How to Update Documents *Verifiably* **in Searchable Symmetric Encryption**

Kaoru Kurosawa and Yasuhiro Ohtaki

Ibaraki University, Japan {kurosawa,y.ohtaki}@mx.ibaraki.ac.jp

Abstract. In a searchable symmetric encryption (SSE) scheme, a client can store encrypted documents to a server in such way that he can later retrieve the encrypted documents which contain a specific keyword, keeping the keyword and the documents secret. In this paper, we show how to update (modify, delete and add) documents in a *verifiable* way. Namely the client can detect any cheating behavior of malicious servers. We then prove that our s[chem](#page-16-0)e is UC-secure in the standard model.

Keywords: keyword search, searchable symmetric encryption, update, verifiable.

1 Introduction

We consider a scheme such as follows [15]: a client stores some files D_i in an encrypted form C_i on a remote server in t[he s](#page-17-0)tore phase. Later, in the search [p](#page-17-0)[has](#page-16-1)[e,](#page-16-2) [the](#page-16-0) client can efficie[ntly](#page-16-3) [ret](#page-16-4)rieve the encrypted files containing specific keywords w , keeping the keywords themselves secret and not jeopardizing the security of the remotely stored files. Such a scheme is called a searchable symmetric encryption (SSE) scheme because a symmetric key encryption scheme is used to encrypt files. (For example, a client may want to store old email messages encrypted on a se[rve](#page-17-1)r managed by Google or another large vendor, and later retrieve certain messages while traveling with a mobile device.)

The notion of SSE schemes was introduced by Song et al. [25]. Then after a series of works [25, 17, 1, 15], Curtmola, et al. [10, 11] gave a rigorous definition of privacy against passive adversaries. Namely a server is an advresary who is honest but curious. [The](#page-17-1)y then showed two schemes, SSE-1 and SSE2-2, where SSE-1 is more efficient than SSE-2, and SSE-2 is more secure than SSE-1. In particular, SSE-2 is secure against adaptive chosen keyword attacks.

On the other hand, Kurosawa et al. [21] cons[ider](#page-19-0)ed a case such that the server is malicious. A malicious server may delete some encrypted files to save her memory space, for example. Even if the server is honest, a virus, worm, trojan horse or a software bug may delete, forge or swap some encrypted files. An adversary would then make a profit if the files are related to bank accounts, tax or some critical information. They [21] then showed a *verifiable* SSE scheme in which the client can detect any cheating behavior of malicious servers.

M. Abdalla, C. Nita-Rotaru, and R. Dahab (Eds.): CANS 2013, LNCS 8257, pp. 309–328, 2013. -c Springer International Publishing Switzerland 2013

In fact, Kurosawa [et](#page-17-3) al. [21] proved that their scheme is UC-secure, where UC (universal composa[bili](#page-17-2)[ty\)](#page-17-3) is a very strong notion of security. In the UC framework [7–9], the security of a protocol is maintained under a general protocol composition. Therefore their SSE scheme [21] is secure even when it is composed with itself and/or other cryptographic protocols and primitives.

Recently Kamara et al. [23] constructed a *dynamic* SSE scheme such that the client can add and delete doc[um](#page-17-1)ents. They then proved that their scheme is secure against adaptive chosen keyword attacks. Further the search time is sublinear. Subsequently Kamara et al. [22] showed a parallel and dynamic SSE scheme. However, these dynamic schemes [23, 22] are not verifiable. Namely the client cannot detect cheating behavior of malicious servers. (Also the security holds in the random oracle model only.)

In this paper, we first show a more efficient verifiable SSE scheme than Kurosawa et a[l.](#page-16-3) [\[2](#page-16-3)1]. In this s[che](#page-17-1)me, the c[lien](#page-17-2)[t](#page-17-3) [s](#page-17-3)ends only $n + 128$ bits in the search phase while $(\log n + \ell + 1) \times n$ bits must be sent in [21], where *n* is the number of documents and ℓ is the bit length of each keyword.

Table 1. Comparison with The Previous Works

		Curtmola et al. Kurosawa et al. Kamara et al. This paper		
	10	21	[23, 22]	
Verifiability				
Dynamic (Update)				

We next extend our verifiable SSE scheme to a *verifiable dynamic* SSE scheme. Namely the client can update (modify, delete and add) documents, and he can detect any cheating behavior of malicious servers. See Table 1 for the comparison with the previous works.

We illustrate our idea of the construction by using an example. Suppose that the client wants to search on a keyword *Austin*, and *Austin* is included in three documents D_1, D_3, D_5 whose ciphetexts are C_1, C_3, C_5 . In the verifiable SSE scheme of [21], the client sends a query $t(Austin)$ to the server, and the server returns (C_1, C_3, C_5) together with $tag = \text{MAC}(t(Austin), (C_1, C_3, C_5))$, where $t(Austin)$ is some trapdoor information. Namely the client authenticates the whole communication sequence, $t(Austin)$ and (C_1, C_3, C_5) . He then stores the authenticator, tag, on the server in the store phase.

In this scheme, however, the client cannot modify C_i efficiently. For example, suppose that C_1 includes two keywords, Austin and Washington. To modify C_1 to C'_1 , the client must store two updated authenticators, $\texttt{MAC}(t(Austin), (C'_1, C_3, C_5))$ and $\texttt{MAC}(t(Washington), (C'_1, \cdots)),$ to the server in the update phase. If C_1 includes more keywords, then the client must updates more authenticators.

Now our idea is that the client authenticates only $(t(Austin), 1, 3, 5)$. He separately authenticates each (i, C_i) also. Then to update C_1 to C'_1 , the client stores just an authenticator on $(1, C'_1)$ to the server. The update cost is only this no matter how many keywords are included in C_1 . Thus the client can update each C_i efficiently.

To delete a document C_1 , the client updates it to a special symbol $C'_1 = delete$ similarly. To add a new document D_6 which includes Austin, the client updates the authenticator on $(t(Austin), 1, 3, 5)$ $(t(Austin), 1, 3, 5)$ $(t(Austin), 1, 3, 5)$ $(t(Austin), 1, 3, 5)$ to [tha](#page-17-4)t on $(t(Austin), 1, 3, 5, 6)$.

Finally, we prove that our verifiable d[yna](#page-16-7)mic SSE scheme is UC-secure in the standard model.

1.1 Related Work

Conjunctive keyword search in the SSE setting was first considered by Golle et al. [19]. In their scheme, a client specifies at most one keyword in each keyword field. This framework was followed up by [3, 4]. Wang et al. [26] gave a scheme which does not have such a structure. Recently Cash et al. [12] showed a keyword field free scheme which can support general Boolean queries.

Chase et al. [13] extended and generalized the security model of SSE schemes to complex data (e.g., graphs) and introduced the notion of associated data that allows to compose different components of the protocol.

2 Verifiable Searchable Symmetric Encryption

If X is a string, then |X| denotes the bit length of X. $[X]_{1..u}$ denotes the first u bits of X, and $[X]_u$ denotes the uth bit of X. If X is a set, then |X| denotes the cardinality of X . PPT means probabilistic polynomial time.

2.1 Verifiable SSE Scheme

Let $\mathcal{D} = \{D_1, \dots, D_n\}$ be a set of documents and $\mathcal{W} = \{w_1, \dots, w_m\}$ be a set of keywords. Let $\text{Index} = \{e_{i,j}\}\)$ be an $m \times n$ binary matrix such that

$$
e_{i,j} = \begin{cases} 1 \text{ if } w_i \text{ is contained in } D_j \\ 0 \text{ otherwise} \end{cases} . \tag{1}
$$

Let $D(w)$ denote the set of documents which contain a keyword $w \in \mathcal{W}$. Also let List(w) = $\{i \mid D_i \text{ contains } w\}.$

A verifiable SSE scheme is a protocol between a client and a server as follows. (Store phase)

On input (D, W, Index) , the client sends (C, \mathcal{I}) to the server, where $C =$ (C_1, \dots, C_n) is the set of encrypted documents, and $\mathcal I$ is an encrypted Index.

