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Abstract. One-round group authenticated key exchange (GAKE) pro-
tocols typically provide implicit authentication and appealing bandwidth
efficiency. As a special case of GAKE – the pairing-based one-round
tripartite authenticated key exchange (3AKE), recently gains much at-
tention of research community due to its strong security. Several pairing-
based one-round 3AKE protocols have recently been proposed to achieve
provable security in the g-eCK model. In contrast to earlier GAKE mod-
els, the g-eCK model particularly formulates the security properties re-
garding resilience to the leakage of various combinations of long-term
key and ephemeral session state, and provision of weak perfect forward
secrecy in a single model. However, the g-eCK security proofs of previous
protocols are only given under the random oracle model. In this work,
we give a new construction for pairing-based one-round 3AKE protocol
which is provably secure in the g-eCK model without random oracles.
Security of proposed protocol is reduced to the hardness of Cube Bilinear
Decisional Diffie-Hellman (CBDDH) problem for symmetric pairing. We
also extend the proposed 3AKE scheme to a GAKE scheme with more
than three group members, based on multilinear maps. We prove g-eCK
security of our GAKE scheme in the standard model under the natural
multilinear generalization of the CBDDH assumption.

Keywords: one-round, group key exchange, bilinear maps, multilinear
maps.

1 Introduction

The situation where three or more parties share a secret key is often called group
(conference) keying. A group authenticated key exchange protocol (GAKE) al-
lows a set of parties communicating over public network to create a common
shared key that is ensured to be known only to those entities. In a public key
infrastructure (PKI) based GAKE protocol, each party typically possesses a pair
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of long-term public/private key. The public key is expected to be certified with a
party’s identity and corresponding private key is kept secretly for authentication.
GAKE protocols are essentially generalized from two party authenticated key
exchange (2AKE) protocols to the case of multiple parties. However, this brings
new challenges not only in the design but also in the analysis of the GAKE
protocols. The formal security model for GAKE was first studied by Bresson et
al. [8], where the secrecy (indistinguishability) of the established group key and
mutual authentication are modelled following the seminal work of the 2AKE
model by Bellare and Rogaway [5]. Since then, figuring out new useful security
properties for certain class of GAKE and modelling them become continuing
trends.

One-Round GAKE. One import research direction in the research field of
GAKE is to construct secure one-round protocol due to its appealing bandwidth-
efficiency (in contrast to other multiple-round GAKE). A prominent example is
the pairing-based tripartite protocol introduced by Joux [14] which extends the
classical two-party Diffie-Hellman KE protocol to the three party case. However
Joux’s protocol is unauthenticated and subject to well known man-in-the-middle
attacks. Hence how to transform Joux’s protocol to a secure one-round protocol
in presence of active adversaries turns out to be an interesting topic. Several
attempts, e.g. [1,17,18,10], have been made to improve the original Joux’s proto-
col. This has also pushed forward the development of security model for GAKE.
Meanwhile, the most recently proposed one is the g-eCK model by Fujioka et
al. [10]. The g-eCK model basically can be seen as a generalization from the
two party eCK model [15]. In contrast to earlier GAKE models, e.g. [8,7,12], the
peculiarity of g-eCK model is that it captures lots of desirable security proper-
ties regarding resilience to the leakage of various combinations of long-term key
and ephemeral session state from target sessions (i.e. the test session and its
partner session in the security game), and provision of weak perfect forward se-
crecy (wPFS) in a single model. So far the g-eCK model is known as one of the
strongest security model for one-round GAKE[10]. Therefore proving security
for one-round GAKE in the g-eCK model may provide more guarantees.

Motivations. In 2012, Fujioka et al. (FMSU) [10] generalized previous 3AKE
protocols into one framework based on admissible polynomials which yields many
further one-round 3AKE protocols. The generic FMSU protocol [10] was shown
to satisfy g-eCK security. However its security proof is given in the random
oracle model (ROM) [4] under a specific strong assumption, i.e. gap Bilinear
Diffie-Hellman (GBDH) assumption [2]. It is well-known that the security proof
in the random oracle model may not imply that corresponding protocol is secure
in the real world. Several results, e.g., [9,3], have demonstrated that there exist
schemes which are provably secure in the random oracle model, but are insecure
as soon as one replaces the random oracle by any concrete hash functions. This
also makes the schemes secure in the standard model to be more appealing than
that in the random oracle model. So far we are not aware of previous GAKE
protocols being able to achieve g-eCK security in the standard model. Hence, one
of the open problems in research on GAKE is to construct a secure scheme in the
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g-eCK model under standard assumptions without resorting to random oracles.
Another important motivation of this paper is try to simplify the security proof
for GAKE protocols under the g-eCK model from the perspective of reducing
the freshness ceases that require to prove. Since under the g-eCK model, the
freshness cases are related to the group size which are not a small amount.
Taking the 3AKE as example, there might be fourteen freshness cases at all
that may lead proof to be very tiresome. When the group size is very large, the
situation might be worse because the possible freshness cases are exponential in
the number of group members. Those facts make us necessary to somehow reduce
the upper bound of the freshness cases that require to do proof simulation.

