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Preface

The International Conference on Cryptology and Network Security (CANS) is a
recognized annual conference, focusing on all aspects of cryptology and network
security and attracting cutting-edge results from world-renowned scientists in the
area. The 12th edition of the conference was held at Casa da Cultura, Paraty,
Brazil, during November 20–22, 2013, and was organized by the Institute of
Computing of the University of Campinas (UNICAMP) in cooperation with the
International Association for Cryptologic Research (IACR).

CANS 2013 received 57 submissions and each submission was assigned to
at least three committee members. Submissions co-authored by members of the
Program Committee were assigned to at least five committee members. After
careful deliberation, the Program Committee selected 18 submissions for pre-
sentation. The authors of the accepted papers had three weeks for revision and
preparation of final versions. The revised papers were not subject to editorial
review and the authors bear full responsibility for their contents.

The conference also featured four invited talks in addition to the regular
papers. These talks were given by George Cox (Intel), Rosario Gennaro (CUNY),
Jacques Stern (ENS), and Gene Tsudik (UCI), and covered a wide range of topics
in cryptography and network security. The abstracts of these invited talks are
also included in this volume.

The reviewing process was run using the iChair software, written by Thomas
Baignères from CryptoExperts, France, and Matthieu Finiasz from EPFL,
LASEC, Switzerland. We are grateful to them for letting us use their software.

There are many people who contributed to the success of CANS 2013. First,
we would like to thank the authors of all papers (both accepted and rejected) for
submitting their results to the conference. Second, we are grateful to the com-
mittee members and external reviewers for their outstanding work in thoroughly
reviewing all papers in a timely manner. Special thanks to Angelo De Caro, Orr
Dunkelman, Anderson Nascimento, and Damien Vergnaud, for their extra work
as shepherds. Third, we are also indebted to the CANS Steering Committee
members for their guidance. Last, but not least, we thank our sponsors, CAPES
and CGI.br, for their generous support.

November 2013 Michel Abdalla
Cristina Nita-Rotaru

Ricardo Dahab
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Francisco Rodŕıguez-Henŕıquez CINVESTAV-IPN, Mexico
Jeff Seibert MIT Lincoln Labs, USA
Radu State University of Luxembourg, Luxembourg
Angelos Stavrou George Mason University, USA
Willy Susilo University of Wollongong, Australia
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Solving the Platform Entropy Problem

– Phase 2

George Cox

Intel Corporation
JF3-224, 2111 NE 25th Street, Hillsboro, OR 97124

cox@intel.com

Abstract. In this talk, we discuss the need for high quality “seeding”
material for software pseudorandom number generators (SW PRNGs),
the resultant development of NIST SP800-90 B/C, and Intel’s product
response to it with evolution of our existing Digital Random Number
Generator (DRNG) and addition of our new RdSeed instruction.



A Survey of Verifiable Delegation of

Computations

Rosario Gennaro

The City College of New York

rosario@ccny.cuny.edu

Abstract. In this talk, I will give an overview of past and recent re-
search on the area of Verifiable Delegation of Computation. The goal is
to enable a computationally weak client to “outsource” the computation
of a function F on various inputs x1, . . . , xk to one or more powerful
servers. The server must return the result of the function evaluation,
e.g., yi = F (xi), as well as a proof that the computation of F was car-
ried out correctly on the given value xi. A crucial requirement is that the
verification of the proof should require substantially less computational
effort than computing F (xi) from scratch.

For the “general purpose” case (protocols that work for any function
F ), I will discuss the different ways this problem has been
approached theoretically, particularly the line of research that links In-
teractive Proofs, to Probabilistic Checkable Proofs, to Succinct Non-
Interactive Arguments. I will also survey recent exciting experimental
results that show how these techniques are on the verge of becoming
practical.

I will also talk about “ad hoc” protocols that aim to verify specific
computations of particular importance in practice.



What Is Public-Key Cryptanalysis?

Jacques Stern

École Normale Supérieure, France

jacques.stern@ens.fr

Abstract. Traditionally, cryptanalysis has been based on statistical anal-
ysis. This remains true for conventional secret key cryptosystems. In the
area of public key however, the picture is quite different. On one hand,
there is usually some mathematical structure hidden in the public data;
on the other hand, the cryptographic security is more or less tightly re-
lated with some well identified computational problem which is believed
to be hard to solve. The talk will give several examples where the crypt-
analyst was able to recover the hidden mathematical structure through
a purely algebraic approach, and to break schemes that might otherwise
have appeared promising, such as the S-FLASH signature scheme. It will
also discuss surprising changes of perspective that have recently occurred:
algorithmic progress have lowered the asymptotic complexity of problems
underlying the so-called HFE signature, as well as the complexity of the
discrete logarithm in fields of small characteristic, thus questioning the
security of related cryptographic schemes. In another direction, problems
such as the approximate GCD, which had long been known to be easily
solvable by lattice reduction, at least in small dimensions, now form the
basis for a large number of successful homomorphic schemes.



Security and Privacy in Named-Data Networking

Gene Tsudik

Computer Science Department
University of California, Irvine (UCI)

gts@ics.uci.edu

Abstract. With the growing realization that current Internet protocols
are reaching the limits of their senescence, a number of ongoing research
efforts aim to design potential next-generation Internet architectures. Al-
though they vary in maturity and scope, in order to avoid past pitfalls,
these efforts seek to treat security and privacy as key initial require-
ments. The Named Data Networking (NDN) is an Internet architecture
that avoids IP’s host-based, point-to-point networking approach in order
to better accommodate new and emerging patterns of communication.
NDN treats data as a first class object, explicitly naming it instead of
its location. While the current Internet secures the “pipe” that carries
data between hosts, NDN secures data – a design choice that decou-
ples trust in data from trust in hosts, enabling scalable communication
mechanisms, such as automatic caching of data in routers to optimize
bandwidth. The NDN project poses numerous technical challenges that
must be addressed to validate it as a future Internet architecture: rout-
ing scalability, fast forwarding, trust models, network security, content
protection and privacy, and fundamental communication theory.

This talk will overview NDN and then turn to security and privacy
issues. By stressing content dissemination, NDN is an attractive and
viable approach to many types of current and emerging communication
models. It also incorporates some useful security and privacy features.
We will first consider communication privacy and anonymity in NDN and
describe an NDN add-on (called ANDANA) that offers the functionality
similar to TOR on today’s Internet.

Since resilience to Denial of Service (DoS) attacks that plague todays
Internet is a major issue for any new architecture, we will discuss some
initial research towards assessment and mitigation of DoS in NDN. Next,
we will consider privacy implications of router-side content caching. Fi-
nally, we will discuss how to adapt NDN and its security features to envi-
ronments other than content distribution, using the example of building
automation.
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Differential Attacks

on Generalized Feistel Schemes

Valérie Nachef1, Emmanuel Volte1, and Jacques Patarin2

1 Department of Mathematics, University of Cergy-Pontoise, CNRS UMR 8088
2 Avenue Adolphe Chauvin, 95011 Cergy-Pontoise Cedex, France

2 PRISM, University of Versailles
45 avenue des Etats-Unis, 78035 Versailles Cedex, France

valerie.nachef@u-cergy.fr

Abstract. While generic attacks on classical Feistel schemes and unbal-
anced Feistel schemes have been studied a lot, generic attacks on several
generalized Feistel schemes like type-1, type-2 and type-3 and alternating
Feistel schemes, as defined in [8], have not been systematically investi-
gated. These generalized Feistel schemes are used in well known block
cipher networks that use generalized Feistel schemes: CAST-256 (type-
1), RC-6 (type-2), MARS (type-3) and BEAR/LION (alternating). Also,
type-1 and type-2 Feistel schemes are respectively used in the construc-
tion of the hash functions Lesamnta and SHAvite− 3512.In this paper,
we give our best Known Plaintext Attacks and non-adaptive Chosen
Plaintext Attacks on these schemes. We determine the maximal number
of rounds that we can attack when we want to distinguish a permutation
produced by the scheme from a permutation chosen randomly in the set
of permutations.

Keywords: generalized Feistel schemes, generic attacks on encryption
schemes, block ciphers.

1 Introduction

Classical Feistel schemes have been extensively studied since the seminal work
of Luby and Rackoff [14]. These schemes allow to construct permutations from
{0, 1}2n to {0, 1}2n by using round functions from n bits to n bits (DES is an
example of a classical Feistel scheme). For 3 and 4 rounds, there are attacks
with

√
2n inputs in [1] and [18]. For 5 rounds, an attack with O(2n) inputs is

given in [19,20]. When the round functions are permutations, attacks are studied
in [12,13,25]. Security results on classical Feistel schemes are given in [8,20,17].

We define generalized Feistel schemes as follows: the input belongs to {0, 1}kn
and we apply different kinds of round functions on some parts of the input in
order to construct permutations from kn bits to kn bits.

When the round functions are from (k − 1)n bits to n bits, we obtain an
unbalanced Feistel scheme with contracting functions. Attacks on these schemes
were studied in [22]. When the round functions are from n bits to (k − 1)n

M. Abdalla, C. Nita-Rotaru, and R. Dahab (Eds.): CANS 2013, LNCS 8257, pp. 1–19, 2013.
c© Springer International Publishing Switzerland 2013



2 V. Nachef, E. Volte, and J. Patarin

bits, we have unbalanced Feistel schemes with expanding functions. Attacks on
these schemes are given in [10,23,24,26]. Alternating Feistel schemes alternate
contracting and expanding rounds. They are described in [2] and are used in
the BEAR/LION block cipher. There are also type-1, type-2 and type-3 Feistel
schemes (they are described in Section 2, see also [9,29]). These schemes are
used respectively in the block ciphers CAST-256, RC6 and MARS. In [4], the
authors provide attacks on the hash functions Lesamnta and SHAvite− 3512
whose construction is based on type-1 and type-2 Feistel schemes. Some attacks
on instances of generalized Feistel schemes are also given in [3]. Impossible dif-
ferential attacks on generalized Feistel schemes are studied in [5] when there is
no condition on the round functions, and in [6,13,27] when the round functions
are permutations.

Security results have been obtained for most of these schemes. For classical
Feistel schemes the different results are given in [8,20,17]. Unbalanced Feistel
schemes with contracting functions have been studied in [8,15,17,28] and for
unbalanced Feistel schemes with expanding functions, alternating, type-1, type-
2 and type-3 Feistel schemes, the results are in [8].

This paper is devoted to the study of generic attacks on type-1, type-2, type-3
and alternating generalized Feistel schemes. Our attacks are distinguishers that
allow to distinguish a permutation produced by a scheme from a permutation
chosen randomly in the set of permutations. The round functions are chosen
at random and are not known to the adversary. Moreover, we assume that the
round functions are independent of each other.

Our attacks will use differential characteristics. We provide Known Plaintext
Attacks (KPA) and non-adaptive Chosen Plaintext Attacks (CPA-1). For each
kind of scheme, we will give the maximal number of rounds that we can attack
in KPA and CPA-1 and we will describe our best attacks up to the maximal
number of rounds. Table 1 gives the maximal number of rounds attacked by
either KPA, CPA-1 that we have obtained and the comparison with impossible
differential attacks for type-1, type-2 and type-3 Feistel schemes when the round
functions are bijective or not. In this table, we consider that we want to distin-
guish permutations kn bits to kn bits either produced by the scheme or chosen
randomly from the set of permutations.

Table 1. Maximal number of rounds reached by our attacks and impossible differential
attacks

Structure KPA CPA-1 Impossible Differential
bijective any

Type-1 2k2 + 2k − 2 (Sec. 4.1) 2k2 + k − 1 ( Sec. 4.1) k2 + 2 [6,27] k2 [4]

Type-2 2k + 2 (Sec. 4.2) 2k + 1 (Sec. 4.2) 2k + 1 [27] N/A

Type-3 k + � k
2
� + 1 (Sec. 4.3) k + 1 (Sec. 4.3) 2k + 3 [27] 2k [4]

Alternating 3k (Sec. 4.4) 3k (Sec. 4.4) N/A N/A
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The paper is organized as follows. In Section 2, we give the notations and
define type-1, type-2, type-3 and alternating Feistel schemes. Section 3 is devoted
to an overview of the attacks. In Section 4 we detail the attacks. For type-1 Feistel
schemes, we also provide the results of our simulations. In the Appendices, we
give examples of computations of the variances, needed to get the complexity of
our attacks.

2 Notations - Definitions of the Schemes

The input is always denoted by [I1, I2, . . . , Ik] and the output by [S1, S2, . . . , Sk]
where each Is, Ss is an element of {0, 1}n. When we have m messages, Is(i)
represents part s of the input of message number i. The same notation is used
for the outputs as well. We use differential attacks, i.e. attacks where we study
how differences on pairs of input variables will propagate following a differential
characteristic, and give relations between pairs of input/output variables. The
number of rounds is denoted by r. We now define our schemes.

1. Type-1 Feistel schemes (Fig. 1)
After one round, the output is given by [I2 ⊕F 1(I1), I3, I4, . . . , Ik, I1] where
F 1 is a function from n bits to n bits.

2. Type-2 Feistel schemes (Fig. 1)
Here k is even. After one round, the output is given by [I2 ⊕F 1

1 (I1), I3, I4⊕
F 1
2 (I3), . . . , Ik ⊕ F 1

k
2

(Ik−1), I1] where each F 1
s , 1 ≤ s ≤ k

2 is a function from

n bits to n bits.
3. Type-3 Feistel schemes (Fig. 2)

After one round, the output is given by [I2 ⊕ F 1
1 (I1), I3 ⊕ F 1

2 (I2), I4 ⊕
F 1
3 (I3), . . . , Ik ⊕ F 1

k−1(Ik−1), I1] where each F 1
s , 1 ≤ s ≤ k − 1 is a func-

tion from n bits to n bits.
4. Alternating Feistel schemes (Fig. 2)

On the input [I1, I2, . . . , Ik], for the first round, we apply a contracting
function F 1 from (k − 1)n bits to n. Let X1 = I1 ⊕ F 1([I2, . . . , Ik]). Af-
ter one round, the output is given by [X1, I2, . . . , Ik] and X1 is called an
internal variable. For the second round, we apply an expanding function
G2 = (G2

1, G
2
2, . . . , G

2
k) where each G2

s is a function from n bits to n bits. The
output after the second round is given by [X1, I2⊕G2

1(X
1), . . . , Ik⊕G2

k(X
1)].

Then we alternate contracting and expanding rounds. We can also start with
an expanding round. In this paper, we will always begin with a contracting
round.

We now explain the differential notation. We use plaintext/ciphertexts pairs.
In KPA, on the input variables, the notation [0,0, Δ0

3, Δ
0
4, . . . , Δ

0
k] means that

the pair of messages (i, j) satisfies I1(i) = I1(j), I2(i) = I2(j), and Is(i) ⊕
Is(j) = Δ0

s, 3 ≤ s ≤ k. In CPA-1, the notation [0,0, Δ0
3, Δ

0
4, . . . , Δ

0
k] means

that we choose I1 and I2 to be constants. The differential of the outputs i
and j after round r is denoted by [Δr

1, Δ
r
2, . . . , Δ

r
k]. At each round, internal

variables are defined by the structure of the scheme. In our attacks, we determine
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I1 I2 I3 Ik

n bits

F 1

Type-1

I1 I2 I3 I4 Ik

n bits

F 1
1 F 1

2 F 1
k/2

Type-2

Fig. 1. First round for type-1 and type-2 Feistel schemes

I1 I2 I3 Ik

n bits

F 1
1 F 1

2 F 1
3 F 1

k−1

Type-3

kn bits

n (k − 1)n

Alternating

Fig. 2. First round for type-3 Feistel scheme and first two rounds of alternating Feistel
scheme

conditions that have to be satisfied by the outputs. When we have a scheme,
these conditions are satisfied either at random or because the internal variables
verify some equalities. Thus, we will impose conditions on the internal variables
on some chosen rounds. When we impose conditions on the internal variables in
order to get a differential characteristic, we use the notation 0 to mean that
the corresponding internal variables are equal in messages i and j.

3 Overview of the Attacks

We present attacks that allow us to distinguish a permutation computed by
the scheme from a random permutation. Depending on the number of rounds,
it is possible to find some relations between the input and output variables.
These relations hold conditionally to equalities of some internal variables due
to the structure of the Feistel scheme. Our attacks consist of using m plain-
text/ciphertexts pairs and in counting the number N of couples of these pairs



Differential Attacks on Generalized Feistel Schemes 5

that satisfy the relations between the input and output variables. We then
compare Nscheme, the number of such couples we obtain with a generalized
scheme, with Nperm, the corresponding number for a random permutation. The
attack is successful, i.e. we are able to distinguish a permutation generated
by a generalized Feistel scheme from a random permutation if the difference
|E(Nscheme)−E(Nperm)| is larger than both standard deviations σ(Nperm) and
σ(Nscheme), where E denotes the expectancy function. In order to compute these
values, we need to take into account the fact that the structures obtained from
the m plaintext/ciphertext tuples are not independent. However, their mutual
dependence is very small. To compute σ(Nperm) and σ(Nscheme), we will use this
well-known formula (see [7], p.97), that we will call the “Covariance Formula”:
if x1, . . . xn, are random variables, then if V represents the variance, we have
V (
∑n

i=1 xi) =
∑n

i=1 V (xi) + 2
∑n−1

i=1

∑n
j=i+1

[
E(xi xj) − E(xi)E(xj)

]
. Similar

computation are also performed in [22].
Aswewill see in our computations, in this paper,wewill alwayshaveσ(Nperm) �√
E(Nperm) and σ(Nscheme) �

√
E(Nscheme) �

√
E(Nperm). In Appendices A

and B, this is explained on an example.

4 Description of Our Attacks on the Schemes

For each scheme, we give examples of attacks and describe more precisely KPA
and CPA-1 that allow to attack the maximal number of rounds. We always
assume that k ≥ 3.

4.1 Type-1 Feistel Schemes

For 1 to k−1 rounds, one message is enough, since after r rounds, 1 ≤ r ≤ k−1,
we have Sk−r+1 = I1. This condition is satisfied with probability 1 with a type-1
Feistel scheme and with probability 1

2n when we deal with a random permutation.
Thus with one message we can distinguish a type-1 Feistel scheme from a random
permutation in KPA and CPA-1.

We now consider KPA for r ≥ k. In Table 2 (left part), we give the general
pattern of the differential characteristics used in our KPA.

The conditions after rk − 2 rounds (r ≥ 3) are given by{
S2(i) = S2(j)
I1(i)⊕ I1(j) = S3(i)⊕ S3(j)

(1)

We count the number of indices (i, j) such that these conditions are satisfied.
Let Nperm be the number obtained when we have permutation chosen randomly
and uniformly from the set of permutations from kn bits to kn bits. Similarly,
Nscheme represents the number obtained with a permutation produced by the
scheme. For Nperm, the conditions appear at random and we obtain E(Nperm) �
m2

2.22n . For Nscheme, the conditions appear at random or because some conditions

are satisfied by the internal variables and we get E(Nscheme) � m2

2.22n+O( m2

2(r−1)n ).
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Table 2. Differential characteristic used in our attacks on type-1 Feistel schemes

round Δ0
1 Δ0

2 Δ0
3 ... Δ0

k−1 Δ0
k

1 ... Δ0
1

2 ... Δ0
1

...

k − 1 0 Δ0
1 ...

k Δ0
1 ... 0

k + 1 ... Δ0
1

...
rk − 2 0 Δ0

1 ...

rk − 1 0 Δ0
1 ...

rk Δ0
1 ... 0

...
(r + 1)k − 2 0 Δ0

1 ...

KPA

round 0 Δ0
2 Δ0

3 ... Δ0
k−1 Δ0

k

1 Δ0
2 Δ0

3 ... 0
2 ... 0 Δ0

2

...
k − 1 0 Δ0

2 ...

k 0 Δ0
2 ...

k + 1 Δ0
2 ... 0

k + 2 ... 0 Δ0
2

...
rk − 1 0 Δ0

2 ...

rk 0 Δ0
2 ...

...
(r + 1)k − 1 0 Δ0

2 ...

CPA-1

The O function comes from the conditions 0 that we impose on the differential
characteristic. In Appendix B, we will explain on an example how to estimate
this O function. Both standard deviations satisfy σ(Nperm) �

√
E(Nperm) and

σ(Nscheme) �
√
E(Nscheme) �

√
E(Nperm) when r ≥ 4. This means that we

can distinguish between a random permutation and a type-1 Feistel scheme as

soon as m2

2(r−1)n ≥ m
2n . This gives the condition m ≥ 2(r−2)n. Since the maximal

number of messages is 2kn, these attacks work for r − 2 ≤ k and then with
r = k + 2, we can attack up to (k + 2)k − 2 = k2 + 2k − 2 rounds.

The analysis of all the attacks will be very similar. We first choose the dif-
ferential characteristics. Then, we compute E(Nperm), E(Nscheme), σ(Nperm)
and σ(Nscheme) as define previously. Again, E(Nperm) will be greater than
E(Nscheme) because there are conditions on the internal variables that will im-
ply conditions on the outputs. Moreover, we have σ(Nperm) �

√
E(Nperm) and

σ(Nscheme) �
√
E(Nscheme) �

√
E(Nperm). Then, we compare the difference of

the mean values with the standard deviation and we obtain the number of mes-
sages needed for the attack. The previous attack is summarized by the Table 3,
where σ denotes either σ(Nperm) or σ(Nscheme).

We study CPA-1 for r ≥ k. For k to 2k − 1 rounds, we have a CPA-1 with
2 messages such that ∀s, 1 ≤ s ≤ k − 1, Is(1) = Is(2). Then, at round r (k ≤
r ≤ 2k − 1), with a type-1 Feistel scheme, we obtain with probability 1 that
S2k−r(1)⊕ S2k−r(2) = Ik(1)⊕ Ik(2). If we are not dealing with a type-1 Feistel
scheme, the probability to obtain this equality is 1

2n .

Table 3. Type-1 Feistel scheme: KPA on rk − 2 rounds

Differential E(Nperm) E(Nscheme) σ m

Δrk−2
2 = 0 m2

2.22n
m2

2.22n
+O( m2

2(r−1)n ) m√
22n

2(r−2)n

Δrk−2
3 = Δ0

1
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On round r (with r ≥ 2k), we will have to consider different conditions on
the input variables. We explain now a CPA-1 on rk − 1 rounds (with r ≥ 3) in
Table 2 (right part) and Table 4, where we choose the messages such that I1 takes
only one value for all messages. Here, we have m ≥ 2(r−2)n. Since the maximal
number of messages is 2(k−1)n, these attacks work as long as r− 2 ≤ k− 1. Thus
with r = k + 1, we can attack up to (k + 1)k − 1 = k2 + k − 1 rounds.

Table 6 summarizes the complexities for type-1 Feistel schemes. We also give
the results of our simulations in Table 5.

Table 4. Type-1 Feistel scheme: CPA-1 on rk − 1 rounds

Differential E(Nperm) E(Nscheme) σ m

Δrk−2
2 = 0 m2

2.22n
m2

2.22n
+O( m2

2(r−1)n ) m√
22n

2(r−2)n

Δrk−2
3 = Δ0

2

Table 5. Experimental results for CPA-1 against type-1 Feistel scheme with k2+k−1
rounds

k n % of success −% of false alarm # iterations

6 2 67% 10000

8 2 66,5% 10000

9 2 66% 10000

6 4 95% 10000

8 4 96% 10000

4 6 99,5% 10000

Table 6. Complexities of the attacks on type-1 Feistel schemes

r rounds KPA

1 → k − 1 1

k → 2k − 1 2n/2

2k → 3k − 2 2n

...

rk − 2 2(r−2)n

rk − 1 2(r−3/2)n

rk
... 2(r−1)n

(r + 1)k − 2
...

k2 + 2k − 2 2kn

r rounds CPA-1 r CPA-1

1
... 1

...
k − 1

k pk − (p− 2)
... 2

... 2(p−2)n

2k − 2 (p+ 1)k − p

2k − 1
... 2n/2

...
3k − 2

3k − 1 k2 + 1
... 2n

... 2(k−1)n

4k − 3 k2 + k − 1
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4.2 Type-2 Feistel Schemes

For type-2 Feistel schemes, k is always even. Table 7 and Table 8 represent a
KPA on 2k + 2 rounds.

Table 7. Differential characteristic used in our attacks on type-2 Feistel schemes (KPA)

round 0 Δ0
2 Δ0

3 Δ0
4 ... Δ0

k−3 Δ0
k−2 Δ0

2k−1 Δ0
k

1 Δ0
2 ... 0

2 ... 0 Δ0
2

3 ... 0 Δ0
2

...
k − 1 0 Δ0

2 ...

k 0 Δ0
2 ...

k + 1 Δ0
2 ... 0

k + 2 ... 0 Δ0
2

...
2k − 1 0 Δ0

2 ...

2k 0 Δ0
2 ...

2k + 1 Δ0
2 ... 0

2k + 2 ... Δ0
2

Table 8. Type-2 Feistel scheme: KPA on 2k + 2 rounds

Differential E(Nperm) E(Nscheme) m

Δ0
1 = 0 m2

2.22n
m2

2.22n
+O( m2

2(k+1)n ) 2kn

Δk
k = Δ0

2

We explain how to get attacks on intermediate rounds. After 2r rounds, r ≥ 1,
we have in Table 9:

Table 9. Type-2 Feistel scheme: KPA on 2r rounds

Differential E(Nperm) E(Nscheme) σ m

Δ0
1 = 0 m2

2.22n
m2

2.22n
+O( m2

2rn
) m√

22n
2(r−1)n

Δ2r
s = Δ0

2

where 1 ≤ s ≤ k and s ≡ 2− 2r (mod k).
In this attack, m = 2(r−1)n. Thus, for r = k+1, we have reached the maximal

number of rounds with 2(k−1)n messages.
After 2r + 1 rounds, r ≥ 1, the attack is represented in Table 10:
where 1 ≤ t ≤ k and t ≡ 1− 2r (mod k).
For CPA-1, we can impose conditions on a given number of input variables.

We give in Table 11 and Table 12 an example of an attack on 2k− 1 rounds for
which we consider messages where I1, I2, I3 are given constant values. Then we
will generalize.
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Table 10. Type-2 Feistel scheme: KPA on 2r + 1 rounds

Differential E(Nperm) E(Nscheme) σ m

Δ0
1 = 0

Δ2r+1
t = Δ0

2
m2

2.23n
m2

2.23n
+O( m2

2(r+1)n ) m√
22n

2(r−
1
2
)n

Δ2r+1
t−1 = 0

For round 2k − 2, the attack is represented in Table 13.
More generally, if we suppose that for the input variables, we have I1, . . . , Ir are

constants (r ≤ k− 1), we can perform the same kind of attacks. It is easy to check
that we can attack up to 2k− r + 2 rounds and we need exactly 2(k−r)n messages.
In order to get the best CPA-1 for each round, we will change the conditions on the
input variables. For example, for k+1, k+2 and k+3 rounds, we choose I1, . . . Ik−1

to be constant values, then we will have I1, . . . Ik−2 constants, and so on.
Table 14 summarizes the complexities for type-2 Feistel schemes.

4.3 Type-3 Feistel Schemes

We will present our attacks when k is even. For k odd, the computations are
similar. The results are summarized in Table 18. We begin with KPA. For one
round, we need one message, we just have to check if I1 = Sk. With a random
permutation, this happens with probability 1

2n and with a scheme with proba-
bility one. Suppose we want to attack r rounds with 2 ≤ r ≤ k. We wait until

Table 11. Differential characteristic used in our attacks on type-2 Feistel schemes
(CPA-1)

round 0 0 0 Δ0
4 Δ0

5 Δ0
6 ... Δ0

k−3 Δ0
k−2 Δ0

k−1 Δ0
k

1 0 0 Δ0
4 ... 0

2 0 Δ0
4 ... 0

3 Δ0
4 ... 0

4 ... 0 Δ0
4

5 ... 0 Δ0
4

...

k 0 Δ0
4 ...

k + 1 0 Δ0
4 ...

k + 2 0 Δ0
4 ...

k + 3 Δ0
4 ... 0

...

2k − 2 0 Δ0
4 ...

2k − 1 0 Δ0
2 ...

Table 12. Type-2 Feistel scheme: CPA-1 on 2k − 1 rounds

Differential E(Nperm) E(Nscheme) σ m

Δ2k−1
4 = 0 m2

2.22n
m2

2.22n
+O( m2

2(k−2)n ) m√
22n

2(k−3)n

Δ2k−1
5 = Δ0

4
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Table 13. Type-2 Feistel scheme: CPA-1 on r = 2k − 2 rounds

Differential E(Nperm) E(Nscheme) σ m

Δ2k−2
6 = 0 m2

2.2n
m2

2.2n
+O( m2

2(k−3)n ) m√
22

n
2

2(k−
7
2
)n

Table 14. Complexities of the attacks on type-2 Feistel schemes

r KPA CPA-1

1 1 1

2 2n/2 2

3 ≤ r ≤ k 2
r−2
2

n 2

k + 1 2(k−1/2)n 2n/2

k + 1 2
k
2
n 2n/2

k + 3 ≤ r ≤ 2k + 2 2
r−2
2

n 2(r−k−2)n

we have 2 messages such that I1(1) = I1(2), . . . , Ir−1(1) = Ir−1(2). Then we test
if Ir−1(1)⊕ Ir−1(2) = Sk(1)⊕Sk(2). With a random permutation, this happens
with probability 1

2n and with a scheme with probability one. Moreover, from the

birthday paradox, if we have 2
(r−1)n

2 messages, we get 2 messages with the given
conditions with a high probability. We give in Table 15 (left part) a KPA on
k + 4 rounds, where we suppose that 4 ≤ k

2 + 1.

Table 15. Differential characteristics used in our attacks on type-3 Feistel schemes

round 0 ... 0 0 0 0 Δk
0

1 0 ... 0 0 0 Δ0
k 0

2 0 .. 0 0 Δ0
k 0

3 0 .. 0 Δ0
k 0

...
k − 1 Δ0

k ... 0

k ... 0 0 0 0 Δ0
k

k + 1 ... 0 0 0 Δ0
k

k + 2 ... 0 0 Δ0
k

k + 3 ... 0 Δ0
k

k + 4 ... Δ0
k

KPA

round 0 0 ... 0 0 0 0 Δ0
k

1 0 0 ... 0 0 0 Δ0
k 0

2 0 0 .. 0 0 Δ0
k 0

3 0 0 .. 0 Δ0
k 0

...
k − 1 Δ0

k ... 0

k ... 0 Δ0
k

k + 1 ... Δ0
k

CPA-1

For this KPA on k + 4 rounds, we have in Table 16:
Since m = 2(

k
2+3)n, we can perform the same kind of attack for k+ r rounds,

with r ≤ k
2 + 1. We can attack up to k + k

2 + 1 rounds. For k + k
2 + 1, we need

the maximal number of messages i.e. 2kn.
For CPA-1, it is easy to see that after one round, one message is sufficient.

We just have to check if Sk = I1. For 2 rounds, we choose 2 messages such that
I1(1) = I1(2) and we check if Sk(1) ⊕ Sk(2) = I2(1) ⊕ I2(2). With a random
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Table 16. Type-3 Feistel scheme: KPA on r = k + 4 rounds

Differential E(Nperm) E(Nscheme) σ m

Δ0
1 = 0

Δ0
2 = 0
... m2

2.2kn
m2

2.2kn +O( m2

2(k+3)n ) m
√

22
kn
2

2(
k
2
+3)n

Δ0
k−1 = 0

Δ0
k = Δk+4

k−5

permutation this happens with probability 1
2n , but with a scheme, the probability

is one. Thus, we can distinguish between the two permutations with only 2
messages. More generally, for r rounds with r ≤ k, we choose 2 messages such
that Is(1) = Is(2) for 1 ≤ s ≤ k − 1 and then we check if Sk(1) ⊕ Sk(2) =
Id(1) ⊕ Id(2). With a random permutation this happens with probability 1

2n ,
but with a scheme, the probability is one. Thus, we can distinguish between the
two permutations with only 2 messages. We can attack up to k rounds.

For k + 1 rounds,We choose m messages such that I1, I2, . . . , Ik−1 have a
constant value. We have the following CPA-1 described in Table 15 (right part)
and Table 17:

Table 17. Type-3 Feistel scheme: CPA-1 on k + 1 rounds

Differential E(Nperm) E(Nscheme) σ m

Δk+1
k−1 = Δ0

k
m2

2.2n
m2

2.2n
+O(m

2

2n
) m√

22
n
2

2
n
2

Table 18 gives KPA and CPA-1 complexities.

Table 18. Complexities of the attacks on type-3 Feistel schemes

r KPA CPA-1

1 1 1

2 2n/2 2

3 2n 2
...

k 2(k−1)n/2 2

k + 1 2
k
2
n 2n/2

k + 2 ≤ r ≤ k + � k
2
�+ 1 2(r−� k

2
�−1)n 2(r−� k

2
�−1)n

4.4 Alternating Feistel Schemes

Here we will describe our best attacks on alternating Feistel schemes. After one
round, we have [I2, I3, . . . , Ik] = [S2, S3, . . . , Sk]. Thus, we choose one message
and we check if this condition is satisfied. With a random permutation, this
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happens with probability 1
2(k−1)n and with a scheme the probability is one. Thus,

with one message we can distinguish a random permutation from a permutation
obtained with an alternating scheme. After 2 rounds, in CPA-1, we choose 2
messages such that ∀s, 2 ≤ s ≤ k, Is(1) = Is(2) and then we check if I1(1) ⊕
I1(2) = S1(1)⊕S1(2). The probability to have this condition satisfied is 1

2n with
a random permutation and 1 with an alternating scheme. We can transform this
CPA-1 into a KPA. We generate m messages and from the birthday paradox,

when m � 2
(k−1)n

2 with a good probability, we can find (i, j) such that ∀s, 2 ≤
s ≤ k, Is(i) = Is(j) and then we test if I1(i)⊕ I1(j) = S1(i)⊕ S1(j).

But there are better KPA, as we now show. We have the following KPA
on 2r (r ≤ k) rounds, described in Table 19 and Table 20, where Δ0 denotes
[Δ0

2, Δ
0
3, Δ

0
4, . . . , Δ

0
k].

Table 19. Differential characteristic of our attacks on alternating Feistel schemes
(KPA)

round Δ0
1 Δ0

1 0 Δ0

2 0 Δ0

3 0 Δ0

4 0 Δ0

...
...

2r − 1 0 Δ0

2r 0 Δ0

Table 20. Alternating Feistel scheme: KPA on 2r rounds r ≤ k

Differential E(Nperm) E(Nscheme) m

Δ0
1 = 0 m2

2.2kn
m2

2.2kn +O( m2

2rn
) 2

r
2
n

Δ2r = Δ0

Here we obtain, m = 2
r
2 , since when r ≤ k, E(Nperm) is greater than or equal

to twice E(Nscheme) and we can distinguish when m = 2
r
2 . Notice that in this

case, we do not need to use the standard deviation. Thus, after 2 rounds we
get a KPA with 2

n
2 messages (notice that the CPA-1 complexity of the previous

attack was better). After 2 rounds, KPA are the best attacks. We do not have
better attack if we fix some part on the inputs.

After 2r rounds with r > k, in KPA, we keep the same differential character-
istics and the attack is given in Table 21.
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Table 21. Alternating Feistel scheme: KPA on 2r rounds r > k

Differential E(Nperm) E(Nscheme) σ m

Δ0
1 = 0 m2

2.2kn
m2

2.2kn +O( m2

2rn
) m

√
22

kn
2

2(r−
k
2
)n

Δ2r = Δ0

Here since r > k, we need to compute the standard deviation and we get
m = 2(r−

k
2 )n. Since the number of messages cannot exceed 2kn, we obtain the

condition r ≤ 3k/2. Here we have given the complexity for even rounds. If we
want to attack the odd round 2r + 1, we will only impose Δ2r+1 = Δ0. We can
attack up to 3k rounds. The complexities are summarized in Table 22.

Table 22. Complexities of the attacks on alternating Feistel schemes

r rounds KPA

1 1

2 2n/2

3 2n/2

...

3 ≤ r ≤ 2k + 1 2(
� r
2
�

2
)n

...

2k + 1 2
kn
2

...

2k + 1 ≤ r ≤ 3k 2(
(r−k)

2
)n

...

3k 2kn

5 Conclusion

In this paper, we have given our best differential generic attacks (KPA and CPA-
1) on different kinds of generalized Feistel schemes: type-1, type-2, type-3 and
alternating Feistel schemes. Since these schemes are used in well known block
ciphers, it is interesting to find the maximal number of rounds that we can
attack. We also gave the complexity of attacks on intermediate rounds. In our
attacks, the computations of the mean values and the standard deviations are
very useful. We generally stop attacking schemes, when we need the maximal
number of possible messages to perform the attack. A way to overcome this
problem is to attack permutation generators instead of a single permutation.
Impossible differential attacks are better on type-3 Feistel schemes. For type-2
Feistel schemes, we can attack the same number of rounds as impossible attacks
but here the internal functions are not necessarily bijective. For type-1 Feistel
schemes, our attacks can reach more rounds as impossible differential attacks.
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A An Example of Computation of the Mean Value
and the Variance for Random Permutations

Very often in cryptographic attacks based on the computations of variance V
and mean value E we have V � E, particularly when we deal with differential
attacks. We will prove this precisely here for the CPA-1 given in section 4.1.
This is an attack on pk − 1 rounds with 3 ≤ p ≤ k + 1 Similar proofs have also
been done for other cases.

First we compute the mean value denoted by E(Nperm). We have ∀i, 1 ≤
i ≤ m, I1(i) = 0. Here m � 2(p−2)n. The inputs are pairwise distinct. Let
δij = 1 if (2) is satisfied δij = 0 otherwise. Then Nperm =

∑
i<j δij ,

E(Nperm) =
∑

i<j E(δij) and
E(δij) = Pr[S2(i) = S2(j) and I2(i)⊕ I2(j) = S3(i)⊕ S3(j)]
Case 1: I2(i) = I2(j).

E(δij) = Pr[S2(i) = S2(j) and S3(i) = S3(j)] =
2(k−2)n−1

2kn−1
= ( 1

22n )(
1− 1

2(k−2)n

1− 1

2kn

)

Case 2: I2(i) 	= I2(j).

E(δij) = Pr[S2(i) = S2(j) and I2(i) ⊕ I2(j) = S3(i) ⊕ S3(j)] = 2(k−2)n

2kn−1
=

( 1
22n )(

1
1− 1

2kn

).

Let α be the number of (i, j) such that I2(i) = I2(j). Then

E(Nperm) = α
(

2(k−2)n−1
2kn−1

)
+
(

m(m−1)
2 − α

)(
2(k−2)n

2kn−1

)
= [m(m−1)

2·22n − α
2kn ](

1
1− 1

2kn

).

We can assume that α = m(m−1)
2·2n +O( m√

2n
). Then we get

E(Nperm) = [m(m−1)
2·22n − 1

2kn

(
m(m−1)

2·2n + 0( m√
2n

)
)
]( 1

1− 1

2kn

) =

(m(m−1)
2·22n )× (

1− 1

2(k−1)n

1− 1

2kn

) +O( m

2k+1
2
).

Finally, this gives
m(m−1)
2·22n

(
1− 1

2(k−1)n + 1
2kn

)
+O( m

2(k+1
2
)n
) ≤ E(Nperm) ≤ m(m−1)

2·22n +O( m

2(k+1
2
)n
).

We now gives the main steps in order to compute the standard deviation.
We will use the “covariance formula ” given in Section 3 in order to compute
V (Nperm). We have: V (δij) = E(δ2ij)− E(δij)

2 = E(δij)− E(δij)
2.

Case 1: I2(i) = I2(j).

V (δij) =
1

22n ×
1− 1

2(k−2)n

1− 1

2kn

−
(

1
22n ×

1− 1

2(k−2)n

1− 1

2kn

)2.

This gives:
V (δij) = 1

22n

[
1 − 1

22n −
1

2(k−2)n + 3
2kn − 2

2(k+2)n − 2
2(2k−2)n + 5

22kn − 3
2(2k+2)n −

3
2(3k−2)n

]
+O( 1

23kn )

Case 2: I2(i) 	= I2(j).

V (δij) =
1

22n ×
1

1− 1

2kn

−
(

1
22n ×

1
1− 1

2kn

)2
. We obtain

V (δij) =
1

22n

[
1− 1

22n + 1
2kn − 2

2(k+2)n + 1
22kn − 3

2(2k+2)n

]
+O( 1

23kn ).

Since we want to use the covariance formula, we have to evaluate E(δij)E(δqv)
and E(δijδqv). We explain the case where i, j, q, v are pairwise distinct. The case
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where in {i, j, q, v} we have exactly 3 values is similar. The total number of
outputs is given by
A = 2kn(2kn − 1)(2kn − 2)(2kn − 3) = 24kn(1 − 6

2kn + 11
22kn − 6

23kn ).
Then
1
A = 1

24kn

(
1 + 6

2kn + 25
22kn +O( 1

23kn )
)
.

We first evaluate E(δij)E(δqv). We have to study several cases:

1. I2(i) 	= I2(j) and I2(q) 	= I2(v). Then

E(δij)E(δqv) =
1

24n

(
1

1− 1

2kn

)2
= 1

24n (1 +
2

2kn + 3
22kn +O( 1

23kn )).

2. (I2(i) = I2(j) and I2(q) 	= I2(v)) or (I2(i) 	= I2(j) and I2(q) = I2(v)). Then

E(δij)E(δqv) =
1

24n

(
1− 1

2(k−2)n

(1− 1

2kn )2

)
.

E(δij)E(δqv) =
1

24n (1−
1

2(k−2)n + 2
2kn − 2

2(2k−2)n + 3
22kn − 3

2(3k−2)n +O( 1
23kn )).

3. I2(i) = I2(j) and I2(q) = I2(v). Then E(δij)E(δqv) =
1

24n ×
(1− 1

2(k−2)n
)2

(1− 1

2kn )2

= 1
24n (1 −

2
2(k−2)n + 2

2kn + 1
2(2k−4)n − 4

2(2k−2)n + 3
22kn + 2

2(3k−4)n − 6
2(3k−2)n +

O( 1
23kn )).

We compute E(δijδqv). Again we have to consider several cases. We give the
main case: I2(i) 	= I2(j), I2(q) 	= I2(v) and I2(i)⊕ I2(j)⊕ I2(q)⊕ I2(v) 	= 0.
In that case, S3(j) = I2(i) ⊕ I2(j) ⊕ S3(i) 	= S3(i). There are 2kn possibilities
for S(i). When S(i) is fixed, there are 2(k−2)n possibilities for S(j), since S2(j)
and S3(j) are fixed. Now for S(q) there are 6 possibilities:
1) S2(q) 	= S2(i) (we have S2(i) = S2(j)).
Then S2(v) = S2(q) 	= S2(i). Since S3(v) = S3(q) ⊕ I2(q) ⊕ I2(v), we have
S3(q) 	= S3(v). Thus there are
(2n− 1)2(k−1)n possibilities for S(q) and 2(k−2)n possibilities for S(v) This gives
(2n − 1)2(2k−3)n possibilities for (S(q), S(v)).
2) S2(q) = S2(i) = S2(j) and S3(q) = S3(i)⊕ I2(q)⊕ I2(v).
Then S3(v) = S3(i) and S2(v) = S2(q)) = S2(i). There are 2(k−2)n possibilities
for S(p) and (2(k−2)n−1) possibilities for S(v). This gives 22(k−2)n(22(k−2)n−1)
possibilities for (S(q), S(v)).
3) S2(q) = S2(i) = S2(j) and S3(q) = S3(j)⊕ I2(q)⊕ I2(v).
There are 2(k−2)n possibilities for S(p) and 2(k−2)n − 1 possibilities for S(v).
This gives 22(k−2)n(22(k−2)n − 1) possibilities for (S(q), S(v))
4) S2(q) = S2(i) = S2(j) and S3(q) = S3(i).
This gives (22(k−2)n − 1)22(k−2)n possibilities for (S(q), S(v))
5) S2(q) = S2(i) = S2(j) and S3(q) = S3(j).
This gives again (22(k−2)n − 1)22(k−2)n possibilities for (S(q), S(v))
6) S2(q) = S2(i) = S2(j) and we are not in cases 2), 3), 4), 5). This gives
(22(k−2)n − 4)22(k−2)n possibilities for (S(q), S(v))
Finally, the number of possible outputs for S(i), S(j), S(q), S(v) in this case 1

is given by B = 2(4k−4)n
(
1 − 4

2kn

)
and E(δijδqv) =

B
A = 1

24n

(
1 + 2

2kn + 1
22kn +

O( 1
23kn )

)
. Thus E(δij)E(δqv) − E(δijδqv) = 1

24n

(
− 2

22kn + O( 1
23kn )

)
. The term

−2m4

4·24n·22kn 
 m2

22n since m 
 2kn The other cases are I2(i) = (j), I2(q) 	= I2(v),
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I2(i) 	= I2(j), I2(q) 	= I2(v) and I2(i)⊕I2(j)⊕I2(q)⊕I2(v) = 0 and I2(i) = I2(j)
and I2(q) = I2(v). The study is similar to the main case.

