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Abstract. In a searchable symmetric encryption (SSE) scheme, a client
can store encrypted documents to a server in such way that he can later
retrieve the encrypted documents which contain a specific keyword, keep-
ing the keyword and the documents secret. In this paper, we show how to
update (modify, delete and add) documents in a verifiable way. Namely
the client can detect any cheating behavior of malicious servers. We then
prove that our scheme is UC-secure in the standard model.
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1 Introduction

We consider a scheme such as follows [15]: a client stores some files Di in an
encrypted form Ci on a remote server in the store phase. Later, in the search
phase, the client can efficiently retrieve the encrypted files containing specific
keywords w, keeping the keywords themselves secret and not jeopardizing the
security of the remotely stored files. Such a scheme is called a searchable sym-
metric encryption (SSE) scheme because a symmetric key encryption scheme is
used to encrypt files. (For example, a client may want to store old email mes-
sages encrypted on a server managed by Google or another large vendor, and
later retrieve certain messages while traveling with a mobile device.)

The notion of SSE schemes was introduced by Song et al. [25]. Then after a
series of works [25, 17, 1, 15], Curtmola, et al. [10, 11] gave a rigorous definition
of privacy against passive adversaries. Namely a server is an advresary who is
honest but curious. They then showed two schemes, SSE-1 and SSE2-2, where
SSE-1 is more efficient than SSE-2, and SSE-2 is more secure than SSE-1. In
particular, SSE-2 is secure against adaptive chosen keyword attacks.

On the other hand, Kurosawa et al. [21] considered a case such that the
server is malicious. A malicious server may delete some encrypted files to save
her memory space, for example. Even if the server is honest, a virus, worm,
trojan horse or a software bug may delete, forge or swap some encrypted files.
An adversary would then make a profit if the files are related to bank accounts,
tax or some critical information. They [21] then showed a verifiable SSE scheme
in which the client can detect any cheating behavior of malicious servers.
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In fact, Kurosawa et al. [21] proved that their scheme is UC-secure, where
UC (universal composability) is a very strong notion of security. In the UC
framework [7–9], the security of a protocol is maintained under a general protocol
composition. Therefore their SSE scheme [21] is secure even when it is composed
with itself and/or other cryptographic protocols and primitives.

Recently Kamara et al. [23] constructed a dynamic SSE scheme such that
the client can add and delete documents. They then proved that their scheme
is secure against adaptive chosen keyword attacks. Further the search time is
sublinear. Subsequently Kamara et al. [22] showed a parallel and dynamic SSE
scheme. However, these dynamic schemes [23, 22] are not verifiable. Namely the
client cannot detect cheating behavior of malicious servers. (Also the security
holds in the random oracle model only.)

In this paper, we first show a more efficient verifiable SSE scheme than Kuro-
sawa et al. [21]. In this scheme, the client sends only n+ 128 bits in the search
phase while (logn+ �+ 1)× n bits must be sent in [21], where n is the number
of documents and � is the bit length of each keyword.

Table 1. Comparison with The Previous Works

Curtmola et al. Kurosawa et al. Kamara et al. This paper
[10] [21] [23, 22]

Verifiability × © × ©
Dynamic (Update) × × © ©

We next extend our verifiable SSE scheme to a verifiable dynamic SSE scheme.
Namely the client can update (modify, delete and add) documents, and he can
detect any cheating behavior of malicious servers. See Table 1 for the comparison
with the previous works.

We illustrate our idea of the construction by using an example. Suppose that
the client wants to search on a keyword Austin, and Austin is included in three
documents D1, D3, D5 whose ciphetexts are C1, C3, C5. In the verifiable SSE
scheme of [21], the client sends a query t(Austin) to the server, and the server
returns (C1, C3, C5) together with tag = MAC(t(Austin), (C1, C3, C5)), where
t(Austin) is some trapdoor information. Namely the client authenticates the
whole communication sequence, t(Austin) and (C1, C3, C5). He then stores the
authenticator, tag, on the server in the store phase.

In this scheme, however, the client cannot modify Ci efficiently. For ex-
ample, suppose that C1 includes two keywords, Austin and Washington.
To modify C1 to C′

1, the client must store two updated authenticators,
MAC(t(Austin), (C′

1, C3, C5)) and MAC(t(Washington), (C′
1, · · ·)), to the server in

the update phase. If C1 includes more keywords, then the client must updates
more authenticators.

Now our idea is that the client authenticates only (t(Austin), 1, 3, 5). He sepa-
rately authenticates each (i, Ci) also. Then to update C1 to C′

1, the client stores
just an authenticator on (1, C′

1) to the server. The update cost is only this no
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matter how many keywords are included in C1. Thus the client can update each
Ci efficiently.

To delete a document C1, the client updates it to a special symbol C′
1 = delete

similarly. To add a new document D6 which includes Austin, the client updates
the authenticator on (t(Austin), 1, 3, 5) to that on (t(Austin), 1, 3, 5, 6).

Finally, we prove that our verifiable dynamic SSE scheme is UC-secure in the
standard model.

1.1 Related Work

Conjunctive keyword search in the SSE setting was first considered by Golle et
al. [19]. In their scheme, a client specifies at most one keyword in each keyword
field. This framework was followed up by [3, 4]. Wang et al. [26] gave a scheme
which does not have such a structure. Recently Cash et al. [12] showed a keyword
field free scheme which can support general Boolean queries.

