
Truncated Differential Analysis
of Reduced-Round LBlock�

Sareh Emami1,2, Cameron McDonald2, Josef Pieprzyk1, and Ron Steinfeld3

1 Macquarie University, Australia
2 Qualcomm Incorporated, Australia

3 Monash University, Australia

Abstract. In this paper we present truncated differential analysis of
reduced-round LBlock by computing the differential distribution of ev-
ery nibble of the state. LLR statistical test is used as a tool to apply
the distinguishing and key-recovery attacks. To build the distinguisher,
all possible differences are traced through the cipher and the truncated
differential probability distribution is determined for every output nib-
ble. We concatenate additional rounds to the beginning and end of the
truncated differential distribution to apply the key-recovery attack. By
exploiting properties of the key schedule, we obtain a large overlap of key
bits used in the beginning and final rounds. This allows us to significantly
increase the differential probabilities and hence reduce the attack com-
plexity. We validate the analysis by implementing the attack on LBlock
reduced to 12 rounds. Finally, we apply single-key and related-key at-
tacks on 18 and 21-round LBlock, respectively.

Keywords: Block cipher, LBlock, Truncated differetial analysis, Prob-
ability distribution, Log-likelihood ratio, Key-recovery attack.

1 Introduction

With the advent of RFID technology in communication applications, tradi-
tional block ciphers are generally not suitable for resource constrained devices.
Lightweight block ciphers (with smaller block and key size) are a new class of
ciphers designed for such environments. Recently there have been a lot of new
lightweight designs, examples include: HIGHT [8], PRESENT [5], PRINTcipher
[9], and LBlock [17]. Security analysis of lightweight primitives is currently re-
ceiving considerable attention.

Similarly to the other lightweight block ciphers, LBlock has attracted a signif-
icant amount of cryptanalysis. For instance, related-key impossible differential
attacks were successfully applied to 21 and 22-round LBlock [13,14]. A 16-round
related-key truncated differential is exploited to launch an attack on 22-round
LBlock [12]. In [15], a 15-round distinguisher is proposed, allowing an integral
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attack for up to 22 rounds. Zero-correlation linear cryptanalysis of 22-round
LBlock is presented in [16]. All attacks published so far require high amount of
memory and data.

The standard differential analysis and its derivatives usually follow a differen-
tial trail and compute probabilities for known expected differences. Recently dif-
ferential distribution analysis got high attention in the analysis of block ciphers.
These type of attacks typically require lower amount of data in comparision to
the standard differential. In the case of lightweight block ciphers, Albrecht and
Leander explained in [1], that it is feasible to find the probability distribution
of all output differences from one (or more) input difference. In a similar work,
multiple differential cryptanalysis using the LLR and χ2 statistical tests dis-
cussed in [3]. However in [1,3] the differential distribution is found for the whole
state, which makes the attack possible only on a cipher with a small block size.
The link between differential analysis and correlations of linear approximations,
was exploited in [4] to compute truncated differential probabilities. This method
combined with LLR test used to apply multiple differential cryptanalysis on
PRESENT.

In this paper we present the truncated differential analysis of LBlock by look-
ing at the difference distributions of the state nibbles independently. After finding
a distribution that significantly differs from that of a random permutation, we
use LLR statistical test to build the distinguisher. The way we find the trun-
cated differential distribution in the markov model, makes our attack possible
on the ciphers with relatively larger states than [1,3]. Additional rounds are
added to the end of the distinguisher to be used in a partial key recovery phase.
Moreover, by exploiting related key bits in the key schedule, we concatenate ad-
ditional rounds to the beginning of the distinguisher. Differentials through these
beginning rounds have high probability, allowing us to extend the attack without
significantly increasing the complexity. We apply the attack on a reduced round
LBlock and construct single key and related key attacks up to 18 and 21 rounds,
respectively. A comparison with attack complexities from prior work is given in
Table 1.

The rest of the paper is structured as follows. Preliminaries are explained in
Section 2. A framework to apply the key-recovery attack using the truncated dif-
ferential distribution, while benefiting the key schedule properties is introduced
in Section 3. Section 4 discusses the complexity of the attack and includes the
empirical results. Section 5 presents a single-key attack on 18 rounds as well
as related-key attacks on 20 and 21 rounds of LBlock. Finally, we conclude the
paper in Section 6.