Contributions. We solve the above open problems by starting from 3AKE. We
firstly give a concrete construction in Section 5 for one-round 3AKE protocol
that is g-eCK secure in the standard model under standard assumptions. The
proposed protocol is based on bilinear groups, target collision resistant hash
function family, and pseudo-random function family. In order to withstand ac-
tive attackers, each (either long-term or ephemeral) public key is required to
be associated with some kind of ‘tag’ which is used to verify the consistency of
corresponding public key. Those tags are particularly customized using specific
weak Programmable Hash Functions (PHF) [13] for ephemeral key and long-
term key respectively, whose output lies in a pairing group. Interestingly the
proposed protocol is built to be able to run without knowing any priori infor-
mation about its partners’ long-term public key. Intuitively, these tags are what
give us the necessary leverage to deal with the non-trivial g-eCK security. In
order to facilitate the security analysis of 3AKE protocols in the g-eCK model,
we introduce propositions to formally reduce fourteen freshness cases (which
cover all freshness cases for 3AKE protocols) to four freshness cases. Then it is
only necessary to prove the security of considered protocol under the reduced
four freshness cases. It is not hard to check the validity of these reductions to
all one-round 3AKE protocols in which the message sent by a party is indepen-
dent of the messages sent by the other parties. Any g-eCK security analyzers for
one-round 3AKE protocols might benefit from these results. We then provide a
succinct and rigorous game-based security proof by reducing the g-eCK security
of proposed 3AKE protocol in the standard model to breaking the cubic Bilinear
Decisional Diffie-Hellman (CBDDH) assumption which is slightly modified from
the Bilinear Decisional Diffie-Hellman (BDDH) assumption [14].

In the latter we present a GAKE scheme with constant maximum group size
in Section 6 following the construction idea of 3AKE. Nevertheless the proposed
GAKE scheme is based on the symmetric multilinear map which is first postu-
lated by Boneh and Silverberg [6]. We prove g-eCK security of our scheme in
the standard model under a natural multilinear generalization of the CBDDH
assumption which is called n-Multiliear Decisional Diffie-Hellman Assumption
(nMDDH). In particular we give a general game-based security proof for our
proposed GAKE scheme which is given under any polynomial number of fresh-
ness cases.
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2 Preliminaries

Notations. We let κ ∈ N denote the security parameter and 1κ the string that
consists of κ ones. Let a capital letter with a ‘hat’ denote an identity; without the
hat the letter denotes the public key of that party. Let [n] = {1, . . . , n} ⊂ N be

the set of integers between 1 and n. If S is a set, then a
$← S denotes the action of

sampling a uniformly random element from S. Let ‘||’ denote the operation con-
catenating two binary strings. In the sequel, we briefly describe the complexity
assumptions which lay the foundation of our constructions. Besides we will also
make use of target collision resistant hash function family and pseudo-random
function family. The corresponding definitions can be found in [16].

Bilinear Groups. In the following, we briefly recall some of the basic properties
of bilinear groups. Our AKE solution mainly consists of elements from a single
group G. We therefore concentrate on symmetric bilinear maps. Our pairing
based scheme will be parameterized by a symmetric pairing parameter generator,
denoted by PG.Gen. This is a polynomial time algorithm that on input a security
parameter 1κ, returns the description of two multiplicative cyclic groups G and
GT of the same prime order p, generator g for G, and a bilinear computable
pairing e : G×G→ GT .

Definition 1 (Symmetric Bilinear groups). We call

PG = (G, g,GT , p, e)
$← PG.Gen(1κ) be a set of symmetric bilinear groups, if the

function e is an (admissible) bilinear map and it holds that:

1. Bilinear: ∀(a, b) ∈ G and ∀(x, y) ∈ Zp, we have e(ax, by) = e(a, b)xy.
2. Non-degenerate: e(g, g) �= 1GT , is a generator of group GT .
3. Efficiency: ∀(a, b) ∈ G, e is efficiently computable.

Multilinear Groups. In the following, we recall the definition of symmetric
multilinear groups introduced in [6]. We assume that a party can call a group
generator MLG.Gen(1κ, n) to obtain a set of multilinear groups. On input a
security parameter κ and a positive integer 2 < n ∈ N, the polynomial time
group generator MLG.Gen(1κ, n) outputs two multiplicative cyclic groups G and
GT of the same prime order p, generator g for G, and a n-multilinear map
me : Gn ×G→ GT .

We summarize the properties of n-multilinear groups in the following
definition.

Definition 2 (Symmetric Multilinear groups). We call MLG =

(G,GT , p,me)
$← MLG.Gen(κ, n) be a set of symmetric multilinear groups, if

the n-multilinear map me holds that:

1. n-multilinear: ∀(c1, . . . , cn) ∈ G and ∀(y1, . . . , yn) ∈ Zp, we have
me(cy1

1 , . . . , cyn
n ) = me(c1, . . . , cn)

y1···yn .
2. Non-degenerate: me(g, . . . , g) �= 1GT , is a generator of group GT .
3. Efficiency: ∀(c1, . . . , cn) ∈ G, the operation me(c1, . . . , cn) is efficiently

computable.
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Concrete multilinear maps can be found in [11] by Garg, Gentry, and Halvei.
We here just focus on a general definition of symmetric n-multilinear groups
without loss of generality.

Cube Bilinear Decisional Diffie-Hellman Assumption. With respect to
our construction for one-round tripartite AKE, we need a new complexity as-
sumption defined as follows.

Definition 3. We say that the CBDDH problem relative to generator PG.Gen is
(t, εCBDDH)-hard, if the probability bound
|Pr[EXPcbddh

PG.Gen,A(κ, n) = 1]− 1/2| ≤ εCBDDH holds for all adversaries A running
in probabilistic polynomial time t in the following experiment:

EXPcbddh
PG.Gen,A(κ, n)

PG = (G, g,GT , p, e)
$← PG.Gen(1κ);

a, γ
$← Z

∗
p;

b
$← {0, 1}, if b = 1 Γ ← e(g, g)a

3

, otherwise Γ ← e(g, g)γ;
b′ ← A(1κ,PG, ga, Γ );
if b = b′ then return 1, otherwise return 0;

where εCBDDH = εCBDDH(κ) is a negligible function in κ.