(Search phase)

- 1. On input a keyword $w \in \mathcal{W}$, the client sends a trapdoor information $t(w)$ to the server.
- 2. The server somehow computes $C(w) = \{C_i \mid D_i \text{ contains } w\}$, and returns $(C(w), Tag)$ to the client, where Tag is an authenticator.

 $-$ Real Game (Game_{real}) \cdot In the store phase, an adversary A chooses (D, W, Index) and sends them to the challenger. The challenger returns $(\mathcal{I}, \mathcal{C})$. – In the search phase, for $i = 1, \dots, q$, 1. **A** chooses a keyword $w_{a_i} \in \mathcal{W}$ and sends it to the challenger. 2. The challenger returns a trapdoor information $t(w_{a_i})$ to **A**. **–** Finally **A** outputs a bit b.

Fig. 1. Real Game: Game*real*

✒ ✑

3. The client verifies the validity of $(C(w), Tag)$. If he accepts, then he decrypts each $C_i \in \mathcal{C}(w)$, and outputs $\mathcal{D}(w) = \{D_i \mid D_i \text{ contains } w\}$. Otherwise he outputs reject.

The definition of usual searchable symmetric encryption (SSE) schemes [10, 11] is obtained by deleting Tag from the verifiable SSE schemes.

2.2 Privacy

Suppose that the server (who is an adve[rsa](#page-3-0)ry \bf{A}) is [ho](#page-4-0)nest but curious. In any SSE scheme, the server learns $|D_1|, \dots, |D_n|$ and $|W|$ in the store phase. Also in the search phase, she learns $List(w) = \{i \mid D_i \text{ contains } w\}$ for the search keyword w because she must be able to return $C(w)$. Now the server should not be able to learn any more information. Curtmola, Garay, Kamara and Ostrovsky [10, 11] formulated this security notion as follows.

We consider a real game $Game_{real}$ and a simulation game $Game_{sim}$. $Game_{real}$ is played by a challenger and an adversary \bf{A} as shown in Fig.1. Game_{sim} is played by a challenger, an adversary **A** and a simulator **Sim** as shown in Fig.2.

Let

$$
p_0 = \Pr(\mathbf{A} \text{ outputs } b = 1 \text{ in Game}_{real}),
$$

$$
p_1 = \Pr(\mathbf{A} \text{ outputs } b = 1 \text{ in Game}_{sim}).
$$

Definition 1. *We say that a (verifiable) [SS](#page-17-1)E scheme satisfies privacy if there exists a PPT simulator* **Sim** *such that* $|p_0 - p_1|$ *is negligible for any PPT adversary* **A***.*

2.3 Reliability (Verifiability)

Suppose that the server (who is an adversary \bf{A}) is malicious. In verifiable SSE schemes, the server should not be able to forge a search result $(C(w), Tag)$ in the search phase. This security notion is formulated as follows [21].

Fix (D, W, Index) and search queries $w_1, \dots, w_q \in W$ arbitrarily. We say that **A** wins if she can return $(C(w_i)^*, Tag^*)$ for some query $t(w_i)$ such that $C(w_i)^* \neq C(w_i)$ and the client accepts $(C(w_i)^*, Taq^*).$

 \sim Simulation Game (Game_{sim}) \sim In the store phase, $-$ **A** chooses (D, W, Index) and sends them to the challenger. – The challenger sends $|D_1|, \dots, |D_n|$ and $|W|$ to simulator **Sim**, where $D =$ $\{D_1, \cdots, D_n\}.$ $-$ **Sim** returns $(\mathcal{I}', \mathbf{C}')$ to the challenger, and he replays them to **A**. In the search phase, for $i = 1, \dots, q$, 1. **A** chooses a keyword $w_{a_i} \in \mathcal{W}$ and sends it to the challenger. 2. The challenger sends $List(w_{a_i}) = \{j \mid D_j \text{ contains } w_{a_i}\}\)$ to **Sim**. 3. **Sim** returns t' to the challenger, and he relays it to \mathbf{A} . Finally **A** outputs a bit b.

Fig. 2. Simulation Game: Game*sim*

[✒](#page-17-1) ✑

Definition 2. *We say that a verifiable SSE satisfies reliability if for any PPT adversary* **A**, $Pr(A \text{ wins})$ *is negligible for any* (D, W, Index) *and any search* $queries w_1, \cdots, w_q.$

Kurosawa et al. [21] proved the following proposition.

Proposition 1. *A verifiable [SSE](#page-17-1) scheme satisfies privacy and reliability if and only if the corresponding protocol is UC-secure against non-adaptive adversaries.*

3 Our Efficient Verifiable SSE Scheme

In this section, we show a more efficient verifiable SSE scheme than the previous one [21]. In this scheme, the client sends only $n + 128$ bits in the search phase while $(\log n + \ell + 1) \times n$ bits must be sent in [21], where *n* is the number of documents and ℓ is the bit length of each keyword.

Remember that $\mathcal{D} = \{D_1, \cdots, D_n\}$ is a set of documents, $\mathcal{W} = \{w_1, \cdots, w_m\}$ is a set of keywords and $\text{Index} = \{e_{i,j}\}\$ is an $m \times n$ binary matrix such that

$$
e_{i,j} = \begin{cases} 1 \text{ if } w_i \text{ is contained in } D_j \\ 0 \text{ otherwise} \end{cases}.
$$

Let index_i denote the *i*th row of Index.

3.1 Our Efficient SSE Scheme

In this subsection, we assume that the server is honest but curious. Let PRF_k : ${0,1}^{\ell} \times {0,1}^*$ be a pseudorandom function, where k is a key. Let SKE = (G, E, E^{-1}) be a symmetric-key encryption scheme, where G is a key generation

algorithm, E is an encryption algorithm and E^{-1} is a decryption algorithm. We assume that SKE is CPA-secure in the left-or right sense [2].

Now our SSE scheme is as follows.

(Store phase)

- 1. The client generates (k_e, k_0, k_1) randomly, where k_e is a key of SKE, and k_0, k_1 are keys of PRF. He then keeps (k_e, k_0, k_1) secret.
- 2. The client computes $C_i = E_{k_e}(D_i)$ for each document $D_i \in \mathcal{D}$. He also computes

$$
\begin{aligned} \texttt{label}_i &= [\texttt{PRF}_{k_0}(w_i)]_{1..128} \\ \overline{\texttt{index}}_i &= \texttt{index}_i \oplus [\texttt{PRF}_{k_1}(w_i)]_{1..n} \end{aligned}
$$

for each keyword $w_i \in \mathcal{W}$. He also chooses a random permutation σ on $\{1, \cdots, m\}$. He then stores

$$
\mathcal{C} = (C_1, \cdots, C_n) \text{ and } \mathcal{I} = \{ (\mathtt{label}_{\sigma(i)}, \overline{\mathtt{index}}_{\sigma(i)}) \mid i = 1, \cdots, m \}
$$

to the server.

(Search phase) Suppose that the client wants to search on a keyword w_a .

- 1. The client computes label_a and $\text{pad}_a = [\text{PRF}_{k_1}(w_a)]_{1..n}$. He then sends $t(w_a)=(\texttt{label}_a, \texttt{pad}_a)$ to the server.
- 2. The server finds $(\mathtt{label}_a, \overline{\mathtt{index}}_a) \in \mathcal{I}$ by using \mathtt{label}_a . She then computes

 $index_a = \overline{index}_a \oplus pad_a$

Let index_a = (e_1, \dots, e_n) . She returns $C(w) = \{C_i | e_i = 1\}$ to the client. 3. The client decrypts all C_i such that $C_i \in \mathcal{C}(w)$, and outputs $\{D_i | C_i \in \mathcal{C}(w)\}\$.