2 Preliminaries

2.1 LBlock Description

LBlock [17] is a lightweight block cipher with a block size of 64 bits and a key
size of 80 bits. The design is a 32 round balanced Feistel where the input block
is divided into two 32-bit halves, denoted the left-hand half (most significant
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Table 1. Attacks on LBlock

Type of Attack rounds Data Time Reference
Related-key impossible differential 22 268 270 [14]

Related-key differential 22 264.1 267 [12]
Integral 18 262 + 220 memory 236 [17]
Integral 22 261 + 263 memory 270 [15]

Zero-correlation linear 22 260 + 264 memory 279 [16]
Truncated differential 18 223 268.71 This paper

Related-key truncated differential 20 227 274.55 This paper
Related-key truncated differential 21 230 277.56 This paper

bits) and the right-hand half (least significant bits). Each round includes a key
addition, where the round sub-keys are 32-bit values denoted by SK[i]. The
structure of LBlock is shown in Fig. 1a.
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Fig. 1. LBlock structure

The round function includes a XOR key addition, a nonlinear S-box layer (S)
and a linear permutation layer (P ). The S-box layer S applies 8 different S-boxes
(si) in parallel. The linear layer P simply reorders the 8 nibbles in the state.
The round function is show in Fig. 1b. Since all the state functions operate on
4 bits, it is convenient to represent the state as a sequence of nibbles using the
following notation x = (x15, . . . , x1, x0). LBlock uses a key scheduling function
to expand the 80 bit master key K into 32 round sub-keys SK[i], each being 32
bits in size. The master key K is stored in a register, denoted by the sequence of
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bits k79k78k77k76 . . . k1k0. The key register is updated by the scheduling process
and the 32 most significant bits of the register become the round sub-key. The
key scheduling process is as follows:
For i = 1, 2, . . . , 31:

1. K ≪ 29

2. [k79k78k77k76] = s9[k79k78k77k76] and [k75k74k73k72] = s8[k75k74k73k72]

3. [k50k49k48k47k46]⊕ [i]2
4. Output the leftmost 32 bits of the current content of register K as the round

sub-key SK[i+ 1].

where s8 and s9 are two 4-bit S-boxes.

2.2 Likelihood Test

Let P = (p0, p1, . . . , pn) and Q = (q0, q1, . . . , qn) denote two discrete probability
distributions of random variables X and Y , respectively. The relative entropy,
or Kullback-Leibler divergence, is a measure between two distributions, see [2,6].

Definition 1. The Kullback-Leibler (KL) divergence between P and Q is defined
as follows:

D(P ||Q) =

n∑

i=0

pi · ln(pi
qi
) (1)

As in [6], we use the convention that 0 · log 0
q = 0 and p · log p

0 = ∞.

In the binary hypothesis testing problem, one is given a set of empirical data
x = (x0, x1, . . . , xn) taken from N samples. The empirical probability distri-
bution is equal to P̂ = (p̂0, p̂1, . . . , p̂n) = 1/N · (x0, x1, . . . , xn). According to
the Neyman-Pearson Lemma, the log-likelihood ratio is the optimal method for
determining if the sample data belongs to one of two different probability dis-
tributions P or Q, see [6,7].

Definition 2. The log-likelihood ratio (LLR) is defined as

LLR(P̂ , P,Q) = N
n∑

i=0

p̂i · ln(pi
qi
) (2)

If LLR(P̂ , P,Q) ≥ Θ (Θ is a threshold parameter), the empirical data is
accepted as a sample from the distribution P (rejecting Q as the hypothesis).
Otherwise, P is rejected in favour of Q. In our analysis, we use this to distinguish
between distributions representing the right key and the wrong keys which is
explained in later sections.
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3 Truncated Differential Analysis

The analysis is structured in to the following three phases: Standard Differential
phase (SD), Truncated Differential Distribution (TDD), and Partial-Key Recov-
ery phase (PKR). Fig. 2 depicts the range of each phase. SD phase starts from
state S0 with a known input difference α, and follows a standard differential
trail through SD-rounds up to state S1 with specific output difference β. TDD
phase calculates the truncated differential distribution from input β through
TDD-rounds to state S2 with output Γ . The output Γ here is not a specific
difference but a probability distribution over all possible differences. PKR phase
involves partial decryption of the ciphertext to determine S2 from the observed
output state S3. The difference in state S2 is measured and compared against
the expected distribution Γ .

