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Abstract. While generic attacks on classical Feistel schemes and unbal-
anced Feistel schemes have been studied a lot, generic attacks on several
generalized Feistel schemes like type-1, type-2 and type-3 and alternating
Feistel schemes, as defined in [8], have not been systematically investi-
gated. These generalized Feistel schemes are used in well known block
cipher networks that use generalized Feistel schemes: CAST-256 (type-
1), RC-6 (type-2), MARS (type-3) and BEAR/LION (alternating). Also,
type-1 and type-2 Feistel schemes are respectively used in the construc-
tion of the hash functions Lesamnta and SHAvite− 3512.In this paper,
we give our best Known Plaintext Attacks and non-adaptive Chosen
Plaintext Attacks on these schemes. We determine the maximal number
of rounds that we can attack when we want to distinguish a permutation
produced by the scheme from a permutation chosen randomly in the set
of permutations.

Keywords: generalized Feistel schemes, generic attacks on encryption
schemes, block ciphers.

1 Introduction

Classical Feistel schemes have been extensively studied since the seminal work
of Luby and Rackoff [14]. These schemes allow to construct permutations from
{0, 1}2n to {0, 1}2n by using round functions from n bits to n bits (DES is an
example of a classical Feistel scheme). For 3 and 4 rounds, there are attacks
with

√
2n inputs in [1] and [18]. For 5 rounds, an attack with O(2n) inputs is

given in [19,20]. When the round functions are permutations, attacks are studied
in [12,13,25]. Security results on classical Feistel schemes are given in [8,20,17].

We define generalized Feistel schemes as follows: the input belongs to {0, 1}kn
and we apply different kinds of round functions on some parts of the input in
order to construct permutations from kn bits to kn bits.

When the round functions are from (k − 1)n bits to n bits, we obtain an
unbalanced Feistel scheme with contracting functions. Attacks on these schemes
were studied in [22]. When the round functions are from n bits to (k − 1)n
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bits, we have unbalanced Feistel schemes with expanding functions. Attacks on
these schemes are given in [10,23,24,26]. Alternating Feistel schemes alternate
contracting and expanding rounds. They are described in [2] and are used in
the BEAR/LION block cipher. There are also type-1, type-2 and type-3 Feistel
schemes (they are described in Section 2, see also [9,29]). These schemes are
used respectively in the block ciphers CAST-256, RC6 and MARS. In [4], the
authors provide attacks on the hash functions Lesamnta and SHAvite− 3512
whose construction is based on type-1 and type-2 Feistel schemes. Some attacks
on instances of generalized Feistel schemes are also given in [3]. Impossible dif-
ferential attacks on generalized Feistel schemes are studied in [5] when there is
no condition on the round functions, and in [6,13,27] when the round functions
are permutations.

Security results have been obtained for most of these schemes. For classical
Feistel schemes the different results are given in [8,20,17]. Unbalanced Feistel
schemes with contracting functions have been studied in [8,15,17,28] and for
unbalanced Feistel schemes with expanding functions, alternating, type-1, type-
2 and type-3 Feistel schemes, the results are in [8].

This paper is devoted to the study of generic attacks on type-1, type-2, type-3
and alternating generalized Feistel schemes. Our attacks are distinguishers that
allow to distinguish a permutation produced by a scheme from a permutation
chosen randomly in the set of permutations. The round functions are chosen
at random and are not known to the adversary. Moreover, we assume that the
round functions are independent of each other.

Our attacks will use differential characteristics. We provide Known Plaintext
Attacks (KPA) and non-adaptive Chosen Plaintext Attacks (CPA-1). For each
kind of scheme, we will give the maximal number of rounds that we can attack
in KPA and CPA-1 and we will describe our best attacks up to the maximal
number of rounds. Table 1 gives the maximal number of rounds attacked by
either KPA, CPA-1 that we have obtained and the comparison with impossible
differential attacks for type-1, type-2 and type-3 Feistel schemes when the round
functions are bijective or not. In this table, we consider that we want to distin-
guish permutations kn bits to kn bits either produced by the scheme or chosen
randomly from the set of permutations.

Table 1. Maximal number of rounds reached by our attacks and impossible differential
attacks

Structure KPA CPA-1 Impossible Differential
bijective any

Type-1 2k2 + 2k − 2 (Sec. 4.1) 2k2 + k − 1 ( Sec. 4.1) k2 + 2 [6,27] k2 [4]

Type-2 2k + 2 (Sec. 4.2) 2k + 1 (Sec. 4.2) 2k + 1 [27] N/A

Type-3 k + � k
2
� + 1 (Sec. 4.3) k + 1 (Sec. 4.3) 2k + 3 [27] 2k [4]

Alternating 3k (Sec. 4.4) 3k (Sec. 4.4) N/A N/A
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The paper is organized as follows. In Section 2, we give the notations and
define type-1, type-2, type-3 and alternating Feistel schemes. Section 3 is devoted
to an overview of the attacks. In Section 4 we detail the attacks. For type-1 Feistel
schemes, we also provide the results of our simulations. In the Appendices, we
give examples of computations of the variances, needed to get the complexity of
our attacks.

2 Notations - Definitions of the Schemes

The input is always denoted by [I1, I2, . . . , Ik] and the output by [S1, S2, . . . , Sk]
where each Is, Ss is an element of {0, 1}n. When we have m messages, Is(i)
represents part s of the input of message number i. The same notation is used
for the outputs as well. We use differential attacks, i.e. attacks where we study
how differences on pairs of input variables will propagate following a differential
characteristic, and give relations between pairs of input/output variables. The
number of rounds is denoted by r. We now define our schemes.

1. Type-1 Feistel schemes (Fig. 1)
After one round, the output is given by [I2 ⊕F 1(I1), I3, I4, . . . , Ik, I1] where
F 1 is a function from n bits to n bits.