Suppose that there are 5 documents $\mathcal{D} = \{D_1, \cdots, D_5\}$ and 2 keywords $\mathcal{W} =$ $\{w_1, w_2\}$ such that $D(w_1) = \{D_1, D_3, D_5\}$ and $D(w_2) = \{D_2, D_4\}$. Then

$$
\overline{\text{index}}_1 = (1,0,1,0,1) \oplus [\text{PRF}_{k_1}(w_1)]_{1..5}
$$

$$
\overline{\text{index}}_2 = (0,1,0,1,0) \oplus [\text{PRF}_{k_1}(w_2)]_{1..5}
$$

Theorem 1. *The above scheme satisfies privacy if* SKE *is CPA-secure and* PRF *is a pseudorandom function.*

Proof. (Sketch) In Game_{sim}, our simulator **Sim** behaves as follows.

(Store phase) **Sim** receives $|D_1|, \dots, |D_n|$ and $m = |W|$ from the challenger.

- 1. **Sim** generates a key k_e of SKE randomly. It also chooses a random permutation σ on $\{1, \cdots, m\}$.
- 2. **Sim** computes $C_i = E_{k_e}(0^{|D_i|})$ for $i = 1, \dots, n$. **Sim** also chooses label_i \in $\{0,1\}^{128}$ and $\overline{\text{index}}_i \in \{0,1\}^n$ randomly for $i = 1, \dots, m$.

How to Update Documents *Verifiably* in Searchable Symmetric Encryption 315

3. Finally **Sim** returns $\mathcal{C}' = (C_1, \dots, C_n)$ and $\mathcal{I}' = \{(\mathtt{label}_{\sigma(i)}, \mathtt{index}_{\sigma(i)}) \mid i =$ $1, \dots, m$ to the challenger.

(Search phase) **Sim** receives List $(w_{a_i}) = \{j \mid D_j \text{ contains } w_{a_i}\}\$ from the challenger for $i = 1, \dots, q$. For each i, let

$$
e_j = \begin{cases} 1 \text{ if } j \in \text{List}(w_{a_i}) \\ 0 \text{ otherwise} \end{cases}.
$$

Sim then computes pad^{*} = $\overline{\text{index}}_{\sigma(i)} \oplus (e_1, \dots, e_n)$ and returns t' = $(\texttt{label}_{\sigma(i)}, \texttt{pad}^*)$ to the challenger.

Now the adversary \bf{A} has (D, W, Index) . Still in the store phase, \bf{A} cannot distinguish \mathcal{C}' from \mathcal{C} because SKE is CPA-secure. Also **A** cannot distinguish \mathcal{I}' from $\mathcal I$ because PRF (which is used in \texttt{Game}_{real}) is a pseudorandom function.

In [the](#page-17-1) search phase, **A** cannot distinguish $t' = (1$ **abel**_{$\sigma(i)$}, **pad**^{*}) from $t(w_a)$ = (label_a, pad_a) because PRF is a pseudorandom function and σ is a random permutation. Therefore **A** cannot distinguish Game_{sim} from Game_{real} .

3.2 Our Efficient Verifiable SSE Scheme

In this subsection, we assume that the server is malicious, and extend the above SSE scheme to a verifiable SSE scheme. (It is more efficient than the previous verifiable SSE scheme [21].) Let MAC_{k_m} be a tag generation algorithm of MAC, where k_m is a key. We assume that MAC is a pseudorandom function. (This means that it is unforgeable against chosen message attack.)

For keyword w_1 , a malicious server may return (C_2, C_3, C_5) instead of (C_1, C_3, C_5) . A naive approach to prevent such active attacks would be to replace each C_i with $(C_i, \text{MAC}_{k_m}(C_i))$. However, this method does not work because $(C_2, \text{MAC}_{k_m}(C_2))$ is a valid pair. In our verifiable SSE scheme, the server returns $\texttt{MAC}_{k_m}(\texttt{label}_1,(C_1, C_3, C_5))$. This method can prevent the above attack because the server must forge

 $MAC_{k_m}(\texttt{label}_1,(C_2, C_3, C_5)).$

Now our verifiable SSE scheme is obtained by modifying the SSE scheme of Sec.3.1 as follows.

(Store phase)

- 1' The client generates a MAC key k_m randomly, and keeps it secret together with (k_e, k_0, k_1) .
- 2' The client computes $tag_i = \text{MAC}_{k_m}(\text{label}_i, C(w_i))$ for each keyword $w_i \in \mathcal{W}$, and stores

$$
\mathcal{I} = \{ (\mathtt{label}_{\sigma(i)}, \overline{\mathtt{index}}_{\sigma(i)}, tag_{\sigma(i)}) \mid i = 1, \cdots, m \}
$$
 (2)

to the server, where label_i and $\overline{\text{index}}_i$ are computed in the same way as in Sec.3.1, and σ is a random permutation on $\{1, \dots, m\}$.

(Search phase) Suppose that the client wants to search on a keyword w_a .

- 1' The client sends $(\mathtt{label}_a, \mathtt{pad}_a)$ to the server in the same way as in Sec.3.1.
- 2' The server finds $($ label_a, $\overline{\text{index}}_a$, tag_a) $\in \mathcal{I}$ by using label_a. She then returns taq_a and $C(w)$ to the client.
- 3' If $tag_a = \text{MAC}_{k_m}(\text{label}_a, \text{C}(w))$, then the client decrypts all C_i such that $C_i \in \mathbf{C}(w)$, and outputs them. Otherwise he outputs re[je](#page-5-0)ct.

In the example of Sec.3.1,

 $tag_1 = \texttt{MAC}_{k_m}(\texttt{label}_1, (C_1, C_3, C_5)), tag_2 = \texttt{MAC}_{k_m}(\texttt{label}_2, (C_2, C_4)),$

Theorem 2. *The above scheme satisfies privacy and reliability if* SKE *is CPAsecure, and* PRF *and* MAC *are pseudorandom functions.*

Proof. (Sketch) We can prove the privacy similarly to the proof of Theorem 1. Hence will will prove the reliability.

Suppose that there exists an adversary **A** who breaks the reliability for some $(\mathcal{D}, \mathcal{W}, \text{Index})$ and some search queries w_1, \dots, w_q . We will show a forger **B** for the underlying MAC. **B** runs **A** by playing the role of a client with (D, W, Index) and w_1, \dots, w_q as an input.

In the store phase, to compute \mathcal{I}, \mathbf{B} obtains each $tag_i = \text{MAC}_{k_m}(\text{label}_i, C(w_i))$ from his MAC oracle, where k_m is randomly chosen by the MAC oracle. That is, for $i = 1, \dots, q$, **B** queries (label_i, $C(w_i)$) to the MAC oracle, and receives tagi.

In the search phase, if **A** returns $(C(w_i)^*, tag_i^*)$ such that $C(w_i)^* \neq C(w_i)$ for some (label_i, pad_i), then **B** outputs (label_i, $C(w_i)^*$) and tag_i^* as a forgery.

From our assumption, **A** returns such $(\mathcal{C}(w_i)^*, tag_i^*)$ with non-negligible probability. It also holds that

$$
\mathit{tag}_i^* = \mathtt{MAC}_{k_m}(\mathtt{label}_i, C(w_i)^*)
$$

with non-negligible probability from our assumption. Finally note that **B** never q[uerie](#page-6-0)d $($ label_i, $C(w_i)^*$) \neq $($ label_i, $C(w_i)$) to the MAC oracle.

Therefore **B** succeeds in forgery with non-negligible probability. This is against our assumption on MAC. Hence our scheme satisfies reliability.

4 How to Update Documents

4.1 Our Idea

In the scheme of Sec.3.2, the client stores $tag_1 = \texttt{MAC}_{k_m}(\texttt{label}_1,(C_1, C_3, C_5))$ for a keyword w_1 . In this scheme, however, the client cannot modify each C_i efficiently. For example, suppose that C_1 includes two keywords, w_1 and w_2 . To modify C_1 to C_1' , the client must store two updated authenticators, $\texttt{MAC}(\texttt{label}_1,(C_1',C_3,C_5))$ and $\texttt{MAC}(\texttt{label}_2, (C'_1, \cdots))$, to the server in the update phase. If C_1 includes more keywords, then the client must updates more authenticators.

