
Padding Oracle Attack on PKCS#1 v1.5: Can

Non-standard Implementation Act as a Shelter?

Si Gao, Hua Chen, and Limin Fan

Trusted Computing and Information Assurance Laboratory,
Institute of Software, Chinese Academy of Sciences
{gaosi,chenhua,fanlimin}@tca.iscas.ac.cn

Abstract. In the past decade, Padding Oracle Attacks (POAs) have
become a major threat to PKCS#1 v1.5. Although the updated scheme
(OAEP) has solved this problem, PKCS#1 v1.5 is still widely deployed in
various real-life applications. Among these applications, it is not hard to
find that some implementations do not follow PKCS#1 v1.5 step-by-step.
Some of these non-standard implementations provide different padding
oracles, which causes standard POA to fail. In this paper, we show that
although these implementations can avoid the threat of standard POA,
they may still be vulnerable to POA in some way. Our study mainly
focuses on two cases of non-standard implementations. The first one only
performs the “0x00 separator” check in the decryption process; while the
other one does not check for the second byte. Although standard POA
cannot be directly applied, we can still build efficient padding oracle
attacks on these implementations. Moreover, we give the mathematical
analysis of the correctness and performance of our attacks. Experiments
show that, one of our attacks only takes about 13 000 oracle calls to
crack a valid ciphertext under a 1024-bit RSA key, which is even more
efficient than attacks on standard PKCS#1 v1.5 implementation. We
hope our work could serve as a warning for security engineers: secure
implementation requires joint efforts from all participants, rather than
simple implementation tricks.

1 Introduction

PKCS#1 is the standard for the implementation of public-key cryptography
based on the RSA algorithm. The current version v2.2 [1], published by RSA in
2012, contains two encryption schemes: RSAES PKCS1 v1.5 and RSAES OAEP.
For simplicity’s sake, we denote them as PKCS#1 v1.5 and OAEP respectively.
OAEP is required to be supported for new applications, while PKCS#1 v1.5 is
included only for compatibility with existing applications.

Padding Oracle Attack. In the past decade, Padding Oracle Attacks (POAs)
[2] have become a major threat to PKCS#1 v1.5. Padding Oracle Attack is
a type of chosen ciphertext attack, which takes advantage of whether crypto-
graphic operation is successfully executed. Usually, we assume the attacker can

M. Abdalla, C. Nita-Rotaru, and R. Dahab (Eds.): CANS 2013, LNCS 8257, pp. 39–56, 2013.
c© Springer International Publishing Switzerland 2013

40 S. Gao, H. Chen, and L. Fan

trick an honest user to decrypt the ciphertext he chose. In the decryption pro-
cess, a format check is performed after decryption. Although the attacker does
not have access to the decryption result, he can detect whether the ciphertext he
chose passes the format check. We call such decryption process a “Padding Or-
acle” (PO) [3]. By collecting thousands of PO’s responses, the original message
can be extracted. In the past decade, POAs have drawn major attention from
both symmetric and asymmetric cryptography research. In symmetric cryptog-
raphy, CBC Padding Oracle has been used to build plaintext-recovery attacks on
various network protocols [4–9]. In asymmetric cryptography, PKCS#1 v1.5 is
the main target. The first POA on PKCS#1 v1.5, published by Bleichenbacher
in 1998 [10], took about 1 million PO calls to recover a 1024-bit RSA plaintext.
Bleichenbacher’s attack has been extensively studied ever since, applied to SSL
[11], PIN encryption in EMV [12], USB token [2] and XML encryption [13]. Re-
cently, Bardou, Focardi, Kawamoto, Simionato, Steel and Tsay claim that using
their improved version of Bleichenbacher’s attack, a wrapped secret key can be
recovered from RSA Securid 800 in only 13 minutes [2].

Other Attacks on PKCS#1 v1.5. Other non-POA attacks also exist for
PKCS#1 v1.5: Coron, Joye, Naccache and Paillier proposed two brilliant attacks
in 2000 [14], which can efficiently recover the plaintext, if the public exponent
is small enough, or most message bits are zeros. Bauer, Coron, Naccache, Ti-
bouchi and Vergnaud proposed a broadcast attack [15], which could reveal the
identical plaintext when the public exponent is small. However, none of these
attacks works for the commonly used public exponent 65537 with a random
message. Bauer et al. also proposed a reliable distinguish attack [15]. Using one
PO query, it predicts which of two chosen plaintexts corresponds to a challenge
ciphertext. Although we only focus on full-plaintext-recovery attacks without
requirements on exponent or plaintext, whether POAs can combine with these
non-POA attacks may be an interesting topic for further study.

Does PKCS#1 v1.5 Still Matters in Today’s Application? To avoid
POA, RSA introduced OAEP as the new recommended encoding scheme in
PKCS#1 v2.0. However, according to ECRYPT’s “Yearly Report on Algorithms
and Keysizes”, PKCS#1 v1.5 is still widely deployed in today’s application
((W)TLS, S/MME, XML, JSON, etc.) [16, 17]. Take USB tokens for instance:
most tokens today support PKCS#1 v1.5, while only a few can support OAEP
[2]. In software deployment, OAEP is widely supported today; while for back-
ward compatibility reasons, PKCS#1 v1.5 is still mandatory. Jager and Paterson
suggest that in such scenario [17], the attacker can trick the honest user to use
legacy scheme (PKCS#1 v1.5) , and undermine the security of the up-to-date
scheme (OAEP).

