
Private Outsourcing of Polynomial Evaluation

and Matrix Multiplication
Using Multilinear Maps

Liang Feng Zhang and Reihaneh Safavi-Naini

Institute for Security, Privacy and Information Assurance
Department of Computer Science

University of Calgary

Abstract. Verifiable computation (VC) allows a computationally weak
client to outsource evaluation of a function on many inputs to a pow-
erful but untrusted server. The client invests a large amount of off-line
computation to obtain an encoding of its function which is then given
to the server. The server returns both the evaluation of the function
on the client’s input and a proof with which the client can verify the
correctness of the evaluation using substantially less effort than doing
the evaluation on its own. We consider privacy preserving VC schemes
whose executions reveal no information on the client’s input or function
to the server. We construct VC schemes with input privacy for univariate
polynomial evaluation and matrix multiplication and then extend them
to achieve function privacy. Our main tool is the recently proposed mu-
tilinear maps. We show that the proposed VC schemes can be used to
implement verifiable outsourcing of private information retrieval (PIR).

1 Introduction

The rise of cloud computing in recent years has made outsourcing of storage and
computation a reality. There are many scenarios where outsourcing computation
will provide an attractive solution to the problem at hand. For example, large
computations have a severe impact on resources (e.g. battery) of weak clients and
outsourcing computation will provide an ideal way of freeing up the resources
of the client. A natural question however is how to trust the computation result
without trusting the server. The required assurance is not only against malicious
behavior of the server but also random faults in the server infrastructure that
can result in undetectable error in computation results. Verifiable computation
(VC) systems [16] provide such assurance for many scenarios where computation
must be delegated. The client in this model invests a large amount of off-line
computation and generates an encoding of its function f . Given this encoding
and any input α, the server computes and responds with y and a proof that
y = f(α). With the server’s response, the client can verify if the computation has
been carried out correctly using substantially less effort than computing f(α) on
its own. The client’s off-line computation cost is amortized over the evaluations

M. Abdalla, C. Nita-Rotaru, and R. Dahab (Eds.): CANS 2013, LNCS 8257, pp. 329–348, 2013.
c© Springer International Publishing Switzerland 2013



330 L.F. Zhang and R. Safavi-Naini

of f on multiple inputs α and will become negligible when computations of the
same function is required.

VC schemes were formally defined by Gennaro, Gentry and Parno [16] and
then constructed for a variety of computations [11,3,25,2,23,13,12]. We say that
a VC scheme is privacy preserving if its execution reveals no information on
the client’s input or function to the server. Protecting the client’s input and
function from the server is an essential requirement in many real-life scenarios.
For example, a health professional querying a database of medical records may
need to protect both the identity and the record of his patient. VC schemes with
input privacy have been considered in [16,2] where a generic function is written
as a circuit, and each gate is evaluated using a fully homomorphic encryption
scheme (FHE). These VC schemes evaluate the outsourced functions as circuits
and are costly in practice. However, the outsourced function is given to the server
in clear and so function privacy is not provided. Benabbas, Gennaro and Vahlis
[3] and several other works [13,12,23] design VC schemes for specific functions
without using FHE. One scheme of [3] even achieves function privacy. However,
they do not consider the input privacy.

1.1 Results and Techniques

In this paper, we consider privacy preserving VC schemes for specific function
evaluations without using FHE. The function evaluations we study include uni-
variate polynomial evaluation and matrix multiplication. Our privacy definition
is indistinguishability based and guarantees no untrusted server can distinguish
between different inputs or functions of the client. In privacy preserving VC
schemes both the client’s input and function must be hidden (e.g., encrypted)
from the server and the server must evaluate the hidden function on the hid-
den input and then generate a proof that the evaluation has been carried out
correctly. We note that such a proof can be generated using the non-interactive
proof or argument systems from [22,4] but they require the use of either ran-
dom oracle or knowledge of exponent (KoE) type assumptions, both of which
are considered as strong [23] and have been carefully avoided in VC literatures
[16,3,25].

We construct VC schemes for univariate polynomial evaluation and matrix
multiplication that achieve input privacy and then extend them such that the
function privacy is also achieved. Our main tool is the multilinear maps [14,15].
Recently, Garg, Gentry, and Halvei [14] proposed a candidate mechanism that
would approximate multilinear maps for many applications. The proposed in-
stantiation has generated much interest and promise of studying new construc-
tions using a multilinear map abstraction [15]. We use a framework of leveled
multilinear maps where one can call a group generator G(1λ, k) to obtain a se-
quence of groups G1, . . . , Gk of order N along with their generators g1, . . . , gk,
where N = pq for two λ-bit primes p and q. Slightly abusing notation, if i+j ≤ k,
we can compute a bilinear map operation on gai ∈ Gi, g

b
j ∈ Gj as e(g

a
i , g

b
j) = gabi+j .

These maps can be seen as implementing a k-multilinear map. We denote by

Γk = (N,G1, . . . , Gk, e, g1, . . . , gk)← G(1λ, k) (1)



Private Outsourcing of Polynomial Evaluation and Matrix Multiplication 331

a random k-multilinear map instance, where N = pq for two λ-bit primes p and
q. We start with the BGN encryption scheme (denoted by BGN2) of Boneh,
Goh and Nissim [6] which is based on Γ2 and semantically secure when the
subgroup decision assumption (abbreviated as SDA, see Definition 1) for Γ2

holds. It is well-known that BGN2 is both additively homomorphic and mul-
tiplicatively homomorphic, i.e., given BGN2 ciphertexts Enc(m1) and Enc(m2)
one can easily compute Enc(m1+m2) and Enc(m1m2). Furthermore, BGN2 sup-
ports an unlimited number of additive homomorphic operations: for any integer
k ≥ 2, given BGN2 ciphertexts Enc(m1), . . . ,Enc(mk) one can easily compute
Enc(m1 + · · ·+mk). This means one can easily compute Enc(f(α)) from Enc(α)
for any quadratic polynomial f(x). On the other hand, BGN2 supports only one
multiplicative homomorphic operation: one cannot compute Enc(m1m2m3) from
Enc(m1),Enc(m2) and Enc(m3). In particular, one cannot compute Enc(f(α))
from Enc(α) for any polynomial f(x) of degree ≥ 3. In Section 2.2, we introduce
BGNk, which is a generalization of BGN2 over Γk and semantically secure under
the SDA for Γk. BGNk supports both an unlimited number of additive homo-
morphic operations and up to k − 1 multiplicative homomorphic operations. As
a result, it allows us to compute Enc(f(α)) from Enc(α) for any degree-k poly-
nomial f(x). In our VC schemes, the client’s input and function are encrypted
using BGNk for a suitable k and the server computes on the ciphertexts.

Polynomial Evaluation. In Section 3.1 we propose a VC scheme Πpe with
input privacy (see Fig. 2) that allows the client to outsource the evaluation of
a degree n polynomial f(x) on any input α from a polynomial size domain D.
We use a polynomial commitment scheme proposed in [20] to construct a basic
VC scheme and then show how to convert it into a privacy preserving scheme.
The polynomial commitment scheme uses the algebraic property that there is a
polynomial c(x) of degree n−1 such that f(x)−f(α) = (x−α)c(x). The basic VC
scheme works as follows. Let e : G1×G1 → G2 be a bilinear map, where G1 and
G2 are cyclic groups of prime order p and G1 is generated by g1. In the basic VC

scheme, the client makes public t = g
f(s)
1 and gives pk = (g1, g

s
1, . . . , g

sn

1 , f(x))
to the server, where s is uniformly chosen from Zp. To verifiably compute f(α),
the client gives α to the server and the server returns ρ = f(α) along with a

proof π = g
c(s)
1 . Finally the client verifies if e(t/gρ1 , g1) = e(gs1/g

α
1 , π). The basic

VC scheme is secure under the SBDH assumption [20]. It is the univariate case
of the VC schemes for multivariate polynomial evaluation of [23].