SDS0 TDDS1 PKRS2 S3

Fig. 2. The attack model

3.1 Standard Differential Phase

The Standard Differential (SD) phase involves finding a high probability differen-
tial characteristic through some number of rounds. The XOR-difference between
two states x and x′ is denoted by α = (α15 . . . α1α0) = (x15 ⊕ x′

15, . . . , x1 ⊕
x′
1, x0 ⊕ x′

0). Note that αi represents exact difference of 4-bits, hence αi ∈
{0, . . . , 15}. The differential trail maps a specific input difference α to a spe-
cific output difference β with probability denoted PSD(α → β).

For example, let the input difference be α = (10000000 00002000). A possible
output difference, after one round, is β = (00000000 10000000). The probability
of this differential is 2−2.

SD : (10000000 00002000)→ (00000000 10000000) (3)

The probability is computed under the assumption that the input values of S-
box s7 are not known. If the inputs to the S-box are known, we can detect (with
probability 1) whether the differential trail is followed. This requires knowledge
of nibble 7 of SK[0]. Conversely, given the values of the state, we can find
solutions to the sub-key SK[0]7 such that the differential trail is followed.

3.2 Truncated Differetial Distribution Phase

In this phase, we model the difference distribution of all possible output differ-
ences for every nibble based on a chosen distribution of input differences. This
generalisation is the fundamental idea behind truncated differential analysis [10]
and all-in-one differential analysis [1].
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Computing Truncated Differential Distribution. The round function con-
sists of two components that affect the probability distribution, S-box transfor-
mation and XOR addition. Proposition 1, describes probability of differences for
each nibble after an S-box transformation, and Proposition 2 shows how XOR
addition affect the difference probability distribution.

Proposition 1. For an S-box sn : F
4
2 → F

4
2 and input difference probability

distribution x = (x0x1 . . . x15), where xi is the probability of difference i for
nibble n, the output difference probability yi after S-box transformation sn is
calculated as

yi =

15∑

j=0

xj ·P(sn(j) = i) (4)

Proof. Assume the difference J occurs with probability xJ and 4-bit S-box sn
transfers difference J to difference I with probability P(sn(J) = I). Hence,
difference I happens from input diffrence J with probability xJ ·P(sn(J) = I).
However, difference I might occur from s-box transformation of the other 15
input differences; therefore output difference I happens with probability yI as
yI =

∑15
j=0 x

j · P(sn(j) = I). The same way is used to calculate probability yi

for every output difference 0 ≤ i ≤ 15. �	
Proposition 2. For two input difference probabilities x = (x0x1 . . . x15) and
y = (y0y1 . . . y15), the output XOR-difference probability zi is

zi =

15∑

j=0

xj · yi⊕j (5)

Proof. Assume nibble Z is the XOR-additoion of nibbles X and Y . Difference J
at nibble X happens with probability xJ ; while, in nibble Y , difference K = I⊕J
happens with probability yK . By XORing differences J and K, nibble Z has
difference I with probability zI = xJ · yI⊕J . However, difference I might be the
result of XORing other 15 differences 0 ≤ j ≤ 15 of nibble X with difference
k = I ⊕ j of nibble Y . Thus, overall difference I happens with probability
zI =

∑15
j=0 x

j · yI⊕j. For every difference 0 ≤ i ≤ 15 of nibble Z probability zi

is calculated with the same way. �	
These propositions allow us to construct the differential transformation matrix
for the round function; and, given an input distribution, obtain the output trun-
cated differential distribution after a number of rounds. Thus, the TDD phase
maps a difference vector β to a distribution matrix Γ . We denote the probability
distribution matrix PTDD(β → Γ ). For example, let the input difference vec-
tor be β = (00000000 10000000). Table 2 lists the output truncated differential
distribution PTDD(β → Γ ) for the right-hand half nibbles after 8 rounds of
LBlock, calculated using Propositions 1 and 2.

