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Abstract. We propose a non-interactive product argument, that is more
efficient than the one by Groth and Lipmaa, and a novel shift argument.
We then use them to design several novel non-interactive zero-knowledge
(NIZK) arguments. We obtain the first range proof with constant com-
munication and subquadratic prover’s computation. We construct NIZK
arguments for NP-complete languages, SET-PARTITION, SUBSET-SUM
and DECISION-KNAPSACK, with constant communication, subquadratic
prover’s computation and linear verifier’'s computation.
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1 Introduction

By using a zero knowledge proof [20], a prover can prove the correctness of
a statement without leaking any side information. Efficient non-interactive zero
knowledge (NIZK, [4]) proofs are crucial in the design of cryptographic protocols.
A typical application is e-voting, where the voters must prove the correctness
of encrypted ballots and the servers must prove the correctness of the tallying
process. Since the voters may not be available every time when one verifies the
ballots, one cannot rely on interactive zero knowledge. Moreover, it is important
to have succinct (e.g., logarithmic in input size) NIZK proofs with efficient ver-
ification. For example, in e-voting, correctness proofs are collected and stored,
and then verified by many independent observers.

It is well-known that NIZK proofs are impossible in the standard model with-
out any trust assumptions. One usually constructs NIZK proofs in the common
reference string (CRS, [4]) model, where all parties have access to a CRS gener-
ated by a trusted third party. (We do not consider the random oracle model, since
random oracles cannot always be instantiated [9/19].) Moreover, one can only
construct succinct computationally sound proofs, also known as arguments [7].

Only a few generic techniques of constructing succinct NIZK arguments for
non-trivial languages are known, unless P = NP. In [21], Groth constructed
non-interactive witness-indistinguishable (and weakly sound, see [2I]) product
and permutation arguments. He used them, together with some other argu-
ments, to construct the first succinct NIZK argument for an NP-complete lan-
guage, CIRCUIT-SAT. The latter argument is modular, i.e., it is in a black-box
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way based on a small number of basic arguments. Let n = |C| be the circuit
size. Groth’s product and permutation arguments have CRS length and prover’s
computation ©(n?), while the communication and verifier’s computation are
constant. (The communication is given in group elements, and the computation
is in group operations.) His CIRCUIT-SAT argument has the same complexity
parameters, except that the verifier’s computation is ©(n), see Table [l (The
verifier’s computation in Lipmaa’s argument in Table [I] differs from what was
claimed in [27]. The slightly incorrect claim from [27] was also replicated in [I1].
See Remark [I] on page [T08])

Lipmaa [27] improved Groth’s basic arguments. Let 73(N) = N'=°(1) be the
size of the largest known progression-free subset [14] of [N] = {1,...,N}. (See
Sect. ) Lipmaa’s basic arguments have CRS length O(r3 ' (n)) = n'*°(M) and
slightly better prover’s computation. This results straightforwardly in a more
efficient modular CIRCUIT-SAT argument. Another important property of Lip-
maa’s arguments is the flexibility in choosing the progression-free set. For small
values of N the value r5(NN) is much smaller than predicted by Elkin, [I3J15].
For practically all interesting values of n, one should choose the Erdés-Turan
progression-free set [I5], which results in the CRS length ©(n!°%23), with a very
small constant. Given any progress in the theory of progression-free sets, Lip-
maa’s arguments can become even more efficient. Thus, Groth’s and Lipmaa’s
basic arguments offer essentially optimal communication and verifier’s compu-
tation, but they are quite inefficient in other parameters. We estimate that due
to quadratic prover’s computation, they can only handle circuits of size < 219.

The basic arguments of [2T27] can be used to construct other modular argu-
ments. E.g., a modular range argument was constructed in [I1]. As shown in [30],
following the same framework, one can construct other basic arguments — for
example, 1-sparsity in [30] — and use them to construct efficient modular argu-
ments (shuffle in [30]). It is an important open problem to increase the library of
basic arguments even further, and to investigate for which (complex) languages
one can construct efficient arguments by using the basic arguments in a modular
manner. Moreover, the basic arguments of Groth and Lipmaa are computation-
ally intensive for the prover. It is desirable that the new basic arguments (that
at the same time have meaningful applications) were more efficient.

We construct a more efficient variant of Lipmaa’s product argument, and we
propose a new efficient shift-by-£¢ argument. We then demonstrate the power of
the modular approach, by using the product argument and the shift argument
— together with some other, even simpler, arguments — to make the modular
range argument of [I1] more efficient, and then to construct efficient modu-
lar arguments for SET-PARTITION, SUBSET-SUM and DECISION-KNAPSACK (all
NP-complete languages). All new arguments have constant communication, and
significantly improved prover’s computation (©(r;*(n)logn) versus O(n?) in
previous work). By using the same basic arguments, one can clearly construct
modular NIZK arguments for other languages.

More precisely, we first modify the commitment scheme from [27]. In that
commitment scheme (and thus also in all related NIZK arguments), one uses
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a progression-free set A of odd positive integers. When the new commitment
scheme is used, A can be an arbitrary progression-free set. This is important
conceptually, making it clear that one requires progression-freeness of A (and
nothing else) in similar arguments.

We then construct a more efficient product argument by applying two un-
related algorithmic techniques to the product argument of [27]. While not
new, these techniques help us to significantly speed up the product argument,
and thus also other arguments that we build on top of it. First, we use Fast
Fourier Transform (FFT, [12]) based polynomial multiplication [I7] to reduce
the prover’s computation from ©(n?) to plto() Zp-multiplications. In addi-
tion, one has to evaluate two ©(n)-wide and two G(r5 ' (n))-wide bilinear-group
multi-exponentiations. Due to this, the new product argument has prover’s com-
putation and CRS length n't°(1), We note that FFT-based techniques are not
applicable to optimize the arguments of Groth [21], since there the largest ele-
ment of A is O(n?).

Second, we use Pippenger’s [31] algorithm to speed up multi-exponentiations.
More precisely, the prover must perform O(ry (n)) bilinear-group multipli-
cations to evaluate two O(rz'(n))-wide bilinear-group multi-exponentiations
needed in Lipmaa’s product argument. This is smaller than the number of Z,-
multiplications but since bilinear-group multiplications are more expensive, we
will count them separately.

We were unable to apply FFT to the permutation argument from [27]; this
is since Lipmaa’s product argument has an FFT-friendly construction while the
permutation argument has a more complex structure. (Thus, the idea of using
FFT is not as straightforward as it may seem initially.) Instead, we propose
shift-by-£¢ and rotation-by-¢ arguments that have constant communication and
verifier’'s computation, and linear prover’s computation and CRS length. None
of these complexities depends on . Thus, the new shift and rotation arguments
are (in some parameters) ©(n) times more efficient than Groth’s permutation
argument. As a drawback, we prove their security only by reduction to the ®-
PSDL assumption [II] (see Sect. Bl), which is a generalization of the A-PSDL
assumption from [27]. To show that the #-PSDL assumption is reasonable, we
prove that the ¢-PSDL assumption is secure in the generic group model.

We show that based on the product and shift arguments, one can build effi-
cient modular arguments for several important languages. All our applications
use an intermediate scan argument that verifies that one vector is the scan [3] (or
sum-of-all-prefixes) of another vector. While the scan argument can be straight-
forwardly constructed from the shift argument, it serves as a very useful inter-
mediate building block.

In a range argument (or a range proof, see [6I2926)810]), the prover aims to
convince the verifier that the committed value belongs to an integer range [L, H].
Range arguments are needed in many cryptographic applications, typically in
cases where for the security of the master protocol (e.g., e-voting or e-auctions)
it is necessary to show that the encrypted or committed values come from a
correct range. Construction of non-interactive range arguments has only taken off
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Table 1. Comparison of modular NIZK arguments for NP-complete languages with
(worst-case) sublinear argument size. Here, n is the size of circuit, N = r3*(n), and
N* = rgl(\/n), and m is the balancing parameter. Moreover, g corresponds to 1 group
element and a/m/ms/e/p correspond to 1 addition/Z,-multiplication/bilinear-group
multiplication/exponentiation/pairing.

m |CRS| |Argument)| Prover comp. Verifier comp.
CIRCUIT-SAT arguments from [21]

1 o(n?)g O(1)g O(n?)e O(n)m, + O(1)p
n'/? emi)g el Om* e O(mmy, +O(ni)p
CIRCUIT-SAT arguments from [27]

1 O(N)g O(1)g O(n?)a+ O(N)e O(n)e + 62p
vn O(N*)g O(yv/n)g O(n3?)a + O(y/n - N*)e O(n)e + O(v/n)p
SET-PARTITION, SUBSET-SUM and DECISION-KNAPSACK arguments from the current paper
1 ©(N)g O(1)g O(Nlogn)m + O(N)m,, O(n)m, + O(1)p

vn O(N*)g O(v/n)g O(v/n- N*logn)m + O(y/n - N*)m, O(n)my + O(y/n)p

during the last few years [32IIT]. In [IT], Chaabouni, Lipmaa and Zhang used the
product and permutation arguments of [27] to construct the first known constant-
communication (interactive or non-interactive) range argument over prime-order
groups. They achieved this by combining the basic arguments of [2127] with
several different (and unrelated) techniques that were developed specifically for
range arguments in [29/10].

We use the new basic arguments to optimize the range argument from [I1],
reducing the prover’s computation from ©(h?) to O(r5 *(h)-logr; * (h)) multipli-
cations in Z,, and from ©(r3*(h)) bilinear-group exponentiations to O (r3 ' (h))
bilinear-group multiplications. Here, h = logy(H — L). The new argument
is the first range argument at all (i.e., not only in prime-order groups) that
has constant-length arguments and subquadratic-in-h prover’s computation. See
Sect. 6l We also note that [11] replicated the small mistake of [27] (see Remark[I])
and thus the computational complexity of the argument of [II] is larger than
claimed in [II]. We propose another modification of the range argument of [I1]
to make it even more efficient. We also discuss balanced versions of the new
range argument with better prover’s computation but larger communication.