In Πpe, the α should be hidden from the server (e.g., the client gives Enc(α) to
the server) which makes the server’s computation of ρ and π (as in the basic VC
scheme) impossible. Instead, the best one can expect is to compute a ciphertext
ρ = Enc(f(α)) from Enc(α) and f(x). This can be achieved if the underlying
encryption scheme Enc is an FHE which we want to avoid. On the other hand, a
proof π that the computation of ρ has been carried out correctly should be given
to the client. To the best of our knowledge, for generating such a proof π, one may
adopt the non-interactive proofs or arguments of [22,4] but those constructions
require the use of either random oracles or KoE type assumptions which we want
to avoid as well. Our idea is to adopt the multilinear maps [14,15] which allow



332 L.F. Zhang and R. Safavi-Naini

the server to homomorphically compute on Enc(α) and f(x) and then generate
ρ = Enc(f(α)). In Πpe, the client picks a (2k + 1)-multilinear map instance Γ

as in (1). It stores t = g
f(s)
1 and gives ξ = (g1, g

s
1, g

s2

1 . . . , gs
2k−1

1 ) and f(x) to
the server, where k = log�n+1�. It also sets up BGN2k+1. In order to verifiably
compute f(α), the client gives k ciphertexts σ = (σ1, . . . , σk) to the server and
the server returns ρ = Enc(f(α)) along with a proof π = Enc(c(s)), where

σ� = Enc(α2�−1

) for every 	 ∈ [k]. Note that f(α) and c(s) = (f(s)−f(α))/(s−α)
are both polynomials in α and s. In Section 2.2, we show how the server can
compute ρ and π from f(x), σ and ξ. Upon receiving (ρ, π), the client decrypts
ρ to y and verifies if e(t/gy1 , g

p
2k) = e(gs1/g

α
1 , π

p). We can show the security and
privacy of Πpe under the assumptions (2k+1, n)-MSDHS (see Definition 2) and
SDA (see Definition 1).

Matrix Multiplication. In Section 3.2 we propose a VC scheme Πmm with
input privacy (see Fig. 3) that allows the client to outsource the computation of
Mx for any n × n matrix M = (Mij) and vector x = (x1, . . . , xn). It is based
on the algebraic PRFs with closed form efficiency (firstly defined by [3]). In
Section 2.3, we present an algebraic PRF with closed form efficiency PRFdlin =
(KG,F) over a trilinear map instance Γ , where for any secret key K generated
by KG, FK is a function with domain [n]2 and range G1. In Πmm, the client
gives both M and its blinded version T = (Tij) to the server, where Tij =

g
p2aMij

1 ·FK(i, j) for every (i, j) ∈ [n]2 and a is randomly chosen from ZN and is
fixed for any (i, j) ∈ [n]2. It also sets up BGN3. In order to verifiably compute
Mx, the client stores τi =

�n
j=1 e(FK(i, j), g

pxj

2 ) for every i ∈ [n], where τi can
be efficiently computed using the closed form efficiency property of PRFdlin. It
gives the ciphertexts σ = (Enc(x1), . . . ,Enc(xn)) to the server and the server
returns ρi = Enc(

�n
j=1Mijxj) along with a proof πi =

�n
j=1 e(Tij ,Enc(xj))

for every i ∈ [n]. Upon receiving ρ = (ρ1, . . . , ρn) and π = (π1, . . . , πn), the
client can decrypt ρi to yi and verify if e(πi, g

p
1) = ηpyi · τi for every i ∈ [n],

where η = gp
2a

3 . Finally, we can show the security and privacy of Πmm under the
assumptions 3-co-CDHS (see Definition 5), DLIN (see Definition 5) and SDA.

Applications. Our VC schemes can be used to implement verifiable outsourcing
of private information retrieval (PIR) where a client stores a large database w
(which is modeled as a bit string w = w1 · · ·wn ∈ {0, 1}n) with the cloud and
later retrieves a bit without revealing which bit he is interested in. This is a
scenario that is well motivated by real life applications. For example a health
professional that stores a database of medical records with the cloud may want
to privately retrieve the record of a certain patient. Our VC schemes provide
easy solutions for outsourcing PIR. A client with database w can outsource a
polynomial f(x) to the cloud using Πpe, where f(i) = wi for every i ∈ [n]. The
client can also represent its database as a

√
n × √n matrix M = (Mij) and

outsource it to the cloud using Πmm. Retrieving any bit Mij can be reduced to

computing Mx for a 0-1 vector x ∈ {0, 1}√n whose j-th bit is 1 and all other
bits are 0. Our indistinguishability based definition of input privacy (see Fig. 1)
guarantees that the server cannot learn which bit the client is interested in.



Private Outsourcing of Polynomial Evaluation and Matrix Multiplication 333

Discussions. We note that decrypting ρ = Enc(f(α)) in Πpe requires com-
puting discrete logarithms (see Section 2.2). Hence, the f(α) should be from a
polynomial-size domainM since otherwise the client will not be able to decrypt ρ
and then verify its correctness. In fact, this is an inherent limitation of [6] and in-
herited by the generalized BGN encryption schemes. However, in Section 3.3 we
shall see that in many applications such as outsourcing PIR where f(α) ∈ {0, 1},
the limitation does not affect the applicability of our VC schemes in practice.
One may also argue that with f(x) and the knowledge of “f(α) ∈ M”, the server
may learn a polynomial size domain D where α is drawn from and therefore guess
α with non-negligible probability. We note that the input privacy (see Definition
9) achieved by Πpe is indistinguishability based and does not contradict to the
above argument. In Section 3.4, we show how to modify Πpe such that f(x) is
also hidden and therefore prevent the cloud from learning any information about
α. Discussions similar to above are also applicable to Πmm.

Extensions. In Section 3.4, we modify Πpe and Πmm such that the function
privacy is also achieved. In the modified schemes Π ′pe (see Fig. 4) and Π

′
mm (see

Fig. 5), the outsourced functions are encrypted and then given to the server.
The basic approach is to increase the multi-linearity by 1 such that both the
server and the client can compute on encrypted inputs and functions with one
more application of the multilinear map e. The modified schemes Π ′pe and Π

′
mm

achieve both input and function privacy.

1.2 Related Work

Verifiable computation can be traced back to the work on interactive proofs or
arguments [19,22]. In the context of VC, the non-interactive proofs or arguments
are much more desirable and have been considered in [22,4] for various compu-
tations. However, they use either random oracles or KoE type assumptions.

Gennaro, Gentry and Parno [16] constructed the first non-interactive VC
schemes without using random oracles or KoE type assumptions. Their con-
struction is based on the FHE and garbled circuits. Using FHE, Chung et al.
[11] proposed a VC scheme that requires no public key. Applebaum et al. [1]
reduced VC to suitable variants of secure multiparty computation protocols.
Barbosa et al. [2] also obtained VC schemes using delegatable homomorphic en-
cryption. Although the input privacy has been explicitly considered in [16,2],
those schemes evaluate the outsourced functions as circuits and are not efficient.
None of them provides function privacy.

Benabbas et al. [3] initiated a line of research on efficient VC schemes for
specific function (polynomial) evaluations based on algebraic PRFs with closed
form efficiency. In particular, one of their VC schemes achieves function privacy
but not input privacy. Parno et al. [25] initiated a line of research on public VC
schemes for evaluating Boolean formulas, where the correctness of the server’s
computation can be verified by any client. Using algebraic PRFs with closed form
efficiency, Fiore et al. [13,12] constructed public VC schemes for both polyno-
mial evaluation and matrix multiplication. Using the idea of polynomial commit-
ments [20], Papamanthou et al. [23] constructed public VC schemes that enable



334 L.F. Zhang and R. Safavi-Naini

efficient updates. The schemes of [3,25,13,12,23] do not provide input privacy.
Extensions of VC schemes to other different models have also been constructed
in [18,22,10,4,8,9]. However, none of them is privacy preserving.

Organization. In Section 2, we firstly review several cryptographic assump-
tions related to multilinear maps; then introduce a generalization of the BGN
encryption scheme [6]; we also recall algebraic PRFs with closed form efficiency
and the formal definition of VC. In Section 3, we present our VC schemes for
univariate polynomial evaluation and matrix multiplication. In Section 4, we
show applications of our VC schemes in outsourcing PIR. Section 5 contains
some concluding remarks.

2 Preliminaries

For any finite set A, the notation ω ← A means that ω is uniformly chosen from
A. Let λ be a security parameter. We denote by neg(λ) the class of functions
ε(·) that are negligible in λ, i.e., for every constant c > 0, ε(λ) < λ−c as long as
λ is large enough. We denote by poly(λ) the class of polynomial functions in λ.

2.1 Multilinear Maps and Assumptions

In this section, we review several cryptographic assumptions concerning multi-
linear maps. Given the Γk in (1) and x ∈ Gi, the subgroup decision problem in
Gi is deciding whether x is of order p or not, where i ∈ [k]. When k = 2, Boneh
et al. [6] suggested the Subgroup Decision Assumption (SDA) which says that
the subgroup decision problems in G1 and G2 are intractable. In this paper, we
make the same assumption but for a general integer k ≥ 2.

Definition 1. (SDA) We say that SDAi holds if for any probabilistic polynomial
time (PPT) algorithm A, |Pr[A(Γk, u) = 1]−Pr[A(Γk, u

q) = 1]| < neg(λ), where
the probabilities are taken over Γk ← G(1λ, k), u ← Gi and A’s random coins.
We say that SDA holds if SDAi holds for every i ∈ [k].