The analysis is more effective if a differential distribution profile is chosen
in a way that is easiest to distinguish. More specifically, a distribution that
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Table 2. Example truncated differential distribution after 8 rounds

Diff\Nibble 7 6 5 4 3 2 1 0

0 0.0610 0.0654 0.0000 0.0000 0.0667 0.0667 0.0000 0.0000
1 0.0000 0.0592 0.0312 0.0693 0.0625 0.0625 0.0625 0.0645
2 0.0649 0.0620 0.1562 0.0732 0.0626 0.0624 0.0312 0.0635
3 0.0649 0.0619 0.0312 0.0684 0.0623 0.0626 0.0938 0.0649
4 0.0610 0.0608 0.0469 0.0698 0.0620 0.0625 0.0625 0.0654
5 0.0732 0.0646 0.0469 0.0610 0.0626 0.0625 0.0625 0.0664
6 0.0703 0.0657 0.0781 0.0649 0.0622 0.0624 0.1250 0.0654
7 0.0684 0.0604 0.1094 0.0698 0.0625 0.0625 0.0625 0.0688
8 0.0703 0.0588 0.0625 0.0635 0.0617 0.0646 0.0625 0.0649
9 0.0679 0.0663 0.0625 0.0649 0.0618 0.0583 0.0625 0.0757
A 0.0659 0.0627 0.0469 0.0635 0.0623 0.0604 0.0312 0.0659
B 0.0649 0.0626 0.0469 0.0728 0.0619 0.0626 0.0312 0.0684
C 0.0615 0.0615 0.0781 0.0659 0.0621 0.0646 0.0625 0.0649
D 0.0679 0.0634 0.1094 0.0654 0.0619 0.0583 0.0625 0.0728
E 0.0693 0.0591 0.0625 0.0620 0.0626 0.0645 0.1250 0.0630
F 0.0684 0.0656 0.0312 0.0654 0.0623 0.0626 0.0625 0.0654

D(P||U) 6.59e-2 7.37e-4 1.81e-1 6.59e-2 1.55e-4 5.6e-4 1.46e-1 6.57e-2

is significantly different from uniformly random. As described in Section 2.2,
KL-divergence is the most accurate way to measure the distance between two
distributions [2]. The last row in Table 2 lists the KL-divergence between calcu-
lated probability distribution and uniform distribution for every nibble. Here, U
denotes the uniform probability distribution with equal probability PU = 1/16.
Note, from Table 2, there are impossible differentials in nibbles 0, 1, 4, 5 and
7. This is due to the short number of rounds used in the sample and does not
generally occur in longer trails.

3.3 Partial Key Recovery Phase

Similar to a classical differential attack, additional rounds are added to the end
of the truncated differential distinguisher. In this analysis, the method for dis-
tinguishing is based on the variance between a differential distribution P and
the uniform distribution U . From the truncated differential distribution table,
we choose one (or more) nibbles with significantly large KL-divergence. This
nibble we term the target nibble and set P equal to the probability distribution
for this nibble. By guessing a subset of the round keys and decrypting cipher-
text pairs through the final rounds, we observe the target nibble differential
distribution. For LBlock, it is not required that the entire sub-key be known
to determine nibbles from previous rounds. For example, we choose nibble 3
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(of the right-hand half) as the target nibble. Table 3 lists the nibbles required
to decrypt 3 rounds and determine nibble 3. The X signifies nibbles that must
be calculated in order to decrypt back to the target nibble. The master key bits
are the key bits used relative to the master encryption key at round n− 3.

Table 3. Nibbles required to decrypt 3 rounds

Round Left nibbles Right nibbles sub-key nibbles Master Key bits
n-3 - - - - - - - - - - - - X - - - X - - - - - - - 79-78-77-76
n-2 - - X - - - - - X - - - - - - - - - - - X - - - 34-33-32-31
n-1 - - - - - - X - - - X - X - - - X X - - - - - - 21-20-19-18

17-16-15-14
n X - X - - - - - X X - - - - X - - - - - - - - -

For every partial key guess, we decrypt N ciphertext pairs and count the
frequency of each difference in the target nibble. The difference frequency is
stored in an array of 16 counters c = (c0c1 . . . c15). The corresponding probability
distribution P̂ for this sample is P̂ = 1/N · c which allows us to calculate the
LLR for each key guess. The LLR is used to determine if the observed data most
likely belongs to distribution P or U . If P is chosen in favour of U , the guessed
key is considered a potential solution for the real key. Otherwise, it is discarded.