2. Type-2 Feistel schemes (Fig. 1)
Here k is even. After one round, the output is given by [I2 ⊕F 1

1 (I1), I3, I4 ⊕
F 1
2 (I3), . . . , Ik ⊕ F 1

k
2

(Ik−1), I1] where each F 1
s , 1 ≤ s ≤ k

2 is a function from

n bits to n bits.
3. Type-3 Feistel schemes (Fig. 2)

After one round, the output is given by [I2 ⊕ F 1
1 (I1), I3 ⊕ F 1

2 (I2), I4 ⊕
F 1
3 (I3), . . . , Ik ⊕ F 1

k−1(Ik−1), I1] where each F 1
s , 1 ≤ s ≤ k − 1 is a func-

tion from n bits to n bits.
4. Alternating Feistel schemes (Fig. 2)

On the input [I1, I2, . . . , Ik], for the first round, we apply a contracting
function F 1 from (k − 1)n bits to n. Let X1 = I1 ⊕ F 1([I2, . . . , Ik]). Af-
ter one round, the output is given by [X1, I2, . . . , Ik] and X1 is called an
internal variable. For the second round, we apply an expanding function
G2 = (G2

1, G
2
2, . . . , G

2
k) where each G2

s is a function from n bits to n bits. The
output after the second round is given by [X1, I2⊕G2

1(X
1), . . . , Ik⊕G2

k(X
1)].

Then we alternate contracting and expanding rounds. We can also start with
an expanding round. In this paper, we will always begin with a contracting
round.

We now explain the differential notation. We use plaintext/ciphertexts pairs.
In KPA, on the input variables, the notation [0,0, Δ0

3, Δ
0
4, . . . , Δ

0
k] means that

the pair of messages (i, j) satisfies I1(i) = I1(j), I2(i) = I2(j), and Is(i) ⊕
Is(j) = Δ0

s, 3 ≤ s ≤ k. In CPA-1, the notation [0,0, Δ0
3, Δ

0
4, . . . , Δ

0
k] means

that we choose I1 and I2 to be constants. The differential of the outputs i
and j after round r is denoted by [Δr

1, Δ
r
2, . . . , Δ

r
k]. At each round, internal

variables are defined by the structure of the scheme. In our attacks, we determine
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I1 I2 I3 Ik

n bits

F 1

Type-1

I1 I2 I3 I4 Ik

n bits

F 1
1 F 1

2 F 1
k/2

Type-2

Fig. 1. First round for type-1 and type-2 Feistel schemes

I1 I2 I3 Ik

n bits

F 1
1 F 1

2 F 1
3 F 1

k−1

Type-3

kn bits

n (k − 1)n

Alternating

Fig. 2. First round for type-3 Feistel scheme and first two rounds of alternating Feistel
scheme

conditions that have to be satisfied by the outputs. When we have a scheme,
these conditions are satisfied either at random or because the internal variables
verify some equalities. Thus, we will impose conditions on the internal variables
on some chosen rounds. When we impose conditions on the internal variables in
order to get a differential characteristic, we use the notation 0 to mean that
the corresponding internal variables are equal in messages i and j.

3 Overview of the Attacks

We present attacks that allow us to distinguish a permutation computed by
the scheme from a random permutation. Depending on the number of rounds,
it is possible to find some relations between the input and output variables.
These relations hold conditionally to equalities of some internal variables due
to the structure of the Feistel scheme. Our attacks consist of using m plain-
text/ciphertexts pairs and in counting the number N of couples of these pairs
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that satisfy the relations between the input and output variables. We then
compare Nscheme, the number of such couples we obtain with a generalized
scheme, with Nperm, the corresponding number for a random permutation. The
attack is successful, i.e. we are able to distinguish a permutation generated
by a generalized Feistel scheme from a random permutation if the difference
|E(Nscheme)−E(Nperm)| is larger than both standard deviations σ(Nperm) and
σ(Nscheme), where E denotes the expectancy function. In order to compute these
values, we need to take into account the fact that the structures obtained from
the m plaintext/ciphertext tuples are not independent. However, their mutual
dependence is very small. To compute σ(Nperm) and σ(Nscheme), we will use this
well-known formula (see [7], p.97), that we will call the “Covariance Formula”:
if x1, . . . xn, are random variables, then if V represents the variance, we have
V (

∑n
i=1 xi) =

∑n
i=1 V (xi) + 2

∑n−1
i=1

∑n
j=i+1

[
E(xi xj) − E(xi)E(xj)

]
. Similar

computation are also performed in [22].
Aswewill see in our computations, in this paper,wewill alwayshaveσ(Nperm) �√
E(Nperm) and σ(Nscheme) � √

E(Nscheme) � √
E(Nperm). In Appendices A

and B, this is explained on an example.

4 Description of Our Attacks on the Schemes

For each scheme, we give examples of attacks and describe more precisely KPA
and CPA-1 that allow to attack the maximal number of rounds. We always
assume that k ≥ 3.

4.1 Type-1 Feistel Schemes

For 1 to k−1 rounds, one message is enough, since after r rounds, 1 ≤ r ≤ k−1,
we have Sk−r+1 = I1. This condition is satisfied with probability 1 with a type-1
Feistel scheme and with probability 1

2n when we deal with a random permutation.
Thus with one message we can distinguish a type-1 Feistel scheme from a random
permutation in KPA and CPA-1.

We now consider KPA for r ≥ k. In Table 2 (left part), we give the general
pattern of the differential characteristics used in our KPA.