Motivation. Despite the fact that detailed implementation instructions are
given in [1], implementations do not always follow them. For efficiency or other
reasons, they tend to simplify the standard decryption process as long as valid
ciphertexts can be decrypted correctly. For instance, in most of Microsoft’s Cryp-
tographic Service Providers (CSP), PKCS #1 v1.5 decryption does not check

Padding Oracle Attack on PKCS#1 v1.5 41

padding string’s length. Non-standard implementations also exist in many widely
used cryptographic libraries (PGP, Boton, etc.) . Some may ignore padding string
length check; others may not check the first byte of decryption result. For cryp-
tographic devices, where the source code may not be available for public review,
the situation is worse. In their full paper, Bardou et al. have already addressed
this problem [2]. Bleichenbacher’s attack can cover several non-standard imple-
mentations; while for the others, current POA on PKCS #1 v1.5 fails. Such
implementations include Sata DKey (session key) [2] and perhaps many other
devices that have not been studied yet. Since no POA works for them, non-
standard implementations provide a “shelter” for cryptographic device vendors.
In practice, such shelter can be pretty attractive: they only require minimal
changes, which will not cause any compatibility trouble.

But can these non-standard implementations really prevent POA? Unfortu-
nately, the answer remains unclear so far. All previous works mainly focus on
standard implementation, leaving a lot of non-standard implementations in a
“grey zone”.

Our Contribution. In this paper, we focus on two types of non-standard
implementations. The first one only checks if there is an byte with hexadecimal
value 0x00 to separate padding string from the real message. The other one
performs a thorough check, except for whether the second byte has hexadecimal
value 0x02. Recalls that Bleichenbacher’s attack mainly takes advantage of the
leading 0x0002 in the conforming check [10]. Clearly, Bleichenbacher’s attack
cannot apply to these cases.

Our attack on the second implementation is even more efficient than standard
POA (it requires a mean of 13 000 oracle calls, while standard POA [2] needs
49 001 oracle calls). Our attack on the first implementation requires about 0.1
million oracle calls, which is still practical in application [13]. We give detailed
correctness proof and complexity analysis of our attacks, as well as experiments
to show their practical validity. Moreover, each attack can cover several non-
standard implementations: together with Bleichenbacher’s attack, we can see
that secure “shelter” is indeed hard to find.

The rest of this paper is organized as follows. We first recall PKCS#1 v1.5
standard and Bleichenbacher’s attack in Section 2. In Section 3, we present two
case studies on certain implementation, and show that most of non-standard
implementations are vulnerable to POA in some way. Experimental results are
given in Section 4.

2 Padding Oracle Attacks on Standard PKCS#1 v1.5

2.1 PKCS#1 v1.5

We briefly recall PKCS#1 v1.5 standard in this section. For clarity, we use the
same notations as [10]. PKCS#1 v1.5 encryption block format is given in Fig.1.

42 S. Gao, H. Chen, and L. Fan

Encryption process takes the original message, pads it with pseudo-randomly
generated non-zero bytes, then uses RSA to encrypt. Decryption process simply
uses RSA to decrypt, then checks whether the padded message is valid. For valid
padded message, the message in the data block is returned as decryption result.
Otherwise, decryption fails with a “decryption error”.

Fig. 1. PKCS#1 v1.5 block format for encryption

A valid “padded message” must satisfy all following conditions [1]:

a) The first byte has hexadecimal value 0x00

b) The second byte has hexadecimal value 0x02

c) The length of non-zero padding string (PS) is at least 8 bytes
d) There is an byte with hexadecimal value 0x00 to separate PS from data block

In the standard decryption process, all above conditions must be checked.
However, some implementations simplify this process, only check part of these
conditions. We call such implementations “non-standard implementations”.

2.2 Bleichenbacher’s Attack

Bleichenbacher shows that if the attacker can decide whether a chosen ciphertext
is valid, the whole padded message can be recovered [10]. Following the notations
of [10], we have (n, e) as the RSA public key; (p, q, d) as the corresponding secret
key; k as the byte length of n. Let B = 28(k−2), according to condition a) and b),
for any valid ciphertext c, the corresponding padded plaintext m must satisfy

2B ≤ m mod n < 3B

Bleichenbacher’s attack takes full advantage of this interval, while ignoring other
conditions. For more details on Bleichenbacher’s attack, we refer to [10].

3 Padding Oracle Attacks on Non-standard PKCS#1
v1.5 Implementations

Through this section, attacks take a valid ciphertext c as input, and try to find
the corresponding padded plaintext m through padding oracle calls. We use s as
the multiplier of m, which is used in c′ = cse mod n to build the ciphertext for
sm. The integer i represents the round counter, and [a,b] represents the current
m’s interval.

Padding Oracle Attack on PKCS#1 v1.5 43

3.1 Case 1: Implementation only Checks “the 0x00 Separator”

In this case, after RSA decryption, implementation searches for a 0x00 byte,
from the most significant byte to the least significant byte. Whenever a 0x00

byte is found, PO returns ’True’; otherwise, PO returns ’False’. Take the need
of real-life application into consideration, this PO may also have some other
features:

– A 0x00 in the first or second byte does not count. For any valid padded
message, the first two bytes are set to 0x0002. The most reasonable check is
to ignore these bytes, start from the third byte and search for 0x00.

– If the only 0x00 exists in the last byte, decryption will fail. No message can
be extracted from this ciphertext.

These additional conditions cause some trouble in our analysis, as we shall see
soon.