Chase et al. [13] extended and generalized the security model of SSE schemes
to complex data (e.g., graphs) and introduced the notion of associated data that
allows to compose different components of the protocol.

2 Verifiable Searchable Symmetric Encryption

If X is a string, then |X | denotes the bit length of X . [X ]1..u denotes the first
u bits of X , and [X ]u denotes the uth bit of X . If X is a set, then |X | denotes
the cardinality of X . PPT means probabilistic polynomial time.

2.1 Verifiable SSE Scheme

Let D = {D1, · · · , Dn} be a set of documents and W = {w1, · · · , wm} be a set
of keywords. Let Index = {ei,j} be an m× n binary matrix such that

ei,j =

{
1 if wi is contained in Dj

0 otherwise
. (1)

Let D(w) denote the set of documents which contain a keyword w ∈ W . Also let
List(w) = {i | Di contains w}.

A verifiable SSE scheme is a protocol between a client and a server as follows.

(Store phase)
On input (D,W , Index), the client sends (C, I) to the server, where C =

(C1, · · · , Cn) is the set of encrypted documents, and I is an encrypted Index.

(Search phase)

1. On input a keyword w ∈ W , the client sends a trapdoor information t(w) to
the server.

2. The server somehow computes C(w) = {Ci | Di contains w}, and returns
(C(w), T ag) to the client, where Tag is an authenticator.
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Real Game (Gamereal)� �

– In the store phase, an adversary A chooses (D,W, Index) and sends them to
the challenger. The challenger returns (I, C).

– In the search phase, for i = 1, · · · , q,
1. A chooses a keyword wai ∈ W and sends it to the challenger.
2. The challenger returns a trapdoor information t(wai) to A.

– Finally A outputs a bit b.

� �

Fig. 1. Real Game: Gamereal

3. The client verifies the validity of (C(w), T ag). If he accepts, then he decrypts
each Ci ∈ C(w), and outputs D(w) = {Di | Di contains w}. Otherwise he
outputs reject.

The definition of usual searchable symmetric encryption (SSE) schemes [10,
11] is obtained by deleting Tag from the verifiable SSE schemes.

2.2 Privacy

Suppose that the server (who is an adversary A) is honest but curious. In any
SSE scheme, the server learns |D1|, · · · , |Dn| and |W| in the store phase. Also
in the search phase, she learns List(w) = {i | Di contains w} for the search
keyword w because she must be able to return C(w). Now the server should not
be able to learn any more information. Curtmola, Garay, Kamara and Ostrovsky
[10, 11] formulated this security notion as follows.

We consider a real game Gamereal and a simulation game Gamesim. Gamereal is
played by a challenger and an adversary A as shown in Fig.1. Gamesim is played
by a challenger, an adversary A and a simulator Sim as shown in Fig.2.

Let

p0 = Pr(A outputs b = 1 in Gamereal),

p1 = Pr(A outputs b = 1 in Gamesim).

Definition 1. We say that a (verifiable) SSE scheme satisfies privacy if there
exists a PPT simulator Sim such that |p0 − p1| is negligible for any PPT adver-
sary A.

2.3 Reliability (Verifiability)

Suppose that the server (who is an adversary A) is malicious. In verifiable SSE
schemes, the server should not be able to forge a search result (C(w), T ag) in the
search phase. This security notion is formulated as follows [21].

Fix (D,W , Index) and search queries w1, · · · , wq ∈ W arbitrarily. We say
that A wins if she can return (C(wi)

∗, T ag∗) for some query t(wi) such that
C(wi)

∗ �= C(wi) and the client accepts (C(wi)
∗, T ag∗).
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Simulation Game (Gamesim)� �

In the store phase,

– A chooses (D,W, Index) and sends them to the challenger.
– The challenger sends |D1|, · · · , |Dn| and |W| to simulator Sim, where D =

{D1, · · · , Dn}.
– Sim returns (I′, C′) to the challenger, and he replays them to A.

In the search phase, for i = 1, · · · , q,
1. A chooses a keyword wai ∈ W and sends it to the challenger.
2. The challenger sends List(wai) = {j | Dj contains wai} to Sim.
3. Sim returns t′ to the challenger, and he relays it to A.

Finally A outputs a bit b.

� �

Fig. 2. Simulation Game: Gamesim

Definition 2. We say that a verifiable SSE satisfies reliability if for any PPT
adversary A, Pr(A wins) is negligible for any (D,W , Index) and any search
queries w1, · · · , wq.

Kurosawa et al. [21] proved the following proposition.

Proposition 1. A verifiable SSE scheme satisfies privacy and reliability if and
only if the corresponding protocol is UC-secure against non-adaptive adversaries.

3 Our Efficient Verifiable SSE Scheme

In this section, we show a more efficient verifiable SSE scheme than the previous
one [21]. In this scheme, the client sends only n + 128 bits in the search phase
while (log n + � + 1) × n bits must be sent in [21], where n is the number of
documents and � is the bit length of each keyword.

Remember that D = {D1, · · · , Dn} is a set of documents, W = {w1, · · · , wm}
is a set of keywords and Index = {ei,j} is an m× n binary matrix such that

ei,j =

{
1 if wi is contained in Dj

0 otherwise
.

