rational secret reconstruction protocol they suggest in
the non-simultaneous channel, although correct even when UNF ≥ UTT , is UNF

utility–dependent. In this paper we remove this utility dependency. So the basic
question that we address here is whether it is possible to have a rational secret re-
construction protocol that is both correct and fair even when UNF ≥ UTT and
given that, whether it is possible to achieve UNF –independence for such a proto-
col. We propose a (2, 2) fair rational secret reconstruction mechanism in the non-
simultaneous channel that is 1) correct even if rational parties prefer to mislead
others i.e. UNF ≥ UTT and 2) UNF –independent. We also suggest its extension
to the (t, n) setting. However, like the protocol of [2], our protocol is dependent
on other utility values such as UTN , UTT and UNN . In many scenarios, the act of
misleading can be potentially more harmful than the act of selfishness. If a proto-
col designer wrongly estimates the UNF utility values, the execution of a correct
and fair RSS protocol may still result in some of the parties being misled due to
the wrongly estimated parameter. Moreover, we believe that estimation of UNF is
more difficult than that of UTN , UTT or UNN . The impact of knowing the correct
value of a secret is more well–understood than that of believing in a wrong value
as the correct one. The existence of a UNF –independent correct and fair rational
secret reconstruction protocol is therefore advantagenous even if it is dependent
on other utility values.

Until now, a general pattern for a rational secret sharing scheme has been the
following. Each party gets from the dealer a list of shares, one of which is that
of the actual secret and the remaining of fake secrets. The position of this actual
share is not known to the players beforehand. This position is chosen according
to a geometric distribution G(β), where the parameter β in turn depends on the
utility values. In each round of communication, players (either simultaneously or
non-simultaneously) broadcast or send individually to each of the other players (in
absence of broadcast channel) the current share in its list. The shares are signed
by the honest dealer, so no player can give out false shares undetected and the
only possible actions in a round are to 1) send the message or 2) remain silent. The
round in which the shares of the actual secret are revealed and hence the secret is
reconstructed is called the revelation/definitive round.The players aremade aware
that they have crossed the revelation round by the reconstruction/exchange of an
indicator (a bit in [9], a signal in [15]) in the subsequent round. In case of non-
simultaneous channels, the indicator cannot be reconstructed/interpreted, as the
player who is to communicate last in this round already knows that the round be-
fore was the revelation round (because he has the indicator) and quits the protocol
immediatelywithout sendingmessages (shares/signals as the casemaybe) further.
When the deviating player quits, other players also conclude that the secret has
been reconstructed in the last round.



142 S.J. De and A.K. Pal

Basically, when a party quits in any round, there can be two scenarios: 1)
the party quits because it has already obtained the secret and 2) the party
quits because it wants others to believe that the secret has been obtained when
in reality it is not so. In secret reconstruction protocols for non-simultaneous
channels, we see that, whenever a party aborts, the other party assumes that
this abortion signifies that the former has obtained its output and hence it
also outputs the value obtained in the last round1. There is no way for the
non-deviating party to verify whether this is actually the revelation round i.e.
to find out whether scenario (1) holds or scenario (2). This gives rise to the
outcome where one party is misled to believe in a false secret as the actual secret
whereas the other party gets nothing. Herein arises the question of correctness
of protocol output for fair rational secret reconstruction. The means to restore
fairness described so far is fine if it is known that parties have the preference
UNF < UTT . On the other hand if parties have the preference UNF ≥ UTT ,
this way of achieving fairness jeopardizes correctness. [2] achieves the solution to
this problem by introducing special fake rounds called completely fake rounds
(apart from the normal fake rounds that enable fair secret reconstruction) such
that the first player to send a share knows which rounds are the special fake
rounds and if the second player, who is unaware of this information, halts to
pretend that the end of the list has been reached in any of the completely fake
rounds then the first player knows that the other party has cheated. However,
this protocol is dependent on the value of UNF . Specifically, with probability α
a particular round is a completely fake round and with probability (1 − α) it is
not. Then for a player to follow the suggested strategy, it can be easily shown
that α < (UTT − UNN )/(UNF − UNN). The dependence of the correctness of
their protocol on the value of α introduces utility-dependence. In comparison,
we do not use any such parameter. For our protocol to be correct, we take help
of auxiliary information introduced by the protocol designer to allow players
to check whether the secret reconstructed by them is correct or not. Since the
auxiliary information does not depend on any utility values our protocol is UNF –
independent 2.

1 In fact, this seems to be a widely used concept for restoring fairness when another
party aborts prematurely. In his work on Oblivious Transfer, one of the most impor-
tant cryptographic primitives used in secure computation, Rabin [23] had implicitly
suggested this general notion of achieving fairness: the design of a protocol to en-
sure fairness is such that the very act of aborting by one party should reveal crucial
information to the other party which helps it to restore fairness. Gordon who ob-
served this in [24] says that this concept turns out to be very similar to the one
they use in their work on complete fairness in secure computation with malicious
adversary. Specifically, in their protocol for complete fairness in two-party computa-
tion of functions over polynomial-sized domains and without an embedded XOR, if
the malicious adversary aborts in any round, then the honest party gets information
about the adversary’s input in the computation and can compute the value of the
function itself, restoring fairness.

2 Our protocol is only UNF –independent because for maintaining fairness we still use
a geometric distribution G(β) where β depends on UTN , UTT and UNN .
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Table 1. A Comparison of the Characteristics of Rational Secret Reconstruction Mech-
anisms

RSS Proto-
cols

Special Pref-
erences

Channel/Dealer
Charateristics

Properties

Halpern &
Teague (2004)
[6]

Simultaneous Broad-
cast; Online Dealer

Valid for n ≥ 3; Unconditional

Gordon &
Katz (2006)
[5]

Simultaneous Broad-
cast; Online Dealer

Valid for n ≥ 2; Unconditional

Kol & Naor
(two proto-
cols) (2008)
[9]

UTT > UNF 1)Simultaneous
broadcast; 2) Non-
Simultaneous Broad-
cast; Offline Dealer

Fair but not correct for UNF ≥
UTT in non-simultaneous case; Un-
conditional; (2, 2), t-out-of-n

Ong et al.
(2009) [16]

Majority: Ra-
tional; Minor-
ity: Honest

Non-Simultaneous
Broadcast; Offline
Dealer

Unconditional; only 2 rounds of
communication

Asharov
& Lindell
(2010) [2];
two protocols

2) UTT >
UNF &
UNF ≥ UTT

1) Simultaneous
Broadcast; Online
Dealer; 2) Non-
simultaneous; Offline
Dealer

Complete utility independence for
n ≥ 3; Unconditional; First to
achieve both correctness and fair-
ness in non-simultaneous chan-
nel (with UNF dependence). Also
proved impossibility of fair recon-
struction protocol in presence of
side information. Proved impossi-
bility of UNF independence in non-
simultaneous channel for (2, 2) case.