Basic Idea. The “0x00 separator check” is rather complicated. Unlike condi-
tion a) and b) (“0x0002 ”) , it does not have a clear mathematical expression.
Luckily, certain multipliers can bridge this gap. For example, 256m’s binary rep-
resentation is the binary representation of m shifted left for 1 byte. On Z

∗
n, if

256m < n, m passes the “0x00 separator check”, 256m should pass the check as
well; while if 256m > n, since n is a random modular, 256m mod n could fail.
Similar property holds for the messages that fail the check. Notice here we con-
sider the second additional condition, otherwise PO will always returns ‘True’ for
the ciphertext of 256m when 256m < n. Suppose we have a randomly-generated
padded message m1 on Z

∗
n, with corresponding ciphertext c1 = m1

e mod n. Let
PO(c1) represent padding oracle’s reply when input c1. Let m2 = 256m1 mod n,
c2 = m2

e mod n. In general, if we get different replies from PO(c1) and PO(c2),
we can conclude that 256m1 > n.

However, considering the “additional conditions”, a few abnormal points ap-
pear: for instance, when 256m1 < n, if m1 has only one 0x00 byte in the third
byte, PO(c1) returns ‘True’ while PO(c2) returns ‘False’ .

Formally, PO(c1) = F means m1 contains no 0x00 from the third byte to the
second to last byte. Since m1 is picked uniformly on Z

∗
n, Pr(PO(c1) = F) =

(
255
256

)k−3
. Thus, the following proposition holds.

Proposition 1. Assume m1 is picked uniformly on Z
∗
n, m2 = 256m1 mod n,

c1 = m1
e mod n, c2 = m2

e mod n. For commonly used RSA modulus length,
Pr(PO(c1) �= PO(c2)|256m1 < n) and Pr(PO(c1) �= PO(c2)|256m1 > n) are
distinguishable.

Proof. When 256m1 > n, PO(c1) and PO(c2) are nearly independent. Notice
that 256m1 > n merely adds constraint condition on the first two bytes of m1,
Pr(PO(c1) = F) = Pr(PO(c1) = F |256m1 > n). Thus, we have

44 S. Gao, H. Chen, and L. Fan

Pr(PO(c1) �= PO(c2)|256m1 > n) = 2

(

1−
(
255

256

)k−3
)(

255

256

)k−3

When 256m1 < n, Pr(PO(c1) = T, PO(c2) = F) means the only 0x00 appears
in the third byte of m1. Thus, we have Pr(PO(c1) = T, PO(c2) = F |256m1 <

n) = 1
256

(
255
256

)k−4
. Similarly, we also have Pr(PO(c1) = F, PO(c2) = T |256m1 <

n) = 1
256

(
255
256

)k−3
. Thus,

Pr(PO(c1) �= PO(c2)|256m1 < n) =
1

256

(
255

256

)k−4

+
1

256

(
255

256

)k−3

Pr(PO(c1) �= PO(c2)|256m1 > n) = 2

(

1−
(
255

256

)k−3
)(

255

256

)k−3

For k = 128,
Pr(PO(c1) �= PO(c2)|256m1 < n) ≈ 0.0048

Pr(PO(c1) �= PO(c2)|256m1 > n) ≈ 0.4744

Larger k leads to smaller Pr(PO(c1) �= PO(c2)), although the probabilities
above are still distinguishable. ��
Since the probability difference here is quite significant, we can simply calculate
Pr(PO(c1) �= PO(c2)) in a small block near m1, and use a threshold to decide
whether 256m1 > n. With m’s current interval, we can easily find a pair of
(smax, smin) which can guarantee smaxm mod n > n

256 and sminm mod n < n
256 .

Use sm mod n as the m1 in the procedure above, a tighter bound for s can be
found, which leads to a smaller interval for m. This procedure can be extended
to [rn, (r + 1)n), as in Algorithm 1.

It is worth mentioning that 256 is not the only multiplier that causes proba-
bility difference. Similar proposition also holds for the multiplier 2.

Proposition 2. Assume m1 is picked uniformly on Z
∗
n, m2 = 2m1 mod n,

c1 = m1
e mod n, c2 = m2

e mod n. For commonly used RSA modulus length,
Pr(PO(c1) �= PO(c2)|2m1 < n) and Pr(PO(c1) �= PO(c2)|2m1 > n) are dis-
tinguishable.

Proof. When 2m1 > n, the probability will be exactly the same as before. For
2m1 < n, if PO(c2) = T and PO(c1) = F , there must exist a position p ∈
[2, k − 2] which satisfies m1[p] = 128 and 0 < m1[p+ 1] < 128. Therefore,

Pr(PO(c2) = T, PO(c1) = F |2m1 < n) =

(

1−
(
1− 127

2552

)k−3
)(

255

256

)k−3

Similarly, we also have

Pr(PO(c2) = F, PO(c1) = T |2m1 < n) =
127

128

(

1−
(
509

510

)k−3
)(

255

256

)k−3

Padding Oracle Attack on PKCS#1 v1.5 45

Algorithm 1. Multiply 256 method with additional condition, on [rn, (r+1)n)

Require: Padding Oracle PO, ciphertext c, m’s current interval [a, b], r
compute the possible interval of s [smin, smax]

smin =

⌊
(r+ 1

256)n
b

⌋
, smax =

⌈
(r+ 1

256)n
a

⌉

while s < smax do
collect some sample points near current s, c1 = sec mod n, c2 = (256s)ec mod n
call PO to calculate Pr(PO(c1) �= PO(c2))
if Pr(PO(c1) �= PO(c2)) < threadhold then

break
else

s++
end if

end while
a′ =

⌈
r+ 1

256
n

s+block+1

⌉
, b′ =

⌊
r+ 1

256
n

s−block

⌋
return [a′, b′]

For k=128,
Pr(PO(c1) �= PO(c2)|2m1 < n) ≈ 0.2653

Pr(PO(c1) �= PO(c2)|2m1 > n) ≈ 0.4744

Larger k leads to smaller Pr(PO(c1) �= PO(c2)), although the probabilities
above are still distinguishable. ��

The probability difference here is not as significant as before. In order to
decide whether 2m1 > n, better statistical tools should be applied. The multiply
2 version of Algorithm 1 is denoted as Algorithm 2. The initial interval of s in
Algorithm 2 is quite large, a binary search can be applied here.