3.4 Combining SD and TDD Phases

We can combine the standard differential trail of SD with the truncated differen-
tial distribution of TDD to achieve a differential profile over an extended number
of rounds. However, the expected output difference probabilities of TDD change
due to the success probability of each possible SD differential output. The prob-
ability distribution of differences resulting from the input difference α can be
computed as follows:

PTDD(α → Γ ) =
∑

i

PSD(α → βi) ·PTDD(βi → Γi)

= PSD(α → βj) ·PTDD(βj → Γj)

+
∑

i�=j

PSD(α → βi) ·PTDD(βi → Γi),

(6)

where βi are all possible output difference vectors of the SD phase. In Equation
(6), βj is the input difference for the truncated differential distribution TDD
that has the most distinguishable profile (highest KL-divergence). Usually, βj

is the difference with the lowest hamming weight. Also, in practice, all other βi

lead to probability distributions that are much closer to uniform (in comparison
to βj). That is,

∑

i�=j

PSD(α → βi) ·PTDD(βi → Γi) ≈ (1 −PSD(α → βj)) ·PU (7)
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From (6) and (7), the output probability distribution is approximated by

PTDD(α → Γ ) ≈ PSD(α → βj) ·PTDD(βj → Γj) + (1−PSD(α → βj)) ·PU

(8)

3.5 Dependencies between SD and PKR Phases

From the key schedule, there is a strong dependency between the sub-key bits
guessed in PKR and the sub-key bits affecting SD. This changes the success
probability PSD. Note there are two S-boxes s8 and s9 used in the key scheduling.
These S-boxes introduce nonlinear relationships between sub-keys, meaning the
PKR key bits are not always directly obtained from SD key bits. We select the
SD and PKR phases in a way such that there are as many common bits as
possible for the key bits used in the PKR and SD phases.

3.6 12-Round Example

This section gives details about how the analysis is applied to a 12-round version
of LBlock. We construct a 9-round differential distinguisher by combining the
1-round SD(α → β) (from (3)) with 8-round TDD(β → Γ ) (from Section 3.2).
An additional 3 rounds are added for the PKR phase (described in Section 3.3).
The entire attack structure is depicted in Fig. 3.

To cover the general application of the analysis, we choose nibble 3 as the
target nibble for the PKR phase, which does not benefit from the impossible dif-
ferential. The sub-keys required to decrypt the ciphertext in the PKR phase (i.e.
The underlined sub-key nibbles in Fig. 3c) include SK[11]7, SK[11]6, SK[10]5
and SK[9]2, a total of 16 unique bits. The sub-key used in SD phase is SK[0]7.
From the key schedule we get

SK[0]7 = ((s−1
9 (SK[11]7) & 0x7) � 1) | (s−1

8 (SK[11]6) & 0x1).

That is, for a given guess in PKR phase, we determine the sub-key used in the
SD phase.

For a chosen input plaintext pair (with difference α), we say it is a right-pair
if it follows the differential SD. Otherwise, the pair is termed a wrong-pair. Note
that the attacker does not have access to the internal differential states, he only
sees the ciphertext pair. For random input pairs, PSD(α → β) = 2−2, and
we expect 1/4 right-pairs on average. Henceforth, we denote the total number
of plaintext pairs Np and the number of right-pairs N . For every guess of key
bits in PKR, we determine SK[0]7 and distinguish right-pairs from wrong-pairs
(with respect to the key guess). By disregarding wrong-pairs we can increase
the probability of the SD phase such that PSD(α → β) = 1. Therefore, from
Equation (8), PTDD(α → Γ ) = PTDD(β → Γ ).

When SK[0]7 is incorrect (due to an incorrect guess in PKR), we mistake a
wrong-pair for a right-pair. This false-positive results in the addition of noise
to the observed probability distribution. The noise is assumed to be uniformly
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Fig. 3. 3 phases of the 12-round example

random, a similar assumption to the Wrong Key Randomization Hypothesis [11]
(explained later). However, this false-positive only occurs for incorrect guesses
and does not affect the correct guess distribution.

4 Complexity Analysis

For each key guessed in the PKR phase, we calculate the LLR between the
observed truncated differetial distribution and the expected one. If the LLR is
above some threshold (Θ), we consider the guessed key a candidate for the right
key. The resulting list of candidate keys are checked for correctness. The attack
is successful if the right key is among the list of candidate keys, we call this the
attack success rate. In [1], the “gain” of the attack is the fraction of wrong keys
ranked above the expected rank of the right key. We extend this concept and
determine the expected number of candidate keys and the effort required to find
the right key among them.

Assume R is a random variable for the LLR of the right candidate. After
decrypting N pairs of ciphertexts, the expected count for the right candidate
is defined by E(R) in Equation (9). Likewise, random variable W is defined for
the wrong candidates. The value E(W ) gives the expected count of the wrong
candidate, defined in Equation (10).