The conditions after rk − 2 rounds (r ≥ 3) are given by

{
S2(i) = S2(j)
I1(i)⊕ I1(j) = S3(i)⊕ S3(j)

(1)

We count the number of indices (i, j) such that these conditions are satisfied.
Let Nperm be the number obtained when we have permutation chosen randomly
and uniformly from the set of permutations from kn bits to kn bits. Similarly,
Nscheme represents the number obtained with a permutation produced by the
scheme. For Nperm, the conditions appear at random and we obtain E(Nperm) �
m2

2.22n . For Nscheme, the conditions appear at random or because some conditions

are satisfied by the internal variables and we get E(Nscheme) � m2

2.22n+O( m2

2(r−1)n ).
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Table 2. Differential characteristic used in our attacks on type-1 Feistel schemes

round Δ0
1 Δ0

2 Δ0
3 ... Δ0

k−1 Δ0
k

1 ... Δ0
1

2 ... Δ0
1

...

k − 1 0 Δ0
1 ...

k Δ0
1 ... 0

k + 1 ... Δ0
1

...
rk − 2 0 Δ0

1 ...

rk − 1 0 Δ0
1 ...

rk Δ0
1 ... 0

...
(r + 1)k − 2 0 Δ0

1 ...

KPA

round 0 Δ0
2 Δ0

3 ... Δ0
k−1 Δ0

k

1 Δ0
2 Δ0

3 ... 0
2 ... 0 Δ0

2

...
k − 1 0 Δ0

2 ...

k 0 Δ0
2 ...

k + 1 Δ0
2 ... 0

k + 2 ... 0 Δ0
2

...
rk − 1 0 Δ0

2 ...

rk 0 Δ0
2 ...

...
(r + 1)k − 1 0 Δ0

2 ...

CPA-1

The O function comes from the conditions 0 that we impose on the differential
characteristic. In Appendix B, we will explain on an example how to estimate
this O function. Both standard deviations satisfy σ(Nperm) � √

E(Nperm) and

σ(Nscheme) � √
E(Nscheme) � √

E(Nperm) when r ≥ 4. This means that we
can distinguish between a random permutation and a type-1 Feistel scheme as

soon as m2

2(r−1)n ≥ m
2n . This gives the condition m ≥ 2(r−2)n. Since the maximal

number of messages is 2kn, these attacks work for r − 2 ≤ k and then with
r = k + 2, we can attack up to (k + 2)k − 2 = k2 + 2k − 2 rounds.

The analysis of all the attacks will be very similar. We first choose the dif-
ferential characteristics. Then, we compute E(Nperm), E(Nscheme), σ(Nperm)
and σ(Nscheme) as define previously. Again, E(Nperm) will be greater than
E(Nscheme) because there are conditions on the internal variables that will im-
ply conditions on the outputs. Moreover, we have σ(Nperm) � √

E(Nperm) and

σ(Nscheme) �
√
E(Nscheme) �

√
E(Nperm). Then, we compare the difference of

the mean values with the standard deviation and we obtain the number of mes-
sages needed for the attack. The previous attack is summarized by the Table 3,
where σ denotes either σ(Nperm) or σ(Nscheme).

We study CPA-1 for r ≥ k. For k to 2k − 1 rounds, we have a CPA-1 with
2 messages such that ∀s, 1 ≤ s ≤ k − 1, Is(1) = Is(2). Then, at round r (k ≤
r ≤ 2k − 1), with a type-1 Feistel scheme, we obtain with probability 1 that
S2k−r(1)⊕ S2k−r(2) = Ik(1)⊕ Ik(2). If we are not dealing with a type-1 Feistel
scheme, the probability to obtain this equality is 1

2n .

Table 3. Type-1 Feistel scheme: KPA on rk − 2 rounds

Differential E(Nperm) E(Nscheme) σ m

Δrk−2
2 = 0 m2

2.22n
m2

2.22n
+O( m2

2(r−1)n ) m√
22n

2(r−2)n

Δrk−2
3 = Δ0

1
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On round r (with r ≥ 2k), we will have to consider different conditions on
the input variables. We explain now a CPA-1 on rk − 1 rounds (with r ≥ 3) in
Table 2 (right part) and Table 4, where we choose the messages such that I1 takes
only one value for all messages. Here, we have m ≥ 2(r−2)n. Since the maximal
number of messages is 2(k−1)n, these attacks work as long as r− 2 ≤ k− 1. Thus
with r = k + 1, we can attack up to (k + 1)k − 1 = k2 + k − 1 rounds.

Table 6 summarizes the complexities for type-1 Feistel schemes. We also give
the results of our simulations in Table 5.

Table 4. Type-1 Feistel scheme: CPA-1 on rk − 1 rounds

Differential E(Nperm) E(Nscheme) σ m

Δrk−2
2 = 0 m2

2.22n
m2

2.22n
+O( m2

2(r−1)n ) m√
22n

2(r−2)n

Δrk−2
3 = Δ0

2

Table 5. Experimental results for CPA-1 against type-1 Feistel scheme with k2+k−1
rounds

k n % of success −% of false alarm # iterations

6 2 67% 10000

8 2 66,5% 10000

9 2 66% 10000

6 4 95% 10000

8 4 96% 10000

4 6 99,5% 10000

Table 6. Complexities of the attacks on type-1 Feistel schemes

r rounds KPA

1 → k − 1 1

k → 2k − 1 2n/2

2k → 3k − 2 2n

...

rk − 2 2(r−2)n

rk − 1 2(r−3/2)n

rk
... 2(r−1)n

(r + 1)k − 2
...

k2 + 2k − 2 2kn

r rounds CPA-1 r CPA-1

1
... 1

...
k − 1

k pk − (p− 2)
... 2

... 2(p−2)n

2k − 2 (p+ 1)k − p

2k − 1
... 2n/2

...
3k − 2

3k − 1 k2 + 1
... 2n

... 2(k−1)n

4k − 3 k2 + k − 1



8 V. Nachef, E. Volte, and J. Patarin

4.2 Type-2 Feistel Schemes

For type-2 Feistel schemes, k is always even. Table 7 and Table 8 represent a
KPA on 2k + 2 rounds.