Let indexi denote the ith row of Index.

3.1 Our Efficient SSE Scheme

In this subsection, we assume that the server is honest but curious. Let PRFk :
{0, 1}� × {0, 1}∗ be a pseudorandom function, where k is a key. Let SKE =
(G,E,E−1) be a symmetric-key encryption scheme, where G is a key generation
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algorithm, E is an encryption algorithm and E−1 is a decryption algorithm. We
assume that SKE is CPA-secure in the left-or right sense [2].

Now our SSE scheme is as follows.

(Store phase)

1. The client generates (ke, k0, k1) randomly, where ke is a key of SKE, and
k0, k1 are keys of PRF. He then keeps (ke, k0, k1) secret.

2. The client computes Ci = Eke(Di) for each document Di ∈ D. He also
computes

labeli = [PRFk0(wi)]1..128

indexi = indexi ⊕ [PRFk1(wi)]1..n

for each keyword wi ∈ W . He also chooses a random permutation σ on
{1, · · · ,m}. He then stores

C = (C1, · · · , Cn) and I = {(labelσ(i), indexσ(i)) | i = 1, · · · ,m}

to the server.

(Search phase) Suppose that the client wants to search on a keyword wa.

1. The client computes labela and pada = [PRFk1(wa)]1..n. He then sends
t(wa) = (labela, pada) to the server.

2. The server finds (labela, indexa) ∈ I by using labela. She then computes

indexa = indexa ⊕ pada

Let indexa = (e1, · · · , en). She returns C(w) = {Ci | ei = 1} to the client.
3. The client decrypts all Ci such that Ci ∈ C(w), and outputs {Di | Ci ∈ C(w)}.

Suppose that there are 5 documents D = {D1, · · · , D5} and 2 keywords W =
{w1, w2} such that D(w1) = {D1, D3, D5} and D(w2) = {D2, D4}. Then

index1 = (1, 0, 1, 0, 1)⊕ [PRFk1(w1)]1..5

index2 = (0, 1, 0, 1, 0)⊕ [PRFk1(w2)]1..5

Theorem 1. The above scheme satisfies privacy if SKE is CPA-secure and PRF

is a pseudorandom function.

Proof. (Sketch) In Gamesim, our simulator Sim behaves as follows.

(Store phase) Sim receives |D1|, · · · , |Dn| and m = |W| from the challenger.

1. Sim generates a key ke of SKE randomly. It also chooses a random permu-
tation σ on {1, · · · ,m}.

2. Sim computes Ci = Eke(0
|Di|) for i = 1, · · · , n. Sim also chooses labeli ∈

{0, 1}128 and indexi ∈ {0, 1}n randomly for i = 1, · · · ,m.
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3. Finally Sim returns C′ = (C1, · · · , Cn) and I ′ = {(labelσ(i), indexσ(i)) | i =
1, · · · ,m} to the challenger.

(Search phase) Sim receives List(wai) = {j | Dj contains wai} from the chal-
lenger for i = 1, · · · , q. For each i, let

ej =

{
1 if j ∈ List(wai )
0 otherwise

.

Sim then computes pad∗ = indexσ(i) ⊕ (e1, · · · , en) and returns t′ =
(labelσ(i), pad

∗) to the challenger.

Now the adversary A has (D,W , Index). Still in the store phase, A cannot
distinguish C′ from C because SKE is CPA-secure. Also A cannot distinguish I ′

from I because PRF (which is used in Gamereal) is a pseudorandom function.
In the search phase, A cannot distinguish t′ = (labelσ(i), pad

∗) from t(wa) =
(labela, pada) because PRF is a pseudorandom function and σ is a random per-
mutation. Therefore A cannot distinguish Gamesim from Gamereal. ��

3.2 Our Efficient Verifiable SSE Scheme

In this subsection, we assume that the server is malicious, and extend the above
SSE scheme to a verifiable SSE scheme. (It is more efficient than the previous
verifiable SSE scheme [21].) Let MACkm be a tag generation algorithm of MAC,
where km is a key. We assume that MAC is a pseudorandom function. (This
means that it is unforgeable against chosen message attack.)

For keyword w1, a malicious server may return (C2, C3, C5) instead of
(C1, C3, C5). A naive approach to prevent such active attacks would be to re-
place each Ci with (Ci, MACkm(Ci)). However, this method does not work because
(C2, MACkm(C2)) is a valid pair. In our verifiable SSE scheme, the server returns
MACkm(label1, (C1, C3, C5)). This method can prevent the above attack because
the server must forge
MACkm(label1, (C2, C3, C5)).

Now our verifiable SSE scheme is obtained by modifying the SSE scheme of
Sec.3.1 as follows.

(Store phase)

1’ The client generates a MAC key km randomly, and keeps it secret together
with (ke, k0, k1).

2’ The client computes tagi = MACkm(labeli, C(wi)) for each keyword wi ∈ W ,
and stores

I = {(labelσ(i), indexσ(i), tagσ(i)) | i = 1, · · · ,m} (2)

to the server, where labeli and indexi are computed in the same way as in
Sec.3.1, and σ is a random permutation on {1, · · · ,m}.