Fuchsbauer
et al. (2010)
[15]; three
protocols

UTT > UNF 1) Non-simultaneous,
2) point-to-point,
Synchronous 3)
Asynchronous; Of-
fline Dealer

(2, 2); exactly t-out-of-n; Verifiable
Random Function (VRF)

Lysyanskaya
& Segal
(2010) [21]

UTT > UNF Non-simultaneous,
point-to-point, syn-
chronous; Offline
Dealer

First fair reconstruction protocol in
presence of arbitrary side informa-
tion; (n, n) case; Use of Time De-
layed Encryption (TDE) and VRF

Proposed pro-
tocol

UTT > UNF

& UNF ≥
UTT

Non-Simultaneous
Broadcast; Offline
Dealer

UNF independence; (2, 2). (t, n)
cases; Use of TDE; Uses protocol
generated side information.

Our Contributions. Rational parties preferring to mislead others over every-
body knowing the correct output may be quite common. When a piece of secret
information is to be revealed, then a rational player who believes that others
may have the ability to derive a greater benefit from the information than he
can, may decide that it is better to mislead others with wrong information even
if that means not getting the correct information himself rather than everyone
getting the correct information. However, this scenario has received very little
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attention from researchers till now. In this work we propose a new (2, 2) correct
and fair rational secret sharing protocol for non-simultaneous channels even if
rational parties prefer to mislead and it is in computational strict Nash equilib-
rium in the presence of protocol-induced auxiliary information. The uniqueness
of our protocol is that it is independent of a rational party’s utility of mislead-
ing. The only other protocol suggested in this scenario [2] is dependent on this
utility. We also suggest generalization of our protocol to the (t, n) settings. We
allow each party to possess protocol-induced auxiliary information in the form
of a checking share to be able to check whether the last round was indeed a rev-
elation round. So even after one party aborts, the other party is armed to check
whether he has been misled. This in turn causes no party to have any incen-
tive to deviate from the protocol by aborting arbitrarily, before it has obtained
the output. The introduction of auxiliary information has its problems which
we combat using the time delayed encryption scheme based on cryptographic
memory bound functions as proposed in [21].

Organization of the Paper. The paper is organized as follows: in section 2 we
formally introduce the nature of parties and the concepts of fairness and correct-
ness and the role of auxiliary information that we use for further discussions; in
section 3 we provide an overview of our protocol, discuss about protocol-induced
membership-auxiliary information, checking shares, time delayed encryption and
the equilibrium concept used in our protocol and then formally present our proto-
col for rational secret sharing, followed by an analysis of the protocol. In section
4 we suggest extenstion to (t, n) setting and in section 5, we perform complexity
analysis. Finally we conclude in section 6.

2 Preliminaries

2.1 Rational Secret Sharing and the Preference of Rational Players

Shamir’s (t, n) secret sharing scheme [11] is used to distribute the shares of a
secret among n players such that the secret can be reconstructed only when at
least t of them cooperate. In the first phase of such a scheme, called the secret
sharing phase, a dealer generates n shares s1, . . . , sn of the original secret s and
distributes one share to each of the players. In the next phase, called the se-
cret reconstruction phase, the players exchange their shares. If at least t players
cooperate in this phase then the secret can be reconstructed. An adversary con-
trolling less than t players cannot reconstruct the secret. In this scenario, the
notion of rational players instead of honest players and players controlled by an
adversary was introduced in [6]. They pointed out that if players are rational
and have specific preferences such as getting the secret itself and allowing as few
others possible know the secret, then no player will ever send his share during
the reconstruction phase.

A (t, n) rational secret reconstruction protocol (Γ,−→σ )t,n (where −→σ =(σ1, . . . ,
σn) denotes the strategies followed by the players) may have different outcomes

where an outcome is denoted by
−−−−−−−−→
o((Γ,−→σ )t,n)=(o1, . . . , on). The utility function
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ui of each party Pi is defined over the set of possible outcomes of the game and
are polynomial in the security parameter k. Thus UTN

i = ui(1
k, (oi = s, oj =⊥)),

UTT
i = ui(1

k, (oi = s, oj = s)) (where i �= j) and so on. Different outcomes of
the game may result due to the different preferences of each party. Table 2 3

describes the possible outcomes and corresponding utilities for t=n=2 and any
arbitrary alternative strategy σdev

i and the suggested strategy σi corresponding
to a party Pi, (i = 1, 2).

Table 2. Outcomes and Utilities for (2, 2) rational secret reconstruction

P1’s outcome P2’s outcome P1’s Utility P2’s Utility
(o1) (o2) U1(o1, o2) U2(o1, o2)

o1=s o2=s UTT
1 (U1) UTT

2 (U2)
o1=⊥ o2=⊥ UNN

1 (U−
1 ) UNN

2 (U−
2 )

o1=s o2=⊥ UTN
1 (U+

1 ) UNT
2 (U−−

2 )
o1=⊥ o2=s UNT

1 (U−−
1 ) UTN

2 (U+
2 )

o1=⊥ o2 �∈ {s,⊥} UNF
1 (Uf

1 ) UFN
2

o1 �∈ {s,⊥} o2=⊥ UFN
1 UNF

2 (Uf
2 )

There can be other combinations of the outcomes mentioned in the table,
other outcomes and corresponding utilities too but we shall consider only the
above. Players have their preferences based on the different possible outcomes.
We shall refer to the following preference relationships of a party Pi throughout
our paper:

1. R1 : UTN
i > UTT

i > UNN
i > UFN

i and UNF
i ≥ UTT

i

2. R2 : UTN
i > UTT

i > UNN
i > UFN

i and UNF
i < UTT

i

We call
{
UTN , UTT , UNN , UNT , UFN , UNF

}
the set of utility types. Since both

parties in a reconstruction protocol are considered to have the same preference
relation, we can represent the above preference relations (by using utility types
in place of particular utility values) respectively as follows:

1. UTN > UTT > UNN > UFN and UNF ≥ UTT

2. UTN > UTT > UNN > UFN and UNF < UTT

2.2 Correctness and Fairness

Let (Γ,−→σ )2,2 be a (2, 2) rational secret reconstruction mechanism. Then, we
follow the same definitions of complete fairness and correctness in [2] for the two
party scenario:

3 The notations (e.g., U1 , U−
1 etc.) in brackets for the last two columns represent the

corresponding notations used in [2] and [21].
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Definition 1. (Fairness) A rational secret reconstruction mechanism (Γ,−→σ ) is
said to be completely fair if for every arbitrary alternative strategy σ

′
i followed by

party Pi, (i ∈ {1, 2}) there exists a negligible function μ in the security parameter
k such that the following holds:

Pr[oi(Γ, (σ
′
i, σ−i)) = s] ≤ Pr[o−i(Γ, (σ

′
i , σ−i)) = s] + μ(k)

Definition 2. (Correctness) A rational secret reconstruction mechanism (Γ,−→σ )
is said to be correct if for every arbitrary alternative strategy σ

′
i followed by party

Pi, (i ∈ {1, 2}) there exists a negligible function μ in the security parameter k
such that the following holds:

Pr[o−i(Γ, (σ
′
i , σ−i)) �∈ {s,⊥}] ≤ μ(k)

2.3 Utility-Independence

A mechanism (Γ,−→σ ) is said to be independent of a given utility type if it achieves
its desired set of properties for any value of that utility type [2]. We define utility-
independence as in [2]. We have U =

{
UTN , UTT , UNN , UNT , UFN , UNF

}
.

Definition 3. (utility independence, adapted from [2]) Let Ũ ∈ U be a particular
utility type and U

′
=

{
UTN
i , UTT

i , UNN
i , UFN

i , UNT
i , UNF

i

}n

i=1
\Ũn

i=1 be a set

of polynomial utility functions excluding all Ũi values. A mechanism (Γ,−→σ ) is
said to be Ũ–utility independent if for all polynomial utility functions Ũn

i=1 for

which the elements in U = U
′ ∪ Ũn

i=1 satisfies a certain preference relationship
R, it holds that (Γ,−→σ ) is a fair reconstruction mechanism for that preference
relationship R among the elements of U .

2.4 The Role of Auxiliary Information

[2] discusses the effect of side information possessed by a rational party in a secret
reconstruction mechanism. Referring to the secret reconstruction mechanism of
[9] they argued that given any auxiliary information about the secret or the ac-
cess to some membership oracle O that can be queried on whether the current
secret s

′
in the list is the actual secret s, a party possessing a list of fake secrets

and the real secret (the long party in the Kol-Naor mechanism) has no incentive
to broadcast the secret during the definitive iteration causing the other party
not to learn the secret. Prior protocols for secret reconstruction in the rational
setting did not allow side information although possession of side information is
natural in most practical scenarios. In [2], it has been shown that this limita-
tion is inherent to the non-simultaneous channel assumption. However, recently,
the authors in [21] have developed a time delayed encryption scheme based on
cryptographic memory-bound functions and using the same have overcome this
impossibility result. In this work, we use protocol-induced auxiliary information
to allow parties to check whether the secret they reconstruct is a correct one.
By ‘protocol–induced’we mean that such auxiliary information is a choice of the
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mechanism/protocol designer and participants of the protocol have no freedom
to choose it.

We adapt the definition of a membership oracle and a fair reconstruction
mechanism with membership-auxiliary information given by [2].

Definition 4. (membership oracle [2]). Let s be the actual secret and one needs
to check whether x is same as the actual secret or not. S is the set of all such
x. Then, a membership oracle O : S → {0, 1} is defined as follows:

OS(x) =

{
1 if x = s
0 otherwise

(1)

In previous works with auxiliary information, a general case was considered
where a party can possess any membership oracle or any side information that
enabled it to recognize the secret once it was reconstructed. Our aim is different.
When left to themselves, parties may not possess any side information at all or
the nature of side information can vary from party to party (some parties may
possess incorrect membership oracles). Therefore, the membership oracle that
we use must be correct and provided by the protocol itself to the participants.

Definition 5. (correct membership oracle) A correct membership oracle O :
S → 0, 1 is a membership oracle which has the following properties:

1. Pr[OS(x) = 1] ≤ μ(k) for any x �= s and
2. Pr[OS(x) = 0] ≤ μ(k) for x = s.

where μ(k) is a negligible function in the security parameter k.

Definition 6. (protocol-induced membership oracle) A correct membership or-
acle Oπ

q,i provided by the protocol π to its participant Pi, (i = 1, 2) for the qth
execution of π is called a protocol-induced membership oracle.

3 Correct and Fair Reconstruction Mechanism in
Non-simultaneous Channel Model

In this section, we first provide a brief sketch of our (2, 2) rational secret sharing
protocol. Next we discuss the role of checking share used in our protocol in
more details as well as the time delayed encryption scheme and the equilibrium
concepts used before the final formal representation of our protocol.

3.1 Sketch of Our Protocol

The main idea behind our protocol is to release the secret gradually, share by
share. Each player is given a list of sub-shares, one for the share to be recon-
structed in each round. The secret can be reconstructed after sufficient number
of these shares have been reconstructed by each party.
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The minimum number of rounds r required to generate enough shares so that
the secret can be reconstructed is determined by the dealer randomly from a
geometric distribution with parameter β. We want β such that

β < (UTT − UNN )/(UTN − UNN ).

We call this round the revelation round. The dealer therefore has to generate
shares of the secret s according to (r, r + 1) Shamir’s secret sharing scheme so
that r + 1 shares are obtained. If each party possesses r of these shares of the
secret (called the reconstruction shares) then they can reconstruct the secret.
None of the parties are aware of the value of r.