Table 7. Differential characteristic used in our attacks on type-2 Feistel schemes (KPA)

round 0 Δ0
2 Δ0

3 Δ0
4 ... Δ0

k−3 Δ0
k−2 Δ0

2k−1 Δ0
k

1 Δ0
2 ... 0

2 ... 0 Δ0
2

3 ... 0 Δ0
2

...
k − 1 0 Δ0

2 ...

k 0 Δ0
2 ...

k + 1 Δ0
2 ... 0

k + 2 ... 0 Δ0
2

...
2k − 1 0 Δ0

2 ...

2k 0 Δ0
2 ...

2k + 1 Δ0
2 ... 0

2k + 2 ... Δ0
2

Table 8. Type-2 Feistel scheme: KPA on 2k + 2 rounds

Differential E(Nperm) E(Nscheme) m

Δ0
1 = 0 m2

2.22n
m2

2.22n
+O( m2

2(k+1)n ) 2kn

Δk
k = Δ0

2

We explain how to get attacks on intermediate rounds. After 2r rounds, r ≥ 1,
we have in Table 9:

Table 9. Type-2 Feistel scheme: KPA on 2r rounds

Differential E(Nperm) E(Nscheme) σ m

Δ0
1 = 0 m2

2.22n
m2

2.22n
+O( m2

2rn
) m√

22n
2(r−1)n

Δ2r
s = Δ0

2

where 1 ≤ s ≤ k and s ≡ 2− 2r (mod k).
In this attack, m = 2(r−1)n. Thus, for r = k+1, we have reached the maximal

number of rounds with 2(k−1)n messages.
After 2r + 1 rounds, r ≥ 1, the attack is represented in Table 10:
where 1 ≤ t ≤ k and t ≡ 1− 2r (mod k).
For CPA-1, we can impose conditions on a given number of input variables.

We give in Table 11 and Table 12 an example of an attack on 2k− 1 rounds for
which we consider messages where I1, I2, I3 are given constant values. Then we
will generalize.
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Table 10. Type-2 Feistel scheme: KPA on 2r + 1 rounds

Differential E(Nperm) E(Nscheme) σ m

Δ0
1 = 0

Δ2r+1
t = Δ0

2
m2

2.23n
m2

2.23n
+O( m2

2(r+1)n ) m√
22n

2(r−
1
2
)n

Δ2r+1
t−1 = 0

For round 2k − 2, the attack is represented in Table 13.
More generally, if we suppose that for the input variables, we have I1, . . . , Ir are

constants (r ≤ k− 1), we can perform the same kind of attacks. It is easy to check
that we can attack up to 2k− r + 2 rounds and we need exactly 2(k−r)n messages.
In order to get the best CPA-1 for each round, we will change the conditions on the
input variables. For example, for k+1, k+2 and k+3 rounds, we choose I1, . . . Ik−1

to be constant values, then we will have I1, . . . Ik−2 constants, and so on.
Table 14 summarizes the complexities for type-2 Feistel schemes.

4.3 Type-3 Feistel Schemes

We will present our attacks when k is even. For k odd, the computations are
similar. The results are summarized in Table 18. We begin with KPA. For one
round, we need one message, we just have to check if I1 = Sk. With a random
permutation, this happens with probability 1

2n and with a scheme with proba-
bility one. Suppose we want to attack r rounds with 2 ≤ r ≤ k. We wait until

Table 11. Differential characteristic used in our attacks on type-2 Feistel schemes
(CPA-1)

round 0 0 0 Δ0
4 Δ0

5 Δ0
6 ... Δ0

k−3 Δ0
k−2 Δ0

k−1 Δ0
k

1 0 0 Δ0
4 ... 0

2 0 Δ0
4 ... 0

3 Δ0
4 ... 0

4 ... 0 Δ0
4

5 ... 0 Δ0
4

...

k 0 Δ0
4 ...

k + 1 0 Δ0
4 ...

k + 2 0 Δ0
4 ...

k + 3 Δ0
4 ... 0

...

2k − 2 0 Δ0
4 ...

2k − 1 0 Δ0
2 ...

Table 12. Type-2 Feistel scheme: CPA-1 on 2k − 1 rounds

Differential E(Nperm) E(Nscheme) σ m

Δ2k−1
4 = 0 m2

2.22n
m2

2.22n
+O( m2

2(k−2)n ) m√
22n

2(k−3)n

Δ2k−1
5 = Δ0

4
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Table 13. Type-2 Feistel scheme: CPA-1 on r = 2k − 2 rounds

Differential E(Nperm) E(Nscheme) σ m

Δ2k−2
6 = 0 m2

2.2n
m2

2.2n
+O( m2

2(k−3)n ) m√
22

n
2

2(k−
7
2
)n

Table 14. Complexities of the attacks on type-2 Feistel schemes

r KPA CPA-1

1 1 1

2 2n/2 2

3 ≤ r ≤ k 2
r−2
2

n 2

k + 1 2(k−1/2)n 2n/2

k + 1 2
k
2
n 2n/2

k + 3 ≤ r ≤ 2k + 2 2
r−2
2

n 2(r−k−2)n

we have 2 messages such that I1(1) = I1(2), . . . , Ir−1(1) = Ir−1(2). Then we test
if Ir−1(1)⊕ Ir−1(2) = Sk(1)⊕Sk(2). With a random permutation, this happens
with probability 1

2n and with a scheme with probability one. Moreover, from the

birthday paradox, if we have 2
(r−1)n

2 messages, we get 2 messages with the given
conditions with a high probability. We give in Table 15 (left part) a KPA on
k + 4 rounds, where we suppose that 4 ≤ k

2 + 1.