Now our idea is that the client authenticates only $(label_1, 1, 3, 5)$. He separately authenticates each (i, C_i) also. Then to update C_1 to C'_1 , the client stores

just an authenticator on $(1, C'_1)$. The update cost is only this no matter how many keywords are included in C_1 . Thus the client can update each C_i efficiently.

To delete a document C_1 , the client updates it to a special symbol $C'_1 = delete$ similarly. To add a new docume[nt](#page-17-5) D_6 which includes w_1 , the client updates the authenticato[r o](#page-16-8)n $(label₁, 1, 3, 5)$ to that on $(label₁, 1, 3, 5, 6)$.

4.2 How to Time Stamp

The last problem is how to times tamp on the current (i, C_i) , and how to time stamp on the current/updated $(\texttt{label}_1, 1, 3, 5, 6)$.

We can solve this problem by using an authentication scheme which posses the timestamp functionality such as Merkle hash tree [24], or authenticated skiplist [18] or the RSA accumulator [5, 14]. Such a scheme allows one to hash a set of inputs into one short accumulation value, such that there is a witness that a given input was incorporated into the accumulator, and at the same time, it is infeasible to find a witness for a value that was not accumulated.

The size of witness is $O(\log n)$ in the Merkle hash tree and the authenticated skiplist, where n is the number of documents. It is $O(\lambda)$ in the RSA accumulator, where λ is the security parameter. We can use any one of them. In what follows, we present our scheme based on the RSA accumulator.

4.3 RSA Accumulator

Let $p = 2p' + 1$ and $q = 2q' + 1$ be two large primes such that p' and q' are also [pri](#page-16-10)mes and $|pq| > 3\lambda$. Let $N = pq$ and let

$$
QR_N = \{a \mid a = x^2 \bmod N \text{ for some } x \in Z_N^*\}.
$$

Then QR_N is a cyclic group of size $(p-1)(q-1)/4$. Let g be a generator of QR_N . We say that a family of functions $F = \{f : A \rightarrow B\}$ is two-universal if $Pr[f(x_1) = f(x_2)] = 1/|B|$ for all $x_1 \neq x_2$ and for a randomly chosen function $f \in F$.

Proposition 2. *[16] For any* $y \in \{0, 1\}^{\lambda}$ *, we can compute a prime* $x \in \{0, 1\}^{3\lambda}$ *such that* $f(x) = y$ *by sampling* $O(\lambda^2)$ *times with overwhelming probability from the set of inverses* $f^{-1}(y)$ *, where the probability is taken over* $f \in F$ *.*

Let $F = \{f_a : \{0,1\}^{3\lambda} \to \{0,1\}^{\lambda}\}\$ be a two-universal family of functions and choose $f \in F$ randomly. (Such functions can be built easily. For instance, view a and x as members of $GF(2^{3\lambda})$, and let $f_a(x)$ be the λ least significant bits of $a \times x.$

For a set $E = \{y_1, \dots, y_n\}$ with $y_i \in \{0, 1\}^{\lambda}$, the RSA accumulator works as follows.

1. For each y_i , Alice chooses a prime x_i such that $f(x_i) = y_i$ randomly. Let $prime(y_i)$ denote such a prime x_i . She then computes the accumulated value of $E = \{y_1, \dots, y_n\}$ as

$$
\text{Acc}(E) = g^{\prod_{i=1}^{n} prime(y_i)} \mod N
$$

and sends $Acc(E)$ to Bob.

2. Later Alice proves that $y_j \in E$ to Bob as follows. She computes

$$
\pi_j = g^{\prod_{i \neq j} prime(y_i)} \mod N
$$

and sends π_i and $prime(y_i)$ to Bob.

3. Bob verifies that

$$
\text{Acc}(E) = (\pi_j)^{prime(y_j)} \text{ mod } N.
$$

Definition 3. [6] (Strong RSA assumption) Given $N = pq$ and a random ele*ment* $y \in Z_N$, *it is hard to find* x and $e > 1$ *such that* $y = x^e \text{ mod } N$.

Proposition 3. *Given* N, g, f *and* $E = \{y_1, \dots, y_n\}$ *, it is hard to find* $y \notin E$ *and* π *such that*

$$
\pi^{prime(y)} = \text{Acc}(E) \bmod N \tag{3}
$$

under the strong RSA assumption.

If we want to apply the above protocol to a set $A = \{a_1, \dots, a_n\}$ with $a_i \notin$ $\{0,1\}^{\lambda}$ for some *i*, then we define the accumulate[d v](#page-8-0)alue of A as

$$
\text{Acc}(A) = g^{\prod_{i=1}^{n} prime(H(a_i))} \text{ mod } N,
$$

where $H : \{0,1\}^* \to \{0,1\}^{\lambda}$ is a collision resistant hash function. Namely we apply the above protocol to the set $\{H(a_1), \cdots, H(a_n)\}.$

Note that $prime(H(a_i))$ is a prime $x_i \in \{0,1\}^{3\lambda}$ such that $f(x_i) = H(a_i)$, where $f : \{0,1\}^{3\lambda} \to \{0,1\}^{\lambda}$ is a two-universal hash function. We can compute such a prime x_i efficiently for any $H(a_i) \in \{0,1\}^{\lambda}$ from Proposition 2.

5 Proposed Verifiable Dynamic SSE Scheme

In this section, we show the details of our idea, i.e., how to *modify*, *delete* and *add* documents efficiently in a verifiable SSE scheme, where the server is a malicious adversary. We call such a scheme a verifiable dynamic SSE scheme.

5.1 Scheme

In the proposed scheme,

– The client applies the RSA accumulator to the sets

$$
E_C = \{(i, C_i) | i = 1, \dots, n\},
$$

\n
$$
E_I = \{(\mathtt{label}_i, j, [\mathtt{index}_i]_j) | i = 1, \dots, m, j = 1, \dots, n\},
$$

and compute their accumulated values $Acc(E_C)$ and $Acc(E_I)$.

- He updates $Acc(E_C)$ each time when he modifies or deletes a document, and updates $Acc(E_I)$ each time when he adds a document.
- **–** In the search phase, the client checks if a server returned the valid (updated) ciphertexts based on $Acc(E_C)$ and $Acc(E_I)$.

A subtle problem is how the client and the server compute the same $prime(y)$ locally, where $y = (i, C_i)$ or $(1$ abel_i, j, $\overline{1$ **ndex**_i \vert_i). Remember that prime(y) is a prime x such that $f(x) = y$, and such x is chosen *randomly*. In the proposed scheme, the client chooses k_a randomly, and sends it to the server at the beginning of the protocol. Then they use $\text{PRF}_{k_a}(y)$ $\text{PRF}_{k_a}(y)$ $\text{PRF}_{k_a}(y)$ as the randomness when computing $prime(y)$. Thus they can compute the same $prime(y)$ locally.

Let $F = \{f : \{0,1\}^{3\lambda} \to \{0,1\}^{\lambda}\}\$ be a two-universal family of functions, and $H: \{0,1\}^* \to \{0,1\}^{\lambda}$ be a collision-resistant hash function. Let $[\text{index}_i]_j$ denote the jth bit of $\overline{\text{index}}_i$.