The dealer randomly chooses one of the r + 1 shares as the checking share.
For each of the remaining shares, sub-shares are generated for each party so
that a list of sub-shares for each party is formed. The dealer also generates
shares of d fake secrets where d is also chosen from a geometric distribution with
parameter β. Therefore a list distributed to a player contains r sub-shares of
the shares of the actual secret followed by shares of d fake secrets such that the
total number of rounds is m=r+d, the rth round being the revelation round. The
fake secrets are required because each party is given the list of shares beforehand
to avoid repeated interaction with the dealer. The checking share is distributed
separately. The dealer is assumed to be honest and sends the sub-shares digitally
signed (information theoretically secure MACs are used).

In each round, players are required to send the sub-share corresponding to
the current round in their lists one by one i.e. non-simultaneously. Players are
capable of only two actions in a round: send the correct sub-share (if they send
an incorrect sub-share then it can be detected and the protocol can be aborted)
or remain silent. If in any round a player does not receive a sub-share from the
other party then it aborts. We also require that the first round cannot be chosen
to be the revelation round; the dealer may send a special abort message if he gets
r=1 and selects r once again. Players are guaranteed to be able to reconstruct
the secret if they cooperate and reconstruct all the shares from all the sub-shares
available in their lists.

Given the reconstruction shares and the secret, the extra share called the
checking share (which is the protocol induced auxiliary information in our case)
can be used to determine correctly whether the secret is the correct one. Also,
the checking share itself does not reveal any information about the secret. In
addition, the checking share acts as an indicator of the revelation round. So, the
purpose of the checking share is to achieve correctness. We provide a detailed
discussion on protocol-induced auxiliary information and specifically, the check-
ing share in section 3.2. Introduction of the checking share leads to the problem
that the party communicating last in any round can use it to identify the actual
secret and quit before the other party obtains the secret (this is discussed further
in section 3.2). We solve this problem by encrypting each share with the time–
delayed encryption scheme introduced in [21] and then generating sub-shares
from the encrypted share. A detailed description of this encryption scheme to-
gether with how it solves the problem due to introduction of the checking share
is given in section 3.3.
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Now, the question is whether a rational player Pj will want to deviate in this
situation. We shall show in section 3.6 that a player does not gain anything by
deviating.

3.2 Protocol-Induced Membership-Auxiliary Information

As mentioned before, we introduce protocol-induced membership-auxiliary in-
formation in the form of an extra share of the secret, called the checking share,
to check the correctness of the secret reconstructed. A protocol-induced mem-
bership oracle (see definition in section 2.3)should not reveal any information
about the secret itself i.e. a party should not be able to conclude anything about
the secret by simply observing the auxiliary information or by using arbitrary
values as input to the oracle. Moreover, given the secret, the oracle must always
(except with negligible probability) give the correct decision on whether this
input is the actual secret or not. The approach used by us does not benefit a
party considering deviation by giving it any additional power in discovering the
secret. This is because the additional information is very specific to the particu-
lar execution of the secret sharing and reconstruction mechanism and does not
impart any information about the secret when used without participating in the
protocol.

Let (Γf ,−→σf ) be a fair secret reconstruction mechanism that assumes only
UNF < UTT . Suppose that in each round r of the secret reconstruction mech-
anism, P1 communicates first and P2 communicates second. At the end of each
such round, a value of the form sr is reconstructed. If one of the parties quit at
any round j then the other party is supposed to output the value reconstructed
in the previous round i.e. sj−1. Now, let (Γfc,−→σfc) be a fair secret reconstruction
mechanism with a protocol-induced membership oracle Oπ

q .
−→σfc = (σfc,1, σfc,2)

is a slight modification of −→σf = (σf,1, σf,2). σfc,i tells party Pi to follow σf,i till
an output as defined by σf,i is obtained and then instructs it to query Oπ

q with
the value received in that step to check whether it is the correct one.

Theorem 1. Let (Γfc,−→σfc) be a (2, 2) fair secret reconstruction mechanism with
a protocol-induced membership oracle Oπ

q .Then (Γfc,−→σfc) is also a correct secret
reconstruction mechanism.

Proof. We delay the proof to Appendix A.

For our protocol, we shall consider that each party Pi is given the protocol-
induced auxiliary information auxπ,s

q and the protocol–induced membership or-
acle Oπ,s

q . We note here that because of the presence of our protocol-induced
membership-auxiliary information, our protocol cannot tolerate any other aux-
iliary information that parties may possess themselves (See Appendix D).

Shamir’s (1979) (t, n) threshold secret sharing scheme [11] is inherently linked
with the protocol–induced membership oracle we use. Shamir’s scheme enables
one to generate n shares of a secret s such that any t out of these n shares can
be used to reconstruct the secret. The dealer chooses a random t − 1 degree
polynomial f(x) = a0+a1x+a2x

2+ . . .+at−1x
t−1 where a0 is set to be equal to
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the secret s and the remaining coefficients a1, . . . , at−1 are randomly chosen from
a uniform distribution over the integers in [0, p) where p is a prime greater than
both s and n. The shares are computed as si = f(yi)modp, where 0 < yi < p
and i = 1 . . . n.

Now let us consider that the value of t is unknown to Bob who wants to
reconstruct a secret from r shares (r < n) he has gathered. Therefore, it is
completely unknown to him whether he has sufficient shares (i.e. if r > t) to
reconstruct the secret. Even if he is told that he has sufficient shares, then also
he does not know exactly how many of these shares should be used to reconstruct
the correct secret. We use this fact to our benefit.

Bob can hold in reserve one of the shares he has and try to reconstruct the
secret using different numbers of shares from the remaining shares. After each
reconstruction he can use the reserved share to check whether the reconstructed
value is the correct secret or not. Specifically on reconstructing a secret s

′
r from

r
′
< r shares, he can write the following:

fr′ (x) = sr′ + a
′
1x+ a

′
2x

2 + . . .+ a′
r′−1

xr
′−1

Now let us assume that the reserved share sq is represented as (yq, f(yq)modp).

Claim 1. If fr′ (yq) = f(yq), then a player can definitely conclude that sr′ = s;
otherwise it concludes that sr′ �= s.