E(R) = N
∑

i

pi ln(
pi
qi
) (9)

E(W ) = N
∑

i

qi ln(
pi
qi
) (10)
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Here N is the number of right-pairs, pi is the probability of the expected right
key that gives the difference i (which is found in the TDD phase), and qi is the
probability of getting the difference by a wrong key. According to the Wrong
Key Randomization Hypothesis [11], difference probabilities after decryption by
a wrong key candidate are distributed as for a random permutation. Our exper-
iments on LBlock confirm the hypothesis for two or more rounds of decryption.

It is shown in [1] that LLR distribution of the right key is approximated by
a normal distribution with a mean of E(R) and variance of V ar(R) defined in
Equation (11). Likewise, the average distribution of the wrong keys, is approx-
imated by another normal distribution with a mean of E(W ) and variance of
V ar(W ), given in Equation (12).

V ar(R) = N

((∑

i

pi

(
ln(

pi
qi
)
)2

)
−
(∑

i

piln(
pi
qi
)

)2
)

(11)

V ar(W ) = N

((∑

i

qi

(
ln(

pi
qi
)
)2

)
−
(∑

i

qiln(
pi
qi
)

)2
)

(12)

To verify the theoretical findings by experiments, we implemented the analysis
on the 12-round example of Section 3.6. We ran the analysis 1000 times with
N = 216 right-pairs each, and found the LLR distribution for random variables
R and W . Note in this example we guess 16 key bits in the PKR phase, therefore
there are 216 candidate keys. Fig. 4b shows the LLR distribution for the right key
from the experiments. Likewise, Fig. 4a shows the average LLR distribution of all
the wrong keys. The theoretical values describing these distributions are, E(R) =
10.2242, E(W ) = −10.0356, V ar(R) = 20.8225, and V ar(W ) = 19.7064.

Assume random variable X follows a normal distribution N (μ, σ2), where μ
and σ2 are the mean and variance, respectively. According to the cumulative
distribution function (CDF), the probability of the random variable X falling
into the interval [x,∞) is (erf is the error function of the distribution):

P(X ≥ x) =
1

2

(
1− erf

(
x− μ

σ
√
2

))
(13)

If Θ represents a threshold for the LLR, P(R ≥ Θ) gives the probability that
the right key LLR is greater than the threshold. Likewise, P(W ≥ Θ) gives the
probability of a wrong key LLR greater than the threshold Θ. Both probabili-
ties are calculated from Equation (13). Since E(R) is the mean for the normal
distribution of the expected right key, the right key LLR is higher than E(R)
with probability 1

2 . While P(W ≥ E(R)) gives the probability of a wrong key
being ranked higher than the expected right key. If there are NK key candidates
in the test, Nwk denotes the wrong keys ranked higher than the threshold. The
expected value of Nwk is

Nwk = NK ·P(W ≥ Θ) (14)

The attack success rate for finding the right key is related to the threshold
Θ and N the number of right-pairs (accounting for the SD phase) used in the
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(c) Combined diagrams

Fig. 4. Empirical diagrams of the LLR distributions for the 12-round example

attack. By adjusting Θ and N , the attacker is able to find a higher success rate
or a lower Nwk.

In the 12-round example attack, we choose Np = 218 chosen plain-
text/ciphertext pairs and expect to get N = 216 right-pairs from the SD phase.
We ran the experiments 100 times for each chosen threshold. Table 4 shows the
results for different success rates by selecting various LLR thresholds. It is clear
in Table 4 that the experiments confirm the theory.

After the partial key-recovery, each candidate key should be checked for cor-
rectness to do the full key-recovery. One naive method is to guess the remaining
unknown key bits by exhaustive search. Assume bP is the number of PKR-key
bits, then the key-recovery attack complexity is

C = N 2bP + (Nwk + 1) 280−bP (15)
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Table 4. 12-round LBlock results for N = 216 right-pairs

Θ P(R ≥ Θ) P(W ≥ Θ) Nwk Empirical P(R ≥ Θ) Average empirical Nwk

2.6189 0.95 0.0021 143 0.94 154.07
5.6610 0.84 0.0002 14 0.87 15.16
7.1821 0.74 5.25e-05 4 0.73 3.68
8.7032 0.63 1.21e-05 0.79 0.61 0.92
10.2242 0.5 2.51e-06 0.16 0.45 0.19

By choosing Np = 218 plaintext pairs (results in 216 right-pairs) in the 12-round
attack, the distinguisher complexity is 216 × 216 = 232. While the whole key
recovery attack time complexity is C = 216 × 216 + 264 � 264 encryptions. Note
here, exhaustive key search of the remaining bits dominates the complexity.
There are more efficient methods for recovering the remaining bits. In cases
where the initial phase is the dominant task, the exhaustive search may be used
as it does not significantly increase the total complexity.