The proof for the security ofCBDDH assumption in the generic groupmodel [19]
is presented in the full version of this paper [16].

n-Multilinear Decisional Diffie-Hellman Assumption. We present a
generalization of the CBDDH assumption in n-multilinear groups that we call
the n-Multilinear Decisional Diffie-Hellman (nMDDH) assumption.

Definition 4. We say that the nMDDH problem relative to generator MLG.Gen
is (t, εnMDDH)-hard, if the probability bound
|Pr[EXPnmddh

PG.Gen,A(κ, n) = 1]− 1/2| ≤ εnMDDH holds for all adversaries A running
in probabilistic polynomial time t in the following experiment:

EXPnmddh
PG.Gen,A(κ)

MLG = (G,GT , g, p,me)
$← MLG.Gen(κ, n);

a, γ
$← Z

∗
p, b

$← {0, 1};
Γ ← me(g, . . . , g)a

n+1

if b = 1, otherwise Γ ← me(g, . . . , g)γ;
b′ ← A(1κ,MLG, ga, Γ );
if b = b′ then return 1, otherwise return 0;

where εnMDDH = εnMDDH(κ) is a negligible function in κ.

3 Security Model for Group Authenticated Key Exchange

In this section we present the formal security model for PKI-based group au-
thenticated key-exchange (GAKE) protocols. In this model, while emulating the
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real-world capabilities of an active adversary, we provide an ’execution environ-
ment’ for adversaries following an important line of research [15,18,10] which is
initiated by Bellare and Rogaway [5]. We formalize the capabilities of an ad-
versary in a strong sense who is provided enormous power to take full control
over the communication network (e.g., alter or inject messages as she wishes),
in particular she may compromise long-term keys of parties or secret states of
protocol instances at any time. Let KAKE be the key space of session key, and
{PK,SK} be key spaces for long-term public/private key respectively. Those
spaces are associated with security parameter κ of considered protocol.

Execution Environment. In the execution environment, we fix a set of honest
parties {ID1, . . . , ID�} for � ∈ N, where ID is identity of a party which is cho-
sen uniquely from space IDS. Each identity is associated with a long-term key
pair (skIDi , pkIDi) ∈ (SK,PK) for entity authentication, and is indexed via in-
teger i ∈ [�] in the model. Note that those identities are also lexicographically
indexed via variable i ∈ [�] . For public key registration, each party IDi might
be required to provide extra information (denoted by proof) to prove either the
knowledge of the secret key or correctness of registered public key (via e.g. non-
interactive proof of knowledge schemes). Each honest party IDi can sequentially
and concurrently execute the protocol multiple times with different indented
partners, this is characterized by a collection of oracles {πs

i : i ∈ [�], s ∈ [ρ]}
for ρ ∈ N. Oracle πs

i behaves as party IDi carrying out a process to execute the
s-th protocol instance, which has access to the long-term key pair (skIDi

, pkIDi
)

of IDi and to all other public keys. Moreover, we assume each oracle πs
i main-

tains a list of independent internal state variables with following semantics: (i)
pidsi – storing a set of partner identities in the group with whom πs

i intends to
establish a session key (including IDi itself), where the identities are ordered
lexicographically; (ii) Φs

i – storing the oracle decision Φs
i ∈ {accept, reject};

(iii) Ks
i – recording the session key Ks

i ∈ KKE for symmetric encryption; (iv) stsi
– storing the maximum secret session states that are allowed to be leaked (e.g.,
the exponent of exchanged ephemeral public key); (v) T s

i – storing the transcript
of all messages sent and received by πs

i during its execution, where the messages
are ordered by round and within each round lexicographically by the identities
of the purported senders.

All those variables of each oracle are initialized with empty string denoted
by symbol ∅ in the following. At some point, each oracle πs

i may complete the
execution always with a decision state Φs

i . Furthermore, we assume that the
session key is assigned to the variable Ks

i (such that Ks
i �= ∅) iff oracle πs

i has
reached an internal state Φs

i = accept.

Adversarial Model. An adversary A in our model is a PPT Turing Machine
taking as input the security parameter 1κ and the public information (e.g. generic
description of above environment), which may interact with these oracles by
issuing the following queries.
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– Send(πs
i ,m): The adversary can use this query to send any message m of

his own choice to oracle πs
i . The oracle will respond the next message m∗

(if any) to be sent according to the protocol specification and its internal
states. Oracle πs

i would be initiated via sending the oracle the first message
m = (
, pidsi ) consisting of a special initialization symbol 
 and a vari-
able storing partner identities. After answering a Send query, the variables
(pidsi , Φ

s
i ,K

s
i , st

s
i , T

s
i ) might be updated depending on the specific protocol.

– RevealKey(πs
i ): Oracle πs

i responds with the contents of variable Ks
i .

– StateReveal(πs
i ): Oracle πs

i responds with the secret state stored in variable
stsi , e.g. the random coins used to generate the session key.

– Corrupt(IDi): Oracle π1
i responds with the long-term secret key skIDi

of party
IDi if i ∈ [�]. After this query, oracles πs

i (s > 1) can still answer other queries.

– RegisterCorrupt(IDτ , pkIDτ
, proofIDτ

): This query allows the adversary to reg-
ister an identity IDτ (� < τ and τ ∈ N) and a static public key pkIDτ on
behalf of a party IDτ , if IDτ is unique and pkIDτ

is ensured to be sound by
evaluating the non-interactive proof proof IDτ

. We only require that the proof
is non-interactive in order to keep the model simple. Parties established by
this query are called dishonest.

– Test(πs
i ): This query may only be asked once throughout the experiment.