(Search phase) Suppose that the client wants to search on a keyword wa.
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1’ The client sends (labela, pada) to the server in the same way as in Sec.3.1.
2’ The server finds (labela, indexa, taga) ∈ I by using labela. She then re-

turns taga and C(w) to the client.
3’ If taga = MACkm(labela, C(w)), then the client decrypts all Ci such that

Ci ∈ C(w), and outputs them. Otherwise he outputs reject.

In the example of Sec.3.1,

tag1 = MACkm(label1, (C1, C3, C5)), tag2 = MACkm(label2, (C2, C4)),

Theorem 2. The above scheme satisfies privacy and reliability if SKE is CPA-
secure, and PRF and MAC are pseudorandom functions.

Proof. (Sketch) We can prove the privacy similarly to the proof of Theorem 1.
Hence will will prove the reliability.

Suppose that there exists an adversary A who breaks the reliability for some
(D,W , Index) and some search queries w1, · · · , wq. We will show a forger B for
the underlying MAC. B runs A by playing the role of a client with (D,W , Index)
and w1, · · · , wq as an input.

In the store phase, to compute I, B obtains each tagi = MACkm(labeli, C(wi))
from his MAC oracle, where km is randomly chosen by the MAC oracle. That
is, for i = 1, · · · , q, B queries (labeli, C(wi)) to the MAC oracle, and receives
tagi.

In the search phase, if A returns (C(wi)
∗, tag∗i ) such that C(wi)

∗ �= C(wi) for
some (labeli, padi), then B outputs (labeli, C(wi)

∗) and tag∗i as a forgery.
From our assumption, A returns such (C(wi)

∗, tag∗i ) with non-negligible prob-
ability. It also holds that

tag∗i = MACkm(labeli, C(wi)
∗)

with non-negligible probability from our assumption. Finally note that B never
queried (labeli, C(wi)

∗) �= (labeli, C(wi)) to the MAC oracle.
ThereforeB succeeds in forgery with non-negligible probability. This is against

our assumption on MAC. Hence our scheme satisfies reliability. ��

4 How to Update Documents

4.1 Our Idea

In the scheme of Sec.3.2, the client stores tag1 = MACkm(label1, (C1, C3, C5)) for a
keyword w1. In this scheme, however, the client cannot modify each Ci efficiently.
For example, suppose that C1 includes two keywords,w1 and w2. To modify C1 to
C′

1, the client must store two updated authenticators, MAC(label1, (C
′
1, C3, C5))

and MAC(label2, (C
′
1, · · ·)), to the server in the update phase. If C1 includes more

keywords, then the client must updates more authenticators.
Now our idea is that the client authenticates only (label1, 1, 3, 5). He sepa-

rately authenticates each (i, Ci) also. Then to update C1 to C′
1, the client stores
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just an authenticator on (1, C′
1). The update cost is only this no matter how many

keywords are included in C1. Thus the client can update each Ci efficiently.
To delete a document C1, the client updates it to a special symbol C′

1 = delete
similarly. To add a new document D6 which includes w1, the client updates the
authenticator on (label1, 1, 3, 5) to that on (label1, 1, 3, 5, 6).

4.2 How to Time Stamp

The last problem is how to times tamp on the current (i, Ci), and how to time
stamp on the current/updated (label1, 1, 3, 5, 6).

We can solve this problem by using an authentication scheme which posses the
timestamp functionality such as Merkle hash tree [24], or authenticated skiplist
[18] or the RSA accumulator [5, 14]. Such a scheme allows one to hash a set
of inputs into one short accumulation value, such that there is a witness that a
given input was incorporated into the accumulator, and at the same time, it is
infeasible to find a witness for a value that was not accumulated.

The size of witness is O(log n) in the Merkle hash tree and the authenticated
skiplist, where n is the number of documents. It is O(λ) in the RSA accumulator,
where λ is the security parameter. We can use any one of them. In what follows,
we present our scheme based on the RSA accumulator.

4.3 RSA Accumulator

Let p = 2p′ + 1 and q = 2q′ + 1 be two large primes such that p′ and q′ are also
primes and |pq| > 3λ. Let N = pq and let

QRN = {a | a = x2 mod N for some x ∈ Z∗
N}.

Then QRN is a cyclic group of size (p − 1)(q − 1)/4. Let g be a generator of
QRN . We say that a family of functions F = {f : A → B} is two-universal if
Pr[f(x1) = f(x2)] = 1/|B| for all x1 �= x2 and for a randomly chosen function
f ∈ F .

Proposition 2. [16] For any y ∈ {0, 1}λ, we can compute a prime x ∈ {0, 1}3λ
such that f(x) = y by sampling O(λ2) times with overwhelming probability from
the set of inverses f−1(y), where the probability is taken over f ∈ F .

Let F = {fa : {0, 1}3λ → {0, 1}λ} be a two-universal family of functions and
choose f ∈ F randomly. (Such functions can be built easily. For instance, view
a and x as members of GF (23λ), and let fa(x) be the λ least significant bits of
a× x.)

For a set E = {y1, · · · , yn} with yi ∈ {0, 1}λ, the RSA accumulator works as
follows.

1. For each yi, Alice chooses a prime xi such that f(xi) = yi randomly. Let
prime(yi) denote such a prime xi. She then computes the accumulated value
of E = {y1, · · · , yn} as

Acc(E) = g
∏n

i=1 prime(yi) mod N

and sends Acc(E) to Bob.
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2. Later Alice proves that yj ∈ E to Bob as follows. She computes

πj = g
∏

i�=j prime(yi) mod N

and sends πj and prime(yj) to Bob.
3. Bob verifies that

Acc(E) = (πj)
prime(yj) mod N.