Proof. For the claim to be true the following two conditions should be fulfilled
[by definition of correct membership oracle]:

1. Pr[fr′ (yq) = f(yq)] ≤ μ(p) for any sr′ �= s.
2. Pr[fr′ (yq) �= f(yq)] ≤ μ(p) for sr′ = s.

The second condition always holds by the property of polynomial interpolation.
Now, is it possible that even if sr′ �= s, fr′ (yq) = f(yq) holds true? Since f(x) is
a randomly chosen polynomial in [0, p), the probability of the point represented
by the reserved share lying on both f(x) and fr′ (x) where r

′ �= t is negligible. So
the first condition also holds. Therefore we can conclude that the reserved share
(which we call checking share throughout the paper) can serve as a protocol-
induced auxiliary information.

Checking Shares. Let us suppose that the player P1 communicates first in each
round whereas the player P2 communicates last. When P2 quits in any round
then it can have two meanings for P1: 1) P2 has already obtained the secret in the
last round (i.e. P2 has the preference UNF

2 < UTT
2 ) or 2) P2 has not obtained the

secret but is trying to mislead P1 in believing that the secret has been obtained
in the last round (i.e. P2 has the preference UNF

2 ≥ UTT
2 ). By giving a checking

share (a share of the actual secret) we enable P1 to distinguish between scenarios
(1) and (2). However, if the checking share is available only to P1, then P2 is
dependent on the P1 to know when the revelation round takes place and is thus
vulnerable to deviations by P1. If the checking share is available only to P2 , then
at the end of each round P2 can check whether it has enough shares to be able
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to reconstruct the secret and hence comes to know the revelation round before
both parties obtain the secret thereby resulting in an unfair outcome. Therefore
the checking share needs to be given to both the parties in such a way that it
cannot be used to check whether the current round is the revelation round but
can be used to detect if the last round was a revelation round.

The advantage of such a checking share over indicators is that the checking
share does not require reconstruction and is readily available to both players
whereas indicators are only available to each player if both players send their
message in that round. So even when one party aborts prematurely, the other
party can check whether the secret reconstructed with the available shares is the
correct one by using the checking share. This is not possible with an indicator
bit which will not even be reconstructed in the event of one party deviating pre-
maturely. However, the disadvantage is that the checking share acts as auxiliary
information that enables to identify the correct secret whereas an indicator bit
is in no way related to the correct secret itself. Before sending its share in each
round, with the help of this checking share P2 can check whether it has obtained
the actual secret. If it has, then P2 will quit before sending its message for that
round to P1. Therefore, P1 will be unable to get the secret leading to an unfair
outcome. Therefore it is important to use the checking share in such a manner
that it cannot provide any undue advantage to any party in identifying the se-
cret (for example P2 cannot take the help of the checking share to identify the
revelation round before P1). In [21], the authors have proposed a secret recon-
struction mechanism in the standard point-to-point network where parties have
auxiliary information. Their protocol develops and uses the concept of Crypto-
graphic Memory-bound Functions which is used in a time delayed encryption
scheme to prevent a party from identifying the correct secret before others with
the help of the auxiliary information it has. We use the same concept to prevent
misuse of the checking share by any party.

We can show that the introduction of the checking share is done without
relying on the actual value of UNF .

3.3 Time Delayed Encryption

When players have auxiliary information, then in each round, a deviating player
tries to decide whether the current round is the revelation round by checking the
reconstructed secret with the auxiliary information. Once the auxiliary informa-
tion tells this player that the secret has been reconstructed, the player immedi-
ately quits without sending its own share. This results in unfairness as the other
player cannot reconstruct the secret. A time delayed encryption scheme becomes
handy in this situation. A message that has been encrypted by this scheme can
only be decrypted after a moderate amount of time has elapsed. Although there
has been much work on this type of schemes in the field of time release cryp-
tography, the construction of a time delayed encryption scheme where the time
delay is introduced with the help of cryptographic memory bound functions (in-
stead of Time Lock Puzzles [25] that require a huge computational overhead and
hence is dependent on CPU speed) was proposed in [21].
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A time delayed encryption scheme (Gen,EncK , DecK , UnsealF ) consists of
1) the algorithm Gen that on input the security parameter 1k and the hardness
parameter h (such that 2h is a large polynomial in k) outputs a key K, a sealed
keyK ′ and some additional information F used to find the key; 2) the encryption
and decryption algorithms EncK and DecK respectively that use the key K
and 3) the algorithm UnsealF such that UnsealF (K

′)=K. The time delay is
introduced by UnsealF because its running time is lower bounded by Ω(2h) i.e.
if the reconstructed message is each round is encrypted with this scheme then
none of the parties can recover the message in less than Ω(2h) steps. Because
Cryptographic Memory-Bound Function is used for the construction, these steps
are in fact memory accesses i.e. the evaluation of UnsealF (K̃) requires at least
Ω(2h) memory accesses.

We use this time-delayed encryption scheme to encrypt the r shares of the
secret generated by the dealer (i.e. all shares except the checking share) and then
generate sub-shares from the encrypted shares for distribution to the players.
This allows the players to reconstruct the encrypted share in each round but
does not allow any of them to decrypt the share obtained in the current round
till a certain time has elapsed. Each round has to be completed within a certain
time limit. If a party does not receive any message for a particular round from
the other party within this deadline then it assumes that the other party has
quit. If a player wants to decrypt the encrypted share then it has to make a
minimum number of memory accesses. The time delay in decryption is such that
it causes the party to miss the deadline for sending the message in this round.
Therefore a party cannot decide whether the actual secret has been obtained in
the current round without missing the deadline which in turn informs the other
party of the misbehavior.

We discuss the timing model necessary for fruitfully utilizing the time-delayed
encryption scheme in Appendix B.

3.4 Equilibrium Concept

Due to lack of space we defer a discussion on the equilibrium concepts used in
the literature of rational secret reconstruction mechanisms to Appendix C. For
our protocol we use computational strict Nash Equilibrium in the presence of
protocol-induced auxiliary information. We must note that in our case all the
players have the same side information denoted by (auxπ,s

q , Oπ,s
q ) when induced

by the suggested strategy i.e. protocol π.