(Store phase)

- 1. The client generates $(N(= pq), g)$ as shown in Sec. 4.3 and chooses $f \in F$ randomly. He also generates (k_e, k_0, k_1, k_a) randomly, where k_e is a key of SKE, and k_0, k_1, k_a are keys of PRF. He further chooses a random permutation σ on $\{1, \dots, m\}$. He then sends (N, g, f, k_a) to the server and keeps $(p, q, k_e, k_0, k_1, \sigma)$ secret.
- 2. The client computes $C_i = E_{k_e}(D_i)$ for each document $D_i \in \mathcal{D}$. He also computes

 $\texttt{label}_i = [\texttt{PRF}_{k_0}(w_i)]_{1..128}$, $\texttt{pad}_i = [\texttt{PRF}_{k_1}(w_i)]_{1..n}$, $\overline{\texttt{index}}_i = \texttt{pad}_i \oplus (e_{i,1}, \dots, e_{i,n})$

for each keyword $w_i \in \mathcal{W}$. He then stores $\mathcal{C} = (C_1, \dots, C_n)$ and

$$
\mathcal{I} = \{ (\mathtt{label}_{\sigma(i)}, \overline{\mathtt{index}}_{\sigma(i)}) \mid i = 1, \cdots, m \}
$$
(4)

to the server.

3. He also computes

$$
A_C = g^{\prod_{i=1}^n prime(H(i, H(C_i)))} \mod N,
$$

\n
$$
A_I = g^{\prod_{i=1}^m \prod_{j=1}^n prime(H(\texttt{label}_i, j, [\texttt{index}_i]_j))} \mod N.
$$

He then keeps n, A_C and A_I .

(Search phase) Suppose that the client wants to search on a keyword w_a .

- 1. The client computes $(\texttt{label}_a, \texttt{pad}_a)$ and sends them to the server.
- 2. The server finds $(1abc1_a, \overline{index}_a) \in \mathcal{I}$ by using $1abc1_a$. She computes

$$
(e_1, \cdots, e_n) = \texttt{pad}_a \oplus \overline{\texttt{index}}_a
$$

and sets $\mathbf{C}'(w) = \{(i, C_i) \mid e_i = 1\}.$ She next computes

$$
\begin{aligned} \pi_C &= g^{\prod_{e_i=0} prime(H(i, H(C_i)))} \bmod N, \\ \pi_I &= g^{\prod_{i\neq a}\{\prod_{j=1}^n prime(H(\mathtt{label}_i,j,[\mathtt{index}_i]_j))\}} \bmod N. \end{aligned}
$$

Finally she returns $(C'(w), \pi_C, \pi_I)$ to the client.

3. The client first computes $x_i = prime(H(i, H(C_i)))$ for each $(i, C_i) \in C'(w)$, and checks if

$$
A_C = (\pi_C)^{\prod_{e_i=1} x_i} \bmod N \tag{5}
$$

The client next reconstructs (e_1, \dots, e_n) from $C'(w)$ and computes $\overline{\text{index}}_a =$ $\texttt{pad}_a \oplus (e_1, \dots, e_n)$. He then computes $z_j = prime(H(\texttt{label}_a, j, [\texttt{index}_a]_j))$ for $j = 1, \dots, n$, and checks if

$$
A_I = (\pi_I)^{\prod_{j=1}^n z_j} \bmod N \tag{6}
$$

If all the checks succeed, then the client decrypts all C_i such that $e_i = 1$ and outputs the documents $\{D_i \mid e_i = 1\}$. Otherwise he outputs reject.

(Remark.)

- $-$ Eq.(5) verifies the correctness of $C'(w_a) = \{(i, C_i) | D_i \text{ contains } w_a\}$. Eq.(6) verifies the correctness of $\overline{\text{index}}_a$. Hence it verifies the correctness of (e_1, \dots, e_n) . **–** For example, if both $(e_1, \dots, e_5) = (1, 0, 1, 0, 1)$ and $(1, C_1), (3, C_3), (5, C_5)$
- are valid, then it is clear that (C_1, C_3, C_5) are the correct ciphertexts.

(Modify) Suppose that the client wants to modify C_i to C'_i .

- 1. The client send (i, C'_i) to the server.
- 2. The server computes

$$
\pi_i = g^{\prod_{j \neq i} prime(H(j, H(C_j)))} \mod N
$$

and returns $(H(C_i), \pi_i)$ to the client.

3. The client computes $x_i = prime(H(i, H(C_i)))$ and checks if

$$
A_C = (\pi_i)^{x_i} \bmod N. \tag{7}
$$

If the check fails, then he outputs reject. Otherwise he computes

$$
x'_{i} = prime(H(i, H(C'_{i}))),
$$

\n
$$
d = x'_{i}/x_{i} \mod (p-1)(q-1),
$$

\n
$$
A'_{C} = (A_{C})^{d} = g^{x_{1} \cdots x'_{i} \cdots x_{n}} \mod N.
$$

He finally updates A_C to A_C' .

(Delete) Suppose that the client wants to delete C_i . He frist sends $(i, delete)$ to the server. Then apply (Modify) to $C_i' = delete$.

(Add) Suppose that the client wants to add a document D_{n+1} . Let

$$
e_{i,n+1} = \begin{cases} 1 \text{ if } w_i \text{ is contained in } D_{n+1} \\ 0 \text{ otherwise} \end{cases} \tag{8}
$$

How to Update Documents *Verifiably* in Searchable Symmetric Encryption 321

1. The client computes $C_{n+1} = E_{k_e}(D_{n+1})$, and sends C_{n+1} to the server. He also updates A_C to

$$
A'_{C} = (A_{C})^{prime(H(n+1, H(C_{n+1})))} \text{ mod } N.
$$

- 2. The client also computes $a_i = [\text{PRF}_{k_1}(w_i)]_{n+1} \oplus e_{i,n+1}$ for $i = 1, \dots, m$, where $[PRF_{k_1}(w_i)]_{n+1}$ denotes the $(n+1)$ th bit of $PRF_{k_1}(w_i)$. He then sends $(a_{\sigma(1)}, \cdots, a_{\sigma(m)})$ to the server.
- 3. The server updates $\overline{\text{index}}_{\sigma(i)}$ to $\overline{\text{index}}'_{\sigma(i)} = \overline{\text{index}}_{\sigma(i)} || a_{\sigma(i)}$ for $i = 1, \dots, m$, where || denotes concatenation.
- 4. The client co[mpu](#page-4-1)tes $z_i = prime(H(\texttt{label}_i, n+1, a_i))$ for $i = 1, \dots, m$, and updates A_I to

$$
A'_I = (A_I)^{z_1 \cdots z_m} \bmod N.
$$

Finally he updates n to $n + 1$.

5.2 Example

Consider the example shown in Sec.3.1. In the store phase, the client computes

$$
A_C = g^{\prod_{i=1}^5 prime(H(i, H(C_i)))} \mod N,
$$

\n
$$
A_I = g^{\prod_{i=1}^2 \prod_{j=1}^5 prime(H(\text{label}_i, j, [\text{index}_i]_j))} \mod N
$$

and keeps $n = 5$, A_C and A_I .

(Search phase) Suppose that the client wants to search on w_1 . He then sends $(label₁, pad₁)$ to the server.

1. The server finds $\overline{\text{index}}_1$ from \mathcal{I} , and computes $\text{pad}_1 \oplus \overline{\text{index}}_1 = (1, 0, 1, 0, 1)$. From this $(1, 0, 1, 0, 1)$, she sets $\mathcal{C}'(w_1) = \{(1, C_1), (3, C_3), (5, C_5)\}.$ She then computes

$$
\begin{aligned} \pi_C &= g^{\prod_{i=2,4} prime(H(i,H(C_i)))} \bmod N, \\ \pi_I &= g^{\prod_{j=1}^5 prime(H(\texttt{label}_2,j,[\overline{\texttt{index}}_2]_j))} \bmod N. \end{aligned}
$$

Finally she returns $(C'(w_1), \pi_C, \pi_I)$ to the client.

2. The client computes $x_i = prime(H(i, H(C_i)))$ for $i = 1, 3, 5$, and checks if

$$
A_C = (\pi_C)^{\prod_{i=1,3,5} x_i} \bmod N.
$$
 (9)

Also he reconstructs $\overline{\text{index}}_1 = \text{pad}_1 \oplus (1,0,1,0,1)$ from $C'(w_1)$. He then computes $z_j = prime(H(\texttt{label}_1, j, \overline{\texttt{index}}_1)_j))$ for $j = 1, \dots, 5$, and checks if

$$
A_I = (\pi_I)^{\prod_{j=1}^5 z_j} \text{ mod } N. \tag{10}
$$

If all the checks succeed, then the client decrypts (C_1, C_3, C_5) , and outputs the documents (D_1, D_3, D_5) . Otherwise he outputs reject.