The k-Multilinear n-Strong Diffie-Hellman assumption ((k, n)-MSDH) was

suggested in [24]: Given gs1, g
s2

1 , . . . , g
sn

1 for some s ← ZN , it is difficult for any

PPT algorithm to find α ∈ ZN \ {−s} and output g
1/(s+α)
k .

Definition 2. ((k, n)-MSDH) For any PPT algorithm A, Pr
�
A(p, q, Γk, g1, g

s
1,

. . . , gs
n

1 ) = (α, g
1

s+α

k )
�
< neg(λ), where α ∈ ZN \ {−s} and the probability is

taken over Γk ← G(1λ, k), s← ZN and A’s random coins.

In the full version [26], we are able to construct a privacy preserving VC scheme
for univariate polynomial evaluation which is secure based on (k, n)-MSDH.
Under the (k, n)-MSDH assumption, the following lemma (see [26] for the proof)
shows that either one of the following two problems is difficult for any PPT

algorithm: (i) given g1, g
s
1, . . . , g

sn

1 for some s ← ZN , compute g
p/s
k ; (ii) given

g1, g
s
1, . . . , g

sn

1 for some s← ZN , compute g
q/s
k .



Private Outsourcing of Polynomial Evaluation and Matrix Multiplication 335

Lemma 1. If (k, n)-MSDH holds, then except for a negligible fraction of the k-
multilinear map instances Γk ← G(1λ, k), either Pr[A(p, q, Γk, g1, g

s
1, . . . , g

sn

1 ) =

g
p/s
k ] < neg(λ) for any PPT algorithm A or Pr[A(p, q, Γk, g1, g

s
1, . . . , g

sn

1 ) =

g
q/s
k ] < neg(λ) for any PPT algorithm A, where the probabilities are taken over
s← ZN and A’s random coins.

Due to Lemma 1, it looks reasonable to assume that (i) (resp. (ii)) is difficult.
Furthermore, under this slightly stronger assumption (i.e., (i) is difficult, called
(k, n)-MSDHS from now on), we can construct a VC scheme Πpe (see Fig. 2)
that is more efficient than the one based on (k, n)-MSDH. In this version, we
only present the scheme Πpe based on (k, n)-MSDHS.

Definition 3. ((k, n)-MSDHS) For any PPT algorithm A, Pr[A(p, q, Γk, g1, g
s
1,

. . . , gs
n

1 ) = g
p/s
k ] < neg(λ), where the probability is taken over Γk ← G(1λ, k),

s← ZN and A’s random coins.

The k-Multilinear Decision Diffie-Hellman assumption (k-MDDH) was sug-
gested in [14,15]: Given gs1, g

a1
1 , . . . , gak

1 ← G1, it is difficult for any PPT algo-
rithm to distinguish between gsa1···ak

k and h← Gk.

Definition 4. (k-MDDH) For any PPT algorithm A, |Pr[A(p, q, Γk, g
s
1, g

a1
1 , . . . ,

gak
1 , gsa1···ak

k ) = 1] − Pr[A(p, q, Γk, g
s
1, g

a1
1 , . . . , gak

1 , h) = 1]| < neg(λ), where the
probabilities are taken over Γk ← G(1λ, k), s, a1, . . . , ak ← ZN , h← Gk and A’s
random coins.

Let Γ3 = (N,G1, G2, G3, e, g1, g2, g3) ← G(1λ, 3) be a random trilinear map in-
stance. Let h1 = gp1 and h2 = gp2 . The trilinear co-Computational Diffie-Hellman
assumption for the order q Subgroups (3-co-CDHS) says that given ha1 ← G1

and hb2 ← G2, it is difficult for any PPT algorithm to compute hab2 .

Definition 5. (3-co-CDHS) For any PPT algorithm A, Pr[A(p, q, Γ3, h
a
1 , h

b
2) =

hab2 ] < neg(λ), where the probability is taken over Γ3 ← G(1λ, 3), a, b← ZN and
A’s random coins.

The following lemma shows that 3-co-CDHS is not a new assumption but weaker
than 3-MDDH (see [26] for the proof).

Lemma 2. If 3-MDDH holds, then 3-co-CDHS holds.

The Decision LINear assumption (DLIN) has been suggested in [5] for cyclic
groups that admit bilinear maps. In this paper, we use the DLIN assumption on
the groups of Γ3.

Definition 6. (DLIN) Let G be a cyclic group of order N = pq, where p, q
are λ-bit primes. For any PPT algorithm A, |Pr[A(p, q, u, v, w, ua, vb, wa+b) =
1]−Pr[A(p, q, u, v, w, ua, vb, wc) = 1]| < neg(λ), where the probabilities are taken
over u, v, w ← G, a, b, c← ZN and A’s random coins.



336 L.F. Zhang and R. Safavi-Naini

2.2 Generalized BGN Encryption

BGN2 [6] allows one to evaluate quadratic polynomials on encrypted inputs (see
Section 1.1). Boneh et al. [6] noted that this property arises from the bilinear map
and a k-multilinear map would enable the evaluation of degree-k polynomials on
encrypted inputs. Let M be a polynomial size domain, i.e. |M| = poly(λ). Below
we generalize BGN2 and define BGNk = (Gen,Enc,Dec) for any k ≥ 2, where

– (pk, sk) ← Gen(1λ, k) is a key generation algorithm. It picks Γk as in (1)
and then outputs both a public key pk = (Γk, g1, h) and a secret key sk = p,
where h = uq for u← G1.

– c ← Enc(pk,m) is an encryption algorithm which encrypts any message
m ∈M as a ciphertext c = gm1 h

r ∈ G1, where r ← ZN .
– m ← Dec(sk, c) is a decryption algorithm which takes as input sk and a

ciphertext c, and outputs a message m ∈M such that cp = (gp1)
m.

Note that all algorithms above are defined over G1 but in general they can be
defined over Gi for any i ∈ [k]. This can be done by setting pk = (Γk, gi, h) and
replacing any occurrence of g1 with gi, where h = uq for u← Gi. Similar to [6],
one can show that BGNk is semantically secure under the SDA.

Below we discuss useful properties of BGNk. For every integer 2 ≤ i ≤ k,
we define a map ei : G1 × · · · × G1 → Gi such that ei(g

a1
1 , . . . , gai

1 ) = ga1···ai

i

for any a1, . . . , ai ∈ ZN . Firstly, we shall see that BGNk allows us to com-
pute Enc(m1 · · ·mk) from Enc(m1), . . . ,Enc(mk). Suppose Enc(m�) = gm�

1 hr�

for every 	 ∈ [k], where h = gqδ1 for some δ ∈ ZN and r� ← ZN . Let hk =

ek(h, g1, . . . , g1) = gqδk . Then ek(Enc(m1), . . . ,Enc(mk)) = gmk h
r
k is a ciphertext

of m = m1 · · ·mk in Gk, where r =
1
qδ (

�k
�=1(m� + qδr�)−m).

Computing ρ with Reduced Multi-linearity Level. In Πpe, the client gives
a polynomial f(x) = f0+f1x+ · · ·+fnxn and k ciphertexts σ = (σ1, σ2, . . . , σk)

of α, α2, . . . , α2k−1

under BGN2k+1 to the server and the server returns ρ =
Enc(f(α)), where k = �log(n+ 1)�. Below we show how to compute the ρ using

σ and f(x). Suppose σ� = gα
2�−1

1 hr� for every 	 ∈ [k], where h = gqδ1 for some
δ ∈ ZN and r� ← ZN . Clearly, any i ∈ {0, 1, . . . , n} has a binary representation

(i1, . . . , ik) such that i =
�k

�=1 i�2
�−1. Then αi = αi1 · (α2)i2 · · · (α2k−1

)ik is the

product of i1 + · · · + ik elements of {α, α2, . . . , α2k−1}. For every 	 ∈ [k], let
φ� = σ� if i� = 1 and φ� = g1 otherwise. Then ρi � ek(φ1, . . . , φk) = gμi

k = gmk h
r
k

is a ciphertext of m = αi under BGN2k+1, where μi =
�k

�=1(α
2�−1

+ qδr�)
i� and

r = 1
qδ (μi −m). Thus, ρ =

�n
i=0 ρ

fi
i is a ciphertext of f(α) under BGN2k+1.

Computing π with Reduced Multi-linearity Level. In Πpe, k + 1 group

elements ξ = (g1, g
s
1, . . . , g

s2
k−1

1 ) are also known to the server as part of the pub-
lic key, where s ← ZN . The server must return π = Enc(c(s)) as the proof that
ρ = Enc(f(α)) has been correctly computed. Below we show how to compute π

using ξ and σ. Note that c(s) = (f(s)−f(α))/(s−α) = �n−1
i=0

�i
j=0 fi+1α

jsi−j .