Definition 7. (Computational Nash Equilibrium with protocol-induced side
information [21]) The suggested strategy σ in the mechanism (Γ, σ) is a com-
putational Nash Equilibrium in the presence of protocol–induced auxiliary in-
formation (auxσ,π,s

q , Oσ,π,s
q ) if for every Pi any probabilistic polynomial time

strategy σ
′
i, ui((σ

′
i , σ−i), aux

σ,π,s
q , Oσ,π,s

q ) ≤ ui(σ, aux
σ,π,s
q , Oσ,π,s

q ) + μ
′
(k) for

some negligible μ
′
.
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Let σ
′
i �≈ (auxσ,π,s

q , Oσ,π,s
q )σ denote equivalent play (originally defined in [15]

and modified in [21] for the case of side information) in the presence of protocol-
induced side information. We refer the reader to [21] for detailed discussion.

Definition 8. (Computational strict Nash Equilibrium with protocol-induced
side information [21]) The suggested strategy σ in the mechanism (Γ, σ) is a
computational strict Nash Equilibrium in the presence of protocol-induced aux-
iliary information if it is a Nash Equilibrium with protocol-induced auxiliary
information and for every Pifor any probabilistic polynomial time strategy σ

′
i �≈

(auxσ,π,s
q , Oσ,π,s

q )σ, ui((σ
′
i, σ−i), aux

σ,π,s
q , Oσ,π,s

q ) < ui(σ, aux
σ,π,s
q , Oσ,π,s

q )+μ
′′
(k)

for some negligible μ
′′
.

3.5 Our Protocol

In this section, we give the formal description of our protocol. Note that in the
description below (Gen,EncK , DecK , UnsealF ) is the time delayed encryption
scheme described in section 4.3.

Protocol ShareGen : The Dealer’s Protocol
Inputs. The secret s possessed by the dealer; β, the parameter for the geometric
distribution G(β)
Computation. The dealer does the following:

1. Generate r ∼ G(β).
2. Ki,K

′
i , Fi ← Gen(1k), i = 1, . . . , r.

3. Use (r, r + 1) Shamir’s Secret Sharing Scheme to generate r shares of s.
Suppose the polynomial used is f(x) where f(0) is set to be equal to the
secret s and the remaining coefficients a1, . . . , ar−1 are randomly chosen from
a uniform distribution over the integers in [0, p) where p is a prime number
greater than both s and r+1. Each share si can be represented as (yi, f(yi))

4

where 0 < yi < p for each i = 0, . . . , r, yi is chosen randomly.
4. Choose scheck to be the 0th share among these (r + 1) shares such. Then,

scheck is of the form (y0, f(y0)) .
5. For each share si, i = 1, . . . , r, compute ci ← EncKi(si) and set c

′
i ←

(ci,K
′
i).

6. For each encrypted share c
′
i, i = 1, . . . , r, generate sub-shares c

′
i,j (j = 1, 2)

such that c
′
i = c

′
i,1 ⊕ c

′
i,2.

7. Generate random values c
′
i,j (for i = r+1, . . . , r+d and j = 1, 2), d is chosen

according to the geometric distribution G(β).
8. Construct list listj, (j = 1, 2) to contain c

′
1,j, . . . , c

′
r+d,j for player Pj (j =

1, 2).

Output. Distribute to each player Pj a list listj, j = 1, 2. Also distribute the
checking share scheck to each player.

4 The accurate way to write is (yi, f(yi)modp). We drop modp for simplicity of
representation.
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Protocol Reconstruct: The Players’ Protocol
This protocol consists of two phases, the Communication Phase and the Pro-
cessing Phase. In the Communication Phase players communicate to gather
sub-shares, whereas in the Processing Phase players process these sub-shares
obtained in the Communication Phase to get the shares of the secret. Thus the
Processing Phase for one share works in parallel with the Communication Phase
for a subsequent share. An ’abort’ in any round of the Communication Phase im-
plies quitting further communication with the other party; however, the aborting
party still continues with the processing phase to see whether the secret can be
reconstructed from the shares obtained till that round. A ’quit’ in the Processing
Phase means either the secret has been obtained and hence the next round in the
Communication Phase is no longer required or the Communication Phase has
been aborted and the shares obtained till the round of abort are not sufficient
to reconstruct the secret.

Inputs. List of sub-shares listj received by each player Pj , j = 1, 2 from the
dealer.
Communication Phase
In each round, P1 communicates first.
P1 communicates first as follows:

1. If in the last round (except if the current round is the first one) P1 has
not received a share within the specified deadline from P2 or if the share
received is not signed properly then abort; else continue till the Processing
Phase outputs the secret.

2. Send the current share from list1.
3. Check for shares sent by P2 till the specified deadline.

P2 communicates next as follows:

1. If in the current round P2 has not received a share from P1 within the
specified deadline or if the share received is not signed properly then abort;
else continue till the Processing Phase outputs the secret.

2. Send the current share in the list list2.
3. Check for shares sent by P1 till the specified deadline.

Processing Phase
This phase is carried out by each party on its own in parallel to the communi-
cation phase. It can start at least after one round of communication i.e. after
the sub-shares of at least one encrypted share of the secret has been gathered
by each party.

Until the sub-shares obtained from the Communication Phase is exhausted
or until the secret is obtained, each Pj (j = 1, 2) does the following in the ith
round of the Processing Phase:

1. Reconstruct c
′
i from c

′
i,1 and c

′
i,2.

2. Interpret c
′
i as (ci,K

′
i).
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3. Compute Ki ← UnsealFi(K
′
i) and find sharei = DecKi(ci).

4. If i > 1, reconstruct a polynomial fi(x) of degree (i − 1) corresponding to
the shares decrypted till the ith round; else move to the first step.

5. Now, scheck is (y0, f(y0)). If fi(y0) = f(y0) then output the constant term
fi(0) of this polynomial as the desired secret and quit. Otherwise, continue.
If all sub-shares obtained from the communication round are exhausted and
fi(y0) = f(y0) does not hold then output ⊥.

Output. Either each party outputs the secret s or each party outputs ⊥.

3.6 Analysis

Theorem 2. Let our rational secret reconstruction mechanism be denoted by
(Γ,−→σ ). Then 1) the prescribed strategy −→σ of the game Γ is in computational
strict Nash Equilibrium in presence of protocol-induced auxiliary information;
2) the output obtained by following −→σ is correct and 3) (Γ,−→σ ) is UNF utility–
independent.