Definition 3. [6] (Strong RSA assumption) Given N = pq and a random ele-
ment y ∈ ZN , it is hard to find x and e > 1 such that y = xe mod N .

Proposition 3. Given N, g, f and E = {y1, · · · , yn}, it is hard to find y �∈ E
and π such that

πprime(y) = Acc(E) mod N (3)

under the strong RSA assumption.

If we want to apply the above protocol to a set A = {a1, · · · , an} with ai �∈
{0, 1}λ for some i, then we define the accumulated value of A as

Acc(A) = g
∏n

i=1 prime(H(ai)) mod N,

where H : {0, 1}∗ → {0, 1}λ is a collision resistant hash function. Namely we
apply the above protocol to the set {H(a1), · · · , H(an)}.

Note that prime(H(ai)) is a prime xi ∈ {0, 1}3λ such that f(xi) = H(ai),
where f : {0, 1}3λ → {0, 1}λ is a two-universal hash function. We can compute
such a prime xi efficiently for any H(ai) ∈ {0, 1}λ from Proposition 2.

5 Proposed Verifiable Dynamic SSE Scheme

In this section, we show the details of our idea, i.e., how to modify, delete and add
documents efficiently in a verifiable SSE scheme, where the server is a malicious
adversary. We call such a scheme a verifiable dynamic SSE scheme.

5.1 Scheme

In the proposed scheme,

– The client applies the RSA accumulator to the sets

EC = {(i, Ci) | i = 1, · · · , n},
EI = {(labeli, j, [indexi]j) | i = 1, · · · ,m, j = 1, · · · , n},

and compute their accumulated values Acc(EC) and Acc(EI).
– He updates Acc(EC) each time when he modifies or deletes a document, and

updates Acc(EI) each time when he adds a document.
– In the search phase, the client checks if a server returned the valid (updated)

ciphertexts based on Acc(EC) and Acc(EI).
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A subtle problem is how the client and the server compute the same prime(y)
locally, where y = (i, Ci) or (labeli, j, [indexi]j). Remember that prime(y) is
a prime x such that f(x) = y. and such x is chosen randomly. In the proposed
scheme, the client chooses ka randomly, and sends it to the server at the begin-
ning of the protocol. Then they use PRFka(y) as the randomness when computing
prime(y). Thus they can compute the same prime(y) locally.

Let F = {f : {0, 1}3λ → {0, 1}λ} be a two-universal family of functions, and
H : {0, 1}∗ → {0, 1}λ be a collision-resistant hash function. Let [indexi]j denote
the jth bit of indexi.

(Store phase)

1. The client generates (N(= pq), g) as shown in Sec. 4.3 and chooses f ∈ F
randomly. He also generates (ke, k0, k1, ka) randomly, where ke is a key of
SKE, and k0, k1, ka are keys of PRF. He further chooses a random permu-
tation σ on {1, · · · ,m}. He then sends (N, g, f, ka) to the server and keeps
(p, q, ke, k0, k1, σ) secret.

2. The client computes Ci = Eke(Di) for each document Di ∈ D. He also
computes

labeli = [PRFk0(wi)]1..128, padi = [PRFk1(wi)]1..n, indexi = padi ⊕ (ei,1, · · · , ei,n)

for each keyword wi ∈ W . He then stores C = (C1, · · · , Cn) and

I = {(labelσ(i), indexσ(i)) | i = 1, · · · ,m} (4)

to the server.
3. He also computes

AC = g
∏n

i=1 prime(H(i,H(Ci))) mod N,

AI = g
∏m

i=1

∏n
j=1 prime(H(labeli,j,[indexi]j)) mod N.

He then keeps n,AC and AI .

(Search phase) Suppose that the client wants to search on a keyword wa.

1. The client computes (labela, pada) and sends them to the server.
2. The server finds (labela, indexa) ∈ I by using labela. She computes

(e1, · · · , en) = pada ⊕ indexa

and sets C′(w) = {(i, Ci) | ei = 1}. She next computes

πC = g
∏

ei=0 prime(H(i,H(Ci))) mod N,

πI = g
∏

i�=a{
∏n

j=1 prime(H(labeli,j,[indexi]j))} mod N.

Finally she returns (C′(w), πC , πI) to the client.
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3. The client first computes xi = prime(H(i,H(Ci))) for each (i, Ci) ∈ C′(w),
and checks if

AC = (πC)
∏

ei=1 xi mod N (5)

The client next reconstructs (e1, · · · , en) from C′(w) and computes indexa =
pada ⊕ (e1, · · · , en). He then computes zj = prime(H(labela, j, [indexa]j))
for j = 1, · · · , n, and checks if

AI = (πI)
∏n

j=1 zj mod N (6)

If all the checks succeed, then the client decrypts all Ci such that ei = 1 and
outputs the documents {Di | ei = 1}. Otherwise he outputs reject.

(Remark.)

– Eq.(5) verifies the correctness of C′(wa) = {(i, Ci) | Di contains wa}. Eq.(6)
verifies the correctness ofindexa.Hence it verifies the correctness of (e1, · · · , en).