All the computations show that V (Nperm) = m(m−1)
2·22n (1− 1

22n +O( 1
2kn )).

Thus V (Nperm) � E(Nperm) as claimed.

B Computation of the Mean Value and the Variance
for Feistel Type-1 Schemes

Here we suppose that p = 4. For any p the computations are similar. We intro-
duce the internal variables X i where X i is the first block of the output after
round i.
After 4k − 1 rounds the output is given by:

[S1, S2, S3, . . . , Sk] = [X4k−1, X3k, X3k+1, . . . , X4k−2]

where S3 = I2 ⊕ f1(I1) ⊕ F k+1(Xk) ⊕ F 2k+1(X2k) ⊕ F 3k+1(X3k). Thus the
following conditions:
(∗) S2(i) = S2(j), and I2(i)⊕ I2(j) = S3(i)⊕ S3(j) are equivalent to
(∗∗)X3k(i) = X3k(j) and F k+1(Xk(i))⊕ F 2k+1(X2k(i)) = F k+1(Xk(j))
⊕F 2k+1(X2k(j))
In order to compute E(δij), we consider 2 cases:

1. X3k(i) = X3k(j) and (Xk(i), X2k(i)) = (Xk(j), X2k(j)).
2. X3k(i) = X3k(j), (Xk(i), X2k(i)) 	= Xk(j), X2k(j)) and F k+1(Xk(i)) ⊕

F 2k+1(X2k(i)) = F k+1(Xk(j))⊕ F 2k+1(X2k(j)).

Let
p1 = Pr[X3k(i) = X3k(j)/(Xk(i), X2k(i)) = (Xk(j), X2k(j))

p′1 = Pr[X3k(i) = X3k(j)/(Xk(i), X2k(i)) 	= (Xk(j), X2k(j))

p2 = Pr[(Xk(i), X2k(i)) = (Xk(j), X2k(j))

The the probability of the first case is p1p2 and the probability of the second
case is 1

2n p
′
1(1 − p2). Finally E(δij) = p1p2 + 1

2n p
′
1(1 − p2), and E(Ntype1) =

m(m−1)
2

(
p1p2 + 1

2n p
′
1(1 − p2)

)
. We have p′1 � 1

2n . In p2 the dominant term is

in O( 1
22n ). Indeed, according to Lemma 24 of [8], we have 1

2n ≤ Pr[Xk(i) =

Xk(j)] ≤ k−1
2n . Using the same arguments, we obtain 1

22n ≤ p2 ≤ (k−1)2

22n and
1
2n ≤ p1 ≤ k−1

2n .
We want to show that the variance behaves like the mean value. For this, we
will use the covariance formula:

V (Ntype1) =
∑
i<j

V (δij) +
∑
1<j
q<v

(i,j)�=(q,v)

[E(δijδqv)− E(δij)E(δqv)]

We now compute E(δijδqv). We explain the case where i, j, q, v are pairwise
distinct. The case where in {i, j, q, v} we have exactly 3 values is similar.
When i, j, q, v are pairwise distinct, the conditions (∗∗) are satisfied for the pairs
(i, j) and (q, v). Then we have to study several cases.
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1. X3k(i) = X3k(j), X3k(q) = X3k(v), (Xk(i), X2k(i)) = (Xk(j), X2k(j)) and
(Xk(q), X2k(q)) = (Xk(v), X2k(v)). The probability is (p1p2)

2.
2. X3k(i) = X3k(j), X3k(q) = X3k(v), (Xk(i), X2k(i)) = (Xk(j), X2k(j)) and

(Xk(q), X2k(q)) 	= (Xk(v), X2k(v)) and F k+1(Xk(q)) ⊕ F 2k+1(X2k(q)) =
F k+1(Xk(v))⊕F 2k+1(X2k(v)). Then the probability is given by 1

2n p1p
′
1p2(1−

p2).
3. X3k(i) = X3k(j), X3k(q) = X3k(v), (Xk(i), X2k(i)) 	= (Xk(j), X2k(j))

and (Xk(q), X2k(q)) = (Xk(v), X2k(v)) and F k+1(Xk(i)⊕F 2k+1(X2k(i)) =
F k+1(Xk(j)) ⊕ F 2k+1(X2k(j)). As in the previous case, the probability is
given by 1

2n p1p
′
1p2(1− p2).

4. X3k(i) = X3k(j), X3k(q) = X3k(v), (Xk(i), X2k(i)) 	= (Xk(j), X2k(j)),
(Xk(q), X2k(q)) = (Xk(i), X2k(i)), (Xk(v), X2k(v)) = (Xk(j), X2k(j))
F k+1(Xk(i)⊕ F 2k+1(X2k(i)) = F k+1(Xk(j))⊕ F 2k+1(X2k(j)). The proba-
bility is given by 1

2n (p
′
1)

2p22(1− p2).
5. X3k(i) = X3k(j), X3k(q) = X3k(v), (Xk(i), X2k(i)) 	= (Xk(j), X2k(j)),

(Xk(v), X2k(v)) = (Xk(i), X2k(i)), (Xk(q), X2k(q)) = (Xk(j), X2k(j)),
F k+1(Xk(i) ⊕ F 2k+1(X2k(i)) = F k+1(Xk(j)) ⊕ F 2k+1(X2k(j)). Again the
probability is given by 1

2n (p
′
1)

2p22(1− p2).
6. X3k(i) = X3k(j), X3k(q) = X3k(v), (Xk(i), X2k(i)) 	= (Xk(j), X2k(j))

and (Xk(q), X2k(q)) 	= (Xk(v), X2k(v)), we are not in cases 4 and 5 and
F 2k+1(X2k(i)) = F k+1(Xk(j))⊕ F 2k+1(X2k(j)) and F k+1(Xk(q))
⊕ F 2k+1(X2k(q)) = F k+1(Xk(v))⊕ F 2k+1(X2k(v)). Then the probability is
1

22n (p
′
1)

2[(1− p2)
2 − 2(1− p2)p

2
2].

Finally we obtain when i, j, q, v are pairwise distinct

E(δijδqv)− E(δij)E(δqv) = 2
1

2n
(p′1)

2p22(1− p2)− 2
1

22n
(p′1)

2p22(1 − p2)

Using the dominant term in p′1 and p2, we get that the dominant term in∑
1<j
q<v

(i,j)�=(q,v)

[E(δijδqv)−E(δij)E(δqv)] is in O(m4

27n ) and
m4

27n 

m2

22n since m � 22n

in our attack.
Similarly, in the case where we have exactly 3 values in {i, j, q, v}, the dominant

term in
∑

1<j
q<v

(i,j)�=(q,v)

[E(δijδqv)− E(δij)E(δqv)] is in O(m3

25n ) and
m3

25n 

m2

22n since

m � 22n in our attack.
Thus the dominant term in the V (Ntype1) is in O(m2

22n ).

More generally, our computations show that the CPA-1 on pk − 1 rounds

with p ≤ k + 2, we have: E(Nperm) � m2

2.22n , E(Ntype1) � m2

2.22n + O( m2

2(p−1)n ),

V (Nperm) � m2

22n and, σ(Nperm) � m
2n , V (Ntype1) � m2

22n , and σ(Ntype1) � m
2n .

Thus we can distinguish a permutation obtained by a type-1 Feistel scheme
from a random permutation as soon as |E(Nperm) − E(Ntype1)| ≥ σ(Nperm),

|E(Nperm) − E(Ntype1)| ≥ σ(Ntype1) i.e. as soon as m2

2(p−1)n ≥ m
2n i.e. m ≥

2(p−2)n.
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Abstract. Galois/Counter Mode (GCM) is a block cipher mode of op-
eration widely adopted in many practical applications and standards,
such as IEEE 802.1AE and IPsec. We demonstrate that to construct
successful forgeries of GCM-like polynomial-based MAC schemes, hash
collisions are not necessarily required and any polynomials could be used
in the attacks, which removes the restrictions of attacks previously pro-
posed by Procter and Cid. Based on these new discoveries on forgery
attacks, we show that all subsets with no less than two authentication
keys are weak key classes, if the final block cipher masking is computed
additively. In addition, by utilizing a special structure of GCM, we turn
these forgery attacks into birthday attacks, which will significantly in-
crease their success probabilities. Furthermore, we provide a method to
fix GCM in order to avoid the security proof flaw discovered by Iwata,
Ohashi and Minematsu. By applying the method, the security bounds of
GCM can be improved by a factor of around 220. Lastly, we show that
these forgery attacks will still succeed if GCM adopts MAC-then-Enc
paradigm to protect its MAC scheme as one of the options mentioned in
previous papers.

Keywords: Galois/Counter Mode, GCM, MAC forgery, weak key, birth-
day attack, provable security, MAC-then-Enc.

1 Introduction

Information security plays an increasingly important role due to the fast growth
of computer networks. How to prevent personal data from unauthorized ac-
cess by third parties is one of the fundamental problems of any system design,
and it highly depends on the security levels of underlying algorithms to pro-
tect confidentiality and authentication. However, in practice, system designers
and software developers may have restrained time and resources to learn and
understand the detailed designs and principles of sophisticated cryptographic
algorithms and protocols, and may make poor decisions in their system or soft-
ware development and put users’ personal data in danger. Therefore, bridging
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the gap between academic research and practical developments and introducing
unified interfaces for both confidentiality and authentication are very important
tasks for researchers. We believe these can serve as some of the goals of the
CAESAR competition calling for authenticated encryption designs [3].

Generally, block ciphers are usedwith variousmodes of operation, such asCCM,
GCM and OCB, to compute ciphertexts andmessage authentication codes to pro-
vide confidentiality and authentication respectively. It would be very important to
better investigate and understand existing designs of modes of operation when de-
signingnewauthenticated encryption schemes.Galois/CounterMode (GCM) [4,12]
is anAuthenticated Encryptionwith AssociatedData (AEAD)mode [18] for block
ciphers,which possessesmany excellent features.GCMcan be easily and efficiently
implemented in both software and hardware. The computations of GCM can be
done in parallel, and only small portions need to be recomputed if one block of in-
put is changed. The theoretical proofs of GCM are given by its designers McGrew
and Viega in the paper [13]. GCM is included in NSA Suite B Cryptography [15],
and is widely adopted bymany standards and protocols, such as IEEE 802.1AE [7]
and IPsec [21].

The design of GCM is based on CounterMode for encryption and a polynomial-
based MAC scheme for authentication. The security of GCM has been assessed
by many researchers [5,6,10]. Recently, the algebraic structures of its underlying
polynomial-based MAC scheme were analyzed by Saarinen [19], and by Procter
and Cid [16,17]. Procter and Cid showed that almost all subsets of these kinds of
polynomial-based MAC schemes are weak key classes. In 2012, Iwata et al. found
a flaw in GCM’s original security proofs, and presented new security bounds for
it [8,9]. Under such circumstance, further investigation on these attacks and the
security bounds would be very important for usage of GCM and future designs of
authenticated ciphers.

Our Contributions. The main contributions of this paper are as follows.

– We reveal (and demonstrate by practical examples) that hash collisions are
not necessarily required for forgeries of GCM-like polynomial-based MAC
schemes, and polynomials with non-zero constant terms can be used for the
attacks. These remove certain restrictions of MAC forgery attacks proposed
by Procter and Cid.

– Based on the above discoveries on MAC forgeries, we show that all non-
singleton subsets (i.e. with more than one element) of authentication keys are
weak key classes, if the final masking by block ciphers is computed additively.
This is an extension to previous analysis of Procter and Cid.

– Based on a special structure of GCM, we show how to turn these forgery
attacks into birthday-bound based attacks by attacking the encryption oracle
instead of the verification or decryption oracle. This can significantly increase
success probabilities and avoid certain countermeasures.

– We provide a method to fix GCM in order to avoid the security proofs’ flaw
discovered by Iwata et al. By applying this method, the security bounds of
GCM can be improved by a factor of around 220.
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– We indicate that even if GCM is changed to MAC-then-Enc paradigm to
make adversaries more difficult to attack MAC schemes (one of the options
mentioned in [16,17]), these forgery attacks can still work.

The rest of this paper is organized as follows. The next section gives the back-
ground knowledge and notation used throughout the paper. Section 3 presents
our improved forgery attacks on polynomial-based MAC schemes, and studies
weak key classes of GCM-like schemes. Section 4 shows how to turn these forgery
attacks on GCM into birthday attacks to improve the success probabilities. The
method to fix GCM and the new security bounds are given in Section 5. The
attacks on the revised version of GCM in MAC-then-Enc paradigm are discussed
in Section 6. The last section concludes the paper and mentions potential future
work. The appendix provides several computational examples to demonstrate
the MAC forgery attacks proposed in this paper.

2 Preliminaries

This section firstly clarifies the notation that will be used throughout the paper.
Secondly, the design of GCM and adversarial models will be briefly introduced.

2.1 Notation

Following the notation in [8], strn(x) denotes the n-bit binary representation of
the integer x, where the leftmost bits are interpreted as the most significant bits
(MSB) of x, and int(s) returns the integer converted from the bit-string s.

The operator || concatenates two bit-strings, e.g. s1||s2. len(s) returns the bit-
length of s.msbn(s) represents the leftmost n bits of s, and lsbn(s) is the rightmost
n bits. 0l is used to denote a bit-string with l-bit 0’s, and 0311 is the concatenation
of 031 with one 1. For a set S, the number of elements in S is denoted as |S|.

The function inc(s), where len(s) = 128, is defined as

inc(s) = msb96(s)||str32(int(lsb32(s)) + 1 mod 232),

and incn denotes applying inc for n times.

2.2 A Brief Introduction to GCM

GCM is an AEAD scheme who adopts Counter Mode for encryption, and a
polynomial-based hash algorithm for message authentication. In this paper, we
concentrate on the version of GCM based on a 128-bit block cipher, which is the
major usage case proposed in its specification. The finite field GF(2128) adopted
in GCM uses the generating polynomial 1 + x+ x2 + x7 + x128.

The authenticated encryption of GCM requires four bit-string inputs, an ini-
tialization vector (IV, or nonce) N , a master key K, a plaintext P and an asso-
ciated data A, and then produces a pair (C, T ), where C is the ciphertext which
has the same length as P and T is a t-bit authentication tag, where t ≤ 128. The
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authenticated decryption algorithm takes N , K, C and T , and returns P if T is
valid or FAIL if T does not pass the verification. The lengths of these variables
should meet the following requirements [13]:

0 ≤ len(N) ≤ 264,
0 ≤ len(P ) ≤ 128(232 − 2),
0 ≤ len(A) ≤ 264.

We use EK(x) to denote the block cipher encryption with the master key
K. Suppose len(P ) = 128(n − 1) + m, where 1 ≤ m ≤ 128. Segment P into a
sequence of message blocks P1||P2|| · · · ||Pn, where len(Pi) = 128 for 1 ≤ i ≤ n−1
and len(Pn) = m. The authentication key H is derived from the master key by
computing H = EK(0128).

Algorithm 1 ([13]). The steps of GCM encryption are described as follows.

N0 =

{
N ||0311 if len(N) = 96,

GHASHH(N) if len(N) 	= 96,

Ni = inc(Ni−1) for 1 ≤ i ≤ n,
Ci = Pi ⊕ EK(Ni) for 1 ≤ i ≤ n− 1,
Cn = Pn ⊕msbm(EK(Nn))
C = C1||C2|| · · · ||Cn,

where GHASH is a keyed hash function that will be described later.

GCM follows the Enc-then-MAC (EtM) paradigm, i.e. computing authenti-
cation tags from ciphertexts. The authentication tag T is computed by GMAC,
defined as

T = GMACH,t(A,C) = msbt(GHASHH(A,C) ⊕ EK(N0)). (1)

GHASHH(·, ·) is a polynomial-based hash function defined over GF (2128), and
GHASHH(s) denotes GHASHH(00, s), i.e. the first parameter is an empty bit-
string. Suppose w and v are two bit-strings, len(w) = 128(n1 − 1) + m1 and
len(v) = 128(n2 − 1) + m2 for 1 ≤ m1,m2 ≤ 128. Segment w and v into
w1||w2|| · · · ||wm1 and v = v1||v2|| · · · ||vm2 respectively, where len(wi) = 128
for 1 ≤ i ≤ n1 − 1, len(vi) = 128 for 1 ≤ i ≤ n2 − 1, len(wn1 ) = m1, and
len(vn2 ) = m2. By using the following notation,

Bi =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

wi for 1 ≤ i ≤ n1 − 1,

wi||0128−m1 for i = n1,

vi for n1 + 1 ≤ i ≤ n1 + n2 − 1,

vi||0128−m2 for i = n1 + n2,

str64(len(w))||str64(len(v)) for i = n1 + n2 + 1,

the computation of GHASHH(w, v) is defined as

n1+n2+1∑
i=1

BiH
n1+n2+2−i.
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One important requirement when using GCM is that nonces must be distinct.
Once an IV is reused, the counter numbers Ni used in the Counter Mode of en-
cryption will be the same, and thus exclusive-oring two ciphertexts will eliminate
the key stream and get information about plaintexts. Another reason of forbid-
ding IV reuse is well explained in Joux’s forbidden attack [10], i.e. same nonces
will result in identical EK(N0) used in the equation (1) and by exclusive-oring
two authentication tags we will get an equation on H over finite fields that may
be easily solved.

For simplicity, in the following content, A, P and C are considered being
multiples of 128 bits, and N is also a multiple of 128 bits if len(N) 	= 96, such
that all inputs do not need to be padded. If not stated explicitly, A is regarded as
an empty bit-string. Moreover, as in [17], the indices of input blocks are reversed,
e.g. P = Pn||Pn−1|| · · · ||P1 instead of P = P1||P2|| · · · ||Pn, for convenience of
polynomial representations.

2.3 Security Definitions

For a fixed but unknown master keyK of GCM, adversaries are given two oracles,
encryption oracle and decryption oracle. Adversaries can feed a tuple (N,P ) to
the encryption oracle to get (C, T ), or query the decryption oracle with (N,C, T ).
The decryption oracle will return P if T passes verification, or FAIL otherwise.
Adversaries are assumed to be nonce-respecting, i.e. no repeating nonces are
queried to the encryption oracle, which is not allowed in GCM or Counter Mode.

One of adversaries’ goals is to construct MAC forgeries. In this case, adver-
saries aim to create a valid authentication tag T for (N,C), which has not been
queried yet. Adversaries can make any queries except (N,C) to the encryption
and decryption oracles. If adversaries target only MAC schemes, they can be
given two oracles, authentication oracle and verification oracle. The authentica-
tion oracle produces T for queried (N,C); while the verification oracle returns
FAIL if T is not valid for (N,C), or returns PASS otherwise.

Analysis of a cryptographic algorithm’s weak keys is a very important as-
sessment. Handschuh and Preneel give a theoretical definition of weak keys for
symmetric cryptosystems in [6]: “A class of keys is called weak if for members of
the class the algorithm behaves in an unexpected way and if it is easy to detect
whether a particular key belongs to this class.” For example, for a MAC scheme,
the unexpected behavior may be that MAC forgeries can be made in a very high
probability. Moreover, to determine whether a key is in the class K, the number
of queries has to be fewer than exhaustive search’s, i.e. |K|.

3 Revisiting Weak Keys of Polynomial-Based MACs

In [16,17], Procter and Cid study the weak keys andMAC forgeries of polynomial-
based MAC schemes, including the one used in GCM. This is a more general
model upon Saarinen’s cycling attack [19].
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The main framework of MACs, in which they are interested, is based on eval-
uation hash [20]. Let F be a finite field of characteristic 2, H ∈ F be the authen-
tication key, and M = Mm||Mm−1|| · · · ||M1 be a message to be authenticated,
where Mi ∈ F. Define a polynomial gM (x) ∈ F[x] as

gM (x) =

m∑
i=1

Mix
i.

Then the function hH(M) = gM (H) is called evaluation hash. The hash function
outputs are masked by block cipher encryptions to produce the authentication
tags, such as EK(N) ⊕ hH(M) and EK(hH(M)). Poly1305-AES [2], and the
MAC schemes in GCM and SGCM [19] are all within this framework.

We summarize the main observation by Procter and Cid in [17] as follows.
For the convenience of the readers, we include a short proof of their result.

Result 1 ([17]). With the same notation as above, if there exists a polynomial
f(x) ∈ F[x] without a constant term, such that f(H) = 0, then forgeries of MAC
schemes based on the evaluation hash hH(x) can be made.

Proof. Assume

f(x) =
n∑

i=1

Fix
i,

and F = Fn||Fn−1|| · · · ||F1. Given a message M , we have

hH(M ⊕ F ) = gM⊕F (H) = gM (H)⊕ f(H) = gM (H) = hH(M),

where the shorter one of M and F in M ⊕ F is padded with zeros. We obtain a
collision on the evaluation hash, and thus a MAC forgery of the MAC scheme. �

After obtaining a valid tuple (N,C, T ) by eavesdropping or active querying, the
adversaries query the verification oracle about (N,C ⊕F, T ). If the result is not
FAIL, then a valid MAC is forged. Please note that the polynomial f(x) always
has x as its factor, and is in the ideal 〈x2 ⊕Hx〉.

For an unknown H , the success probability of MAC forgery is directly related
to the choice of f(x). Procter and Cid propose three ways to select f(x): (1)
The first way is to use f(x) = x

∏
i(x ⊕Hi) to involve as many Hi as desired;

(2) The second way is based on irreducible factors of x2
128 ⊕ x, which includes

Saarinen’s cycling attack as a special case; (3) The third is just using random
polynomials.

In the next section, we will show that, a MAC forgery can also be made for
any polynomial f(x) ∈ F[x], which is an extension of Result 1.

Moreover, based on these analyses, Procter and Cid point out that almost
any subset of the key space of these polynomial-based MAC schemes is a weak
key class.

Result 2 ([17]). Let H be a subset of the authentication key space of the MAC
scheme based on evaluation hash. If 0 ∈ H and |H| ≥ 2, or |H| ≥ 3, then H is
weak.
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Proof. If |H| ≥ 2 and 0 ∈ H, one query forged by f(x) = x
∏

i(x ⊕Hi) can be
fed into the verification oracle, where Hi ∈ H. To further determine whether 0
is in the set H, two queries by distinct f(x) ∈ 〈x2⊕Hx〉 have to be made, so all
elements in a subset |H| ≥ 3 can be detected by using two queries. �

3.1 New Improved MAC Forgery Attacks

The MAC forgery attacks proposed by Procter and Cid are constructed upon
hash collisions, and one of the attacks’ restrictions is that the chosen polynomial
f(x) should always have x as a factor, or equivalently do not have a constant
term. We will demonstrate below how to create MAC forgeries not based on
hash collisions, and without the zero constant term restriction.

For the MAC schemes as in GCM and SGCM, whose final masking by block
ciphers is computed additively, we give the following theorem, where the notation
is the same as above.

Theorem 1. Given any polynomial q(x) ∈ F[x] such that q(H) = 0, for the
evaluation hash based MAC scheme T = EK(N) ⊕ hH(M), a MAC forgery can
be constructed.

Proof. Let Q∗ be the concatenation of coefficients Qn||Qn−1|| · · · ||Q1 without
Q0, and q(x) = q∗(x)⊕Q0. Since q(H) = 0, we have

T = hH(M)⊕ Ek(N) = hH(M)⊕ Ek(N)⊕ q(H),

which implies
T ⊕Q0 = Ek(N)⊕ hH(M)⊕ q∗(H)

= Ek(N)⊕ gM (H)⊕ q∗(H)
= Ek(N)⊕ gM⊕Q∗(H).

This means if we know a polynomial q(x) such that q(H) = 0, we can exclusive-
or coefficients of q(x)’s non-constant terms with the captured message, to obtain
a valid tuple as (N,M ⊕ Q∗, T ⊕ Q0), if the authentication tag T is computed
as Ek(N)⊕ hH(M). �

Please note that the method in the above proof does not rely on a hash
collision, and the constant term Q0 is not required to be zero. We also want
to mention that Theorem 1 leads us to an extension to the original analysis of
Procter and Cid on weak keys, which will be discussed in the next subsection.

A practical attack example on GCM, by using the method in Theorem 1
(along with a length extension technique), is given in Appendix A.1.

For the sake of completeness, we also give the following theorem, which works
for both EK(N)⊕ hH(M) and EK(hH(M)).

Theorem 2. Given any polynomial q(x) ∈ F[x] such that q(H) = 0, a forgery
can be made on the MAC schemes based on evaluation hash by using α(x)q(x),
where α(x) is a polynomial without a constant term.
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Proof. Since q(H) = 0, we have α(H)q(H) = 0. Because α(0) = 0, α(0)q(0) = 0.
Therefore, we can apply the same method in Result 1 to construct hash collisions
and thus MAC forgeries. �

Theorem 2 can be seen as covered by the analysis of Procter and Cid, since
α(x)q(x) is still in the ideal 〈x2 ⊕ Hx〉. However, Theorem 2 is insufficient to
deduce the result about weak key classes (Theorem 3 in the next subsection)
supported by Theorem 1.

3.2 All Non-singleton Subsets of Keys are Weak

To detect whether an authentication key H is in a subset H of the key space,
the number of queries should be less than |H|. If |H| = 2, only one query can be
made, and thus whether zero is in H cannot be determined by using polynomials
in 〈x2⊕Hx〉, since it will need at least two queries. However, based on the analysis
of Theorem 1, we may use polynomials in 〈x⊕H〉 instead of 〈x2⊕Hx〉 to make
one query and determine whether the authentication key is in H.

Theorem 3. For an evaluation hash based MAC scheme, T = EK(N)⊕hH(M),
if given a valid tuple (N,M, T ), then making one query to the verification oracle
is enough to determine whether the authentication key H ∈ F in use is in a
subset of keys H = {H1, H2, · · · , Hn} ⊆ F.

Proof. First define a polynomial

q(x) =

n∑
i=0

Qix
i =

n∏
i=1

(x⊕Hi),

where Qi ∈ F for 0 ≤ i ≤ n. Let M ′ = M ⊕ Q∗ and T ′ = T ⊕ Q0 with
zero pre-padding for shorter strings, where Q∗ = Qn||Qn−1|| · · · ||Q1. Query the
verification oracle with the tuple (N,M ′, T ′). If the verification oracle does not
return FAIL, the authentication key H in use is known to be in H. H is not in
H if FAIL is returned.

It is easy to see H is in H if and only if (N,M ′, T ′) passes. If H is in H,
then q(H) = 0, and thus (N,M ′, T ′) is valid. On the other hand, the validity of
(N,M ′, T ′) implies q(H) = 0, so H must be a root of q(x) = 0, which is among
all the elements of H. �

The steps in Theorem 3 are similar to those in [17], except the absence of the
steps to determine whether 0 is in H.

Based on Theorem 3, we have the following corollary about weak key classes.

Corollary 1. For an evaluation hash based MAC scheme, T = EK(N)⊕hH(M),
any subset of authentication key space, H, is weak if |H| ≥ 2.

Proof. Due to Theorem 3, after obtaining a valid tuple (N,M, T ) by passive
eavesdropping, whether the authentication key H in use is the subset H can
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be determined by only one query, which is efficient compared to the size of the
subset, i.e. 1 < |H|.

On the other hand, once H is known to be in the subset H, H is a solution for
q(x) =

∏n
i=1(x⊕Hi) = 0, where Hi’s are all elements of H. Then the polynomial

α(x)q(x) with an arbitrary non-zero α(x) can be used to construct more MAC
forgeries. �

4 Turning MAC Forgeries into Birthday Attacks

In [8], Iwata et al. find a flaw in the security proofs of GCM given by McGrew
and Viega in [13]. The main problem is that inc may be translated to multiple
distinct forms in terms of exclusive-ors, such that the equation

incr1(GHASHH(Na)) = incr2(GHASHH(N b)) (2)

may have many more solutions than the desired lN + 1 for any given r1, r2, N
a

and N b, where 0 ≤ r1, r2 ≤ 232 − 2, Na 	= N b, and lN is the maximum number
of blocks for nonces.

Result 3 ([8]). For a randomly chosen H, the probability for the equation (2)
to hold is at most

222(lN + 1)/2128.

Furthermore, for n queries to the encryption oracle with the nonces N i’s,
where 1 ≤ i ≤ n, the probability of having a collision on counter numbers, i.e.
Na

r1 = N b
r2 for certain r1, r2, a and b, is at most

222(n− 1)(σ + n)(lN + 1)

2128
, (3)

where 0 ≤ r1, r2 ≤ 232 − 2, 1 ≤ a, b ≤ n, the total length of plaintexts is at most
σ blocks, and Na and N b are the corresponding nonces for the counter numbers
Na

r1 and N b
r2 respectively.

4.1 New Birthday-Bound-Based MAC Forgery Attacks on GCM

The original forgery attacks on polynomial-based MAC schemes, including our
attacks described in Section 3.1, are targeting algebraic properties of underlying
evaluation hash functions, e.g., GHASH in the case of GCM. The forged queries
cannot be fed to the encryption oracle directly because two queries with identical
nonces are forbidden.

The work by Iwata et al. reminds us that GCM has a very special design,
in which GHASH is reused for generating initial counter numbers if len(N) 	=
96. This makes GHASH attackable in the encryption oracle. Precisely, assuming
H 	= 0, the attack consists of the following three steps:
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1. Either passively or actively obtain a valid tuple (N,P,C), where len(N) 	= 96.
Please note that we do not need the authentication tag T here.

2. Construct a polynomial q(x), and properly apply xdq(x) to N to derive N ′,
where d ≥ 1. Feed the pair (N ′, P ) to the encryption oracle, and get the
corresponding ciphertext C′. If C′ = C, we know that q(H) = 0.

3. Apply q(x) to other captured messages and tags to construct more forgeries,
or recover the authentication key by binary search or solving q(x) = 0.

If H = 0, the outputs of GMAC will be the same, and thus it can be easily
detected.

One advantage of targeting the encryption oracle is that we can collect all
query results into a set to perform birthday attacks. For any query to the en-
cryption oracle, we can always get corresponding ciphertext and tag as long
as the nonce is not previously queried. Using the same notation in the spec-
ification of GCM in Algorithm 1, collect EK(N1)’s, which are derived from
exclusive-oring P1’s with C1’s, into a set S. If a collision occurs in S, e.g.
EK(Na

1 ) = EK(N b
1), where Na

1 and N b
1 are the corresponding first counter

numbers for the nonces Na and N b, then we have Na
1 = N b

1 as well. Hence
a collision GHASHH(Na) = GHASHH(N b) is found. This birthday collision at-
tack can have a significantly higher success probability than the original attacks
on the verification or decryption oracle.

Assume the polynomial q(x) is chosen randomly and independently, and H 	=
0. The success probability for the original trial-and-error method on the verifi-
cation or decryption oracle is

n(lN + 1)/2128, (4)

where n is the number of queries that have been made; while the upper bound for
the probability of the birthday attack is (see Lemma A.9 in Section A.4 of [11])

0.5 · n2(lN + 1)/2128. (5)

In addition to the first encrypted counter blocks, we can also collect the follow-
ing blocks into S, in which way we may achieve even larger collision probabilities.
For example, EK(Na

i ) may be equal to EK(N b
j ) for certain i and j. The collision

probability for this case can be obtained from the equation (3) in Result 3. Al-
though the success probability of this case is higher than the previous methods
of trial-and-error and birthday attacks, the collision Na

i = N b
j may need more

time complexity to be utilized for MAC forgery attacks. One naive way is to try
every polynomial over the finite field that can be converted from incr with the
specific r, and this will cost 222 time at most.

Moreover, if certain countermeasures on the decryption or verification oracle
are carried out, such as forbidding nonce reuse, the original attacks would fail
or be detected, but the attacks on the encryption oracle will be unaffected.

A practical attack example on non-96-bit nonces is given in Appendix A.2.
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5 Revisiting Provable Security of GCM

After pointing out the flaw in GCM’s original security proofs, Iwata et al. give
new security bounds, which are characterized by privacy advantage and authen-
ticity advantage. Please refer to [13,8,9] for the detailed definitions of privacy
and authenticity advantages.

Result 4 ([16,17]). The privacy advantage of GCM is at most

0.5(σ + q + 1)2

2128
+

222q(σ + q)(lN + 1)

2128
, (6)

and the upper bound for the authenticity advantage is

0.5(σ + q + q′ + 1)2

2128
+

222(q + q′ + 1)(σ + q)(lN + 1)

2128
+

q′(lA + 1)

2t
, (7)

where the total length of plaintexts is at most σ blocks, q and q′ are numbers of
encryption and decryption queries respectively, and lN and lA are the maximum
numbers of blocks for nonces and inputs respectively.

Generally, the values of the equations (6) and (7) are dominated by their
second terms, since they have a large constant 222.

5.1 Repairing GCM and Its Security Bounds

Here we propose a method to fix the design of GCM such that the large constant
222 in the equations (6) and (7) can be reduced to 22. Since the flaw of the GCM’s
security proofs originates from the operation inc as explained in the previous
section, we aim to replace the functionality of inc with operations in the finite
field.

Consider w · x, where w is a primitive element of F2n . It is clear that the
outputs of w · x consist of two cycles, namely (0) and (1, w, . . . , w2n−2). Now
define a new function Lw as

Lw(x) =

⎧⎪⎨⎪⎩
w · x if x = wi, 0 ≤ i ≤ 2n − 3,

0 if x = w2n−2,

1 if x = 0.

(8)

The following theorem is important for our discussions in this subsection.

Theorem 4. Let Lw be the function defined above, and f, g be two functions
defined on F2n with f(0), g(0) 	= 0. Denoting deg(f) = d1, deg(g) = d2 and
d = max(d1, d2), we have

max
0≤r≤2n−1

|{x : x ∈ F2n |Lr
w(f(x)) + g(x) = 0}| ≤ 4d.
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Proof. Now we consider the number of solutions of the equation

Lr
w(f(x)) + g(x) = 0, (9)

where 0 ≤ r ≤ 2n − 1. The equation (9) can be divided into the following cases.

1. If f(x) = 0,

(a) If Lr
w(f(x)) = 0, then g(x) = 0.

(b) If Lr
w(f(x)) 	= 0, then g(x) = wr−1.

2. If f(x) 	= 0,

(a) If Lr
w(f(x)) = 0, then g(x) = 0.

(b) If Lr
w(f(x)) 	= 0, let f(x) = wr1 and Lr

w(f(x)) = wr2 , where 0 ≤ r1, r2 <
2n − 1. Then we have
i. If r1 ≤ r2, then wrf(x) = g(x).
ii. If r1 > r2, then wr−1f(x) = g(x).

Therefore, for a given r, any solution of the equation Lr
w(f(x)) + g(x) = 0 must

be one of the solutions of the four equations⎧⎪⎪⎨⎪⎪⎩
g(x) = 0,
g(x) = wr−1,

wrf(x) = g(x),
wr−1f(x) = g(x).

The total number of solutions for these four equations are at most 2d2+2d ≤ 4d.
�

It is known that the detailed design of the next counter function of Counter
Mode is not important as long as counter numbers are produced uniquely [14]. If
the underlying block cipher is ideal, i.e. treated as a pseudorandom permutation
PRP for randomly chosen encryption key, PRP(Lr

w(s)) is indistinguishable from
PRP(incr(s)). Therefore, the Counter Mode encryption in GCM will have same
security properties as original if inc is replaced by Lw defined over F. We propose
the following revised design of GCM.

Algorithm 2. The encryption steps of the revised GCM, denoted by LGCM,
are as follows.

N0 = GHASHH(N),
Ni = Li

w(N0) for 1 ≤ i ≤ n,
Ci = Pi ⊕ EK(Ni) for 1 ≤ i ≤ n− 1,
Cn = Pn ⊕msbm(EK(Nn)),
C = C1||C2|| · · · ||Cn,

where the notation is the same as in Algorithm 1.

Please note that nonces are always processed by GHASH regardless of nonces’
lengths, for simplicity of security proofs.

Based on Theorem 4, we can have the following lemma.



32 B. Zhu, Y. Tan, and G. Gong

Lemma 1. Randomly choosing an authentication key H, the probability to have

Lr1
w (GHASHH(N1)) = Lr2

w (GHASHH(N2)) (10)

is no more than 4(lN + 1)/2128 for any given r1, r2, N1 and N2, where 0 ≤
r1, r2 ≤ 232− 2, N1 	= N2, and lN is the maximum number of blocks for nonces.

Proof. Without loss of generality, assume r2 ≤ r1, then the equation (10) is
equivalent to

Lr1−r2
w (GHASHH(N1)) = GHASHH(N2). (11)

The maximum degree of GHASHH(N1) and GHASHH(N2) is lN + 1, so by ap-
plying Theorem 4 we know the probability for the equation (11) to hold is
4(lN + 1)/2128 for a randomly chosen H . �

Now we can give the security bounds of LGCM as follows.

Theorem 5. For LGCM, the revised GCM algorithm defined in Algorithm 2,
the privacy advantage is at most

0.5(σ + q + 1)2

2128
+

4q(σ + q)(lN + 1)

2128
, (12)

and the new upper bound for the authenticity advantage is

0.5(σ + q + q′ + 1)2

2128
+

4(q + q′ + 1)(σ + q)(lN + 1)

2128
+

q′(lA + 1)

2t
, (13)

where the notation is the same as in Result 4.

Proof. The proofs of Theorems 1 and 2 in [9] can be carried over by using
Lemma 1 in the paper to replace the original probability statement of counter
number collisions. �

Implementation against Timing-Based Side-Channel Attacks

The functions defined in (8) have vulnerabilities for timing-based side-channel
attacks since the computations will have inconsistent times for different inputs.
To minimize such effects, we may use the following equations in practical imple-
mentations.

y = w · x,

Lw(x) =

⎧⎪⎨⎪⎩
1 if y = 0,

0 if y = 1,

y otherwise.

(14)

The equations (14) would have very close computational time costs for different
branches.

We want to make a note here that it might be possible to directly adopt w · x
instead of Lw(x) to generate counter numbers since the probability for GHASH
to output zero is low, but the security proofs for GCM may require to be largely
rewritten and new bounds might have different formats as existing ones. We
leave this as an open problem for interested readers.
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6 Attacking GCM in MAC-then-Enc Mode

GCM follows the Enc-then-MAC paradigm, i.e. authentication tag is computed
based on ciphertexts. It is known that once the integrity of the system is com-
promised, the whole system including privacy will not be trustworthy. For GCM,
if we successfully perform a MAC forgery attack described in previous sections,
e.g., a forged tuple (N,C′, T ′), based on a valid (N,C, T ), is fed to the decryp-
tion oracle and passes verification, the oracle will return P ′ that may have a
known linear difference with P . In this way, P can be obtained even without
any knowledge of the encryption key. Therefore, the message authentication al-
gorithm must be well protected.

One potential and straightforward option, which is indicated in [16,17], is to
change GCM to a MAC-then-Enc scheme (MtE GCM, thereafter). More pre-
cisely, in MtE GCM, GMAC is computed based on plaintexts instead of cipher-
texts, and the authentication tag is encrypted by block ciphers in Counter Mode.

However, we find that the MAC forgery attacks described in previous sections
may still work on MtE GCM. These attacks are based on the linear properties of
the polynomial-based MAC schemes. Assuming no length extension is needed,
applying q(x) directly to ciphertexts and encrypted tags may successfully result
in MAC forgeries. Consider the simplified case with

ET = hH(P )⊕ EK(N)⊕ EK(Nt)
= hH(P )⊕Mask
= hH(C ⊕ S)⊕Mask,

where ET is the encrypted authentication tag, EK(Nt) is to encrypt the au-
thentication tag, Mask = EK(N) ⊕ EK(Nt), S is the key stream produced by
Counter Mode, and the other variables are the same as in previous analyses. If
we know a function q(x) such that q(H) = 0, then

ET ′ = ET ⊕Q0 = hH(C ⊕ S)⊕ q∗(H)⊕Mask
= gC⊕S(H)⊕ gQ∗(H)⊕Mask
= gC⊕Q∗⊕S(H)⊕Mask
= hH(C ⊕Q∗ ⊕ S)⊕Mask
= hH(C′ ⊕ S)⊕Mask.

This implies the tuple (N,C′, ET ′), where C′ = C ⊕ Q∗ and ET ′ = ET ⊕ Q0,
will pass the verification oracle of MtE GCM. A computational example is given
in Appendix A.3.

If len(Q∗) > len(C), i.e. length extension is needed, the above attack on MtE
GCM may not work. To decrypt C ⊕ Q∗, where len(C ⊕ Q∗) > len(C), the
verification oracle will produce longer key stream S′ = S||Su with an unknown
portion Su, so outputs of the oracle will become unpredictable. However, ad-
versaries may avoid this by trying to attack GHASH in the encryption oracle as
discussed in Section 4.1, or simply waiting for longer ciphertexts.

Therefore, we can see that changing GCM into MAC-then-Enc paradigm
would add little strength against these MAC forgery attacks.
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7 Concluding Remarks

This paper revisits weak key classes of polynomial-based MAC schemes and
provable security of GCM. We demonstrate that hash collisions are not necessary
to construct successful MAC forgeries and any polynomials can be used in these
attacks, which removes the restrictions in Procter and Cid’s attacks. Based on
these new discoveries on MAC forgeries, we prove that all subsets of keys with
no less than two elements are weak key classes for GCM-like polynomial-based
MAC schemes, which is an extension to Procter and Cid’s analysis on weak
keys. Moreover, we present a novel approach to transform these MAC forgery
attacks into birthday attacks to increase their success probabilities. The success
probabilities of these attacks are summarized in Table 1. Furthermore, we provide
a method to fix GCM in order to avoid the security proof flaw discovered by
Iwata et al. and significantly improve the security bounds. In addition, we show
that these MAC forgeries attacks would still succeed if GCM is modified to
MAC-then-Enc paradigm, as one of the options mentioned in [16,17], such that
authentication tags are protected by Counter Mode encryptions.

Table 1. Comparisons of success probabilities of MAC forgery attacks

Method Success Probability Reference

Trial-and-Error n(lN + 1)/2128 [16,17]
Birthday Attack ≤ 0.5 · n2(lN + 1)/2128 Section 4.1

Birthday Attack with inc ≤ 222(n− 1)(n+ σ)(lN + 1)/2128 Section 4.1

Future work may include improving the probability analyses in Section 4.1.
Certain probabilities for collisions and MAC forgeries are characterized by upper
bounds rather than average estimations. If more accurate probabilities can be
derived, this work may also, in return, improve the security bounds given by
Iwata et al. on the original GCM design.

As recommended in [8,9], we further suggest that GCMmay preferably be used
with 96-bit nonces. For example, an altered version of GCM was introduced by
Aoki and Yasuda in [1], which only accepts a fixed-length nonce. Reusing GHASH
in both generating initial counter numbers and computing authentication tags
may help attackers to amplify their success probabilities for MAC forgeries as we
discussed in Section 4.1. For practical applications that have to use non-96-bit
nonces, we suggest applying the fix to GCM proposed in Section 5.1, i.e. using
LGCM defined in Algorithm 2, which could tighten the security bounds by a
factor of around 220.

Acknowledgments. The authors would like to thank the anonymous reviewer
for the helpful comments. This work is supported by NSERC Discovery Grant
and ORF-RE Grant.
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Appendix A Practical Attack Examples

A.1 A Example for Forgeries by Polynomials with Non-zero
Constant Terms

This example is for GCM with AES-128 and 128-bit authentication tags, and
the associated data A is always considered as empty. We use the same repre-
sentations as the test vectors in GCM’s specification [12], e.g. 1 in GF(2128)
is represented as 80000000000000000000000000000000, and longer strings will
written in multiple lines.

We take the following values for the encryption of GCM. The lengths of P
and C are 128 bits, i.e. one block.

K 71eebc49c8fb773b2224eaff3ad68714

N 07e961e67784011f72faafd95b0eb640

89c8de15ad685ec57e63d56e679d3e20

2b18b75fcbbec3185ffc41653bc2ac4a

e6ae8be8c85636f353a9d19a86100d0b

P 705da82292143d2c949dc4ba014f6396

H d27430c121f14d4ddfecb38acaffec53

C 251ccc6d2c45540cac4fde8b1e36802d

T be2da05993fbde00421c1d8eaaaea373

Suppose we have a subset of authentication keys H = {H1, H2, H3}, whose
values are as follows.

H1 d27430c121f14d4ddfecb38acaffec53

H2 00000000000000000000000000000001

H3 00000000000000000000000000000002

Construct the polynomial

q(x) =

3∑
i=0

Qix
i =

3∏
i=1

(x⊕Hi),

we can get the values for Qi’s.

Q3 80000000000000000000000000000000

Q2 d27430c121f14d4ddfecb38acaffec50

Q1 c488aa211ab5dccec9c440bc33fc47b3

Q0 5bb5716dc4b4687a06f15f10d62613ee

http://tools.ietf.org/html/rfc4106.html
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Please note q(x) is a polynomial with non-zero constant term, i.e. Q0 	= 0.
Then compute α = (1⊕2)/Q0 = 7ef05dd871ead7e7f8e79d7d9343a170, such

that α ·Q1 ⊕ 1 will match the length of new message, i.e. 2. Construct the new
ciphertext C′ = (α ·Q3)||(C⊕α ·Q2), and the authentication tag T ′ = T ⊕α ·Q0.