Proof. We consider that each share in the lists that the parties receive is signed
by the dealer. Therefore neither party can undetectably send a wrong message to
the other (since information theoretic MACs are used). In each round, each party
either sends the message or chooses not to send it. The point of contention is that
the protocol-induced auxiliary information may incentivize a party to deviate by
allowing it to check whether the shares obtained till a certain round gives the
correct secret or not thus helping in deciding whether to quit or send its share
in that round to the other party. We argue that our protocol is a computational
strict Nash equilibrium for a party Pi with UTN > UTT > UNN even in the
presence of protocol-induced auxiliary information.

Case I. Suppose, P1 follows the reconstruction protocol whereas P2 uses an al-
ternate strategy that instructs it to follow the protocol till the qth round. Now
if P2 decides to quit in round (q + 1), P1 aborts and henceforth no exchange
of shares takes place. Since P2 communicates his share following P1 in each
round, P2 receives the (q + 1)th sub–share from P1. However, by the dead-
line of round (q + 1), P2 cannot decipher his (q + 1)th share, by the property
of time–delayed encryption. If (q + 1) < r, then P2 has not gathered enough
shares to be able to reconstruct the secret. If (q + 1) > r then both parties
obtain the secret. The share obtained in the (q + 1)th round does not help
P2 in any way. Thus, P2’s expected utility of quitting at any round (q + 1) is
δUTN

2 + (1 − δ)UNN
2 ≤ βUTN

2 + (1 − β)UNN
2 < UTT

2 for r ≥ 1 (where the
probability that the secret is reconstructed with q + 1 = r shares is given by
δ = β(1 − β)r−1), by our choice of β. Note that if P2 uses its checking share
in place of the (q + 1)th share for the secret reconstruction, then it loses the
capability of making sure whether it has obtained the correct secret and hence
loses the capability to decide definitely (instead of guessing) whether to quit or
not.
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Case II. If we assume that P2 follows the reconstruction protocol whereas P1

deviates by using a strategy that instructs it to follow the protocol till the qth
round and quit immediately after that, then P1 does not even get the share in
the (q + 1)th round and the same reasoning as Case I also applies here.

What remains to be shown is that the protocol is correct and UNF indepen-
dent. We first argue that our protocol is a computational strict Nash equilibrium
with protocol-induced side information even when UNF ≥ UTT . Suppose that
P2 quits in the (q + 1)th round. Then, by the property of the checking share,
P1 instead of outputting a secret formed from all the shares till the qth round
can use the checking share to find whether q + 1 > r. If not, then P1 outputs
a default value. Therefore P1 can now distinguish between a silent party P2

with UNF
2 ≥ UTT

2 and a silent party P2 with UTT
2 > UNF

2 . So a party with
UNF ≥ UTT gains only UNN due to its deviation whereas if it follows the pro-
tocol it gains UTT . Since UTT > UNN , the protocol is a computational strict
Nash Equilibrium with protocol–induced side information even for UNF ≥ UTT .
Thus we observe that the equilibrium condition is satisfied for any value of UNF

as long as UTT > UNN holds. The value of UNF has not been used to introduce
the checking share which plays the crucial role in deciding whether the secret
obtained till a particular round is correct or not. Therefore, our protocol is UNF

independent. Moreover, by the properties of protocol-induced auxiliary infor-
mation/ membership oracle, the checking share always succeeds in identifying
correctly whether a secret is correct or not. Hence our protocol is correct.

4 Generalization to (t, n) Setting

Assuming the presence of non-simultaneous broadcast channel, our protocol can
be extended to the (t, n) setting with some modifications. The dealer would need
to generate (t, n) sub-shares from each encrypted share (by using (t, n) Shamir’s
secret sharing) and distribute these sub-shares to the n players. Players would
communicate one-by-one in each round. If within the deadline of any round a
player obtains less than t shares, he quits. Obviously, we can consider a rushing
adversary i.e. the deviating party is the last (i.e. the tth person) to communicate
in any round. In that case, this party has to decide whether or not to quit in any
round before he is able to decrypt the share he reconstructs from the sub-shares
obtained in that round. If he tries to decrypt before taking the decision then, by
the property of time-delayed encryption, the deadline for that round is over and
all other players quit. So, the same logic as presented in section 3.6 applies here
also.

However, if point-to-point network is considered for the (t, n) setting, then
the generalization is not easy. In that case, instead of the most general (t, n)
setting, we can first look at the (n, n) setting as in[21, 15] or exactly t-out-of-n
setting as in [15].
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5 Complexity Analysis

In our protocol, the communication phase and the processing phase run paral-
lely. For each player and for each share i to be reconstructed, we need a round
of communication phase i.e. CPi and a round of processing phase PPi. The pro-
cessing phase PPi will coincide in time with CPi+1 (since the processing phase
must start after one round of communication phase) and overlap partially with
CPi+2 in time. So the time required for one round of Processing Phase is (1+ θ)
times the time required for one round of Communication Phase where θ is chosen
by protocol designer and the time delay for the time-delayed encryption scheme
should be designed to accomodate θ. The number of rounds for both Communi-
cation Phase and Processing Phase is r. So the total elapsed time for Protocol
Reconstruct is (1 + r + θ)Tcp where Tcp is the time required for one round of
Communication Phase. Therefore we are interested on the upper-bound of r.

The size of each list of sub-shares distributed to each player will depend on
r + d. So we also calculate the upper-bound on r + d.

Upper-Bound on r. We have assumed that r is chosen according to a geo-
metric distribution G(β). Also, for a fair rational secret reconstruction protocol,
the choice of β is such that

0 < β < β0 = (UTT − UNN )/(UTT − UNN ) < 1.

Now, given any ε > 0 error, we wish to have

Pr[r > R] < ε

i.e.Pr[r > R] = (1 − β)R < ε

i.e.R > ln ε/ln(1− β)

Therefore, we have Pr[r ≤ 
ln ε/ln(1− β)�] > 1− ε, where 0 < ε < 1.

Upper-Bound on r + d. We have r, d ∼ G(β), r and d are i.i.d random
variables, where 0 < β < β0 = (UTT − UNN )/(UTT − UNN) < 1.