Table 15. Differential characteristics used in our attacks on type-3 Feistel schemes

round 0 ... 0 0 0 0 Δk
0

1 0 ... 0 0 0 Δ0
k 0

2 0 .. 0 0 Δ0
k 0

3 0 .. 0 Δ0
k 0

...
k − 1 Δ0

k ... 0

k ... 0 0 0 0 Δ0
k

k + 1 ... 0 0 0 Δ0
k

k + 2 ... 0 0 Δ0
k

k + 3 ... 0 Δ0
k

k + 4 ... Δ0
k

KPA

round 0 0 ... 0 0 0 0 Δ0
k

1 0 0 ... 0 0 0 Δ0
k 0

2 0 0 .. 0 0 Δ0
k 0

3 0 0 .. 0 Δ0
k 0

...
k − 1 Δ0

k ... 0

k ... 0 Δ0
k

k + 1 ... Δ0
k

CPA-1

For this KPA on k + 4 rounds, we have in Table 16:
Since m = 2(

k
2+3)n, we can perform the same kind of attack for k+ r rounds,

with r ≤ k
2 + 1. We can attack up to k + k

2 + 1 rounds. For k + k
2 + 1, we need

the maximal number of messages i.e. 2kn.
For CPA-1, it is easy to see that after one round, one message is sufficient.

We just have to check if Sk = I1. For 2 rounds, we choose 2 messages such that
I1(1) = I1(2) and we check if Sk(1) ⊕ Sk(2) = I2(1) ⊕ I2(2). With a random
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Table 16. Type-3 Feistel scheme: KPA on r = k + 4 rounds

Differential E(Nperm) E(Nscheme) σ m

Δ0
1 = 0

Δ0
2 = 0
... m2

2.2kn
m2

2.2kn +O( m2

2(k+3)n ) m
√

22
kn
2

2(
k
2
+3)n

Δ0
k−1 = 0

Δ0
k = Δk+4

k−5

permutation this happens with probability 1
2n , but with a scheme, the probability

is one. Thus, we can distinguish between the two permutations with only 2
messages. More generally, for r rounds with r ≤ k, we choose 2 messages such
that Is(1) = Is(2) for 1 ≤ s ≤ k − 1 and then we check if Sk(1) ⊕ Sk(2) =
Id(1) ⊕ Id(2). With a random permutation this happens with probability 1

2n ,
but with a scheme, the probability is one. Thus, we can distinguish between the
two permutations with only 2 messages. We can attack up to k rounds.

For k + 1 rounds,We choose m messages such that I1, I2, . . . , Ik−1 have a
constant value. We have the following CPA-1 described in Table 15 (right part)
and Table 17:

Table 17. Type-3 Feistel scheme: CPA-1 on k + 1 rounds

Differential E(Nperm) E(Nscheme) σ m

Δk+1
k−1 = Δ0

k
m2

2.2n
m2

2.2n
+O(m

2

2n
) m√

22
n
2

2
n
2

Table 18 gives KPA and CPA-1 complexities.

Table 18. Complexities of the attacks on type-3 Feistel schemes

r KPA CPA-1

1 1 1

2 2n/2 2

3 2n 2
...

k 2(k−1)n/2 2

k + 1 2
k
2
n 2n/2

k + 2 ≤ r ≤ k + � k
2
�+ 1 2(r−� k

2
�−1)n 2(r−� k

2
�−1)n

4.4 Alternating Feistel Schemes

Here we will describe our best attacks on alternating Feistel schemes. After one
round, we have [I2, I3, . . . , Ik] = [S2, S3, . . . , Sk]. Thus, we choose one message
and we check if this condition is satisfied. With a random permutation, this
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happens with probability 1
2(k−1)n and with a scheme the probability is one. Thus,

with one message we can distinguish a random permutation from a permutation
obtained with an alternating scheme. After 2 rounds, in CPA-1, we choose 2
messages such that ∀s, 2 ≤ s ≤ k, Is(1) = Is(2) and then we check if I1(1) ⊕
I1(2) = S1(1)⊕S1(2). The probability to have this condition satisfied is 1

2n with
a random permutation and 1 with an alternating scheme. We can transform this
CPA-1 into a KPA. We generate m messages and from the birthday paradox,

when m � 2
(k−1)n

2 with a good probability, we can find (i, j) such that ∀s, 2 ≤
s ≤ k, Is(i) = Is(j) and then we test if I1(i)⊕ I1(j) = S1(i)⊕ S1(j).

But there are better KPA, as we now show. We have the following KPA
on 2r (r ≤ k) rounds, described in Table 19 and Table 20, where Δ0 denotes
[Δ0

2, Δ
0
3, Δ

0
4, . . . , Δ

0
k].

Table 19. Differential characteristic of our attacks on alternating Feistel schemes
(KPA)

round Δ0
1 Δ0

1 0 Δ0

2 0 Δ0

3 0 Δ0

4 0 Δ0

...
...

2r − 1 0 Δ0

2r 0 Δ0

Table 20. Alternating Feistel scheme: KPA on 2r rounds r ≤ k

Differential E(Nperm) E(Nscheme) m

Δ0
1 = 0 m2

2.2kn
m2

2.2kn +O( m2

2rn
) 2

r
2
n

Δ2r = Δ0

Here we obtain, m = 2
r
2 , since when r ≤ k, E(Nperm) is greater than or equal

to twice E(Nscheme) and we can distinguish when m = 2
r
2 . Notice that in this

case, we do not need to use the standard deviation. Thus, after 2 rounds we
get a KPA with 2

n
2 messages (notice that the CPA-1 complexity of the previous

attack was better). After 2 rounds, KPA are the best attacks. We do not have
better attack if we fix some part on the inputs.

After 2r rounds with r > k, in KPA, we keep the same differential character-
istics and the attack is given in Table 21.
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Table 21. Alternating Feistel scheme: KPA on 2r rounds r > k

Differential E(Nperm) E(Nscheme) σ m

Δ0
1 = 0 m2

2.2kn
m2

2.2kn +O( m2

2rn
) m

√
22

kn
2

2(r−
k
2
)n

Δ2r = Δ0

Here since r > k, we need to compute the standard deviation and we get
m = 2(r−

k
2 )n. Since the number of messages cannot exceed 2kn, we obtain the

condition r ≤ 3k/2. Here we have given the complexity for even rounds. If we
want to attack the odd round 2r + 1, we will only impose Δ2r+1 = Δ0. We can
attack up to 3k rounds. The complexities are summarized in Table 22.