C′ 7ef05dd871ead7e7f8e79d7d9343a170

7ccbd8dbfca54d785f5662d48c7eef81

T ′ 8b53b318750a2e948459b204e47629b4

(N,C′, T ′) passes the verification, and thus we complete a MAC forgery with
length extension by using a polynomial with a non-zero constant term.

A.2 MAC Forgeries by Attacking Non-96-bit Nonces of GCM

We only give a basic example for this case. The values and the polynomial q(x)
computed in the previous example are reused here.

Construct the polynomial q′(x) = x2q(x), and apply q′(x) to N to get a new
512-bit nonce N ′, i.e. N ′ = (N4 ⊕Q3)||(N3 ⊕Q2)||(N2 ⊕Q1)||(N1 ⊕Q0).

N ′ 87e961e67784011f72faafd95b0eb640

5bbceed48c991388a18f66e4ad62d270

ef901d7ed10b1fd6963801d9083eebf9

bd1bfa850ce25e8955588e8a50361ee5

Feeding (N ′, P ) to the encryption oracle will result in the same ciphertext
as C, so we are sure that the authentication H is the set H, and further MAC
forgeries can be carried out by using q(x).

A.3 MAC Forgeries for GCM in MAC-then-Enc Mode

The same K, N , H1, and H2 as in the previous examples are used. In order to
avoid length extension, P is chosen to be longer and H3 is explicitly chosen to
be H1 ·H2/(H1 ⊕H2).

P 705da82292143d2c949dc4ba014f6396

705da82292143d2c949dc4ba014f6396

C a51ccc6d2c45540cac4fde8b1e36802d

a4bd55da5dcde1d763021d44f5fb3ab8

ET 5aba7c39516a4a90f738eaf61b02514a

H3 6e0b0d1eaf109b0f26926be82780085c

Constructing the polynomial q(x), we can have its coefficients as follows.

Q3 80000000000000000000000000000000

Q2 bc7f3ddf8ee1d642f97ed862ed7fe40e

Q1 00000000000000000000000000000000

Q0 c52222258b2614c4c6f5981c65f15acd
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Please note Q1 = 0, so the length padding block in GHASH can stay unchanged.
The new ciphertext and encrypted authentication tag areC′ = (C2⊕Q3)||(C1⊕

Q2) and ET ′ = ET ⊕Q0.

C′ a51ccc6d2c45540cac4fde8b1e36802d

a4bd55da5dcde1d763021d44f5fb3ab8

ET ′ 5aba7c39516a4a90f738eaf61b02514a

(N,C′, ET ′) passes the verification oracle of MtE GCM.



Padding Oracle Attack on PKCS#1 v1.5: Can

Non-standard Implementation Act as a Shelter?

Si Gao, Hua Chen, and Limin Fan

Trusted Computing and Information Assurance Laboratory,
Institute of Software, Chinese Academy of Sciences

{gaosi,chenhua,fanlimin}@tca.iscas.ac.cn

Abstract. In the past decade, Padding Oracle Attacks (POAs) have
become a major threat to PKCS#1 v1.5. Although the updated scheme
(OAEP) has solved this problem, PKCS#1 v1.5 is still widely deployed in
various real-life applications. Among these applications, it is not hard to
find that some implementations do not follow PKCS#1 v1.5 step-by-step.
Some of these non-standard implementations provide different padding
oracles, which causes standard POA to fail. In this paper, we show that
although these implementations can avoid the threat of standard POA,
they may still be vulnerable to POA in some way. Our study mainly
focuses on two cases of non-standard implementations. The first one only
performs the “0x00 separator” check in the decryption process; while the
other one does not check for the second byte. Although standard POA
cannot be directly applied, we can still build efficient padding oracle
attacks on these implementations. Moreover, we give the mathematical
analysis of the correctness and performance of our attacks. Experiments
show that, one of our attacks only takes about 13 000 oracle calls to
crack a valid ciphertext under a 1024-bit RSA key, which is even more
efficient than attacks on standard PKCS#1 v1.5 implementation. We
hope our work could serve as a warning for security engineers: secure
implementation requires joint efforts from all participants, rather than
simple implementation tricks.

1 Introduction

PKCS#1 is the standard for the implementation of public-key cryptography
based on the RSA algorithm. The current version v2.2 [1], published by RSA in
2012, contains two encryption schemes: RSAES PKCS1 v1.5 and RSAES OAEP.
For simplicity’s sake, we denote them as PKCS#1 v1.5 and OAEP respectively.
OAEP is required to be supported for new applications, while PKCS#1 v1.5 is
included only for compatibility with existing applications.

Padding Oracle Attack. In the past decade, Padding Oracle Attacks (POAs)
[2] have become a major threat to PKCS#1 v1.5. Padding Oracle Attack is
a type of chosen ciphertext attack, which takes advantage of whether crypto-
graphic operation is successfully executed. Usually, we assume the attacker can

M. Abdalla, C. Nita-Rotaru, and R. Dahab (Eds.): CANS 2013, LNCS 8257, pp. 39–56, 2013.
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trick an honest user to decrypt the ciphertext he chose. In the decryption pro-
cess, a format check is performed after decryption. Although the attacker does
not have access to the decryption result, he can detect whether the ciphertext he
chose passes the format check. We call such decryption process a “Padding Or-
acle” (PO) [3]. By collecting thousands of PO’s responses, the original message
can be extracted. In the past decade, POAs have drawn major attention from
both symmetric and asymmetric cryptography research. In symmetric cryptog-
raphy, CBC Padding Oracle has been used to build plaintext-recovery attacks on
various network protocols [4–9]. In asymmetric cryptography, PKCS#1 v1.5 is
the main target. The first POA on PKCS#1 v1.5, published by Bleichenbacher
in 1998 [10], took about 1 million PO calls to recover a 1024-bit RSA plaintext.
Bleichenbacher’s attack has been extensively studied ever since, applied to SSL
[11], PIN encryption in EMV [12], USB token [2] and XML encryption [13]. Re-
cently, Bardou, Focardi, Kawamoto, Simionato, Steel and Tsay claim that using
their improved version of Bleichenbacher’s attack, a wrapped secret key can be
recovered from RSA Securid 800 in only 13 minutes [2].

Other Attacks on PKCS#1 v1.5. Other non-POA attacks also exist for
PKCS#1 v1.5: Coron, Joye, Naccache and Paillier proposed two brilliant attacks
in 2000 [14], which can efficiently recover the plaintext, if the public exponent
is small enough, or most message bits are zeros. Bauer, Coron, Naccache, Ti-
bouchi and Vergnaud proposed a broadcast attack [15], which could reveal the
identical plaintext when the public exponent is small. However, none of these
attacks works for the commonly used public exponent 65537 with a random
message. Bauer et al. also proposed a reliable distinguish attack [15]. Using one
PO query, it predicts which of two chosen plaintexts corresponds to a challenge
ciphertext. Although we only focus on full-plaintext-recovery attacks without
requirements on exponent or plaintext, whether POAs can combine with these
non-POA attacks may be an interesting topic for further study.

Does PKCS#1 v1.5 Still Matters in Today’s Application? To avoid
POA, RSA introduced OAEP as the new recommended encoding scheme in
PKCS#1 v2.0. However, according to ECRYPT’s “Yearly Report on Algorithms
and Keysizes”, PKCS#1 v1.5 is still widely deployed in today’s application
((W)TLS, S/MME, XML, JSON, etc.) [16, 17]. Take USB tokens for instance:
most tokens today support PKCS#1 v1.5, while only a few can support OAEP
[2]. In software deployment, OAEP is widely supported today; while for back-
ward compatibility reasons, PKCS#1 v1.5 is still mandatory. Jager and Paterson
suggest that in such scenario [17], the attacker can trick the honest user to use
legacy scheme (PKCS#1 v1.5) , and undermine the security of the up-to-date
scheme (OAEP).

Motivation. Despite the fact that detailed implementation instructions are
given in [1], implementations do not always follow them. For efficiency or other
reasons, they tend to simplify the standard decryption process as long as valid
ciphertexts can be decrypted correctly. For instance, in most of Microsoft’s Cryp-
tographic Service Providers (CSP), PKCS #1 v1.5 decryption does not check
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padding string’s length. Non-standard implementations also exist in many widely
used cryptographic libraries (PGP, Boton, etc.) . Some may ignore padding string
length check; others may not check the first byte of decryption result. For cryp-
tographic devices, where the source code may not be available for public review,
the situation is worse. In their full paper, Bardou et al. have already addressed
this problem [2]. Bleichenbacher’s attack can cover several non-standard imple-
mentations; while for the others, current POA on PKCS #1 v1.5 fails. Such
implementations include Sata DKey (session key) [2] and perhaps many other
devices that have not been studied yet. Since no POA works for them, non-
standard implementations provide a “shelter” for cryptographic device vendors.
In practice, such shelter can be pretty attractive: they only require minimal
changes, which will not cause any compatibility trouble.

But can these non-standard implementations really prevent POA? Unfortu-
nately, the answer remains unclear so far. All previous works mainly focus on
standard implementation, leaving a lot of non-standard implementations in a
“grey zone”.

Our Contribution. In this paper, we focus on two types of non-standard
implementations. The first one only checks if there is an byte with hexadecimal
value 0x00 to separate padding string from the real message. The other one
performs a thorough check, except for whether the second byte has hexadecimal
value 0x02. Recalls that Bleichenbacher’s attack mainly takes advantage of the
leading 0x0002 in the conforming check [10]. Clearly, Bleichenbacher’s attack
cannot apply to these cases.

Our attack on the second implementation is even more efficient than standard
POA (it requires a mean of 13 000 oracle calls, while standard POA [2] needs
49 001 oracle calls). Our attack on the first implementation requires about 0.1
million oracle calls, which is still practical in application [13]. We give detailed
correctness proof and complexity analysis of our attacks, as well as experiments
to show their practical validity. Moreover, each attack can cover several non-
standard implementations: together with Bleichenbacher’s attack, we can see
that secure “shelter” is indeed hard to find.

The rest of this paper is organized as follows. We first recall PKCS#1 v1.5
standard and Bleichenbacher’s attack in Section 2. In Section 3, we present two
case studies on certain implementation, and show that most of non-standard
implementations are vulnerable to POA in some way. Experimental results are
given in Section 4.

2 Padding Oracle Attacks on Standard PKCS#1 v1.5

2.1 PKCS#1 v1.5

We briefly recall PKCS#1 v1.5 standard in this section. For clarity, we use the
same notations as [10]. PKCS#1 v1.5 encryption block format is given in Fig.1.
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Encryption process takes the original message, pads it with pseudo-randomly
generated non-zero bytes, then uses RSA to encrypt. Decryption process simply
uses RSA to decrypt, then checks whether the padded message is valid. For valid
padded message, the message in the data block is returned as decryption result.
Otherwise, decryption fails with a “decryption error”.

Fig. 1. PKCS#1 v1.5 block format for encryption

A valid “padded message” must satisfy all following conditions [1]:

a) The first byte has hexadecimal value 0x00

b) The second byte has hexadecimal value 0x02

c) The length of non-zero padding string (PS) is at least 8 bytes
d) There is an byte with hexadecimal value 0x00 to separate PS from data block

In the standard decryption process, all above conditions must be checked.
However, some implementations simplify this process, only check part of these
conditions. We call such implementations “non-standard implementations”.

2.2 Bleichenbacher’s Attack

Bleichenbacher shows that if the attacker can decide whether a chosen ciphertext
is valid, the whole padded message can be recovered [10]. Following the notations
of [10], we have (n, e) as the RSA public key; (p, q, d) as the corresponding secret
key; k as the byte length of n. Let B = 28(k−2), according to condition a) and b),
for any valid ciphertext c, the corresponding padded plaintext m must satisfy

2B ≤ m mod n < 3B

Bleichenbacher’s attack takes full advantage of this interval, while ignoring other
conditions. For more details on Bleichenbacher’s attack, we refer to [10].

3 Padding Oracle Attacks on Non-standard PKCS#1
v1.5 Implementations

Through this section, attacks take a valid ciphertext c as input, and try to find
the corresponding padded plaintext m through padding oracle calls. We use s as
the multiplier of m, which is used in c′ = cse mod n to build the ciphertext for
sm. The integer i represents the round counter, and [a,b] represents the current
m’s interval.
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3.1 Case 1: Implementation only Checks “the 0x00 Separator”

In this case, after RSA decryption, implementation searches for a 0x00 byte,
from the most significant byte to the least significant byte. Whenever a 0x00

byte is found, PO returns ’True’; otherwise, PO returns ’False’. Take the need
of real-life application into consideration, this PO may also have some other
features:

– A 0x00 in the first or second byte does not count. For any valid padded
message, the first two bytes are set to 0x0002. The most reasonable check is
to ignore these bytes, start from the third byte and search for 0x00.

– If the only 0x00 exists in the last byte, decryption will fail. No message can
be extracted from this ciphertext.

These additional conditions cause some trouble in our analysis, as we shall see
soon.

Basic Idea. The “0x00 separator check” is rather complicated. Unlike condi-
tion a) and b) (“0x0002 ”) , it does not have a clear mathematical expression.
Luckily, certain multipliers can bridge this gap. For example, 256m’s binary rep-
resentation is the binary representation of m shifted left for 1 byte. On Z

∗
n, if

256m < n, m passes the “0x00 separator check”, 256m should pass the check as
well; while if 256m > n, since n is a random modular, 256m mod n could fail.
Similar property holds for the messages that fail the check. Notice here we con-
sider the second additional condition, otherwise PO will always returns ‘True’ for
the ciphertext of 256m when 256m < n. Suppose we have a randomly-generated
padded message m1 on Z∗

n, with corresponding ciphertext c1 = m1
e mod n. Let

PO(c1) represent padding oracle’s reply when input c1. Let m2 = 256m1 mod n,
c2 = m2

e mod n. In general, if we get different replies from PO(c1) and PO(c2),
we can conclude that 256m1 > n.

However, considering the “additional conditions”, a few abnormal points ap-
pear: for instance, when 256m1 < n, if m1 has only one 0x00 byte in the third
byte, PO(c1) returns ‘True’ while PO(c2) returns ‘False’ .

Formally, PO(c1) = F means m1 contains no 0x00 from the third byte to the
second to last byte. Since m1 is picked uniformly on Z∗

n, Pr(PO(c1) = F ) =(
255
256

)k−3
. Thus, the following proposition holds.

Proposition 1. Assume m1 is picked uniformly on Z
∗
n, m2 = 256m1 mod n,

c1 = m1
e mod n, c2 = m2

e mod n. For commonly used RSA modulus length,
Pr(PO(c1) 	= PO(c2)|256m1 < n) and Pr(PO(c1) 	= PO(c2)|256m1 > n) are
distinguishable.

Proof. When 256m1 > n, PO(c1) and PO(c2) are nearly independent. Notice
that 256m1 > n merely adds constraint condition on the first two bytes of m1,
Pr(PO(c1) = F ) = Pr(PO(c1) = F |256m1 > n). Thus, we have
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Pr(PO(c1) 	= PO(c2)|256m1 > n) = 2

(
1−

(
255

256

)k−3
)(

255

256

)k−3

When 256m1 < n, Pr(PO(c1) = T, PO(c2) = F ) means the only 0x00 appears
in the third byte of m1. Thus, we have Pr(PO(c1) = T, PO(c2) = F |256m1 <

n) = 1
256

(
255
256

)k−4
. Similarly, we also have Pr(PO(c1) = F, PO(c2) = T |256m1 <

n) = 1
256

(
255
256

)k−3
. Thus,

Pr(PO(c1) 	= PO(c2)|256m1 < n) =
1

256

(
255

256

)k−4

+
1

256

(
255

256

)k−3

Pr(PO(c1) 	= PO(c2)|256m1 > n) = 2

(
1−

(
255

256

)k−3
)(

255

256

)k−3

For k = 128,
Pr(PO(c1) 	= PO(c2)|256m1 < n) ≈ 0.0048

Pr(PO(c1) 	= PO(c2)|256m1 > n) ≈ 0.4744

Larger k leads to smaller Pr(PO(c1) 	= PO(c2)), although the probabilities
above are still distinguishable. �

Since the probability difference here is quite significant, we can simply calculate
Pr(PO(c1) 	= PO(c2)) in a small block near m1, and use a threshold to decide
whether 256m1 > n. With m’s current interval, we can easily find a pair of
(smax, smin) which can guarantee smaxm mod n > n

256 and sminm mod n < n
256 .

Use sm mod n as the m1 in the procedure above, a tighter bound for s can be
found, which leads to a smaller interval for m. This procedure can be extended
to [rn, (r + 1)n), as in Algorithm 1.

It is worth mentioning that 256 is not the only multiplier that causes proba-
bility difference. Similar proposition also holds for the multiplier 2.

Proposition 2. Assume m1 is picked uniformly on Z
∗
n, m2 = 2m1 mod n,

c1 = m1
e mod n, c2 = m2

e mod n. For commonly used RSA modulus length,
Pr(PO(c1) 	= PO(c2)|2m1 < n) and Pr(PO(c1) 	= PO(c2)|2m1 > n) are dis-
tinguishable.

Proof. When 2m1 > n, the probability will be exactly the same as before. For
2m1 < n, if PO(c2) = T and PO(c1) = F , there must exist a position p ∈
[2, k − 2] which satisfies m1[p] = 128 and 0 < m1[p+ 1] < 128. Therefore,

Pr(PO(c2) = T, PO(c1) = F |2m1 < n) =

(
1−

(
1− 127

2552

)k−3
)(

255

256

)k−3

Similarly, we also have

Pr(PO(c2) = F, PO(c1) = T |2m1 < n) =
127

128

(
1−

(
509

510

)k−3
)(

255

256

)k−3
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Algorithm 1. Multiply 256 method with additional condition, on [rn, (r+1)n)

Require: Padding Oracle PO, ciphertext c, m’s current interval [a, b], r
compute the possible interval of s [smin, smax]

smin =

⌊
(r+ 1

256 )n
b

⌋
, smax =

⌈
(r+ 1

256 )n
a

⌉
while s < smax do

collect some sample points near current s, c1 = sec mod n, c2 = (256s)ec mod n
call PO to calculate Pr(PO(c1) �= PO(c2))
if Pr(PO(c1) �= PO(c2)) < threadhold then

break
else

s++
end if

end while
a′ =

⌈
r+ 1

256
n

s+block+1

⌉
, b′ =

⌊
r+ 1

256
n

s−block

⌋
return [a′, b′]

For k=128,
Pr(PO(c1) 	= PO(c2)|2m1 < n) ≈ 0.2653

Pr(PO(c1) 	= PO(c2)|2m1 > n) ≈ 0.4744

Larger k leads to smaller Pr(PO(c1) 	= PO(c2)), although the probabilities
above are still distinguishable. �

The probability difference here is not as significant as before. In order to
decide whether 2m1 > n, better statistical tools should be applied. The multiply
2 version of Algorithm 1 is denoted as Algorithm 2. The initial interval of s in
Algorithm 2 is quite large, a binary search can be applied here.

Attack Algorithm. Both Algorithm 1 and 2 can narrow downm’s interval with
different r, thus, we can keep running them until there’s only one possible m.
In some cases, keep using Algorithm 1 leads to a “stuck problem” (no available
r can be found for Algorithm 1). For this reason, we introduce Algorithm 2.
Since the probability difference in Algorithm 2 isn’t as significant as Algorithm
1, for efficiency, Algorithm 2 is only used when Algorithm 1 is “stuck” . The
full-plaintext-recovery attack is presented in Algorithm 3.

Analysis

Correctness Proof. First, we prove the correct padded message m always stays
in interval [a, b]. In this section, assume that Algorithm 1 and 2 can always suc-
ceed. In round 0, we have m ∈ [2B, 3B− 1]. If in round i− 1,we have m ∈ [a, b],
in round i, the process can go to either Step 2.b or Step 2.c. Define sexact as the
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Algorithm 2. Multiply 2 method with additional condition,on [rn, (r + 1)n)

Require: Padding Oracle PO, ciphertext c, m’s current interval [a, b], r
compute the possible interval of s [smin, smax]

smin =

⌊
(r+ 1

2 )n
b

⌋
, smax =

⌈
(r+ 1

2 )n
a

⌉
sl = smin,su = smax

while su > sl do
s = � su+sl

2
�

collect some sample points near current s, call PO to get Pr(PO(c1) �= PO(c2))
if Pr(PO(c1) �= PO(c2)) suggest 2m1 < n then

sl = s
else

su = s
end if

end while
a′ =

⌈
r+ 1

2
n

s+block+1

⌉
, b′ =

⌊
r+ 1

2
n

s−block

⌋
return [a′, b′]

s satisfying both 256rin < 256sexactm ≤ (256ri + 1)n and 256 (sexact + 1)m >
(256ri + 1)n. For Step 2.b, the initial interval of s we chose in Algorithm 1 always
contains sexact. After a round of Algorithm 1, sexact ∈ [s−block, s+block], thus:

a′ =

⌈
ri +

1
256n

s+ block + 1

⌉
≤
⌈
ri +

1
256n

sexact + 1

⌉
< m

b′ =

⌊
ri +

1
256n

s− block

⌋
≥
⌊
ri +

1
256n

sexact

⌋
≥ m

Hence, if Step 2.b is chosen,we always have m ∈ [a′, b′] when round i ends. Same
analysis works for Step 2.c, as long as we change multiplier 256 above to 2.
Therefore, in this attack, the interval [a, b] in each round always contains m.

Next, we prove our attack always narrows down m’s interval in each round.
Obviously, for m in [2B, 3B− 1], round 0 runs Step 2.b with r0 = 0 successfully.
Suppose after round i − 1, m’s interval is [a, b], denote t = b

a . In round i, we
need to prove m’s new interval [a′, b′] is smaller than [a, b]. Roughly speaking,
this means in Algorithm 1 and 2, the length of [smin, smax] should be larger than
2block + 1. We use block256, block2 to denote the parameter block in Algorithm
1 and 2.

If in round i, Step 2.b runs, we have

smax − smin ≥ (ri +
1

256
)n× b− a

ab

>
n

256
×
(
1 +

1

t− 1

)
× t− 1

at
− n× b− a

ab

=
n

256a
− n× b− a

ab
(1)



Padding Oracle Attack on PKCS#1 v1.5 47

Algorithm 3. Full plaintext recovery attack for case 1

Require: ciphertext c, RSA modulus n and public exponent e
Step 1: Attack Start
Set i = 1,r = −1,[a,b]=[2B,3B − 1]
Step 2: Using Padding Oracle to narrow down m’s interval
while b− a >“Ending Parameter” do

Step 2.a: Check if multiply 256 method can be used. Compute ri =

⌊
1

256( b
a
−1)

⌋
if ri > ri−1 then

Step 2.b: Multiply 256 method. Using Algorithm 1 with ri
else

ri = ri−1

Step 2.c: Multiply 2 method. Using Algorithm 2 with r =

⌊
1

2( b
a
−1)

⌋
,

end if
end while
Step 3: Exhaustive search to find m
return m

In Step 2.b we have ri > ri−1, thus

smax − smin ≥ (ri +
1

256
)n× b− a

ab

≥ (ri−1 +
1

256
)n× b− a

ab
+ n× b− a

ab
(2)

In experiment, block256 = 8 can ensure Algorithm 1 will success with high prob-
ability. It is easy to see n

256a > 4block256 + 2, thus from (1)(2) we can always
prove smax − smin > 2block256 + 1.

Otherwise, if in round i, Step 2.c runs

smax − smin ≥ (r +
1

2
)n× b− a

ab

>
n

2
×
(
1 +

1

t− 1

)
× t− 1

at
− n× b− a

ab

=
n

a
×
(
1

t
− 1

2

)
(3)

In experiment, we find block2 = 200 can ensure Algorithm 2 will success with
high probability. Since 1 < t < 1.5, 1

6 < 1
t −

1
2 < 1

2 , we can always prove
smax − smin > 2block2 + 1 from (3). Thus, our attack always narrows down m’s
interval in each round. �

Complexity Analysis. In round i, Step 2.b will always be chosen when ri−ri−1 ≥
1. Suppose in the beginning of round i− 1, m exists in [a1, b1], denote t1 = b1

a1
.

Let len = b−a, len1 = b1−a1, d = len
len1

. No matter which method runs in round

i− 1, we always have ri−1 ≤ 1
256(t1−1) . Therefore,
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ri − ri−1 >
1

256
×
(

1

t− 1
− 1

t1 − 1

)
− 1 =

1

256
×
(

a

len
− a1

len1

)
− 1

≥ a

256
×
(

1

len
− d

len

)
− 1 =

1

256
× 1

t− 1
× (1− d)− 1 (4)

From above, it is not hard to see for Step 2.b 1− d ≥ 1
2block256+2 , while for Step

2.c,1 − d ≥ 1 − 2block2+1
n
6a

. Notice 1
t−1 keeps growing in our attack. Therefore,

after some rounds, we will reach a situation where 1
t−1 is large enough to ensure

ri − ri−1 ≥ 1. From this point, Step 2.b will always be chosen until we find m.
For k = 128, after 3 rounds of Step 2.c, 1

t−1 will be large enough to ensure this.

Roughly speaking, if round i−1 and i both runs Step 2.b, d ≈ 2block256+1
n

256a
≈ 0.24,

while in Step 2.c d is close to 0.04. In practice, binary search is used for Step
2.c, which leads to complexity close to 2block2× log2 |smax − smin| = 2block2×
log2

n
2a ≈ 5300. In Step 2.b, the interval of s is rather small (most times less

than 100) ; we have to search for all of s between smax and smin, which leads
to nearly 170 times oracle calls. We give an overall complexity approximation as
5300× 3 + 170×

(
log0.24

(
EndParam

B ÷ 0.043
)
+ 1

)
. For EndParam=100000, the

overall complexity is close to 0.1 million oracle calls.

3.2 Case 2: PO Checks All Conditions Expect for the Second Byte

In this case, PO checks condition a) (the 0x00 prefix) . This seems to be a
pleasant condition, since it has a perfect mathematical expression. Let T =
256B = 28(k−1), condition a) equals to sm mod n < T . This condition alone
results in a very efficient attack [18], although condition c) and d) (PS length
and the 0x00 separator) have complicated the case.

Basic Idea. With condition c) and d), oracle will not return ‘True’ for every
sm mod n < T . Thus, highly efficient binary search from [18] cannot be applied.
However, the framework of our attack in Section 3.1 still works. In fact, now we
have a better situation: one side of the interval is deterministic. Whenever get a
‘True’ from oracle, we know for sure sm mod n < T .

Attack Algorithm. With the same notation, the “narrow down process” for
this case is as follow. Search from the lower bound, whenever get a ‘True’ from
PO, set the new lower bound of s to current s. If after a while no more sm mod n
causes a ‘True’ reply from PO, we can conclude that we have passed sexact, and
set the new upper bound of s to current s. As in the previous section, a parameter
block is used to describe this interval. This process is presented in Algorithm 4
in Appendix C. Note that we can also search from the upper side, like Algorithm
5 in Appendix C.

Full-plaintext-recovery attack can be built from Algorithm 4 and 5, like we
did in the previous section. Step 1 and 3 are exactly the same as before, here we
only presents Step 2 in detail.
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Step 2: Using Padding Oracle to narrow down m’s interval
while b− a > “Ending Parameter” do

Step 2.a: Check if Algorithm 4 can be used. Compute ri =
⌊

1
b
a
−1

× T
n

⌋
if ri > ri−1 then

Step 2.b: use Algorithm 4 with ri
else

ri = ri−1

Step 2.c: use Algorithm 5 with r =
⌊

1
b
a
−1

(
1− T

n

)
− T

n

⌋
end if

end while

Analysis. Since attack for this case has the same skeleton as before, correctness
proof and complexity analysis is quite similar. Due to the length limitation, we
present this part in Appendix B.

3.3 Other Non-standard Implementations

According to Section 2.1, standard PO returns ‘True’ if the RSA decryption re-
sult satisfies all four conditions. Therefore, we describe the type of implementa-
tions as a four bits integer. The most significant bit represents whether condition
a) is checked in PKCS#1 v1.5 decryption. If condition a) is checked, this bit is
1; otherwise, it is 0. The other three bits (from the second most significant to the
least significant) , represents whether condition b), c), d) is checked, respectively.
Thus, type 15 stands for standard implementation, while type 1 represents the
case in Section 3.1. Based on the two most significant bits, implementations can
be further divided into four groups:

Group I (Both the 0x00 prefix and the 0x02 are ignored) : We ignore
type 0, because it can not separate padding string from the data block. Our
attack in Section 3.1 is designed for type 1. Unlike Bleichenbacher’s attack, our
attack is insensitive to subtle condition changes. Since condition c) (PS length
check) has limited influence on the overall probability distribution, our attack
also works on type 3. Type 2 does not seem to be a reasonable implementation
in practice: there is no separator between data and padding string. Without such
separator, the implementation should have a fixed length for the data block. In
that case, checking the length of padding string seems unnecessary.

Group II (The 0x02 is checked while the 0x00 prefix is ignored) : In
this group, implementations check condition b) (0x02) while ignore condition
a) (the 0x00 prefix) . Unlike other groups, the distribution of m that causes a
‘True’ reply from PO is “partly-discrete” . It is not as discrete as Group I, nei-
ther does it have a neat mathematical expression like Group III or IV. We suspect
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this group could be vulnerable to a simple variant1 of Bleichenbacher’s attack,
although some adjustment is needed for Step 3.

Group III (The 0x00 prefix is checked while the 0x02 is ignored) : Our
attack in Section 3.2 is designed for type 11 (with PS length and 0x00 separator
check). For the same reason, it also works for type 9 (without PS length check).
Type 8 forms a perfect PO for Manger’s attack [18], which is the most efficient
attack in all non-standard implementations. For type 10, the situation is similar
to type 2.

Group IV (Both the 0x00 prefix and the 0x02 are checked) : Bleichen-
bacher’s attack can be applied to all implementations in this group. Type 15
is the standard implementation. Type 12, 13, 14 corresponds to the “TTT” ,
“FTT” and “TFT” oracle in [2], respectively.

4 Experimental Results

With discussion in Section 3.3, implementation types with corresponding attacks
is given in Table 1, along with the complexity in terms of oracle calls. In this
section, all experiments use 1024-bit RSA modulus n, e=65537, with PKCS#1
v1.5 encryption. Each experiment runs 1000 times, with 16 bytes of randomly
generated messages. For Bleichenbacher’s attack, we use Bardou el al.’s improved
version2 [2].

Table 1. Implementation types with corresponding attack algorithm

Type
Conditions

Group Available Attack Algorithm
Performance

a) b) c) d) Median Mean

1 �
Group I

Group I Attack 113 520 115 978
2 � Unnecessary — —
3 � � Group I Attack 111 890 114 331

4 �

Group II Variant of Bleichenbacher’s attack — —
5 � �
6 � �
7 � � �
8 �

Group III

Manger’s attack 1 168 1 174
9 � � Group III Attack 12 843 12 878
10 � � Unnecessary — —
11 � � � Group III Attack 13 047 13 058

12 � �

Group IV

Bleichenbacher’s attack 4 762 14 532
13 � � � Bleichenbacher’s attack 15 315 92 820
14 � � � Unnecessary — —
15 � � � � Bleichenbacher’s attack 17 473 104 839

1 In this paper, “variant” means simply adjust some of the parameters in the original
algorithm, while the basic skeleton and the core unit remains the same.

2 Notice our results here are worse than [2]. This is probably caused by the Parallel
thread method. However, even if we use the performance in [2], the performance order
remains the same.
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Condition c) (PS length check) alone has rather limited influence: type 1 and
3 share the same attack algorithm, and have similar complexity. Same property
holds for type 9 and 11, type 13 and 15. Compare with others, Group IV Attack’s
(Bleichenbacher’s attack) performance varies a lot. Their density distribution
curves have longer “tails”, which is given in Fig.2 (Appendix A) . All attacks
above run in different situations, it is not fair to compare their performance with
each other. Nonetheless, from Table 1, we can easily conclude that most of the
non-standard implementations are insecure against POA.

5 Conclusion

In the last decade, Padding Oracle Attacks (POAs) have become a major
threat to PKCS#1 v1.5 [2, 10]. To our knowledge, all previous works mainly
focus on the standard implementation. However, in today’s application, some im-
plementations do not always follow the standard step-by-step. Since the padding
oracles in these non-standard implementations are quite different from the stan-
dard padding oracle, Bleichenbacher’s attack cannot cover all of them. Using the
similar idea as Bleichenbacher’s attack, we propose two attacks for certain non-
standard implementations: one requires about 0.1 million oracle calls, while the
other requires only 13 000 oracle calls. Together with Bleichenbacher’s attack,
we can see that most of the “non-standard implementations” are vulnerable to
POA in some way. We hope our work could convince industry engineers that the
threat of POA can not be prevented by some simple implementation tricks.
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A Density Distribution of Oracle Calls of the Attacks
in Table 1

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

x 10
5Complexity (number of oracle call)

 

 
Type 1
Type 3
Type 8
Type 9
Type 11
Type 12
Type 13
Type 15

Fig. 2. Distribution of oracle calls of attacks in Table 1, each attack runs 1000 times

B Analysis of the Attack for Case 2

Correctness Proof. Assume block is chosen to ensure Algorithm 4 and 5 always
succeed. Since Algorithm 5 has a more clear form, we start with Algorithm 5.

First, we prove m always stays in the interval [a, b]. Initially, we have m ∈
[2B, 3B − 1], which means the proposition holds for round 0. Suppose in round
i-1, we have m ∈ [a, b]; according to Algorithm 5, after Step 2, we have sexact ∈
[s, s+ block]. sexact is defined as the s satisfies , sexactm ≤ rin+T and (sexact+
1)m > rin+ T . Obviously such sexact exist in [smin, smax]. Thus, in Algorithm
5 we have:

a′ =

⌈
rin+ T

s+ block + 1

⌉
≤
⌈

rin+ T

sexact + 1

⌉
< m

b′ =

⌊
rin+ T

s

⌋
≥
⌊
rin+ T

sexact

⌋
≥ m

Proof for Algorithm 4 works exactly the same way.
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Then we show in each round of our attack, m’s interval is narrowed down
as expected. In experiment, we find block = 17 provide a success rate larger
than 90%. Obviously, for m in [2B, 3B − 1], round 0 runs Step 2.b with r0 = 0
successfully. Suppose after round i-1,m’s interval is [a, b], denote t = b

a . In round
i, we need to prove s’s initial interval [smin, smax] is always larger than block+1.

In round i, if Step 2.b is executed,

smax − smin ≥ (rin+ T )× b− a

ab

>

((
1

t− 1
× T

n
− 1

)
n+ T

)
× b− a

ab

=
T

a
− n× b− a

ab
(5)

Since ri > ri−1, we also have

smax − smin ≥ (rin+ T )× b− a

ab

> (ri−1n+ T )× b− a

ab
+ n× b− a

ab
(6)

Since we have T
a > 2 (block + 1), from (5)(6), we can always prove smax−smin >

block + 1.
Otherwise, if Step 2.c is executed

smax − smin ≥ (rin+ T )× b − a

ab

>

((
1

t− 1
×
(
1− T

n

)
− T

n
− 1

)
n+ T

)
× b− a

ab

=
n− T

b
− n× t− 1

b
=

(2− t)× n− T

b
(7)

Since t < 1.5, (2 − t)n > 0.5n ,smax − smin > 63T
3B > block + 1.This completes

our correctness proof. �

Complexity Analysis Complexity approximation is similar to our analysis in
Section 3.3. To make sure in round i Step 2.b is executed, we need ri− ri−1 > 1.

ri − ri−1 >
T

n
×
(

1

t− 1
− 1

t1 − 1

)
− 1 =

T

n
×
(

a

len
− a1

len1

)
− 1

>
aT

n
×
(

1

len
− d

len

)
− 1 =

T

n
× 1

t− 1
× (1− d)− 1 (8)

Since T
n ∈

(
1

256 ,
1

128

)
, in Step 2.b we have 1 − d ≥ 1

block+2 , while for Step

2.c,d < block+1
0.5n−T

b

< 0.003, 1− d > 0.997. 1
t−1 keeps increasing in our attack. Thus,

we have the same “turning point” as before, after which only Step 2.b will be
executed. Normally, only 1 or 2 round of Algorithm 5 is need.
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Now let’s consider how many oracle calls is needed for each round. Noted in
Section 3.1, both multiply 2 method and multiply 256 method have a “balanced”
interval. Roughly speaking, in narrow down process, sexact is most likely to
appear in the middle part of [smin, smax]. Duo to the facts that Algorithm 4 and
5 is “one-side-deterministic”, now sexact is most likely to appear in somewhere
near smin. Suppose for round i-1, we got new bounds for s as [snewmin, snewmax].
For a randomm, condition c) and d) can be satisfied with probability Pr (c&d) =(
255
256

)8 (
1−

(
255
256

)k−10
)
. For k = 128, this probability is close to 0.36. Thus, the

distribution sequence of sexact’s position should follow Table 2. Clearly this is a

Table 2. The distribution sequence of sexact’s position

sexact − snewmin 0 1 2 . . . q . . .

Probability 0.36 0.36 · 0.64 0.36 · 0.642 . . . 0.36 · 0.64q . . .

geometric distribution, with expectation of 1−0.36
0.36 = 1.78. We use slen denoted

the length of [smin, smax]. If in round i, slen is exactly the same as the length of
[snewmin, snewmax](a.k.a, block) in round i-1, at the most times, we only need to
search for less than 1.78 + 1 + block points for Algorithm 4 to find sexact’s new
lower bound. For Algorithm 4, roughly speaking, we have

slen = smax − smin ≈ (rin+ T )× b− a

ab
=

(
T

t− 1
+ T

)
× t− 1

at
=

T

a

which means slen is almost stable. In that case, d = block
T
a

is also stable. Choosing

the ri in Algorithm 4 enlarge [snewmin, snewmax] of round i-1 to [smin, smax] in
round i. This means the number of oracle calls in round i is roughly 1.78× 1

d +

d× T
a +1. In fact, this is why we favor Algorithm 4 over Algorithm 5. Although

Algorithm 4 has a neat form and larger r, we can see above that it always starts
searching for sexact from the “unlikely” upper side, which causes complexity
waste. For complexity approximation, we simply ignore the several rounds of
Algorithm 5 in the beginning. Thus, the overall complexity should be:

C (d) =

(
1.78× 1

d
+ d× T

a
+ 1

)
× logd

1

B

C(d) reaches its minimal at d = 0.08, increases for d > 0.08. In Algorithm 3, for
block = 17, even if we choose the largest r possible (like we did in our attack),we
cannot get a d = 0.08. Thus, the minimal of d lead to the minimal of the
complexity of our attack. With d = 0.175, we have C(d) around 11 thousands.
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C Pseudo-code for Algorithms in the Text

Algorithm 4. Narrow down process for PO that does not check the second byte

Require: Padding Oracle PO, ciphertext c, m’s current interval [a, b], r
compute the possible interval of s [smin, smax]
smin =

⌊
rn+T

b

⌋
, smax =

⌈
rn+T

a

⌉
fcount = 0,s = smin

while s ≤ smax do
c1 = se mod n;
if PO(c1)==T then

fcount ← 0;
else

fcount++;
end if
if fcount > block then

break;
end if
s++;

end while
a′ =

⌈
rn+T

s

⌉
, b′ =

⌊
rn+T

s−block−1

⌋
return [a′, b′]

Algorithm 5. Another narrow down process for PO that does not check the
second byte

Require: Padding Oracle PO, ciphertext c, m’s current interval [a, b], r
compute the possible interval of s [smin, smax]
smin =

⌊
rn+T

b

⌋
, smax =

⌈
rn+T

a

⌉
s = smax

while PO(c1)==T do
s = s− 1;
c1 = se mod n;

end while
a′ =

⌈
rn+T

s+block+1

⌉
, b′ =

⌊
rn+T

s

⌋
return [a′, b′]
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Abstract. Zero-Knowledge proof is a very basic and important prim-
itive, which allows a prover to prove some statement without revealing
anything else. Very recently, Jain et al. proposed very efficient zero-
knowledge proofs to prove any polynomial relations on bits, based on
the Learning Parity with Noise (LPN) problem (Asiacrypt’12).

In this work, we extend analogous constructions whose security
is based on the Ring Learning with Errors (RLWE) problem by adapt-
ing the techniques presented by Ling et al. (PKC’13). Specifically, we
show a simple zero-knowledge proof of knowledge (Σ-protocol) for com-
mitted values, and prove any polynomial relations in the underlying
ring. I.e. proving committed ring elements m,m1, ..., mt satisfying m =
f(m1, ..., mt) for any polynomial f . Comparing to other existing Σ-
protocols, the extracted witness (error vector) has length only small
constant times than the one possessed by the prover. When representing
ring element as elements in Zq, our protocol has amortized communica-
tion complexity Õ(λ · |f |) with exponentially small soundness in security
parameter λ, where |f | is the size of the circuit in Zq computing f .

Keywords: zero-knowledge proofs of knowledge, ring learning with er-
rors, lattices.

1 Introduction

The notions of commitment schemes and zero-knowledge proofs are fundamental
primitives in the theory and practice of cryptographic protocols. Intuitively, a
commitment scheme provides a way for a prover to commit a value x by putting it
in a locked box. Later, the prover can open the box by sending the key of it. The
commitment must be hiding and binding. Hiding means that the commitment
will not leak any information of x, binding means that the prover can not open
one commitment to two different values. Zero-knowledge proofs, introduced in
[12], allow a prover to convince a verifier that some statement is true, without
revealing anything to the verifier except for what is already contained in the
claim. A zero-knowledge proof of knowledge needs additionally the prover to
convince a verifier that it indeed has some secret information.

Zero-knowledgeproofs havebeen studied inmanyworks, e.g., [2,5,6,11,13,15,18].
Thewonderfulworkof Ishai et al. [15] showshowto construct zero-knowledgeproofs
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for allNP relations frommultiparty computation by using the “MPC-in-the-head”
technique. Although a zero-knowledge for any NP relation can be used to prove
any relations among the committed values, in general this would be rather expen-
sive, especially the description of the relation is part of the computation. More di-
rect constructions to prove relations on the committed values has been considered,
e.g.,[6,7]. These works give efficient proofs for algebraic circuit over large fields or
integers. However, their schemes make exclusively use of homomorphic commit-
ments, which are constructed based on number theoretical assumptions. These as-
sumptions turnout tobe inadequateunder quantumcomputers.Very recently, Jain
et al. [16] propose a very efficient zero-knowledge proof under the learning parity
with noise (LPN) problem and also prove any relations over Z2 of the committed
messages. Ling et al. [20] showedan identification scheme (essentially aΣ-protocol)
under weaker lattice assumptions. Although they focus on the Small Integer Solu-
tion (SIS) problem, we remark that it’s easy to extend it to Learning with Errors
(LWE) problem. We remark that it’s non-trivial to extend the work of Ling et at.
to the Ring-LWE setting, especially to prove any relations on the underlying ring.

1.1 Our Results

In this paper, we first give a “natural” commitment scheme which is analogous
to the one in [16], whose security is based on RLWE assumption. Informally, in
a ring R = Z[X ]/(f(X)) for monic irreducible f(X) with degree d, and for an
integer modulus q defining Rq := R/qR, the commitment with message space R�

q

is in the form A · (s‖m)+e mod q, where A = (A1‖A2) ∈ R
m×(n+�)
q is a public

random matrix, s ∈ R�
q is a uniformly random vector, and e ∈ Rm is “short”.

The commitment scheme becomes computationally hiding and (almost) perfectly
binding. The hiding property follows directly from the RLWE assumption. The
binding property is due to the fact that the shortest non-zero vector in the q-ary
lattice defined by A will not be too small with overwhelming probability.

We construct a zero-knowledge proof, which is essentially a Σ-protocol, that
proves the knowledge of the message hidden in our commitment schemes. Fur-
thermore, we show Σ-protocols to prove linear and multiplicative relations of
the message, i.e. m3 = m1 ◦m2, where ◦ denotes component-wise addition or
multiplication on the underlying ring. By representing elements in Rq to vectors
in Zq, our protocol allows to simultaneously prove any polynomial relations in
Zq. The soundness of our protocol is 2/3, to get exponentially small soundness,
we need to repeat the execution. The best amortized communication complexity
is Õ(λ · |f |), where 2−λ is the soundness error, and |f | is the size of the circuit
in Zq computing the polynomial f . Actually, the Σ-protocol in our paper is the
weaker version defined in [8,1] called gap Σ-protocol. Intuitively, the extracted
witness is in a larger relation set, which may lead to stronger assumptions when
we view it as a zero-knowledge proof. Most existing Σ-protocols [1,17,21,22,25]
for hard lattice relations (say,LWE,SIS,CVP,SVP) are gap Σ-protocols, i.e., the
extracted short vectors (witness) are at least O(

√
n), which we call the gap fac-

tor, longer than the original one. Our protocol has an almost optimal gap factor
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(< 2) as the zero-knowledge proof for ISIS relation in [20], which means that we
almost do not need to strength the underlying lattice assumption in the zero-
knowledge proof. The gap factor can even achieve to 1, with the cost of larger
communication complexity.