Given any error ε > 0, to have Pr[r > T/2] < ε/2, we need

T/2 > ln(ε/2)/ln(1− β)

where T is a constant.
This also holds for d.
Now,

Pr[r + d > T ]

≤ Pr[r > T/2ord > T/2]

≤ Pr[r > T/2] + Pr[d > T/2]

= 2Pr[r > T/2] < ε,
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if T/2 > ln(ε/2)/ln(1− β) or T > 2 ln(ε/2)/ln(1− β).
Therefore,

Pr[r + d ≤ 
2 ln(ε/2)/ln(1− β)�] > 1− ε

for 0 < ε < 1.

6 Conclusion

This paper deals with a problem in rational secret sharing that has received very
little attention till now. We have proposed a (2, 2) rational secret sharing protocol
that is fair and correct as well as independent of the UNF –utility of a rational
participant even when UNF ≥ UTT in the non-simultaneous channel model
and show that it is in computational strict Nash equilibrium in the presence of
protocol-induced auxiliary information. We have also given a generalization the
protocol to the (t, n) settings.
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A Correctness in Presence of Protocol-Induced Auxiliary
Information

Theorem. Let (Γfc,−→σfc) be a (2, 2) fair secret reconstruction mechanism with
a protocol-induced membership oracle Oπ

q .Then (Γfc,−→σfc) is also a correct secret
reconstruction mechanism.

http://eprint.iacr.org/2005/187
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Proof. By assumption, in spite of the presence of a membership oracle with each
party, the reconstruction mechanism is fair i.e. none of the parties can identify
the revelation round before the other. Now suppose party P2 has a deviation
strategy σdev that tells it to play according to σ2 for the first r

′
rounds and then

quit (i.e. remain silent in all rounds henceforth). By assumption, P1 possesses
Oπ

q,1 and P2 possesses Oπ
q,2. Now, if P2 quits in round (r

′
+ 1), then by the

suggested strategy fc,1, P1 outputs s
′
r if Oπ

q,1(s
′
r) = 1 else it outputs ⊥. The

same argument also holds if P1 is the deviating party and P2 the non-deviating
party. We have already seen that u2(σ1, σdev) = UNF

2 whereas u2(σ1, σ2) = UTT
2 .

Since UNF
2 ≥ UTT

2 , P2’s best strategy is to follow σdev rather than the suggested
strategy σ2. So (σ1, σ2) is no more an equilibrium strategy. On the other hand,
u2(σfc,1, σdev) = UNN

2 while u2(σfc,1, σfc,2) = UTT
2 . So (σfc,1, σfc,2) is a strictly

better strategy profile than (σfc,1, σdev) and is an equilibrium strategy whenever
there is a party with UNF ≥ UTT .

B Timing Model

If the time delayed encryption scheme is to be used fruitfully to prevent the
misuse of auxiliary information, then it is necessary for each party to know how
to find out whether a certain message from another party was received within a
given deadline. The timing model for this purpose is discussed in details in [21].
We describe it here very briefly. Both parties must agree on the maximum values
for clock drift (τ), network latency (Δ) and speed (speedmax) of each party. If
P2 is supposed to send a message to P1 at time t then P1 must know that if
P2 is following the protocol, then his message must reach P1 by the time his
local clock shows t+Δ+ τ . If any round requires l computation steps scheduled
to begin at time t then both parties must have completed the computation
by time t+ l/speedmin where speedmin is the minimum of the speeds of both
the parties. For our protocol we assume (as in [21]) that the first round of the
protocol begins at the pre–decided time t1. Henceforth, round q > 1 starts at
tq = tq−1 + Δ + τ + m/speedmin where m is the maximum number of steps
required for computations in each round. So at local time tq, each party checks
whether it can compute s or some party deviated in the last round (i.e. the
message from that party for round q− 1 did not reach till tq). If the later is true
then it quits and moves to the post-processing steps. Each party computes its
own message and sends it to the other by time tq +m/speedmin .

C Equilibrium Concepts Used in Rational Secret
Reconstruction Mechanisms

A rational secret reconstruction protocol should be such that no player has any
incentive to deviate from this protocol. Consequently, Nash equilibrium and
its several variants have been used as equilibrium concept in the literature of
rational secret sharing. A suggested strategy is in Nash equilibrium when given
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that everyone else is following the suggested strategy, there is no incentive for a
player to deviate from this strategy. However it can be easily shown that even
though Shamir’s (1979) secret sharing protocol is a Nash equilibrium for t < n,
there are still strategies that are weakly better than it. This suggests the need for
stronger versions of Nash equilibrium to remove such unstable solutions. Again,
in the setting of rational secret sharing, in most cases, players are assumed to
be polynomial time which calls for a suitable modification in the notion of Nash
equilibrium used. Taking such facts into consideration following variants of Nash
equilibrium have been used: 1) Nash equilibrium that survives iterated deletion
of weakly dominated strategies [6]; 2) strict Nash equilibrium which becomes
useful when the payoffs from playing a good strategy and a bad strategy are
so close that any minor changes in the beliefs of players about the strategy
others are going to adopt may lead each of them to play the bad strategy [9];
3) computational strict Nash equilibrium [15] where except for non-negligible
probability a polynomial time player has a non-negligible loss from deviating;
4) computational Nash equilibrium that is stable with respect to trembles [15]
where every other player follows the suggested strategy with high probability; 5)
computational strict Nash equilibrium with side information and computational
Nash equilibrium with respect to trembles [21] which take into account the fact
that each player has access to auxiliary information and a side information oracle.

D Fairness in Presence of Auxiliary Information

The protocol of [21] is fair in spite of the presence of arbitrary auxiliary infor-
mation. In contrast, our protocol cannot tolerate arbitrary auxiliary information
that parties may possess themselves, other than the protocol-induced one. When
a party possesses auxiliary information that enables it to identify the actual se-
cret, then it will use the checking share to reconstruct the secret instead of using
it for checking purpose. It will then use the auxiliary information it possesses
to verify whether the actual secret is obtained. Once it knows this, it will abort
early causing other parties to have one share less than required to reconstruct
the secret. Thus the protocol will then become unfair.
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