We then proceed to demonstrate the power of the “shift-and-multiply” modu-
lar approach. We also construct an efficient NIZK argument for the NP-complete
language SET-PARTITION (the prover knows a partition of the given set of inte-
gers to two sets that have the same sum), where the communication and com-
putation are dominated by two product arguments and one shift argument. The
new argument has parameters outlined in Table [[l In this case, n denotes the
cardinality of the public set. We also construct an NIZK argument for the NP-
complete language SUBSET-SUM (the prover knows a non-zero subset of the given
set of integers that sums to 0), with parameters outlined in Table[Il In this case,
n denotes the size of the input domain, that is, the public set S is known to
belong to [n]. As the final example, we show that one can combine SUBSET-
SuM and range arguments to construct an argument for DECISION-KNAPSACK,
another NP-complete language.
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When using the balancing techniques of [21127] (briefly, instead of applying the
basic arguments to length n-vectors, apply them in parallel to m length-(n/m)
vectors), if m = y/n, we obtain balanced NIZK arguments with the parameters,
given in the last row of Table[Il (This means that by using the techniques of [21],
one can construct a perfect zap with the same complexity.)

Gennaro et al [16] recently proposed an efficient CIRCUIT-SAT argument
based either on quadratic span programs or quadratic arithmetic programs.
Their argument has prover’s computation ©(n log® n), which is larger than
O(n'°e231ogn) for all practical values of n. Subsequently, Lipmaa [28] im-
proved the prover’s computation to ©(nlog®n). See also [2/I]. Since these ar-
guments explicitly rely on the efficient arithmetic-circuit representation of the
underlying language, it is unclear if they can be used to construct arguments
with subquadratic prover’s computation for other NP-complete languages. (Us-
ing polynomial-time reductions between NP-complete languages is usually not
an option since we are interested in subquadratic complexity.) Since we are
considering different NP-complete languages, direct efficiency comparison be-
tween [16/28] and the current work is not possible. Moreover, our approach seems
to be more flexible, enabling one to construct direct NIZK arguments without a
reduction to CIRCUIT-SAT.

2 Preliminaries

Let [L,H] = {L,L+1,...,H} and [H] = [1, H]. By a, we denote the vector
a = (ay,...,a,). Since for groups G and H, their direct product G x H is also a
group, we use freely notation like (g, h)® = (g%, h?). If y = h*, then log;, y := z.
Let x be the security parameter. We abbreviate probabilistic polynomial-time
as PPT, non-uniform PPT by NUPPT. Let poly(x)/negl(x) be an arbitrary
polynomial /negligible function.

If Ay, and Ay are subsets of some additive group (Z or Z, in this paper),
then A; + A2 = {A1 + X2 : A\ € A3 A X2 € Ao} is their sum set and A; —
Ay ={ A — A2t A1 € A1 A Xy € Ao} is their difference set. If A is a set, then
EA={M+ -+ X : \; € A} is an iterated sumset, k- A = {kXA: A € A} is a
dilation of A, and 2”A ={ A+ X2 M €ANN EANN £ X} C A+ Aisa
restricted sumset. See [35].

A set A = {A1,..., .} is progression-free (or non-averaging, [I5I35]), if no
three elements of A are in arithmetic progression, that is, A\; + A\; = 2\, only if
i =7 ==k. That is, 27AN2- A = Q. Let r3(N) be the cardinality of the largest
progression-free set A C [N]. Recently, Elkin [I4] proved that

r3(N) = Q((N -log"/* N)/22V/2 1082 N

Thus, for any n > 0, there exists N = 0(7122\/2 1082m) "such that [N] contains an
n-element progression-free subset. However, for say N < 225, the Erdés-Turan
progression-free subset [I5], of size &~ N8 2 is larger. For N < 123, the optimal
values of r3(N) were recently computed in [I3]. For any N, the currently best
upper bound was proven by Sanders [34].
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Polynomial factorization in Z,[X] can be done in polynomial time [25123].
Let PolyFact be an efficient polynomial factorization algorithm that on input a
degree-d polynomial f outputs all d + 1 roots of f.

Let y1,...,yn be monomials over the indeterminates 1, ..., xn. For every
y=(y1,.-.,ym), let L(y) be the minimum number of multiplications sufficient to
compute y1,...,yn from z1,...,zy and the identity 1. Let L(M, N, B) denote
the maximum of L(y) over all y for which the exponent of any indeterminate in
any monomial is at most B. In [31], Pippenger proved that

Fact 1. Assume that h = MN -log(B + 1) — oo. Then L(M,N,B) =
min{M, N}log B + h/logh - (1 + O((loglogh/logh)*/?)) + O(max{M, N}).

A bilinear group generator G,, outputs a description of a bilinear
group [33124l5] gk := (p,G1, G2, Gr, é) < Gpp(1¥), s.t. p is a k-bit prime, Gy,
G2 and Gr are multiplicative cyclic groups of order p (with identity elements
denoted by 1), é : G1 X Gy — Gr is a bilinear pairing such that Va,b € Z,
g1 € Gy and g2 € Go, é(g%,95) = é(g1,92)?. If g. generates G, for z € {1,2},
then é(g1, g2) generates Gp. Also, it is efficient to decide membership in G, Go
and Gy, group operations and the pairing are efficiently computable, generators
are efficiently sampleable, and the descriptions of the groups and group elements
each are O(k) bits long. An optimal Ate pairing [22] over a subclass of Barreto-
Naehrig curves can be implemented efficiently. Then, at security level of 128 bits,
an element of G1/G2/Gr can be represented in respectively 256/512/3072 bits.

A trapdoor commitment scheme [7] I" consists of five PPT algorithms: a
randomized common reference string (CRS) generation algorithm Geom, a ran-
domized commitment algorithm Com, a randomized trapdoor CRS generation
algorithm Gcom;y, a randomized trapdoor commitment algorithm Comyg, and a
trapdoor opening algorithm Open,,;. Here, (1) the CRS generation algorithm
Geom (1) produces a CRS ck, (2) the commitment algorithm Com(ck;a;r),
with a new randomizer r, outputs a commitment value A. A commitment
Com(ck; a;r) is opened by revealing (a,r), (3) the trapdoor CRS generation
algorithm Gcomyy(17) outputs a CRS ckyg, which has the same distribution
as Geom(1%), and a trapdoor td, (4) the randomized trapdoor commitment al-
gorithm Comyg(ckeq;7) takes ckyg and a randomizer r as inputs, and outputs
Com(cksq; 0;7), and (5) the trapdoor opening algorithm Open,;(ck:q,td; a;r)
outputs an 744, such that Com(ckq; 0;7) = Com(ckid; @;riq)-

I is computationally binding, if no NUPPT adversary can open a commitment
to two different values. That is, for every NUPPT A,

ck gcom(ln)a (al,rl, a237n2) <~ A(Ck) :

(a1,71) # (az,7r2) A Com(ck; ay;r1) = Com(ck; az;rs)

is negligible in k. I" is perfectly hiding, if the commitments of any two messages
have the same distribution. That is, for any ck € Geom(1%) and any a1, ag, the
distributions Com(ck; a1;-) and Com(ck; az;-) are equal.

The new commitment scheme allows committing to vectors of predetermined
length n. Thus, one must input n (or a reasonable upper bound on n) as an
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additional parameter for the (trapdoor) CRS generation algorithms. We assume
that the value of n is implicitly obvious while committing and trapdoor opening.

Let R = {(C,w)} be an efficiently computable binary relation with |w| =
poly(|C]). Here, C'is a statement, and w is a witness. Let £ = {C : 3w, (C,w) €
R} be an NP-language. Let n = |C| be the input length. For fixed n, we have
a relation R,, and a language £,,. A non-interactive argument for R consists of
three PPT algorithms: a common reference string (CRS) generator Ges, a prover
P, and a verifier V. For crs < Ges(1%,n), P(crs; C,w) produces an argument T,
and V(crs; C, ) outputs either 1 (accept) or 0 (reject).

IT is perfectly complete, if for all n = poly(k),

Prlcrs <= Gos(17,n), (C,w) <~ Ry, = V(ers; C, Plers; Cow)) = 1] =1 .
IT is computationally sound, if for all n = poly(x) and NUPPT A,
Pricrs < Gers(1%, 1), (Cy ) < Alcrs) : C & L AV(crs; C, ) = 1] = negl(k) .

IT is perfectly witness-indistinguishable, if for all n = poly(k), if crs €
Gers(1%,n) and ((C,wy), (C,w1)) € R2, then the distributions P(crs; C,wg) and
Plers; C,wq) are equal. IT is perfectly zero-knowledge, if there exists a PPT
simulator § = (&81,82), such that for all stateful NUPPT adversaries A and
n = poly(k) (with td, being the simulation trapdoor),

crs < Gos(1%,m), (crs;tdy) <= S1(1%,n),
(C,w) + A(ers), b (C,w) < A(crs),

7+ Plers; Cyw) : 7+ Sa(crs; Ctdy) :
(Ciw) e Ry NA(T) =1 (Cow) e Ry NA(T) =1

3 New Commitment Scheme

Let A= (A1,..., ) € Z™ and v € Z. Next, we define the (A4, v) trapdoor com-
mitment scheme in group G, z € {1,2}. See Prot.[Il Intuitively, a = (a1,...,a,)

. . ro?+3 a; oM . .
is committed to as g5° 2 a0 , where 7 is the randomness, g, is a generator of

G., and o is the secret key. Groth [2I] proposed a variant of this commitment
scheme with A = [n] and v = 0, while Lipmaa [27] generalized A to any set A
with 0 < A; < Aj41 and A\, = poly(k) (while still letting v = 0).