Oracle πs
i handles this query as follows: If the oracle has state Ω = reject

or Ks
i = ∅, then it returns some failure symbol ⊥. Otherwise it flips a fair

coin b, samples a random element K0 from key space KKE, sets K1 = Ks
i to

the real session key, and returns Kb.

We stress that the exact meaning of the StateReveal must be defined by each
protocol separately, and each protocol should be proven secure to resist with
such kind of state leakage as claimed. Namely a protocol should specify the
content stored in the variable st during protocol execution. In order to protect
those critical session states of AKE protocols, utilizing secure (e.g. tamper-proof)
device might be a natural solution, namely at each party an untrusted host
machine is used together with a secure hardware. In this way it is possible to
adopt a ‘All-and-Nothing’ strategy to define the session states — namely we
can assume that all states stored on untrusted host machine can be revealed
via StateReveal query and no state would be exposed at secure device without
loss of generality. The RegisterCorrupt query is used to model the chosen identity
and public key attacks. In this query, the detail form of proofτ (i.e. how to
register an identity and corresponding public key) should be specified by each
protocol. Please note that if the protocol allows for arbitrary key registration
then one could set the parameter proof = ∅. Basically, our execution environment
is consistent to the g-eCK model [10] except for the RegisterCorrupt query. In
the original g-eCK model, the adversary is allowed to register a public key (via
AddUser query) by checking whether corresponding register key comes from the
key space for public key. However in our model, we model the requirement of
the key registration in a more general way via parameter proof.
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Secure AKE Protocols. To formalize the notion that two oracles are engaged in
an on-line communication, we define the partnership via matching sessions. We
assume that messages in a transcript T s

i are represented as binary strings.

Definition 5. We say that an oracle πs
i has a matching session to oracle πt

j, if

pidsi = pidtj and πs
i has sent all protocol messages and T s

i = T t
j .

Definition 6 (Correctness). Let πs
i and πt

j be two oracles. We say a GAKE
protocol Σ is correct, if both oracles πs

i and πt
j accept such that πs

i and πt
j have

matching sessions, then it holds that Ks
i = Kt

j.

Security Game. The security game is played between a challenger C and an
adversary A, where the following steps are performed:

1. At the beginning of the game, the challenger C implements the collection
of oracles {πs

i : i ∈ [�], s ∈ [ρ]}, and generates � long-term key pairs
(pkIDi , skIDi) and corresponding proof proofi for all honest parties IDi where
the identity IDi ∈ IDS of each party is chosen uniquely. C gives adversary
A {(ID1, pkID1

, proof ID1
), . . . , (ID�, pkID�

, proofID�
)} as input.

2. A may issue polynomial number of queries: Send, StateReveal, Corrupt,
RegisterCorrupt and RevealKey.

3. At some point, A may issue a Test(πs
i ) query on an oracle πs

i during the
experiment but only once.

4. At the end of game, the A may terminate with outputting a bit b′ as its
guess for b of Test query.

For the security definition, we need the notion about the freshness of oracles
which formulates the restrictions on the adversary with respect to performing
these above queries.

Definition 7 (Freshness). Let πs
i be an accepted oracle.

Let πS = {πt
j}IDj∈pidsi ,j �=i be a set of oracles (if they exist), such that πs

i has a
matching session to πt

j. Then the oracle πs
i is said to be fresh if none of the

following conditions holds:
(i) A queried RegisterCorrupt(IDj , pkIDj

, proof IDj
) with some IDj ∈ pidsi ; (ii) A

queried either RevealKey(πs
i ) or RevealKey(πt

j) for some oracle πt
j ∈ πS; (iii) A

queried both Corrupt(IDi) and StateReveal(πs
i ); (iv) For some oracle πt

j ∈ πS, A
queried both Corrupt(IDj) and StateReveal(πt

j); (v) If IDj ∈ pidsi (j �= i) and there
is no oracle πt

j such that πs
i has a matching session to πt

j , A queried Corrupt(IDj).

Definition 8 (g-eCK Security). We say that an adversary A (t, ε)-breaks the
g-eCK security of a correct group AKE protocol Σ, if A runs the AKE security
game within time t, and the following condition holds:

– If a Test query has been issued to a fresh oracle πs
i , then the probability that

the bit b′ returned by A equals to the bit b chosen by the Test query is bounded
by

|Pr[b = b′]− 1/2| > ε,

We say that a correct group AKE protocol Σ is (t, ε)-g-eCK-secure, if there exists
no adversary that (t, ε)-breaks the g-eCK security of Σ.
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4 Simplify the Security Proof for One-Round GAKE in
the g-eCK Model

We first present a generic definition of one-round group authenticated key ex-
change (ORGAKE) to allow us to describe our generic result for this class of
protocols. In a ORGAKE protocol, each party may send a single ‘message’ and
this message is always assumed to be independent of the message sent by the
other party without loss of generality. The independence property of sent mes-
sages is required since the session participants can’t achieve mutual authentica-
tion in one-round and it enables parties to run protocol instances simultaneously
(which is a key feature of one-round protocol). The key exchange procedure is
done within two pass and a common shared session key is generated to be known
only by session participants.

Let GD := ((ID1, pkID1
), . . . , (IDn, pkIDn

)) be a list which is used to store the
public information of a group of parties formed as tuple
(IDi, pkIDi

), where n is the size of the group members which intend to share a
key and pkIDi

is the public key of party IDi ∈ IDS (i ∈ [n]). Let T denote
the transcript storing the messages sent and received by a protocol instance at
a party which are sorted orderly. A general PKI-based ORGAKE protocol may
consist of four polynomial time algorithms
(ORGAKE.Setup,ORGAKE.KGen,ORGAKE.MF,ORGAKE.SKG) with following
semantics:

– pms← Setup(1κ): This algorithm takes as input a security parameter κ and
outputs a set of system parameters storing in a variable pms.