Attack Algorithm. Both Algorithm 1 and 2 can narrow downm’s interval with
different r, thus, we can keep running them until there’s only one possible m.
In some cases, keep using Algorithm 1 leads to a “stuck problem” (no available
r can be found for Algorithm 1). For this reason, we introduce Algorithm 2.
Since the probability difference in Algorithm 2 isn’t as significant as Algorithm
1, for efficiency, Algorithm 2 is only used when Algorithm 1 is “stuck” . The
full-plaintext-recovery attack is presented in Algorithm 3.

Analysis

Correctness Proof. First, we prove the correct padded message m always stays
in interval [a, b]. In this section, assume that Algorithm 1 and 2 can always suc-
ceed. In round 0, we have m ∈ [2B, 3B− 1]. If in round i− 1,we have m ∈ [a, b],
in round i, the process can go to either Step 2.b or Step 2.c. Define sexact as the

46 S. Gao, H. Chen, and L. Fan

Algorithm 2. Multiply 2 method with additional condition,on [rn, (r + 1)n)

Require: Padding Oracle PO, ciphertext c, m’s current interval [a, b], r
compute the possible interval of s [smin, smax]

smin =

⌊
(r+ 1

2)n
b

⌋
, smax =

⌈
(r+ 1

2)n
a

⌉

sl = smin,su = smax

while su > sl do
s = � su+sl

2
�

collect some sample points near current s, call PO to get Pr(PO(c1) �= PO(c2))
if Pr(PO(c1) �= PO(c2)) suggest 2m1 < n then

sl = s
else

su = s
end if

end while
a′ =

⌈
r+ 1

2
n

s+block+1

⌉
, b′ =

⌊
r+ 1

2
n

s−block

⌋
return [a′, b′]

s satisfying both 256rin < 256sexactm ≤ (256ri + 1)n and 256 (sexact + 1)m >
(256ri + 1)n. For Step 2.b, the initial interval of s we chose in Algorithm 1 always
contains sexact. After a round of Algorithm 1, sexact ∈ [s−block, s+block], thus:

a′ =
⌈

ri +
1

256n

s+ block + 1

⌉
≤

⌈
ri +

1
256n

sexact + 1

⌉
< m

b′ =
⌊
ri +

1
256n

s− block

⌋
≥

⌊
ri +

1
256n

sexact

⌋
≥ m

Hence, if Step 2.b is chosen,we always have m ∈ [a′, b′] when round i ends. Same
analysis works for Step 2.c, as long as we change multiplier 256 above to 2.
Therefore, in this attack, the interval [a, b] in each round always contains m.

Next, we prove our attack always narrows down m’s interval in each round.
Obviously, for m in [2B, 3B− 1], round 0 runs Step 2.b with r0 = 0 successfully.
Suppose after round i − 1, m’s interval is [a, b], denote t = b

a . In round i, we
need to prove m’s new interval [a′, b′] is smaller than [a, b]. Roughly speaking,
this means in Algorithm 1 and 2, the length of [smin, smax] should be larger than
2block + 1. We use block256, block2 to denote the parameter block in Algorithm
1 and 2.

If in round i, Step 2.b runs, we have

smax − smin ≥ (ri +
1

256
)n× b− a

ab

>
n

256
×
(
1 +

1

t− 1

)
× t− 1

at
− n× b− a

ab

=
n

256a
− n× b− a

ab
(1)

Padding Oracle Attack on PKCS#1 v1.5 47

Algorithm 3. Full plaintext recovery attack for case 1

Require: ciphertext c, RSA modulus n and public exponent e
Step 1: Attack Start
Set i = 1,r = −1,[a,b]=[2B,3B − 1]
Step 2: Using Padding Oracle to narrow down m’s interval
while b− a >“Ending Parameter” do

Step 2.a: Check if multiply 256 method can be used. Compute ri =

⌊
1

256(b
a
−1)

⌋

if ri > ri−1 then
Step 2.b: Multiply 256 method. Using Algorithm 1 with ri

else
ri = ri−1

Step 2.c: Multiply 2 method. Using Algorithm 2 with r =

⌊
1

2(b
a
−1)

⌋
,

end if
end while
Step 3: Exhaustive search to find m
return m

In Step 2.b we have ri > ri−1, thus

smax − smin ≥ (ri +
1

256
)n× b− a

ab

≥ (ri−1 +
1

256
)n× b− a

ab
+ n× b− a

ab
(2)

In experiment, block256 = 8 can ensure Algorithm 1 will success with high prob-
ability. It is easy to see n

256a > 4block256 + 2, thus from (1)(2) we can always
prove smax − smin > 2block256 + 1.

Otherwise, if in round i, Step 2.c runs

smax − smin ≥ (r +
1

2
)n× b− a

ab

>
n

2
×
(
1 +

1

t− 1

)
× t− 1

at
− n× b− a

ab

=
n

a
×
(
1

t
− 1

2

)
(3)

In experiment, we find block2 = 200 can ensure Algorithm 2 will success with
high probability. Since 1 < t < 1.5, 1

6 < 1
t − 1

2 < 1
2 , we can always prove

smax − smin > 2block2 + 1 from (3). Thus, our attack always narrows down m’s
interval in each round. ��

Complexity Analysis. In round i, Step 2.b will always be chosen when ri−ri−1 ≥
1. Suppose in the beginning of round i− 1, m exists in [a1, b1], denote t1 = b1

a1
.