Private Outsourcing of Polynomial Evaluation and Matrix Multiplication 337

It suffices to show how to compute πij � Enc(fi+1α
jsi−j) for every i ∈

{0, 1, . . . , n − 1} and j ∈ {0, 1, . . . , i}. Let (j1, . . . , jk), (i1, . . . , ik) ∈ {0, 1}k be
the binary representations of j and i− j, respectively. Let φ� = σ� if j� = 1 and

φ� = g1 otherwise. Let ψ� = gs
2�−1

1 if i� = 1 and ψ� = g1 otherwise. Then it is easy
to see that πij = e(ek(φ1, . . . , φk), ek(ψ1, . . . , ψk)) = g

νij
2k = gm2kh

r
2k is a cipher-

text of m = αjsi−j , where νij = si−j
�k

�=1(α
2�−1

+ qδr�)
j� , h2k = gqδ2k and r =

1
qδ (νij −m). Let ν =

�n−1
i=0

�i
j=0 fi+1νij . Thus, π � gν2k =

�n−1
i=0

�i
j=0 π

fi+1

ij =

Enc(c(s)).

2.3 Algebraic PRFs with Closed Form Efficiency

In Πmm, the client gives both a square matrix M = (Mij) of order n and its
blinded version T = (Tij) to the server. The computation of T requires an al-
gebraic PRF with closed form efficiency, which has very efficient algorithms for
certain computations on large data. Formally, an algebraic PRF with closed
form efficiency is a pair PRF = (KG,F), where KG(1λ, pp) generates a secret
key K from any public parameter pp and FK : I → G is a function with
domain I and range G (both specified by pp). We say that PRF has pseu-
dorandom property if for any pp and any PPT algorithm A, it holds that
|Pr[AFK(·)(1λ, pp) = 1]−Pr[AR(·)(1λ, pp) = 1]| < neg(λ), where the probabilities
are taken over the randomness of KG,A and the random function R : I → G.
Consider an arbitrary computation Comp that takes as input R = (R1, . . . , Rn) ∈
Gn and x = (x1, . . . , xn), and assume that the best algorithm to compute
Comp(R1, . . . , Rn, x1, . . . , xn) takes time t. Let z = (z1, . . . , zn) ∈ In. We say
that PRF has closed form efficiency for (Comp, z) if there is an efficient algo-
rithm CFE such that CFEComp,z(K,x) = Comp(FK(z1), . . . ,FK(zn), x1, . . . , xn)
and its running time is o(t).

A PRF with Closed Form Efficiency. Fiore et al. [13] constructed an alge-
braic PRF with closed form efficiency PRFdlin based on the DLIN assumption
for the bilinear groups. We generalize it over trilinear groups. In the generalized
setting, KG generates Γ3 ← G(1λ, 3), picks αi, βi ← ZN , Ai, Bi ← G1 for every
i ∈ [n], and outputs K = {αi, βi, Ai, Bi : i ∈ [n]}. The function FK maps any

pair (i, j) ∈ [n]2 to FK(i, j) = Aαi

j B
βi

j . The closed form efficiency of PRFdlin is de-
scribed as below. Let x = (x1, . . . , xn) ∈ Z

n
N . The computation Comp we consider

is computing
�n

j=1 FK(i, j)xj for all i ∈ [n]. Clearly, it requires Ω(n2) exponen-
tiations if no CFE is available. However, one can precompute A = Ax1

1 · · ·Axn
n

and B = Bx1
1 · · ·Bxn

n and have that
�n

j=1 FK(i, j)xj = AαiBβi for every i ∈ [n].

Computing AαiBβi requires 2 exponentiations and hence the PRFdlin has closed
form efficiency for (Comp, z), where z = {(i, j) : i, j ∈ [n]}. The PRFdlin in [13]
is pseudorandom merely based on the DLIN for bilinear groups. Similarly, the
generalized PRFdlin is also pseudorandom based on the DLIN assumption for
trilinear groups. Consequently, we have the following lemma.

Lemma 3. If DLIN holds in the trilinear setting, then PRFdlin is an algebraic
PRF with closed form efficiency.



338 L.F. Zhang and R. Safavi-Naini

2.4 Verifiable Computation

Verifiable computation [16,3,13] is a two-party protocol between a client and
a server, where the client gives encodings of its function f and input x to the
server, the server returns an encoding of f(x) along with a proof, and finally
the client efficiently verifies the server’s computation. Formally, a VC scheme
Π = (KeyGen,ProbGen,Compute,Verify) is defined by four algorithms, where

– (pk, sk)← KeyGen(1λ, f) takes as input a security parameter λ and a func-
tion f , and generates both a public key pk and a secret key sk;

– (σ, τ)← ProbGen(sk, x) takes as input the secret key sk and an input x, and
generates both an encoded input σ and a verification key τ ;

– (ρ, π) ← Compute(pk, σ) takes as input the public key pk and an encoded
input σ, and produces both an encoded output ρ and a proof π;

– {f(x),⊥} ← Verify(sk, τ, ρ, π) takes as input the secret key sk, the verifica-
tion key τ , the encoded output ρ and a proof π, and outputs either f(x) or
⊥ (which indicates that ρ is not valid).

Correctness. The scheme Π should be correct. Intuitively, the scheme Π is
correct if an honest server always outputs a pair (ρ, π) that gives the correct
computation result. Let F be a family of functions.

Definition 7. The scheme Π is said to be F -correct if for any f ∈ F , any
(pk, sk) ← KeyGen(1λ, f), any input x to f , any (σ, τ) ← ProbGen(sk, x), any
(ρ, π)← Compute(pk, σ), it holds that f(x) = Verify(sk, τ, ρ, π).

Experiment ExpVerA (Π,f, λ)

1. (pk, sk)← KeyGen(1λ, f);
2. for i = 1 to l = poly(λ) do
3. xi ← A(pk, x1, σ1, . . . , xi−1, σi−1);
4. (σi, τi)← ProbGen(sk, xi);
5. x̂← A(pk, x1, σ1, . . . , xl, σl)
6. (σ̂, τ̂ )← ProbGen(sk, x̂);
7. (ρ̄, π̄)← A(pk, x1, σ1, . . . , xl, σl, σ̂)
8. ȳ ← Verify(sk, τ̂ , ρ̄, π̄);
9. output 1 if ȳ /∈ {f(x̂),⊥} and 0 other-

wise.

Experiment ExpPriA (Π,f, λ)

1. (pk, sk)← KeyGen(1λ, f);
2. (x0, x1)← APubProbGen(sk,·)(pk);
3. b← {0, 1};
4. (σ, τ )← ProbGen(sk, xb);
5. b′ ← APubProbGen(sk,·)(pk, x0, x1, σ)
6. output 1 if b′ = b and 0 otherwise.

Remark: PubProbGen(sk, ·) takes as input
x, runs (σ, τ) ← ProbGen(sk, x) and re-

turns σ.

Fig. 1. Experiments for security and privacy [16]

Security. The scheme Π should be secure. As in [16], we say that the scheme
Π is secure if no untrusted server can cause the client to accept an incorrect
computation result with a forged proof. This intuition can be formalized by an
experiment ExpVerA (Π, f, λ) (see Fig. 1) where the challenger plays the role of the
client and the adversary A plays the role of the untrusted server.

Definition 8. The scheme Π is said to be F -secure if for any f ∈ F and any
PPT adversary A, it holds that Pr[ExpVerA (Π, f, λ) = 1] < neg(λ).



Private Outsourcing of Polynomial Evaluation and Matrix Multiplication 339

Privacy. The client’s input should be hidden from the server in Π . As in [16], we
define input privacy based on the intuition that no untrusted server can distin-
guish between different inputs of the client. This is formalized by an experiment
ExpPriA (Π, f, λ) (see Fig. 1) where the challenger plays the role of the client and
the adversary A plays the role of the untrusted server.

Definition 9. The scheme Π is said to achieve input privacy if for any function
f ∈ F , any PPT algorithm A, it holds that Pr[ExpPriA (Π, f, λ) = 1] < neg(λ).

Efficiency. The algorithms ProbGen and Verify will be run by the client for
each evaluation of the outsourced function f . Their running time should be
substantially less than evaluating f .

Definition 10. The scheme Π is said to be outsourced if for any f ∈ F and
any input x to f , the running time of ProbGen and Verify is o(t), where t is the
time required to compute f(x).