– (skID, pkID, proofID)
$← ORGAKE.KGen(pms, ID): This algorithm takes as in-

put system parameters pms and a party’s identity ID, and outputs a pair
of long-term private/public key (skID, pkID) ∈ (PK,SK) for party ID and a
non-interactive proof for pkID (which is required during key registration.).

– mID1

$← ORGAKE.MF(pms, skID1
, rID1

,GD): This algorithm takes as input
system parameters pms and the sender ID1’s secret key skID1 , a randomness

rID1

$← RORGAKE and the group information variable GD, and outputs a
message to be sent in a protocol pass, where RORGAKE is the randomness
space.1

– K ← ORGAKE.SKG(pms, skID1
, rID1

,GD,T): This algorithm take as the in-

put system parameters pms and ID1’s secret key skID1 , a randomness rID1

$←
RORGAKE and the group information GD and a transcript T orderly recorded
all protocol messages exchanged2, and outputs session key K ∈ KORGAKE.

1 We remark that the parameter GD of algorithm ORGAKE.MF is only optional, which
can be any empty string if specific protocol compute the message without knowing
any information about its indented partners.

2 The detail order needs to be specified by each protocol.
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For correctness, we require that, on input the same group descriptionGD =
((ID1, pk1), . . . , (IDn, pkn)) and transcript T, algorithm ORGAKE.SKG satis-
fies the constraint: ORGAKE.SKG(pms, skID1 ,
rID1

,GD,T) = ORGAKE.SKG(pms, skIDi
, rIDi

,GD,T), where skIDi
is the secret

key of a party IDi ∈ GD who generates randomness rIDi
∈ RORGAKE for i ∈ [n].

Besides these algorithms, each protocol might consist of other steps such as
long-term key registration and message exchange, which should be described by
each protocol independently.

Simplify the Security Proof for One-round Tripartite AKE in the g-eCK model.
We show how to reduce the complexity of the security proof of any one-round
3AKE protocol with the above form in the g-eCK model. To prove the security
of a protocol in the g-eCK model, it is necessary to show the proof under all
possible freshness cases formulated by Definition 7. Let oracle πs∗

Â
be the test

oracle with intended partner B̂ and Ĉ for instance. If any adversary breaks the
indistinguishability security property of am OR3AKE protocol, then at least one
of the following fresh events must occur:

– Event 0: There are oracles πt∗

B̂
and πl∗

Ĉ
, such that πs∗

Â
has matching session

to πt∗

B̂
and to πl∗

Ĉ
respectively.

– Event 1: There is an oracle πt∗

F̂
such that πs∗

Â
and πt∗

F̂
have matching sessions

but there is no oracle of D̂ having matching session to πs∗

Â
, where F̂ and D̂

are parties such that F̂ , D̂ ∈ {B̂, Ĉ} and D̂ �= F̂ .
– Event 2: πs∗

Â
has no matching session.

In the Table 1, we show the freshness cases regarding to StateReveal and Corrupt
query which might be occurred in each event. Let ‘nRS’ denote the situation that
the adversary did not issue StateReveal query to specific oracle, and ′nC’ denote
the situation adversary did not issue Corrupt query to corresponding party (e.g.
the owner of certain oracle).

Table 1. Freshness Cases in Each Event

Event 0 πs∗
Â

πt∗
B̂

πl∗
Ĉ

Event 1 πs∗
Â

πt∗
F̂

D̂ Event 2 πs∗
Â

B̂ Ĉ
Case 1 (C1) nRS nRS nRS Case 9 (C9) nRS nRS nC Case 13 (C13) nC nC nC
Case 2 (C2) nC nRS nRS Case 10 (C10) nC nRS nC Case 14 (C14) nRS nC nC
Case 3 (C3) nRS nRS nC Case 11 (C11) nC nC nC
Case 4 (C4) nC nRS nC Case 12 (C12) nRS nC nC
Case 5 (C5) nRS nC nRS
Case 6 (C6) nC nC nRS
Case 7 (C7) nC nC nC
Case 8 (C8) nRS nC nC

In order to complete the proof, we must provide the security proofs under
all fourteen cases that might be tiresome. However we introduce the following
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general propositions to facilitate the proof of any OR3AKE protocols in the form
of the above description. Our goal is to reduce the freshness cases which have
the similar restrictions on adversary’s queries.

Proposition 1. If adversaryA1 (t1, εA1)-breaks the g-eCK security of aOR3AKE
protocol Σ in case C2, then there exists an adversary A2 who can (t2, εA2)-breaks
the g-eCK security of Σ in case C5, such that t1 ≈ t2 and εA1 = εA2 .

Proposition 2. If adversary A1 (t1, εA1)-breaks the g-eCK security of a
OR3AKE protocol Σ in case C3 (C5), then there exists an adversary A2 who
can (t2, εA2)-breaks the g-eCK security of Σ in case C9, such that t1 ≈ t2 and
εA1 = εA2 .

Proposition 3. If adversary A1 (t1, εA1)-breaks the g-eCK security of a
OR3AKE protocol Σ in case C7, then there exists an adversary A2 who can
(t2, εA2)-breaks the g-eCK security of Σ in case C11. If such adversary A2 exists,
then there exists an adversary A3 who can (t3, εA3)-breaks the g-eCK security of
Σ in case C13. We have that t1 ≈ t2 ≈ t3 and εA1 = εA2 = εA3 .