Table 22. Complexities of the attacks on alternating Feistel schemes

r rounds KPA

1 1

2 2n/2

3 2n/2

...

3 ≤ r ≤ 2k + 1 2(
� r
2
�

2
)n

...

2k + 1 2
kn
2

...

2k + 1 ≤ r ≤ 3k 2(
(r−k)

2
)n

...

3k 2kn

5 Conclusion

In this paper, we have given our best differential generic attacks (KPA and CPA-
1) on different kinds of generalized Feistel schemes: type-1, type-2, type-3 and
alternating Feistel schemes. Since these schemes are used in well known block
ciphers, it is interesting to find the maximal number of rounds that we can
attack. We also gave the complexity of attacks on intermediate rounds. In our
attacks, the computations of the mean values and the standard deviations are
very useful. We generally stop attacking schemes, when we need the maximal
number of possible messages to perform the attack. A way to overcome this
problem is to attack permutation generators instead of a single permutation.
Impossible differential attacks are better on type-3 Feistel schemes. For type-2
Feistel schemes, we can attack the same number of rounds as impossible attacks
but here the internal functions are not necessarily bijective. For type-1 Feistel
schemes, our attacks can reach more rounds as impossible differential attacks.
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A An Example of Computation of the Mean Value
and the Variance for Random Permutations

Very often in cryptographic attacks based on the computations of variance V
and mean value E we have V � E, particularly when we deal with differential
attacks. We will prove this precisely here for the CPA-1 given in section 4.1.
This is an attack on pk − 1 rounds with 3 ≤ p ≤ k + 1 Similar proofs have also
been done for other cases.

First we compute the mean value denoted by E(Nperm). We have ∀i, 1 ≤
i ≤ m, I1(i) = 0. Here m � 2(p−2)n. The inputs are pairwise distinct. Let
δij = 1 if (2) is satisfied δij = 0 otherwise. Then Nperm =

∑
i<j δij ,

E(Nperm) =
∑

i<j E(δij) and
E(δij) = Pr[S2(i) = S2(j) and I2(i)⊕ I2(j) = S3(i)⊕ S3(j)]
Case 1: I2(i) = I2(j).

E(δij) = Pr[S2(i) = S2(j) and S3(i) = S3(j)] =
2(k−2)n−1

2kn−1
= ( 1

22n )(
1− 1

2(k−2)n

1− 1

2kn

)

Case 2: I2(i) 	= I2(j).

E(δij) = Pr[S2(i) = S2(j) and I2(i) ⊕ I2(j) = S3(i) ⊕ S3(j)] = 2(k−2)n

2kn−1
=

( 1
22n )(

1
1− 1

2kn

).

Let α be the number of (i, j) such that I2(i) = I2(j). Then

E(Nperm) = α
(

2(k−2)n−1
2kn−1

)
+
(

m(m−1)
2 − α

)(
2(k−2)n

2kn−1

)
= [m(m−1)

2·22n − α
2kn ](

1
1− 1

2kn

).

We can assume that α = m(m−1)
2·2n +O( m√

2n
). Then we get

E(Nperm) = [m(m−1)
2·22n − 1

2kn

(
m(m−1)

2·2n + 0( m√
2n

)
)
]( 1

1− 1

2kn

) =

(m(m−1)
2·22n )× (

1− 1

2(k−1)n

1− 1

2kn

) +O( m

2k+1
2
).

Finally, this gives
m(m−1)
2·22n

(
1− 1

2(k−1)n + 1
2kn

)
+O( m

2(k+1
2
)n
) ≤ E(Nperm) ≤ m(m−1)

2·22n +O( m

2(k+1
2
)n
).

We now gives the main steps in order to compute the standard deviation.
We will use the “covariance formula ” given in Section 3 in order to compute
V (Nperm). We have: V (δij) = E(δ2ij)− E(δij)

2 = E(δij)− E(δij)
2.

Case 1: I2(i) = I2(j).

V (δij) =
1

22n × 1− 1

2(k−2)n

1− 1

2kn

−
(

1
22n × 1− 1

2(k−2)n

1− 1

2kn

)2.

This gives:
V (δij) = 1

22n

[
1 − 1

22n − 1
2(k−2)n + 3

2kn − 2
2(k+2)n − 2

2(2k−2)n + 5
22kn − 3

2(2k+2)n −
3

2(3k−2)n

]
+O( 1

23kn )

Case 2: I2(i) 	= I2(j).

V (δij) =
1

22n × 1
1− 1

2kn

−
(

1
22n × 1

1− 1

2kn

)2

. We obtain

V (δij) =
1

22n

[
1− 1

22n + 1
2kn − 2

2(k+2)n + 1
22kn − 3

2(2k+2)n

]
+O( 1

23kn ).

Since we want to use the covariance formula, we have to evaluate E(δij)E(δqv)
and E(δijδqv). We explain the case where i, j, q, v are pairwise distinct. The case
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where in {i, j, q, v} we have exactly 3 values is similar. The total number of
outputs is given by
A = 2kn(2kn − 1)(2kn − 2)(2kn − 3) = 24kn(1 − 6

2kn + 11
22kn − 6

23kn ).
Then
1
A = 1

24kn

(
1 + 6

2kn + 25
22kn +O( 1

23kn )
)
.

We first evaluate E(δij)E(δqv). We have to study several cases:

1. I2(i) 	= I2(j) and I2(q) 	= I2(v). Then

E(δij)E(δqv) =
1

24n

(
1

1− 1

2kn

)2

= 1
24n (1 +

2
2kn + 3

22kn +O( 1
23kn )).