3 Our Schemes

3.1 Univariate Polynomial Evaluation

In this section, we present our VC scheme Πpe with input privacy (see Fig. 2)
for univariate polynomial evaluation. In Πpe, the client outsources a degree n
polynomial f(x) = f0 + f1x+ · · ·+ fnx

n ∈ Zq[x] to the server and may evaluate
f(α) for any input α ∈ D ⊆ Zq, where q is a λ-bit prime not known to the server
and |D| = poly(λ). Our scheme uses a (2k+ 1)-multilinear map instance Γ with
groups of order N = pq, where k = �log(n+ 1)� and p is also a λ-bit prime not

known to the server. The client stores t = g
f(s)
1 and gives (gs1, g

s2

1 . . . , gs
2k−1

1 , f)
to the server, where s ← ZN . It also sets up BGN2k+1 based on Γ . In order to
verifiably compute f(α), the client gives σ = (σ1, . . . , σk) to the server and the

server returns ρ = Enc(f(α)) along with π = Enc(c(s)), where σ� = Enc(α2�−1

)
for every 	 ∈ [k] and (ρ, π) is computed using the techniques in Section 2.2. At
last, the client decrypts ρ to y and verifies if the equation (2) holds.

Correctness. The correctness of Πpe requires that the client always outputs
f(α) as long as the server is honest, i.e., y = f(α) and (2) holds. It is shown by
the following lemma (see [26] for the proof).

Lemma 4. If the server is honest, then y = f(α) and (2) holds.

Security. The security of Πpe requires that no untrusted server can cause the
client to accept a value ȳ �= f(α) with a forged proof. It is based on the (2k+1, n)-
MSDHS assumption (see Definition 2).

Lemma 5. If (2k + 1, n)-MSDHS holds for Γ , then the scheme Πpe is secure.

Proof. Suppose that Πpe is not secure. Then there is a PPT adversary A that
breaks its security with non-negligible probability ε1. We shall construct a PPT
simulator B that simulates A and breaks the (2k + 1, n)-MSDHS for Γ .



340 L.F. Zhang and R. Safavi-Naini

– KeyGen(1λ, f(x)): Pick Γ = (N,G1, . . . , G2k+1, e, g1, . . . , g2k+1)← G(1λ, 2k+1).

Pick s ← ZN and compute t = g
f(s)
1 . Pick u ← G1 and compute h = uq , where

u = gδ1 for an integer δ ∈ ZN . Set up BGN2k+1 with public key (Γ, g1, h) and

secret key p. Output sk = (p, q, s, t) and pk = (Γ, g1, h; g
s
1, g

s2

1 , . . . , gs
2k−1

1 ; f).

– ProbGen(sk,α): For every � ∈ [k], pick r� ← ZN and compute σ� = gα
2�−1

1 hr� .
Output σ = (σ1, . . . , σk) and τ =⊥ (τ is not used).

– Compute(pk, σ): Compute ρi = gμi
k for every i ∈ {0, 1, . . . , n} using the tech-

nique in Section 2.2. Compute ρ =
�n

i=0
ρfii . Compute πij = g

νij
2k for every

i ∈ {0, 1, . . . , n − 1} and j ∈ {0, 1, . . . , i} using the technique in Section 2.2.

Compute π =
�n−1

i=0

�i

j=0
π
fi+1

ij . Output ρ and π.

– Verify(sk, τ, ρ, π): Compute the y ∈ Zq such that ρp = (gpk)
y. If

e
�
t/gy1 , g

p
2k

�
= e

�
gs1/g

α
1 , π

p
�
, (2)

then output y; otherwise, output ⊥.

Fig. 2. Univariate polynomial evaluation (Πpe)

The simulator B takes as input (p, q, Γ, g1, g
s
1, . . . , g

sn

1 ), where s ← ZN . The

simulator B is required to output g
p/s
2k+1. In order to do so, B simulates A as

below:

(A) Pick a polynomial f(x) = f0 + f1x + · · · + fnx
n ∈ Zq[x]. Pick u ← G1,

compute h = uq and set up BGN2k+1 with public key (Γ, g1, h) and secret key
p. Pickβ ← D and implicitly set ŝ = s+β (ŝ is not known toB).MimicKeyGen

by sending pk = (Γ, g1, h, g
ŝ
1, g

ŝ2

1 . . . , gŝ
2k−1

1 , f) toA (note thatB can compute

gŝ
2�−1

1 for every 	 ∈ [k] based on the knowledge of β and g1, g
s
1, . . . , g

sn

1 ). Set

sk = (p, q, t), where t = g
f(ŝ)
1 (note that sk does not include ŝ as a component

because ŝ is neither known to B nor used by B);
(B) Upon receiving α ∈ D from A, mimic ProbGen as below: pick r� ← ZN and

compute σ� = gα
2�−1

1 hr� for every 	 ∈ [k]; send σ = (σ1, . . . , σk) to A.
It is trivial to verify that the pk and σ generated by B are identically distributed
to those generated by the client in an execution of Πpe. We remark that (A)

is the step 1 in ExpVerA (Π, f, λ) (see Fig. 1) and (B) consists of steps 3 and 4
in ExpVerA (Π, f, λ). Furthermore, (B) may be run l = poly(λ) times as described
by step 2 of ExpVerA (Π, f, λ). After l executions of (B), the adversary A will
provide an input α̂ on which he is willing to be challenged. If α̂ �= β, then the
simulator B aborts; otherwise, it continues. Note that both β and α̂ are from the
same polynomial size domain D, the event that α̂ = β will occur with probability
ε2 ≥ 1/|D|, which is non-negligible. If the simulator B does not abort, it next runs
(σ̂, τ̂)← ProbGen(sk, α̂) and gives A an encoded input σ̂. Then the adversary A
may maliciously reply with (ρ̄, π̄) such that Verify(sk, τ̂ , ρ̄, π̄) � ȳ /∈ {f(α̂),⊥}.
On the other hand, an honest server inΠpe will reply with (ρ̂, π̂). Due to Theorem

4, it must be the case that Verify(sk, τ̂ , ρ̂, π̂) � ŷ = f(α̂). Note that the event



Private Outsourcing of Polynomial Evaluation and Matrix Multiplication 341

that ȳ /∈ {f(α̂),⊥} occurs with probability ε1. Suppose the event ȳ /∈ {f(α̂),⊥}
occurs, then the equation (2) is satisfied by both (ȳ, π̄) and (ŷ, π̂), i.e.,

e
�
t/gȳ1 , g

p
2k

�
= e

�
gŝ1/g

α̂
1 , π̄

p
�
and e

�
t/gŷ1 , g

p
2k

�
= e

�
gŝ1/g

α̂
1 , π̂

p
�
. (3)

The equalities in (3) imply that e
�
gȳ−ŷ1 , gp2k

�
= e

�
gŝ−α̂1 ,

�
π̂/π̄

�p�
. Hence,

g
p

ŝ−α̂

2k+1 = e
�
g1,

�
π̂/π̄

�p� 1
ȳ−ŷ

. (4)

Note that the left hand side of (4) is g
p/s
2k+1 due to β = α̂. Therefore, (4) means

that the simulator B can break the (2k + 1, n)-MSDHS assumption (Definition
3) with probability ε = ε1ε2, which is non-negligible and contradicts to the
(2k+1, n)-MSDHS assumption. Hence, under the (2k+1, n)-MSDHS assumption,
ε1 must be negligible in λ, i.e., the scheme Πpe is secure.

Privacy. The input privacy of Πpe requires that no untrusted server can dis-
tinguish between different inputs of the client. This is formally defined by the
experiment ExpPriA (Π, f, λ) in Fig. 1. The client in our VC scheme encrypts its
input α using BGN2k+1 which is semantically secure under SDA for Γ . As a
result, our VC scheme achieves input privacy under SDA for Γ (see [26] for the
proof of the following lemma).

Lemma 6. If SDA holds for Γ , then the scheme Πpe achieves the input privacy.

Efficiency. In order to verifiably compute f(α) with the cloud, the client com-
putes k = �log(n + 1)� ciphertexts σ1, . . . , σk under BGN2k+1 in the execution
of ProbGen; it also decrypts one ciphertext ρ = Enc(f(α)) under BGN2k+1 and
then verifies the equation (2). The overall computation of the client will be
O(log n) = o(n) and therefore Πpe is outsourced. On the other hand, the server
needs to perform O(n2 logn) multilinear map computations and O(n2) exponen-
tiations in each execution of Compute, which is comparable with the VC schemes
based on FHE. Based on Lemmas 4, 5, 6 and the efficiency analysis, we have the
following theorem.

Theorem 1. If the (2k + 1, n)-MSDHS and SDA assumptions for Γ both hold,
then Πpe is a VC scheme with input privacy.