1.2 Difficulties and Our Techniques

We first roughly review the main ideas in [16] and [20]. The LPN based Σ-
protocol in [16] extends Stern’s [27] zero-knowledge proof of knowledge for the
syndrome decoding problem. Informally, the prover generates three encapsula-
tion commitments to the verifier, then the verifier randomly chooses a uniformly
challenge in {1, 2, 3}, and the prover opens two commitments according to the
challenge. The first two openings proves the public inputs A, c have the form
c = A(s‖m)+e. The third opening proves that e is “short”. The major difficulty
here is how to convince the verifier that e is “short” without revealing anything
else of e. In [16], for bit string e has low Hamming weight, the prover sends π(e)
for uniformly chosen and hidden permutation π to the verifier. In order not to
leak other information of e, they insist that e has exact Hamming, say β. Now
π(e) only leaks the Hamming weight of e (but the verifier already knows it) with
uniformly random and hidden π. This restriction leads to a variant of the LPN
assumption which they call the exact LPN or xLPN assumption. The standard
LPN assumption which only needs the Hamming weight of e is less than β could
not work here, because π(e) leaks information, at least the weight (the verifier
does not know), of e.

When dealing with e does not have exact weight. Ling et al. introduced a
Decomposition-Extension technique in [20]. Taking LWE for example, consider
the infinity norm of e ∈ Zm, i.e., ‖e‖∞ ≤ β, they first decompose e to k vectors

ẽi for 0 ≤ i ≤ k − 1, where ẽi ∈ {−1, 0, 1}m, such that e =
∑k−1

i=0 2iẽi, where
k = �log β� + 1. In order to prove ẽi belongs to {−1, 0, 1}m without revealing.
Since π(ẽi) leaks the information of ẽ, extend ẽ to ei with larger dimension by
appending 2m elements in {−1, 0, 1} such that the numbers of −1, 0, 1 in ei are
exactly m. The prover sends π′(ei) to the verifier, and the verifier can only check
that ẽi ∈ {−1, 0, 1}m without knowing anything else. This is because π′(ei) is
uniformly random and independent of ẽi with random and hidden π′. Let’s turn
back to the standard LPN based Σ-protocol. For bit string e ∈ {0, 1}m has small
Hamming weight, i.e., ‖e‖1 ≤ β. Extend e to ê ∈ {0, 1}m+β by appending bits
to e such that ‖e‖1 = β. The prover then sends π′(ê) to the verifier. As before,
the verifier can check that ‖e‖1 ≤ β without knowing anything else.

The major difficulty to prove polynomial relations is to handle the multi-
plicative relation, i.e., prove that the committed messages m1,m2,m3 satisfying
m3 = m1 ◦m2, where ◦ denotes the component-wise multiplication. Our tech-
nique to address this difficulty is a generalization but in a more direct way of the
method used in [16] to prove bitwise relations. We first consider a “naive” case
for LWE with polynomial q, where mi ∈ Z�

q for 1 ≤ i ≤ 3. In the proof, the prover
first extends m1,m2 to m̂1, m̂2 with dimension q2
 by setting m̂i = (mi‖m̄i),



60 X. Xie, R. Xue, and M. Wang

where m̄i ← Z
(q2−1)�
q for i = 1, 2 such that for any pair (a, b) ∈ Zq×Zq, the num-

ber of j satisfying (a, b) = (m̂1[j], m̂2[j]) is exactly 
. Then let m̂3 = m̂1 ◦ m̂2.
Denote Î to be the 
 dimension identity matrix appended by (q2− 1)
 column 0.
It’s easy to see that mi = Î · m̂i, for i = 1, 2, 3. Although m̂i leaks all the infor-
mation of mi, π(m̂i) is independent of mi except for the multiplicative relation
for uniformly and hidden π. The communication complexity here is very large,
but this simple proof system enjoys another property. If the encapsulation com-
mitment is statistically hiding, we get statistical zero-knowledge. Theoretically,
we can use the result in [14] to obtain statistically hiding commitment schemes
from RLWE assumption. However the protocol in [16] only achieves computa-
tional zero-knowledge.

To get small communication complexity zero-knowledge proof, we look into
the techniques used in the “naive” method. The reason we get large dimension
is that the committed message is from large Zq, this brings to dimension q2.
The method we use here is to convince the verifier that the committed value
is actually from Z2, this only brings to dimension by a constant factor 4. More
concretely, we first propose a Σ-protocol to prove that the committed value is in

Z2. Then, by using this basic protocol, the prover decomposes mi =
∑	log q


j=0 2j ·
mij for i = 1, 2, and commits each mjk = m1j �m2k and m1j ,m2k along with
m1,m2,m3 to the verifier, � means component-wise bit multiplication. Then the
prover convince that the m1j and m1k are in Z2 and satisfy that

m1 =

	log q
∑
j=0

2j ·m1j ; m2 =

	log q
∑
k=0

2k·m2k; mjk = m1j�m2k; m3 =
∑
j,k

2j+k ·mjk.

This method only extends the dimension from 
 to 4
 (instead of q2
), hence has
low communication complexity. However, it needs extra O(log2 q) commitments,
and only achieves computational zero-knowledge.

In the RLWE case, actually we can not directly use the above techniques, this is
because the number of elements in the polynomial ring Rq is exponential which
results undesirable exponential large dimension. To address this problem, we
apply the Chinese Remainder Theorem (CRT) representation of ring elements.
The important property is that the multiplication of ring elements under CRT
is just component-wise multiplication under Zq. This helps us to construct Σ-
protocol in the RLWE case, and also brings better amortized communication
complexity.

1.3 Other Related Works

Several zero-knowledge proofs of knowledge based on lattice have been proposed.
Kawachi et al. [17] construct an identification scheme based on the SIS problem,
and very recently Ling et al. [20] improve the efficiency and weaken the assump-
tion. Cayrel et al. [3,4] give an identification scheme with 5 round and soundness
error 1/2. Asharov et al. [1] propose Σ-protocols for various LWE problems.
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However, their construction exclusively use the “smudge out” technique, which
only works for super-polynomial size module.

2 Preliminaries

Notations A function negl(λ) is negligible, if it vanishes faster than the inverse
of any polynomial in λ. For a vector v, we denote ‖v‖∞ as the infinity norm. We
denote R = Z[X ]/(ΦM (X)), where ΦM (X) is the M -th cyclotomic polynomial.
For simplicity, we only consider power of 2 cyclotomic rings, i.e. M = 2k for
some positive integer k. We note that our results can be easily extended to any
cyclomotic rings by using the techniques in [24]. Denote Rq = R/qR. For a
prime integer q = 1 mod M , the field Zq contains a primitive M -th root of
unity ζ, because the multiplicative group of Zq is cyclic with order q−1. Indeed,
there are φ(M) distinct such roots of unity ζi ∈ Zq, for i ∈ Z∗

M , where φ(·)
is Euler’s totient function. Therefore, f(x) splits into linear terms modulo q,
ΦM (X) =

∏
i∈Z∗

M
(X − ζi) mod q.

Coefficient and Chinese Remaindering (CRT) Representation. For an element
a ∈ Rq, let d = φ(M), we consider two ways of representing it: Viewing a as

a degree d − 1 polynomial a(X) =
∑d−1

i=0 aiX
i, we can list all the coefficients

in order a = (a0, ..., ad−1) ∈ Zd
q . We call a the coefficient representation of a.

For the other representation, we consider the value that the polynomial a(X)
assigns on all primitive M -th roots of unity modulo q, âi = a(ζi) mod q for
i ∈ Z∗

M . The âi in order also yield a vector â ∈ Zd
q , which we call it the CRT

representation. These two representations are related via â = V · a, where V is
the Vandermonde matrix over the primitive M -th root of unity modulo q. For a
ring element a ∈ Rq, we view it either a single element in Rq or a vector in Zd

q by
the coefficient representation, and we define the bijective map σ, such that σ(a) is
either the same ring element in Rq, or a vector in Zd

q by the CRT representation.
The CRT representation has very nice property, the addition and multiplication
in Rq can be computed as component-wise addition and multiplication of the
entries of CRT form. I.e. for a, b ∈ Rq, we have σ(a + b) = σ(a) + σ(b) and
σ(a · b) = σ(a)�σ(b), where � denotes the component-wise multiplication in Zq

of the vector in the CRT form.
A distribution χ from Z is called β-bounded if Pre←χ[|e| > β] = negl(n).

Denote B3m ∈ {−1, 0, 1}3dm as the set of vectors with the numbers of −1,0,
and 1 are exactly dm, and denote B2� ∈ {0, 1}2d� as the set of vectors with the
numbers of 0, 1 are exactly d
. Denote Sk be the set of all permutations on k
elements. For a vector a ∈ Rn

q and π ∈ Sdn, we denote π(a) and π(σ(a)) to

permute the elements in Zq when we view a and σ(a) as vectors in Zdn
q .

2.1 Commitment Schemes

A commitment scheme consists of three algorithms (KGen,Com,Ver). Where
KGen on input security parameter λ, outputs a public key pk. Com on input a
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message m, a public key pk, outputs a commitment/opening pair (c, d). Ver on
input a public key pk, a message m, and pair commitment/opening pair (c, d),
output 1 or 0.

The commitment scheme satisfies the three security properties: Correct-
ness needs Ver evaluates to 1 when the inputs are computed honestly. I.e.
Ver(pk,m, c, d) = 1, where pk ← KGen(1λ), (c, d) ← Com(pk,m). Hiding needs
the commitment c hiding the information of the message. I.e. the distributions
of c0, c1 are computational or statistically indistinguishable, where (c0, d0) ←
Com(pk,m0), (c1, d1) ← Com(pk,m1) for any m0,m1. Binding requires that any
commitment c can not be opened to two different messages. I.e. the probability of
m 	= m′ is negligible, if Ver(pk, c,m, d) = Ver(pk, c,m′, d′) = 1.

2.2 Σ-Protocols

In this subsection, we adopt the definition of Σ-protocols as in [16]. Let (P ,V)
be a two party protocol, where V is PPT, and let R be a binary relation. A
Σ-protocol (P ,V) for R with challenge set C, public input y and private input ω
is a three rounds protocol with transcript (t, c, s). t is a commitment sent from
P to V , c is randomly chosen from C by the verifier V , and P responds s to V .
Finally, V accepts or reject the proof according to (t, c, s). Besides, a Σ-protocol
requires other three properties:

Completeness : The verifier V accepts whenever (y, ω) ∈ R.
Special Soundness : There exists a PPT algorithm Ext which takes as input

a set {(t, c, sc) : c ∈ C} of accepting transcripts with the same commitment,
outputs ω′ such that (y, ω′) ∈ R.

Special honest-verifier zero-knowledge : There exists a PPT simulator S
takes as input y and c ∈ C, outputs triples (t, c, s) whose distribution is
indistinguishable from accepting protocol transcriptions generated by the
real protocol runs.

It’s well known that a Σ-protocol can be extended to a proof of knowledge for
the same relation [9,10]. Here the definition of Σ-protocol (as in [16]) is a little
different from the standard one defined in [9]. We loose the special soundness
by only requiring ω′ can be computed given valid responses to all challenges for
a fixed commitment. As discussed in [16], the knowledge error of the resulting
proof of knowledge is given by 1−1/|C| instead of 1/|C| in the standard definition.

We remark that, the Σ-protocols in this paper are slightly different from the
the definition above. The extracted witness lies in a slightly larger space. This
is weaker version called Gap Σ-protocol, which is already considered in [8,1]. In
this paper, the original witness space is integer vectors with norm no more that
β, and the norm of the extracted witness is no more that β′. We call the ratio
β′/β the gap factor. The protocols in this paper achieves constant gap factor
which is almost optimal.
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2.3 Lattices and Hard Problems

A m-dimensional lattice Λ is a discrete additive subgroup whose linear span
is R

m. Every lattice is generated as the Z-linear combination of some basis of
linearly independent vectors B = {b1, ...,bm} ⊂ Rm, i.e.,Λ = {

∑m
i=1 zibi : zi ∈

Z}. Denote λ∞
1 (Λ) be the infinity norm of the shortest non-zero vector in Λ. We

define “q-ary” lattices. For a matrix A ∈ Rm×n
q , define the integer lattice

Λq(A) = {y ∈ Rm : ∃x ∈ Rn
q , s.t. Ax = y mod q}.

The Ring Learning with Errors (RLWE) Problem. The Ring Learning
with Errors (RLWE) problem is introduced by Lyubaskevsky, Peikert and Regev
[23] which extends the Learning with Errors (LWE) problem proposed by Regev
[26] to the ring case. For a security parameter λ, let d = φ(M), M is a power
of 2. Let q ≥ 2 be an integer. Let R = Z[X ]/(ΦM (X)) and Rq = R/qR. Let χ
be a distribution over R. The RLWEd,q,χ problem is to distinguish the following
two distributions: In the first distribution, one samples (ai, bi) uniformly from
Rq ×Rq. In the second distribution, one first draws s← Rq uniformly and then
samples (ai, bi) ∈ Rq ×Rq by sampling ai ← Rq uniformly, ei ← χ, and setting
bi = ai · s + ei. The RLWEd,q,χ assumption is that the RLWEd,q,χ problem is

infeasible. Denote the assumption by RLWE
(m)
d,q,χ when we require the indistin-

guishability to hold given only m samples. We state the hardness of the special

case of RLWE
(m)
d,q,χ described in [23] as follows.

Theorem 1 ([23]). For ring R = Z[X ]/(ΦM (X)), d = φ(M), M is a power of
2, and prime integer q = q(d) = 1 mod M , and β = ω(

√
d log d), there is an

efficiently samplable distribution χ that outputs elements of R with norm at most
β with overwhelming probability, such that if there exists an efficient algorithm

that solves RLWE
(m)
d,q,χ, then there is an efficient quantum algorithm for solving

d2.5 · (q/β) · (dm/ log(dm))1/4-approximate worst-case SVP for ideal lattices over
R.

3 Commitment Scheme from RLWE Assumption

The message space is R�
q, where 
 = 
(λ). Let χ be a β-bounded distribution

over R. The algorithms are given as follows:

KGen : Chooses a1 ← Rm
q and A2 ← Rm×�

q . Set pk = A = [a1‖A2].

Com : For a message m ∈ R�
q, choose a uniformly random vector s ← Rq, and

choose a vector e← χm. Output the commitment c = A(s‖m) + e.
Ver : Given a commitment c, the messagem′ and the randomness s′, the verifier

accepts iff ‖c−A(s′‖m′)‖∞ ≤ β.

Theorem 2. Let m = (
 + 1) · ω(logλ), β < q/2d. If RLWE
(m)
d,q,χ is hard. Then

the above commitment scheme is perfectly binding (with overwhelming probability
over the public key) and computationally hiding.

Proof. The correctness is obvious, we show the binding and hiding properties.
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Perfect binding . Assume that mi, si, i = 1, 2 are two different openings for
a commitment c. That is ei = c−A(si‖mi) has infinity norm at most β for
i = 1, 2. Thus, we have e1 − e2 = A(s2 − s1‖m2 − m1) with infinity norm
‖e1 − e2‖∞ ≤ ‖e1‖∞ + ‖e2‖∞ < 2β. Since A is uniformly random, by applying
Lemma 1 showed below, with overwhelming probability over the choice of A, for
every non-zero vector x ∈ Rn

q , ‖Ax‖∞ ≥ 2β for nonzero x. Since m1,m2 are
different, there is a contradiction.

Computational hiding . Since c = a1 · s + e + A2m, and by the RLWE
(m)
d,q,χ

assumption, c is pseudorandom. �
Theoretically, the length of the message 
 can be arbitrary, but for efficiency

reasons it’s better to choose 
 = O(1), and m = ω(logλ).

Lemma 1 ([19] Lemma 21). Let n,m, d, q be positive integers with n ≤ m.
We have: PrA←Rm×n

q
[λ∞

1 (Λq(A)) ≥ 1
8
√
d
q1−

n
m ] ≥ 1− ( 1

2
√
d
)nd.

4 Zero-Knowledge Proofs of Knowledge

In this section, we construct Σ-protocols to prove knowledge of valid openings,
linear relations and multiplicative relations.

4.1 Proving Knowledge of a Valid Opening

We propose a Σ-protocol analogous to the ones presented in [20,16]. The struc-
ture is essentially the same, and we extend its security to base on the RLWE
assumption. We construct a Σ-protocol for the following relation:

RRLWE = {((A, c), (s,m, e)) : c = A(s‖m) + e mod q ∧ ‖e‖∞ ≤ β}.

We adapt the techniques in [20], and we note that the ISIS proof in [20] implicitly
implies this protocol. The common inputs to prover P and verifier V is A ∈
R

m×(1+�)
q and c ∈ Rm

q , P has secret input (s,m, e) where s ∈ Rq, m ∈ R�
q,

e ∈ Rm. P and V first define a common matrix Î ∈ Rm×3m by appending
2m zero columns to identity matrix Im ∈ Rm. P first decomposes e ∈ Rm

to k = �log β� + 1 vectors ẽi ∈ Rm with coefficients in {−1, 0, 1} such that

e =
∑k−1

i=0 2i · ẽi. Then P extends each ẽi to a vector ei = (ẽi‖ēi) ∈ B3m, where
ēi is randomly chosen from {−1, 0, 1}2dm. We have:

c = A(s‖m) + e⇔ c = A(s‖m) + Î(
k−1∑
i=0

2i · ei)

The protocol is given as follows, where the commitment scheme Com(·) is a
string commitment scheme, and can be instantiated from the RLWE based one.
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P samples k uniformly random vector (r0, ..., rk−1) ← (R3m
q )k, a uniformly

random vector v ← R1+�
q , and k random permutations (π0, ..., πk−1) ←

(S3dm)k. It sends the following commitments to the verifier V :⎧⎪⎪⎪⎨⎪⎪⎪⎩
C1 = Com

(
{πi}k−1

i=0 , t1 = Av + Î(
∑k−1

i=0 2i · ri)
)

C2 = Com
(
{t2i = πi(ri)}k−1

i=0

)
C3 = Com

(
{t3i = πi(ri + ei)}k−1

i=0

)
The verifier V draws Ch← {1, 2, 3}, and sends it to P .
Depending on the value of Ch, P opens the following commitments:

Ch = 1: P opens C1, C2 by sending {πi}k−1
i=0 , t1, {t2i}k−1

i=0 and the associated
random coins of the commitment.

Ch = 2: P opens C1, C3 by sending {πi}k−1
i=0 , t1, {t3i}k−1

i=0 and the associated
random coins of the commitment.

Ch = 3: P opens C2, C3 by sending {t2i}k−1
i=0 , {t3i}k−1

i=0 and the associated
random coins of the commitment.

The verifier V checks the correctness of the opening from the prover P , and
additionally performs the following checks depending on the challenge Ch:

Ch = 1: V accepts, iff t1 − Î ·
(∑k−1

i=0 2i · π−1
i (t2i)

)
∈ Λq(A) and {πi}k−1

i=0 ∈
(S3dm)k.

Ch = 2: V accepts, iff t1+c− Î·
(∑k−1

i=0 2i ·π−1
i (t3i)

)
∈ Λq(A) and {πi}k−1

i=0 ∈
(S3dm)k.

Ch = 3: V accepts, iff t3i − t2i ∈ B3m for all 0 ≤ i ≤ k − 1.

Theorem 3. The above protocol is a Σ-protocol for the RRLWE relation, where

RRLWE =
{(

(A, c), (s,m, e)
)
:
(
c = A(s‖m) + e

)
∧ ‖e‖∞ ≤ β

}
.

Proof. The correctness is obvious, we show the other properties hold.

Special Soundness. Assume that we have fixed values C1, C2, C3 and openings
for all challenges Ch ∈ {1, 2, 3}, such that the verifier accepts on all of them.
Then by the binding property of the underlying commitment scheme Com(·), we
know that the openings to identical commitments must be identical for different
challenges.

By the verification equations for Ch = 1 and Ch = 2, we get that t1 −
Î ·
(∑k−1

i=0 2i · π−1
i (t2i)

)
= A(s1‖m1), and t1 + c − Î ·

(∑k−1
i=0 2i · π−1

i (t3i)
)
=

A(s2‖m2), for some s1, s2 ∈ Rq, m1,m2 ∈ R�
q. Therefore, c = A(s2 − s1‖m2 −

m1)+ Î ·
(∑k−1

i=0 2i ·π−1
i (t3i−t2i)

)
mod q. From Ch = 3 we get t3i−t2i ∈ B3dm

for all 0 ≤ i ≤ k − 1, then also π−1
i (t3i − t2i) ∈ B3dm for all 0 ≤ i ≤ k − 1.

By the definition of Î, we get that ‖Î ·
(∑k−1

i=0 2i · π−1
i (t3i − t2i)

)
‖∞ ≤ 2β − 1.

Therefore, we have a valid witness
(
s2−s1,m2−m1, Î·

(∑k−1
i=0 2i·π−1

i (t3i−t2i)
))

.
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Special Honest-Verifier Zero-Knowledge. We now describe an efficient simula-
tor S, which for each challenge Ch ∈ {1, 2, 3} outputs an accepting protocol
transcript. The distribution of the transcript is indistinguishable from the real
protocol transcript with an honest prover for challenge Ch.

Ch = 1: The simulatorS computesC1, C2 like an honest prover, and computesC3

as a commitment to 0. Clearly, the distribution ofC1, C2, {πi}k−1
i=0 , t1, {t2i}k−1

i=0

is identical to that in real protocol. By the hiding property of the commit-
ment, the distribution of C3 is computationally indistinguishable to the real
protocol.

Ch = 2: The simulator S first chooses uniformly random vector u ← R1+�
q ,

{fi}k−1
i=0 ← (R3m

q )k, and k random permutations {πi}ki=0 ← (S3dm)k. It sets

C1 = Com({πi}k−1
i=0 ,Au+ Î · (

∑k−1
i=0 2i · fi)− c), and C3 = Com({πi(fi)}k−1

i=0 ),
and computes C2 as a commitment to 0. It’s easy to see that the opening of
C1, C3 pass the verification. To see the correctness of the distribution, in the
simulated content of C1, the first part (permutations) are randomly chosen
which are identical to the real protocol. The second part is A(u−s‖m) +

Î · (
∑k−1

i=0 2i(fi − ei)), we can view ri = fi − ei for 0 ≤ i ≤ k − 1. Since fi
are uniformly random in R3m

q , and so are ri. We know that fi = ri + ei,

therefore, the content of C3 is {πi(ri + ei)}k−1
i=0 . Thus, the distribution of

C1, C3 and their opening are perfectly simulated, and the distribution of
C2 is indistinguishable from the real protocol by the hiding property of the
commitment scheme.

Ch = 3: The simulator chooses uniformly random vectors {r′i}k−1
i=0 ← (R3m

q )k,

and {e′i}k−1
i=0 ← (B3m)k. It then computes C1 as a commitment to 0, C2 =

Com({r′i}k−1
i=0 ), and C3 = Com({r′i + e′i}k−1

i=0 ). As before, the distribution of
C1 is indistinguishable to the real protocol by the hiding property of the
commitment scheme, and C2, C3 as well as their openings can easily be seen
to perfectly simulate the behavior of an honest prover. �

4.2 Component-Wise Relations

In this section, we describe Σ-protocols to prove component-wise relations of
the committed messages of c1, c2, c3. That is, it allows one to prove the mes-
sages satisfy m3 = m1 ◦m2, where ◦ denotes the component-wise addition or
multiplicative in Rq. Our techniques are simpler and more direct than [16]. We
remark that by using the CRT representation, the component-wise addition and
multiplication on R�

q can be seen as component-wise addition and multiplication

in Zq respectively, when we take σ(mi) as a vector in Zd�
q . We give two protocols

to prove this relation, the first one is simpler but with larger communication
complexity, the other one is more involved but with small complexity.

In the first protocol, the prover with secret inputs m1,m2,m3 ∈ R�
q first

views the messages as vectors in Zd�
q by using the CRT representation. I.e.

σ(m1), σ(m2), σ(m3). We note that m3 = m1 ◦m2 ⇔ σ(m3) = σ(m1)�σ(m2).
Where � denotes component-wise addition and multiplication in Z

d�
q . It then
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extends σ(m1), σ(m2) to m̂1, m̂2 with m̂1 = (σ(m1)‖m̄1) ∈ Zdq2�
q , m̂2 =

(σ(m2)‖m̄2) ∈ Z
dq2�
q by randomly choosing m̄1, m̄2 ∈ Z

d(q2−1)�
q such that for any

pair (a, b) ∈ Z2
q the number of index j ∈ {1, ..., dq2
} satisfying m̂1[j] = m̂2[j]

is exactly d
, here we assume q = poly(λ). m̂1, m̂2 also can be seen as vec-

tors in Rq2�
q according to the CRT representation. Then set m̂3 = m̂1 � m̂2.

Denote Î2 ∈ R�×q2� by appending (q2 − 1)
 zero columns to identity matrices
I� ∈ R�×�, then mi = Î2 · (σ−1(m̂i)). Although m̂i leaks information of mi,
we note that π(m̂i) is completely random and independent of mi, for uniformly
random permutations in Sdq2�. P and V now run the basic protocol from the
previous section to prove the validity of mi simultaneously, and P proves the
relation π(m̂3) = π(m̂1) � π(m̂2). The special soundness from the fact that
Î2 · π(m̂3) = Î2 · π(m̂1)� Î2 · π(m̂2).

The common inputs to prover P and verifier V is A = (A1‖A2) ∈ R
m×(1+�)
q

and ci ∈ Rm
q for 1 ≤ i ≤ 3, P has secret input (si,mi, ei). P and V first define

two common matrices Î2 as above and Î1 ∈ Rm×3m by appending 2m zero
columns to identity matrix Im ∈ Rm×m. P decomposes ei ∈ Rm for 1 ≤ i ≤ 3
to k = �log β� + 1 vectors ẽij in Rm with coefficients in {−1, 0, 1} such that

ei =
∑k−1

j=0 2
j · ẽij . Then P extends each ẽij to a vector eij ∈ B3m. Finally, P

extends mi to m̂i in Zdq2�
q (equivalently, Rq2�

q ) as described above. We define
0 ≤ j ≤ k − 1 and 1 ≤ i ≤ 3. The protocol is as follows.

P samples 3k uniformly random vectors (ri0, ..., ri(k−1))← (R3m
q )k, uniformly

random vectors ui ← Rq, vi ← Rq2�
q , together with 3k random permutations

(πi0, ..., πi(k−1)) ← (S3dm)k, and a uniformly random permutations π′ ←
Sdq2�. It sends the following commitments for i = 1, 2, 3 to the verifier V :⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

C0 = Com(π′)

Ci1 = Com
(
{πij}k−1

j=0 , ti1 = A(ui‖Î2 · vi) + Î1(
∑k−1

j=0 2
j · rij)

)
Ci2 = Com

(
{tji2 = πij(rij)}k−1

j=0 , t
′
i2 = π′(σ(vi))

)
Ci3 = Com

(
{tji3 = πij(rij + eij)}k−1

j=0 , t
′
i3 = π′(σ(vi) + m̂i)

)
The verifier V draws Ch← {1, 2, 3}, and sends it to P .
Depending on the value of Ch, P opens the following commitments:

Ch = 1: P opens C0, Ci1, Ci2 by sending π′, {πij}k−1
j=0 , ti1, {t

j
i2}k−1

j=0 , t
′
2i and

the associated random coins of the commitment.
Ch = 2: P opens C0, Ci1, Ci3 by sending π′, {πij}k−1

j=0 , ti1, {t
j
i3}k−1

j=0 , t
′
3i and

the associated random coins of the commitment.
Ch = 3: P opens Ci2, Ci3 by sending {tji2}k−1

j=0 , t
′
i2, {t

j
i3}k−1

j=0 , t
′
i3 and the as-

sociated random coins of the commitment.
The verifier V checks the correctness of the opening from the prover P , and

additionally performs the following checks depending the challenge Ch:
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1. V accepts, iff ti1 − A2Î2 · σ−1(π′−1(t′i2)) − Î1 ·
(∑k−1

j=0 2
j · π−1

ij (tji2)
)
∈

Λq(a1), {πij}k−1
j=0 ∈ Sk3dm, and π′ ∈ Sdq2�.

2. V accepts, iff ti1+ci−A2Î2 ·σ−1(π′−1(t′i3))− Î1 ·
(∑k−1

j=0 2
j ·π−1

ij (tji3)
)
∈

Λq(a1), {πij}k−1
j=0 ∈ Sk3dm, and π′ ∈ Sdq2�.

3. V accepts, iff tji3 − tji2 ∈ B3m and t′33 − t′32 = (t′23 − t′22) � (t′13 − t′12),
for all 0 ≤ j ≤ k − 1, 1 ≤ i ≤ 3.

Theorem 4. The above protocol is a Σ-protocol for the RCWRLWE relation, where

RCWRLWE =
{(

(A, c1, c2, c3), (s1, s2, s3,m1,m2,m3, e1, e2, e3)
)
:

3∧
i=1

(
ci = A(si‖mi) + ei mod q ∧ ‖ei‖∞ ≤ β

)
∧m3 = m1 ◦m2

}
.

Proof. The correctness is easy. We show how the other properties hold.

Special Soundness. Assume that we have fixed values C0, Ci1, Ci2, Ci3 and open-
ings for all challenges Ch ∈ {1, 2, 3}, such that the verifier accepts on all of them.
Then by the perfect binding property of the underlying commitment scheme
Com(·), we know that the openings to identical commitments must be identical
for different challenges. By the verification equation for Ch = 1 and Ch = 2, we
get that ci −A2Î2 · σ−1(π′−1(t′i3 − t′i2))− Î1 · (

∑k−1
j=0 2

jπ−1
ij (ti3 − ti2) ∈ Λq(a1).

Thus exists computable s′i ∈ Rq, such that ci = a1 · s′i + A2m
′
i + e′i, where

m′
i = Î2 ·σ−1(π′−1(t′i3− t′i2)) and e′i = Î1 · (

∑k−1
j=0 2

jπ−1
ij (ti3− ti2). From Ch = 3

we know that ti3 − ti2 ∈ B3m and t′33 − t′32 = (t′23 − t′22)� (t′13 − t′12). By the
special form of Î1, Î2, we infer that ‖e′i‖1 ≤ 2β − 1, m′

3 = m′
2 ◦m′

1 and output
(s′i,m

′
i, e

′
i) as valid witnesses.

Special Honest-Verifier Zero-knowledge . We now describe an efficient simula-
tor S, which for each challenge Ch ∈ {1, 2, 3} outputs an accepting protocol
transcript. The distribution of the transcript is indistinguishable from the real
protocol transcript with an honest prover for challenge Ch.

Ch = 1: the simulator S computes C0, Ci1, Ci2 like an honest prover, and com-
putes Ci3 as commitments to 0. Then clearly, the distributions of C0, Ci1, Ci2,
π′, πij , ti1, t

j
i2, t

′
i2 are identical to that in real protocol. By the hiding prop-

erty of the commitment, the distributions of Ci3 are indistinguishable to the
real protocol.

Ch = 2: the simulator S first chooses uniformly random vector u1, u2, u3 ← Rq,

v1,v2,v3 ← Rq2�
q , 3k random vectors rij ← R3m

q , 3k random permutations
πij ← S3dm, and a uniformly permutation π′ ← Sdq2�. It sets C0 = Com(π′),

Ci1 = Com({πij}k−1
j=0 , ti1 = A(ui‖Î2 · vi) + Î1 ·

∑k−1
j=0 2

jrij − ci), and Ci3 =
Com(ti3 = πi(ri), t

′
i3 = π′(σ(vi))), and computes Ci2 as commitments to

0. It’s easy to see that the openings of C0, Ci1, Ci3 pass the verification. To
see the correctness of the distribution we only need to consider the open-
ings of Ci1 and Ci3. Note that now ti1 = A(ui − si‖Î2 · (vi − σ−1(m̂i))) +
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Î1 ·
∑k−1

j=0 2
j(rij − eij), because we can rewrite ci = A(si‖Î2 · σ−1(m̂i)) +

Î1 ·
∑k−1

j=0 2
jeij , and the special form of Î2. Set v′

i = vi − σ−1(m̂i), and

r′ij = rij − eij . Since vi and rij are uniformly in Rq2�
q and R3m

q respectively,
then also v′

i, r
′
ij . Therefore, σ(vi) = σ(v′

i) + m̂i, rij = r′ij + eij , and the
distribution of the simulated (ti1, ti3, t

′
i3) is identical to the real protocol,

and the distributions of Ci2 are computationally indistinguishable from the
real protocol by the hiding property of the commitment scheme.

Ch = 3: the simulator chooses uniformly random vectors rij ← R3m
q , vi ←

Zdq2�
q . It then chooses uniformly random vectors e′1j , e

′
2j , e

′
3j ← B3m. It also

chooses m̂′
1, m̂

′
2 ← Zdq2�

q such that for any (a, b) ∈ Z2
q the number of j ∈

{1, ..., dq2
} satisfying (m̂′
1[j], m̂

′
2[j]) = (a, b) is exactly dl, and set m̂′

3 =
m̂′

1�m̂′
2. Finally, it computes C0, Ci1 as commitments to 0, Ci2 = Com(tji2 =

rij , t
′
i2 = vi), Ci3 = Com(ti3 = rij + e′ij , t

′
i3 = vi + m̂′

i). As before, the
distributions of C0, Ci1 are computationally indistinguishable to the real
protocol by the hiding property of the commitment scheme, and Ci2, Ci3 as
well as their openings can easily be seen to perfectly simulate the behavior
of an honest prover. �

Remark 1. There exists simpler protocols to prove linear relations. The technique
is very similar to the one in [16]. Furthermore, one can prove the committed value
m1,m2,m3 satisfies m3 = X1m1 +X2m2, for any matrices X1,X2 ∈ R�×�

q .

Remark 2. Clearly, this protocol only works for polynomial size q, and the com-
munication complexity is large since it chooses vectors with dimension q2, this
is undesirable in practice. In the positive side, if the underlying commitment
scheme Com is statistically hiding, it brings statistically hiding zero-knowledge in
spite of the RLWE one is only computationally hiding. Next, we describe another
protocol to prove the component-wise relations with communication complexity
only expand with factor O(log2 q), which works even for sub-exponential q, but
only achieves computationally zero-knowledge property.

4.3 Component-Wise Relations with Small Communication
Complexity

Let’s see why the above protocol brings large communication complexity. From
now on, we only discuss the multiplicative relation for simplicity. In order to prove
multiplicative relation, we randomize σ(m1), σ(m2) to π′(m̂1), π

′(m̂2). To make
the later terms be independent of the messages, we have to append (a, b) ∈ Z2

q

pairs and guarantee all possible pairs has exactly the same number, this expands
the dimension of vector with factor q2. Assume that if the CRT representation
of the messages are guaranteed to be in {0, 1}d�, then we only need to expand
the dimension with factor 4 which is much smaller. Our technique first decom-
poses each σ(m1), σ(m2) to vectors in {0, 1}d�. I.e. σ(mi) =

∑h−1
j=0 2jmij , where
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i = 1, 2, h = �log q�+ 1 and mij ∈ {0, 1}d�. We know σ(m3) = (
∑h−1

j=0 2jm1j)�
(
∑h−1

j=0 2jm2j), unfold the later term, it turns to σ(m3) =
∑h−1

j=0

∑h−1
k=0 2

j+km1j�
m2k, denote m̃jk = m1j �m2k. Then the prover computes RLWE based commit-
ments c1j , c2k, c̃jk for σ

−1(m1j), σ
−1(m1k), σ

−1(m̃jk), and simultaneously proves

m̃jk = m1j � m2k, σ(m1) =
∑h−1

j=0 2jm1j, σ(m2) =
∑h−1

k=0 2
km2k. It finally

proves the linear relation σ(m3) =
∑h−1

j=0

∑h−1
k=0 2

j+km̃jk mod q. The multipli-
cation relation here only expands dimensionwith constant factor, and the protocol
needs another log2 q+2 log q commitments. When simulating, the simulator have
to compute commitments c1j , c2k, c̃jk, but the simulator does not know the under-
lying contents, this does not matter due to the computational hiding property of
the RLWE based commitment scheme. Therefore, the protocol only achieves com-
putational zero-knowledge. However, we need to handle another problem, in the
argument above, we assume that the m1j ,m1k in {0, 1}d�, so the prover has to
convince the verifier that the CRT representation of the messages under c1j , c2k
are in {0, 1}d�. Due to the space limit, the entire construction is given in the full
version. Here we only show a Σ-protocol for the following relation:

RbRLWE = {((A, c), (s,m, e)) : c = A(s‖m) + e mod q

∧ σ(m) ∈ {0, 1}d� ∧ ‖e‖∞ ≤ β}

The common inputs to prover P and verifier V is A = (a1‖A2) ∈ R
m×(1+�)
q

and c ∈ Rm
q , P has secret input (s,m, e) where s ∈ Rq,m ∈ R�

q, e ∈ Rm, σ(m) ∈
{0, 1}d�. P and V first define a common matrix Î2 ∈ R�×2� and Î1 ∈ Rm×3m by
appending 
, 2m zero columns to identity matrix I�, Im ∈ Rm respectively. P
first decomposes e ∈ Rm to k = �log β� + 1 vectors ẽi ∈ Rm with coefficients

in {−1, 0, 1} such that e =
∑k−1

i=0 2i · ẽi. Then P extends each ẽi to a vector
ei ∈ B3m. Meanwhile, P extends σ(m) ∈ {0, 1}d� to m̂ = (σ(m)‖m̄) ∈ {0, 1}2d�
such that the coefficients of m̂ has exactly d
 0’s and 1’s, i.e.,m̂ ∈ B2�.

The protocol is given as follows, where the commitment scheme Com(·) is a
string commitment scheme.

P samples k uniformly random vector (r0, ..., rk−1) ← (R3m
q )k, a uniformly

random vector u ← Rq, v ← R2�
q , k random permutations (π0, ..., πk−1) ←

(S3dm)k, and a random permutation π′ ← S2d�. It sends the following com-
mitments to the verifier V :⎧⎪⎪⎪⎨⎪⎪⎪⎩

C1 = Com
(
π′, {πi}k−1

i=0 , t1 = A(u‖Î2v) + Î1(
∑k−1

i=0 2i · ri)
)

C2 = Com
(
{t2i = πi(ri)}k−1

i=0 , t
′
2 = π′(σ(v))

)
C3 = Com

(
{t3i = πi(ri + ei)}k−1

i=0 , t
′
3 = π′(σ(v) + m̂)

)
The verifier V draws Ch← {1, 2, 3}, and sends it to P
Depending on the value of Ch, P opens the following commitments:
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Ch = 1: P opens C1, C2 by sending π′, {πi}k−1
i=0 , t1, {t2i}k−1

i=0 and the associ-
ated random coins of the commitment.

Ch = 2: P opens C1, C3 by sending π′, {πi}k−1
i=0 , t1, {t3i}k−1

i=0 and the associ-
ated random coins of the commitment.

Ch = 3: P opens C2, C3 by sending t′2, {t2i}k−1
i=0 , t

′
3, {t3i}k−1

i=0 and the asso-
ciated random coins of the commitment.

The verifier V checks the correctness of the opening from the prover P , and
additionally performs the following checks depending the challenge Ch:
1. V accepts, iff t1−A2Î2 ·σ−1(π′−1(t′2))− Î1 ·

(∑k−1
i=0 2i ·π−1

i (t2i)
)
∈ Λq(a1)

and {πi}k−1
i=0 ∈ Sk3dm, π′ ∈ S2d�.

2. V accepts, iff t1 + c−A2Î2 · σ−1(π′−1(t′3))− Î1 ·
(∑k−1

i=0 2i · π−1
i (t3i)

)
∈

Λq(a1) and {πi}k−1
i=0 ∈ Sk3dm, π′ ∈ S2d�.

3. V accepts, iff t3i − t2i ∈ B3m for all 0 ≤ i ≤ k − 1 and t′3 − t′2 ∈ B2�.

Theorem 5. The above protocol is a Σ-protocol for the RbRLWE relation.

Proof. We do not give the full proof here. It’s easy to check the correctness, and
special soundness. The proof of Special honest-verifier zero-knowledge is similar
to Theorem 3, except that when handling Ch = 3 the simulator additionally
chooses uniformly random vectors m̂′ ← {0, 1}2d�. �

Efficiency. To prove arbitrary functions in Rq is now straight by the above
protocols. We now consider communication complexity of arbitrary function f
based on the second protocol. The communication complexity of the protocol
for f is O(km · |Rq| · log2 q · |f |) with soundness error 2/3. When instantiating
using RLWE, we remark that an element in Rq represents d elements in Zq.
Therefore, the protocol can simultaneously prove d
 inputs in Zq satisfies the
function f in Zq. This brings amortized complexity O(km·|Rq|·log2 q·|f |/(d
)) =
O(k log3 q · |f |). To achieve 2−λ soundness error, we repeat the protocol λ times,
which result communication complexity O(λk log3 q · |f |). Since k = �log β�+1.
The amortized complexity is Õ(λ|f |), where Õ hides polylogorithmic factors.
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4. Cayrel, P.-L., Véron, P., El Yousfi Alaoui, S.M.: A zero-knowledge identification
scheme based on the q-ary syndrome decoding problem. In: Biryukov, A., Gong, G.,
Stinson, D.R. (eds.) SAC 2010. LNCS, vol. 6544, pp. 171–186. Springer, Heidelberg
(2011)

5. Cramer, R., Damg̊ard, I.: Zero-knowledge proofs for finite field arithmetic, or: Can
zero-knowledge be for free? In: Krawczyk, H. (ed.) CRYPTO 1998. LNCS, vol. 1462,
pp. 424–441. Springer, Heidelberg (1998)

6. Cramer, R., Damg̊ard, I.: On the amortized complexity of zero-knowledge proto-
cols. In: Halevi, S. (ed.) CRYPTO 2009. LNCS, vol. 5677, pp. 177–191. Springer,
Heidelberg (2009)

7. Cramer, R., Damg̊ard, I., Pastro, V.: On the amortized complexity of zero knowl-
edge protocols for multiplicative relations. In: Smith, A. (ed.) ICITS 2012. LNCS,
vol. 7412, pp. 62–79. Springer, Heidelberg (2012)

8. Cramer, R., Damg̊ard, I., Schoenmakers, B.: Proofs of partial knowledge and sim-
plified design of witness hiding protocols. In: Desmedt, Y.G. (ed.) CRYPTO 1994.
LNCS, vol. 839, pp. 174–187. Springer, Heidelberg (1994)

9. Damg̊ard, I.: On σ-protocol. In: Lecture on Cryptologic Protocol Theory (2004)
10. Damg̊ard, I., Goldreich, O., Okamoto, T., Wigderson, A.: Honest verifier vs dis-

honest verifier in public coin zero-knowledge proofs. In: Coppersmith, D. (ed.)
CRYPTO 1995. LNCS, vol. 963, pp. 325–338. Springer, Heidelberg (1995)

11. Feige, U., Shamir, A.: Zero knowledge proofs of knowledge in two rounds. In: Bras-
sard, G. (ed.) CRYPTO 1989. LNCS, vol. 435, pp. 526–544. Springer, Heidelberg
(1990)

12. Goldwasser, S., Micali, S., Rackoff, C.: The knowledge complexity of interactive
proof-systems. In: STOC, pp. 291–304 (1985)

13. Groth, J., Sahai, A.: Efficient non-interactive proof systems for bilinear groups. In:
Smart, N.P. (ed.) EUROCRYPT 2008. LNCS, vol. 4965, pp. 415–432. Springer,
Heidelberg (2008)

14. Haitner, I., Reingold, O.: Statistically-hiding commitment from any one-way func-
tion. In: STOC, pp. 1–10 (2007)

15. Ishai, Y., Kushilevitz, E., Ostrovsky, R., Sahai, A.: Zero-knowledge from secure
multiparty computation. In: STOC, pp. 21–30 (2007)

16. Jain, A., Krenn, S., Pietrzak, K., Tentes, A.: Commitments and efficient zero-
knowledge proofs from learning parity with noise. Cryptology ePrint Archive, Re-
port 2012/513 (2012), http://eprint.iacr.org/

17. Kawachi, A., Tanaka, K., Xagawa, K.: Concurrently secure identification schemes
based on the worst-case hardness of lattice problems. In: Pieprzyk, J. (ed.)
ASIACRYPT 2008. LNCS, vol. 5350, pp. 372–389. Springer, Heidelberg (2008)

18. Kilian, J., Petrank, E.: An efficient noninteractive zero-knowledge proof system for
np with general assumptions. J. Cryptology 11(1), 1–27 (1998)

19. Langlois, A., Stehle, D.: Worst-case to average-case reductions for module lattices.
Cryptology ePrint Archive, Report 2012/090 (2012), http://eprint.iacr.org/

20. Ling, S., Nguyen, K., Stehle, D., Wang, H.: Improved zero-knowledge proofs of
knowledge for the isis problem, and applications. Cryptology ePrint Archive, Re-
port 2012/569 (2012), http://eprint.iacr.org/

http://eprint.iacr.org/
http://eprint.iacr.org/
http://eprint.iacr.org/


Zero Knowledge Proofs from Ring-LWE 73

21. Lyubashevsky, V.: Lattice-based identification schemes secure under active attacks.
In: Cramer, R. (ed.) PKC 2008. LNCS, vol. 4939, pp. 162–179. Springer, Heidelberg
(2008)

22. Lyubashevsky, V.: Lattice signatures without trapdoors. In: Pointcheval, D.,
Johansson, T. (eds.) EUROCRYPT 2012. LNCS, vol. 7237, pp. 738–755. Springer,
Heidelberg (2012)

23. Lyubashevsky, V., Peikert, C., Regev, O.: On ideal lattices and learning with errors
over rings. In: Gilbert, H. (ed.) EUROCRYPT 2010. LNCS, vol. 6110, pp. 1–23.
Springer, Heidelberg (2010)

24. Lyubashevsky, V., Peikert, C., Regev, O.: A toolkit for ring-LWE cryptography.
In: Johansson, T., Nguyen, P.Q. (eds.) EUROCRYPT 2013. LNCS, vol. 7881, pp.
35–54. Springer, Heidelberg (2013)

25. Micciancio, D., Vadhan, S.: Statistical zero-knowledge proofs with efficient provers:
Lattice problems and more. In: Boneh, D. (ed.) CRYPTO 2003. LNCS, vol. 2729,
pp. 282–298. Springer, Heidelberg (2003)

26. Regev, O.: On lattices, learning with errors, random linear codes, and cryptography.
In: STOC, pp. 84–93. ACM (2005)

27. Stern, J.: A new identification scheme based on syndrome decoding. In: Stinson,
D.R. (ed.) CRYPTO 1993. LNCS, vol. 773, pp. 13–21. Springer, Heidelberg (1994)



Zero Knowledge with Rubik’s Cubes

and Non-abelian Groups

Emmanuel Volte1, Jacques Patarin2, and Valérie Nachef1

1 Department of Mathematics, University of Cergy-Pontoise, CNRS UMR 8088
2 Avenue Adolphe Chauvin, 95011 Cergy-Pontoise Cedex, France

2 PRISM, University of Versailles
45 Avenue des Etats-Unis, 78035 Versailles Cedex, France

emmanuel.volte@u-cergy.fr

Abstract. The factorization problem in non-abelian groups is still an
open and a difficult problem [12]. The hardness of the problem is illus-
trated by the moves of the Rubik’s cube. We will define a public key iden-
tification scheme based on this problem, in the case of the Rubik’s cube,
when the number of moves is fixed to a given value. Our scheme consists
of an interactive protocol which is zero-knowledge argument of knowl-
edge under the assumption of the existence of a commitment scheme. We
will see that our scheme works with any non-abelian groups with a set
of authorized moves that has a specific property. Then we will generalize
the scheme for larger Rubik’s cubes and for any groups.