– For example, if both (e1, · · · , e5) = (1, 0, 1, 0, 1) and (1, C1), (3, C3), (5, C5)
are valid, then it is clear that (C1, C3, C5) are the correct ciphertexts.

(Modify) Suppose that the client wants to modify Ci to C′
i.

1. The client send (i, C′
i) to the server.

2. The server computes

πi = g
∏

j �=i prime(H(j,H(Cj ))) mod N

and returns (H(Ci), πi) to the client.
3. The client computes xi = prime(H(i,H(Ci))) and checks if

AC = (πi)
xi mod N. (7)

If the check fails, then he outputs reject. Otherwise he computes

x′
i = prime(H(i,H(C ′

i))),

d = x′
i/xi mod (p− 1)(q − 1),

A′
C = (AC)

d = gx1···x′
i···xn mod N.

He finally updates AC to A′
C .

(Delete) Suppose that the client wants to delete Ci. He frist sends (i, delete) to
the server. Then apply (Modify) to C′

i = delete.

(Add) Suppose that the client wants to add a document Dn+1. Let

ei,n+1 =

{
1 if wi is contained in Dn+1

0 otherwise
. (8)
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1. The client computes Cn+1 = Eke(Dn+1), and sends Cn+1 to the server. He
also updates AC to

A′
C = (AC)

prime(H(n+1,H(Cn+1))) mod N.

2. The client also computes ai = [PRFk1(wi)]n+1⊕ei,n+1 for i = 1, · · · ,m, where
[PRFk1(wi)]n+1 denotes the (n+ 1)th bit of PRFk1(wi).
He then sends (aσ(1), · · · , aσ(m)) to the server.

3. The server updates indexσ(i) to index
′
σ(i) = indexσ(i)||aσ(i) for i = 1, · · · ,m,

where || denotes concatenation.
4. The client computes zi = prime(H(labeli, n+ 1, ai)) for i = 1, · · · ,m, and

updates AI to
A′

I = (AI)
z1···zm mod N.

Finally he updates n to n+ 1.

5.2 Example

Consider the example shown in Sec.3.1. In the store phase, the client computes

AC = g
∏5

i=1 prime(H(i,H(Ci))) mod N,

AI = g
∏2

i=1

∏5
j=1 prime(H(labeli,j,[indexi]j)) mod N

and keeps n = 5, AC and AI .

(Search phase) Suppose that the client wants to search on w1. He then sends
(label1, pad1) to the server.

1. The server finds index1 from I, and computes pad1⊕index1 = (1, 0, 1, 0, 1).
From this (1, 0, 1, 0, 1), she sets C′(w1) = {(1, C1), (3, C3), (5, C5)}. She then
computes

πC = g
∏

i=2,4 prime(H(i,H(Ci))) mod N,

πI = g
∏5

j=1 prime(H(label2,j,[index2]j)) mod N.

Finally she returns (C′(w1), πC , πI) to the client.
2. The client computes xi = prime(H(i,H(Ci))) for i = 1, 3, 5, and checks if

AC = (πC)
∏

i=1,3,5 xi mod N. (9)

Also he reconstructs index1 = pad1 ⊕ (1, 0, 1, 0, 1) from C′(w1). He then
computes zj = prime(H(label1, j, [index1]j)) for j = 1, · · · , 5, and checks
if

AI = (πI)
∏5

j=1 zj mod N. (10)

If all the checks succeed, then the client decrypts (C1, C3, C5), and outputs
the documents (D1, D3, D5). Otherwise he outputs reject.
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(Modify) Suppose that the client wants to modify C1 to C′
1.

1. The client sends (1, C′
1) to the server.

2. The server computes

π1 = g
∏5

j=2 prime(H(j,H(Cj ))) mod N

and returns (H(C1), π1) to the client.
3. The client computes x1 = prime(H(1, H(C1))) and checks if

AC = (π1)
x1 mod N.

If the check fails, then he outputs reject. Otherwise he computes

x′
1 = prime(H(1, H(C′

1))),

d = x′
1/x1 mod (p− 1)(q − 1),

A′
C = (AC)

d = gx
′
1x2···x5 mod N.

He finally updates AC to A′
C .

(Delete) Suppose that the client wants to delete C2. He first sends (2, delete) to
the server. Then apply (Modify) to C′

2 = delete.

(Add) Suppose that the client wants to add a document D6 which contains w1

as a keyword.

1. The client computes C6 = Eke(D6), and sends C6 to the server.
He also updates AC to A′

C = (AC)
prime(H(6,H(C6))) mod N.

2. The client also computes a1 = [PRFk1(w1)]6 ⊕ 1 and a2 = [PRFk1(w2)]6 ⊕ 0.
He then sends (aσ(1), aσ(2)) to the server.

3. The server updates indexσ(i) to index
′
σ(i) = indexσ(i)||aσ(i) for i = 1, 2.

4. The client computes zi = prime(H(labeli, 6, ai)) for i = 1, 2, and updates
AI to A′

I = (AI)
z1·z2 mod N . Finally he updates n = 5 to n = 6.

6 Security

In this section, we prove that the proposed verifiable dynamic SSE scheme is
UC-secure. If a protocol Σ is secure in the universally composable (UC) security
framework, its security is maintained under a general protocol composition [7–9].

In the UC framework, there exists an environmentZ which generates the input
to all parties, reads all outputs, and in addition interacts with an adversary A
in an arbitrary way throughout the computation.