(Modify) Suppose that the client wants to modify C_1 to C'_1 .

- 1. The client sends $(1, C'_1)$ to the server.
- 2. The server computes

$$
\pi_1 = g^{\prod_{j=2}^5 prime(H(j, H(C_j)))} \mod N
$$

and returns $(H(C_1), \pi_1)$ to the client.

3. The client computes $x_1 = prime(H(1, H(C_1)))$ and checks if

$$
A_C = (\pi_1)^{x_1} \bmod N.
$$

If the check fails, then he outputs reject. Otherwise he computes

$$
x'_1 = prime(H(1, H(C'_1))),
$$

\n
$$
d = x'_1/x_1 \mod (p-1)(q-1),
$$

\n
$$
A'_C = (A_C)^d = g^{x'_1 x_2 \cdots x_5} \mod N.
$$

He finally updates A_C to A_C' .

(Delete) Suppose that the client wants to delete C_2 . He first sends $(2, delete)$ to the server. Then apply (Modify) to $C_2' = delete$.

(Add) Suppose that the client wants to add a document D_6 which contains w_1 as a keyword.

- 1. The client computes $C_6 = E_{k_e}(D_6)$, and sends C_6 to the server. He also updates A_C to $A_C' = (A_C)^{prime(H(6, H(C_6)))} \text{ mod } N$.
- 2. The client also computes $a_1 = [\text{PRF}_{k_1}(w_1)]_6 \oplus 1$ and $a_2 = [\text{PRF}_{k_1}(w_2)]_6 \oplus 0$. He then sends $(a_{\sigma(1)}, a_{\sigma(2)})$ to the server.
- 3. The server updates $\overline{\text{index}}_{\sigma(i)}$ to $\overline{\text{index}}'_{\sigma(i)} = \overline{\text{index}}_{\sigma(i)} || a_{\sigma(i)}$ for $i = 1, 2$.
- 4. The client computes $z_i = prime(H(\texttt{label}_i, 6, a_i))$ $z_i = prime(H(\texttt{label}_i, 6, a_i))$ $z_i = prime(H(\texttt{label}_i, 6, a_i))$ for $i = 1, 2$ $i = 1, 2$ $i = 1, 2$, and updates A_I to $A'_I = (A_I)^{z_1 \cdot z_2}$ mod N. Finally he updates $n = 5$ to $n = 6$.

6 Security

In this section, we prove that the proposed verifiable dynamic SSE scheme is UC-secure. If a protocol Σ is secure in the universally composable (UC) security framework, its security is maintained under a general protocol composition [7–9].

In the UC framework, there exists an environment $\mathcal Z$ which generates the input to all parties, reads all outputs, and in addition interacts with an adversary **A** in an arbitrary way throughout the computation.

A protocol Σ is said to securely realize a given functionality $\mathcal F$ if for any adversary **A**, there exists an ideal world adversary **S** such that no environment Z can tell whether it is interacting with **A** and parties running the protocol, or with S and parties that interact with F in the ideal world.

6.1 Ideal Functionality

We describe the ideal fun[ctio](#page-3-1)nality $\mathcal F$ of verifiable dynamic SSE schemes in Fig.3. In the ideal world, Z interacts with the dummy client and the dummy server, where the dummy players communicate with \mathcal{F} .

Our F provides an ideal world because the ideal world adversary **S** (i.e., a malicious server) learns only $|D_1|, \dots, |D_n|$ and $|W|$ for the store command of Z, only List(w) for a search command on keyword w, only $(i, |D'_i|)$ for a modify command on (i, D'_i) , only i for a delete command on i, and only |D| for an add command on D. (See the beginning of Sec.2.2.)

We say that a protocol (client, server) is UC-secure if it securely realizes the ideal functionality F.

 $\overline{}$ Ideal Functionality $\overline{}$ $\overline{}$ Running with the dummy client P_1 , the dummy server P_2 and an adversary **S**. $-$ Upon receiving (store, sid, D, W , Index) from P_1 , verify that this is the first input from P_1 with (**store**, *sid*). If so, store $(n, \mathcal{D}, \mathcal{W}, \text{Index})$, and send $|D_1|, \dots, |D_n|$ and $|W|$ to **S**. Otherwise ignore this input. **–** Upon receiving (**search**, sid, w*a*) from P1, send List(w*a*) to **S**, where w*^a* ∈ W. 1. If **S** returns OK, then send $D(w_a)$ to P_1 . 2. If S returns reject, then send reject to P_1 . $-$ Upon receiving $(\text{modify}, sid, i, D'_i)$ from P_1 , send $(i, |D'_i|)$ to **S**. 1. If **S** returns OK, then replace D_i with D'_i . 2. If **S** returns reject, then send reject to P_1 . $-$ Upon receiving (**delete**, *sid*, *i*) from P_1 , send *i* to **S**. 1. If **S** returns OK, then let $D_i := delete$. 2. If **S** returns reject, then send reject to P_1 . – Upon receiving $(\text{add}, \text{sid}, D)$ from P_1 , add D to \mathcal{D} , and send $|D|$ to **S**.

Fig. 3. Ideal Functionality of Dynamic SSE

✒ ✑

6.2 UC-Security of Our Scheme

Theorem 3. *The proposed scheme is UC-secure against non-adaptive adversaries under the strong RSA assumption if* SKE *is CPA-secure,* PRF *is a pseudorandom function and* H *is a collision-resistant hash function.*

A proof is given in Appendix A.

7 Efficiency

7.1 Efficiency of the Proposed Verifiable Dynamic SSE Scheme

Table 2 shows the communication overheads and the computation costs of the proposed verifiable dynamic SSE scheme. For example, in the search phase, to

search on a keyword w_a , the client sends $(1$ abe 1_a , pad_a) to the server, and the server returns $(C'(w), \pi_C, \pi_I)$, where $C'(w) = \{(i, C_i) \mid D_i \text{ contains } w\}$. Therefore the total communication cost is

$$
T_s = |\mathtt{label}_a| + |\mathtt{pad}_a| + |\mathtt{C}'(w)| + |\pi_C| + |\pi_I|.
$$

Hence the communication overhead is

$$
T_s - |\mathcal{C}'(w)| = |\mathtt{label}_a| + |\mathtt{pad}_a| + |\pi_C| + |\pi_I| = n + O(\lambda),
$$

where λ is the security parameter of the RSA accumulator.

Table 2. Efficiency of the Proposed Verifiable Dynamic SSE Scheme

	search modify delete add		
communication overhead	$n + O(\lambda)$ $O(\lambda)$ $O(\lambda)$		m
computation cost of the server $O(nm)$ $\boxed{O(n)$ $\boxed{O(n)}$ $\boxed{O(m)}$			
computation cost of the client $O(n)$		$O(1)$ $O(1)$ $O(m)$	

The storage overhead is $n(m + 128)$.

7.2 More Efficient Variant with No *Add*

Suppose that the client does not add new documents. Then we can consider a more efficient variant of the proposed scheme such that the RSA accumulator is not used to authenticate Index.

Instead, the client computes $tag_i = \texttt{MAC}_{k_m}(\texttt{label}_i, \texttt{List}(w_i))$ for each keyword $w_i \in \mathcal{W}$, and stores

$$
\mathcal{I} = \{ (\mathtt{label}_{\sigma(i)},\overline{\mathtt{index}}_{\sigma(i)}, tag_{\sigma(i)}) \mid i = 1,\cdots,m \} \tag{11}
$$

to the server in the store phase.