5 Key-Recovery Attack on LBlock

5.1 Single-Key Attack on 18 Rounds

Fig. 5 describes the truncated differential distribution attack on 18-round LBlock.
We divide the 18 rounds into 3 parts to apply the attack. The SD phase takes
the first 4 rounds, the TDD phase consists of the next 8 rounds, and the PKR
phase includes the 6 final rounds.

The input state of the 4-round SD phase includes 3 nibbles with non-zero
differences in the left-hand half and 5 nibbles with non-zero differences in the
right-hand half as shown in Fig. 5a. Through the 4-round standard differential
almost all the differences are cancelled. So the output state has difference zero
in all the nibbles except nibble 7 of the right-hand half. The TDD phase is very
similar to that explained in the 12-round attack. It starts with a low weight
state (with only difference 4 at nibble 7). Calculating the truncated differential
distribution for the right-hand half nibbles at the output state after 8 rounds,
the highest KL-divergence occurs with nibble 5 (i.e. D(P ||Q) = 2.184e − 01).
Therefore, nibble 5 is chosen as the target nibble for the 6-round PKR phase. To
find the LLR distribution for the target nibble, the attacker needs to guess 52
key-bits in the PKR phase. Observing the SD phase, if the attacker knows the
values of 3 sub-key nibbles SK[0]1, SK[0]2 and SK[0]3, he is able to find the
output of the 3 active S-boxes in the first round with no extra effort. Likewise,
by knowing the values of sub-key nibbles SK[0]6, SK[0]7, SK[1]5 and SK[1]7,
he finds the output of 2 active S-boxes in the second round. Overall, he needs to
know the values of 28 key bits. These bits are guessed in PKR phase, however
going through the key scheduling process the values of bits 73 and 72 are lost.
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Fig. 5. Truncated differential distribution attack on 18-round LBlock

By re-guessing these key bits and guessing one more (bit 0), all the required
28 bit values are revealed for the SD phase. Therefore, the probability of the
SD phase is increased to PSD = 2−4. As mentioned in Section 3.4, difference
probability distribution is updated after combining the SD and TDD phases
estimated by Equation (6). Probability distribution of the target nibble 5, is
shown in Table 5 before and after combining with the SD phase (PT and PST,
respectively).

Adjusting N in Equations (9) and (10), the attacker finds N = 213 as the
value with the best trade off between success rate and complexity. The sta-
tistical characteristic of the right key and the wrong key distributions are as
follows: E(R) = 6.44, E(W ) = −6.40, V ar(R) = 12.99, and V ar(W ) = 12.71.
Table 6 shows the result on 18-round key-recovery attack with different chosen
thresholds. Note, the number of plaintext pairs includes those satisfying the first
two rounds of the SD phase. Therefore, we need Np = 213+10 = 223 pairs of
plaintext/ciphertext to apply the attack. If the attacker chooses the threshold
Θ = E(R), the probability that he finds the right key is 50% and the attack
complexity is 268.71.

Table 5. Difference probability distribution of the target nibble

Diff 0 1 2 3 4 5 6 7 8 9 A B C D E F
PT 0.000 0.156 0.031 0.093 0.046 0.046 0.015 0.109 0.078 0.109 0.031 0.062 0.093 0.031 0.046 0.046
PST 0.058 0.068 0.060 0.064 0.061 0.061 0.059 0.065 0.063 0.065 0.060 0.062 0.064 0.060 0.061 0.061
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Table 6. Analysis results of 18-round LBlock for 223 plaintext pairs

Θ P(R ≥ Θ) P(W ≥ Θ) Nwk Time Complexity

1.043 0.93 0.018 6.62e+14 274.25

2.245 0.87 0.007 2.75e+14 273.01

3.446 0.79 0.002 1.033e+14 271.67

4.647 0.69 0.0009 3.49e+13 270.31

6.449 0.5 0.0001 5.63e+12 268.71

5.2 Related-Key Attack on 20 and 21 Rounds

The related key truncated differential distribution attack applies to LBlock re-
duced to 20 and 21 rounds. Considering the key scheduling process, when the key
difference goes through the S-boxes s8 or s9 the output difference is unknown.
However, due to the slow avalanche effect of the key schedule, it takes multiple
rounds for key differences to reach these S-boxes. Therefore, it is easy to find the
truncated difference probability distribution for all the possible key differentials.
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During the attack, we test each expected key differential in parallel to determine
the correct key differential path.