Keywords: zero-knowledge, Rubik’s cube, authentication, symmetric
group, cryptographic protocol, factorization.

1 Introduction

The puzzles based on the Rubik’s cube meet a great success. Generally speak-
ing, Rubik’s cube’s owners try to solve the following problem: how to recover the
initial position of the cube from a random position. At first sight, this problem
seems very difficult, but there exist efficient algorithms to solve it [2]. Neverthe-
less, several other problems with the cube and its neighboring puzzles seem to
be really difficult from a computing point of view. For example if we impose that
the number of moves is equal (or inferior) to a fixed value d that makes unique
or almost unique the moves that must be done to recover the cube, then we
obtain a difficult problem. In [2] it is showed that finding an optimal solution
(i.e. the minimum factorization) is NP-hard if we ignore some of the facets of
the cube n× n× n. Moreover the size of the Rubik’s group grows exponentially
with the number of facets. In appendix A, we will also discuss some connections
between these problems and NP-complete or NP space problems.

Consequently, we can try to build some public key zero knowledge argument of
knowledge protocols with a proven security linked to these difficult problems (and
also on the existence of a commitment scheme). Then we can use this protocol
to do identification. It is well known that there exist cryptographic algorithms

M. Abdalla, C. Nita-Rotaru, and R. Dahab (Eds.): CANS 2013, LNCS 8257, pp. 74–91, 2013.
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transforming every NP problem into a zero knowledge authentication protocol
[5]. The theoretical way to do this is polynomial but nevertheless generally not
efficient at all. This is why we will present and study some specific algorithms
in this article, which can be used for practical cryptography and with a proven
security based on some difficult well-known problems of the Rubik’s cube.

Our algorithm is the first serious attempt to make zero knowledge argument of
knowledge with the Rubik’s cube. There were obvious ways to do zero-knowledge
with this toy. For example, we can scramble the cube and memorize all the
moves, then we can prove that we can recover the initial position under a scarf.
Nevertheless, since some people can recover the cube even without seeing it, this
is not a sure way to authenticate oneself. As Colmez says in [1], the Rubik’s cube
is one of the rare groups we can walk with in the street.
Organization of the paper. In Section 1 we introduce all the notations and the
definition of the repositioning group that is crucial to write all our schemes. In
Section 2 we define the problem we will use for our zero knowledge argument of
knowledge, this problem is equivalent to the factorization with a fixed number
of elements from a given set. We also see the generic attack for this problem. In
Section 3, we show how to construct a scheme that is zero knowledge argument
of knowledge, in the case of the Rubik’s cube 3×3×3, and we prove that this still
works for any group and any set of generators that has a repositioning group.
The scheme we will propose is an interactive one with 3 pass. We use a standard
cut-and-choose technique.

– First, the Prover hides each move of the solution thanks to a rotation of the
cube. By doing this, we still can see that she makes a basic move but without
knowing which one.
Then she masks all the turned moves with a unique random permutation
that preserves the composition. Finally, the Prover only sends commitments
of the rotation, of the random permutation used for masking and of all the
masked permutations.

– The verifier asks for some verification. She has the choice of verifying the
entire composition or only one of the turned moves. She can not check 2
moves simultaneously because she will have the information of the equality
or not of the two initial moves.

– The prover reveals some of the permutations and the Verifier checks the
answer, then accepts or not.

In Section 4, we try to do this with the Rubik’s cube 5×5×5. The difficulty is that
the set of generators has no repositioning group. By working in larger groups,
we manage to construct a scheme that is suitable for cryptographic applications,
and that is quite efficient. In Section 5, we first generalize the scheme for any
group and any set of generators, and then for a number of moves that is not
constant but inferior to a given value, for example the diameter of a group.
There are recent papers [14] that help us give an approximation of this value for
some groups and for some set of generators. These works try to answer Babai’s
conjecture on the diameter of simple groups. In the case of the Rubik’s cube, in
[2] it is shown that “God’s number”, i.e. the minimal number of moves to solve
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a Rubik’s cube n × n × n is Θ(n2/log(n)). At last, in Section 7, we will briefly
discuss the efficiency of our schemes.

2 Notations and Definitions

2.1 Mathematical Standard Notations and Definitions

Most of the following notations can be found in [8], which is an original way to
learn algebra with toys such as the Rubik’s cube and the Merlin’s machine.

For a finite set X , SX is the symmetric group of X . In the particular case
X = {1; 2; . . . ;n} where n ∈ N∗, we call this group Sn. For σ, σ

′ ∈ SX , we use
the classic notation σσ′ to design the composition σ′ ◦ σ.

When G is a group, and (g1, g2, . . . , gα) ∈ Gα, then 〈g1, g2, . . . , gα〉 is the
subgroup generated by g1, g2, . . . gα.

We say thatF = {g1, . . . , gα} is a setofgeneratorsofGwhen 〈g1 , g2, . . . , gα〉 =
G. This set is symmetric when for all σ ∈ F we have σ−1 ∈ F .

When we have a symmetric set of generators F of a group G, we set that two
elements g and g′ are in relation if and only if g−1g′ ∈ F . The corresponding
graph is called the Cayley graph of the group.

Let G be a group, the conjugation on G is defined by

∀(σ, τ) ∈ G2, στ = τ−1στ

Moreover we have:

∀(σ, σ′, τ, τ ′) ∈ G4, (στ )τ
′
= σττ ′

, στσ′τ = (σσ′)τ

We can also write σG = {σg|g ∈ G} .

2.2 Mathematical Representation of the Rubik’s Cube

For the Rubik’s cube, we can write a number on each facet except the centers.
In this paper we consider that all the centers are white or void (there exists in
fact a physical cube that has no centers). Not taking in consideration the centers
will not really change the complexity of all the problems
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then we define 6 permutations of G = S48 which are the basic clockwise quarter
turns of the faces:

F = (17,19,24,22)(18,21,23,20)(6,25,43,16)(7,28,42,13)(8,30,41,11)
B = (33,35,40,38)(34,37,39,36)(3,9,46,32)(2,12,47,29)(1,14,48,27)
L = (9,11,16,14)(10,13,15,12)(1,17,41,40)(4,20,44,37)(6,22,46,35)
R = (25,27,32,30)(26,29,31,28)(3,38,43,19)(5,36,45,21)(8,33,48,24)
U = (1,3,8,6)(2,5,7,4)(9,33,25,17)(10,34,26,18)(11,35,27,19)
D = (41,43,48,46)(42,45,47,44)(14,22,30,38)(15,23,31,39)(16,24,32,40)

after the move σ, the facet i ∈ {1, 2, . . . , 48} is at the σ(i) position.
The Rubik’s cube group is GR = 〈F,B, L,R, U,D〉 ⊂ S48. If you want to

simulate the Rubik’s cube, this can be done by using SAGE [16].

2.3 Cryptographic Notations

When X is a finite set, x ∈R X means that we take a random element in X
with a uniform probability.

In an interactive Protocol, there are two entities: the prover and the verifier.
The Prover wants to convince the verifier that she knows a secret. Both interact
and at the end, the verifier accepts or refuses. In Zero-Knowledge Protocols there
is a possibility of fraud. A cheater will be able to answer some of the questions
(but not all of them). The protocol must be designed such that an answer to
one of the questions does not give any indication on the secret but if someone is
able to answer all the questions then this will reveal the Prover’s secret. We will
use the following definitions in order to describe the properties that we want to
be satisfied by our protocols:

1. The protocol has perfect correctness if a legitimate prover is always ac-
cepted.

2. The protocol is statistically zero knowledge if there exists an efficient
simulating algorithm U such that for every feasible Verifier strategy V , the
distributions produced by the simulator and the proof protocol are statisti-
cally indistinguishable.

3. The protocol is proof of zero knowledge with error knowledge α if
there is a knowledge extractor K and a polynomial Q such that if p denotes
the probability that K finds a valid witness for x using its access to a prover
P ∗ and px denotes the probability that P ∗ convinces the honest verifier on
x, and px > α, then we have p ≥ Q(px − α).

In our protocols, we will need string commitment schemes. A string commit-
ment function is denoted by Com. The commitment scheme runs in two phases.
In the first phase, the sender computes a commitment value c = Com(s; ρ) and
sends c to the receiver, where s is the committed string and ρ is a random
string. In the second phase, the sender gives (s, ρ) and the receiver verifies if
c = Com(s; ρ). we require the two following properties of Com.
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1. The commitment scheme is statistically hiding if for uniform (x, ρ) and
(x′, ρ′) the distributions Com(x, ρ) and Com(x′, ρ′) are statistically indis-
tinguishable. This means that the commitment to x reveals (almost) no
information on x even to an infinitely powerful Verifier.

2. The commitment scheme is computationally binding if the probability to
that two different values (x, ρ) and (x′, ρ′) produce the same c = Com(x, ρ) =
Com(x′, ρ′) is negligible in polynomial time, i.e. the chances to change the
committed value after the first phase are very small.

A practical construction of such a commitment is given in [7].
For all of our schemes we will use an interactive commitment, it means that

we have to send a key to unlock the commitment. We use the notation Comk(x)
to design such a commitment of x with the key k where k is a 80-bit random
word.

2.4 The Repositioning Group

In this Section, we will define precisely the repositioning group for a given set of
elements F . We will see in the next Sections that the existence of this group is
the keystone of our schemes.

Definition 1. Let F = {f1, . . . , fα} ⊂ G, where G is a group. If there exists a
subgroup H ⊂ G such that f1

H = {h−1f1h | h ∈ H} = F then H is called a
repositioning group of F .

Remark. In the case of the Rubik’s cube, with F = {F,B, L,R, U,D}, it is easy
to see that we can go from one move to another by rolling the cube like a dice.

Proposition 1. We suppose F has a repositioning group H. If we choose τ ∈R
H, P (fi

τ = fj) =
1
α for all (i, j) ∈ {1; . . . ;α}2.

Proof. Since f1
H = F , for all i ∈ {1, . . . ;α} there exists τi ∈ H such that

f1
τi = fi. Then, for all j ∈ {1; . . . ;α} , fiτi

−1τj = fj . We denote by τij = τi
−1τj .

Now we have the equivalence:

fi
τ = fj ⇐⇒ fk

τkiττj� = f�

for all k, 
 ∈ {1; . . . ;α}. So {τ ∈ H | fiτ = fj} and {τ ∈ H | fkτ = f�} are in
bijection and have the same cardinality.

Remark. It is not easy to find a repositioning group in the general case. When
the group elements in F are not conjugate of each other, it is even impossible.
We will still see a way to do this for the general case (i.e. for any set of generators
F), with the help of an extended set. Nevertheless the general construction is
often not the optimal solution. For example, in the case of the Rubik 5× 5 × 5
the orientation preserving group of the cube enables us to work on S144

2 instead
of S144

12.
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3 Various Factorization Problems

For all the following problems, we have a finite groupG with a set of α generators
F = {f1; f2; . . . ; fα}, containing all authorized permutations. Of course we have
fi 	= fj, if i 	= j.
id ∈ G is the neutral element of G.

Problem 1: Solving the puzzle.
Given x0 ∈ G, find d ∈ N and i1, i2, . . . , id ∈ {1; 2; . . . ;α} such that

x0fi1fi2 . . . fid = id

Remark. This problem is equivalent to the factorization problem in G with
elements of F because:

x0fi1fi2 . . . fid = id ⇐⇒ x−1
0 = fi1fi2 . . . fid

Problem 2: Solving the puzzle in a given number of moves.
Given x0 ∈ G and d ∈ N∗, find i1, i2, . . . , id ∈ {1; 2; . . . ;α} such that

x0fi1fi2 . . . fid = id

Proposition 2. We can find a solution of problem 2 with O(dαd/2) computa-
tions if d is even.

Proof. This is a meet-in-the-middle attack. We notice that fi1fi2 . . . fid = x0 is
equivalent to x0fi1 . . . fid/2 = (fid)

−1 . . . (fid/2+1
)−1.

So, for each i1, i2, . . . , id/2 ∈ {1, . . . , α} we compute

Yi1i2...id/2 = x0fi1fi2 . . . fid/2

and Zi1i2...id/2 = (fi1)
−1(fi2)

−1 . . . (fid/2)
−1

Then we look for a collision between Y and Z.

Remark. There are other techniques of factorization [12] that are using a tower
of groups. Nevertheless these techniques do not lead us to the minimal solution.

In this paper we will study how to transform these difficult problems into a
zero-knowledge argument of knowledge identification scheme. In other words: we
will study how to prove that we have a solution of one of these problems without
revealing anything of the solution.

4 With Rubik’s Cube 3 × 3 × 3

4.1 Introduction

We will first describe a zero-knowledge authentication scheme based on Rubik’s
classical cube 3×3×3. We do this in order to introduce the main ideas with this
relatively simple example. However with Rubik’s cube 3× 3× 3 the complexity
of problem 2 is much smaller than 280 and therefore we cannot use it for crypto-
graphic security (for cryptographic applications we will use the Cube 5 × 5× 5
as we will see below).
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We have in fact about 43.2× 1018 different positions for this Rubik’s cube, so
about 261 or 625. If we consider that half a turn counts as one move, we know
that God’s number (i.e. the minimal number of moves necessary to unscramble
any position of the Rubik’s cube) is 20 [15]. Nevertheless in our case we do not
authorize un-clockwise quarter turns and half turns. So it seems reasonable to
choose for problem 2 the value d = 24, and the security will be about 624/2 =
612 ≈ 230 computations.

4.2 Hiding the Secret

First we have to hide the permutation we make to go from a position to another,
without hiding that we make one authorized permutation, i.e. one element of F .
An easy way to do this with the cube 3× 3× 3 is to roll the cube like a dice (we
always consider that the centers of the faces do not move or do not exist).

Let H be the group of the orientation-preserving symmetry of the cube. We
have H = 〈h1, h2〉 where h1 is the cube rolling on its back , and h2 the cube
laying on the table but turning as a whole one clockwise quarter of a turn. To
be more precise we have:

h1 = RL−1(2, 39, 42, 18)(7, 34, 47, 23)

h2 = UD−1(13, 37, 29, 21)(12, 36, 28, 20)

It is easy to check that |H | = 24, because for each face up, we have 4 choices for
the face in front. Moreover we have UH = F .

Proposition 3. If f ∈R F and τ ∈R H, then f τ is a random variable with a
uniform law on F .

Proof. This is a direct consequence of Proposition 1.

Illustration. Let x0 ∈ GR = 〈F〉 be one position of the cube and x1 = x0f , the
following diagram is commutative (i.e. fτ = τf τ ):

x0
f−−−−→ x1

τ

⏐⏐ τ

⏐⏐ 
x0τ

fτ

−−−−→ x1τ

Secondly, we want to hide each of the conjugate authorized moves, at each
step of the resolution. For this we use a mask, a random permutation of G called
σ0. If fi1 , fi2 , . . . fid are the secret moves, we hide their conjugate moves this way
(by defining σj for all j ∈ {1; 2; . . . ; d}): fi1τ = σ0σ

−1
1 , then fi2

τ = σ1σ
−1
2 , . . . ,

and fid
τ = σd−1σ

−1
d . So we have fi1 . . . fid = σ0σd

−1.
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4.3 ZK Protocol

In this subsection,we will give the general protocol for any group G, any set of
generators F of a large subgroup GR of G, and we suppose that this set has a
repositioning group H ⊂ G. We will prove in the next subsection that it is a
zero knowledge argument of knowledge scheme.

We can also use this protocol for the puzzle called S41 described in appendix C.
Public:
– A group G.
– A set F = {f1, . . . , fα} ⊂ G of generators of GR

– A repositioning group H ⊂ G such that f1
H = F .

– d ∈ N, d ≥ 3
– G′ subgroup of G generated by F and H . G′ = 〈F , H〉.
– K a set of keys, |K| ≥ 280.

Secret key: i1, i2, . . . , id ∈ {1, 2, . . . , α}.
Public key: x0 = (fi1fi2 . . . fid)

−1

Scheme (one round):

Prover Verifier
Picks τ ∈R H, σ0 ∈R G′,
k∗, k0, k1, . . . , kd ∈R K
Computes
∀j ∈ {1, . . . , d},

σj = (fij
τ )−1σj−1

c0 = Comk∗(τ)
∀i ∈ {0, . . . d},

si = Comki(σi)
c0, s0, . . . , sd

−−−−−−−−−−−→
Picks q ∈R {0, . . . d}

q
←−−−−−−−−−−−

τ , σ0

Case q = 0 −−−−−−−−−−−→ Computes
k∗, k0, kd σd = τ−1x0τσ0

Checks
τ ∈ H, Comk∗(τ) = c0,
Comk0(σ0) = s0,
Comkd(σd) = sd
If all tests ok then accepts
else rejects.

fiq
τ , σq

Case q �= 0 −−−−−−−−−−−→ Computes
kq−1, kq σq−1 = fiq

τσq

Checks
fiq

τ ∈ F ,
sq−1 = Comkq−1(σq−1)
sq = Comkq (σq)
If all tests ok then accepts
else rejects.
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Remark. Since H is a small group, we can change a little the protocol by not
sending c0 in the first phase, and only sending σ0 in the first case of the third
phase. Then the Verifier will try all the possible values for τ . So it is quite obvious
that it is not the size of H that secures the scheme.
Illustration. If we define for all k ∈ {1; . . . ; d}, xk = xk−1fik , we have the follow-
ing commutative diagram:

x0
fi1−−−−→ x1

fi2−−−−→ . . . xd−1

fid−−−−→ xd = id

τ

⏐⏐ τ

⏐⏐ τ

⏐⏐ τ

⏐⏐ 
x0τ

fi1
τ

−−−−−→
σ0σ1

−1
x1τ

fi2
τ

−−−−−→
σ1σ2

−1
. . . xd−1τ

fid
τ

−−−−−−→
σd−1σd

−1
τ

With q = 0, the Verifier will check that the exterior composition way is correct:

x0 xd = id

τ

⏐⏐ τ−1

!⏐⏐
x0τ −−−−−→

σ0σd
−1

τ

With q 	= 0, the Verifier checks one of the meshes:

fiq−−−−→

τ

⏐⏐ τ

⏐⏐ 
fiq

τ

−−−−−−→
σq−1σq

−1

Here τ is not revealed, we just have a random element σq−1 of G and a random
element of F , so we give no information on the secret.

4.4 Proof of ZK Protocol

Correctness. Obviously, a legitimate Prover will always be accepted.

Proof of Zero Knowledge with Error Knowledge d
d+1

. We first suppose

that a Prover can answer correctly for all possible values of q (i.e. is accepted by
the Verifier). Since the commitment scheme is computationally binding, we can
state that:

– σ0 revealed for q = 0 is the same as the one computed for q = 1.
– σi for i ∈ {1; . . . ; d− 1} revealed for q = i is the same as the one computed

for q = i+ 1.
– σd revealed for q = d is the same as the one computed for q = 0.

For all i ∈ {1; . . . ; d}, the Verifier has checked that σi−1σi
−1 ∈ F , so let ui ∈

{1; . . . ;α} such that fui = σi−1σi
−1.
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With q = 0, the Verifier established id = x0τσ0σd
−1τ−1, so

id = x0τ(σ0σ1
−1)(σ1σ2

−1) . . . (σd−1σd
−1)τ−1

= x0τfu1fu2 . . . fud
τ−1 = τfu1τ

−1τfu2τ
−1 . . . τfud

τ−1

= x0fu1

τ−1

fu2

τ−1

. . . fud

τ−1

Hence we have a solution of the initial problem.
Therefore, if we consider a Cheat Prover i.e. a person who does not have a

solution to the initial problem, there is at least one of the Verifier’s request (one
of the q value) that will lead to a rejection. So the probability that the Cheat
Prover can convince a Honest Verifier is less than d

d+1 .

Statistically Zero Knowledge. Firstly we show that for a legitimate prover,
each answer has a uniform probability over the corresponding set.

• q = 0.
The Prover gives (τ, σ0, k∗, k0, kd) ∈ H ×G′ ×K3 which are all independent
random values over the concerning set.
• 1 ≤ q ≤ d.
The Prover gives (fiq

τ , σq, kq−1, kq) ∈ F×G′×K2. Since we have fi1 . . . fiq =

τσ0σ
−1
q τ−1, if we define h = τ−1fiq

−1 . . . fi1
−1τ , then we have σq = hσ0 with

σ0 picked at random in G′, so σq is a random permutation independent from
fiq

τ . Moreover, since τ ∈R H , fiq
τ is uniformly chosen in F (see section 4.2,

or below Proposition 1 for the generalization). So we have again a uniform
probability over F ×G′ ×K2.

Secondly, we construct a black-box simulator which takes x0 without knowing the
secret, and interacts with a Cheating Verifier CV. We show that the simulator
can impersonate the honest prover with probability 1

d+1 . The simulator randomly
chooses a value q∗ ∈R {0; 1; . . . ; d}, this is a prediction what value CV will not
choose. We consider two cases:

• q∗ = 0
The simulator picks τ ∈R H , f ′

1, . . . , f
′
d ∈R F and σ0 ∈R G′. Then it com-

putes for all k ∈ {1; . . . ; d} σk = f ′
k
−1

σk−1.
• 1 ≤ q∗ ≤ d
It picks f ′

1, f
′
2, . . . , f

′
q∗−1, f

′
q∗+1, . . . f

′
d ∈R F . Then it picks τ ∈R H and σ0 ∈R

G′. It computes f ′
q∗ ∈ G′ (not necessary in F) such that x0f

′
1 . . . f

′
d = id,

and for all k ∈ {1; . . . ; d} σk = f ′
k
τ−1

σk−1

It is easy to check that, except for q = q∗, every request of CV will have a
satisfying answer. So the probability that it fails is 1

d+1 . Moreover, when only the
successful interactions are recorded, the communication tape is indistinguishable
from what would have been obtained from an execution performed by the real
Prover.



84 E. Volte, J. Patarin, and V. Nachef

4.5 Number of Rounds for the Cube 3 × 3 × 3

We quit the general case to consider our classical cube 3 × 3 × 3. Here we will
discuss of the number of times (r) the prover will do the protocol (one protocol
is considered as one round), in order to prove with a good probability that she

knows the secret. If we set this probability to 1− 2−m, we must have
(

d
d+1

)r
≤

2−m, so it gives r ≈ md ln(2). For example, with m = 30 and d = 24, only 500
rounds are necessary.We simulate this scheme with a 3GHz computer, and a non-
optimized algorithm (we used a rather slow hash function for the commitment),
and it has token less than 1 second to simulate 100 times all the protocol.

5 Rubik’s Cube 5 × 5 × 5

For practical authentication we need a puzzle with at least 2160 different states.
The Rubik’s cube 4 × 4 × 4 has (only) about 2152 positions. Thus, we choose
the next cube, i.e. the cube 5 × 5 × 5 which has about 2247 different positions
(computation with Sage).

5.1 Mathematical Representation

We write numbers on each facet, except the centers. For the manipulation of
the cube, we consider only 12 basic permutations. We will choose here the
6 clockwise quarter turns of the upper crown of each face (U,D, F,B,R, L),
and the 6 clockwise quarter turns of the first intermediary crown of each face
(U1, D1, F1, B1, R1, L1). Nevertheless other choices are possible. We have:

GR = 〈U,D, . . . , L, U1, D1, . . . , L1〉 ⊂ S144

5.2 Hiding the Secret

Just rolling the cube is not enough to hide an authorized move. This will only
shuffle independently (U,D, F,B,R, L) and (U1, D1, F1, B1, R1, L1). We need a

Fig. 1. Twin cubes, move (R1, R)
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new idea. A way to do this is to duplicate the cube, and so we will consider the
group GR ×GR. Then, each time we use R1 on the first cube, we will use R on
the second cube (see figure 1), each time we use R on the first cube, we will use
R1 on the second cube, each time we use L1 on the first cube, we use L on the
second cube and so on.

We will call e the exchange of the two cubes, e is an extra element that
exchanges the coordinates:

e2 = id and ∀(a, b) ∈ GR ×GR, e(a, b)e = (b, a).

To prove the existence of such an element, we can use an injective group
morphism from G2 to S288, because we can decide that the facets of the second
cube are numbered from 145 to 288.

Then e = (1,145)(2,146) . . . (144,188) satisfies the requested properties. For
convenience of notations we will still use the notation in G2.

We set F = {(U,U1), . . . , (L,L1), (U1, U), . . . , (L1, L)} and GR = 〈F 〉 ⊂
GR ×GR. The size of GR is about the same as GR. A computation with Sage
gives |GR| ≈ 2300 and |GR| ≈ 2364. We will hide the move by rolling in the
same way the two cubes, and exchanging (or not) the two cubes. So we set
H = 〈(h1, h1), (h2, h2), e〉. This time our repositioning group H has 48 ele-
ments: the 24 previous repositioning moves, and all these elements combined
with the exchange of the cube (before or after, it has no importance).

5.3 ZK Protocol

The protocol in the previous section works for every set of generators with a
repositioning group. In this case, we manage to construct a repositioning group
by considering the group G2 (or G3 for the cubes 6 × 6 × 6 and 7 × 7 × 7, Gn

for the cubes (2n)3 and (2n+ 1)3). We will see in the next section that we can
construct in all the cases, a repositioning group by considering the group Gα.
For the cube 5× 5× 5, we manage to diminish the size of the group because the
authorized moves already have some symmetry (rolling the cube shuffles some
of the moves).

Then we need to adapt our scheme to the new problem: we will only care to
rearrange the first cube, in other words, when we check for q = 0 the external
way, we just look at the first coordinate in the set Gn (n = 2 for the cube
5 × 5 × 5). See appendix B for the details of the scheme. The proof of the zero
knowledge argument of knowledge is almost the same as the previous one.

5.4 Choice of d and the Number of Rounds for the Cube 5 × 5 × 5

If we follow the generic attacks in Proposition 2, we see that we can choose
d = 42. We have in fact 1242 ≈ 2150 which is much smaller than the cardinality
of the total number of positions. Nevertheless most of the times when we choose
i1, i2 ..., id the solution is not unique because we can invert the permutations
that commute. Then we can impose for the secret that two consecutive chosen
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permutations of F must be equal or do not commute. Then there are only

12 × 9d−1 possible combinations. With d = 48 we have 12 × 947 ≈ 2152, and

d× 9d/2 > 280.
The number of necessary rounds is 988 , since

(
47
48

)988 ≤ 2−30.

6 Generalization with Any Group

6.1 General Method for Any Set of Generators

Let G be a group, α ∈ N (α ≥ 2), F = {f1, . . . , fα} such that 〈F〉 = G. We work
with the group Gα and define for all i ∈ {1; . . . ;α}

f i = (fi, fi+1, . . . , fα, f1, . . . fi−1)

and we define an extra element h of Gα that verifies:

hα = id and ∀(a1, . . . aα) ∈ Gα, h−1(a1, . . . , aα)h = (a2, . . . , aα, a1)

Again, we can prove the existence of such an element thanks to an injective
group morphism from Gα to Sαn, constructed with an injective morphism from
G to Sn, because we know from the well-known theorem of Cayley that every
finite group can be considered as a subgroup of a symmetric group [11]. Then h
is defined in Sαn by:

∀i ∈ {1; . . . ;αn}, h(i) =

{
i+ n if i ≤ (α− 1)n
i− (α− 1)n if i > (α− 1)n

Then H = 〈h〉 is a repositioning group of F = {f1; . . . ;fα}.
We can use appendix B to construct our scheme.

6.2 ZK with Finite Factorization in Symmetric Groups

Here we consider the case where we do not fix the number of factors, we just give
an upper bound of it. This case may seem more difficult than the previous ones,
it is in fact a particular case of the previous subsection. We just have to add
f0 = Id to the set of authorized functions, and fix the value d at the diameter of
the group, i.e. the maximum distance between two vertices of the Cayley graph
of the group. Then we use the same techniques as in previous subsection, it
means that we work in Gα+1 with some extra elements. We will give details of
this technique in an extended version of the paper.

7 Efficiency

We suppose we have a symmetric group G whose cardinal is superior to 2160

and with a system of generators F = {f1; f2; . . . ; fα} so that there exists a

permutation h of order α with fi = f1
hi−1

for all i ∈ {1; . . . ;α}. We denote
H = 〈h〉 and H is a repositioning group of F . The system parameters can
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be built from only h and f1, so it can take only 320 bits, but in this case we

have to compute at each round f1
hj

and it will cost about ! 32 ln2 α" products of
permutations (22 if α = 9240).

The secret key is an element (i1, i2, . . . , id) of {1; . . . ;α}d, so we need !d log2(α)"
bits.

The public key is x0 = f−1
id

. . . f−1
i1
∈ G, it takes about 160 bits if the cardinal

of G is close to 2160.
In order to compare with existing schemes, we will compute these values for

the puzzle S41 (see appendix C). We mention in the following table the two
different ways to implement S41, the first one with all the group H in memory,
and the second one with only one generator of H and one element of F . We will
denote this last one by S41′. We can see in the following table that in terms of
performance, our scheme is not so different from the other ones. Moreover, S41′

is the most compact of all the schemes, in terms of system parameters. And in
both cases, no arithmetic operations are needed.

Table 1. Comparison of 3-pass schemes on 80-bit security against key-recovery attack
when the impersonation probability is less than 2−30

SD [17] CLE [18] PP [13] S41 S41′

round 52 52 73 260 260
system parameter (bit) 122,500 4,608 28,497 1,478,560 320

public key (bit) 350 288 245 165 165
secret key (bit) 700 192 177 165 165

communication (bit) 59,800 45,517 100,925 673,180 673,180
arithmetic op. (times/field) 2/S700 4/S24 2/S161,S177 0 0
permutations (times/size) 2/S700 4/S24 2/S161,S177 3/S41 23/S41 (***)
hash function (times) 4 4 8 14 (*) 14 (*)

2.08 (**) 2.08 (**)
best known recovery attack 287 284 > 274 282 282

(*) Prover (**) Verifier (***) mean value

8 Conclusion

In this paper, we have studied several authentication schemes built on various
factorization problems in non abelian groups. Firstly we proposed zero-knowledge
protocols based on different problemswith the Rubik’s cube and several other gen-
eralized cubes. Then we led the generalization for any non abelian group.

The keystone to our constructions relies on the existence of a repositioning
group. Whereas the construction of such a group is quite natural for the Rubik’s
cube 3×3×3, the existence of the repositioning group needs a special construction
for generalized Rubik’s cubes. We also explained how to proceed in the general
case. Besides, we showed how to construct a random puzzle over a small set that
is suitable for the general scheme and can be used for a security in 280.

Moreover, it is also possible to transform these authentication schemes into
signature schemes with the standard transformation used in the “Fiat-Shamir”
protocol with a hash function [3].



88 E. Volte, J. Patarin, and V. Nachef

Our constructions are much more efficient than those obtained with general
process [5]. Other puzzles, not mentioned here, can be used in the same way for
authentication, but there exist puzzles based on some PSpace complete problems
or too dissymmetric puzzles that would be worth having specific analysis.
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A Possible Connections between NP Complete, NP
Space and Rubik Problems

In section 3 we have seen several problems based on the Rubik’s cube or on
generalized Rubik’s cubes. When one of the parameters of these puzzles (for
example the size n of the cube) becomes large, we wonder how will grow the
complexity, asymptotically speaking. We notice that we do not know if some of
these problems are NP-complete yet (cf [9] p. 27). Moreover, it is plausible that
they are not NP-complete because they have a power of description too limited
to describe all the problems of the NP class.

Nevertheless, as we will explain further, some of NP-complete problems have
a real similarity with the Rubik’s cubes puzzles. So we can consider that these
problems, used in this article for authentication, are part of a neighboring class,
or a larger class, which is proved NP-complete or NP-space. This is not a proof
of the difficulty of Rubik’s cube related problems, but it is an indirect argument
suggesting it could be true.
Example 1 From [4] p. 280 and [10] we know that the problem “Finite Function
Generation” is P-space complete.
Finite Function Generation
INSTANCE: Finite set A, a collection F of functions f : A→ A and a specified
function h : A→ A.
QUESTION: Can h be generated from the functions in F by composition ?
Remark. We can notice that here the number of composition functions to be
found is not considered, unlike for the Rubik’s cube problems where this value
d seems to be critical for the complexity.
Example 2 From [4] p. 213, we know that the problem “Longest path” is NP
complete.
LONGEST PATH
INSTANCE: Graph G = (V,E), length l(e) ∈ Z+ for each e ∈ E, positive integer
K, specified vertices s, t ∈ V
QUESTION: Is there a simple path in G from s to t of length K or more, i.e.
whose edge lengths sum to at least K ?
Remark. This problem remains NP complete if l(e) = 1 for all e ∈ E. There-
fore this problem has some similarities with our Rubik problems for going from
one position to another. However, as noticed in [4] p. 79 this problem becomes
polynomial when we change “of length K or more” by “of length K or less”.
Nevertheless if we model our graph G such that each vertex is a position of a
Rubik’s cube n × n × n, the number of vertices (i.e. possible Cubes) will grow
exponentially in n.

B Protocol When the Set of Generators Has No Obvious
Repositioning Group

Public:

– A group Gn.
– A set F = {f1, . . . , fα} of generators of GR ⊂ G
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– A set F = {f1, . . . ,fα} ⊂ Gn with f i = (f i
1 = fi, f

i
2, . . . f

i
n) for all i ∈

{1, . . . α}.
– A repositioning group H such that f1H = F .
– d ∈ N, d ≥ 3
– A group GR generated by F and H . GR = 〈F ,H〉.
– K a set of keys, |K| ≥ 280.

Secret key: i1, i2, . . . , id ∈ {1, 2, . . . , α}.
Public key: x0 = (fi1fi2 . . . fid)

−1 (or X0 = (x0, id, . . . , id))
Scheme (one round):
Prover Verifier
Picks
τ ∈R H , σ0 ∈R GR,
k∗, k0, k1, . . . , kd ∈R K
Computes
∀j ∈ {1, . . . , d},

σj = (f ij τ )−1σj−1

c0 = Comk∗(τ )
∀i ∈ {0, . . . , d},

si = Comki(σi)
c0, s0, . . . , sd
−−−−−−−−−−→

Picks q ∈R {0, . . . d}
q

←−−−−−−−−−−

τ , σ0, σd

Case q = 0 −−−−−−−−−−→ Computes
k∗, k0, kd Xd = X0τσ0σ

−1
d τ−1

Checks
Xd

1 = id
τ ∈H , Comk∗(τ ) = c0,
Comk0(σ0) = s0,
Comkd

(σd) = sd
If all tests ok then accepts
else rejects.

fiq
τ , σq

Case q 	= 0 −−−−−−−−−−→ Computes
kq−1, kq σq−1 = fiq

τσq

Checks
fiq

τ ∈ F ,
sq−1 = Comkq−1 (σq−1)
sq = Comkq (σq)
If all tests ok then accepts
else rejects.



Zero Knowledge with Rubik’s Cubes and Non-abelian Groups 91

C A New Puzzle Called S41

We will present here a new puzzle whose performances seem interesting. We call
it S41 because we work in the group G = S41, which is is the first symmetric
group whose cardinal is superior to 2160. We have in fact |G| ≈ 2165.

With SAGE, we take two random elements h and f1 in S41 until they generate

all the group. In the following chart, we can see horizontally the order of f
〈h〉
1

(α), and vertically the number of solutions for 1000 tries.

Then, we choose the instance with the biggest α, in order to have a smallest
value for d, and in consequence, the smallest value for the number of rounds of
the scheme. Here is the instance:

h = (1, 14, 39, 19, 31, 18, 37)(3, 36, 4, 23, 20, 34, 16, 25, 17, 26, 35)

(5, 13, 30, 33)(6, 7, 10)(8, 24, 15, 38, 41, 27, 11, 9)

(12, 40, 32, 21, 28)(22, 29),

and

f1 = (1, 11, 31, 6, 17, 34, 25, 24, 22, 12, 4, 28, 3, 14, 5, 27, 32, 13, 26, 8, 23, 2,

20, 41, 19, 10, 40, 15, 38, 16, 37, 39, 35, 21, 18)(7, 29, 36)(9, 30).

We set H = 〈h〉 and F = f1
H . With SAGE we have checked that F is a set of

generators of G and |H | = |F| = α = 9240. We can fix d = 12 for a security
in 82 bits. And for an impersonation probability less than 2−30 only r = 260
rounds are needed.
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Abstract. We propose a non-interactive product argument, that is more
efficient than the one by Groth and Lipmaa, and a novel shift argument.
We then use them to design several novel non-interactive zero-knowledge
(NIZK) arguments. We obtain the first range proof with constant com-
munication and subquadratic prover’s computation. We construct NIZK
arguments for NP-complete languages, Set-Partition, Subset-Sum

and Decision-Knapsack, with constant communication, subquadratic
prover’s computation and linear verifier’s computation.
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1 Introduction

By using a zero knowledge proof [20], a prover can prove the correctness of
a statement without leaking any side information. Efficient non-interactive zero
knowledge (NIZK, [4]) proofs are crucial in the design of cryptographic protocols.
A typical application is e-voting, where the voters must prove the correctness
of encrypted ballots and the servers must prove the correctness of the tallying
process. Since the voters may not be available every time when one verifies the
ballots, one cannot rely on interactive zero knowledge. Moreover, it is important
to have succinct (e.g., logarithmic in input size) NIZK proofs with efficient ver-
ification. For example, in e-voting, correctness proofs are collected and stored,
and then verified by many independent observers.

It is well-known that NIZK proofs are impossible in the standard model with-
out any trust assumptions. One usually constructs NIZK proofs in the common
reference string (CRS, [4]) model, where all parties have access to a CRS gener-
ated by a trusted third party. (We do not consider the random oracle model, since
random oracles cannot always be instantiated [9,19].) Moreover, one can only
construct succinct computationally sound proofs, also known as arguments [7].

Only a few generic techniques of constructing succinct NIZK arguments for
non-trivial languages are known, unless P = NP. In [21], Groth constructed
non-interactive witness-indistinguishable (and weakly sound, see [21]) product
and permutation arguments. He used them, together with some other argu-
ments, to construct the first succinct NIZK argument for an NP-complete lan-
guage, Circuit-SAT. The latter argument is modular, i.e., it is in a black-box
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way based on a small number of basic arguments. Let n = |C| be the circuit
size. Groth’s product and permutation arguments have CRS length and prover’s
computation Θ(n2), while the communication and verifier’s computation are
constant. (The communication is given in group elements, and the computation
is in group operations.) His Circuit-SAT argument has the same complexity
parameters, except that the verifier’s computation is Θ(n), see Table 1. (The
verifier’s computation in Lipmaa’s argument in Table 1 differs from what was
claimed in [27]. The slightly incorrect claim from [27] was also replicated in [11].
See Remark 1 on page 108.)

Lipmaa [27] improved Groth’s basic arguments. Let r3(N) = N1−o(1) be the
size of the largest known progression-free subset [14] of [N ] = {1, . . . , N}. (See
Sect. 2.) Lipmaa’s basic arguments have CRS length Θ(r−1

3 (n)) = n1+o(1), and
slightly better prover’s computation. This results straightforwardly in a more
efficient modular Circuit-SAT argument. Another important property of Lip-
maa’s arguments is the flexibility in choosing the progression-free set. For small
values of N the value r3(N) is much smaller than predicted by Elkin, [13,15].
For practically all interesting values of n, one should choose the Erdős-Turán
progression-free set [15], which results in the CRS length Θ(nlog2 3), with a very
small constant. Given any progress in the theory of progression-free sets, Lip-
maa’s arguments can become even more efficient. Thus, Groth’s and Lipmaa’s
basic arguments offer essentially optimal communication and verifier’s compu-
tation, but they are quite inefficient in other parameters. We estimate that due
to quadratic prover’s computation, they can only handle circuits of size ≤ 210.

The basic arguments of [21,27] can be used to construct other modular argu-
ments. E.g., a modular range argument was constructed in [11]. As shown in [30],
following the same framework, one can construct other basic arguments — for
example, 1-sparsity in [30] — and use them to construct efficient modular argu-
ments (shuffle in [30]). It is an important open problem to increase the library of
basic arguments even further, and to investigate for which (complex) languages
one can construct efficient arguments by using the basic arguments in a modular
manner. Moreover, the basic arguments of Groth and Lipmaa are computation-
ally intensive for the prover. It is desirable that the new basic arguments (that
at the same time have meaningful applications) were more efficient.

We construct a more efficient variant of Lipmaa’s product argument, and we
propose a new efficient shift-by-ξ argument. We then demonstrate the power of
the modular approach, by using the product argument and the shift argument
— together with some other, even simpler, arguments — to make the modular
range argument of [11] more efficient, and then to construct efficient modu-
lar arguments for Set-Partition, Subset-Sum and Decision-Knapsack (all
NP-complete languages). All new arguments have constant communication, and
significantly improved prover’s computation (Θ(r−1

3 (n) logn) versus Θ(n2) in
previous work). By using the same basic arguments, one can clearly construct
modular NIZK arguments for other languages.

More precisely, we first modify the commitment scheme from [27]. In that
commitment scheme (and thus also in all related NIZK arguments), one uses
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a progression-free set Λ of odd positive integers. When the new commitment
scheme is used, Λ can be an arbitrary progression-free set. This is important
conceptually, making it clear that one requires progression-freeness of Λ (and
nothing else) in similar arguments.

We then construct a more efficient product argument by applying two un-
related algorithmic techniques to the product argument of [27]. While not
new, these techniques help us to significantly speed up the product argument,
and thus also other arguments that we build on top of it. First, we use Fast
Fourier Transform (FFT, [12]) based polynomial multiplication [17] to reduce
the prover’s computation from Θ(n2) to n1+o(1) Zp-multiplications. In addi-
tion, one has to evaluate two Θ(n)-wide and two Θ(r−1

3 (n))-wide bilinear-group
multi-exponentiations. Due to this, the new product argument has prover’s com-
putation and CRS length n1+o(1). We note that FFT-based techniques are not
applicable to optimize the arguments of Groth [21], since there the largest ele-
ment of Λ is Θ(n2).

Second, we use Pippenger’s [31] algorithm to speed up multi-exponentiations.
More precisely, the prover must perform Θ(r−1

3 (n)) bilinear-group multipli-
cations to evaluate two Θ(r−1

3 (n))-wide bilinear-group multi-exponentiations
needed in Lipmaa’s product argument. This is smaller than the number of Zp-
multiplications but since bilinear-group multiplications are more expensive, we
will count them separately.