3.2 Matrix Multiplication

In this section, we present our VC scheme Πmm with input privacy (see Fig.
3) for matrix multiplication. In Πmm, the client outsources an n × n matrix
M = (Mij) over Zq to the server and may compute Mx for an input vector
x = (x1, . . . , xn) ∈ D ⊆ Z

n
q , where q is a λ-bit prime not known to the server

and |D| = poly(λ). Our scheme uses a trilinear map instance Γ with groups of
order N = pq, where p is also a λ-bit prime not known to the server. In Πmm, the
client gives both M and its blinded version T = (Tij) to the server, where T is
computed using the PRFdlin. It also sets up BGN3. In order to verifiably compute



342 L.F. Zhang and R. Safavi-Naini

– KeyGen(1λ,M): Pick a trilinear map instance Γ = (N,G1, G2, G3, e, g1, g2, g3)←
G(1λ, 3). Consider the PRFdlin in Section 2.3. Run KG(1λ, n) and pick a secret

key K. Pick a← ZN and compute Tij = g
p2aMij

1 · FK(i, j) for every (i, j) ∈ [n]2.
Pick u ← G1 and compute h = uq . Set up BGN3 with public key (Γ, g1, h)
and secret key p. Output sk = (p, q,K, a, η) and pk = (Γ, g1, h,M, T ), where

η = gp
2a

3 .
– ProbGen(sk, x): For every j ∈ [n], pick rj ← ZN and compute σj = g

xj

1 hrj .
For every i ∈ [n], compute τi = e(

�n

j=1
FK(i, j)xj , gp2) using the efficient CFE

algorithm in Section 2.3. Output σ = (σ1, . . . , σn) and τ = (τ1, . . . , τn).

– Compute(pk, σ): Compute ρi =
�n

j=1
σ
Mij

j and πi =
�n

j=1
e(Tij , σj) for every

i ∈ [n]. Output ρ = (ρ1, . . . , ρn) and π = (π1, . . . , πn).
– Verify(sk, τ, ρ, π): For every i ∈ [n], compute yi such that ρpi = (gp1)

yi . If

e(πi, g
p
1) = ηpyi · τi (5)

for every i ∈ [n], then output y = (y1, . . . , yn); otherwise output ⊥.

Fig. 3. Matrix multiplication (Πmm)

Mx, the client stores τ = (τ1, . . . , τn), where each τi is efficiently computed using
the closed form efficiency property of PRFdlin. It gives σ = (Enc(x1), . . . ,Enc(xn))
to the server and the server returns ρ = (ρ1, . . . , ρn) = Enc(Mx) along with
π = (π1, . . . , πn). At last, the client decrypts ρi to yi and verify if (5) holds for
every i ∈ [n].

Correctness. The correctness of Πmm requires that the client always outputs
Mx as long as the server is honest, i.e., y =Mx and (5) holds for every i ∈ [n].
It is shown by the following lemma (see [26] for the proof).

Lemma 7. If the server is honest, then y =Mx and (5) holds for every i ∈ [n].

Security. The security of Πmm requires that no untrusted server can cause the
client to accept ȳ /∈ {Mx,⊥} with a forged proof. It is based on the 3-co-CDHS
assumption for Γ (Lemma 2) and the DLIN assumption (Definition 6).

Lemma 8. If the 3-co-CDHS assumption for Γ and the DLIN assumption both
hold, then the scheme Πmm is secure.

Proof. We define three games G0,G1 and G2 as below:

G0 : this is the standard security game ExpVerA (Π,M, λ) defined in Fig. 1.
G1 : the only difference between this game and G0 is a change to ProbGen. For

any (x1, . . . , xn) queried by the adversary, instead of computing τ using
the efficient CFE algorithm, the inefficient evaluation of τi is used, i.e.,
τi =

�n
j=1 e(FK(i, j)xj , gp2) for every i ∈ [n].

G2 : the only difference between this game and G1 is that the matrix T is com-

puted as Tij = g
p2aMij

1 · Rij , where Rij ← G1 for every i, j ∈ [n].



Private Outsourcing of Polynomial Evaluation and Matrix Multiplication 343

For every i ∈ {0, 1, 2}, we denote by Gi(A) the output of game i when it is run
with an adversary A. The proof of the theorem proceeds by a standard hybrid
argument, and is obtained by combining the proofs of the following three claims.

Claim 1. We have that Pr[G0(A) = 1] = Pr[G1(A) = 1].
The only difference between G1 and G0 is in the computation of τ . Due to the

correctness of the CFE algorithm, such difference does not change the distribution
of the values τ returned to the adversary. Therefore, the probabilities thatA wins
in both games are identical.

Claim 2. We have that |Pr[G1(A) = 1]− Pr[G2(A) = 1]| < neg(λ).
The only difference between G2 and G1 is that we replace the pseudorandom

group elements FK(i, j) with truly random group elements Rij ← G1 for every
i, j ∈ [n]. Clearly, if |Pr[G1(A) = 1] − Pr[G2(A) = 1]| is non-negligible, we
can construct an simulator B that simulates A and breaks the pseudorandom
property of PRF with a non-negligible advantage.

Claim 3. We have that Pr[G2(A) = 1] < neg(λ).
Suppose that there is a PPT adversary A that wins with non-negligible prob-

ability ε in G2. We want to construct a PPT simulator B that simulates A and
breaks the 3-co-CDHS assumption (see Definition 5) with non-negligible prob-

ability. The adversary B takes as input a tuple (p, q, Γ, hα1 , h
β
2 ), where h1 =

gp1 , h2 = gp2 and α, β ← ZN . The adversary B is required to output hαβ2 . In order
to do so, B simulates A as below:

(A) Pick an n× n matrix M and mimic the KeyGen of game G2 as below:

– implicitly set a = αβ by computing η = e(hα1 , h
β
2 ) = gp

2αβ
3 ;

– pick u← G1, compute h = uq and set up BGN3 with public key (Γ, g1, h)
and secret key p;

– pick Tij ← G1 for every i, j ∈ [n] and send pk = (Γ, g1, h,M, T ) to A,
where T = (Tij);

(B) Upon receiving a query x = (x1, . . . , xn) from A, mimic ProbGen as below:

– for every j ∈ [n], pick rj ← ZN and compute σj = g
xj

1 hrj ;
– for every i, j ∈ [n], compute Zij = e(Tij , g

pxj

2 )/ηpMijxj ;
– for every i ∈ [n], compute τi =

�n
j=1 Zij ;

– send σ = (σ1, . . . , σn) to A.
It is straightforward to verify that the pk, σ and τ generated by B are identically
distributed to those generated by the client in game G2. We remark that (A) is
the step 1 in ExpVerA (Π,M, λ) (see Fig. 1) and (B) consists of steps 3 and 4 in
ExpVerA (Π,M, λ). Furthermore, (B) may be run l = poly(λ) times as described
by step 2 of ExpVerA (Π,M, λ). After l executions of (B), the adversary A will
provide an input x̂ = (x̂1, . . . , x̂n) on which he is willing to be challenged. Upon
receiving x̂, the simulator B mimics ProbGen as (B) and gives A an encoded
input σ̂. Then the adversary A may maliciously reply with ρ̄ = (ρ̄1, . . . , ρ̄n)
and π̄ = (π̄1, . . . , π̄n) such that Verify(sk, τ̂ , ρ̄, π̄) � ȳ /∈ {Mx̂,⊥}. On the other
hand, an honest server in our VC scheme will reply with ρ̂ = (ρ̂1, . . . , ρ̂n) and
π̂ = (π̂1, . . . , π̂n). Due to Lemma 7, it must be the case that Verify(sk, τ̂ , ρ̂, π̂) �



344 L.F. Zhang and R. Safavi-Naini

ŷ = Mx̂. Note that the event ȳ /∈ {Mx̂,⊥} occurs with probability ε. Suppose
it occurs. Then there is an integer i ∈ [n] such that ȳi �= ŷi. Note that neither
ȳ nor ŷ is ⊥, the equation (5) must be satisfied by both (ȳ, π̄) and (ŷ, π̂), which
translates into e(π̄i, g

p
1) = ηpȳi · τ̂i and e(π̂i, gp1) = ηpŷi · τ̂i, we have that

e(π̂i/π̄i, g
p
1) = ηp(ŷi−ȳi) = e(g

p2αβ(ŷi−ȳi)
2 , gp1),

which in turn implies that π̂i/π̄i = g
pαβ·p(ŷi−ȳi)
2 . Let φ ∈ Z

∗
q be the multiplicative

inverse of p(ŷi − ȳi) ∈ Z
∗
q . Then gpαβ2 = (π̂i/π̄i)

φ, i.e., hαβ2 = (π̂i/π̄i)
φ, which

implies that B can break the 3-co-CDHS with probability at least ε. Therefore,
this ε must be negligible in λ, i.e., Pr[G2(A) = 1] < neg(λ).