We use the following security assumptions from [I1]. Let p be as output by
Gbp- Let & C Z,[X], with d := max,co deg @, be a set of linearly independent
polynomials, such that |®|, all coefficients of all ¢ € @, and d are polynomial in
k. Let 1 be the polynomial with 1(z) =1 for all z € Z,,.

Definition 1. Gy, is ®-PDL secure in G, if for any NUPPT A,

gk = (p,Gl,GQ,GT,é) < pr(l’*),gz < Gz \ {1},0’ < Zp :

i = negl(k) .
Algk; (927 ) peqiyue) = 0
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Gop is P-PSDL secure, if for any NUPPT A,

gk := (p,G1,G2,Gr,€) < Gpp(17), g1 < G1 \ {1},
Pr o(0) (o) = negl(k) .
92 < Go \{1},0 < Zp : Algk; (97 "2 95 ' )pe{1}ue) =0
A much stronger version of the P(S)DL assumption was recently used in [2].

Theorem 1. Let & and d be as in above. ®-PSDL holds in the generic group
model. Any successful generic adversary for ®-PSDL requires time Q(\/p/d)

(See App. [Al for a proof.) As shown in [I8], sublinear NIZK proofs are only
possible under non-standard (e.g., knowledge) assumptions. We use the following
knowledge assumption from [I1]. For algorithms A and X 4, we write (y;yx)
(A||X 4)(o) if A on input o outputs y, and X 4 on the same input (including the
random tape of A) outputs yx.

Definition 2. Let z € {1,2}. Gy, is ¢-PKE secure in G, if for any NUPPT A
there exists an NUPPT extractor X 4, s.t. the following probability is negligible:

gk = (paGla GQaGTa é) — gbp(lﬁ)agz — GZ \ {1}> (O[,CT) A\ ZZ,
b | €1 (8 (9292077 gea), (0,57 (as)pes) — (AllXa)(ers)

e=c"Ne# gl [] geeo
peP

One can generalize the proof from [2I] to show that #-PKE holds in the generic
group model. Let z = 1. Consider a CRS ck that in particular specifies gs, o €
Go. A commitment (A, A) € G? is valid, if é(A, §2) = é(A, g2). The case z = 2 is
dual. The following theorem generalizes the corresponding results from [21127].

Theorem 2. Let z € {1,2}. Let A = (A1,...,An) with Ay < N1 and
Ai = poly(k). Let v > A\, be linear in Ay, — A\1. Let I be the (A,v) knowledge
commitment scheme in G, of Prot. [ Let

Or = {X "} U{XYren .
Then

System parameters: Gy, n = poly(k), A = {A1,..., A} with A\; < Aig1, A =
poly(k), and v > max; A;

Gecomyq(17,n): Set gk := (p,G1,G2,Gr, €) + Gup(17), g + G, \ {1}, (0,4) « Zf,;
For i € [n] do: (gz,x,592,0;) < (gz,gf)”%; Set (hz,fzz) — (gz,gf)"u; Let ck +
(gk; (927/\1‘927/\1‘)1'6[71]7 hzv hz); Return (Ck;td — U);

Geom(1%,m): (ck;td) < Geom(17); return ck;

Com(ck;a;-), @ = (a1,...,an) € Zl: 1 4 Zp; veturn (b, he) - T17 (92055 G200 )%

Comyg(ckeg;): T < Zp; return (hs, iLz)T;

Open,,(ckea, td; @, 7): return reg — 7 — > 10 | a;oc™i Y

Protocol 1: The (A, v) trapdoor commitment scheme in G, for z € {1,2}
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(a) T is perfectly hiding, and computationally binding under the ®p-PDL as-
sumption in G,. The reduction overhead is dominated by the time to factor
a degree-(v — A1) polynomial in Zy[X].

(b) If r-PKE holds in G, then for any NUPPT A that outputs a valid com-
mitment C, there exists an NUPPT extractor X 4 that, given the input of A
together with A’s random coins, extracts the contents of C.

Proof. PERFECT HIDING: follows since the output of Com is a random element
of G;. COMPUTATIONAL BINDING: Assume Acom is an adversary that can break
the binding property with non-negligible probability. We construct the following
adversary Apq, see Prot. [Il against the @p-PDL assumption in G that works
with the same probability. Here, C is the challenger of the PDL game.

C sets gk + Gup(17), g- + G, \ {1}, and 0 + Z;;

4
C sends (gk; (97 )ee{vyua) to Apar;
Apar sets &+ Zy;

Apar sets ck ¢ (gk; (92, 92")7 Veen, (92,957)7");
1 Apa obtains (a,7q, b, 1) < Acom (ck);
ifagZyVbEZyVre €L, N1y € ZpV (a,ra) = (b)) VCom(ck; a,ra) #
Com(ck; b, ) then A,q aborts else
2 Apar sets 0(X) + (ra — Tb)XU7A1 + Z?zl(ai — bi)XAF)‘l.
Apar sets (t1,...,tuv—x,+1) ¢ PolyFact(d);

v

_ A M
3 Ay finds by an exhaustive search a root oo € {t;}7-"!, st g7+ = g2° ;
Apai returns o <— oo to the challenger;
end

Algorithm 1. Adversary in Thm.

Assume that on step [Il Acom is successful with some probability .. Thus,
with probability €., (a,r,) # (b, ) and

v g v g

TqO a0t __ _Tpo bio™t

N | FEa VA | WA
i€[n] i€[n]

But then
g(m—rb)avﬁ'zllﬁ(ai—bi)aki _
M =

and thus N
(ra —mo)0” + Z(ai —b)o* =0 (mod p) ,
i=1

or equivalently,

(1q —1rp)o? ™M + Z(ai —b)oM ™M =0 (mod p) .
i=1
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Since v > Ay, 6(X), as defined on step[2is a degree-(v— A1) non-zero polynomial.
Thus, the adversary has generated a non-trivial degree-(v — A1) polynomial
f(X) such that f(o) =0 (mod p). Hence, A,q can use polynomial factorization
to find all roots of §, and one of those roots must be equal to o. On step Bl
Apaqr finds the correct root by an exhaustive search among all roots returned in
the previous step. Thus, clearly A,g returns the correct value of sk (and thus
violates the @p-PDL assumption) with probability e.. Finally, the time of A,q
is clearly dominated by the execution time of Acom and the time to factor 4.

EXTRACTABILITY: By the & p-PKE assumption in group G, for every committer
A there exists an extractor X 4 that can open the commitment in group G, given
access to A’s inputs and random tape. Since I" is computationally binding, then
the extracted opening has to be the same that A used. O

Sometimes, we use the same commitment scheme in both G and G». In such
cases, we will emphasize the underlying group by having a different CRS, but
we will not change the name of the commitment scheme.

Let a = ||alloc = max;a;, and n > 2. When using Pippenger’s algorithm,
the computation of Com(ck;a;r) is dominated by L(2,n,«) = 2log,a + (2 +
o(1)) - nlogy a/logy(nlog, o) + O(n) G,-multiplications. In our applications,
n > logya (e.g., @« = 2, @« = n, or even o = p given that n is reasonably
large), and thus we get a simpler bound of (2 4+ o(1))logy a - n/logyn + O(n)
multiplications. This can be compared to 3nlog, a multiplications on average
when using the square-and-multiply exponentiation algorithm.

4 Improved Hadamard Product Argument

Next, we propose a version of the product argument of [27] with respect to the
(A,v) commitment scheme of Sect. Bl As we will see (both in this section and
in Sect. (), the value of v depends on the construction of the argument. E.g.,
while the commitment scheme is binding for v > \,,, for the product argument
to be (WeaklyEI) sound we need v > 2\, — A1. If one uses several such arguments
together (e.g., to construct a range argument or a SUBSET-SUM argument), one
has to choose a value of v that is secure for all basic arguments. We also show
that one can use FFT and Pippenger’s multi-exponentiation algorithm to make
the product argument more efficient.

Assume that I' is a trapdoor commitment scheme that commits to a =
(a1y...,ap) € Zy for n > 1. In an Hadamard product argument, the prover aims
to convince the verifier that given commitments A, B and C, he can open them
as A = Com(ck; a;r,), B = Com(ck; b;m), and C' = Com(ck; ¢;r.), s.t. ¢; = ab;
for ¢ € [n]. A product argument has n constraints ¢; = a;b; for @ € [n].

Lipmaa [27] constructed a product argument for the (A4,0) commitment
scheme with communication of 5 group elements, verifier’s computation ©(n),
prover’s computation of @(n?) multiplications in Z,, and the CRS of O(r3 *(n))
group elements. Prot. [2] presents a more efficient variant of this argument for

! For an explanation and motivation of weak soundness, we refer the reader to 2127
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the (A,v) commitment scheme I'. Similarly to [27], we use I' in both G; (to
commit to a, b, and ¢) and Gz (to commit to b and 1). Let ck be the CRS
in group Gy, and ¢k’ be the dual CRS in group Go (i.e., ck is defined as
ck, but with g1 replaced by g2). Thus, e.g., (B,B) = Com(cT«; b; 7). Then,
log,, A =r,0"+3 " ajo™, log, B =m0+ " bio™, andlog, C = cio¥+
> reoXi. The prover also computes an element Ba, s.t. é(g1, B2) = é(B, g2).
Thus, for (D,D) = Com(ck ;1;0) (in G2), logy(, 4. (€(A, B2)/é(C,D)) =
(raoV +> 0 a;o*) (reoV + > 1y bio*) — (reo¥ + > iy c;io*) (31, o) can be
written — after substituting o with a formal variable X — as a sum of two formal
polynomials F,.,(X) and Fy(X), s.t. Feon(X) (the constraint polynomial) has
one monomial per constraint (a;b; = ¢;) and is 0 if the prover is honest, while
F.(X) has many more monomials. More precisely, F, has O(r;3"'(n)) mono-
mials, and the CRS has length O(r3*(n)). The honest prover has to compute

(m,7) (gf“(”),g?(”)). The PSDL and the PKE assumptions guarantee that
he cannot do it if at least one of the n constraints is not satisfied.