We were unable to apply FFT to the permutation argument from [27]; this
is since Lipmaa’s product argument has an FFT-friendly construction while the
permutation argument has a more complex structure. (Thus, the idea of using
FFT is not as straightforward as it may seem initially.) Instead, we propose
shift-by-ξ and rotation-by-ξ arguments that have constant communication and
verifier’s computation, and linear prover’s computation and CRS length. None
of these complexities depends on ξ. Thus, the new shift and rotation arguments
are (in some parameters) Θ(n) times more efficient than Groth’s permutation
argument. As a drawback, we prove their security only by reduction to the Φ-
PSDL assumption [11] (see Sect. 3), which is a generalization of the Λ-PSDL
assumption from [27]. To show that the Φ-PSDL assumption is reasonable, we
prove that the Φ-PSDL assumption is secure in the generic group model.

We show that based on the product and shift arguments, one can build effi-
cient modular arguments for several important languages. All our applications
use an intermediate scan argument that verifies that one vector is the scan [3] (or
sum-of-all-prefixes) of another vector. While the scan argument can be straight-
forwardly constructed from the shift argument, it serves as a very useful inter-
mediate building block.

In a range argument (or a range proof, see [6,29,26,8,10]), the prover aims to
convince the verifier that the committed value belongs to an integer range [L,H ].
Range arguments are needed in many cryptographic applications, typically in
cases where for the security of the master protocol (e.g., e-voting or e-auctions)
it is necessary to show that the encrypted or committed values come from a
correct range. Construction of non-interactive range arguments has only taken off
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Table 1. Comparison of modular NIZK arguments for NP-complete languages with
(worst-case) sublinear argument size. Here, n is the size of circuit, N = r−1

3 (n), and
N∗ = r−1

3 (
√
n), and m is the balancing parameter. Moreover, g corresponds to 1 group

element and a/m/mb/e/p correspond to 1 addition/Zp-multiplication/bilinear-group
multiplication/exponentiation/pairing.

m |CRS| |Argument| Prover comp. Verifier comp.

Circuit-SAT arguments from [21]

1 Θ(n2)g Θ(1)g Θ(n2)e Θ(n)mb + Θ(1)p

n1/3 Θ(n
2
3 )g Θ(n

2
3 )g Θ(n4/3)e Θ(n)mb + Θ(n

2
3 )p

Circuit-SAT arguments from [27]

1 Θ(N)g Θ(1)g Θ(n2)a + Θ(N)e Θ(n)e + 62p√
n Θ(N∗)g Θ(

√
n)g Θ(n3/2)a + Θ(

√
n ·N∗)e Θ(n)e + Θ(

√
n)p

Set-Partition, Subset-Sum and Decision-Knapsack arguments from the current paper

1 Θ(N)g Θ(1)g Θ(N log n)m + Θ(N)mb Θ(n)mb + Θ(1)p√
n Θ(N∗)g Θ(

√
n)g Θ(

√
n · N∗ logn)m + Θ(

√
n · N∗)mb Θ(n)mb + Θ(

√
n)p

during the last few years [32,11]. In [11], Chaabouni, Lipmaa and Zhang used the
product and permutation arguments of [27] to construct the first known constant-
communication (interactive or non-interactive) range argument over prime-order
groups. They achieved this by combining the basic arguments of [21,27] with
several different (and unrelated) techniques that were developed specifically for
range arguments in [29,10].

We use the new basic arguments to optimize the range argument from [11],
reducing the prover’s computation from Θ(h2) to Θ(r−1

3 (h)· log r−1
3 (h)) multipli-

cations in Zp, and from Θ(r−1
3 (h)) bilinear-group exponentiations to Θ(r−1

3 (h))
bilinear-group multiplications. Here, h = log2(H − L). The new argument
is the first range argument at all (i.e., not only in prime-order groups) that
has constant-length arguments and subquadratic-in-h prover’s computation. See
Sect. 6. We also note that [11] replicated the small mistake of [27] (see Remark 1)
and thus the computational complexity of the argument of [11] is larger than
claimed in [11]. We propose another modification of the range argument of [11]
to make it even more efficient. We also discuss balanced versions of the new
range argument with better prover’s computation but larger communication.

We then proceed to demonstrate the power of the “shift-and-multiply” modu-
lar approach.We also construct an efficient NIZK argument for theNP-complete
language Set-Partition (the prover knows a partition of the given set of inte-
gers to two sets that have the same sum), where the communication and com-
putation are dominated by two product arguments and one shift argument. The
new argument has parameters outlined in Table 1. In this case, n denotes the
cardinality of the public set. We also construct an NIZK argument for the NP-
complete language Subset-Sum (the prover knows a non-zero subset of the given
set of integers that sums to 0), with parameters outlined in Table 1. In this case,
n denotes the size of the input domain, that is, the public set S is known to
belong to [n]. As the final example, we show that one can combine Subset-

Sum and range arguments to construct an argument for Decision-Knapsack,
another NP-complete language.
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When using the balancing techniques of [21,27] (briefly, instead of applying the
basic arguments to length n-vectors, apply them in parallel to m length-(n/m)
vectors), if m =

√
n, we obtain balanced NIZK arguments with the parameters,

given in the last row of Table 1. (This means that by using the techniques of [21],
one can construct a perfect zap with the same complexity.)

Gennaro et al [16] recently proposed an efficient Circuit-SAT argument
based either on quadratic span programs or quadratic arithmetic programs.
Their argument has prover’s computation Θ(n log3 n), which is larger than
Θ(nlog2 3 logn) for all practical values of n. Subsequently, Lipmaa [28] im-
proved the prover’s computation to Θ(n log2 n). See also [2,1]. Since these ar-
guments explicitly rely on the efficient arithmetic-circuit representation of the
underlying language, it is unclear if they can be used to construct arguments
with subquadratic prover’s computation for other NP-complete languages. (Us-
ing polynomial-time reductions between NP-complete languages is usually not
an option since we are interested in subquadratic complexity.) Since we are
considering different NP-complete languages, direct efficiency comparison be-
tween [16,28] and the current work is not possible. Moreover, our approach seems
to be more flexible, enabling one to construct direct NIZK arguments without a
reduction to Circuit-SAT.

2 Preliminaries

Let [L,H ] = {L,L + 1, . . . , H} and [H ] = [1, H ]. By a, we denote the vector
a = (a1, . . . , an). Since for groups G and H , their direct product G×H is also a
group, we use freely notation like (g, h)a = (ga, ha). If y = hx, then logh y := x.
Let κ be the security parameter. We abbreviate probabilistic polynomial-time
as PPT, non-uniform PPT by NUPPT. Let poly(κ)/ negl(κ) be an arbitrary
polynomial/negligible function.

If Λ1 and Λ2 are subsets of some additive group (Z or Zp in this paper),
then Λ1 + Λ2 = {λ1 + λ2 : λ1 ∈ Λ1 ∧ λ2 ∈ Λ2} is their sum set and Λ1 −
Λ2 = {λ1 − λ2 : λ1 ∈ Λ1 ∧ λ2 ∈ Λ2} is their difference set. If Λ is a set, then
kΛ = {λ1 + · · · + λk : λi ∈ Λ} is an iterated sumset, k · Λ = {kλ : λ ∈ Λ} is a
dilation of Λ, and 2̂Λ = {λ1 + λ2 : λ1 ∈ Λ ∧ λ2 ∈ Λ ∧ λ1 	= λ2} ⊆ Λ + Λ is a
restricted sumset. See [35].

A set Λ = {λ1, . . . , λn} is progression-free (or non-averaging, [15,35]), if no
three elements of Λ are in arithmetic progression, that is, λi + λj = 2λk only if
i = j = k. That is, 2̂Λ ∩ 2 · Λ = ∅. Let r3(N) be the cardinality of the largest
progression-free set Λ ⊆ [N ]. Recently, Elkin [14] proved that

r3(N) = Ω((N · log1/4N)/22
√

2 log2 N ) .

Thus, for any n > 0, there exists N = o(n22
√

2 log2 n), such that [N ] contains an
n-element progression-free subset. However, for say N ≤ 225, the Erdős-Turán
progression-free subset [15], of size ≈ N log3 2, is larger. For N ≤ 123, the optimal
values of r3(N) were recently computed in [13]. For any N , the currently best
upper bound was proven by Sanders [34].
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Polynomial factorization in Zp[X ] can be done in polynomial time [25,23].
Let PolyFact be an efficient polynomial factorization algorithm that on input a
degree-d polynomial f outputs all d+ 1 roots of f .

Let y1, . . . , yM be monomials over the indeterminates x1, . . ., xN . For every
y = (y1, . . . , yM ), let L(y) be the minimum number of multiplications sufficient to
compute y1, . . . , yM from x1, . . . , xN and the identity 1. Let L(M,N,B) denote
the maximum of L(y) over all y for which the exponent of any indeterminate in
any monomial is at most B. In [31], Pippenger proved that

Fact 1. Assume that h = MN · log(B + 1) → ∞. Then L(M,N,B) =
min{M,N} logB + h/ log h · (1 +O((log log h/ logh)1/2)) +O(max{M,N}).

A bilinear group generator Gbp outputs a description of a bilinear
group [33,24,5] gk := (p,G1,G2,GT , ê) ← Gbp(1κ), s.t. p is a κ-bit prime, G1,
G2 and GT are multiplicative cyclic groups of order p (with identity elements
denoted by 1), ê : G1 × G2 → GT is a bilinear pairing such that ∀a, b ∈ Z,
g1 ∈ G1 and g2 ∈ G2, ê(g

a
1 , g

b
2) = ê(g1, g2)

ab. If gz generates Gz for z ∈ {1, 2},
then ê(g1, g2) generates GT . Also, it is efficient to decide membership in G1, G2

and GT , group operations and the pairing are efficiently computable, generators
are efficiently sampleable, and the descriptions of the groups and group elements
each are O(κ) bits long. An optimal Ate pairing [22] over a subclass of Barreto-
Naehrig curves can be implemented efficiently. Then, at security level of 128 bits,
an element of G1/G2/GT can be represented in respectively 256/512/3072 bits.

A trapdoor commitment scheme [7] Γ consists of five PPT algorithms: a
randomized common reference string (CRS) generation algorithm Gcom, a ran-
domized commitment algorithm Com, a randomized trapdoor CRS generation
algorithm Gcomtd, a randomized trapdoor commitment algorithm Comtd, and a
trapdoor opening algorithm Opentd. Here, (1) the CRS generation algorithm
Gcom(1κ) produces a CRS ck, (2) the commitment algorithm Com(ck;a; r),
with a new randomizer r, outputs a commitment value A. A commitment
Com(ck;a; r) is opened by revealing (a, r), (3) the trapdoor CRS generation
algorithm Gcomtd(1

κ) outputs a CRS cktd, which has the same distribution
as Gcom(1κ), and a trapdoor td, (4) the randomized trapdoor commitment al-
gorithm Comtd(cktd; r) takes cktd and a randomizer r as inputs, and outputs
Com(cktd;0; r), and (5) the trapdoor opening algorithm Opentd(cktd, td;a; r)
outputs an rtd, such that Com(cktd;0; r) = Com(cktd;a; rtd).

Γ is computationally binding, if no NUPPT adversary can open a commitment
to two different values. That is, for every NUPPT A,

Pr

[
ck← Gcom(1κ), (a1, r1,a2, r2)← A(ck) :
(a1, r1) 	= (a2, r2) ∧ Com(ck;a1; r1) = Com(ck;a2; r2)

]

is negligible in κ. Γ is perfectly hiding, if the commitments of any two messages
have the same distribution. That is, for any ck ∈ Gcom(1κ) and any a1,a2, the
distributions Com(ck;a1; ·) and Com(ck;a2; ·) are equal.

The new commitment scheme allows committing to vectors of predetermined
length n. Thus, one must input n (or a reasonable upper bound on n) as an
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additional parameter for the (trapdoor) CRS generation algorithms. We assume
that the value of n is implicitly obvious while committing and trapdoor opening.

Let R = {(C,w)} be an efficiently computable binary relation with |w| =
poly(|C|). Here, C is a statement, and w is a witness. Let L = {C : ∃w, (C,w) ∈
R} be an NP-language. Let n = |C| be the input length. For fixed n, we have
a relation Rn and a language Ln. A non-interactive argument for R consists of
three PPT algorithms: a common reference string (CRS) generator Gcrs, a prover
P , and a verifier V . For crs← Gcrs(1κ, n), P(crs;C,w) produces an argument π,
and V(crs;C, π) outputs either 1 (accept) or 0 (reject).

Π is perfectly complete, if for all n = poly(κ),

Pr[crs← Gcrs(1κ, n), (C,w)←Rn : V(crs;C,P(crs;C,w)) = 1] = 1 .

Π is computationally sound, if for all n = poly(κ) and NUPPT A,

Pr[crs← Gcrs(1κ, n), (C, π)← A(crs) : C 	∈ L ∧ V(crs;C, π) = 1] = negl(κ) .

Π is perfectly witness-indistinguishable, if for all n = poly(κ), if crs ∈
Gcrs(1κ, n) and ((C,w0), (C,w1)) ∈ R2

n, then the distributions P(crs;C,w0) and
P(crs;C,w1) are equal. Π is perfectly zero-knowledge, if there exists a PPT
simulator S = (S1,S2), such that for all stateful NUPPT adversaries A and
n = poly(κ) (with tdπ being the simulation trapdoor),

Pr

⎡⎢⎢⎢⎣
crs← Gcrs(1κ, n),
(C,w)← A(crs),
π ← P(crs;C,w) :
(C,w) ∈ Rn ∧ A(π) = 1

⎤⎥⎥⎥⎦ = Pr

⎡⎢⎢⎢⎣
(crs; tdπ)← S1(1κ, n),
(C,w)← A(crs),
π ← S2(crs;C, tdπ) :
(C,w) ∈ Rn ∧ A(π) = 1

⎤⎥⎥⎥⎦ .

3 New Commitment Scheme

Let Λ = (λ1, . . . , λn) ∈ Zn and υ ∈ Z. Next, we define the (Λ, υ) trapdoor com-
mitment scheme in groupGz, z ∈ {1, 2}. See Prot. 1. Intuitively, a = (a1, . . . , an)

is committed to as g
rσυ+

∑
aiσ

λi

z , where r is the randomness, gz is a generator of
Gz, and σ is the secret key. Groth [21] proposed a variant of this commitment
scheme with Λ = [n] and υ = 0, while Lipmaa [27] generalized Λ to any set Λ
with 0 < λi < λi+1 and λn = poly(κ) (while still letting υ = 0).

We use the following security assumptions from [11]. Let p be as output by
Gbp. Let Φ ⊂ Zp[X ], with d := maxϕ∈Φ degϕ, be a set of linearly independent
polynomials, such that |Φ|, all coefficients of all ϕ ∈ Φ, and d are polynomial in
κ. Let 1 be the polynomial with 1(x) = 1 for all x ∈ Zp.

Definition 1. Gbp is Φ-PDL secure in Gz, if for any NUPPT A,

Pr

[
gk := (p,G1,G2,GT , ê)← Gbp(1κ), gz ← Gz \ {1}, σ← Zp :

A(gk; (gϕ(σ)
z )ϕ∈{1}∪Φ) = σ

]
= negl(κ) .
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Gbp is Φ-PSDL secure, if for any NUPPT A,

Pr

[
gk := (p,G1,G2,GT , ê)← Gbp(1κ), g1 ← G1 \ {1},

g2 ← G2 \ {1}, σ← Zp : A(gk; (gϕ(σ)
1 , g

ϕ(σ)
2 )ϕ∈{1}∪Φ) = σ

]
= negl(κ) .

A much stronger version of the P(S)DL assumption was recently used in [2].

Theorem 1. Let Φ and d be as in above. Φ-PSDL holds in the generic group
model. Any successful generic adversary for Φ-PSDL requires time Ω(

√
p/d).

(See App. A for a proof.) As shown in [18], sublinear NIZK proofs are only
possible under non-standard (e.g., knowledge) assumptions. We use the following
knowledge assumption from [11]. For algorithms A and XA, we write (y; yX)←
(A||XA)(σ) if A on input σ outputs y, and XA on the same input (including the
random tape of A) outputs yX .

Definition 2. Let z ∈ {1, 2}. Gbp is Φ-PKE secure in Gz if for any NUPPT A
there exists an NUPPT extractor XA, s.t. the following probability is negligible:

Pr

⎡⎢⎢⎢⎣
gk := (p,G1,G2,GT , ê)← Gbp(1κ), gz ← Gz \ {1}, (α, σ)← Z

2
p,

crs← (gk; ((gz, g
α
z )

φ(σ))φ∈Φ), (c, ĉ; r, (aφ)φ∈Φ)← (A||XA)(crs) :

ĉ = cα ∧ c 	= grz ·
∏
φ∈Φ

ga�φ(σ)
z

⎤⎥⎥⎥⎦ .

One can generalize the proof from [21] to show that Φ-PKE holds in the generic
group model. Let z = 1. Consider a CRS ck that in particular specifies g2, ĝ2 ∈
G2. A commitment (A, Â) ∈ G2

1 is valid, if ê(A, ĝ2) = ê(Â, g2). The case z = 2 is
dual. The following theorem generalizes the corresponding results from [21,27].

Theorem 2. Let z ∈ {1, 2}. Let Λ = (λ1, . . . , λn) with λi < λi+1 and
λi = poly(κ). Let υ > λn be linear in λn − λ1. Let Γ be the (Λ, υ) knowledge
commitment scheme in Gz of Prot. 1. Let

ΦΓ := {Xυ} ∪ {X�}�∈Λ .

Then

System parameters: Gbp, n = poly(κ), Λ = {λ1, . . . , λn} with λi < λi+1, λi =
poly(κ), and υ > maxi λi;

Gcomtd(1
κ, n): Set gk := (p,G1,G2,GT , ê) ← Gbp(1

κ), gz ← Gz \ {1}, (σ, α̂) ← Z
2
p;

For i ∈ [n] do: (gz,λi , ĝz,λi) ← (gz, g
α̂
z )

σλi
; Set (hz, ĥz) ← (gz, g

α̂
z )

συ

; Let ck ←
(gk; (gz,λi ĝz,λi)i∈[n], hz, ĥz); Return (ck; td ← σ);

Gcom(1
κ, n): (ck; td) ← Gcom(1

κ); return ck;
Com(ck;a; ·), a = (a1, . . . , an) ∈ Z

n
p : r ← Zp; return (hz, ĥz)

r ·
∏n

i=1(gz,λi , ĝz,λi)
ai ;

Comtd(cktd; ·): r ← Zp; return (hz, ĥz)
r;

Opentd(cktd, td;a, r): return rtd ← r −
∑n

i=1 aiσ
λi−υ;

Protocol 1: The (Λ, υ) trapdoor commitment scheme in Gz for z ∈ {1, 2}
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(a) Γ is perfectly hiding, and computationally binding under the ΦΓ -PDL as-
sumption in Gz. The reduction overhead is dominated by the time to factor
a degree-(υ − λ1) polynomial in Zp[X ].

(b) If ΦΓ -PKE holds in Gz, then for any NUPPT A that outputs a valid com-
mitment C, there exists an NUPPT extractor XA that, given the input of A
together with A’s random coins, extracts the contents of C.

Proof. Perfect hiding: follows since the output of Com is a random element
of G1. Computational binding: Assume ACom is an adversary that can break
the binding property with non-negligible probability. We construct the following
adversary Apdl, see Prot. 1, against the ΦΓ -PDL assumption in G1 that works
with the same probability. Here, C is the challenger of the PDL game.

C sets gk ← Gbp(1
κ), gz ← Gz \ {1}, and σ ← Zp;

C sends (gk; (gσ
�

z )�∈{υ}∪Λ) to Apdl;
Apdl sets α̂

∗ ← Zp;

Apdl sets ck ← (gk; ((gz, g
α̂∗
z )σ

�

)�∈Λ, (gz, g
α̂∗
z )σ

υ

);
1 Apdl obtains (a, ra, b, rb) ← ACom(ck);

if a �∈ Z
n
p ∨ b �∈ Z

n
p ∨ ra �∈ Zp ∨ rb �∈ Zp ∨ (a, ra) = (b, rb) ∨ Com(ck;a, ra) �=

Com(ck; b, rb) then Apdl aborts else

2 Apdl sets δ(X) ← (ra − rb)X
υ−λ1 +

∑n
i=1(ai − bi)X

λi−λ1 .
Apdl sets (t1, . . . , tυ−λ1+1) ← PolyFact(δ);

3 Apdl finds by an exhaustive search a root σ0 ∈ {ti}υ−λ1+1
i=1 , s.t. gσ

λ1

z = g
σ
λ1
0

z ;
Apdl returns σ ← σ0 to the challenger;

end

Algorithm 1. Adversary in Thm. 2

Assume that on step 1, ACom is successful with some probability εc. Thus,
with probability εc, (a, ra) 	= (b, rb) and

graσ
υ

z ·
∏
i∈[n]

gaiσ
λi

z = grbσ
υ

z ·
∏
i∈[n]

gbiσ
λi

z .

But then

g
(ra−rb)σ

υ+
∑n

i=1(ai−bi)σ
λi

z = 1 ,

and thus

(ra − rb)σ
υ +

n∑
i=1

(ai − bi)σ
λi ≡ 0 (mod p) ,

or equivalently,

(ra − rb)σ
υ−λ1 +

n∑
i=1

(ai − bi)σ
λi−λ1 ≡ 0 (mod p) .
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Since υ > λn, δ(X), as defined on step 2 is a degree-(υ−λ1) non-zero polynomial.
Thus, the adversary has generated a non-trivial degree-(υ − λ1) polynomial

f(X) such that f(σ) ≡ 0 (mod p). Hence, Apdl can use polynomial factorization
to find all roots of δ, and one of those roots must be equal to σ. On step 3,
Apdl finds the correct root by an exhaustive search among all roots returned in
the previous step. Thus, clearly Apdl returns the correct value of sk (and thus
violates the ΦΓ -PDL assumption) with probability εc. Finally, the time of Apdl

is clearly dominated by the execution time of ACom and the time to factor δ.

Extractability: By the ΦΓ -PKE assumption in groupGz, for every committer
A there exists an extractorXA that can open the commitment in groupGz, given
access to A’s inputs and random tape. Since Γ is computationally binding, then
the extracted opening has to be the same that A used. �

Sometimes, we use the same commitment scheme in both G1 and G2. In such
cases, we will emphasize the underlying group by having a different CRS, but
we will not change the name of the commitment scheme.

Let α = ||a||∞ = maxi ai, and n ≥ 2. When using Pippenger’s algorithm,
the computation of Com(ck;a; r) is dominated by L(2, n, α) = 2 log2 α + (2 +
o(1)) · n log2 α/ log2(n log2 α) + O(n) Gz-multiplications. In our applications,
n ' log2 α (e.g., α = 2, α = n, or even α = p given that n is reasonably
large), and thus we get a simpler bound of (2 + o(1)) log2 α · n/ log2 n + O(n)
multiplications. This can be compared to 3n log2 α multiplications on average
when using the square-and-multiply exponentiation algorithm.

4 Improved Hadamard Product Argument

Next, we propose a version of the product argument of [27] with respect to the
(Λ, υ) commitment scheme of Sect. 3. As we will see (both in this section and
in Sect. 5), the value of υ depends on the construction of the argument. E.g.,
while the commitment scheme is binding for υ > λn, for the product argument
to be (weakly1) sound we need υ > 2λn−λ1. If one uses several such arguments
together (e.g., to construct a range argument or a Subset-Sum argument), one
has to choose a value of υ that is secure for all basic arguments. We also show
that one can use FFT and Pippenger’s multi-exponentiation algorithm to make
the product argument more efficient.

Assume that Γ is a trapdoor commitment scheme that commits to a =
(a1, . . . , an) ∈ Zn

p for n ≥ 1. In an Hadamard product argument, the prover aims
to convince the verifier that given commitments A, B and C, he can open them
as A = Com(ck;a; ra), B = Com(ck; b; rb), and C = Com(ck; c; rc), s.t. ci = aibi
for i ∈ [n]. A product argument has n constraints ci = aibi for i ∈ [n].

Lipmaa [27] constructed a product argument for the (Λ, 0) commitment
scheme with communication of 5 group elements, verifier’s computation Θ(n),
prover’s computation of Θ(n2) multiplications in Zp, and the CRS of Θ(r−1

3 (n))
group elements. Prot. 2 presents a more efficient variant of this argument for

1 For an explanation and motivation of weak soundness, we refer the reader to [21,27].
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the (Λ, υ) commitment scheme Γ . Similarly to [27], we use Γ in both G1 (to

commit to a, b, and c) and G2 (to commit to b and 1). Let ĉk be the CRS

in group G1, and ĉk
∗
be the dual CRS in group G2 (i.e., ĉk

∗
is defined as

ĉk, but with g1 replaced by g2). Thus, e.g., (B, B̂) = Com(ĉk; b; rb). Then,
logg1 A = raσ

υ+
∑n

i=1 aiσ
λi , logg1 B = rbσ

υ+
∑n

i=1 biσ
λi , and logg1 C = ciσ

υ+∑n
i=1 rcσ

λi . The prover also computes an element B2, s.t. ê(g1, B2) = ê(B, g2).

Thus, for (D, D̂) = Com(ĉk
∗
;1; 0) (in G2), logê(g1,g2)(ê(A,B2)/ê(C,D)) =

(raσ
υ+

∑n
i=1 aiσ

λi)(rbσ
υ+

∑n
i=1 biσ

λi)− (rcσ
υ+

∑n
i=1 ciσ

λi)(
∑n

i=1 σ
λi) can be

written — after substituting σ with a formal variableX — as a sum of two formal
polynomials Fcon(X) and Fπ(X), s.t. Fcon(X) (the constraint polynomial) has
one monomial per constraint (aibi = ci) and is 0 if the prover is honest, while
Fπ(X) has many more monomials. More precisely, Fπ has Θ(r−1

3 (n)) mono-
mials, and the CRS has length Θ(r−1

3 (n)). The honest prover has to compute

(π, π̂) ← (g
Fπ(σ)
2 , ĝ

Fπ(σ)
2 ). The PSDL and the PKE assumptions guarantee that

he cannot do it if at least one of the n constraints is not satisfied.
In [27], for soundness, one had to assume that the used set Λ is a progression-

free set of odd positive integers. By using such Λ, [27] proved that the polyno-
mials Fcon(X) and Fπ(X) were spanned by two non-intersecting sets of powers
of X . From this, [27] then deduced (weak) soundness.

We will show that by using the (Λ, υ) commitment scheme (for a well-chosen
value of υ), one can without any loss in efficiency assume that Λ is just a
progression-free set. This makes the product argument slightly more efficient.
More importantly, it makes it clear that the property that Λ has to satisfy is
really progression-freeness, and not say having only odd integers as its members.

For a set Λ and an integer υ, define

Λ̂ := {2υ} ∪ (υ + Λ) ∪ 2̂Λ . (1)

(In [27], this definition was only given for υ = 0. Then, Λ̂ = {0} ∪ Λ ∪ 2̂Λ.)
Lemma 1. Assume that Λ = (λ1, . . . , λn) with λi+1 > λi, and υ > 2λn − λ1. Λ
is a progression-free set if and only if 2 · Λ ∩ Λ̂ = ∅.

Proof. Assume Λ is progression-free. Then 2̂Λ∩ 2 ·Λ = ∅. Since υ > 2λn − λ1,
({2υ} ∪ (υ + Λ)) ∩ 2 · Λ = ∅. (In [27], υ = 0, and ({0} ∪ Λ) ∩ 2 · Λ = ∅ was
guaranteed by assuming that every integer in Λ is odd and non-zero.) Assume
now that 2 ·Λ∩ Λ̂ = ∅. Thus, 2 ·Λ∩2̂Λ = ∅, and Λ is a progression-free set. �

Lemma 2. For any n > 0, there exists a progression-free set Λ = {λ1, . . . , λn},
with λi < λi+1 and λn = poly(κ), and an integer υ > 2λn − λ1, υ linear in
λn − λ1, such that |Λ̂| = Θ(r−1

3 (n)).

Proof. Let Λ be the progression-free set from [14], seen as a subset of [λ1, λn]
(with λ1 possibly being negative), with λn−λ1 ≈ r−1

3 (n). Since υ > 2λn−λ1 is

linear in λn − λ1, Λ̂ ⊂ [2λ1, 2υ] and |Λ̂| = Θ(r−1
3 (n)). �
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CRS generation Gcrs(1
κ, n):

Set gk := (p,G1,G2,GT , ê) ← Gbp(1
κ), (g1, g2) ← (G1 \ {1},G2 \ {1});

Set σ, α̂ ← Zp, ĝ1 ← gα̂1 ;

For each � ∈ {υ} ∪ Λ do: (g1,�, ĝ1,�) ← (g1, ĝ1)
σ�

;

For each � ∈ {υ} ∪ Λ̂ do: (g2,�, ĝ2,�) ← (g2, g
α̂
2 )

σ�

;

Set D ←
∏n

i=1 g2,λi , ĉk ← (gk; (g1,�, ĝ1,�)�∈{υ}∪Λ);

Return crs ← (ĉk, g1, ĝ1, (g2,�, ĝ2,�)�∈Λ̂, D);

Argument generation P×(crs; (A, Â,B, B̂, B2, C, Ĉ), (a, ra, b, rb, c, rc)):

Define I1(�) := {(i, j) : i, j ∈ [n] ∧ i �= j ∧ λi + λj = �};
For each � ∈ 2̂Λ do: μ� ←

∑
(i,j)∈I1(�)

(aibj − ci);

(π, π̂)← (g2,2υ, ĝ2,2υ)
rarb ·

∏n
i=1(g2,υ+λi , ĝ2,υ+λi)

rabi+rbai−rc ·
∏

�∈2̂Λ(g2,�, ĝ2,�)
μ� ;

Return π× ← (π, π̂) ∈ G
2
2;

Verification V×(crs; (A, Â, B, B̂, B2, C, Ĉ), π×):
If ê(A,B2)/ê(C,D) = ê(g1, π) and ê(g1, π̂) = ê(ĝ1, π) then accept, else reject.

Protocol 2: New product argument [[(A, Â)]] ◦ [[(B, B̂, B2)]] = [[(C, Ĉ)]]

One can add any constant to all members of Λ and υ, so that the previous results
still hold. In particular, according to the previous two lemmas, the best value
(in the sense of efficiency) of λn might be 0.

We state and prove the security of the new product argument when using
the (Λ, υ) knowledge commitment scheme by closely following the claim and the
proof from [27]. The (knowledge) commitments are (A, Â), (B, B̂) and (C, Ĉ).
For efficiency (and backwards compatibility) reasons, following [27], we include
another element B2 to the statement of the Hadamard product language.

Since for any a and b, (C, Ĉ) is a commitment of (a1b1, . . . , anbn) for some
value of rc, Prot. 2 cannot be computationally sound (even under a knowledge
assumption). Instead, as in [21,27], we prove a weaker version of soundness that
is sufficient to achieve soundness of the more complex arguments. The last state-
ment of Thm. 3 basically says that no efficient adversary can output an input to
the product argument together with an accepting argument and openings to all
commitments and all other pairs of type (y, ŷ) that are present in the argument,
s.t. aibi 	= ci for some i ∈ [n]. See App:prodsec for the proof.

Theorem 3. Let n = poly(κ). Let Λ = (λ1, . . . , λn) be a progression-free set
with λi+1 > λi, λi = poly(κ), υ > 2λn − λ1, and υ = poly(κ). Let Γ be the
(Λ, υ) commitment scheme in G1. Let Φ× := {Xυ} ∪ {X�}�∈Λ̂.
1. Prot. 2 is perfectly complete and perfectly witness-indistinguishable.
2. If Gbp is Φ×-PSDL secure, then an NUPPT adversary against Prot. 2 has

negligible chance, given crs← Gcrs(1κ, n) as an input, of outputting inp× ←
(A, Â, B, B̂, B2, C, Ĉ) and an accepting argument π× ← (π, π̂) together with
a witness w× ← (a, ra, b, rb, c, rc, (f

∗
� )�∈Λ̂), such that

(a) a, b, c ∈ Zn
p , ra, rb, rc ∈ Zp, and f∗

� ∈ Zp for 
 ∈ Λ̂,

(b) (A, Â) = Com(ĉk;a; ra), (B, B̂) = Com(ĉk; b; rb), B2 = grb2,υ ·
∏n

i=1 g
bi
2,λi

,

and (C, Ĉ) = Com(ĉk; c; rc),
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(c) logg2 π = logĝ2 π̂ =
∑

�∈Λ̂ f∗
� σ

�, where ĝ2 = gα̂2 , and
(d) for some i ∈ [n], aibi 	= ci.
The reduction overhead is dominated by the time to factor a degree-(2υ−2λ1)
polynomial in Zp[X ].

Next, we will show that the product argument of this section (and also the
product argument of [27]) is computationally much more efficient than it was
claimed in [27]. In [27], the prover was said to require computing Θ(n2) multi-
plications in Zp and Θ(r−1

3 (n)) exponentiations in G2. We optimize the prover’s
computation so that it will require a significantly smaller number of multiplica-
tions and no exponentiations at all.

Theorem 4. The communication (argument size) of Prot. 2 is 2 elements from
G2. The prover’s computation is dominated by Θ(r−1

3 (n) · log r−1
3 (n)) multiplica-

tions in Zp and two Θ(r−1
3 (n))-wide multi-exponentiations in G2. The verifier’s

computation is dominated by 5 bilinear pairings and 1 bilinear-group multiplica-
tion. The CRS consists of Θ(r−1

3 (n)) group elements.

Proof. By Lem. 2, the size of the CRS is Θ(|Λ̂|) = Θ(r−1
3 (n)). From the CRS,

the verifier only needs to access g1, ĝ1, and D. Since 2̂Λ ⊆ Λ̂, the statement
about the prover’s computation follows from Fast Fourier Transform [12] based
polynomial multiplication [17] techniques. To compute all the coefficients of the
polynomial μ(X) :=

∑n
i=1

∑n
j=1:j �=i(aibj−ci)Xλi+λj , the prover executes Alg. 2.

Here, FFTMult denotes an FFT-based polynomial multiplication algorithm.

For i ← 0 to λn do: a†
i ← 0, b†i ← 0, c†i ← 0, d†i ← 0;

For i ← 1 to n do: a†
λi

← ai, b
†
λi

← bi, c
†
λi

← ci, d
†
λi

← 0;

Denote a†(X) :=
∑λn

i=0 a
†
iX

i and b†(X) :=
∑λn

i=0 b
†
iX

i;

Denote c†(X) :=
∑λn

i=0 c
†
iX

i and d†(X) :=
∑λn

i=0 d
†
iX

i;
Let μ(X) ← FFTMult(a†(X), b†(X)); Let ν(X) ← FFTMult(c†(X), d†(X));
For i ← 1 to n do: μ2λi ← μ2λi − aibi;
Let μ(X) ← μ(X)− ν(X);

Algorithm 2. FFT-based prover’s computation of {μ�}

After using FFTMult to compute the initial version of μ(X) and ν(X),
μ� =

∑
(i,j)∈[n]2:λi+λj=� aibj and ν� =

∑
(i,j)∈[n]2:λi+λj=� ci. Thus, after the

penultimate step of Alg. 2, μ� =
∑

(i,j)∈I1(�)
aibj, and after the last step,

μ� =
∑

(i,j)∈I1(�)
aibj − ci, as required by Prot. 2. Since FFT takes time

Θ(N logN), where N = r−1
3 (n) is the input size, we have shown the part about

the prover’s computational complexity. The verifier’s computational complexity
follows from the description of the argument. �

FFT does not help to speed up Groth’s product argument [21], since there
λn = Θ(n2). FFT does also not seem to be useful in the case of the permutation
argument from [27]. Finally, it may be possible to speed up Alg. 2, by taking
into account the fact that all a†, b†, c† and d† have only n non-zero monomials.
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Next, we use efficient multi-exponentiation for additional speed-up. Let
α := max(||a||∞, ||b||∞, ||c||∞), where the prover has committed to a and b.
(See Sect. 6 for the concrete values of α.) The number of bilinear-group oper-
ations the prover has to perform (on top of computing the exponents by us-
ing the FFT-based polynomial multiplication) to compute π is dominated by
L(2, n, p)+L(2, r−1

3 (n), Θ((αn)2)). The very conservative value Θ((αn)2) follows
from |μ�| = |

∑
(i,j)∈I1(�)

(aibj − ci)| ≤
∑

(i,j)∈I1(�)
|aibj − ci| ≤

∑
(i,j)∈I1(�)

(α2 +

α) < (n2 − n)(α2 + α) = Θ((αn)2).
Due to Fact 1, for n = Ω(log p), L(2, n, p) = 2 log2 p+ (2 + o(1)) · n log2(p+

1)/(log2(2n log2(p + 1))) + O(n) = (2 + o(1)) · log2 p · n/ log2 n, and, since in
our applications, n ' log2Θ((αn)2), L(2, r−1

3 (n), Θ((αn)2)) = 2 log2(αn
2) +

(2+o(1))r−1
3 (n) log2 Θ((αn)2)

(log2(2r
−1
3 (n) log2 Θ((αn)2)))

+ O(r−1
3 (n)) =

(2+o(1))r−1
3 (n)

(log2 r−1
3 (n))

· 2 log2(αn). Thus, the

prover has to compute (2+o(1)) · ( n
log2 n · log2 p+

r−1
3 (n)

log2 r−1
3 (n)

·2 log2(αn)) bilinear-
group multiplications. We will instantiate α and other values in Sect. 6.

5 Shift and Rotation Arguments

In a right shift-by-ξ argument (resp., right rotation-by-ξ argument), the prover
aims to convince the verifier that for two commitments A and B, he knows
how to open them as A = Com(ck;a; ra) and B = Com(ck; b; rb), such that
ai = bi+ξ for i ∈ [n − ξ] and an−ξ+1 = · · · = an = 0 (resp., an−ξ+1 = b1,
. . . an = bξ). That is, (an, . . . , a1) = (0, . . . , 0, bn, . . . , bξ+1) (resp., (an, . . . , a1) =
(bξ, . . . , b1, bn, . . . , bξ+1)). Left shift and left rotation arguments are defined du-
ally, we omit their descriptions.

Groth [21] and Lipmaa [27] defined NIZK arguments for arbitrary permutation
� (i.e., a�(i) = bi for public �). However, their permutation arguments are quite
complex and computationally intensive. Moreover, many applications do not
require arbitrary permutations. We give examples of the latter in Sect. 6.

We now describe the new right shift-by-ξ argument rsftξ([[(A, Ã)]]) = [[(B, B̃)]],
that is much simpler and significantly more computation-efficient than the
generic permutation arguments of Groth and Lipmaa. One can design a very
similar rotation argument, see App. D. Let logg1 A = raσ

υ +
∑n

i=1 aiσ
λi and

logg1 B = rbσ
υ +

∑n
i=1 biσ

λi . We replace σ with a formal variable X . If the
prover is honest (full derivation of this is given in the proof of Thm. 5), then

F (X) := Xξ · logg1 A− logg1 B = −
∑ξ

i=1 biX
λi +

∑n
i=ξ+1 bi(X

λi−ξ+ξ −Xλi) +

raX
υ+ξ−rbXυ. Thus, one can verify that A is a right shift-by-ξ of B by checking

that ê(A, gσ
ξ

2 )/ê(B, g2) = ê(g1, π), where π = g
F (σ)
2 is defined as in Prot. 3. As

seen from the proof of the following theorem, the actual security proof, espe-
cially for the (weaker version of) soundness, is more complicated. Complications
arise from the use of polynomials of type X i −Xj in the verification equation;
because of this we must rely on a less straightforward variant of the PSDL as-
sumption than before. One has also to be careful in the choice of the set Λ: if
say λn−ξ + ξ = λn, then some of the monomials of F (X) will collapse, and the
security proof will not go through.
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CRS generation Gcrs(1
κ, n):

Set gk := (p,G1,G2,GT , ê) ← Gbp(1
κ), g1 ← G1 \ {1}, g2 ← G2 \ {1}, σ, α̃ ← Zp;

For each z ∈ {1, 2} do: g̃z ← gα̃z ;

For each � ∈ {υ} ∪ Λ do: (g1,�, g̃1,�) ← (g1, g̃1)
σ�

;

Set g2,ξ ← gσ
ξ

2 ;

For each i ∈ {λ1, , . . . , λξ, υ, υ + ξ} do: (g2,i, g̃2,i) ← (g2, g̃2)
σi

;

For each i ∈ [1, n− ξ] do: (h2,i, h̃2,i) ← (g2, g̃2)
σλi+ξ−σ

λi+ξ
;

Set c̃k ← (gk; (g1,�, g̃1,�)�∈{υ}∪Λ);

Return crs ← (c̃k, g1, g̃1, g2, g2,ξ, (g2,i, g̃2,i)i∈{λ1,...,λξ,υ,υ+ξ}, (h2,i, h̃2,i)i∈[1,n−ξ]);

Argument generation Prsft(crs; (A, Ã, B, B̂, B̃), (a, ra, b, rb)):

(π, π̃)←
∏n−ξ

i=1 (h2,i, h̃2,i)
bi+ξ

∏ξ
i=1(g2,λi , g̃2,λi)

−bi(g2,υ+ξ, g̃2,υ+ξ)
ra ·(g2,υ , g̃2,υ)−rb ;

Return πrsft ← (π, π̃) ∈ G
2
2;

Verification Vrsft(crs; (A, Ã,B, B̂, B̃), πrsft):

If ê(A, g2,ξ)/ê(B, g2) = ê(g1, π) and ê(g1, π̃) = ê(g̃1, π) then accept, else reject;

Protocol 3: New right shift-by-ξ argument rsftξ([[(A, Ã)]]) = [[(B, B̃)]]

Theorem 5. Let n = poly(κ). Let Λ = (λ1, . . . , λn) ⊂ Z, s.t. λi+1 > λi, λi 	=
λj+ξ for i 	= j, and λi = poly(κ). Let υ > λn+ξ be an integer, s.t. υ = poly(κ).
Let Γ be the (Λ, υ) commitment scheme in G1.
(1) Prot. 3 is perfectly complete and perfectly witness-indistinguishable.
(2) Let

Φξ
rsft := {Xυ, Xυ+ξ} ∪ {Xλi}ξi=1 ∪ {Xλi+ξ −Xλi+ξ}n−ξ

i=1 .

If Gbp is Φξ
rsft-PSDL secure, then an NUPPT adversary against Prot. 3 has

negligible chance, given crs← Gcrs(1κ, n) as an input, of outputting inprsft ←
(A, Ã, B, B̃) and an accepting argument πrsft ← (π, π̃) together with a witness
wrsft ← (a, ra, b, rb, (f

∗
φ)φ∈Φξ

rsft
), such that

(a) a, b ∈ Zn
p , ra, rb ∈ Zp, and f∗

φ ∈ Zp for φ ∈ Φξ
rsft,

(b) (A, Ã) = Com(c̃k;a; ra), (B, B̃) = Com(c̃k; b; rb),
(c) logg2 π = logg̃2 π̃ =

∑
φ∈Φξ

rsft
f∗
φ · φ(σ), and

(d) (an, an−1, . . . , a1) 	= (0, . . . , 0, bn, . . . , bξ+1).
The reduction time is dominated by the time it takes to factor a degree-(υ+1)
polynomial in Zp[X ].

(See App. C for a proof.) In an upper level argument, the verifier must check
that ê(A, g̃2) = ê(Ã, g2), and ê(B, g̃2) = ê(B̃, g2). A simple valid choice of Λ is
the initial segment of Zξ ∪ (Zξ + 2ξ) ∪ (Zξ + 4ξ) ∪ · · · .

Theorem 6. Let Λ and υ be as defined in Thm. 5. Let β ← ||b||∞, β < p.
Assume n > log2 β. The argument size of Prot. 3 is 2 elements from G2. The
prover’s computation is dominated by Θ(n) Zp-multiplications and (2 + o(1)) ·
log2 β ·n/ log2 n+O(n) bilinear-group multiplications. The verifier’s computation
is dominated by 5 bilinear pairings. The CRS consists of Θ(n) group elements.
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Proof. The prover computes two multi-exponentiations in L(2, n, β) = 2 log2 β+

(1 + o(1)) · 2n log2(β+1)
(log2(2n log2(β+1))) +O(n) = (2 + o(1)) · n log2 β

log2 n +O(n) bilinear-group

multiplications. Other claims are straightforward. �

6 Applications

We will now describe how to use the new product and shift arguments to im-
prove on the range argument of [11], and to construct new Set-Partition and
Subset-Sum arguments. Then, we combine the Subset-Sum and range argu-
ments to construct aDecision-Knapsack argument. In all three cases, the shift
argument is mainly used to construct an intermediate scan argument. Recall that
vector b is a scan [3] of vector a, if bi =

∑
j>i aj . As abundantly demonstrated

in [3], vector scan (also known as all-prefix-sums) is a powerful operator that
can be used to solve many important computational problems. In the context of
zero knowledge, we will only need to be able to verify that one vector is a scan
of the second vector.

In a scan argument, the prover aims to convince the verifier that given two
commitments A and B, he knows how to open them as A = Com(ck;a; ra) and
B = Com(ck; b; rb), s.t. bi =

∑
j>i aj . A scan argument is just equal to a right

shift-by-1 argument rsft1([[B]]) = [[A+B]], that proves that bi = ai+1 + bi+1, for
i < n, and bn = 0. Thus, bn = 0, bn−1 = an, bn−2 = an−1 + bn−1 = an−1 + an,
and in general, bi =

∑
j>i aj .