2. (I2(i) = I2(j) and I2(q) 	= I2(v)) or (I2(i) 	= I2(j) and I2(q) = I2(v)). Then

E(δij)E(δqv) =
1

24n

(
1− 1

2(k−2)n

(1− 1

2kn )2

)
.

E(δij)E(δqv) =
1

24n (1− 1
2(k−2)n + 2

2kn − 2
2(2k−2)n + 3

22kn − 3
2(3k−2)n +O( 1

23kn )).

3. I2(i) = I2(j) and I2(q) = I2(v). Then E(δij)E(δqv) =
1

24n × (1− 1

2(k−2)n
)2

(1− 1

2kn )2

= 1
24n (1 − 2

2(k−2)n + 2
2kn + 1

2(2k−4)n − 4
2(2k−2)n + 3

22kn + 2
2(3k−4)n − 6

2(3k−2)n +

O( 1
23kn )).

We compute E(δijδqv). Again we have to consider several cases. We give the
main case: I2(i) 	= I2(j), I2(q) 	= I2(v) and I2(i)⊕ I2(j)⊕ I2(q)⊕ I2(v) 	= 0.
In that case, S3(j) = I2(i) ⊕ I2(j) ⊕ S3(i) 	= S3(i). There are 2kn possibilities
for S(i). When S(i) is fixed, there are 2(k−2)n possibilities for S(j), since S2(j)
and S3(j) are fixed. Now for S(q) there are 6 possibilities:
1) S2(q) 	= S2(i) (we have S2(i) = S2(j)).
Then S2(v) = S2(q) 	= S2(i). Since S3(v) = S3(q) ⊕ I2(q) ⊕ I2(v), we have
S3(q) 	= S3(v). Thus there are
(2n− 1)2(k−1)n possibilities for S(q) and 2(k−2)n possibilities for S(v) This gives
(2n − 1)2(2k−3)n possibilities for (S(q), S(v)).
2) S2(q) = S2(i) = S2(j) and S3(q) = S3(i)⊕ I2(q)⊕ I2(v).
Then S3(v) = S3(i) and S2(v) = S2(q)) = S2(i). There are 2(k−2)n possibilities
for S(p) and (2(k−2)n−1) possibilities for S(v). This gives 22(k−2)n(22(k−2)n−1)
possibilities for (S(q), S(v)).
3) S2(q) = S2(i) = S2(j) and S3(q) = S3(j)⊕ I2(q)⊕ I2(v).
There are 2(k−2)n possibilities for S(p) and 2(k−2)n − 1 possibilities for S(v).
This gives 22(k−2)n(22(k−2)n − 1) possibilities for (S(q), S(v))
4) S2(q) = S2(i) = S2(j) and S3(q) = S3(i).
This gives (22(k−2)n − 1)22(k−2)n possibilities for (S(q), S(v))
5) S2(q) = S2(i) = S2(j) and S3(q) = S3(j).
This gives again (22(k−2)n − 1)22(k−2)n possibilities for (S(q), S(v))
6) S2(q) = S2(i) = S2(j) and we are not in cases 2), 3), 4), 5). This gives
(22(k−2)n − 4)22(k−2)n possibilities for (S(q), S(v))
Finally, the number of possible outputs for S(i), S(j), S(q), S(v) in this case 1

is given by B = 2(4k−4)n
(
1 − 4

2kn

)
and E(δijδqv) =

B
A = 1

24n

(
1 + 2

2kn + 1
22kn +

O( 1
23kn )

)
. Thus E(δij)E(δqv) − E(δijδqv) = 1

24n

(
− 2

22kn + O( 1
23kn )

)
. The term

−2m4

4·24n·22kn 
 m2

22n since m 
 2kn The other cases are I2(i) = (j), I2(q) 	= I2(v),



18 V. Nachef, E. Volte, and J. Patarin

I2(i) 	= I2(j), I2(q) 	= I2(v) and I2(i)⊕I2(j)⊕I2(q)⊕I2(v) = 0 and I2(i) = I2(j)
and I2(q) = I2(v). The study is similar to the main case.

All the computations show that V (Nperm) = m(m−1)
2·22n (1− 1

22n +O( 1
2kn )).

Thus V (Nperm) � E(Nperm) as claimed.

B Computation of the Mean Value and the Variance
for Feistel Type-1 Schemes

Here we suppose that p = 4. For any p the computations are similar. We intro-
duce the internal variables X i where X i is the first block of the output after
round i.
After 4k − 1 rounds the output is given by:

[S1, S2, S3, . . . , Sk] = [X4k−1, X3k, X3k+1, . . . , X4k−2]

where S3 = I2 ⊕ f1(I1) ⊕ F k+1(Xk) ⊕ F 2k+1(X2k) ⊕ F 3k+1(X3k). Thus the
following conditions:
(∗) S2(i) = S2(j), and I2(i)⊕ I2(j) = S3(i)⊕ S3(j) are equivalent to
(∗∗)X3k(i) = X3k(j) and F k+1(Xk(i))⊕ F 2k+1(X2k(i)) = F k+1(Xk(j))
⊕F 2k+1(X2k(j))
In order to compute E(δij), we consider 2 cases:

1. X3k(i) = X3k(j) and (Xk(i), X2k(i)) = (Xk(j), X2k(j)).
2. X3k(i) = X3k(j), (Xk(i), X2k(i)) 	= Xk(j), X2k(j)) and F k+1(Xk(i)) ⊕

F 2k+1(X2k(i)) = F k+1(Xk(j))⊕ F 2k+1(X2k(j)).