A protocol Σ is said to securely realize a given functionality F if for any
adversary A, there exists an ideal world adversary S such that no environment
Z can tell whether it is interacting with A and parties running the protocol, or
with S and parties that interact with F in the ideal world.
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6.1 Ideal Functionality

We describe the ideal functionality F of verifiable dynamic SSE schemes in Fig.3.
In the ideal world, Z interacts with the dummy client and the dummy server,
where the dummy players communicate with F .

Our F provides an ideal world because the ideal world adversary S (i.e., a
malicious server) learns only |D1|, · · · , |Dn| and |W| for the store command of
Z, only List(w) for a search command on keyword w, only (i, |D′

i|) for a modify
command on (i,D′

i), only i for a delete command on i, and only |D| for an add
command on D. (See the beginning of Sec.2.2.)

We say that a protocol (client, server) is UC-secure if it securely realizes the
ideal functionality F .

Ideal Functionality F� �

Running with the dummy client P1, the dummy server P2 and an adversary S.

– Upon receiving (store, sid,D,W, Index) from P1, verify that this is the
first input from P1 with (store, sid). If so, store (n,D,W, Index), and send
|D1|, · · · , |Dn| and |W| to S. Otherwise ignore this input.

– Upon receiving (search, sid, wa) from P1, send List(wa) to S, where wa ∈ W.
1. If S returns OK, then send D(wa) to P1.
2. If S returns reject, then send reject to P1.

– Upon receiving (modify, sid, i, D′
i) from P1, send (i, |D′

i|) to S.
1. If S returns OK, then replace Di with D′

i.
2. If S returns reject, then send reject to P1.

– Upon receiving (delete, sid, i) from P1, send i to S.
1. If S returns OK, then let Di := delete.
2. If S returns reject, then send reject to P1.

– Upon receiving (add, sid,D) from P1, add D to D, and send |D| to S.

� �

Fig. 3. Ideal Functionality of Dynamic SSE

6.2 UC-Security of Our Scheme

Theorem 3. The proposed scheme is UC-secure against non-adaptive adver-
saries under the strong RSA assumption if SKE is CPA-secure, PRF is a pseudo-
random function and H is a collision-resistant hash function.

A proof is given in Appendix A.

7 Efficiency

7.1 Efficiency of the Proposed Verifiable Dynamic SSE Scheme

Table 2 shows the communication overheads and the computation costs of the
proposed verifiable dynamic SSE scheme. For example, in the search phase, to
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search on a keyword wa, the client sends (labela, pada) to the server, and the
server returns (C′(w), πC , πI), where C

′(w) = {(i, Ci) | Di contains w}. Therefore
the total communication cost is

Ts = |labela|+ |pada|+ |C′(w)| + |πC |+ |πI |.
Hence the communication overhead is

Ts − |C′(w)| = |labela|+ |pada|+ |πC |+ |πI | = n+O(λ),

where λ is the security parameter of the RSA accumulator.

Table 2. Efficiency of the Proposed Verifiable Dynamic SSE Scheme

search modify delete add

communication overhead n+O(λ) O(λ) O(λ) m

computation cost of the server O(nm) O(n) O(n) O(m)

computation cost of the client O(n) O(1) O(1) O(m)

The storage overhead is n(m+ 128).

7.2 More Efficient Variant with No Add

Suppose that the client does not add new documents. Then we can consider a
more efficient variant of the proposed scheme such that the RSA accumulator is
not used to authenticate Index.

Instead, the client computes tagi = MACkm(labeli, List(wi)) for each keyword
wi ∈ W , and stores

I = {(labelσ(i), indexσ(i), tagσ(i)) | i = 1, · · · ,m} (11)

to the server in the store phase.
In the search phase, the server returns taga to the client for a search keyword

wa instead of πI . Then the computation cost of the server is reduced from O(nm)
to O(n) in the search phase. The computation cost of the client is reduced from
O(n) to O(na), where na is the number of documents which contain wa. See
Table 3.

Table 3. A Variant with No Add

search modify delete

communication overhead n+O(λ) O(λ) O(λ)

computation cost of the server O(n) O(n) O(n)

computation cost of the client O(na) O(1) O(1)
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A Proof of Theorem 3

(1) Suppose that the real world adversary A does not corrupt any party in our
protocol. Then it is easy to see that the client outputs the correct documents for
each search keyword. Further Z interacts only with the client (= P1). Therefore
no Z can distinguish the real world from the ideal world.

(2) Suppose that Z asks A to corrupt the client (= P1) in our protocol. In this
case, A may report the communication pattern of the client to Z. Consider an
ideal world adversary S who runs A internally by playing the role of the server
(= P2), forwarding all messages from Z to A and vice versa. Note that S can
play the role of the server faithfully because it has no interaction with Z. This
means that no Z can distinguish the real world from the ideal world.

(3) Suppose that Z asks A to corrupt the server (= P2). In this case, our ideal
world adversary S runs A internally by playing the role of the client (= P1),
forwarding all messages from Z to A and vice versa.

(Store) Suppose that Z sends a store command to P1. P1 relays it to F . F then
sends |D1|, · · · , |Dn| and |W| to S.