In [27], for soundness, one had to assume that the used set A is a progression-
free set of odd positive integers. By using such A, [27] proved that the polyno-
mials F,,(X) and F,(X) were spanned by two non-intersecting sets of powers
of X. From this, [27] then deduced (weak) soundness.

We will show that by using the (A4, v) commitment scheme (for a well-chosen
value of v), one can without any loss in efficiency assume that A is just a
progression-free set. This makes the product argument slightly more efficient.
More importantly, it makes it clear that the property that A has to satisfy is
really progression-freeness, and not say having only odd integers as its members.

For a set A and an integer v, define

A={20}U(w+A) U274 . (1)
(In [27], this definition was only given for v = 0. Then, A = {0} U AU2"A.)

Lemma 1. Assume that A = (A1,...,\n) with Aiy1 > A, and v > 2X, — A1, A
is a progression-free set if and only if 2- AN A = (.

Proof. Assume A is progression-free. Then 27AN2- A = . Since v > 2\, — A1,
({2v}U(v+A)N2-A=0. (In [27], v = 0, and {0} UA)N2-A = ) was
guaranteed by assuming that every integer in A is odd and non-zero.) Assume
now that 2- ANA = 0. Thus, 2- AN2~A = 0, and A is a progression-free set. O

Lemma 2. For any n > 0, there exists a progression-free set A ={A1,..., \n},
with i < Aiy1 and A, = poly(k), and an integer v > 2\, — A1, v linear in
A — A1, such that |A| = O(r3 ' (n)).

Proof. Let A be the progression-free set from [14], seen as a subset of [\, A,]
(with A1 possibly being negative), with A, — \; & r;l(n). Since v > 2\, — A1 is
linear in A, — Ay, A C [2X1,20] and |A| = O(r3 1 (n)). O



Efficient Modular NIZK Arguments from Shift and Product 103

CRS generation Gus(1%,n):
Set gk := (p,G1, G2, Gr, €) < Gup(17), (91,92) = (G2 \ {1}, G2\ {1});
Set 0,6  Zp, §1 + g1
For each ¢ € {v} U A do: (g1,¢, §1,0) (gl,gl)"e;
For each ¢ € {v} U A do: (92,2, G2,0) (92,9(23‘)[’[;
Set D+ [T, g2, ck (gk; (91,6, 91,6) e fvrua)i
Return crs < (ck, g1, g1, (92.¢, G2,0) 4 4> D);
Argument generation Py (crs; (A,A, B, B, Bs,C, é), (a,ra,b,1p,€,7¢)):
Define J1(€) := {(4,7) : 5,5 € [n] AT # jAXi + Xj = £}
For each £ € 27 A do: pe = 32, jyeq, 1y (@ibs — ¢i);
(7, 7)< (92,205 G2,20) " TT 1 (92004205 G204 2 ) @O T4 T g 4 (92,05 G2,0)1
Return 7% « (7, ) EAGg; X R
Verification Vy (crs; (A, A, B, B, B2, C,C), 7m):
If é(A, B2)/é(C, D) = é(g1,m) and é(g1,7) = é(g1, ) then accept, else reject.

Protocol 2: New product argument [(4, A)] o [(B, B, B2)] = [(C, )]

One can add any constant to all members of A and v, so that the previous results
still hold. In particular, according to the previous two lemmas, the best value
(in the sense of efficiency) of A,, might be 0.

We state and prove the security of the new product argument when using
the (A4, v) knowledge commitment scheme by closely following the claim and the
proof from [27]. The (knowledge) commitments are (4, A), (B, B) and (C,C).
For efficiency (and backwards compatibility) reasons, following [27], we include
another element Bs to the statement of the Hadamard product language.

Since for any @ and b, (C,C) is a commitment of (a1b1,...,anby) for some
value of r., Prot. Pl cannot be computationally sound (even under a knowledge
assumption). Instead, as in [21I27], we prove a weaker version of soundness that
is sufficient to achieve soundness of the more complex arguments. The last state-
ment of Thm. [}] basically says that no efficient adversary can output an input to
the product argument together with an accepting argument and openings to all
commitments and all other pairs of type (y, §) that are present in the argument,
s.t. a;b; # ¢; for some ¢ € [n]. See App:prodsec for the proof.

Theorem 3. Let n = poly(k). Let A = (A1,...,\n) be a progression-free set
with Aiy1 > Ai, A = poly(k), v > 2X\, — A1, and v = poly(k). Let I' be the
(A,v) commitment scheme in Gy. Let &5 = {XV} U {XK}ZEA.

1. Prot.[@is perfectly complete and perfectly witness-indistinguishable.

2. If Gpp is @« -PSDL secure, then an NUPPT adversary against Prot. [2 has
negligible chance, given crs < Ggs(17,n) as an input, of outputting inp™ +
(A, A,B, B, B, C, C’) and an accepting argument = < (m, ) together with
a witness w* < (a,7a,b,76,¢,7¢, (f7)4e i), such that
(a) a,b,c € Zy, r4,76,7c € Lp, and f; € Zy for £ € A,

(b) (A, A) = Com(ck; a;ra), (B, B) = Com(ck; b;ry), Bz = gi, - T}, g5,
and (C, C’) = Com(cT&; C;Te),
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(c) log,, m = log,, 7 = Zee/i f,fag, where g2 = g§, and

(d) for some i € [n], a;b; # c;.

The reduction overhead is dominated by the time to factor a degree-(2v—2\1)
polynomial in Zy[X].

Next, we will show that the product argument of this section (and also the
product argument of [27]) is computationally much more efficient than it was
claimed in [27]. In [27], the prover was said to require computing ©(n?) multi-
plications in Z, and ©(r3*(n)) exponentiations in Go. We optimize the prover’s
computation so that it will require a significantly smaller number of multiplica-
tions and no exponentiations at all.

Theorem 4. The communication (argument size) of Prot.[@is 2 elements from
Gso. The prover’s computation is dominated by O(r3*(n)-logry*(n)) multiplica-
tions in Z, and two O(r3* (n))-wide multi-exponentiations in Go. The verifier’s
computation is dominated by 5 bilinear pairings and 1 bilinear-group multiplica-
tion. The CRS consists of O(r3*(n)) group elements.

Proof. By Lem. B the size of the CRS is O(|A|) = ©(r3 ' (n)). From the CRS,
the verifier only needs to access g1, §1, and D. Since 274 C A, the statement
about the prover’s computation follows from Fast Fourier Transform [I2] based
polynomial multiplication [I7] techniques. To compute all the coefficients of the
polynomial p(X) := 3310, >0 (ab; —¢;) Xt the prover executes Alg. 2l
Here, FFTMult denotes an FFT-based polynomial multiplication algorithm.

For i < 0 to Ay do:aI(—O,bIeO,cI(—O,dIeO;

For 7 < 1 to n do: aii — a;, b;i <~ b, c;i < G4, dL <+ 0;

Denote af(X) := 32" al X* and b(X) := 307 6] X7

Denote cf(X) := Z;‘:"O cIX* and d'(X) := Z?ﬁo di X

Let p(X) < FFTMult(a®(X),b"(X)); Let v(X) + FFTMult(c'(X),d" (X));
For i <= 1 to n do: pax, < pax; — aibi;

Let u(X)  u(X) — v(X);
Algorithm 2. FFT-based prover’s computation of {p}

After using FFTMult to compute the initial version of wp(X) and v(X),
e = Z(i,j)e[n]Q:)\iJr)\j:Zaibj and vy = Z(i’j)e[n];)\ﬁ)\j:eci. Thus, after the
penultimate step of Alg. & p, = Z(z‘,j)ejl(é) a;bj, and after the last step,
e = Z(z’,j)eﬁl(z) a;bj — ¢;, as required by Prot. @1 Since FFT takes time
O(Nlog N), where N = r3*(n) is the input size, we have shown the part about
the prover’s computational complexity. The verifier’s computational complexity
follows from the description of the argument. O

FFT does not help to speed up Groth’s product argument [21], since there
A = O(n?). FFT does also not seem to be useful in the case of the permutation
argument from [27]. Finally, it may be possible to speed up Alg. [ by taking
into account the fact that all af, bf, ¢! and d' have only n non-zero monomials.
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Next, we use efficient multi-exponentiation for additional speed-up. Let
a := max(||a||co, ||bl|ccs ||¢||oc), Where the prover has committed to a and b.
(See Sect. [Al for the concrete values of «.) The number of bilinear-group oper-
ations the prover has to perform (on top of computing the exponents by us-
ing the FFT-based polynomial multiplication) to compute 7 is dominated by
L(2,n,p)+L(2,73 " (n), ©((an)?)). The very conservative value ©((an)?) follows
from [p,| = \Z zg)ejl(e (azb —c)| < Z (i,5)€T1(£) \azb —ci| < Z e:fl(e)(QZ +
a) < (n? —n)(a® + a) = O((an)?).