Let len = b−a, len1 = b1−a1, d = len
len1

. No matter which method runs in round

i− 1, we always have ri−1 ≤ 1
256(t1−1) . Therefore,

48 S. Gao, H. Chen, and L. Fan

ri − ri−1 >
1

256
×
(

1

t− 1
− 1

t1 − 1

)
− 1 =

1

256
×
(

a

len
− a1

len1

)
− 1

≥ a

256
×
(

1

len
− d

len

)
− 1 =

1

256
× 1

t− 1
× (1− d)− 1 (4)

From above, it is not hard to see for Step 2.b 1− d ≥ 1
2block256+2 , while for Step

2.c,1 − d ≥ 1 − 2block2+1
n
6a

. Notice 1
t−1 keeps growing in our attack. Therefore,

after some rounds, we will reach a situation where 1
t−1 is large enough to ensure

ri − ri−1 ≥ 1. From this point, Step 2.b will always be chosen until we find m.
For k = 128, after 3 rounds of Step 2.c, 1

t−1 will be large enough to ensure this.

Roughly speaking, if round i−1 and i both runs Step 2.b, d ≈ 2block256+1
n

256a
≈ 0.24,

while in Step 2.c d is close to 0.04. In practice, binary search is used for Step
2.c, which leads to complexity close to 2block2 × log2 |smax − smin| = 2block2 ×
log2

n
2a ≈ 5300. In Step 2.b, the interval of s is rather small (most times less

than 100) ; we have to search for all of s between smax and smin, which leads
to nearly 170 times oracle calls. We give an overall complexity approximation as
5300× 3 + 170× (

log0.24
(
EndParam

B ÷ 0.043
)
+ 1

)
. For EndParam=100000, the

overall complexity is close to 0.1 million oracle calls.

3.2 Case 2: PO Checks All Conditions Expect for the Second Byte

In this case, PO checks condition a) (the 0x00 prefix) . This seems to be a
pleasant condition, since it has a perfect mathematical expression. Let T =
256B = 28(k−1), condition a) equals to sm mod n < T . This condition alone
results in a very efficient attack [18], although condition c) and d) (PS length
and the 0x00 separator) have complicated the case.

Basic Idea. With condition c) and d), oracle will not return ‘True’ for every
sm mod n < T . Thus, highly efficient binary search from [18] cannot be applied.
However, the framework of our attack in Section 3.1 still works. In fact, now we
have a better situation: one side of the interval is deterministic. Whenever get a
‘True’ from oracle, we know for sure sm mod n < T .

Attack Algorithm. With the same notation, the “narrow down process” for
this case is as follow. Search from the lower bound, whenever get a ‘True’ from
PO, set the new lower bound of s to current s. If after a while no more sm mod n
causes a ‘True’ reply from PO, we can conclude that we have passed sexact, and
set the new upper bound of s to current s. As in the previous section, a parameter
block is used to describe this interval. This process is presented in Algorithm 4
in Appendix C. Note that we can also search from the upper side, like Algorithm
5 in Appendix C.

Full-plaintext-recovery attack can be built from Algorithm 4 and 5, like we
did in the previous section. Step 1 and 3 are exactly the same as before, here we
only presents Step 2 in detail.

Padding Oracle Attack on PKCS#1 v1.5 49

Step 2: Using Padding Oracle to narrow down m’s interval
while b− a > “Ending Parameter” do

Step 2.a: Check if Algorithm 4 can be used. Compute ri =
⌊

1
b
a
−1
× T

n

⌋

if ri > ri−1 then
Step 2.b: use Algorithm 4 with ri

else
ri = ri−1

Step 2.c: use Algorithm 5 with r =
⌊

1
b
a
−1

(
1− T

n

)− T
n

⌋
end if

end while

Analysis. Since attack for this case has the same skeleton as before, correctness
proof and complexity analysis is quite similar. Due to the length limitation, we
present this part in Appendix B.

3.3 Other Non-standard Implementations

According to Section 2.1, standard PO returns ‘True’ if the RSA decryption re-
sult satisfies all four conditions. Therefore, we describe the type of implementa-
tions as a four bits integer. The most significant bit represents whether condition
a) is checked in PKCS#1 v1.5 decryption. If condition a) is checked, this bit is
1; otherwise, it is 0. The other three bits (from the second most significant to the
least significant) , represents whether condition b), c), d) is checked, respectively.
Thus, type 15 stands for standard implementation, while type 1 represents the
case in Section 3.1. Based on the two most significant bits, implementations can
be further divided into four groups:

Group I (Both the 0x00 prefix and the 0x02 are ignored) : We ignore
type 0, because it can not separate padding string from the data block. Our
attack in Section 3.1 is designed for type 1. Unlike Bleichenbacher’s attack, our
attack is insensitive to subtle condition changes. Since condition c) (PS length
check) has limited influence on the overall probability distribution, our attack
also works on type 3. Type 2 does not seem to be a reasonable implementation
in practice: there is no separator between data and padding string. Without such
separator, the implementation should have a fixed length for the data block. In
that case, checking the length of padding string seems unnecessary.

Group II (The 0x02 is checked while the 0x00 prefix is ignored) : In
this group, implementations check condition b) (0x02) while ignore condition
a) (the 0x00 prefix) . Unlike other groups, the distribution of m that causes a
‘True’ reply from PO is “partly-discrete” . It is not as discrete as Group I, nei-
ther does it have a neat mathematical expression like Group III or IV. We suspect

50 S. Gao, H. Chen, and L. Fan

this group could be vulnerable to a simple variant1 of Bleichenbacher’s attack,
although some adjustment is needed for Step 3.