Let
p1 = Pr[X3k(i) = X3k(j)/(Xk(i), X2k(i)) = (Xk(j), X2k(j))

p′1 = Pr[X3k(i) = X3k(j)/(Xk(i), X2k(i)) 	= (Xk(j), X2k(j))

p2 = Pr[(Xk(i), X2k(i)) = (Xk(j), X2k(j))

The the probability of the first case is p1p2 and the probability of the second
case is 1

2n p
′
1(1 − p2). Finally E(δij) = p1p2 + 1

2n p
′
1(1 − p2), and E(Ntype1) =

m(m−1)
2

(
p1p2 + 1

2n p
′
1(1 − p2)

)
. We have p′1 � 1

2n . In p2 the dominant term is

in O( 1
22n ). Indeed, according to Lemma 24 of [8], we have 1

2n ≤ Pr[Xk(i) =

Xk(j)] ≤ k−1
2n . Using the same arguments, we obtain 1

22n ≤ p2 ≤ (k−1)2

22n and
1
2n ≤ p1 ≤ k−1

2n .
We want to show that the variance behaves like the mean value. For this, we
will use the covariance formula:

V (Ntype1) =
∑

i<j

V (δij) +
∑

1<j
q<v

(i,j)�=(q,v)

[E(δijδqv)− E(δij)E(δqv)]

We now compute E(δijδqv). We explain the case where i, j, q, v are pairwise
distinct. The case where in {i, j, q, v} we have exactly 3 values is similar.
When i, j, q, v are pairwise distinct, the conditions (∗∗) are satisfied for the pairs
(i, j) and (q, v). Then we have to study several cases.
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1. X3k(i) = X3k(j), X3k(q) = X3k(v), (Xk(i), X2k(i)) = (Xk(j), X2k(j)) and
(Xk(q), X2k(q)) = (Xk(v), X2k(v)). The probability is (p1p2)

2.
2. X3k(i) = X3k(j), X3k(q) = X3k(v), (Xk(i), X2k(i)) = (Xk(j), X2k(j)) and

(Xk(q), X2k(q)) 	= (Xk(v), X2k(v)) and F k+1(Xk(q)) ⊕ F 2k+1(X2k(q)) =
F k+1(Xk(v))⊕F 2k+1(X2k(v)). Then the probability is given by 1

2n p1p
′
1p2(1−

p2).
3. X3k(i) = X3k(j), X3k(q) = X3k(v), (Xk(i), X2k(i)) 	= (Xk(j), X2k(j))

and (Xk(q), X2k(q)) = (Xk(v), X2k(v)) and F k+1(Xk(i)⊕F 2k+1(X2k(i)) =
F k+1(Xk(j)) ⊕ F 2k+1(X2k(j)). As in the previous case, the probability is
given by 1

2n p1p
′
1p2(1− p2).

4. X3k(i) = X3k(j), X3k(q) = X3k(v), (Xk(i), X2k(i)) 	= (Xk(j), X2k(j)),
(Xk(q), X2k(q)) = (Xk(i), X2k(i)), (Xk(v), X2k(v)) = (Xk(j), X2k(j))
F k+1(Xk(i)⊕ F 2k+1(X2k(i)) = F k+1(Xk(j))⊕ F 2k+1(X2k(j)). The proba-
bility is given by 1

2n (p
′
1)

2p22(1− p2).
5. X3k(i) = X3k(j), X3k(q) = X3k(v), (Xk(i), X2k(i)) 	= (Xk(j), X2k(j)),

(Xk(v), X2k(v)) = (Xk(i), X2k(i)), (Xk(q), X2k(q)) = (Xk(j), X2k(j)),
F k+1(Xk(i) ⊕ F 2k+1(X2k(i)) = F k+1(Xk(j)) ⊕ F 2k+1(X2k(j)). Again the
probability is given by 1

2n (p
′
1)

2p22(1− p2).
6. X3k(i) = X3k(j), X3k(q) = X3k(v), (Xk(i), X2k(i)) 	= (Xk(j), X2k(j))

and (Xk(q), X2k(q)) 	= (Xk(v), X2k(v)), we are not in cases 4 and 5 and
F 2k+1(X2k(i)) = F k+1(Xk(j))⊕ F 2k+1(X2k(j)) and F k+1(Xk(q))
⊕ F 2k+1(X2k(q)) = F k+1(Xk(v))⊕ F 2k+1(X2k(v)). Then the probability is
1

22n (p
′
1)

2[(1− p2)
2 − 2(1− p2)p

2
2].

Finally we obtain when i, j, q, v are pairwise distinct

E(δijδqv)− E(δij)E(δqv) = 2
1

2n
(p′1)

2p22(1− p2)− 2
1

22n
(p′1)

2p22(1 − p2)

Using the dominant term in p′1 and p2, we get that the dominant term in
∑

1<j
q<v

(i,j)�=(q,v)

[E(δijδqv)−E(δij)E(δqv)] is in O(m4

27n ) and
m4

27n 
 m2

22n since m � 22n

in our attack.
Similarly, in the case where we have exactly 3 values in {i, j, q, v}, the dominant

term in
∑

1<j
q<v

(i,j)�=(q,v)

[E(δijδqv)− E(δij)E(δqv)] is in O(m3

25n ) and
m3

25n 
 m2

22n since

m � 22n in our attack.
Thus the dominant term in the V (Ntype1) is in O(m2

22n ).

More generally, our computations show that the CPA-1 on pk − 1 rounds

with p ≤ k + 2, we have: E(Nperm) � m2

2.22n , E(Ntype1) � m2

2.22n + O( m2

2(p−1)n ),

V (Nperm) � m2

22n and, σ(Nperm) � m
2n , V (Ntype1) � m2

22n , and σ(Ntype1) � m
2n .

Thus we can distinguish a permutation obtained by a type-1 Feistel scheme
from a random permutation as soon as |E(Nperm) − E(Ntype1)| ≥ σ(Nperm),

|E(Nperm) − E(Ntype1)| ≥ σ(Ntype1) i.e. as soon as m2

2(p−1)n ≥ m
2n i.e. m ≥

2(p−2)n.
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