Due to Fact [ for n = 2(logp), L(2,n,p) = 2logsp + (2 + 0(1)) - nlog,(p +

1)/(logy(2nlogy(p + 1)) + O(n) = (2 + o(1 )) log, p - n/logy n, and, since in
our applications, n > log, O((an)?), L(2,r3'(n),0((an)?)) = 210g2(0m2) +
24+0(1))r7 Y (n) log, O((an (240(1))r. T(n

Elogizi)s 3(,f)llgf;((ffn) )>>> + 00y (n)) = (1og(2 22%5)) + 2logy(an). Thus, the
prover has to compute (2+0(1)) - ( logyp+ os, r*(?En)
group multiplications. We will instantiate « and other values in Sect. [6l

n
logy n

-2log, (an)) bilinear-

5 Shift and Rotation Arguments

In a right shift-by-€ argument (resp., right rotation-by-£ argument), the prover
aims to convince the verifier that for two commitments A and B, he knows
how to open them as A = Com(ck;a;r,) and B = Com(ck; b;ry), such that
a; = biye for i € [n —¢] and ayp—gqy1 = -+ = ap = 0 (resp., ap—et1 = b1,
.. anp =bg). That is, (an,...,a1) =(0,...,0,bn,...,beq1) (resp., (n,...,a1) =

(be,...,b1,bn, ..., bey1)). Left shift and left rotation arguments are defined du-
ally, we omit their descriptions.

Groth [21I] and Lipmaa [27] defined NIZK arguments for arbitrary permutation
o (i.e., ay;) = b; for public ). However, their permutation arguments are quite
complex and computationally intensive. Moreover, many applications do not
require arbitrary permutations. We give examples of the latter in Sect. [6l

We now describe the new right shift-by-¢ argument rsfte ([(A4, A)]) = [(B, B)],
that is much simpler and significantly more computation-efficient than the
generic permutation arguments of Groth and Lipmaa. One can design a very
similar rotation argument, see App. Let log, A = r,o¥ + S a;oc™ and
log,, B = ryo¥ + > bio*i. We replace o with a formal variable X. If the
prover is honest (full derivation of this is given in the proof of Thm. [H), then
F(X) = X logy, A—log,, B = — 250 bXM + Y bi(XM=e¥e - XN ¢
7o XY+€ — 1, XV, Thus, one can verify that A is a right shift-by-¢ of B by checking
that é(A,ggs)/é(B,gg) = é(g1,7), where 7 = gf(g) is defined as in Prot. Bl As
seen from the proof of the following theorem, the actual security proof, espe-
cially for the (weaker version of) soundness, is more complicated. Complications
arise from the use of polynomials of type X? — X7 in the verification equation;
because of this we must rely on a less straightforward variant of the PSDL as-
sumption than before. One has also to be careful in the choice of the set A: if
say An—¢ + & = Ay, then some of the monomials of F'(X) will collapse, and the
security proof will not go through.
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CRS generation Gus(1%,n):
Set gk := (p, Gl,GQ,GT,é) — gbp(lﬁ), g+ Gy \ {1}, g2 + Go \ {1}, 0,0 Lp;
For each z € {1,2} do: g + g5;
For each ¢ € {v} U A do: (g1,¢, §1,¢) (gl,gl)"e;
Set go.¢ ggﬁg v
For each i € {A1,,..., e, v, v+ &} do: (92,4, G2,i) < (92,52)“;
For each i € [1,n — €] do: (ha,i, ha;) (927§2)[,Ai+s,g&+s;
Set ck « (gk; (91,6, G1,0)ee{wrua);
Return crs < (ck, g1, §1, 92, 92,¢, (92,6, G2, )ic (3. revvteys (B2, hoi)icn—g));
Argument generation Prsft(crs (A A,B,B,B),(a,rq,b,1)):

(m, 7= [T (R b)) P4 T (92,000 G2.00) TP (920046, G2iote) ™ (92,0, G2,0) 725
Return 7% « (7, 7) € G3;
Verification Vi (crs; (A, A, B, B, B), #"*%):

If é(A, g2.¢)/é(B, g2) = é(g1,7) and é(g1,7) = é(g1, ) then accept, else reject;
Protocol 3: New right shift-by-¢ argument rsft ([(4, A)]) = [(B, B)]

Theorem 5. Let n = poly(k). Let A = (A1,..., ) CZ, s.t. Nig1 > Ai, i #
Aj+E€ fori# j, and A = poly(k). Let v > A\, +& be an integer, s.t. v = poly(k).
Let T be the (A,v) commitment scheme in Gy.

(1) Prot.[3 is perfectly complete and perfectly witness-indistinguishable.

(2) Let

= (XU, XV U XN U XN - Xyl

rsft

If Gpp is @rsft-PSDL secure, then an NUPPT adversary against Prot. [ has

negligible chance, given crs < Ges(17,n) as an input, of outputting inp™™

(A, A, B, B) and an accepting argument 7% « (m, %) together with a witness
Wt (a, Ta,b, 7, (f¢)¢€q§g ), such that

(a) a,b € Zy, o, € Zyp, and f5 €Zy for ¢ € @rsft,

(b) (A, A) = Com(ck,a,ra), (B,B) = Com(ck,b, ),

(c) log,, ™ =logz, T = Z¢€<15i& f5 - ¢(o), and

(d) (an,an_l,...,al) 79 (0,...,0,bn,...,b5+1).

The reduction time is dominated by the time it takes to factor a degree-(v+1)
polynomial in Zy[X].

(See App. [ for a proof.) In an upper level argument, the verifier must check
that é(A, g2) = é(4, g2), and é(B, §2) = é(B, g2). A simple valid choice of A is
the initial segment of Z¢ U (Z¢ + 28) U (Z¢ + 4€) U

Theorem 6. Let A and v be as defined in Thm. [A Let 8 + ||bl|e, B < D.
Assume n > logy 8. The argument size of Prot.[d is 2 elements from Gy. The
prover’s computation is dominated by O(n) Z,-multiplications and (2 + o(1)) -
log, B-n/logy n+0(n) bilinear-group multiplications. The verifier’s computation
is dominated by 5 bilinear pairings. The CRS consists of ©(n) group elements.
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Proof. The prover computes two multi-exponentiations in L(2,n, 8) = 2log, S+

(14+0(1))  (opani2PED | +0(n) = (2+0(1)) - 125 4 O(n) bilinear-group

multiplications. Other claims are straightforward. O

6 Applications

We will now describe how to use the new product and shift arguments to im-
prove on the range argument of [11], and to construct new SET-PARTITION and
SUBSET-SUM arguments. Then, we combine the SUBSET-SUM and range argu-
ments to construct a DECISION-KNAPSACK argument. In all three cases, the shift
argument is mainly used to construct an intermediate scan argument. Recall that
vector b is a scan [3] of vector a, if b; = >, ; a;. As abundantly demonstrated
in [3], vector scan (also known as all-prefix-sums) is a powerful operator that
can be used to solve many important computational problems. In the context of
zero knowledge, we will only need to be able to verify that one vector is a scan
of the second vector.

In a scan argument, the prover aims to convince the verifier that given two
commitments A and B, he knows how to open them as A = Com(ck; a;r,) and
B = Com(ck; b;1p), s.t. b; = >, ;a;j. A scan argument is just equal to a right
shift-by-1 argument rsft; ([B]) = [A + B], that proves that b; = a;+1 + bit1, for
i <n,and b, =0. Thus, b, =0, by_1 = an, bp_—2 =An_1+bn_1 = an_1+ an,
and in general, b; = > ., a;.

6.1 Improved Range Argument

Since the used commitment scheme is homomorphic, the generic range argument
(prove that the committed value = belongs to the interval [L, H] for L < H) is
equivalent to proving that the committed value y = x — L belongs to the interval
[0, H — L]. In what follows, we will therefore concentrate on this simpler case.
In [II], the authors proposed a range argument that is based on the prod-
uct and permutation arguments from [27]. Interestingly, [II] makes use of the
permutation argument only to show that a vector is a scan of another vector.
More precisely, they first apply a permutation argument, followed by a product
argument (meant to modify a rotation to a right shift-by-1 by clearing out one
of the elements). Hence, we can replace the permutation and product arguments
from [27] with the right shift-by-1 (or scan) and product arguments from the
current paper. Thus, it suffices for A to be an arbitrary progression-free set. The
resulting range argument is also shorter by one product argument. The security
proof does not change significantly. To show that the range argument is compu-
tationally sound, one has to assume that the product argument and the right
shift-by-1 argument are weakly sound (and that the PKE assumption holds).
The use of the new basic arguments will decrease the number of Z,-
multiplications — except when computing the multi-exponentiations — in
the main range argument from O(n?n,), where n, ~ logyu, to O(r3"'(n) -

log r;l(n) -ny) = o(logH - 92v/210g; log, H | loglog, H). By using Pippenger’s
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algorithm [31], the cost of the multi-exponentiation decreases to (2 + o(1)) -
2r3 1(n) logy(un)/ logy 73 (n) bilinear-group multiplications. The communica-
tion decreases by 4 + 2 + 3 = 9 group elements, due to the replacement of the
permutation argument with the right shift-by-1 argument (minus 4), having one
less product argument (minus 2), and also because one needs to commit to one
less element ((Cirot, C,rot, C,,ot) in [I1], minus 3). The verifier also has to perform
7+ 544 = 16 less pairings, due to the replacement of the permutation argument
with the right shift-by-1 argument (minus 7) and one less product argument
(minus 5). Also, it is not necessary to verify the correctness of (Cyrot, Crrots C’rrot)
(minus 4). One can analogously compute the verifier’s computation, see Table 21

Remark 1. In the permutation argument of [27], the verifier also has to com-
pute a certain triple (7%, T*, T5) by using 3 multi-exponentiations. This is not
included in the comparison table (or the claims) in [27], and the same mistake
was replicated in [I1]. Table [l and Table [ correct this mistake, by giving the
correct complexity estimation of the arguments from [27/11]. The range argu-
ment from [II] only uses the permutation argument with one fixed permutation
(rotation), and thus the value (T*,7*,Ty), that corresponds to this concrete
permutation, can be put to the CRS. After this modification, the verifier’s com-
putational complexity actually does not increase compared to what was claimed
n [I1]. Since [I1] itself did not mention this, we consider it to be an additional
small contribution.