Proposition 4. If adversary A1 (t1, εA1)-breaks the g-eCK security of a
OR3AKE protocol Σ in case C4, then there exists an adversary A2 who can
(t2, εA2)-breaks the g-eCK security of Σ in case C10. If such adversary A2 ex-
ists, then there exists an adversary A3 who can (t3, εA3)-breaks the g-eCK secu-
rity of Σ in case C12. If such adversary A3 exists, then there exists adversary
A4 who can (t4, εA4)-breaks the g-eCK security of Σ in case C14. We have that
t1 ≈ t2 ≈ t3 ≈ t4 and εA1 = εA2 = εA3 = εA4 .

Proposition 5. If adversary A1 (t1, εA1)-breaks the g-eCK security of a
OR3AKE protocol Σ in case C6, then there exists an adversary A2 who can
(t2, εA2)-breaks the g-eCK security of Σ in case C8. If such adversary A2 exists,
then there exists an adversary A3 who can (t3, εA3)-breaks the g-eCK security of
Σ in case C12. We have that t1 ≈ t2 ≈ t3 and εA1 = εA2 = εA3 .

The proofs of above propositions can be found in the full version of this paper
[16]. Due to the above reductions, one could prove the security of any one-round
3AKE protocol in the g-eCK model only under freshness cases C1, C9, C13 and
C14. This would be dramatically simplify the security proof. In the sequel, we
call these freshness cases require to write proof as target freshness cease.

Towards Lower Bound of Target Freshness Cases for the Proof of One-round
GAKE with Arbitrary Group Size in the g-eCK Model. In order to make the
proof for one-round GAKE protocol in the g-eCK model to be more tight, we
might also need to do the analogous reductions about the freshness cases as it is
done for OR3AKE. So that we make a conjecture for the lower bound of target
freshness cases for the proof of AKE protocol with arbitrary group size n in the
g-eCK Model.

Conjecture 1. For any one-round group AKE protocol with members n+ 1, we
have n+ 2 freshness cases that require proof simulations.

The proof idea of this conjecture is presented in [16].
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5 A Tripartite AKE Protocol from Bilinear Maps

In this sectionwe present a three party one-roundAKEprotocol based on symmet-
ric bilinear groups, a target collision resistant hash function and a pseudo-random
function family. The requirements for underlying building blocks are standard, the
proposed protocol provides g-eCK security without random oracles.

5.1 Protocol Description

Setup: The proposed protocol takes as input the following building blocks
which are initialized respectively in terms of the security parameter κ ∈ N:

(i) Symmetric bilinear groups PG = (G, g,GT , p, e)
$← PG.Gen(1κ) and a set

of random values {ui}0≤i≤3
$← G; (ii) a target collision resistant hash func-

tion TCRHF(hkTCRHF, ·) : KTCRHF × G → Zp, where KTCRHF is the key space

of TCRHF and hkTCRHF
$← TCRHF.KG(1κ); and (iii) a pseudo-random function

family PRF(·, ·) : GT × {0, 1}∗ → KAKE. The system parameters encompass
pms := (PG, {ui}0≤i≤3, hkTCRHF).

Â B̂ Ĉ

x
$← Z

∗
p, X := gx y

$← Z
∗
p, Y := gy z

$← Z
∗
p, Z := gz

hX := TCRHF(X) hY := TCRHF(Y ) hZ := TCRHF(Z)

tX := (u0u
hX
1 u

h2
X

2 u
h3
X

3 )x tY := (u0u
hY
1 u

h2
Y

2 u
h3
Y

3 )y tZ := (u0u
hZ
1 u

h2
Z

2 u
h3
Z

3 )z

broadcast (Â, A, tA, X, tX) broadcast (B̂, B, tB, Y, tY ) broadcast (Ĉ, C, tC , Z, tZ)
hB := TCRHF(B) hA := TCRHF(A) hA := TCRHF(A)
hC := TCRHF(C) hC := TCRHF(C) hB := TCRHF(B)
hY := TCRHF(Y ) hX := TCRHF(X) hX := TCRHF(X)
hZ := TCRHF(Z) hZ := TCRHF(Z) hY := TCRHF(Y )

UB := u0u
hB
1 u

h2
B

2 u
h3
B

3 UA := u0u
hA
1 u

h2
A

2 u
h3
A

3 UA := u0u
hA
1 u

h2
A

2 u
h3
A

3

UC := u0u
hC
1 u

h2
C

2 u
h3
C

3 UC := u0u
hC
1 u

h2
C

2 u
h3
C

3 UB := u0u
hB
1 u

h2
B

2 u
h3
B

3

UY := u0u
hY
1 u

h2
Y

2 u
h3
Y

3 UX := u0u
hX
1 u

h2
X

2 u
h3
X

3 UX := u0u
hX
1 u

h2
X

2 u
h3
X

3

UZ := u0u
hZ
1 u

h2
Z

2 u
h3
Z

3 UZ := u0u
hZ
1 u

h2
Z

2 u
h3
Z

3 UY := u0u
hY
1 u

h2
Y

2 u
h3
Y

3

reject if either reject if either reject if either
e(tB, g) �= e(UB, B) or e(tA, g) �= e(UA, A) or e(tA, g) �= e(UA, A) or
e(tC , g) �= e(UC , C) or e(tC , g) �= e(UC , C) or e(tB, g) �= e(UB, B) or
e(tY , g) �= e(UY , Y ) or e(tX , g) �= e(UX , X) or e(tX , g) �= e(UX , X) or
e(tZ , g) �= e(UZ , Z) e(tZ , g) �= e(UZ , Z) e(tY , g) �= e(UY , Y )