In the search phase, the server returns tag_a to the client for a search keyword w_a instead of π_I . Then the computation cost of the server is reduced from $O(nm)$ to $O(n)$ in the search phase. The computation cost of the client is reduced from $O(n)$ to $O(n_a)$, where n_a is the number of documents which contain w_a . See Table 3.

Table 3. A Variant with No Add

	search modify delete		
communication overhead	$[n+O(\lambda)]$ $O(\lambda)$ $O(\lambda)$		
computation cost of the server	O(n)	$O(n)$ $O(n)$	
computation cost of the client $O(n_a)$		$O(1)$ $\overline{O(1)}$	

References

- 1. Bellovin, S., Cheswick, W.: Privacy-Enhanced Searches Using Encrypted Bloom Filters, Cryptology ePrint Archive, Report 2006/210 (2006), http://eprint.iacr.org/
- 2. Bellare, M., Desai, A., Jokipii, E., Rogaway, P.: A Concrete Security Treatment of Symmetric Encryption. In: FOCS 1997, pp. 394–403 (1997)
- 3. Ballard, L., Kamara, S., Monrose, F.: Achieving Efficient Conjunctive Keyword Searches over Encrypted Data. In: Qing, S., Mao, W., López, J., Wang, G. (eds.) ICICS 2005. LNCS, vol. 3783, pp. 414–426. Springer, Heidelberg (2005)
- 4. Byun, J.W., Lee, D.-H., Lim, J.: Efficient conjunctive keyword search on encrypted data storage system. In: Atzeni, A.S., Lioy, A. (eds.) EuroPKI 2006. LNCS, vol. 4043, pp. 184–196. Springer, Heidelberg (2006)
- 5. Benaloh, J., de Mare, M.: One-way accumulators: A decentralized alternative to digital signatures. In: Helleseth, [T.](http://eprint.iacr.org/) [\(ed.\)](http://eprint.iacr.org/) [EUROCRYPT](http://eprint.iacr.org/) [19](http://eprint.iacr.org/)93. LNCS, vol. 765, pp. 274–285. Springer, Heidelberg (1994)
- 6. Barić, N., Pfitzmann, B.: Collision-free accumulators and fail-stop signature [schemes](http://eprint.iacr.org/) without trees. In: Fumy, W. (ed.) EUROCRYPT 1997. LNCS, vol. 1233, pp. 480–494. Springer, Heidelberg (1997)
- 7. Canetti, R.: Universally Composable Security: A New Paradigm for Cryptographic Protocols, Revision 1 of ECCC Report TR01-016 (2001)
- [8. Canetti,](http://eprint.iacr.org/) R.: Universally Composable Signatures, Certification and Authentication, Cryptology ePrint Archive, Report 2003/239 (2003), http://eprint.iacr.org/
- 9. Canetti, R.: Universally Composable Security: A New Paradigm for Cryptographic Protocols, Cryptology ePrint Archive, Report 2000/067 (2005), http://eprint.iacr.org/
- 10. Curtmola, R., Garay, J.A., Kamara, S., Ostrovsky, R.: Searchable symmetric encryption: improved definitions and efficient constructions. In: ACM Conference on Computer and Communications Security, pp. 79–88 (2006)
- 11. Full version of the above: Cryptology ePrint Archive, Report 2006/210 (2006), http://eprint.iacr.org/
- 12. Cash, D., Jarecki, S., Jutla, C., Krawczyk, H., Roşu, M.-C., Steiner, M.: Highly-Scalable Searchable Symmetric Encryption with Support for Boolean Queries. In: Canetti, R., Garay, J.A. (eds.) CRYPTO 2013, Part I. LNCS, vol. 8042, pp. 353–373. Springer, Heidelberg (2013)
- 13. Chase, M., Kamara, S.: Structured encryption and controlled disclosure. In: Abe, M. (ed.) ASIACRYPT 2010. LNCS, vol. 6477, pp. 577–594. Springer, Heidelberg (2010)
- 14. Camenisch, J., Lysyanskaya, A.: Dynamic accumulators and application to efficient revocation of anonymous credentials. In: Yung, M. (ed.) CRYPTO 2002. LNCS, [vol.](http://eprint.iacr.org/) [244](http://eprint.iacr.org/)2, pp. 61–76. Springer, Heidelberg (2002)
- 15. Chang, Y.-C., Mitzenmacher, M.: Privacy Preserving Keyword Searches on Remote Encrypted Data. In: Ioannidis, J., Keromytis, A.D., Yung, M. (eds.) ACNS 2005. LNCS, vol. 3531, pp. 442–455. Springer, Heidelberg (2005)
- 16. Gennaro, R., Halevi, S., Rabin, T.: Secure hash-and-sign signatures without the random oracle. In: Stern, J. (ed.) EUROCRYPT 1999. LNCS, vol. 1592, pp. 123–139. Springer, Heidelberg (1999)
- 17. Goh, E.-J.: Secure Indexes. Cryptology ePrint Archive, Report 2003/216 (2003), http://eprint.iacr.org/
- 18. Goodrich, M.T., Papamanthou, C., Tamassia, R.: On the Cost of Persistence and Authentication in Skip Lists. In: Demetrescu, C. (ed.) WEA 2007. LNCS, vol. 4525, pp. 94–107. Springer, Heidelberg (2007)

- 19. Golle, P., Staddon, J., Waters, B.: Secure Conjunctive Keyword Search over Encrypted Data. In: Jakobsson, M., Yung, M., Zhou, J. (eds.) ACNS 2004. LNCS, vol. 3089, pp. 31–45. Springer, Heidelberg (2004)
- 20. Kirsch, A., Mitzenmacher, M., Wieder, U.: More Robust Hashing: Cuckoo Hashing with a Stash. SIAM J. Comput. 39(4), 1543–1561 (2009)
- 21. Kurosawa, K., Ohtaki, Y.: UC-Secure Searchable Symmetric Encryption. In: [Keromytis,](http://en.wikipedia.org/wiki/Merkle~tree) [A.D.](http://en.wikipedia.org/wiki/Merkle~tree) [\(ed.\)](http://en.wikipedia.org/wiki/Merkle~tree) [FC](http://en.wikipedia.org/wiki/Merkle~tree) [2012.](http://en.wikipedia.org/wiki/Merkle~tree) [LNCS,](http://en.wikipedia.org/wiki/Merkle~tree) [vo](http://en.wikipedia.org/wiki/Merkle~tree)l. 7397, pp. 285–298. Springer, Heidelberg (2012)
- 22. Kamara, S., Papamanthou, C.: Parallel and Dynamic Searchable Symmetric Encryption. In: Sadeghi, A.-R. (ed.) FC 2013. LNCS, vol. 7859, pp. 258–274. Springer, Heidelberg (2013)
- 23. Kamara, S., Papamanthou, C., Roeder, T.: Dynamic searchable symmetric encryption. In: ACM Conference on Computer and Communications Security, pp. 965–976 (2012)
- 24. Merkle Tree, http://en.wikipedia.org/wiki/Merkle~tree
- 25. Song, D.[, W](#page-14-0)agner, D., Perrig, A.: Practical Techniques for Searches on Encrypted Data. In: IEEE Symposium on Security and Privacy 2000, pp. 44–55 (2000)
- 26. Wang, P., Wang, H., Pieprzyk, J.: Keyword Field-Free Conjunctive Keyword Searches on Encrypted Data and Extension for Dynamic Groups. In: Franklin, M.K., Hui, L.C.K., Wong, D.S. (eds.) CANS 2008. LNCS, vol. 5339, pp. 178–195. Springer, Heidelberg (2008)

A Proof of Theorem 3

(1) Suppose that the real world adversary **A** does not corrupt any party in our protocol. Then it is easy to see that the client outputs the correct documents for each search keyword. Further Z interacts only with the client $(= P_1)$. Therefore no Z can distinguish the real world from the ideal world.