Since the non-balanced range argument only uses one permutation argument,
the corrected permutation argument of this paper makes the argument shorter
by 4 group elements, and decreases the verifier’s workload by 7 pairings.

One can consider now several settings. The setting v = 2 minimizes the
communication and the verifier’s computational complexity. The setting u =
9V1og2 H 1ninimizes the total length of the CRS and the argument. The setting

= H minimizes the prover’s computational complexity. See Table [2l Here,
n &~ logu H, n, = |logy(u—1)], h =logy H, N = r;*(h) = 0(h22\/21°g2 ™), and

=7r3'(Vh) = o(vh - 92V/10g h ). The rest of the notation is as in Table[Il

Theorem 7. Let I' be the (A,v) commitment scheme in group Gy. Let A =
(M, ...y An) € Z™ be progression-free, s.t. \ix1 > A\ + 1 and A\; = poly(k). Let

D= Dy U = { XV, XV XMPU{XN ! - XM, U{X e - (2)

Let v > max(2\, — A1, A, +1) be linear in \,, — A1. The modified range argument
is complete and computationally zero knowledge. Also, if Gy, is @-PSDL secure
and the @-PKE assumption holds in Gy and the ®-PKE assumption holds in Go,
then the range argument is computationally sound.

The proof is similar to [II]. Note that A;y1 > A; + 1 guarantees that both
Ai+1 > A and Aj # A + 1 for ¢ # 3.
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Table 2. Comparison of NIZK range arguments

|CRS| |Argument| Prover comp. Verifier comp.
[32] e(1)g ©(h)g O(h) e(h)
32] ©(h/logh)g ©(h/logh)g ©(h/logh) O(h/logh)

Chaabouni, Lipmaa, and Zhang [11]
General Q(T:;l(n))g (510 + 40)g O(n2n,,)m + 9(r;1(7L)n1,)e O(n)e + (9n, + 81)p
uw=2 O(N)g 40g O(h*)m + O(N)e O(h)e + 81p
u=2"" O(N*)g =~ (5v/h + 40)g O(h*/?)m + O(Vh - N*)e O(Vh)e + (9Vh + 81)p
uw=H O(1)g = (5h +40)g O(h)m + O(h)e ©(1)e + (9h + 81)p
The current paper
General @(r;l(n))g (514 + 31)g O(r3 *(n) log 7‘3_1(77,) - onmy)m o+ (9n, + 65)p
9(r;1(n)nv)mb

u =2 O(N)g 31lg O(N -log N)m + O(N)m, 65p
u=2V" O(N*)g =~ (5vh + 31)g O(Vh-N*-log N*)m+O(Vh-N*)m, ~ (9v'h + 65)p
w=H ©(1)g (= 5h+31)g O(h)m + O(h)m, =~ (9h + 65)p

6.2 Arguments for NP-Complete Languages

Finally, we construct efficient modular arguments, that only use product and
shift arguments, for some NP-complete languages. CIRCUIT-SAT seems to re-
quire the use of permutation arguments [21I27], so we will find other problems.

Set-Partition. Let n < p. Given a multiset S = (s1,...,sp), with s; € Z,, and
a commitment B, in the SET-PARTITION argument, the prover has to convince
the verifier that he knows how to open the commitment as B = Com(ck; b; 1),
such that b; € {—1,1}, and >.", b;s; = 0. If we define V = {i : b; = 1}, then
Z?=1 bis; = 0 is equivalent to ) ;.\, si = ZieS\V s;. The prover computes the
SET-PARTITION argument as follows.

Compute a product argument 7 for b; - b; = 1, showing that b; € {—1,1};
Compute a product argument o for ¢; = b; - 83

Compute a scan argument w3 showing that d is the scan of ¢;

Compute a restriction argument 74 showing the first coordinate of ¢ + d is 0;
The SET-PARTITION argument is equal to (B,C, D, 71,...,m4);

Here, C' commits to ¢ = (b181,...,b,8,), S commits to s, and D commits
to d, the scan of e¢. That is, d; = 2j>i ¢;, and in particular, d; = Zj>1 ¢; and
c1+d = Zj>1 ¢j. We omit the security proof of this argument since it is similar
to the proof of the SUBSET-SUM argument.

Subset-Sum. Another example is SUBSET-SUM, where the prover aims to
prove that he knows a non-zero subset of the input set S that sums to 0. In
a SUBSET-SUM argument, the prover aims to convince the verifier that given
S=(s1,---,8n) CZp, n < p, and a commitment B, he knows how to open it as
B = Com(ck; b; 1), s.t. b is non-zero and Boolean, and > ;" b;s; = 0. That is,
b; = 1iff s; belongs to the subset of S that sums to 0. (As always, the committed
elements belong to Z,. Thus, """ ; b;s; = 0 holds modulo p.)

In the new SUBSET-SUM argument, both parties compute a commitment S
to s. The prover commits to a Boolean vector b and to a vector ¢, s.t. ¢; = b;s;.
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He computes a commitment D to the scan d of vector c. Le., d; = Zj>i cj, and
in particular, dy = Zj>1 c;and ¢1 +di = 2321 ¢;j. The resulting SUBSET-SUM
argument can be seen as a slight modification of the SET-PARTITION argument.
The main conceptual difference is that we also need to prove b # 0 (not necessary
in the SET-PARTITION argument).

Compute a product argument m; for b? = b;, showing that b is Boolean;
Compute an argument w2 showing that b # 0;

Compute a product argument 73 showing that ¢; = b; - s; for i € [n];
Compute a scan argument w4 showing that d is the scan of ¢;

Compute a restriction argument 75 showing the first coordinate of ¢ + d is 0;
The SUBSET-SUM argument is equal to (B,C, D, 71,...,75);

Here, 75 is computed by using the restriction argument from [21], which adds
linear number of elements to the CRS, but has a constant complexity otherwise.
The subargument 75 is computed as in Alg. [

Note that the verifier can check that B is correct by checking that é(é ,g2) =
é(B, g2). It is straightforward to prove that the new SUBSET-SUM argument is
complete and perfectly zero-knowledge. It is also computationally sound under
appropriate assumptions. See App. [E] for a proof.

The resulting SUBSET-SUM argument is simpler than the CIRCUIT-SAT ar-
guments of [21I27] that consist of > 7 product and permutation arguments.
Moreover, instead of the product and permutation arguments it only uses prod-
uct and a more efficient right shift-by-1 argument (zero argument is trivial).

b

Assume B :gl’vnglff)\i ; /* we want to show that b# 0 */
Assume that §1,; = g% and §a = g5 for a secret &;

Create B + [ | gll’g\b and a hybrid B* « g", Hgl{7A1,

Show é/B* = (g1,0/91,0)™ commits to 0 by using the zero argument [30];
Verifier checks that é(B, §2) # é(B™, g2);

Algorithm 3. Argument mo

Decision-Knapsack. In the NP-complete DECISION-KNAPSACK problem one
has to decide, given a set S, integers W and B, and a benefit value b; and
weight w; of every item of S, whether there exists a subset 7 C S, such that
Yoierwi <Wand ), b; > B. One can combine a version of the SUBSET-SUM
argument of the current section with the range argument of Sect.[G.Ilto construct
a DECISION-KNAPSACK argument, where the prover convinces the verifier that
he knows such a subset 7. See Alg. [ in App. [El
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A  Proof of Thm. T

Proof. In the generic group model, an adversary A only performs generic group
operations (multiplications in Gi, G2 and G, bilinear pairings, and equality
tests). A generic adversary produces an element of Z,, which depends only on
gk and ((gl,g2)¢(”))¢e{1}u¢. The only time A gets any information is when an
equality (collision) between two previously computed elements of either Gy, Go
or Gr occurs. We prove that finding even a single collision is difficult even if A
can compute an arbitrary group element in unit time.

Assume that A can find a collision y = y* in group G;. Then it must be the

case that
y = H g?me(ﬂ)
Ppee{1}UP
and (o)
yv= [ ™"
Le{o}ua

for some known values of a, and aj. But then also

Z (ag —a})pe(0) =0 (mod p) .

Le{oyuA

Since A does not know the actual representations of the group elements, it will
perform the same group operations independently of . Thus a, and aj are
independent of . By the Schwartz-Zippel lemma modulo p, the probability that

Z (ag —ap)pe(0) =0 (mod p)

Le{oyuA

is equal to d/p for randomly chosen a; and aj. If A works in polynomial time
7 = poly(k), it can generate at most 7 such group elements. The total probability
that there exists a collision between any two generated group elements is thus
upper bounded by (;) -d/p, and thus a successful A requires time Q(\/p/d) to
produce one collision.

A similar bound (;) - d/p holds for collisions in Gs. In the case of Gr, the
pairing enables A to compute up to 7 different values

y = 8(g1, go) =o1i€V? Zone e 43 1i(71)025(0)

)

and thus we get an upper bound (;) -2d/p, and thus a successful A requires time
2(/p/d) to produce one collision. O

B Proof of Thm. [3 (Product Argument Security)

Proof. Let h < é(g1,92) and F(o) < log,(é(4,Bs)/é(C,D)). WITNESS-
INDISTINGUISHABILITY: since the argument 7* = (7, 7) that satisfies the ver-
ification equations is unique, all witnesses result in the same argument, and
therefore the Hadamard product argument is witness-indistinguishable.
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PERFECT COMPLETENESS. Assume that the prover is honest. The second
verification is straightforward. For the first one, note that (after replacing o
with a formal variable X)

F(X) :(TaXU + zn:aiX)\i)(T’bXU —+ zn:le)‘i) _ (TCXU + En:CZX)")(En:X)“)

i=1 im1
— 2v - . L v4A; oS B Xt
=rarp XY + Z(Tabz + rpa; TC)X + Z Z(a,b] CZ)X
i=1 i=1 j=1

Thus, F(X) = Feon(X) + Fr(X), where

n

Fcon(X) = Z(azbz — Ci)XQAi

i=1
and
n n
Fr(X)=rorp X2 + Z (rabi + roa;i — ) XU 437N (aiby — ) XN
i=1 i=1 j=1:5#1

Here, F(X), Feon(X) and F;(X) are formal polynomials of X, and F(X) is
spanned by {X*} ve2.auA- More precisely, Fion(X) is the constraint polynomial
that has one monomial per constraint ¢; = a;b;.