Each party has sid := Â||A||tA||X||tX ||B̂||B||tB ||Y ||tY ||Ĉ||C||tC ||Z||tZ
Each party rejects if some values recorded in sid are identical

k := e(BY,CZ)a+x k := e(AX,CZ)b+y k := e(AX,BY )c+z

ke := PRF(k, sid) ke := PRF(k, sid) ke := PRF(k, sid)

Fig. 1. One-round Tripartite AKE Protocol
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Long-term Key Generation and Registration: On input pms, a party Â may run

an efficient algorithm (skÂ, pkÂ, ∅)
$← ORGAKE.KGen(pms, Â) to generate the

long-term key pair as: skÂ = a
$← Z

∗
p, pkÂ = (A, tA) where A = ga, tA :=

(u0u
hA
1 u

h2
A

2 u
h3
A

3 )a and hA = TCRHF(A). Please note that we allow arbitrary key

registration, i.e. the adversary is able to query RegisterCorrupt(Â, pkÂ, ∅) with
proofÂ = ∅.
Protocol Execution: On input pms, the protocol among parties Â, B̂ and Ĉ is
depicted in the Figure 1.

Implementation and Session States: We assume that the maximum states of
party Â allowing for leakage consist of ephemeral private key x (resp. y and
z for parties B̂ and Ĉ) – namely those values would be stored in the state
variable st of each oracle at any time. For example this can be guaranteed by
performing the computations for k and ke on secure device. Note that the all
pairing operations including e(BY,CZ) can be done on host machine.

We notice that a party Â has to do consistency check on long-term key in
every sessions that might be wasteful. An alternative solution could make the
Certificate Authority to check the consistency of long-term public key during
key registration procedure. In this way, it might reduce two pairing operations
for protocol execution and also the number of public key. To register a public key
pkÂ = A, each party Â should at least prove the consistency via tag tA. Then

the public key A is registered if e(tA, g) = e(A, u0u
hA
1 u

h2
A

2 u
h3
A

3 ). Thus this check
would be done only once at CA. The downside of this approach is that it might
increase the burden of CA. In particular, the tag tA is required while querying
the RegisterCorrupt(Â, pkÂ, proofÂ) in the security game, i.e. proofÂ = tA.

5.2 Security Analysis

We show the security of proposed protocol in the g-eCK model.

Theorem 1. Assume each ephemeral key chosen during key exchange has bit-
size λ ∈ N. Suppose that the CBDDH problem is (t, εCBDDH)-hard in the symmet-
ric bilinear groups PG, the TCRHF is (t, εTCRHF)-secure target collision resistant
hash function family, and the PRF is (q, t, εPRF)-secure pseudo-random function
family. Then the proposed protocol is (t′, ε)-session-key-secure in the sense of

Definition 8 with t′ ≈ t, q ≥ 3 and ε ≤ (ρ�)2

2λ
+ εTCRHF + 4(ρ�)3 · (εCBDDH + εPRF).

Proof sketch. We give a brief sketch of the proof of Theorem 1 (more details
can be found in [16]). It is straightforward to see that two oracles accept with
matching sessions would compute the same session key. Namely the proposed
protocol is correct. In the sequel, we wish to show that the adversary is unable
to distinguish random value from the session key of any fresh oracle.

To complete the proof of Theorem 1, we only need to prove the advantage
of the adversary is negligible under target freshness cases C1, C9, C13 and
C14, due to the reductions in Section 4. The proof proceeds in a sequence of
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games, following [20]. Let Sδ be the event that the adversary wins the security
experiment in Game Gδ under freshness cases in {C1, C9, C13, C14}. Let Advδ :=
Pr[Sδ]− 1/2 denote the advantage of A in Game Gδ.
Game G0. This is the original game with adversary A. The system parameters
are chosen honestly by challenger as protocol specification. Thus we have that
Pr[S0] = 1/2 + ε = 1/2 + Adv0.
Game G1. In this game, the challenger aborts, if during the simulation an
ephemeral key replied by an oracle πs

i but it has been sample by another oracle

or sent by adversary before. We have that Adv0 ≤ Adv1 + (ρ�)2

2λ
.

Game G2. In this game, the challenger aborts if two oracles output the same
hash value of TCRHF. Thus we have Adv1 ≤ Adv2 + εTCRHF.
Game G3. This game proceeds as previous game, but C aborts if one of the
following guesses fails: (i) the freshness case occurred to test oracle from the
set {C1, C9, C13, C14}, (ii) the test oracle, (iii) its partner parties, and (iv)
corresponding oracles (if any) each of which has a matching session to test or-
acle, in terms of specific guessed freshness case. Since there are four considered
fresh cases, � parties and at most ρ oracles for each party, then the probability
that all above guesses of C are correct is at least 1/4(ρ�)3. Thus we have that
Adv2 ≤ 4(ρ�)3 · Adv3. Please note that there are at least three uncompromised
(either long-term and ephemeral) Diffie-Hellman keys which are used by test
oracle to generate its key material k∗, as otherwise the test oracle is not g-eCK-
fresh any more. We call such guessed three uncompromised DH keys as target
DH keys.
Game G4. Technically, this game is proceeded as previous game, but the

challenger C replaces the key material ksi with random value ˜ksi for oracles
{πs

i : i ∈ [�], s ∈ [ρ]} which satisfy the following conditions: (i) The ksi is com-
puted involving the three target DH keys, and (ii) Those target DH keys used by
πs
i are from three distinct parties. If there exists an adversary A can distinguish

the Game G4 from Game G3 then we can make use of it to solve the CBDDH
problem. We therefore obtain that Adv3 ≤ Adv4 + εCBDDH.