6.1 Improved Range Argument

Since the used commitment scheme is homomorphic, the generic range argument
(prove that the committed value x belongs to the interval [L,H ] for L < H) is
equivalent to proving that the committed value y = x−L belongs to the interval
[0, H − L]. In what follows, we will therefore concentrate on this simpler case.

In [11], the authors proposed a range argument that is based on the prod-
uct and permutation arguments from [27]. Interestingly, [11] makes use of the
permutation argument only to show that a vector is a scan of another vector.
More precisely, they first apply a permutation argument, followed by a product
argument (meant to modify a rotation to a right shift-by-1 by clearing out one
of the elements). Hence, we can replace the permutation and product arguments
from [27] with the right shift-by-1 (or scan) and product arguments from the
current paper. Thus, it suffices for Λ to be an arbitrary progression-free set. The
resulting range argument is also shorter by one product argument. The security
proof does not change significantly. To show that the range argument is compu-
tationally sound, one has to assume that the product argument and the right
shift-by-1 argument are weakly sound (and that the PKE assumption holds).

The use of the new basic arguments will decrease the number of Zp-
multiplications — except when computing the multi-exponentiations — in
the main range argument from Θ(n2nv), where nv ≈ log2 u, to Θ(r−1

3 (n) ·
log r−1

3 (n) · nv) = o(logH · 22
√

2 log2 logu H · log logu H). By using Pippenger’s
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algorithm [31], the cost of the multi-exponentiation decreases to (2 + o(1)) ·
2r−1

3 (n) log2(un)/ log2 r
−1
3 (n) bilinear-group multiplications. The communica-

tion decreases by 4 + 2 + 3 = 9 group elements, due to the replacement of the
permutation argument with the right shift-by-1 argument (minus 4), having one
less product argument (minus 2), and also because one needs to commit to one
less element ((Crrot, Ĉrrot, C̃rrot) in [11], minus 3). The verifier also has to perform
7+5+4 = 16 less pairings, due to the replacement of the permutation argument
with the right shift-by-1 argument (minus 7) and one less product argument
(minus 5). Also, it is not necessary to verify the correctness of (Crrot, Ĉrrot, C̃rrot)
(minus 4). One can analogously compute the verifier’s computation, see Table 2.

Remark 1. In the permutation argument of [27], the verifier also has to com-
pute a certain triple (T ∗, T̂ ∗, T ∗

2 ) by using 3 multi-exponentiations. This is not
included in the comparison table (or the claims) in [27], and the same mistake
was replicated in [11]. Table 1 and Table 2 correct this mistake, by giving the
correct complexity estimation of the arguments from [27,11]. The range argu-
ment from [11] only uses the permutation argument with one fixed permutation
(rotation), and thus the value (T ∗, T̂ ∗, T ∗

2 ), that corresponds to this concrete
permutation, can be put to the CRS. After this modification, the verifier’s com-
putational complexity actually does not increase compared to what was claimed
in [11]. Since [11] itself did not mention this, we consider it to be an additional
small contribution.

Since the non-balanced range argument only uses one permutation argument,
the corrected permutation argument of this paper makes the argument shorter
by 4 group elements, and decreases the verifier’s workload by 7 pairings.

One can consider now several settings. The setting u = 2 minimizes the
communication and the verifier’s computational complexity. The setting u =

2
√

log2 H minimizes the total length of the CRS and the argument. The setting
u = H minimizes the prover’s computational complexity. See Table 2. Here,

n ≈ loguH , nv = �log2(u − 1)�, h = log2H , N = r−1
3 (h) = o(h22

√
2 log2 h), and

N∗ = r−1
3 (
√
h) = o(

√
h · 22

√
log2 h). The rest of the notation is as in Table 1.

Theorem 7. Let Γ be the (Λ, υ) commitment scheme in group G1. Let Λ =
(λ1, . . . , λn) ∈ Zn be progression-free, s.t. λi+1 > λi + 1 and λi = poly(κ). Let

Φ := Φ× ∪ Φ1
rsft = {Xυ, Xυ+1, Xλ1} ∪ {Xλi−1+1 −Xλi}ni=2 ∪ {X�}�∈Λ̂ . (2)

Let υ > max(2λn−λ1, λn+1) be linear in λn−λ1. The modified range argument
is complete and computationally zero knowledge. Also, if Gbp is Φ-PSDL secure
and the Φ-PKE assumption holds in G1 and the Φ-PKE assumption holds in G2,
then the range argument is computationally sound.

The proof is similar to [11]. Note that λi+1 > λi + 1 guarantees that both
λi+1 > λi and λj 	= λi + 1 for i 	= j.
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Table 2. Comparison of NIZK range arguments

|CRS| |Argument| Prover comp. Verifier comp.

[32] Θ(1)g Θ(h)g Θ(h) Θ(h)
[32] Θ(h/ log h)g Θ(h/ log h)g Θ(h/ log h) Θ(h/ log h)

Chaabouni, Lipmaa, and Zhang [11]

General Θ(r−1
3 (n))g (5nv + 40)g Θ(n2nv)m + Θ(r−1

3 (n)nv)e Θ(n)e + (9nv + 81)p

u = 2 Θ(N)g 40g Θ(h2)m + Θ(N)e Θ(h)e + 81p

u = 2
√

h Θ(N∗)g ≈ (5
√
h + 40)g Θ(h3/2)m + Θ(

√
h · N∗)e Θ(

√
h)e+ (9

√
h + 81)p

u = H Θ(1)g ≈ (5h + 40)g Θ(h)m + Θ(h)e Θ(1)e + (9h + 81)p

The current paper

General Θ(r−1
3 (n))g (5nv + 31)g Θ(r−1

3 (n) log r−1
3 (n) · nv)m +

Θ(r−1
3 (n)nv)mb

(9nv + 65)p

u = 2 Θ(N)g 31g Θ(N · logN)m + Θ(N)mb 65p

u = 2
√

h Θ(N∗)g ≈ (5
√
h + 31)g Θ(

√
h ·N∗ · logN∗)m+Θ(

√
h ·N∗)mb ≈ (9

√
h + 65)p

u = H Θ(1)g (≈ 5h + 31)g Θ(h)m + Θ(h)mb ≈ (9h + 65)p

6.2 Arguments for NP-Complete Languages

Finally, we construct efficient modular arguments, that only use product and
shift arguments, for some NP-complete languages. Circuit-SAT seems to re-
quire the use of permutation arguments [21,27], so we will find other problems.

Set-Partition. Let n
 p. Given a multiset S = (s1, . . . , sn), with si ∈ Zp, and
a commitment B, in the Set-Partition argument, the prover has to convince
the verifier that he knows how to open the commitment as B = Com(ck; b; rb),
such that bi ∈ {−1, 1}, and

∑n
i=1 bisi = 0. If we define V = {i : bi = 1}, then∑n

i=1 bisi = 0 is equivalent to
∑

i∈V si =
∑

i∈S\V si. The prover computes the
Set-Partition argument as follows.

Compute a product argument π1 for bi · bi = 1, showing that bi ∈ {−1, 1};
Compute a product argument π2 for ci = bi · si;
Compute a scan argument π3 showing that d is the scan of c;
Compute a restriction argument π4 showing the first coordinate of c+ d is 0;
The Set-Partition argument is equal to (B,C,D, π1, . . . , π4);

Here, C commits to c = (b1s1, . . . , bnsn), S commits to s, and D commits
to d, the scan of c. That is, di =

∑
j>i cj , and in particular, d1 =

∑
j>1 ci and

c1+d1 =
∑

j≥1 cj . We omit the security proof of this argument since it is similar
to the proof of the Subset-Sum argument.

Subset-Sum. Another example is Subset-Sum, where the prover aims to
prove that he knows a non-zero subset of the input set S that sums to 0. In
a Subset-Sum argument, the prover aims to convince the verifier that given
S = (s1, . . . , sn) ⊆ Zp, n
 p, and a commitment B, he knows how to open it as
B = Com(ck; b; rb), s.t. b is non-zero and Boolean, and

∑n
i=1 bisi = 0. That is,

bi = 1 iff si belongs to the subset of S that sums to 0. (As always, the committed
elements belong to Zp. Thus,

∑n
i=1 bisi = 0 holds modulo p.)

In the new Subset-Sum argument, both parties compute a commitment S
to s. The prover commits to a Boolean vector b and to a vector c, s.t. ci = bisi.
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He computes a commitment D to the scan d of vector c. I.e., di =
∑

j>i cj , and
in particular, d1 =

∑
j>1 ci and c1 + d1 =

∑
j≥1 cj. The resulting Subset-Sum

argument can be seen as a slight modification of the Set-Partition argument.
The main conceptual difference is that we also need to prove b 	= 0 (not necessary
in the Set-Partition argument).

Compute a product argument π1 for b2i = bi, showing that b is Boolean;
Compute an argument π2 showing that b �= 0;
Compute a product argument π3 showing that ci = bi · si for i ∈ [n];
Compute a scan argument π4 showing that d is the scan of c;
Compute a restriction argument π5 showing the first coordinate of c+ d is 0;
The Subset-Sum argument is equal to (B,C,D, π1, . . . , π5);

Here, π5 is computed by using the restriction argument from [21], which adds
linear number of elements to the CRS, but has a constant complexity otherwise.
The subargument π2 is computed as in Alg. 3.

Note that the verifier can check that B̊ is correct by checking that ê(B̊, g2) =
ê(B, g̊2). It is straightforward to prove that the new Subset-Sum argument is
complete and perfectly zero-knowledge. It is also computationally sound under
appropriate assumptions. See App. E for a proof.

The resulting Subset-Sum argument is simpler than the Circuit-SAT ar-
guments of [21,27] that consist of ≥ 7 product and permutation arguments.
Moreover, instead of the product and permutation arguments it only uses prod-
uct and a more efficient right shift-by-1 argument (zero argument is trivial).

Assume B = g
rb
1,υ

∏
gbi1,λi

; /* we want to show that b �= 0 */

Assume that g̊1,i = gα1i and g̊2 = gα̊2 for a secret α̊;

Create B̊ ← g̊rb1,υ ·
∏n

i=1 g̊
bi
1,λi

and a hybrid B∗ ← grb1,υ ·
∏

g̊bi1,λi
;

Show B̊/B∗ = (̊g1,υ/g1,υ)
rb commits to 0 by using the zero argument [30];

Verifier checks that ê(B, g̊2) �= ê(B∗, g2);

Algorithm 3. Argument π2

Decision-Knapsack. In the NP-complete Decision-Knapsack problem one
has to decide, given a set S, integers W and B, and a benefit value bi and
weight wi of every item of S, whether there exists a subset T ⊆ S, such that∑

i∈T wi ≤W and
∑

i∈T bi ≥ B. One can combine a version of the Subset-Sum
argument of the current section with the range argument of Sect. 6.1 to construct
a Decision-Knapsack argument, where the prover convinces the verifier that
he knows such a subset T . See Alg. 6 in App. F.
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A Proof of Thm. 1

Proof. In the generic group model, an adversary A only performs generic group
operations (multiplications in G1, G2 and GT , bilinear pairings, and equality
tests). A generic adversary produces an element of Zp, which depends only on
gk and ((g1, g2)

φ(σ))φ∈{1}∪Φ. The only time A gets any information is when an
equality (collision) between two previously computed elements of either G1, G2

or GT occurs. We prove that finding even a single collision is difficult even if A
can compute an arbitrary group element in unit time.

Assume that A can find a collision y = y∗ in group G1. Then it must be the
case that

y =
∏

φ�∈{1}∪Φ

g
a�φ�(σ)
1

and
y∗ =

∏
�∈{0}∪Λ

g
a∗
�φ�(σ)

1

for some known values of a� and a∗� . But then also∑
�∈{0}∪Λ

(a� − a∗� )φ�(σ) ≡ 0 (mod p) .

Since A does not know the actual representations of the group elements, it will
perform the same group operations independently of σ. Thus a� and a∗� are
independent of σ. By the Schwartz-Zippel lemma modulo p, the probability that∑

�∈{0}∪Λ

(a� − a∗� )φ�(σ) ≡ 0 (mod p)

is equal to d/p for randomly chosen a� and a∗� . If A works in polynomial time
τ = poly(κ), it can generate at most τ such group elements. The total probability
that there exists a collision between any two generated group elements is thus
upper bounded by

(
τ
2

)
· d/p, and thus a successful A requires time Ω(

√
p/d) to

produce one collision.
A similar bound

(
τ
2

)
· d/p holds for collisions in G2. In the case of GT , the

pairing enables A to compute up to τ different values

y = ê(g1, g2)
∑

φ1i∈{1}∪Φ

∑
φ2j∈{1}∪Φ aijφ1i(σ1)φ2j(σ)

,

and thus we get an upper bound
(
τ
2

)
·2d/p, and thus a successful A requires time

Ω(
√
p/d) to produce one collision. �

B Proof of Thm. 3 (Product Argument Security)

Proof. Let h ← ê(g1, g2) and F (σ) ← logh(ê(A,B2)/ê(C,D)). Witness-

Indistinguishability: since the argument π× = (π, π̂) that satisfies the ver-
ification equations is unique, all witnesses result in the same argument, and
therefore the Hadamard product argument is witness-indistinguishable.
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Perfect completeness. Assume that the prover is honest. The second
verification is straightforward. For the first one, note that (after replacing σ
with a formal variable X)

F (X) =(raX
υ +

n∑
i=1

aiX
λi)(rbX

υ +

n∑
i=1

biX
λi)− (rcX

υ +

n∑
i=1

ciX
λi)(

n∑
i=1

Xλi)

=rarbX
2υ +

n∑
i=1

(rabi + rbai − rc)X
υ+λi +

n∑
i=1

n∑
j=1

(aibj − ci)X
λi+λj .

Thus, F (X) = Fcon(X) + Fπ(X), where

Fcon(X) =

n∑
i=1

(aibi − ci)X
2λi

and

Fπ(X)=rarbX
2υ +

n∑
i=1

(rabi + rbai − rc)X
υ+λi +

n∑
i=1

n∑
j=1:j �=i

(aibj − ci)X
λi+λj .

Here, F (X), Fcon(X) and Fπ(X) are formal polynomials of X , and F (X) is
spanned by {X�}�∈2·Λ∪Λ̂. More precisely, Fcon(X) is the constraint polynomial
that has one monomial per constraint ci = aibi.

If the prover is honest, then ci = aibi for i ∈ [n], and F (X) = Fπ(X) is
spanned by {X�}�∈Λ̂. Denoting

π ←grarb2,υ ·
n∏

i=1

grabi+rbai−rc
2,υ+λi

·
n∏

i=1

n∏
j=1:j �=i

g
aibj−ci
2,λi+λj

=grarb2,υ ·
n∏

i=1

grabi+rbai−rc
2,υ+λi

·
∏

�∈2̂Λ

gμ�

2,� ,

where μ� is as in Prot. 2, we have ê(g1, π) = ê(g1, g
F (σ)
2 ) = hF (σ) =

ê(A,B2)/ê(C,D). Thus, the verification succeeds.
Weaker version of soundness. Assume that A× is an adversary that can

break the last statement of the theorem. We construct the following adversary
Â against the Φ×-PSDL assumption, see Prot. 4.

Here, C is the challenger of the PSDL game. Let us analyse the advantage
of Â. First, clearly crstd has the same distribution as Gcrs(1κ). Thus, A× gets a
correct input. She aborts with some probability 1−ε. Otherwise, with probability
ε, inp× = (A, Â, B, B̂, B2, C, Ĉ) and w× = (a, ra, b, rb, c, rc, (f

∗
� )�∈Λ̂), such that

the conditions (2a–2d) hold.
The steps from step 1 onwards are executed with probability ε. Since A×

succeeds and 2 · Λ ∩ Λ̂ = ∅, at least for one 
 ∈ 2 · Λ, f(X) has a non-zero
coefficient a�b� − c�. Â succeeds on step 2, since logg2 π =

∑
�∈Λ̂ f∗

� σ
�. All non-

zero coefficients of X� in f∗(X) correspond to 
 ∈ Λ̂. Since Λ is progression-free,
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C forms crs as in Prot. 2; C sends crs to Â; Â obtains (inp×, w×, π×) ← A×(crs);

if the conditions (2a–2d) in Thm. 3 do not hold then Â aborts else

1 Â expresses F (X) as a polynomial f(X) ←
∑

�∈Λ̂∪2·Λ f�X
�;

2 Â computes a polynomial f∗(X) ←
∑

�∈Λ̂ f∗
� X

�;

Â lets δ(X) ← (f(X)− f∗(X)) ·X−2λ1 ;

Â sets (t1, . . . , t2(υ−λ1)) ← PolyFact(δ);

3 Â finds by an exhaustive search a root σ0 ∈ (t1, . . . , t2(υ−λ1)), s.t. g
συ

2 = g
συ
0

2 ;

Â returns σ ← σ0 to the challenger;

end

Algorithm 4. Construction of Â in the security reduction of Thm. 3

υ > 2λn − λ1, and all elements of 2 · Λ are distinct, then by Lem. 1, 
 	∈ 2 · Λ.
Thus, all coefficients of f∗(X) corresponding to any X�, 
 ∈ 2 · Λ, are 0. Thus,

f(X) =
∑

�∈Λ̂∪(2·Λ)

f�X
�

and
f∗(X) =

∑
�∈Λ̂

f∗
� X

�

are different polynomials with f(σ) = f∗(σ) = F (σ). All coefficients of X�, for

 < 2λ1, of both f(X) and f∗(X) are equal to 0.

Therefore, δ(X) is a non-zero degree-(2υ − 2λ1) polynomial, such that

δ(σ) =
∑

�∈(Λ̂∪(2·Λ))−2λ1

δ�σ
� = 0 .

Â uses polynomial factorization to find all ≤ 2(υ−λ1) roots of δ. One of the roots
must be equal to σ. On step 3, Â finds which root is equal to σ by an exhaustive
search among all roots returned in the previous step. Clearly Â returns the
correct value of σ (and thus violates the Φ×-PSDL assumption) with probability
ε. The execution time of Â is clearly dominated by the execution time of A×
and the time to factor δ. �

C Proof of Thm. 5 (Shift Argument Security)

Proof. Denote h← ê(g1, g2) and

F (σ) := logh(ê(A, g2,ξ)/ê(B, g2)) .

Witness-Indistinguishability: since argument πrsft that satisfies the verifica-
tion equations is unique, all witnesses result in the same argument, and therefore
the permutation argument is witness-indistinguishable.
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C forms crs as in Prot. 3;

C sends crs to Ã;

Ã obtains (inprsft, wrsft, πrsft) ← Arsft(crs);

if the conditions (2a–2d) in the statement of Thm. 5 do not hold then Ã
aborts else

1 Ã expresses F (X) as a polynomial f(X) =
∑

φ∈Φπ fφ · φ(X);

2 Ã computes a polynomial f∗(X) :=
∑

φ∈Φ
ξ
rsft

f∗
φ · φ(X);

Ã lets δ(X) ← f(X)− f∗(X);

Ã uses a polynomial factorization algorithm in Zp[X] to compute all
≤ (υ + 2) roots of δ(X);

3 Ã finds by an exhaustive search a root σ0, such that gσ
�

1 = g
σ�
0

1 ;

Ã returns σ ← σ0;

end

Algorithm 5. Construction of Ã in the security reduction of Thm. 5

Perfect completeness. The second verification is straightforward. For the
first verification ê(A, g2,ξ)/ê(B, g2) = ê(g1, π), consider

F (X) := Xξ · logg1 A− logg1 B ,

where we have replaced σ with a formal variable X . Clearly,

F (X) =

n∑
i=1

aiX
λi+ξ −

n∑
i=1

biX
λi + raX

υ+ξ − rbX
υ

=

n∑
i=n−ξ+1

aiX
λi+ξ +

n−ξ∑
i=1

aiX
λi+ξ −

ξ∑
i=1

biX
λi −

n∑
i=ξ+1

biX
λi+

raX
υ+ξ − rbX

υ

=

ξ∑
i=1

an−ξ+iX
λn−ξ+i+ξ +

n−ξ∑
i=1

aiX
λi+ξ −

ξ∑
i=1

biX
λi −

n−ξ∑
i=1

bi+ξX
λi+ξ+

raX
υ+ξ − rbX

υ

=

n−ξ∑
i=1

(ai − bi+ξ)X
λi+ξ +

ξ∑
i=1

an−ξ+iX
λn−ξ+i+ξ

︸ ︷︷ ︸
=:Fcon(X)

+

n−ξ∑
i=1

bi+ξ(X
λi+ξ −Xλi+ξ)−

ξ∑
i=1

biX
λi + raX

υ+ξ − rbX
υ

︸ ︷︷ ︸
=:Fπ(X)

.

(3)
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If the prover is honest, then ai = bi+ξ for i ∈ [n−ξ] and ai = 0 for i ∈ [n−ξ+1, n],
and thus F (X) = Fπ(X) is spanned by {φ(X)}φ∈Φξ

rsft
. With π as defined in

Prot. 3, the second verification holds as

ê(g1, π) = ê(g1, π
F (σ)) = hF (σ) = ê(A, g2,1)/ê(B, g2) .

Weaker version of soundness. Assume that Arsft is an adversary that can
break the last statement of the theorem. We construct an adversary Ã against
the Φξ

rsft-PSDL assumption, see Prot. 5. Here, C is the challenger of the PSDL
game, and

Φπ := {Xλi+ξ, Xλi}ni=1 ∪ {Xυ+ξ, Xυ}

is defined by following the first line of Eq. (3). Let us analyse the advantage
of Ã. First, clearly crstd has the same distribution as Gcrs(1κ). Thus, Arsft gets
a correct input, and succeeds with some probability SuccsoundArsft

(Πrsft). Clearly, Ã
aborts with probability 1− SuccsoundArsft

(Πrsft).

Otherwise, with probability SuccsoundArsft
(Πrsft), inp

rsft = (A, Ã, B, B̃) and wrsft =
(a, ra, b, rb, (f

∗
φ)φ∈Φξ

rsft
), such that the conditions (2a–2d) hold. In particular,

f(X) = F (X) in Eq. (3), and

f∗(X) =

ξ∑
i=1

f∗
Xλi
·Xλi +

n∑
i=ξ+1

fXλi−ξ+ξ−Xλi
(Xλi−ξ+ξ −Xλi)+

f∗
Xυ+ξX

υ+ξ + f∗
XυXυ .

For the rest of the proof to go through, we need that all polynomials that are
present in monomials Fcon(X) (Φ∗ := {Xλi+ξ : i ∈ [n − ξ]} ∪ {Xλn−ξ+i+ξ : i ∈
[ξ]} = {Xλi+ξ : i ∈ [1, n− ξ]} ∪ {Xλi+ξ : i ∈ [n− ξ + 1, n]} = {Xλi+ξ : i ∈ [n]})
are different from each other and from all polynomials in Φξ

rsft. This follows from
the conditions (i) λj 	= λi, (ii) λj + ξ 	= λi, (iii) λi 	= υ, and (iv) λi + ξ 	= υ, for
i, j ∈ [n], i 	= j.

Since (an, an−1, . . . , a1) 	= (0, . . . , 0, bn, . . . , bξ+1), f(X) has at least one more
non-zero monomial, either of type aiX

λi+ξ or of type (ai−ξ − bi)X
λi−ξ+ξ, than

f∗(X). Since Xλi−ξ+ξ cannot be represented as a linear combination of polyno-

mials from Φξ
rsft, f(X) and f∗(X) are different polynomials with f(σ) = f∗(σ) =

F (σ).
Thus, δ(X) is a non-zero degree-(υ + 1) polynomial, such that δ(σ) = 0.

Therefore, Ã can use an efficient polynomial factorization algorithm to find all
roots of δ, and one of those roots must be equal to σ. On step 3, Ã finds which
root is equal to σ by an exhaustive search among all roots returned in the
previous step. Thus, clearly Ã returns the correct value of σ (and thus violates the

Φξ
rsft-PSDL assumption) with probability SuccsoundArsft

(Πrsft). Finally, the execution

time of Ã is clearly dominated by the execution time of Arsft and the time to
factor δ. �
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D Rotation Argument

Since the rotation argument uses basically the same underlying ideas as the shift
argument of Sect. 5, we will only comment on the differences between the new
shift argument and the corresponding rotation argument.

In the right rotation-by-ξ argument,

F (X) =

n∑
i=1

aiX
λi+ξ −

n∑
i=1

biX
λi + raX

υ+ξ − rbX
υ

=
n∑

i=n−ξ+1

aiX
λi+ξ +

n−ξ∑
i=1

aiX
λi+ξ −

n∑
i=ξ+1

biX
λi −

ξ∑
i=1

biX
λi+

raX
υ+ξ − rbX

υ

=

ξ∑
i=1

an−ξ+iX
λn−ξ+i+ξ +

n−ξ∑
i=1

aiX
λi+ξ −

n−ξ∑
i=1

bξ+iX
λξ+i −

ξ∑
i=1

biX
λi+

raX
υ+ξ − rbX

υ

=

ξ∑
i=1

(an−ξ+i − bi)X
λn−ξ+i+ξ +

n−ξ∑
i=1

(ai − bξ+i)X
λi+ξ

︸ ︷︷ ︸
=:Fcon(X)

+

ξ∑
i=1

bi(X
λn−ξ+i+ξ −Xλi) +

n−ξ∑
i=1

bξ+i(X
λi+ξ −Xλξ+i) + raX

υ+ξ − rbX
υ

︸ ︷︷ ︸
Fπ(X)

Thus, if the prover is honest then F (X) = Fπ(X).
Here, Φ is different,

Φξ
rot = {Xυ, Xυ+ξ} ∪ {Xλn−ξ+1+ξ −Xλi}ξi=1 ∪ {Xλi+ξ −Xλi+ξ}n−ξ

i=1 .

Moreover, for the proof of soundness to go through, it is necessary that all
polynomials that are present in Fcon(X) (i.e., from the set Φ∗ := {Xλn−ξ+i+ξ :
i ∈ [ξ]} ∪ {Xλi+ξ : i ∈ [n− ξ]} = {Xλi+ξ : i ∈ [n]}), are mutually different and

also different from every polynomial in Φξ
rot. For this it is sufficient that exactly

the same conditions hold as in the case of the right shift-by-ξ argument, i.e.,
λi+1 > λi, λj 	= λi + ξ for i 	= j, and υ > λn + ξ.

With this modification, one can construct a rotation argument that is very
similar to Prot. 3.

E Subset-Sum

Recall ΦΓ = ({Xυ} ∪ (Xλi)ni=1). We will need Φres-PKE assumptions to guar-
antee soundness of the restriction argument from [21], where Φres depends con-
cretely on the restricted coordinates. Since Φres ⊆ ΦΓ (for example, in the
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following theorem, Φres := {Xυ} ∪ {Xλi}ni=2), we will not have to explicitly
mention it.

Theorem 8. Let Γ = (Gcom, Com,Gcomtd, Comtd,Opentd) be the be the (Λ, υ)
commitment scheme in group G1. Let Λ = (λ1, . . . , λn) be a progression-free tuple
of integers, such that λi+1 > λi+1 and λi = poly(κ). Let Φ be as in Eq. (2). Let
υ > max(2λn−λ1, λn+1) be linear in λn−λ1. The new Subset-Sum argument
is perfectly complete and perfectly zero-knowledge. Also, Gbp is Φ-PSDL secure
and the ΦΓ -PKE assumption holds in G1 and the Φ-PKE assumption holds in
G2, then the Subset-Sum argument is computationally sound.

Proof. Perfect completeness: Assume the prover is honest. The product ar-
guments π1 and π3 will correctly verify due to Theorem 3 and replacing (A,B,C)
in the theorem respectively to (B,B,B) and (B,S,C) in the Subset-Sum pro-
tocol. The correctness of the non-zero argument π2 can be seen as follows: π2
shows that B̊ commits to the same value (and uses the same randomizer) as
B. It also shows that B∗ commits to the same value as both B and B̊. More
precisely, the zero argument convinces the verifier that B∗ is correctly computed
from B̊. Therefore the last check shows that B does not commit to 0, since other-
wise ê(B, g̊2) = ê(B∗, g2). The right shift-by-1 argument π4 will also be correctly
verified due to Theorem 5. Finally, π5 correctly verifies that the first element of
c + d is 0 due to the completeness of the restriction argument [Gro10].

Adaptive computational soundness: Let A be an NUPPT adversary that
produces commitments B,C,D and an accepting argument (B,C,D, π1, . . . , π5).
By the Φ-PKE assumption in G2 and by Thm. 3 and Thm. 5, the product and
shift arguments are weakly sound according to the statements of corresponding
theorems. (I.e., the extractor can open the inputs to the arguments to values
that satisfy required restrictions.)

By the ΦΓ -PKE assumption in G1, there exists a non-uniform PPT extractor
XA that, given A’s input and access to A’s random coins, extracts all openings
of B,C, and D. From the weaker version of soundness of the product and shift
arguments (Theorem 3 and Theorem 5), and the soundness of the non-zero
argument, we have that if Gbp is Φ-PSDL secure then the following relations
hold:

1. B commits to b such that b2i = bi ⇐⇒ bi ∈ {0, 1}
2. b 	= 0, so at least one of the bi’s is 1.
3. C commits to c such that ci = bisi.
4. D commits to d such that di =

∑
j>i cj.

Up to this point, it has been verified that B is a commitment of a non-zero
vector of boolean elements, and hence C is a commitment of c = (bisi) where
each element is either 0 or si, and at least one of the elements is ci = si. Now
since D is verified to be the scan of c, we have that the first element of c + d is
a sum

∑
i≥1 bisi. From the Φres-PKE assumption that guarantees the soundness

of the restriction argument (Theorem 1 and Theorem 2 of [21]), we have that a
correct verification implies that (c + d)1 = 0, so A has indeed committed to a
correct solution of Subset-Sum.
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Perfect zero knowledge: We construct a simulator S = (S1,S2). S1 will
create a correctly formed CRS together with a simulation trapdoor td = σ.
The adversary then outputs a correct statement CS together with a witness wS .
The simulator S2 creates a commitment to b = (1, 1, . . . , 1) and commitments
to the corresponding vectors c,d. Due to the knowledge of trapdoor td and
the commitment scheme being computationally (not perfect) binding, all the
product, scan, non-zero and restriction arguments can be simulated correctly.
This simulated NIZK argument ψ′ is perfectly indistinguishable from the real
argument ψ. �

F Decision-Knapsack

It is clear from the description of this argument that it works correctly. The
Decision-Knapsack argument is clearly perfectly zero knowledge and com-
putationally sound under appropriate assumptions, see App. F. The concrete
complexity of the Decision-Knapsack argument depends on both how one
defines m in Groth’s balancing technique and u in the range argument.

Theorem 9. Let Γ = (Gcom, Com,Gcomtd, Comtd,Opentd) be the be the (Λ, υ)
commitment scheme in group G1. Let Λ = (λ1, . . . , λn) be a progression-free tuple
of integers, such that λi+1 > λi + 1 and λi = poly(κ). Let Φ be as in Eq. (2).
Let υ > max(2λn − λ1, λn + 1) be linear in λn − λ1. The Decision-Knapsack

protocol described by Alg. 6 is perfectly complete and perfectly zero-knowledge.
Also, if Gbp is Φ-PSDL secure and the ΦΓ -PKE assumption holds in G1 and
the Φ-PKE assumption holds in G2, then the Decision-Knapsack protocol is
computationally sound.

Proof. Perfect completeness: Assume the prover is honest. The product
arguments π1, π2, π4, π5, π7 will correctly verify due to Theorem 3 and replac-
ing (A,B,C) in the theorem respectively to (T, T, T ), (T,W ,WT ), (A,F,C),
(T,B, BT ) and (D,F,E) in the Decision-Knapsack protocol. Here, F =
{1, 0, · · · , 0}. The right shift-by-1 arguments π3, π6 will also be correctly verified
due to Theorem 5. Finally, π8 and π9 correctly verifies from the completeness of
the range argument.

Adaptive computational soundness: Let A be a non-uniform PPT adver-
sary that produces commitments B,C,D and an accepting NIZK argument
(T,WT , A, C,BT , D,E, π1, · · · , π9). By the Φ-PKE assumption in G2 and by
Thm. 3 and Thm. 5, the product and shift arguments are weakly sound accord-
ing to the statements of corresponding theorems. (That is, the extractor can
open the inputs to the arguments to values that satisfy required restrictions.)
By Thm. 7, the range argument is computationally sound.

By the ΦΓ -PKE assumption in G1, there exists a non-uniform PPT extractor
XA that, given A’s input and access to A’s random coins, extracts all openings
of T,WT , A, C,BT , D,E, and F . From the weaker version of soundness of the
product and shift arguments (Thm. 3 and Thm. 5), and the soundness of the
non-zero argument (Thm. 7), we have that the following relations hold:
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Let F be a commitment of f = (1, 0, . . . , 0, 0) with randomness 0;
Let ti = 1 iff i ∈ T ;
Generate a commitment T of t;
Prove that T is Boolean by using a product argument π1;
Generate a commitment WT of wT = (w1t1, . . . , wntn);
Prove that WT was computed correctly by using a product argument π2;
Generate a scan A of WT , ai =

∑
j>i wjtj ;

Prove that A was computed correctly by using a scan argument π3;
Generate a commitment C of (

∑n
i=1 witi, 0, . . . , 0);

Prove that C was created correctly (c is a Hadamard product of f and
wT + a) by using a product argument π4;
Generate a commitment BT of bT = (b1t1, . . . , bntn);
Prove that BT was computed correctly by using a product argument π5;
Generate a scan D of BT , di =

∑
j>i bjtj ;

Prove that D was computed correctly by using a scan argument π6;
Generate a commitment E of (

∑n
i=1 biti, 0, . . . , 0);

Prove that E was created correctly (e is a Hadamard product of f and bT + d)
by using a product argument π7;
Prove that the first element of C is ≤ W by using a range argument π8;
Prove that the first element of E is ≥ B by using a range argument π9;
The whole argument is (T,WT , A,C,BT , D,E, π1, . . . , π9);

Algorithm 6. The Decision-Knapsack argument

1. T commits to t such that t2i = ti ⇐⇒ ti ∈ {0, 1},
2. WT commits to wT such that (wT )i = witi,
3. A commits to a such that ai =

∑
j>i wjtj ,

4. C commits to the Hadamard product c of f and wT + a, so c = (1 · (wT +
a)1, 0 · (wT + a)2, . . . , 0 · (wT + a)n) = (

∑n
i=1 witi, 0, · · · , 0),

5. BT commits to bT such that (bT )i = biti,
6. D commits to d such that di =

∑
j>i bjtj ,

7. E commits to the Hadamard product e of f and bT + d, so e = (1 · (bT +
d)1, 0 · (bT + d)2, · · · , 0 · (bT + d)n) = (

∑n
i=1 biti, 0, · · · , 0).

From the soundness of the range argument, a correct verification of π8 will imply
that c1 ∈ [0, B] while a correct verification of π9 will imply that e1 ∈ [E, 2κ] for
some κ.

Perfect zero knowledge: We can construct a simulator S = (S1,S2) anal-
ogous to the simulator for Subset-Sum. �
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Abstract. One-round group authenticated key exchange (GAKE) pro-
tocols typically provide implicit authentication and appealing bandwidth
efficiency. As a special case of GAKE – the pairing-based one-round
tripartite authenticated key exchange (3AKE), recently gains much at-
tention of research community due to its strong security. Several pairing-
based one-round 3AKE protocols have recently been proposed to achieve
provable security in the g-eCK model. In contrast to earlier GAKE mod-
els, the g-eCK model particularly formulates the security properties re-
garding resilience to the leakage of various combinations of long-term
key and ephemeral session state, and provision of weak perfect forward
secrecy in a single model. However, the g-eCK security proofs of previous
protocols are only given under the random oracle model. In this work,
we give a new construction for pairing-based one-round 3AKE protocol
which is provably secure in the g-eCK model without random oracles.
Security of proposed protocol is reduced to the hardness of Cube Bilinear
Decisional Diffie-Hellman (CBDDH) problem for symmetric pairing. We
also extend the proposed 3AKE scheme to a GAKE scheme with more
than three group members, based on multilinear maps. We prove g-eCK
security of our GAKE scheme in the standard model under the natural
multilinear generalization of the CBDDH assumption.

Keywords: one-round, group key exchange, bilinear maps, multilinear
maps.

1 Introduction

The situation where three or more parties share a secret key is often called group
(conference) keying. A group authenticated key exchange protocol (GAKE) al-
lows a set of parties communicating over public network to create a common
shared key that is ensured to be known only to those entities. In a public key
infrastructure (PKI) based GAKE protocol, each party typically possesses a pair
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of long-term public/private key. The public key is expected to be certified with a
party’s identity and corresponding private key is kept secretly for authentication.
GAKE protocols are essentially generalized from two party authenticated key
exchange (2AKE) protocols to the case of multiple parties. However, this brings
new challenges not only in the design but also in the analysis of the GAKE
protocols. The formal security model for GAKE was first studied by Bresson et
al. [8], where the secrecy (indistinguishability) of the established group key and
mutual authentication are modelled following the seminal work of the 2AKE
model by Bellare and Rogaway [5]. Since then, figuring out new useful security
properties for certain class of GAKE and modelling them become continuing
trends.

One-Round GAKE. One import research direction in the research field of
GAKE is to construct secure one-round protocol due to its appealing bandwidth-
efficiency (in contrast to other multiple-round GAKE). A prominent example is
the pairing-based tripartite protocol introduced by Joux [14] which extends the
classical two-party Diffie-Hellman KE protocol to the three party case. However
Joux’s protocol is unauthenticated and subject to well known man-in-the-middle
attacks. Hence how to transform Joux’s protocol to a secure one-round protocol
in presence of active adversaries turns out to be an interesting topic. Several
attempts, e.g. [1,17,18,10], have been made to improve the original Joux’s proto-
col. This has also pushed forward the development of security model for GAKE.
Meanwhile, the most recently proposed one is the g-eCK model by Fujioka et
al. [10]. The g-eCK model basically can be seen as a generalization from the
two party eCK model [15]. In contrast to earlier GAKE models, e.g. [8,7,12], the
peculiarity of g-eCK model is that it captures lots of desirable security proper-
ties regarding resilience to the leakage of various combinations of long-term key
and ephemeral session state from target sessions (i.e. the test session and its
partner session in the security game), and provision of weak perfect forward se-
crecy (wPFS) in a single model. So far the g-eCK model is known as one of the
strongest security model for one-round GAKE[10]. Therefore proving security
for one-round GAKE in the g-eCK model may provide more guarantees.

Motivations. In 2012, Fujioka et al. (FMSU) [10] generalized previous 3AKE
protocols into one framework based on admissible polynomials which yields many
further one-round 3AKE protocols. The generic FMSU protocol [10] was shown
to satisfy g-eCK security. However its security proof is given in the random
oracle model (ROM) [4] under a specific strong assumption, i.e. gap Bilinear
Diffie-Hellman (GBDH) assumption [2]. It is well-known that the security proof
in the random oracle model may not imply that corresponding protocol is secure
in the real world. Several results, e.g., [9,3], have demonstrated that there exist
schemes which are provably secure in the random oracle model, but are insecure
as soon as one replaces the random oracle by any concrete hash functions. This
also makes the schemes secure in the standard model to be more appealing than
that in the random oracle model. So far we are not aware of previous GAKE
protocols being able to achieve g-eCK security in the standard model. Hence, one
of the open problems in research on GAKE is to construct a secure scheme in the
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g-eCK model under standard assumptions without resorting to random oracles.
Another important motivation of this paper is try to simplify the security proof
for GAKE protocols under the g-eCK model from the perspective of reducing
the freshness ceases that require to prove. Since under the g-eCK model, the
freshness cases are related to the group size which are not a small amount.
Taking the 3AKE as example, there might be fourteen freshness cases at all
that may lead proof to be very tiresome. When the group size is very large, the
situation might be worse because the possible freshness cases are exponential in
the number of group members. Those facts make us necessary to somehow reduce
the upper bound of the freshness cases that require to do proof simulation.

Contributions. We solve the above open problems by starting from 3AKE. We
firstly give a concrete construction in Section 5 for one-round 3AKE protocol
that is g-eCK secure in the standard model under standard assumptions. The
proposed protocol is based on bilinear groups, target collision resistant hash
function family, and pseudo-random function family. In order to withstand ac-
tive attackers, each (either long-term or ephemeral) public key is required to
be associated with some kind of ‘tag’ which is used to verify the consistency of
corresponding public key. Those tags are particularly customized using specific
weak Programmable Hash Functions (PHF) [13] for ephemeral key and long-
term key respectively, whose output lies in a pairing group. Interestingly the
proposed protocol is built to be able to run without knowing any priori infor-
mation about its partners’ long-term public key. Intuitively, these tags are what
give us the necessary leverage to deal with the non-trivial g-eCK security. In
order to facilitate the security analysis of 3AKE protocols in the g-eCK model,
we introduce propositions to formally reduce fourteen freshness cases (which
cover all freshness cases for 3AKE protocols) to four freshness cases. Then it is
only necessary to prove the security of considered protocol under the reduced
four freshness cases. It is not hard to check the validity of these reductions to
all one-round 3AKE protocols in which the message sent by a party is indepen-
dent of the messages sent by the other parties. Any g-eCK security analyzers for
one-round 3AKE protocols might benefit from these results. We then provide a
succinct and rigorous game-based security proof by reducing the g-eCK security
of proposed 3AKE protocol in the standard model to breaking the cubic Bilinear
Decisional Diffie-Hellman (CBDDH) assumption which is slightly modified from
the Bilinear Decisional Diffie-Hellman (BDDH) assumption [14].

In the latter we present a GAKE scheme with constant maximum group size
in Section 6 following the construction idea of 3AKE. Nevertheless the proposed
GAKE scheme is based on the symmetric multilinear map which is first postu-
lated by Boneh and Silverberg [6]. We prove g-eCK security of our scheme in
the standard model under a natural multilinear generalization of the CBDDH
assumption which is called n-Multiliear Decisional Diffie-Hellman Assumption
(nMDDH). In particular we give a general game-based security proof for our
proposed GAKE scheme which is given under any polynomial number of fresh-
ness cases.
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2 Preliminaries

Notations. We let κ ∈ N denote the security parameter and 1κ the string that
consists of κ ones. Let a capital letter with a ‘hat’ denote an identity; without the
hat the letter denotes the public key of that party. Let [n] = {1, . . . , n} ⊂ N be

the set of integers between 1 and n. If S is a set, then a
$← S denotes the action of

sampling a uniformly random element from S. Let ‘||’ denote the operation con-
catenating two binary strings. In the sequel, we briefly describe the complexity
assumptions which lay the foundation of our constructions. Besides we will also
make use of target collision resistant hash function family and pseudo-random
function family. The corresponding definitions can be found in [16].

Bilinear Groups. In the following, we briefly recall some of the basic properties
of bilinear groups. Our AKE solution mainly consists of elements from a single
group G. We therefore concentrate on symmetric bilinear maps. Our pairing
based scheme will be parameterized by a symmetric pairing parameter generator,
denoted by PG.Gen. This is a polynomial time algorithm that on input a security
parameter 1κ, returns the description of two multiplicative cyclic groups G and
GT of the same prime order p, generator g for G, and a bilinear computable
pairing e : G×G→ GT .

Definition 1 (Symmetric Bilinear groups). We call

PG = (G, g,GT , p, e)
$← PG.Gen(1κ) be a set of symmetric bilinear groups, if the

function e is an (admissible) bilinear map and it holds that:

1. Bilinear: ∀(a, b) ∈ G and ∀(x, y) ∈ Zp, we have e(ax, by) = e(a, b)xy.
2. Non-degenerate: e(g, g) 	= 1GT , is a generator of group GT .
3. Efficiency: ∀(a, b) ∈ G, e is efficiently computable.

Multilinear Groups. In the following, we recall the definition of symmetric
multilinear groups introduced in [6]. We assume that a party can call a group
generator MLG.Gen(1κ, n) to obtain a set of multilinear groups. On input a
security parameter κ and a positive integer 2 < n ∈ N, the polynomial time
group generator MLG.Gen(1κ, n) outputs two multiplicative cyclic groups G and
GT of the same prime order p, generator g for G, and a n-multilinear map
me : Gn ×G→ GT .

We summarize the properties of n-multilinear groups in the following
definition.

Definition 2 (Symmetric Multilinear groups). We call MLG =

(G,GT , p,me)
$← MLG.Gen(κ, n) be a set of symmetric multilinear groups, if

the n-multilinear map me holds that:

1. n-multilinear: ∀(c1, . . . , cn) ∈ G and ∀(y1, . . . , yn) ∈ Zp, we have
me(cy1

1 , . . . , cyn
n ) = me(c1, . . . , cn)

y1···yn .
2. Non-degenerate: me(g, . . . , g) 	= 1GT , is a generator of group GT .
3. Efficiency: ∀(c1, . . . , cn) ∈ G, the operation me(c1, . . . , cn) is efficiently

computable.
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Concrete multilinear maps can be found in [11] by Garg, Gentry, and Halvei.
We here just focus on a general definition of symmetric n-multilinear groups
without loss of generality.