Group III (The 0x00 prefix is checked while the 0x02 is ignored) : Our
attack in Section 3.2 is designed for type 11 (with PS length and 0x00 separator
check). For the same reason, it also works for type 9 (without PS length check).
Type 8 forms a perfect PO for Manger’s attack [18], which is the most efficient
attack in all non-standard implementations. For type 10, the situation is similar
to type 2.

Group IV (Both the 0x00 prefix and the 0x02 are checked) : Bleichen-
bacher’s attack can be applied to all implementations in this group. Type 15
is the standard implementation. Type 12, 13, 14 corresponds to the “TTT” ,
“FTT” and “TFT” oracle in [2], respectively.

4 Experimental Results

With discussion in Section 3.3, implementation types with corresponding attacks
is given in Table 1, along with the complexity in terms of oracle calls. In this
section, all experiments use 1024-bit RSA modulus n, e=65537, with PKCS#1
v1.5 encryption. Each experiment runs 1000 times, with 16 bytes of randomly
generated messages. For Bleichenbacher’s attack, we use Bardou el al.’s improved
version2 [2].

Table 1. Implementation types with corresponding attack algorithm

Type
Conditions

Group Available Attack Algorithm
Performance

a) b) c) d) Median Mean

1 �
Group I

Group I Attack 113 520 115 978
2 � Unnecessary — —
3 � � Group I Attack 111 890 114 331

4 �

Group II Variant of Bleichenbacher’s attack — —
5 � �
6 � �
7 � � �
8 �

Group III

Manger’s attack 1 168 1 174
9 � � Group III Attack 12 843 12 878
10 � � Unnecessary — —
11 � � � Group III Attack 13 047 13 058

12 � �

Group IV

Bleichenbacher’s attack 4 762 14 532
13 � � � Bleichenbacher’s attack 15 315 92 820
14 � � � Unnecessary — —
15 � � � � Bleichenbacher’s attack 17 473 104 839

1 In this paper, “variant” means simply adjust some of the parameters in the original
algorithm, while the basic skeleton and the core unit remains the same.

2 Notice our results here are worse than [2]. This is probably caused by the Parallel
thread method. However, even if we use the performance in [2], the performance order
remains the same.

Padding Oracle Attack on PKCS#1 v1.5 51

Condition c) (PS length check) alone has rather limited influence: type 1 and
3 share the same attack algorithm, and have similar complexity. Same property
holds for type 9 and 11, type 13 and 15. Compare with others, Group IV Attack’s
(Bleichenbacher’s attack) performance varies a lot. Their density distribution
curves have longer “tails”, which is given in Fig.2 (Appendix A) . All attacks
above run in different situations, it is not fair to compare their performance with
each other. Nonetheless, from Table 1, we can easily conclude that most of the
non-standard implementations are insecure against POA.

5 Conclusion

In the last decade, Padding Oracle Attacks (POAs) have become a major
threat to PKCS#1 v1.5 [2, 10]. To our knowledge, all previous works mainly
focus on the standard implementation. However, in today’s application, some im-
plementations do not always follow the standard step-by-step. Since the padding
oracles in these non-standard implementations are quite different from the stan-
dard padding oracle, Bleichenbacher’s attack cannot cover all of them. Using the
similar idea as Bleichenbacher’s attack, we propose two attacks for certain non-
standard implementations: one requires about 0.1 million oracle calls, while the
other requires only 13 000 oracle calls. Together with Bleichenbacher’s attack,
we can see that most of the “non-standard implementations” are vulnerable to
POA in some way. We hope our work could convince industry engineers that the
threat of POA can not be prevented by some simple implementation tricks.

Acknowledgements. We would like to thank the anonymous reviewers for
providing valuable comments. We would also like to thank Damien Vergnaud for
his generous help and valuable advice. This work is supported by the National
Natural Science Foundation of China (No.91118006) and the National Basic
Research Program of China (No.2013CB338002).

References

1. RSA Laboratories: PKCS #1 v2.2: RSA Cryptography Standard (October 27,
2012)

2. Bardou, R., Focardi, R., Kawamoto, Y., Simionato, L., Steel, G., Tsay, J.-K.:
Efficient Padding Oracle Attacks on Cryptographic Hardware. In: Safavi-Naini,
R., Canetti, R. (eds.) CRYPTO 2012. LNCS, vol. 7417, pp. 608–625. Springer,
Heidelberg (2012)

3. Vaudenay, S.: Security Flaws Induced by CBC Padding - Applications to SSL,
IPSEC, WTLS... In: Knudsen, L.R. (ed.) EUROCRYPT 2002. LNCS, vol. 2332,
pp. 534–545. Springer, Heidelberg (2002)

4. Canvel, B., Hiltgen, A.P., Vaudenay, S., Vuagnoux, M.: Password Interception in
a SSL/TLS Channel. In: Boneh, D. (ed.) CRYPTO 2003. LNCS, vol. 2729, pp.
583–599. Springer, Heidelberg (2003)

5. Paterson, K.G., Yau, A.K.L.: Cryptography in Theory and Practice: The Case of
Encryption in IPsec. In: Vaudenay, S. (ed.) EUROCRYPT 2006. LNCS, vol. 4004,
pp. 12–29. Springer, Heidelberg (2006)

52 S. Gao, H. Chen, and L. Fan

6. Degabriele, J., Paterson, K.: Attacking the IPsec Standards in Encryption-only
Configurations. In: IEEE Symposium on Security and Privacy, SP 2007, pp. 335–
349 (2007)

7. Albrecht, M., Paterson, K., Watson, G.: Plaintext Recovery Attacks against SSH.
In: 2009 30th IEEE Symposium on Security and Privacy, pp. 16–26 (2009)