(2) Suppose that $\mathcal Z$ asks **A** to corrupt the client $(= P_1)$ in our protocol. In this case, **A** may report the communication pattern of the client to Z . Consider an ideal world adversary **S** who runs **A** internally by playing the role of the server $(= P_2)$, forwarding all messages from $\mathcal Z$ to **A** and vice versa. Note that **S** can play the role of the server faithfully because it has no interaction with Z . This means that no Z can distinguish the real world from the ideal world.

(3) Suppose that Z asks **A** to corrupt the server $(= P_2)$. In this case, our ideal world adversary **S** runs **A** internally by playing the role of the client $(= P_1)$, forwarding all messages from $\mathcal Z$ to $\mathbf A$ and vice versa.

(Store) Suppose that $\mathcal Z$ sends a store command to P_1 . P_1 relays it to $\mathcal F$. $\mathcal F$ then sends $|D_1|, \dots, |D_n|$ and $|W|$ to **S**.

- 1. **S** runs the client's algorithm on input $\mathcal{D}' = \{D'_i = 0^{|D_i|} | i = 1, \dots, n\},\$ $\mathcal{W}' = \{1, \dots, m\}$ and Index' = $\{e'_{i,j}\}$ with $e'_{i,j} = 0$ for all (i, j) .
-
- 2. By doing so, **S** sends (N, g, f, k_a) and (\mathcal{I}, C) to **A**, and keeps

 $sk = (p, q, k_e, k_0, k_1, \sigma)$

secret, where $\mathcal{C} = (C_1, \dots, C_n)$ and $\mathcal{I} = \{(\mathtt{label}_{\sigma(i)}, \overline{\mathtt{index}}_{\sigma(i)})\}.$

(Search) Suppose that Z sends the *i*th search command on a keyword $w_a \in W$ to P_1 . P_1 relays it to \mathcal{F} . \mathcal{F} then sends List $(w_a) = \{j \mid D_j \text{ contains } w_a\}$ to **S**.

1. Let

$$
e_j = \begin{cases} 1 \text{ if } j \in \text{List}(w_a) \\ 0 \text{ otherwise} \end{cases}.
$$

S computes pad^{*} = $\overline{\text{index}}_{\sigma(i)} \oplus (e_1, \dots, e_n)$ and sends $(\text{label}_{\sigma(i)}, \text{pad}^*)$ to **A**.

- 2. **A** returns $(C'(w_a), \pi_C, \pi_I)$.
- 3. **S** runs the client's algorithm on input $(C'(w_a), \pi_C, \pi_I)$ and sk. If the client outputs reject, then **S** sends reject to \mathcal{F} . Otherwise **S** sends OK to \mathcal{F} .

(Modify) Suppose that $\mathcal Z$ sends a modify command (i, D'_i) to P_1 . Then **S** is given $|D'_i|$ by $\mathcal{F}.$

- 1. **S** first computes $C'_{i} = E_{k_e}(0^{|D'_{i}|}).$
- 2. Then **S** runs our protocol (Modify) with **A** by playing the role of the client.
- 3. If the client outputs reject, then **S** sends reject to F. Otherwise **S** sends OK to \mathcal{F} .

(Delete) Suppose that Z sends a modify command i to P_1 . Then **S** is given i by F. **S** runs our protocol (Delete) with **A** by playing the role of the client. If the client outputs reject, then **S** sends reject to F. Otherwise **S** sends OK to F.

(Add) Suppose that $\mathcal Z$ sends an add command D to P_1 . Then **S** is given $|D|$ by F. **S** first computes $C_{n+1} = E_{k_e}(0^{|D|})$. **S** then runs our protocol (Add) with **A** by playing the role of the client. If the client outputs reject, then **S** sends reject to F. Otherwise **S** sends OK to F.

Now because SKE is CPA-secure, each $E_{k_e}(D)$ and $E_{k_e}(0^{|D|})$ are indistinguishable in the store phase, in the search phase, when modifying a document, and when adding a document. Further because PRF is a pseudo-random function, we can see that:

- $-$ The real $\mathcal I$ and the simulated one are indistinguishable.
- **–** In the search phase, the real pad and the simulated pad[∗] are indistinguishable.
- When adding a document, the real (a_1, \dots, a_m) and the simulated one are indistinguishable.

Therefore the inputs to **A** inside of **S** are indistinguishable from those in the real world. This means that inside of **S**, **A** behaves in the same way as in the real world.

We next show that the outputs of the client (which $\mathcal Z$ receives) in the real world are indistinguishable from those in the ideal world. Remember that **A** inside of **S** behaves in the same way as in the real world.

For a modify query (i, D'_i) ,

- 1. t[he](#page-9-0) client sends (i, C'_i) to the server, and
- 2. the server returns $(H(C_i), \pi_i)$ to the client.

First suppose that **A** returns $(H(C_i), \pi_i)$ correctly.

- $-$ In the real world, the client updates A_C correctly, and outputs nothing.
- In the ideal world, **S** returns OK to F, and F replaces D_i with D'_i .

Next suppose that **A** returns an invalid $(H(C_i), \pi_i)$. Then eq.(7) does not hold with overwhelming probability from Proposition 3. Hence

- **–** In the real world, the client outputs reject, and Z receives reject.
- In the ideal world, **S** returns reject to F, F sends it to P_1 , and P_1 relays it to Z.

Therefore the real world and the ideal world are indistinguishable.

Similarly, for a delete query, the real world and the ideal world are indistinguishable.

For an add query D, the client receives nothing from the server $(= A)$. Hence he always updates A_C and A_I correctly, and outputs nothing.

Finally for a search query on a keyword w ,

- 1. the client sends (label, pad) to the server, and
- 2. the server returns $(C'(w), \pi_C, \pi_I)$ to the client, where $C'(w) = \{(i, C_i) \mid$ D_i contains w .

Firs[t](#page-11-0) [s](#page-11-0)uppose [th](#page-11-1)at **A** returns $(C'(w), \pi_C, \pi_I)$ correctly.

- In the real world, the clie[nt](#page-11-0) outpu[ts](#page-11-1) $D(w) = \{D_i | D_i \text{ contains } w\}$ correctly.
- In the ideal world, **S** returns OK to F, and F sends $D(w)$ to P_1 .

Next suppose that **A** returns an invalid $(C''(w), \pi'_{\mathcal{C}}, \pi'_{\mathcal{I}})$ such that

$$
(\mathrm{C}''(w), \pi'_C, \pi'_I) \neq (\mathrm{C}'(w), \pi_C, \pi_I).
$$

We will show that eq.(6) or eq.(5) does not hold with overwhelming probability.

- $-$ (Case 1) $C''(w) = C'(w)$ and $(\pi'_C, \pi'_I) \neq (\pi_C, \pi_I)$. In this case, the client [c](#page-9-0)omputes $\{z_j\}$ and $\{x_i\}$ correctly. Hence eq.(6) or eq.(5) does not hold clearly because $(\pi'_C, \pi'_I) \neq (\pi_C, \pi_I)$.
- $-$ (Case 2) $C''(w) \neq C'(w)$. If the client does not compute $\{z_j\}$ correctly, then we can see that eq.(6) does not hold from Proposition 3.

Suppose that the client computes $\{z_i\}$ correctly. Then he reconstructed (e_1, \dots, e_n) and $\overline{\text{index}}_a$ correctly. This means that there exist some $(i, C'_i) \in$ $C''(w)$ and $(i, C_i) \in C'(w)$ such that $C'_i \neq C_i$ because $C''(w) \neq C'(w)$. For such i, $H(i, H(C_i')) \neq H(i, H(C_i))$ because H is collision-resistant. Hence eq.(5) does not hold from Proposition 3 because $prime(H(i, H(C_i'))) \neq$ $prime(H(i, H(C_i))).$

Therefore in the real world, the client outputs reject, and Z receives reject. In the ideal world, **S** returns reject to \mathcal{F}, \mathcal{F} sends it to P_1 , and P_1 relays it to Z . Consequently, we can see that Z cannot distinguish the real world from the ideal world. Q.E.D.