Privacy. The input privacy of Πmm requires that no untrusted server can dis-
tinguish between different inputs of the client. This is formally defined by the
experiment ExpPriA (Π, f, λ) in Fig. 1. The client in our VC scheme encrypts its
input x using BGN3 which is semantically secure under SDA for Γ . As a result,
Πmm achieves input privacy under SDA for Γ (see [26] for the proof).

Lemma 9. If the SDA for Γ holds, then Πmm achieves the input privacy.

Efficiency. In order to verifiably compute Mx with the cloud, the client com-
putes n ciphertexts σ1, . . . , σk under BGN3 and n verification keys τ1, . . . , τn
in the execution of ProbGen; it also decrypts n ciphertext ρ = Enc(Mx) under
BGN3 and then verifies the equation (5). The overall computation of the client
will be O(n) = o(n2) and therefore Πpe is outsourced. On the other hand, the
server needs to perform O(n2) multilinear map computations and O(n) exponen-
tiations in each execution of Compute, which is comparable with the VC schemes
based on FHE. Based on Lemmas 7, 8, 9 and the efficiency analysis, we have the
following theorem.

Theorem 2. If the 3-co-CDHS, DLIN and SDA assumptions for Γ all hold,
then Πmm is a VC scheme with input privacy.

3.3 Discussions

A theoretical limitation of our VC schemesΠpe andΠmm is that the computation
results (i.e., f(α) and Mx) must belong to a polynomial size domain M since
otherwise the client will not be able to decrypt ρ and then verify its correctness.
However, we stress that this is not a real limitation when we apply both schemes
in outsourcing PIR (see Section 4) where the computation results are either 0
or 1. On the other hand, with f(x) and the knowledge “f(α) ∈ M” (resp. M
and the knowledge “Mx ⊆ M”), one may argue that the cloud can also learn
a polynomial size domain D where α (resp. Mx) is drawn from and therefore
guess the actual value of α (resp. x) with non-negligible probability. However,
recall that our privacy experiment ExpPriA (Π, f, λ) in Fig. 1 only requires the
indistinguishability of different inputs. This is achieved byΠpe andΠmm (though
for polynomial size domains) and suffices for our applications. Furthermore, in



Private Outsourcing of Polynomial Evaluation and Matrix Multiplication 345

Section 3.4, we shall show how to modify Πpe and Πmm such that the functions
(i.e., f(x) and M) are encrypted and then given to the cloud. As a consequence,
the cloud learns no information on either the outsourced function or input unless
it can break the underlying encryption scheme.

3.4 Function Privacy

Note that Πpe and Πmm only achieve input privacy. We say that a VC scheme
achieves function privacy if the server cannot learn any information about the
outsourced function. A formal definition of function privacy can be given using
an experiment similar to ExpPriA (Π, f, λ). Both Πpe and Πmm can be modified
such that function privacy is also achieved. In the modified VC scheme Π ′pe
(see Fig. 4 in Appendix A), the client gives BGN2k+2 ciphertexts Enc(f) =

(Enc(f0), . . . ,Enc(fn)) and σ = (Enc(α), . . . ,Enc(α2k−1

)) to the server. Then the
server can compute ρ = Enc(f(α)) along with a proof π = Enc(c(s)) using Enc(f)
and σ. In the modified VC scheme Π ′mm (see Fig. 5 in Appendix A), the client
gives BGN3 ciphertexts Enc(M) = (Enc(Mij)) and σ = (Enc(x1), . . . ,Enc(xn))
to the server. Then the server can compute Enc(

�n
j=1Mijxj) along with a proof

πi using Enc(M) and σ for every i ∈ [n]. It is not hard to prove that the schemes
Π ′pe and Π ′mm are secure and achieve both input and function privacy.

4 Applications

Our VC schemes have application in outsourcing private information retrieval
(PIR). PIR [21] allows a client to retrieve any bit wi of a databasew = w1 · · ·wn ∈
{0, 1}n from a remote server without revealing i to the server. In a trivial solu-
tion of PIR, the client simply downloads w and extracts wi. The main drawback
of this solution is its prohibitive communication cost (i.e. n). In [21,7,17], PIR
schemes with non-trivial communication complexity o(n) have been constructed
based on various cryptographic assumptions. However, all of them assume that
the server is honest-but-curious. In real-life scenarios, the server may have strong
incentive to give the client an incorrect response. Such malicious behaviors may
cause the client to make completely wrong decisions in its economic activities
(say the client is retrieving price information from a stock database and decid-
ing in which stock it is going to invest). Therefore, PIR schemes that are secure
against malicious severs are very interesting. In particular, outsourcing PIR to
untrusted clouds in the modern age of cloud computing is very interesting. Both
of our VC schemes can provide easy solutions in outsourcing PIR. Using Πpe, the
client can outsource a degree n polynomial f(x) to the cloud, where f(i) = wi for
every i ∈ [n]. To privately retrieve wi, the client can execute Πpe with input i. In
this solution, the communication cost consists of O(log n) group elements. Using
Πmm, the client can represent the w as a square matrix M = (Mij) of order√
n and delegate M to the cloud. To privately retrieve a bit Mij , the client can

execute Πmm with input x ∈ {0, 1}√n, where xj = 1 and all the other bits are
0. In this solution, the communication cost consists of O(

√
n) group elements.



346 L.F. Zhang and R. Safavi-Naini

Note that in our outsourced PIR schemes, the computation results always belong
to {0, 1} ⊆ M. Therefore, the theoretical limitation we discussed in Section 3.3
does not really affect the application of our VC schemes in outsourcing PIR.

5 Conclusions

In this paper, we constructed privacy preserving VC schemes for both univariate
polynomial evaluation and matrix multiplication, which have useful applications
in outsourcing PIR. Our main tools are the recently developed multilinear maps.
A theoretical limitation of our constructions is that the results of the computa-
tions should belong to a polynomial-size domain. Although this limitation does
not really affect their applications in outsourcing PIR, it is still interesting to re-
move it in the future works. We also note that our VC schemes are only privately
verifiable. It is also interesting to construct privacy preserving VC schemes that
are publicly verifiable.

Acknowledgement. This research was in part supported by Alberta Innovates
Technology Future, Alberta, Canada.

References

1. Applebaum, B., Ishai, Y., Kushilevitz, E.: From Secrecy to Soundness: Efficient
Verification via Secure Computation. In: Abramsky, S., Gavoille, C., Kirchner, C.,
Meyer auf der Heide, F., Spirakis, P.G. (eds.) ICALP 2010. LNCS, vol. 6198, pp.
152–163. Springer, Heidelberg (2010)

2. Barbosa, M., Farshim, P.: Delegatable Homomorphic Encryption with Applications
to Secure Outsourcing of Computation. In: Dunkelman, O. (ed.) CT-RSA 2012.
LNCS, vol. 7178, pp. 296–312. Springer, Heidelberg (2012)

3. Benabbas, S., Gennaro, R., Vahlis, Y.: Verifiable Delegation of Computation over
Large Datasets. In: Rogaway, P. (ed.) CRYPTO 2011. LNCS, vol. 6841, pp. 111–
131. Springer, Heidelberg (2011)

4. Bitansky, N., Canetti, R., Chiesa, A., Tromer, E.: From Extractable Collision Re-
sistance to Succinct Non-Interactive Arguments of Knowledge, and Back Again.
In: ITCS 2012, pp. 326–349 (2012)

5. Boneh, D., Boyen, X., Shacham, H.: Short Group Signatures. In: Franklin, M. (ed.)
CRYPTO 2004. LNCS, vol. 3152, pp. 41–55. Springer, Heidelberg (2004)

6. Boneh, D., Goh, E.-J., Nissim, K.: Evaluating 2-DNF Formulas on Ciphertexts.
In: Kilian, J. (ed.) TCC 2005. LNCS, vol. 3378, pp. 325–341. Springer, Heidelberg
(2005)

7. Cachin, C., Micali, S., Stadler, M.A.: Computationally Private Information Re-
trieval with Polylogarithmic Communication. In: Stern, J. (ed.) EUROCRYPT
1999. LNCS, vol. 1592, pp. 402–414. Springer, Heidelberg (1999)

8. Canetti, R., Riva, B., Rothblum, G.: Practical Delegation of Computation Using
Multiple Servers. In: CCS 2011, pp. 445–454 (2011)

9. Choi, S.G., Katz, J., Kumaresan, R., Cid, C.: Multi-Client Non-Interactive Verifi-
able Computation. In: Sahai, A. (ed.) TCC 2013. LNCS, vol. 7785, pp. 499–518.
Springer, Heidelberg (2013)



Private Outsourcing of Polynomial Evaluation and Matrix Multiplication 347

10. Chung, K.-M., Kalai, Y.T., Liu, F.-H., Raz, R.: Memory Delegation. In: Rogaway,
P. (ed.) CRYPTO 2011. LNCS, vol. 6841, pp. 151–168. Springer, Heidelberg (2011)