1. S runs the client’s algorithm on input D′ = {D′
i = 0|Di| | i = 1, · · · , n},

W ′ = {1, · · · ,m} and Index′ = {e′i,j} with e′i,j = 0 for all (i, j).
2. By doing so, S sends (N, g, f, ka) and (I, C) to A, and keeps

sk = (p, q, ke, k0, k1, σ)

secret, where C = (C1, · · · , Cn) and I = {(labelσ(i), indexσ(i))}.

http://en.wikipedia.org/wiki/Merkle~tree
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(Search) Suppose that Z sends the ith search command on a keyword wa ∈ W
to P1. P1 relays it to F . F then sends List(wa) = {j | Dj contains wa} to S.

1. Let

ej =

{
1 if j ∈ List(wa)
0 otherwise

.

S computes pad∗ = indexσ(i) ⊕ (e1, · · · , en) and sends (labelσ(i), pad
∗) to

A.
2. A returns (C′(wa), πC , πI).
3. S runs the client’s algorithm on input (C′(wa), πC , πI) and sk. If the client

outputs reject, then S sends reject to F . Otherwise S sends OK to F .

(Modify) Suppose that Z sends a modify command (i,D′
i) to P1. Then S is given

|D′
i| by F .

1. S first computes C′
i = Eke(0

|D′
i|).

2. Then S runs our protocol (Modify) with A by playing the role of the client.
3. If the client outputs reject, then S sends reject to F . Otherwise S sends

OK to F .

(Delete) Suppose that Z sends a modify command i to P1. Then S is given i by
F . S runs our protocol (Delete) with A by playing the role of the client. If the
client outputs reject, then S sends reject to F . Otherwise S sends OK to F .

(Add) Suppose that Z sends an add command D to P1. Then S is given |D|
by F . S first computes Cn+1 = Eke(0

|D|). S then runs our protocol (Add) with
A by playing the role of the client. If the client outputs reject, then S sends
reject to F . Otherwise S sends OK to F .

Now because SKE is CPA-secure, each Eke(D) and Eke(0
|D|) are indistinguish-

able in the store phase, in the search phase, when modifying a document, and
when adding a document. Further because PRF is a pseudo-random function, we
can see that:

– The real I and the simulated one are indistinguishable.
– In the search phase, the real pad and the simulated pad∗ are indistinguish-

able.
– When adding a document, the real (a1, · · · , am) and the simulated one are

indistinguishable.

Therefore the inputs to A inside of S are indistinguishable from those in the real
world. This means that inside of S, A behaves in the same way as in the real
world.

We next show that the outputs of the client (which Z receives) in the real
world are indistinguishable from those in the ideal world. Remember that A
inside of S behaves in the same way as in the real world.

For a modify query (i,D′
i),
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1. the client sends (i, C′
i) to the server, and

2. the server returns (H(Ci), πi) to the client.

First suppose that A returns (H(Ci), πi) correctly.

– In the real world, the client updates AC correctly, and outputs nothing.
– In the ideal world, S returns OK to F , and F replaces Di with D′

i.

Next suppose that A returns an invalid (H(Ci), πi). Then eq.(7) does not hold
with overwhelming probability from Proposition 3. Hence

– In the real world, the client outputs reject, and Z receives reject.
– In the ideal world, S returns reject to F , F sends it to P1, and P1 relays

it to Z.

Therefore the real world and the ideal world are indistinguishable.
Similarly, for a delete query, the real world and the ideal world are indistin-

guishable.
For an add query D, the client receives nothing from the server (= A). Hence

he always updates AC and AI correctly, and outputs nothing.
Finally for a search query on a keyword w,

1. the client sends (label, pad) to the server, and
2. the server returns (C′(w), πC , πI) to the client, where C′(w) = {(i, Ci) |

Di contains w}.
First suppose that A returns (C′(w), πC , πI) correctly.

– In the real world, the client outputs D(w) = {Di | Di contains w} correctly.
– In the ideal world, S returns OK to F , and F sends D(w) to P1.

Next suppose that A returns an invalid (C′′(w), π′
C , π

′
I) such that

(C′′(w), π′
C , π

′
I) �= (C′(w), πC , πI).

We will show that eq.(6) or eq.(5) does not hold with overwhelming probability.

– (Case 1) C′′(w) = C′(w) and (π′
C , π

′
I) �= (πC , πI). In this case, the client

computes {zj} and {xi} correctly. Hence eq.(6) or eq.(5) does not hold clearly
because (π′

C , π
′
I) �= (πC , πI).

– (Case 2) C′′(w) �= C′(w). If the client does not compute {zj} correctly, then
we can see that eq.(6) does not hold from Proposition 3.
Suppose that the client computes {zj} correctly. Then he reconstructed
(e1, · · · , en) and indexa correctly. This means that there exist some (i, C′

i) ∈
C′′(w) and (i, Ci) ∈ C′(w) such that C′

i �= Ci because C′′(w) �= C′(w). For
such i, H(i,H(C′

i)) �= H(i,H(Ci)) because H is collision-resistant. Hence
eq.(5) does not hold from Proposition 3 because prime(H(i,H(C′

i))) �=
prime(H(i,H(Ci))).

Therefore in the real world, the client outputs reject, and Z receives reject.
In the ideal world, S returns reject to F , F sends it to P1, and P1 relays it to
Z. Consequently, we can see that Z cannot distinguish the real world from the
ideal world. Q.E.D.
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