If the prover is honest, then ¢; = a;b; for ¢ € [n], and F(X) = F(X) is
spanned by {Xe}ze/i' Denoting

n n n
TaTt robit+rya; —r. a;bj—c;
LR | [y H H 9o x4,
] i=1j=1:j

n
TaTh rebit+Tpa;—rec
=9 v)'H92,u+,\i : H 957
= Le2"A

where py is as in Prot. @l we have é(g;,7) = é(gl,gf(a)) = pF)
é(A, B2)/é(C, D). Thus, the verification succeeds.

WEAKER VERSION OF SOUNDNESS. Assume that A« is an adversary that can
break the last statement of the theorem. We construct the following adversary
A against the @ -PSDL assumption, see Prot. @l

Here, C is the challenger of the PSDL game. Let us analyse the advantage
of A. First, clearly crs;y has the same distribution as Ges(1%). Thus, Ay gets a
correct input. She aborts with some probability 1—e. Otherwise, with probability
g, inp* = (A,A,B,B,BQ,C, C’) and w* = (@,7a,b,7, ¢, 7¢, (7 )y 4), such that
the conditions ZaH2d)) hold.

The steps from step [l onwards are executed with probability €. Since Ay
succeeds and 2- AN A = 0, at least for one £ € 2- A, f(X) has a non-zero
coefficient agby — cy. A succeeds on step 2 since log,, m = Zfe/i flf“az. All non-

zero coefficients of X* in f*(X) correspond to £ € A. Since A is progression-free,
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C forms crs as in Prot. & C sends crs to A; A obtains (inp™, w*,7*) + Ay (crs);
if the conditions (@d2d) in Thm.[d do not hold then A aborts else
1 A expresses F(X) as a polynomial f(X) Y orciuza fe X
2 A computes a polynomial f*(X) e frxt
Alets 8(X) « (F(X) — f7(X)) - X2,
A sets (t1,. .. s ta(v—nr,)) < PolyFact(d);
3 .,{l finds by an exhaustive search a root oo € (t1,...,t2(y—x,)), S-t. g3’ = g;’é’;
A returns o < oo to the challenger;
end

Algorithm 4. Construction of A in the security reduction of Thm.

v > 2)\, — A1, and all elements of 2 - A are distinct, then by Lem. [ £ & 2 - A.
Thus, all coefficients of f*(X) corresponding to any X*, £ € 2- A, are 0. Thus,

fxX)= > fxt

e Au(2-A)

and
[ =3 fix*
ted
are different polynomials with f(o) = f*(0) = F(c). All coefficients of X*, for

£ < 2\, of both f(X) and f*(X) are equal to 0.
Therefore, §(X) is a non-zero degree-(2v — 2A1) polynomial, such that

o(o) = Z Seot =0 .

Le(AU(2-A)) =27,

A uses polynomial factorization to find all < 2(v—A;) roots of §. One of the roots
must be equal to . On step 3] A finds which root is equal to o by an exhaustive
search among all roots returned in the previous step. Clearly A returns the
correct value of o (and thus violates the @, -PSDL assumption) with probability
e. The execution time of A is clearly dominated by the execution time of Ay
and the time to factor J. O

C Proof of Thm. [{] (Shift Argument Security)

Proof. Denote h + é(g1, g2) and

F(U) = logh(é(A’ 9275)/(5(3792)) :

WITNESS-INDISTINGUISHABILITY: since argument 7' that satisfies the verifica-
tion equations is unique, all witnesses result in the same argument, and therefore
the permutation argument is witness-indistinguishable.
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C forms crs as in Prot. [3}
C sends crs to A;
A obtains (inp"™®, w™*, 1%) « A (crs);

if the conditions M) in the statement of Thm.[d do not hold then A
aborts else

1 A expresses F(X) as a polynomial f(X) = > vean o 9(X);
2 A computes a polynomial f*(X) := Z¢e¢g fo - P(X);
- rsft
Alets 6(X) + f(X) — [ (X);
A uses a polynomial factorization algorithm in Zp[X] to compute all
< (v + 2) roots of §(X);
~ £
3 A finds by an exhaustive search a root oo, such that g{ ‘- a7%

A returns o < oo;
end

Algorithm 5. Construction of A in the security reduction of Thm.

PERFECT COMPLETENESS. The second verification is straightforward. For the
first verification é(A, g2.¢)/é(B, g2) = é(g1, ), consider

F(X):= X¢-log, A—log, B,

where we have replaced o with a formal variable X. Clearly,

n n
F(X) = a; X HE = b XN 4 rg XU XV

i=1 =1
n n—¢§ n
= ) @XMy e XN beA > bhiXM+
i=n—&+1 i=1 i=1 i=£+1

rg XV — pp XV

¢ n-¢ £ n—E&
= Z an7§+iX>\n7€+i+f + Z aiX)\q‘,"rf _ Z bZX)\l o Z bi+§X>\i+5+
= = i= i=1
Ta ‘Xv-i_f — TbXU
:Z _b+f X>\+£—|—Zan f-‘rX)\n §+1+§+
- vz ! -
= con(X)
n—§ ¢
D b (XMTE = XAy =N " h XN 4 XU -y XY
=1 i=1
~ -— _
=:F.(X)
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If the prover is honest, then a; = bjy¢ fori € [n—¢] and a; = 0 for i € [n—&+1,n),
and thus F(X) = F(X) is spanned by {¢(X)}¢€¢g&. With 7 as defined in
Prot. Bl the second verification holds as

é(gr,m) = é(gr, 7)) = K9 = 6(A, g21)/é(B, g2) -

WEAKER VERSION OF SOUNDNESS. Assume that A is an adversary that can
break the last statement of the theorem. We construct an adversary A against
the @fsft-PSDL assumption, see Prot. Bl Here, C is the challenger of the PSDL
game, and

O = { XN XML U {X VT X}

is defined by following the first line of Eq. (B). Let us analyse the advantage
of A. First, clearly crs;y has the same distribution as Ges(1%). Thus, A.n gets

a correct input, and succeeds with some probability Succsjz:d (). Clearly, A

aborts with probability 1 — Succi’:fz‘d (st

Otherwise, with probability Succi‘fz:d (Iysst), inp™t = (A, A, B, B) and w'sft =
(a,7q,b,1p, (f;)¢€¢§s&), such that the conditions (Zal2d) hold. In particular,
f(X)=F(X) in Eq. @), and

3 n
P =3 Fon - XM+ 3T Frnereyon, (XM6FE = )4
i=1 i=E+1

Frore XU+ fro XV .

For the rest of the proof to go through, we need that all polynomials that are
present in monomials Fro,(X) (@ := {X T 14 € [n— €U {XAn-erite 1 g €
€]} = {X *eie[l,n—Eu{XMteien—E4+1,n]} = {X i e n]})
are different from each other and from all polynomials in @fsft. This follows from
the conditions (i) A; # A, (ii) Aj + & # A, (ili) A # v, and (iv) A\; + & # v, for
i,j €[n], i # 7.

Since (an,@n-1,...,a1) # (0,...,0,bpn,...,bet1), f(X) has at least one more
non-zero monomial, either of type a; X t¢ or of type (@i—¢ — b;) X i—¢*¢ than
f*(X). Since X*i-¢*+¢ cannot be represented as a linear combination of polyno-
mi(al)s from @fsft, f(X) and f*(X) are different polynomials with f(c) = f*(0) =
F(o).

Thus, §(X) is a non-zero degree-(v + 1) polynomial, such that d(c) = 0.
Therefore, A can use an efficient polynomial factorization algorithm to find all
roots of &, and one of those roots must be equal to 0. On step B A finds which
root is equal to o by an exhaustive search among all roots returned in the
previous step. Thus, clearly A returns the correct value of & (and thus violates the

sound

@fsft—PSDL assumption) with probability Succ’"" (Isf). Finally, the execution

time of A is clearly dominated by the execution time of A, and the time to
factor 4. O
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D Rotation Argument

Since the rotation argument uses basically the same underlying ideas as the shift
argument of Sect. Bl we will only comment on the differences between the new
shift argument and the corresponding rotation argument.

In the right rotation-by-£¢ argument,

F(X)=> a; X =) b XN 4 rg XUHE — XV

=1 i=1
n n—¢§ n 3
_ Z aiXM-‘rf + Z aiXAﬁ_{ _ Z biXM _ Z biXM_i_
i=n—£+1 i=1 i=E+1 i=1

’I“a)(UJrg — ’I“bXU

3 n—§ n—;§ 3
= Z an7§+iX)‘n—£+i+£ + Z a; X NtE Z b§+iX)‘$+i _ Z b XN
i=1 i=1 i=1 i=1
rg XVt — pp XV
3 n—¢
= (@ngpi = b) XAt LN "(a; — bey ) XN
i:1 - =1 _
=:Feon(X)
3 n—¢
Z bi(X)\n—erH-f _ X)w) + Z bf+i(X)\7‘,+f _ X)\g+i) + ’I"aXUJrf _ ’I“bXU
=1 =1
N -~ -
Fr(X)

Thus, if the prover is honest then F(X) = Fr(X).
Here, @ is different,

B = { XV, XU U X et X A8 U { XN - XA ntE

Moreover, for the proof of soundness to go through, it is necessary that all
polynomials that are present in F.,(X) (i.e., from the set @* := {XAn-¢+iF¢
i€ [} U{X Mt e n—¢}={X"" i€ [n]}), are mutually different and
also different from every polynomial in @fot. For this it is sufficient that exactly
the same conditions hold as in the case of the right shift-by-£ argument, i.e.,
)\i+1 >\, )\j 7£ Ai+¢&€ fOf’i?éj, and v > A\, +&.