11. Chung, K.-M., Kalai, Y., Vadhan, S.: Improved Delegation of Computation Us-
ing Fully Homomorphic Encryption. In: Rabin, T. (ed.) CRYPTO 2010. LNCS,
vol. 6223, pp. 483–501. Springer, Heidelberg (2010)

12. Catalano, D., Fiore, D., Gennaro, R., Vamvourellis, K.: Algebraic (Trapdoor) One
Way Functions and Their Applications. In: Sahai, A. (ed.) TCC 2013. LNCS,
vol. 7785, pp. 680–699. Springer, Heidelberg (2013)

13. Fiore, D., Gennaro, R.: Publicly Verifiable Delegation of Large Polynomials and
Matrix Computations, with Applications. In: CCS 2012, pp. 501–512 (2012)

14. Garg, S., Gentry, C., Halevi, S.: Candidate Multilinear Maps from Ideal Lattices.
In: Johansson, T., Nguyen, P.Q. (eds.) EUROCRYPT 2013. LNCS, vol. 7881, pp.
1–17. Springer, Heidelberg (2013)

15. Garg, S., Gentry, C., Halevi, S., Sahai, A., Waters, B.: Attribute-Based Encryption
for Circuits from Multilinear Maps. In: Canetti, R., Garay, J.A. (eds.) CRYPTO
2013, Part II. LNCS, vol. 8043, pp. 479–499. Springer, Heidelberg (2013)

16. Gennaro, R., Gentry, C., Parno, B.: Non-Interactive Verifiable Computing: Out-
sourcing Computation to Untrusted Workers. In: Rabin, T. (ed.) CRYPTO 2010.
LNCS, vol. 6223, pp. 465–482. Springer, Heidelberg (2010)

17. Gentry, C., Ramzan, Z.: Single-Database Private Information Retrieval with
Constant Communication Rate. In: Caires, L., Italiano, G.F., Monteiro, L.,
Palamidessi, C., Yung, M. (eds.) ICALP 2005. LNCS, vol. 3580, pp. 803–815.
Springer, Heidelberg (2005)

18. Goldwasser, S., Kalai, Y.T., Rothblum, G.N.: Delegating Computation: Interactive
Proofs for Muggles. In: STOC 2008, pp. 113–122 (2008)

19. Goldwasser, S., Micali, S., Rackoff, C.: The Knowledge Complexity of Interactive
Proof Systems. In: STOC 1985, pp. 186–208 (1985)

20. Kate, A., Zaverucha, G.M., Goldberg, I.: Constant-Size Commitments to Polynomi-
als and Their Applications. In: Abe, M. (ed.) ASIACRYPT 2010. LNCS, vol. 6477,
pp. 177–194. Springer, Heidelberg (2010)

21. Kushilevitz, E., Ostrovsky, R.: Replication Is Not Needed: Single Database,
Computationally-Private Information Retrieval. In: FOCS 1997, pp. 364–373
(1997)

22. Micali, S.: Computationally Sound Proofs. SIAM Journal of Computing 30(4),
1253–1298 (2000)

23. Papamanthou, C., Shi, E., Tamassia, R.: Signatures of Correct Computation. In:
Sahai, A. (ed.) TCC 2013. LNCS, vol. 7785, pp. 222–242. Springer, Heidelberg
(2013)

24. Papamanthou, C., Tamassia, R., Triandopoulos, N.: Optimal Authenticated Data
Structures with Multilinear Forms. In: Joye, M., Miyaji, A., Otsuka, A. (eds.)
Pairing 2010. LNCS, vol. 6487, pp. 246–264. Springer, Heidelberg (2010)

25. Parno, B., Raykova, M., Vaikuntanathan, V.: How to Delegate and Verify in Public:
Verifiable Computation from Attribute-Based Encryption. In: Cramer, R. (ed.)
TCC 2012. LNCS, vol. 7194, pp. 422–439. Springer, Heidelberg (2012)

26. Zhang, L.F., Safavi-Naini, R.: Private Outsourcing of Polynomial Evaluation
and Matrix Multiplication using Multilinear Maps? (Full Version of this Paper),
http://arxiv.org/abs/1308.4218

http://arxiv.org/abs/1308.4218


348 L.F. Zhang and R. Safavi-Naini

A Privacy Preserving VC Schemes

– KeyGen(1λ, f(x)): Pick Γ = (N,G1, . . . , G2k+2, e, g1, . . . , g2k+2)← G(1λ, 2k+2).

Pick s ← ZN and compute t = g
f(s)
1 . Pick u ← G1 and compute h = uq,

where u = gδ1 for an integer δ ∈ ZN . Set up BGN2k+2 with public key (Γ, g1, h)
and secret key p. For every i ∈ {0, 1, . . . , n}, pick vi ← ZN and compute γi =

gfi1 hvi . Output sk = (p, q, s, t) and pk = (Γ, g1, h, g
s
1, g

s2

1 , . . . , gs
2k−1

1 , γ), where
γ = (γ0, . . . , γn).

– ProbGen(sk,α): For every � ∈ [k], pick r� ← ZN and compute σ� = gα
2�−1

1 hr� .
Output σ = (σ1, . . . , σk) and τ =⊥ (τ is not used).

– Compute(pk, σ): Compute ρi = gμi
k for every i ∈ {0, 1, . . . , n} using the technique

in Section 2.2. Compute ρ′i = e(γi, ρi) = g
μ′
i

k+1, where μ
′
i = (fi+qδvi)μi. Compute

ρ =
�n

i=0
ρ′i. Compute πij = g

νij
2k using the technique in Section 2.2 for every

i ∈ {0, 1, . . . , n − 1} and j ∈ {0, 1, . . . , i}. Compute π′
ij = e(γi+1, πij) = g

ν′
ij

2k+1,

where ν′
ij = (fi+1 + qδvi+1)νij . Set π =

�n−1

i=0

�i

j=0
π′
ij .Output ρ and π.

– Verify(sk, τ, ρ, π): Compute the y ∈ Zq such that ρp = (gpk+1)
y . If the equality

e
�
t/gy1 , g

p
2k+1

�
= e

�
gs1/g

α
1 , π

p
�
holds, output y; otherwise, output ⊥.

Fig. 4. Univariate polynomial evaluation (Π ′
pe)

– KeyGen(1λ,M): Pick Γ = (N,G1, G2, G3, e, g1, g2, g3) ← G(1λ, 3). Consider the
PRFdlin in Section 2.3. Run KG(1λ, n) and pick a secret key K. Pick a ← ZN

and compute Tij = g
p2aMij

1 · FK(i, j) for every (i, j) ∈ [n]2. Pick u ← G1 and
compute h = uq , where u = gδ1 for an integer δ ∈ ZN . Set up BGN3 with
public key (Γ, g1, h) and secret key p. For every (i, j) ∈ [n]2, pick vij ← ZN and

compute γij = g
Mij

1 hvij . Output sk = (p, q,K, a, η) and pk = (Γ, g1, h, γ, T ),

where η = gp
2a

3 and γ = (γij).
– ProbGen(sk, x): For every j ∈ [n], pick rj ← ZN and compute σj = g

xj

1 hrj .
For every i ∈ [n], compute τi = e(

�n

j=1
FK(i, j)xj , gp2) using the efficient CFE

algorithm in Section 2.3. Output σ = (σ1, . . . , σn) and τ = (τ1, . . . , τn).
– Compute(pk, σ): Compute ρi =

�n

j=1
e(γij , σj) and πi =

�n

j=1
e(Tij , σj) for

every i ∈ [n]. Output ρ = (ρ1, . . . , ρn) and π = (π1, . . . , πn).
– Verify(sk, τ, ρ, π): For every i ∈ [n], compute yi such that ρpi = (gp2)

yi . If
e(πi, g

p
1) = ηpyi · τi for every i ∈ [n], then output y = (y1, . . . , yn); otherwise,

output ⊥.
Fig. 5. Matrix multiplication (Π ′

mm)


	Private Outsourcing of Polynomial Evaluation and Matrix Multiplication
Using Multilinear Maps
	1 Introduction
	1.1 Results and Techniques
	1.2 Related Work

	2 Preliminaries
	2.1 Multilinear Maps and Assumptions
	2.2 Generalized BGN Encryption
	2.3 Algebraic PRFs with Closed Form Efficiency
	2.4 Verifiable Computation

	3 Our Schemes
	3.1 Univariate Polynomial Evaluation
	3.2 Matrix Multiplication
	3.3 Discussions
	3.4 Function Privacy

	4 Applications
	5 Conclusions
	References