The related key attack on 20 rounds consists of a 4-round SD phase, 10-round
TDD, and 6-round PKR phase (see Fig. 6). The SD phase starts with 5 non-zero
differences which are all cancelled through the 4 rounds differential trail, finishing
with no difference in the output state. The key-register at the first round of the
TDD phase has difference in just one bit (the 13th least significant bit). The key
difference does not affect the round sub-keys for two rounds. The truncated dif-
ferential distribution is calculated for the 10-round TDD phase. Nibble 5 (of the
output right-hand half) has the highest KL-divergence D(P ||Q) = 2.189429e−03
and is chosen as the target nibble. Finally, 6 final rounds are added as the PKR
phase, requiring 52 key bits be guessed to reach the target nibble. From these
key bits, two sub-key nibbles SK[0]2 and SK[0]4 are determined for the first
round of the SD phase. Consequently, the input values of the active S-boxes are
known in the first round and the overall probability of the SD phase increases
to PSD = 2−6.

Table 7, shows the results for the 20-round related key attack with different
success rates. Note that the number of plaintext/ciphertext pairs includes the
amount required to follow the SD phase. Considering the LLR threshold equal to
the expected value of the right key (E(R)), with 227 chosen plaintexts (N = 223

right-pairs), the complexity of the key recovery attack is 274.55.
The related-key attack is extended to 21 rounds by adding one more round

to the beginning of the SD phase in the above 20-round attack. Fig. 7 shows
the SD phase in 21-round attack. The other phases are similar to the ones in
the 20-round attack. If the attacker guesses 5 more key bits in the PKR phase
(a total of 57 bits), he finds the 3 sub-key nibbles (SK[0]1, SK[0]2 and SK[0]4)
required to know the values of the active S-boxes in the first SD round. Also, the
input values of 2 active S-boxes in the second round is clear by knowing sub-key
nibbles SK[0]0, SK[0]5, SK[1]2 and SK[1]4. The analysis results of the attack
on 21 rounds is shown in Table 7. Overall, the related-key attack on 21-round
LBlock is possible with Np = 230 chosen plaintexts (N = 220 right-pairs) and
277.56 time complexity, when the attack success rate is 50%.

Table 7. Related-key analysis results on reduced LBlock

Specification Θ P(R ≥ Θ) P(W ≥ Θ) Nwk Time Complexity

20 rounds, 1.6798 0.84 0.0183 8.28e+13 275.36

Np = 227 pairs, 3.7397 0.63 0.0029 1.31e+13 274.66

E(R) = 4.7696 4.7696 0.5 0.0010 4.51e+12 274.55

21 rounds, -0.1320 0.74 0.3355 4.83e+16 278.61

Np = 230 pairs, 0.2320 0.63 0.2240 3.23e+16 278.11

E(R) = 0.5962 0.5962 0.5 0.1373 1.98e+16 277.56
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Fig. 7. The SD phase of the 21-round related-key attack

6 Conclusion

In this paper we presented truncated differential analysis of block cipher LBlock
by analysing probability distribution of the truncated differences. Also we used
LLR statistical test to employ the key-recovery attacks. The attack uses a distin-
guisher based on truncated differential distribution that are significantly different
from a random permutation. Candidate sub-keys are guessed over several final
rounds and the observed differences are measured against the expected distri-
bution. We extend the distinguisher by concatenating additional rounds to the
beginning which follow a classical differential characteristic. By exploiting the
properties of the key schedule, we greatly increase the probabilities of differentials
passing through the beginning rounds. We verified the analysis by implementing
an example attack on 12-round LBlock and provide empirical data conforming
the theory. Finally, we describe single-key and related-key attacks on LBlock re-
duced to 18 and 21 rounds, respectively. Finding probability distribution of the
truncated differential, our attack can be applied on the ciphers with relatively
large block size.
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