With this modification, one can construct a rotation argument that is very
similar to Prot. B

E Subset-Sum

Recall &p = ({X?} U (X)) ). We will need &,..;-PKE assumptions to guar-
antee soundness of the restriction argument from [21], where &,.; depends con-
cretely on the restricted coordinates. Since @,.s C @ (for example, in the
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following theorem, @,.s := {X?} U {X*}7,), we will not have to explicitly
mention it.

Theorem 8. Let I' = (Geom, Com, Gcomyiq, Comeq, Open,,) be the be the (A, v)
commitment scheme in group G1. Let A = (A1,..., \,) be a progression-free tuple
of integers, such that i1 > \;+1 and A\; = poly(k). Let ® be as in Eq. [@)). Let
v > max (2, — A1, A\ +1) be linear in A, — A1. The new SUBSET-SUM argument
is perfectly complete and perfectly zero-knowledge. Also, Gy, is ®-PSDL secure
and the ®r-PKE assumption holds in Gy and the ®-PKE assumption holds in
Go, then the SUBSET-SUM argument is computationally sound.

Proof. PERFECT COMPLETENESS: Assume the prover is honest. The product ar-
guments 71 and 73 will correctly verify due to Theorem 3 and replacing (A, B, C)
in the theorem respectively to (B, B, B) and (B, S,C) in the SUBSET-SUM pro-
tocol. The correctness of the non-zero argument 7o can be seen as follows: o
shows that B commits to the same value (and uses the same randomizer) as
B. Tt also shows that B* commits to the same value as both B and B. More
precisely, the zero argument convinces the verifier that B* is correctly computed
from B. Therefore the last check shows that B does not commit to 0, since other-
wise é(B, g2) = é(B*, g2). The right shift-by-1 argument 74 will also be correctly
verified due to Theorem 5. Finally, 75 correctly verifies that the first element of
¢+ d is 0 due to the completeness of the restriction argument [Grol0].

ADAPTIVE COMPUTATIONAL SOUNDNESS: Let A be an NUPPT adversary that
produces commitments B, C, D and an accepting argument (B, C, D, 71, ..., 75).
By the #-PKE assumption in Gy and by Thm. B and Thm. [l the product and
shift arguments are weakly sound according to the statements of corresponding
theorems. (I.e., the extractor can open the inputs to the arguments to values
that satisfy required restrictions.)

By the @-PKE assumption in G, there exists a non-uniform PPT extractor
X 4 that, given A’s input and access to A’s random coins, extracts all openings
of B,C, and D. From the weaker version of soundness of the product and shift
arguments (Theorem 3 and Theorem 5), and the soundness of the non-zero
argument, we have that if Gy, is @-PSDL secure then the following relations
hold:

1. B commits to b such that b2 =b; < b; € {0,1}
2. b# 0, so at least one of the b;’s is 1.
3. C' commits to ¢ such that ¢; = b;s;.

4. D commits to d such that d; =},

Up to this point, it has been verified that B is a commitment of a non-zero
vector of boolean elements, and hence C' is a commitment of ¢ = (b;s;) where
each element is either 0 or s;, and at least one of the elements is ¢; = s;. Now
since D is verified to be the scan of ¢, we have that the first element of ¢ + d is
asum ), b;s;. From the @,..,-PKE assumption that guarantees the soundness
of the restriction argument (Theorem 1 and Theorem 2 of [2I]), we have that a
correct verification implies that (¢ + d); = 0, so A has indeed committed to a
correct solution of SUBSET-SUM.

Cj.
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PERFECT ZERO KNOWLEDGE: We construct a simulator § = (S§1,82). &1 will
create a correctly formed CRS together with a simulation trapdoor td = o.
The adversary then outputs a correct statement Cs together with a witness wg.
The simulator Sp creates a commitment to b = (1,1,...,1) and commitments
to the corresponding vectors ¢, d. Due to the knowledge of trapdoor td and
the commitment scheme being computationally (not perfect) binding, all the
product, scan, non-zero and restriction arguments can be simulated correctly.
This simulated NIZK argument v’ is perfectly indistinguishable from the real
argument 1. a

F Decision-Knapsack

It is clear from the description of this argument that it works correctly. The
DECISION-KNAPSACK argument is clearly perfectly zero knowledge and com-
putationally sound under appropriate assumptions, see App. [El The concrete
complexity of the DECISION-KNAPSACK argument depends on both how one
defines m in Groth’s balancing technique and u in the range argument.

Theorem 9. Let I' = (Geom,Com, Gcomyq, Comuq, Open,,) be the be the (A, v)
commitment scheme in group Gy. Let A = (A1, ..., \n) be a progression-free tuple
of integers, such that \iy1 > A\ + 1 and \; = poly(k). Let @ be as in Eq. ).
Let v > max(2\, — A1, A\, + 1) be linear in A, — A\1. The DECISION-KNAPSACK
protocol described by Alg. [@ is perfectly complete and perfectly zero-knowledge.
Also, if Gpp is @-PSDL secure and the @p-PKE assumption holds in Gy and
the ®-PKE assumption holds in G, then the DECISION-KNAPSACK protocol is
computationally sound.

Proof. PERFECT COMPLETENESS: Assume the prover is honest. The product
arguments 71, T, T4, 75, 77 Will correctly verify due to Theorem 3 and replac-
ing (4, B,C) in the theorem respectively to (T,T,T), (T,W ,Wr), (A, F,C),
(T,B,Br) and (D, F,FE) in the DECISION-KNAPSACK protocol. Here, F =
{1,0,---,0}. The right shift-by-1 arguments 73, mg will also be correctly verified
due to Theorem 5. Finally, g and 79 correctly verifies from the completeness of
the range argument.

ADAPTIVE COMPUTATIONAL SOUNDNESS: Let A be a non-uniform PPT adver-
sary that produces commitments B,C,D and an accepting NIZK argument
(T, Wy, A,C,Br,D,E,71,-+- ,m9). By the &-PKE assumption in G2 and by
Thm. [Bland Thm. [l the product and shift arguments are weakly sound accord-
ing to the statements of corresponding theorems. (That is, the extractor can
open the inputs to the arguments to values that satisfy required restrictions.)
By Thm. [7 the range argument is computationally sound.

By the @p-PKE assumption in Gy, there exists a non-uniform PPT extractor
X 4 that, given A’s input and access to A’s random coins, extracts all openings
of T,Wr,A,C,Br,D,E, and F. From the weaker version of soundness of the
product and shift arguments (Thm. Bl and Thm. [l), and the soundness of the
non-zero argument (Thm. []), we have that the following relations hold:
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Let F be a commitment of f = (1,0,...,0,0) with randomness 0;

Let t; =1iff i € T;

Generate a commitment 7T of ¢;

Prove that T is Boolean by using a product argument ;

Generate a commitment Wr of wr = (wit1, ..., wntn);

Prove that Wr was computed correctly by using a product argument 7z;
Generate a scan A of Wr, a; =3,
Prove that A was computed correctly by using a scan argument s;
Generate a commitment C of (3, wit;,0,...,0);

Prove that C was created correctly (e is a Hadamard product of f and
wr 4+ a) by using a product argument 7y;

Generate a commitment Br of by = (bit1,...,bntn);

Prove that Br was computed correctly by using a product argument 7s;
Generate a scan D of Br, di =}, bjt;;

Prove that D was computed correctly by using a scan argument 7e;
Generate a commitment F of (31, bit;,0,...,0);
Prove that E was created correctly (e is a Hadamard product of f and br + d)
by using a product argument 77;

Prove that the first element of C' is < W by using a range argument 7s;

Prove that the first element of E is > B by using a range argument g;

The whole argument is (T, Wr, A,C, By, D, E,m1,...,79);

wjty;

Algorithm 6. The DECISION-KNAPSACK argument

. T commits to t such that t? = ¢; <= t; € {0,1},

. Wr commits to wr such that (wr); = w;t;,

. A commits to a such that a; = 3., wjt;,

. C commits to the Hadamard product ¢ of f and wr 4+ a, so ¢ = (1- (wr +

a)1,0 . (wT +a)2, ...,0- (wT + a)n) = (Z?:l w;ti, 0, - ,0),

. Bp commits to by such that (br); = b;t;,
. D commits to d such that d; =
7.

bt

>1 2JvY
E commits to the Hadamard prodjuct eof fand br +d,soe=(1-(br+
d)la 0- (bT + d)2a e 70 : (bT + d)n) - (21;1 bitia 07 e ,0)

From the soundness of the range argument, a correct verification of g will imply
that ¢; € [0, B] while a correct verification of mg will imply that e; € [E,2"] for
some K.

PERFECT ZERO KNOWLEDGE: We can construct a simulator S = (S1,S2) anal-
ogous to the simulator for SUBSET-SUM. O



	Efficient Modular NIZK Arguments
from Shift and Product

	1 Introduction
	2 Preliminaries
	3 New Commitment Scheme
	4 Improved Hadamard Product Argument
	5 Shift and Rotation Arguments
	6 Applications
	6.1 Improved Range Argument
	6.2 Arguments for NP-Complete Languages

	References