8. Degabriele, J.P., Paterson, K.G.: On the (in)security of IPsec in MAC-then-encrypt
configurations. In: Proceedings of the 17th ACM Conference on Computer and
Communications Security, CCS 2010, pp. 493–504. ACM, New York (2010)

9. Rizzo, J., Duong, T.: Practical Padding Oracle Attacks. In: WOOT 2010: 4th
USENIX Workshop on Offensive Technologies. USENIX Association (2010)

10. Bleichenbacher, D.: Chosen ciphertext attacks against protocols based on the RSA
encryption standard PKCS #1. In: Krawczyk, H. (ed.) CRYPTO 1998. LNCS,
vol. 1462, pp. 1–12. Springer, Heidelberg (1998)

11. Kĺıma, V., Rosa, T.: Further Results and Considerations on Side Channel At-
tacks on RSA. In: Kaliski Jr., B.S., Koç, Ç.K., Paar, C. (eds.) CHES 2002. LNCS,
vol. 2523, pp. 244–259. Springer, Heidelberg (2003)

12. Smart, N.P.: Errors Matter: Breaking RSA-Based PIN Encryption with Thirty
Ciphertext Validity Queries. In: Pieprzyk, J. (ed.) CT-RSA 2010. LNCS, vol. 5985,
pp. 15–25. Springer, Heidelberg (2010)

13. Jager, T., Schinzel, S., Somorovsky, J.: Bleichenbacher’s Attack Strikes again:
Breaking PKCS#1 v1.5 in XML Encryption. In: Foresti, S., Yung, M., Martinelli,
F. (eds.) ESORICS 2012. LNCS, vol. 7459, pp. 752–769. Springer, Heidelberg
(2012)

14. Coron, J.-S., Joye, M., Naccache, D., Paillier, P.: New Attacks on PKCS#1 v1.5
Encryption. In: Preneel, B. (ed.) EUROCRYPT 2000. LNCS, vol. 1807, pp. 369–
381. Springer, Heidelberg (2000)

15. Bauer, A., Coron, J.-S., Naccache, D., Tibouchi, M., Vergnaud, D.: On the Broad-
cast and Validity-Checking Security of PKCS#1 v1.5 Encryption. In: Zhou, J.,
Yung, M. (eds.) ACNS 2010. LNCS, vol. 6123, pp. 1–18. Springer, Heidelberg
(2010)

16. European Network of Excellence in Cryptology II: ECRYPT II Yearly Report
on Algorithms and Keysizes (2009-2010). Technical report, European Network of
Excellence in Cryptology II (March 30, 2010)

17. Jager, T., Paterson, K.G., Somorovsky, J.: One Bad Apple: Backwards Compatibil-
ity Attacks on State-of-the-Art Cryptography. In: NDSS Symposium 2013 (2013)

18. Manger, J.: A Chosen Ciphertext Attack on RSA Optimal Asymmetric Encryption
Padding (OAEP) as Standardized in PKCS #1 v2.0. In: Kilian, J. (ed.) CRYPTO
2001. LNCS, vol. 2139, pp. 230–238. Springer, Heidelberg (2001)

Padding Oracle Attack on PKCS#1 v1.5 53

A Density Distribution of Oracle Calls of the Attacks
in Table 1

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

x 10
5Complexity (number of oracle call)

Type 1
Type 3
Type 8
Type 9
Type 11
Type 12
Type 13
Type 15

Fig. 2. Distribution of oracle calls of attacks in Table 1, each attack runs 1000 times

B Analysis of the Attack for Case 2

Correctness Proof. Assume block is chosen to ensure Algorithm 4 and 5 always
succeed. Since Algorithm 5 has a more clear form, we start with Algorithm 5.

First, we prove m always stays in the interval [a, b]. Initially, we have m ∈
[2B, 3B − 1], which means the proposition holds for round 0. Suppose in round
i-1, we have m ∈ [a, b]; according to Algorithm 5, after Step 2, we have sexact ∈
[s, s+ block]. sexact is defined as the s satisfies , sexactm ≤ rin+T and (sexact+
1)m > rin+ T . Obviously such sexact exist in [smin, smax]. Thus, in Algorithm
5 we have:

a′ =
⌈

rin+ T

s+ block + 1

⌉
≤

⌈
rin+ T

sexact + 1

⌉
< m

b′ =
⌊
rin+ T

s

⌋
≥

⌊
rin+ T

sexact

⌋
≥ m

Proof for Algorithm 4 works exactly the same way.

54 S. Gao, H. Chen, and L. Fan

Then we show in each round of our attack, m’s interval is narrowed down
as expected. In experiment, we find block = 17 provide a success rate larger
than 90%. Obviously, for m in [2B, 3B − 1], round 0 runs Step 2.b with r0 = 0
successfully. Suppose after round i-1, m’s interval is [a, b], denote t = b

a . In round
i, we need to prove s’s initial interval [smin, smax] is always larger than block+1.