Game G5. In this game, we change function PRF(˜k∗, ·) to a truly random
function for test oracle and its partner oracles (if they exist). Thus we have that
Adv4 ≤ Adv5+εPRF due to the security of PRF. Note that in this game the session
key returned by Test-query is totally a truly random value which is independent
to the bit b and any messages. Thus the advantage that the adversary wins this
game is Adv5 = 0. Sum up the probabilities from Game G0 to Game G5, we
proved this theorem.

6 A GAKE Construction from Multilinear Maps

An interesting work is to extend the proposed 3AKE scheme to GAKE scheme
with more than three group members. Based on bilinear groups might be im-
possible to achieve so. Since we can not get an aggregate long-term shared key
for a group of members from bilinear map. However, Boneh and Silverberg [6]



136 Y. Li and Z. Yang

have given us inspiration on how to generalize the 3AKE to GAKE by exploiting
multilinear maps.

6.1 Protocol Description

Setup: The proposed GAKE protocol takes as input the following building blocks
which are initialized respectively in terms of the security parameter κ ∈ N

and upper-bound of number of users n + 1: (i) n-mulitilinear groups MLG =

(G,GT , g, p,me)
$← MLG.Gen(κ, n) and a set of random values {uj}0≤j≤n+1

$←
G; (ii) a target collision resistant hash function TCRHF(hkTCRHF, ·) : KTCRHF ×
G→ Zp, where hkTCRHF

$←
TCRHF.KG(1κ); and (iii) a pseudo-random function family PRF(·, ·) : GT ×
{0, 1}∗ → KAKE. Let pms := (MLG, {uj}0≤j≤n+1, hkTCRHF) be the variable used
to store the public system parameters.
Long-term Key Generation and Registration: On input pms, a party Â may run

an efficient algorithm (skD̂, pkD̂, ∅) $← ORGAKE.KGen(pms, D̂) to generate the

long-term key pair for a party D̂ as: skD̂ = d
$← Z

∗
p, pkD̂ = (D, tD), where

D = ga, tD :=
∏n+1

j=0 u
hj
D

j and hA = TCRHF(A). Please note that we allow
arbitrary key registration.

Let ω denote the size of group for a protocol instance such that 2 ≤ ω ≤ n+1.
An important attribute for a GAKE protocol is the scalable group size. In the
following we show our construction for protocol execution phase which is scalable
with range between 2 and n+ 1.
Protocol Execution: We consider the protocol execution for a protocol in-
stance with ω group members denoted by (D̂1, D̂2, . . . , D̂ω), where each
party D̂i (1 ≤ i ≤ ω) has long-term key Di. In the key exchange
phase, each party D̂i generates an ephemeral key Xi = gxi, computes

tag tXi :=
∏n+1

j=0 u
hj
Xi

j and broadcasts (D̂i, Di, tDi , Xi, tXi) to its intended

communication partners, where xi
$← Z

∗
p and hXi := TCRHF(Xi). Upon

receiving all messages {D̂l, Dl, tD1 , Xl, tXl
}1≤l≤ω,l �=i from each session partic-

ipant, the party D̂i rejects the session if the consistency check on one of
the received either long-term or ephemeral keys fails, i.e. me(tWl

, g, . . . , g) �=
me(

∏n+1
j=0 u

hj
Wl

j ,Wl, g, . . . , g) where Wl ∈ {Dl, Xl} for 1 ≤ l ≤ ω, l �= i

and hWl
= TCRHF(Wl). The party D̂i sets sid := D̂1||D1||tD1 ||X1||tX1 || . . .

||D̂ω||Dω||tDω ||Xω||tXω , and rejects the session if some values recorded in
sid are identical. To this end, the party D̂i generates the key material
k := me(D1X1, . . . , Di−1Xi−1, Di+1Xi+1, . . . , DωXω, . . . , DωXω)

di+xi and ses-
sion key ke := PRF(k, sid), where the values D0, X0, Dω+1, Xω+1 are ‘empty’
which should be omitted. Other parties in this group will do the similar proce-
dures to generate the session key.

Please note that the scalability is achieved generally by setting all Diffie-
Hellman keys after the position ω in n-multilinear map me to be DωXω. This is
possible since at least one DH key in (Dω, Xω) is not compromised by adversary
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in the security game. As otherwise such session is no longer fresh in terms of
Definition 7.
Implementation and Session States: We assume that the maximum states of
party D̂i allowing for leakage from a session consist of ephemeral private key xi

– namely those values would be stored in the variable in the state variable st
of each oracle at any time. The implementation scenario is similar to the three
party case presented in Section 5.

6.2 Security Analysis

We show the security of above group AKE protocol in the g-eCK model.

Theorem 2. Assume each ephemeral key chosen during key exchange has bit-
size λ ∈ N. Suppose that the nMDDH problem is (t, εnMDDH)-hard in the sym-
metric multilinear groupsMLG, the TCRHF is (t, εTCRHF)-secure target collision
resistant hash function family, and the PRF is (q, t, εPRF)-secure pseudo-random
function family. Then the proposed protocol of size 2 ≤ ω ≤ n + 1 ≤ � is
(t′, ε)-g-eCK-secure in the sense of Definition 8 with t′ ≈ t, q ≥ n + 1 and

ε ≤ (ρ�)2

2λ + εTCRHF + (n+ 2)(ρ)n+1
(

�
n+1

) · (εnMDDH + εPRF).

The proof of theorem 2 is presented in the full version of this paper [16]. We
lose a factor (n+2)(ρ)n+1

(

�
n+1

)

here which is exponential in group size n. Hence,
in order to make the overall advantage of adversary to be negligible, one may
need to use a larger security parameter or to limit the maximum group members.
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