In round i, if Step 2.b is executed,

smax − smin ≥ (rin+ T)× b− a

ab

>

((
1

t− 1
× T

n
− 1

)
n+ T

)
× b− a

ab

=
T

a
− n× b− a

ab
(5)

Since ri > ri−1, we also have

smax − smin ≥ (rin+ T)× b− a

ab

> (ri−1n+ T)× b− a

ab
+ n× b− a

ab
(6)

Since we have T
a > 2 (block + 1), from (5)(6), we can always prove smax−smin >

block + 1.
Otherwise, if Step 2.c is executed

smax − smin ≥ (rin+ T)× b − a

ab

>

((
1

t− 1
×
(
1− T

n

)
− T

n
− 1

)
n+ T

)
× b− a

ab

=
n− T

b
− n× t− 1

b
=

(2− t)× n− T

b
(7)

Since t < 1.5, (2 − t)n > 0.5n ,smax − smin > 63T
3B > block + 1.This completes

our correctness proof. ��

Complexity Analysis Complexity approximation is similar to our analysis in
Section 3.3. To make sure in round i Step 2.b is executed, we need ri− ri−1 > 1.

ri − ri−1 >
T

n
×

(
1

t− 1
− 1

t1 − 1

)
− 1 =

T

n
×
(

a

len
− a1

len1

)
− 1

>
aT

n
×
(

1

len
− d

len

)
− 1 =

T

n
× 1

t− 1
× (1− d)− 1 (8)

Since T
n ∈ (

1
256 ,

1
128

)
, in Step 2.b we have 1 − d ≥ 1

block+2 , while for Step

2.c,d < block+1
0.5n−T

b

< 0.003, 1− d > 0.997. 1
t−1 keeps increasing in our attack. Thus,

we have the same “turning point” as before, after which only Step 2.b will be
executed. Normally, only 1 or 2 round of Algorithm 5 is need.

Padding Oracle Attack on PKCS#1 v1.5 55

Now let’s consider how many oracle calls is needed for each round. Noted in
Section 3.1, both multiply 2 method and multiply 256 method have a “balanced”
interval. Roughly speaking, in narrow down process, sexact is most likely to
appear in the middle part of [smin, smax]. Duo to the facts that Algorithm 4 and
5 is “one-side-deterministic”, now sexact is most likely to appear in somewhere
near smin. Suppose for round i-1, we got new bounds for s as [snewmin, snewmax].
For a randomm, condition c) and d) can be satisfied with probability Pr (c&d) =
(
255
256

)8 (
1− (

255
256

)k−10
)
. For k = 128, this probability is close to 0.36. Thus, the

distribution sequence of sexact’s position should follow Table 2. Clearly this is a

Table 2. The distribution sequence of sexact’s position

sexact − snewmin 0 1 2 . . . q . . .

Probability 0.36 0.36 · 0.64 0.36 · 0.642 . . . 0.36 · 0.64q . . .

geometric distribution, with expectation of 1−0.36
0.36 = 1.78. We use slen denoted

the length of [smin, smax]. If in round i, slen is exactly the same as the length of
[snewmin, snewmax](a.k.a, block) in round i-1, at the most times, we only need to
search for less than 1.78 + 1 + block points for Algorithm 4 to find sexact’s new
lower bound. For Algorithm 4, roughly speaking, we have

slen = smax − smin ≈ (rin+ T)× b− a

ab
=

(
T

t− 1
+ T

)
× t− 1

at
=

T

a

which means slen is almost stable. In that case, d = block
T
a

is also stable. Choosing

the ri in Algorithm 4 enlarge [snewmin, snewmax] of round i-1 to [smin, smax] in
round i. This means the number of oracle calls in round i is roughly 1.78× 1

d +

d× T
a +1. In fact, this is why we favor Algorithm 4 over Algorithm 5. Although

Algorithm 4 has a neat form and larger r, we can see above that it always starts
searching for sexact from the “unlikely” upper side, which causes complexity
waste. For complexity approximation, we simply ignore the several rounds of
Algorithm 5 in the beginning. Thus, the overall complexity should be:

C (d) =

(
1.78× 1

d
+ d× T

a
+ 1

)
× logd

1

B

C(d) reaches its minimal at d = 0.08, increases for d > 0.08. In Algorithm 3, for
block = 17, even if we choose the largest r possible (like we did in our attack),we
cannot get a d = 0.08. Thus, the minimal of d lead to the minimal of the
complexity of our attack. With d = 0.175, we have C(d) around 11 thousands.

56 S. Gao, H. Chen, and L. Fan

C Pseudo-code for Algorithms in the Text

Algorithm 4. Narrow down process for PO that does not check the second byte

Require: Padding Oracle PO, ciphertext c, m’s current interval [a, b], r
compute the possible interval of s [smin, smax]
smin =

⌊
rn+T

b

⌋
, smax =

⌈
rn+T

a

⌉
fcount = 0,s = smin

while s ≤ smax do
c1 = se mod n;
if PO(c1)==T then

fcount← 0;
else

fcount++;
end if
if fcount > block then

break;
end if
s++;

end while
a′ =

⌈
rn+T

s

⌉
, b′ =

⌊
rn+T

s−block−1

⌋
return [a′, b′]

Algorithm 5. Another narrow down process for PO that does not check the
second byte

Require: Padding Oracle PO, ciphertext c, m’s current interval [a, b], r
compute the possible interval of s [smin, smax]
smin =

⌊
rn+T

b

⌋
, smax =

⌈
rn+T

a

⌉
s = smax

while PO(c1)==T do
s = s− 1;
c1 = se mod n;

end while
a′ =

⌈
rn+T

s+block+1

⌉
, b′ =

⌊
rn+T

s

⌋
return [a′, b′]

	Padding Oracle Attack on PKCS#1 v1.5: CanNon-standard Implementation Act as a Shelter?
	1 Introduction
	2 Padding Oracle Attacks on Standard PKCS#1 v1.5
	2.1 PKCS#1 v1.5
	2.2 Bleichenbacher’s Attack

	3 Padding Oracle Attacks on Non-standard PKCS#1 v1.5 Implementations
	3.1 Case 1: Implementation only Checks “the 0x00 Separator”
	3.2 Case 2: PO Checks All Conditions Expect for the Second Byte
	3.3 Other Non-standard Implementations

	4 Experimental Results
	5 Conclusion
	References