Cube Bilinear Decisional Diffie-Hellman Assumption. With respect to
our construction for one-round tripartite AKE, we need a new complexity as-
sumption defined as follows.

Definition 3. We say that the CBDDH problem relative to generator PG.Gen is
(t, εCBDDH)-hard, if the probability bound
|Pr[EXPcbddh

PG.Gen,A(κ, n) = 1]− 1/2| ≤ εCBDDH holds for all adversaries A running
in probabilistic polynomial time t in the following experiment:

EXPcbddh
PG.Gen,A(κ, n)

PG = (G, g,GT , p, e)
$← PG.Gen(1κ);

a, γ
$← Z∗

p;

b
$← {0, 1}, if b = 1 Γ ← e(g, g)a

3

, otherwise Γ ← e(g, g)γ;
b′ ← A(1κ,PG, ga, Γ );
if b = b′ then return 1, otherwise return 0;

where εCBDDH = εCBDDH(κ) is a negligible function in κ.

The proof for the security ofCBDDH assumption in the generic groupmodel [19]
is presented in the full version of this paper [16].

n-Multilinear Decisional Diffie-Hellman Assumption. We present a
generalization of the CBDDH assumption in n-multilinear groups that we call
the n-Multilinear Decisional Diffie-Hellman (nMDDH) assumption.

Definition 4. We say that the nMDDH problem relative to generator MLG.Gen
is (t, εnMDDH)-hard, if the probability bound
|Pr[EXPnmddh

PG.Gen,A(κ, n) = 1]− 1/2| ≤ εnMDDH holds for all adversaries A running
in probabilistic polynomial time t in the following experiment:

EXPnmddh
PG.Gen,A(κ)

MLG = (G,GT , g, p,me)
$← MLG.Gen(κ, n);

a, γ
$← Z∗

p, b
$← {0, 1};

Γ ← me(g, . . . , g)a
n+1

if b = 1, otherwise Γ ← me(g, . . . , g)γ;
b′ ← A(1κ,MLG, ga, Γ );
if b = b′ then return 1, otherwise return 0;

where εnMDDH = εnMDDH(κ) is a negligible function in κ.

3 Security Model for Group Authenticated Key Exchange

In this section we present the formal security model for PKI-based group au-
thenticated key-exchange (GAKE) protocols. In this model, while emulating the
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real-world capabilities of an active adversary, we provide an ’execution environ-
ment’ for adversaries following an important line of research [15,18,10] which is
initiated by Bellare and Rogaway [5]. We formalize the capabilities of an ad-
versary in a strong sense who is provided enormous power to take full control
over the communication network (e.g., alter or inject messages as she wishes),
in particular she may compromise long-term keys of parties or secret states of
protocol instances at any time. Let KAKE be the key space of session key, and
{PK,SK} be key spaces for long-term public/private key respectively. Those
spaces are associated with security parameter κ of considered protocol.

Execution Environment. In the execution environment, we fix a set of honest
parties {ID1, . . . , ID�} for 
 ∈ N, where ID is identity of a party which is cho-
sen uniquely from space IDS. Each identity is associated with a long-term key
pair (skIDi , pkIDi) ∈ (SK,PK) for entity authentication, and is indexed via in-
teger i ∈ [
] in the model. Note that those identities are also lexicographically
indexed via variable i ∈ [
] . For public key registration, each party IDi might
be required to provide extra information (denoted by proof) to prove either the
knowledge of the secret key or correctness of registered public key (via e.g. non-
interactive proof of knowledge schemes). Each honest party IDi can sequentially
and concurrently execute the protocol multiple times with different indented
partners, this is characterized by a collection of oracles {πs

i : i ∈ [
], s ∈ [ρ]}
for ρ ∈ N. Oracle πs

i behaves as party IDi carrying out a process to execute the
s-th protocol instance, which has access to the long-term key pair (skIDi

, pkIDi
)

of IDi and to all other public keys. Moreover, we assume each oracle πs
i main-

tains a list of independent internal state variables with following semantics: (i)
pidsi – storing a set of partner identities in the group with whom πs

i intends to
establish a session key (including IDi itself), where the identities are ordered
lexicographically; (ii) Φs

i – storing the oracle decision Φs
i ∈ {accept, reject};

(iii) Ks
i – recording the session key Ks

i ∈ KKE for symmetric encryption; (iv) stsi
– storing the maximum secret session states that are allowed to be leaked (e.g.,
the exponent of exchanged ephemeral public key); (v) T s

i – storing the transcript
of all messages sent and received by πs

i during its execution, where the messages
are ordered by round and within each round lexicographically by the identities
of the purported senders.

All those variables of each oracle are initialized with empty string denoted
by symbol ∅ in the following. At some point, each oracle πs

i may complete the
execution always with a decision state Φs

i . Furthermore, we assume that the
session key is assigned to the variable Ks

i (such that Ks
i 	= ∅) iff oracle πs

i has
reached an internal state Φs

i = accept.

Adversarial Model. An adversary A in our model is a PPT Turing Machine
taking as input the security parameter 1κ and the public information (e.g. generic
description of above environment), which may interact with these oracles by
issuing the following queries.
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– Send(πs
i ,m): The adversary can use this query to send any message m of

his own choice to oracle πs
i . The oracle will respond the next message m∗

(if any) to be sent according to the protocol specification and its internal
states. Oracle πs

i would be initiated via sending the oracle the first message
m = ((, pidsi ) consisting of a special initialization symbol ( and a vari-
able storing partner identities. After answering a Send query, the variables
(pidsi , Φ

s
i ,K

s
i , st

s
i , T

s
i ) might be updated depending on the specific protocol.

– RevealKey(πs
i ): Oracle πs

i responds with the contents of variable Ks
i .

– StateReveal(πs
i ): Oracle πs

i responds with the secret state stored in variable
stsi , e.g. the random coins used to generate the session key.

– Corrupt(IDi): Oracle π1
i responds with the long-term secret key skIDi

of party
IDi if i ∈ [
]. After this query, oracles πs

i (s > 1) can still answer other queries.

– RegisterCorrupt(IDτ , pkIDτ
, proofIDτ

): This query allows the adversary to reg-
ister an identity IDτ (
 < τ and τ ∈ N) and a static public key pkIDτ on
behalf of a party IDτ , if IDτ is unique and pkIDτ

is ensured to be sound by
evaluating the non-interactive proof proof IDτ

. We only require that the proof
is non-interactive in order to keep the model simple. Parties established by
this query are called dishonest.

– Test(πs
i ): This query may only be asked once throughout the experiment.

Oracle πs
i handles this query as follows: If the oracle has state Ω = reject

or Ks
i = ∅, then it returns some failure symbol ⊥. Otherwise it flips a fair

coin b, samples a random element K0 from key space KKE, sets K1 = Ks
i to

the real session key, and returns Kb.

We stress that the exact meaning of the StateReveal must be defined by each
protocol separately, and each protocol should be proven secure to resist with
such kind of state leakage as claimed. Namely a protocol should specify the
content stored in the variable st during protocol execution. In order to protect
those critical session states of AKE protocols, utilizing secure (e.g. tamper-proof)
device might be a natural solution, namely at each party an untrusted host
machine is used together with a secure hardware. In this way it is possible to
adopt a ‘All-and-Nothing’ strategy to define the session states — namely we
can assume that all states stored on untrusted host machine can be revealed
via StateReveal query and no state would be exposed at secure device without
loss of generality. The RegisterCorrupt query is used to model the chosen identity
and public key attacks. In this query, the detail form of proofτ (i.e. how to
register an identity and corresponding public key) should be specified by each
protocol. Please note that if the protocol allows for arbitrary key registration
then one could set the parameter proof = ∅. Basically, our execution environment
is consistent to the g-eCK model [10] except for the RegisterCorrupt query. In
the original g-eCK model, the adversary is allowed to register a public key (via
AddUser query) by checking whether corresponding register key comes from the
key space for public key. However in our model, we model the requirement of
the key registration in a more general way via parameter proof.
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Secure AKE Protocols. To formalize the notion that two oracles are engaged in
an on-line communication, we define the partnership via matching sessions. We
assume that messages in a transcript T s

i are represented as binary strings.

Definition 5. We say that an oracle πs
i has a matching session to oracle πt

j, if

pidsi = pidtj and πs
i has sent all protocol messages and T s

i = T t
j .

Definition 6 (Correctness). Let πs
i and πt

j be two oracles. We say a GAKE
protocol Σ is correct, if both oracles πs

i and πt
j accept such that πs

i and πt
j have

matching sessions, then it holds that Ks
i = Kt

j.

Security Game. The security game is played between a challenger C and an
adversary A, where the following steps are performed:

1. At the beginning of the game, the challenger C implements the collection
of oracles {πs

i : i ∈ [
], s ∈ [ρ]}, and generates 
 long-term key pairs
(pkIDi , skIDi) and corresponding proof proofi for all honest parties IDi where
the identity IDi ∈ IDS of each party is chosen uniquely. C gives adversary
A {(ID1, pkID1

, proof ID1
), . . . , (ID�, pkID�

, proofID�
)} as input.

2. A may issue polynomial number of queries: Send, StateReveal, Corrupt,
RegisterCorrupt and RevealKey.

3. At some point, A may issue a Test(πs
i ) query on an oracle πs

i during the
experiment but only once.

4. At the end of game, the A may terminate with outputting a bit b′ as its
guess for b of Test query.

For the security definition, we need the notion about the freshness of oracles
which formulates the restrictions on the adversary with respect to performing
these above queries.

Definition 7 (Freshness). Let πs
i be an accepted oracle.

Let πS = {πt
j}IDj∈pidsi ,j �=i be a set of oracles (if they exist), such that πs

i has a
matching session to πt

j. Then the oracle πs
i is said to be fresh if none of the

following conditions holds:
(i) A queried RegisterCorrupt(IDj , pkIDj

, proof IDj
) with some IDj ∈ pidsi ; (ii) A

queried either RevealKey(πs
i ) or RevealKey(πt

j) for some oracle πt
j ∈ πS; (iii) A

queried both Corrupt(IDi) and StateReveal(πs
i ); (iv) For some oracle πt

j ∈ πS, A
queried both Corrupt(IDj) and StateReveal(πt

j); (v) If IDj ∈ pidsi (j 	= i) and there
is no oracle πt

j such that πs
i has a matching session to πt

j , A queried Corrupt(IDj).

Definition 8 (g-eCK Security). We say that an adversary A (t, ε)-breaks the
g-eCK security of a correct group AKE protocol Σ, if A runs the AKE security
game within time t, and the following condition holds:

– If a Test query has been issued to a fresh oracle πs
i , then the probability that

the bit b′ returned by A equals to the bit b chosen by the Test query is bounded
by

|Pr[b = b′]− 1/2| > ε,

We say that a correct group AKE protocol Σ is (t, ε)-g-eCK-secure, if there exists
no adversary that (t, ε)-breaks the g-eCK security of Σ.
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4 Simplify the Security Proof for One-Round GAKE in
the g-eCK Model

We first present a generic definition of one-round group authenticated key ex-
change (ORGAKE) to allow us to describe our generic result for this class of
protocols. In a ORGAKE protocol, each party may send a single ‘message’ and
this message is always assumed to be independent of the message sent by the
other party without loss of generality. The independence property of sent mes-
sages is required since the session participants can’t achieve mutual authentica-
tion in one-round and it enables parties to run protocol instances simultaneously
(which is a key feature of one-round protocol). The key exchange procedure is
done within two pass and a common shared session key is generated to be known
only by session participants.

Let GD := ((ID1, pkID1
), . . . , (IDn, pkIDn

)) be a list which is used to store the
public information of a group of parties formed as tuple
(IDi, pkIDi

), where n is the size of the group members which intend to share a
key and pkIDi

is the public key of party IDi ∈ IDS (i ∈ [n]). Let T denote
the transcript storing the messages sent and received by a protocol instance at
a party which are sorted orderly. A general PKI-based ORGAKE protocol may
consist of four polynomial time algorithms
(ORGAKE.Setup,ORGAKE.KGen,ORGAKE.MF,ORGAKE.SKG) with following
semantics:

– pms← Setup(1κ): This algorithm takes as input a security parameter κ and
outputs a set of system parameters storing in a variable pms.

– (skID, pkID, proofID)
$← ORGAKE.KGen(pms, ID): This algorithm takes as in-

put system parameters pms and a party’s identity ID, and outputs a pair
of long-term private/public key (skID, pkID) ∈ (PK,SK) for party ID and a
non-interactive proof for pkID (which is required during key registration.).

– mID1

$← ORGAKE.MF(pms, skID1
, rID1

,GD): This algorithm takes as input
system parameters pms and the sender ID1’s secret key skID1 , a randomness

rID1

$← RORGAKE and the group information variable GD, and outputs a
message to be sent in a protocol pass, where RORGAKE is the randomness
space.1

– K ← ORGAKE.SKG(pms, skID1
, rID1

,GD,T): This algorithm take as the in-

put system parameters pms and ID1’s secret key skID1 , a randomness rID1

$←
RORGAKE and the group information GD and a transcript T orderly recorded
all protocol messages exchanged2, and outputs session key K ∈ KORGAKE.

1 We remark that the parameter GD of algorithm ORGAKE.MF is only optional, which
can be any empty string if specific protocol compute the message without knowing
any information about its indented partners.

2 The detail order needs to be specified by each protocol.



Strongly Secure One-Round Group Authenticated Key Exchange 131

For correctness, we require that, on input the same group descriptionGD =
((ID1, pk1), . . . , (IDn, pkn)) and transcript T, algorithm ORGAKE.SKG satis-
fies the constraint: ORGAKE.SKG(pms, skID1 ,
rID1

,GD,T) = ORGAKE.SKG(pms, skIDi
, rIDi

,GD,T), where skIDi
is the secret

key of a party IDi ∈ GD who generates randomness rIDi
∈ RORGAKE for i ∈ [n].

Besides these algorithms, each protocol might consist of other steps such as
long-term key registration and message exchange, which should be described by
each protocol independently.

Simplify the Security Proof for One-round Tripartite AKE in the g-eCK model.
We show how to reduce the complexity of the security proof of any one-round
3AKE protocol with the above form in the g-eCK model. To prove the security
of a protocol in the g-eCK model, it is necessary to show the proof under all
possible freshness cases formulated by Definition 7. Let oracle πs∗

Â
be the test

oracle with intended partner B̂ and Ĉ for instance. If any adversary breaks the
indistinguishability security property of am OR3AKE protocol, then at least one
of the following fresh events must occur:

– Event 0: There are oracles πt∗

B̂
and πl∗

Ĉ
, such that πs∗

Â
has matching session

to πt∗

B̂
and to πl∗

Ĉ
respectively.

– Event 1: There is an oracle πt∗

F̂
such that πs∗

Â
and πt∗

F̂
have matching sessions

but there is no oracle of D̂ having matching session to πs∗

Â
, where F̂ and D̂

are parties such that F̂ , D̂ ∈ {B̂, Ĉ} and D̂ 	= F̂ .
– Event 2: πs∗

Â
has no matching session.

In the Table 1, we show the freshness cases regarding to StateReveal and Corrupt
query which might be occurred in each event. Let ‘nRS’ denote the situation that
the adversary did not issue StateReveal query to specific oracle, and ′nC’ denote
the situation adversary did not issue Corrupt query to corresponding party (e.g.
the owner of certain oracle).

Table 1. Freshness Cases in Each Event

Event 0 πs∗
Â

πt∗
B̂

πl∗
Ĉ

Event 1 πs∗
Â

πt∗
F̂

D̂ Event 2 πs∗
Â

B̂ Ĉ
Case 1 (C1) nRS nRS nRS Case 9 (C9) nRS nRS nC Case 13 (C13) nC nC nC
Case 2 (C2) nC nRS nRS Case 10 (C10) nC nRS nC Case 14 (C14) nRS nC nC
Case 3 (C3) nRS nRS nC Case 11 (C11) nC nC nC
Case 4 (C4) nC nRS nC Case 12 (C12) nRS nC nC
Case 5 (C5) nRS nC nRS
Case 6 (C6) nC nC nRS
Case 7 (C7) nC nC nC
Case 8 (C8) nRS nC nC

In order to complete the proof, we must provide the security proofs under
all fourteen cases that might be tiresome. However we introduce the following
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general propositions to facilitate the proof of any OR3AKE protocols in the form
of the above description. Our goal is to reduce the freshness cases which have
the similar restrictions on adversary’s queries.

Proposition 1. If adversaryA1 (t1, εA1)-breaks the g-eCK security of aOR3AKE
protocol Σ in case C2, then there exists an adversary A2 who can (t2, εA2)-breaks
the g-eCK security of Σ in case C5, such that t1 ≈ t2 and εA1 = εA2 .

Proposition 2. If adversary A1 (t1, εA1)-breaks the g-eCK security of a
OR3AKE protocol Σ in case C3 (C5), then there exists an adversary A2 who
can (t2, εA2)-breaks the g-eCK security of Σ in case C9, such that t1 ≈ t2 and
εA1 = εA2 .

Proposition 3. If adversary A1 (t1, εA1)-breaks the g-eCK security of a
OR3AKE protocol Σ in case C7, then there exists an adversary A2 who can
(t2, εA2)-breaks the g-eCK security of Σ in case C11. If such adversary A2 exists,
then there exists an adversary A3 who can (t3, εA3)-breaks the g-eCK security of
Σ in case C13. We have that t1 ≈ t2 ≈ t3 and εA1 = εA2 = εA3 .

Proposition 4. If adversary A1 (t1, εA1)-breaks the g-eCK security of a
OR3AKE protocol Σ in case C4, then there exists an adversary A2 who can
(t2, εA2)-breaks the g-eCK security of Σ in case C10. If such adversary A2 ex-
ists, then there exists an adversary A3 who can (t3, εA3)-breaks the g-eCK secu-
rity of Σ in case C12. If such adversary A3 exists, then there exists adversary
A4 who can (t4, εA4)-breaks the g-eCK security of Σ in case C14. We have that
t1 ≈ t2 ≈ t3 ≈ t4 and εA1 = εA2 = εA3 = εA4 .

Proposition 5. If adversary A1 (t1, εA1)-breaks the g-eCK security of a
OR3AKE protocol Σ in case C6, then there exists an adversary A2 who can
(t2, εA2)-breaks the g-eCK security of Σ in case C8. If such adversary A2 exists,
then there exists an adversary A3 who can (t3, εA3)-breaks the g-eCK security of
Σ in case C12. We have that t1 ≈ t2 ≈ t3 and εA1 = εA2 = εA3 .

The proofs of above propositions can be found in the full version of this paper
[16]. Due to the above reductions, one could prove the security of any one-round
3AKE protocol in the g-eCK model only under freshness cases C1, C9, C13 and
C14. This would be dramatically simplify the security proof. In the sequel, we
call these freshness cases require to write proof as target freshness cease.

Towards Lower Bound of Target Freshness Cases for the Proof of One-round
GAKE with Arbitrary Group Size in the g-eCK Model. In order to make the
proof for one-round GAKE protocol in the g-eCK model to be more tight, we
might also need to do the analogous reductions about the freshness cases as it is
done for OR3AKE. So that we make a conjecture for the lower bound of target
freshness cases for the proof of AKE protocol with arbitrary group size n in the
g-eCK Model.

Conjecture 1. For any one-round group AKE protocol with members n+ 1, we
have n+ 2 freshness cases that require proof simulations.

The proof idea of this conjecture is presented in [16].
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5 A Tripartite AKE Protocol from Bilinear Maps

In this sectionwe present a three party one-roundAKEprotocol based on symmet-
ric bilinear groups, a target collision resistant hash function and a pseudo-random
function family. The requirements for underlying building blocks are standard, the
proposed protocol provides g-eCK security without random oracles.

5.1 Protocol Description

Setup: The proposed protocol takes as input the following building blocks
which are initialized respectively in terms of the security parameter κ ∈ N:

(i) Symmetric bilinear groups PG = (G, g,GT , p, e)
$← PG.Gen(1κ) and a set

of random values {ui}0≤i≤3
$← G; (ii) a target collision resistant hash func-

tion TCRHF(hkTCRHF, ·) : KTCRHF × G → Zp, where KTCRHF is the key space

of TCRHF and hkTCRHF
$← TCRHF.KG(1κ); and (iii) a pseudo-random function

family PRF(·, ·) : GT × {0, 1}∗ → KAKE. The system parameters encompass
pms := (PG, {ui}0≤i≤3, hkTCRHF).

Â B̂ Ĉ

x
$← Z

∗
p, X := gx y

$← Z
∗
p, Y := gy z

$← Z
∗
p, Z := gz

hX := TCRHF(X) hY := TCRHF(Y ) hZ := TCRHF(Z)

tX := (u0u
hX
1 u

h2
X

2 u
h3
X

3 )x tY := (u0u
hY
1 u

h2
Y

2 u
h3
Y

3 )y tZ := (u0u
hZ
1 u

h2
Z

2 u
h3
Z

3 )z

broadcast (Â, A, tA, X, tX) broadcast (B̂, B, tB, Y, tY ) broadcast (Ĉ, C, tC , Z, tZ)
hB := TCRHF(B) hA := TCRHF(A) hA := TCRHF(A)
hC := TCRHF(C) hC := TCRHF(C) hB := TCRHF(B)
hY := TCRHF(Y ) hX := TCRHF(X) hX := TCRHF(X)
hZ := TCRHF(Z) hZ := TCRHF(Z) hY := TCRHF(Y )

UB := u0u
hB
1 u

h2
B

2 u
h3
B

3 UA := u0u
hA
1 u

h2
A

2 u
h3
A

3 UA := u0u
hA
1 u

h2
A

2 u
h3
A

3

UC := u0u
hC
1 u

h2
C

2 u
h3
C

3 UC := u0u
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1 u

h2
C

2 u
h3
C

3 UB := u0u
hB
1 u

h2
B

2 u
h3
B

3

UY := u0u
hY
1 u

h2
Y

2 u
h3
Y

3 UX := u0u
hX
1 u

h2
X

2 u
h3
X

3 UX := u0u
hX
1 u

h2
X

2 u
h3
X

3

UZ := u0u
hZ
1 u

h2
Z

2 u
h3
Z

3 UZ := u0u
hZ
1 u

h2
Z

2 u
h3
Z

3 UY := u0u
hY
1 u

h2
Y

2 u
h3
Y

3

reject if either reject if either reject if either
e(tB, g) �= e(UB, B) or e(tA, g) �= e(UA, A) or e(tA, g) �= e(UA, A) or
e(tC , g) �= e(UC , C) or e(tC , g) �= e(UC , C) or e(tB, g) �= e(UB, B) or
e(tY , g) �= e(UY , Y ) or e(tX , g) �= e(UX , X) or e(tX , g) �= e(UX , X) or
e(tZ , g) �= e(UZ , Z) e(tZ , g) �= e(UZ , Z) e(tY , g) �= e(UY , Y )

Each party has sid := Â||A||tA||X||tX ||B̂||B||tB ||Y ||tY ||Ĉ||C||tC ||Z||tZ
Each party rejects if some values recorded in sid are identical

k := e(BY,CZ)a+x k := e(AX,CZ)b+y k := e(AX,BY )c+z

ke := PRF(k, sid) ke := PRF(k, sid) ke := PRF(k, sid)

Fig. 1. One-round Tripartite AKE Protocol
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Long-term Key Generation and Registration: On input pms, a party Â may run

an efficient algorithm (skÂ, pkÂ, ∅)
$← ORGAKE.KGen(pms, Â) to generate the

long-term key pair as: skÂ = a
$← Z∗

p, pkÂ = (A, tA) where A = ga, tA :=

(u0u
hA
1 u

h2
A

2 u
h3
A

3 )a and hA = TCRHF(A). Please note that we allow arbitrary key

registration, i.e. the adversary is able to query RegisterCorrupt(Â, pkÂ, ∅) with
proofÂ = ∅.
Protocol Execution: On input pms, the protocol among parties Â, B̂ and Ĉ is
depicted in the Figure 1.

Implementation and Session States: We assume that the maximum states of
party Â allowing for leakage consist of ephemeral private key x (resp. y and
z for parties B̂ and Ĉ) – namely those values would be stored in the state
variable st of each oracle at any time. For example this can be guaranteed by
performing the computations for k and ke on secure device. Note that the all
pairing operations including e(BY,CZ) can be done on host machine.

We notice that a party Â has to do consistency check on long-term key in
every sessions that might be wasteful. An alternative solution could make the
Certificate Authority to check the consistency of long-term public key during
key registration procedure. In this way, it might reduce two pairing operations
for protocol execution and also the number of public key. To register a public key
pkÂ = A, each party Â should at least prove the consistency via tag tA. Then

the public key A is registered if e(tA, g) = e(A, u0u
hA
1 u

h2
A

2 u
h3
A

3 ). Thus this check
would be done only once at CA. The downside of this approach is that it might
increase the burden of CA. In particular, the tag tA is required while querying
the RegisterCorrupt(Â, pkÂ, proofÂ) in the security game, i.e. proofÂ = tA.

5.2 Security Analysis

We show the security of proposed protocol in the g-eCK model.

Theorem 1. Assume each ephemeral key chosen during key exchange has bit-
size λ ∈ N. Suppose that the CBDDH problem is (t, εCBDDH)-hard in the symmet-
ric bilinear groups PG, the TCRHF is (t, εTCRHF)-secure target collision resistant
hash function family, and the PRF is (q, t, εPRF)-secure pseudo-random function
family. Then the proposed protocol is (t′, ε)-session-key-secure in the sense of

Definition 8 with t′ ≈ t, q ≥ 3 and ε ≤ (ρ�)2

2λ
+ εTCRHF + 4(ρ
)3 · (εCBDDH + εPRF).

Proof sketch. We give a brief sketch of the proof of Theorem 1 (more details
can be found in [16]). It is straightforward to see that two oracles accept with
matching sessions would compute the same session key. Namely the proposed
protocol is correct. In the sequel, we wish to show that the adversary is unable
to distinguish random value from the session key of any fresh oracle.

To complete the proof of Theorem 1, we only need to prove the advantage
of the adversary is negligible under target freshness cases C1, C9, C13 and
C14, due to the reductions in Section 4. The proof proceeds in a sequence of
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games, following [20]. Let Sδ be the event that the adversary wins the security
experiment in Game Gδ under freshness cases in {C1, C9, C13, C14}. Let Advδ :=
Pr[Sδ]− 1/2 denote the advantage of A in Game Gδ.
Game G0. This is the original game with adversary A. The system parameters
are chosen honestly by challenger as protocol specification. Thus we have that
Pr[S0] = 1/2 + ε = 1/2 + Adv0.
Game G1. In this game, the challenger aborts, if during the simulation an
ephemeral key replied by an oracle πs

i but it has been sample by another oracle

or sent by adversary before. We have that Adv0 ≤ Adv1 + (ρ�)2

2λ
.

Game G2. In this game, the challenger aborts if two oracles output the same
hash value of TCRHF. Thus we have Adv1 ≤ Adv2 + εTCRHF.
Game G3. This game proceeds as previous game, but C aborts if one of the
following guesses fails: (i) the freshness case occurred to test oracle from the
set {C1, C9, C13, C14}, (ii) the test oracle, (iii) its partner parties, and (iv)
corresponding oracles (if any) each of which has a matching session to test or-
acle, in terms of specific guessed freshness case. Since there are four considered
fresh cases, 
 parties and at most ρ oracles for each party, then the probability
that all above guesses of C are correct is at least 1/4(ρ
)3. Thus we have that
Adv2 ≤ 4(ρ
)3 · Adv3. Please note that there are at least three uncompromised
(either long-term and ephemeral) Diffie-Hellman keys which are used by test
oracle to generate its key material k∗, as otherwise the test oracle is not g-eCK-
fresh any more. We call such guessed three uncompromised DH keys as target
DH keys.
Game G4. Technically, this game is proceeded as previous game, but the

challenger C replaces the key material ksi with random value k̃si for oracles
{πs

i : i ∈ [
], s ∈ [ρ]} which satisfy the following conditions: (i) The ksi is com-
puted involving the three target DH keys, and (ii) Those target DH keys used by
πs
i are from three distinct parties. If there exists an adversary A can distinguish

the Game G4 from Game G3 then we can make use of it to solve the CBDDH
problem. We therefore obtain that Adv3 ≤ Adv4 + εCBDDH.

Game G5. In this game, we change function PRF(k̃∗, ·) to a truly random
function for test oracle and its partner oracles (if they exist). Thus we have that
Adv4 ≤ Adv5+εPRF due to the security of PRF. Note that in this game the session
key returned by Test-query is totally a truly random value which is independent
to the bit b and any messages. Thus the advantage that the adversary wins this
game is Adv5 = 0. Sum up the probabilities from Game G0 to Game G5, we
proved this theorem.

6 A GAKE Construction from Multilinear Maps

An interesting work is to extend the proposed 3AKE scheme to GAKE scheme
with more than three group members. Based on bilinear groups might be im-
possible to achieve so. Since we can not get an aggregate long-term shared key
for a group of members from bilinear map. However, Boneh and Silverberg [6]
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have given us inspiration on how to generalize the 3AKE to GAKE by exploiting
multilinear maps.

6.1 Protocol Description

Setup: The proposed GAKE protocol takes as input the following building blocks
which are initialized respectively in terms of the security parameter κ ∈ N

and upper-bound of number of users n + 1: (i) n-mulitilinear groups MLG =

(G,GT , g, p,me)
$← MLG.Gen(κ, n) and a set of random values {uj}0≤j≤n+1

$←
G; (ii) a target collision resistant hash function TCRHF(hkTCRHF, ·) : KTCRHF ×
G→ Zp, where hkTCRHF

$←
TCRHF.KG(1κ); and (iii) a pseudo-random function family PRF(·, ·) : GT ×
{0, 1}∗ → KAKE. Let pms := (MLG, {uj}0≤j≤n+1, hkTCRHF) be the variable used
to store the public system parameters.
Long-term Key Generation and Registration: On input pms, a party Â may run

an efficient algorithm (skD̂, pkD̂, ∅) $← ORGAKE.KGen(pms, D̂) to generate the

long-term key pair for a party D̂ as: skD̂ = d
$← Z∗

p, pkD̂ = (D, tD), where

D = ga, tD :=
∏n+1

j=0 u
hj
D

j and hA = TCRHF(A). Please note that we allow
arbitrary key registration.

Let ω denote the size of group for a protocol instance such that 2 ≤ ω ≤ n+1.
An important attribute for a GAKE protocol is the scalable group size. In the
following we show our construction for protocol execution phase which is scalable
with range between 2 and n+ 1.
Protocol Execution: We consider the protocol execution for a protocol in-
stance with ω group members denoted by (D̂1, D̂2, . . . , D̂ω), where each
party D̂i (1 ≤ i ≤ ω) has long-term key Di. In the key exchange
phase, each party D̂i generates an ephemeral key Xi = gxi, computes

tag tXi :=
∏n+1

j=0 u
hj
Xi

j and broadcasts (D̂i, Di, tDi , Xi, tXi) to its intended

communication partners, where xi
$← Z∗

p and hXi := TCRHF(Xi). Upon

receiving all messages {D̂l, Dl, tD1 , Xl, tXl
}1≤l≤ω,l �=i from each session partic-

ipant, the party D̂i rejects the session if the consistency check on one of
the received either long-term or ephemeral keys fails, i.e. me(tWl

, g, . . . , g) 	=
me(

∏n+1
j=0 u

hj
Wl

j ,Wl, g, . . . , g) where Wl ∈ {Dl, Xl} for 1 ≤ l ≤ ω, l 	= i

and hWl
= TCRHF(Wl). The party D̂i sets sid := D̂1||D1||tD1 ||X1||tX1 || . . .

||D̂ω||Dω||tDω ||Xω||tXω , and rejects the session if some values recorded in
sid are identical. To this end, the party D̂i generates the key material
k := me(D1X1, . . . , Di−1Xi−1, Di+1Xi+1, . . . , DωXω, . . . , DωXω)

di+xi and ses-
sion key ke := PRF(k, sid), where the values D0, X0, Dω+1, Xω+1 are ‘empty’
which should be omitted. Other parties in this group will do the similar proce-
dures to generate the session key.

Please note that the scalability is achieved generally by setting all Diffie-
Hellman keys after the position ω in n-multilinear map me to be DωXω. This is
possible since at least one DH key in (Dω, Xω) is not compromised by adversary
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in the security game. As otherwise such session is no longer fresh in terms of
Definition 7.
Implementation and Session States: We assume that the maximum states of
party D̂i allowing for leakage from a session consist of ephemeral private key xi
– namely those values would be stored in the variable in the state variable st
of each oracle at any time. The implementation scenario is similar to the three
party case presented in Section 5.

6.2 Security Analysis

We show the security of above group AKE protocol in the g-eCK model.

Theorem 2. Assume each ephemeral key chosen during key exchange has bit-
size λ ∈ N. Suppose that the nMDDH problem is (t, εnMDDH)-hard in the sym-
metric multilinear groupsMLG, the TCRHF is (t, εTCRHF)-secure target collision
resistant hash function family, and the PRF is (q, t, εPRF)-secure pseudo-random
function family. Then the proposed protocol of size 2 ≤ ω ≤ n + 1 ≤ 
 is
(t′, ε)-g-eCK-secure in the sense of Definition 8 with t′ ≈ t, q ≥ n + 1 and

ε ≤ (ρ�)2

2λ + εTCRHF + (n+ 2)(ρ)n+1
(

�
n+1

)
· (εnMDDH + εPRF).

The proof of theorem 2 is presented in the full version of this paper [16]. We
lose a factor (n+2)(ρ)n+1

(
�

n+1

)
here which is exponential in group size n. Hence,

in order to make the overall advantage of adversary to be negligible, one may
need to use a larger security parameter or to limit the maximum group members.

Acknowledgments. We would like to thank the anonymous reviewers of CANS
2013 for their helpful comments.
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Abstract. In rational secret sharing, parties may prefer to mislead oth-
ers in believing a wrong secret as the correct one over everybody obtain-
ing the secret (i.e. a fair outcome). Prior rational secret reconstruction
protocols for non-simultaneous channel only address the case where a
fair outcome is preferred over misleading and hence are fair but not cor-
rect. Asharov and Lindell (2010) proposed the first and the only protocol
that takes care of both the preferences. In this paper, we propose a new
rational secret sharing protocol that addresses both the preferences and
is fair and correct in the non-simultaneous channel model. Additionally,
it is independent of the utility of misleading. Each rational party is given
a list of sub-shares of shares of the actual secret and fake shares. In each
round of the protocol each party sends the current element in its list
to the other party and then reconstructs a share from the sub-shares
obtained. The main idea is to use a checking share which is a share of
the original secret as a protocol–induced membership auxiliary informa-
tion to check whether the shares obtained till a certain round can be
used to reconstruct the correct secret. We overcome the disadvantages
of the presence of auxiliary information by using the time-delayed en-
cryption scheme used by the protocol of Lysyanskaya and Segal (2010)
that tolerates players with arbitrary side information. In our case, the
side information used is not arbitrary but introduced by the mecha-
nism/protocol designer to put all players on equal footing. We show that
our protocol is in computational strict Nash equilibrium in the presence
of protocol-induced auxiliary information.

1 Introduction

Since the introduction of the concept of rational players in (t, n) threshold secret
sharing by [6], the area which henceforth came to be known as rational secret
sharing (RSS) and its application in secure multiparty computation (known as
rational multi-party computation or RMPC) has attracted a lot of fruitful re-
search [1, 2, 5, 7–9, 13, 15–17, 19–21]. Briefly, the RSS problem is as follows.
Each of n players P1, P2, . . . , Pn is given a share of a secret s by a dealer. The
secret can be reconstructed if at least any t of them cooperate. However, the
point of contention is that each player wishes to learn the secret himself while
allowing as few others as possible to learn the correct value. What strategy will
each player need to adopt so that each player comes to know the secret?

M. Abdalla, C. Nita-Rotaru, and R. Dahab (Eds.): CANS 2013, LNCS 8257, pp. 139–161, 2013.
c© Springer International Publishing Switzerland 2013
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Inherent to the RSS problem is the problem of achieving fairness. Each player
wants to obtain the secret alone and is unfair to others i.e. for each player, the
utility of obtaining the secret alone (UTN ) is the maximum. The other utilities
of a rational party are that of everybody obtaining the secret (UTT ), that of
nobody obtaining the secret (UNN) and that of everybody else obtaining the
secret (UNT ). So each player has a preference of UTN > UTT > UNN > UNT .
The desirable outcome of the secret reconstruction game is the fair one in which
everybody obtains the secret. A rational secret reconstruction scheme or protocol
is a strategy for each player suggested by the protocol designer such that this fair
outcome can be obtained and there is no incentive for any player to deviate from
this strategy. Nash equilibrium and its variants (computational Nash, strict Nash
etc) are the most used equilibrium concepts in this context. Much of the RSS
literature [2, 6, 15, 21] focusses on obtaining fair rational secret reconstruction
mechanisms under different assumptions such as the type of communication
channel present (simultaneous/ non-simultaneous) or the nature of the dealer
(online/offline). We present a brief comparative summary of such protocols in
Table 1. The basic assumption about the preference UTN > UTT > UNN > UNT

of rational players is common to all the RSS protocols proposed so far (hence,
we do not mention this separately in Table 1). In some cases, there are some
special assumptions (which we mention in Table 1, under ‘Special Preferences ’)
about the nature of players (for eg., [16] assumes a rational majority along with
a minority of honest players) and their preferences. These special preferences are
related to the correctness of the secret obtained ([2]).

Parties in a rational secret reconstruction mechanism may often be considered
to derive some positive utility frommisleading other players into believing a wrong
value to be the correct secret when it itself obtains nothing (UNF ). A fair recon-
struction protocol gives the utility of UTT to each player. Therefore it is also cor-
rect as long as UNF < UTT . However, when parties prefer misleading others over
everybody obtaining the correct secret (i.e. UNF ≥ UTT ), a fair rational secret
reconstruction protocol for the non-simultaneous channel model does not remain
correct (we shall soon discuss why this is so). Unfortunately, this problem has re-
ceived very little attention from researchers and this can be easily identified from
Table 1. [2] proposed the first and the only correct and fair rational secret recon-
struction protocol for the case when both scenarios may hold in the (2, 2) setting.
Prior to their work, all works on rational secret sharing either assumed the exis-
tence of simultaneous broadcast channel [5, 6] (where this problem does not exist)
or assumed that rational parties prefer everybody to obtain the output of the pro-
tocol than misleading others [9, 15, 21]. We therefore aim to design a correct and
fair rational secret reconstruction protcol in the non-simultaneous channel.

A desirable property of any rational secret reconstruction scheme is utility-
independence. If a particular RSS scheme is dependent on utility values of players
then it requires the protocol designer to be able to accurately estimate the utility
values or at least the range of these values in order to set the appropriate param-
eters during the execution of that RSS scheme. The work of [2] has extensively
dealt with the property of utility-independence. It proposes a (t, n) (where n ≥ 3,
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2 < t ≤ n) rational secret reconstruction protocol which is completely utility-
independent (i.e. the protocol designer is not required to know any utility value)
in the simultaneous channel model. However, [2] also showed that, in the non-
simultaneous channel model, there does not exist any (2, 2) fair rational secret re-
construction protocol that is independent of the utility value UNF . Consequently,
the (2, 2) correct and fair rational secret reconstruction protocol they suggest in
the non-simultaneous channel, although correct even when UNF ≥ UTT , is UNF

utility–dependent. In this paper we remove this utility dependency. So the basic
question that we address here is whether it is possible to have a rational secret re-
construction protocol that is both correct and fair even when UNF ≥ UTT and
given that, whether it is possible to achieve UNF –independence for such a proto-
col. We propose a (2, 2) fair rational secret reconstruction mechanism in the non-
simultaneous channel that is 1) correct even if rational parties prefer to mislead
others i.e. UNF ≥ UTT and 2) UNF –independent. We also suggest its extension
to the (t, n) setting. However, like the protocol of [2], our protocol is dependent
on other utility values such as UTN , UTT and UNN . In many scenarios, the act of
misleading can be potentially more harmful than the act of selfishness. If a proto-
col designer wrongly estimates the UNF utility values, the execution of a correct
and fair RSS protocol may still result in some of the parties being misled due to
the wrongly estimated parameter. Moreover, we believe that estimation of UNF is
more difficult than that of UTN , UTT or UNN . The impact of knowing the correct
value of a secret is more well–understood than that of believing in a wrong value
as the correct one. The existence of a UNF –independent correct and fair rational
secret reconstruction protocol is therefore advantagenous even if it is dependent
on other utility values.

Until now, a general pattern for a rational secret sharing scheme has been the
following. Each party gets from the dealer a list of shares, one of which is that
of the actual secret and the remaining of fake secrets. The position of this actual
share is not known to the players beforehand. This position is chosen according
to a geometric distribution G(β), where the parameter β in turn depends on the
utility values. In each round of communication, players (either simultaneously or
non-simultaneously) broadcast or send individually to each of the other players (in
absence of broadcast channel) the current share in its list. The shares are signed
by the honest dealer, so no player can give out false shares undetected and the
only possible actions in a round are to 1) send the message or 2) remain silent. The
round in which the shares of the actual secret are revealed and hence the secret is
reconstructed is called the revelation/definitive round.The players aremade aware
that they have crossed the revelation round by the reconstruction/exchange of an
indicator (a bit in [9], a signal in [15]) in the subsequent round. In case of non-
simultaneous channels, the indicator cannot be reconstructed/interpreted, as the
player who is to communicate last in this round already knows that the round be-
fore was the revelation round (because he has the indicator) and quits the protocol
immediatelywithout sendingmessages (shares/signals as the casemaybe) further.
When the deviating player quits, other players also conclude that the secret has
been reconstructed in the last round.
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Basically, when a party quits in any round, there can be two scenarios: 1)
the party quits because it has already obtained the secret and 2) the party
quits because it wants others to believe that the secret has been obtained when
in reality it is not so. In secret reconstruction protocols for non-simultaneous
channels, we see that, whenever a party aborts, the other party assumes that
this abortion signifies that the former has obtained its output and hence it
also outputs the value obtained in the last round1. There is no way for the
non-deviating party to verify whether this is actually the revelation round i.e.
to find out whether scenario (1) holds or scenario (2). This gives rise to the
outcome where one party is misled to believe in a false secret as the actual secret
whereas the other party gets nothing. Herein arises the question of correctness
of protocol output for fair rational secret reconstruction. The means to restore
fairness described so far is fine if it is known that parties have the preference
UNF < UTT . On the other hand if parties have the preference UNF ≥ UTT ,
this way of achieving fairness jeopardizes correctness. [2] achieves the solution to
this problem by introducing special fake rounds called completely fake rounds
(apart from the normal fake rounds that enable fair secret reconstruction) such
that the first player to send a share knows which rounds are the special fake
rounds and if the second player, who is unaware of this information, halts to
pretend that the end of the list has been reached in any of the completely fake
rounds then the first player knows that the other party has cheated. However,
this protocol is dependent on the value of UNF . Specifically, with probability α
a particular round is a completely fake round and with probability (1 − α) it is
not. Then for a player to follow the suggested strategy, it can be easily shown
that α < (UTT − UNN )/(UNF − UNN). The dependence of the correctness of
their protocol on the value of α introduces utility-dependence. In comparison,
we do not use any such parameter. For our protocol to be correct, we take help
of auxiliary information introduced by the protocol designer to allow players
to check whether the secret reconstructed by them is correct or not. Since the
auxiliary information does not depend on any utility values our protocol is UNF –
independent 2.

1 In fact, this seems to be a widely used concept for restoring fairness when another
party aborts prematurely. In his work on Oblivious Transfer, one of the most impor-
tant cryptographic primitives used in secure computation, Rabin [23] had implicitly
suggested this general notion of achieving fairness: the design of a protocol to en-
sure fairness is such that the very act of aborting by one party should reveal crucial
information to the other party which helps it to restore fairness. Gordon who ob-
served this in [24] says that this concept turns out to be very similar to the one
they use in their work on complete fairness in secure computation with malicious
adversary. Specifically, in their protocol for complete fairness in two-party computa-
tion of functions over polynomial-sized domains and without an embedded XOR, if
the malicious adversary aborts in any round, then the honest party gets information
about the adversary’s input in the computation and can compute the value of the
function itself, restoring fairness.

2 Our protocol is only UNF –independent because for maintaining fairness we still use
a geometric distribution G(β) where β depends on UTN , UTT and UNN .
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Table 1. A Comparison of the Characteristics of Rational Secret Reconstruction Mech-
anisms

RSS Proto-
cols

Special Pref-
erences

Channel/Dealer
Charateristics

Properties

Halpern &
Teague (2004)
[6]

Simultaneous Broad-
cast; Online Dealer

Valid for n ≥ 3; Unconditional

Gordon &
Katz (2006)
[5]

Simultaneous Broad-
cast; Online Dealer

Valid for n ≥ 2; Unconditional

Kol & Naor
(two proto-
cols) (2008)
[9]

UTT > UNF 1)Simultaneous
broadcast; 2) Non-
Simultaneous Broad-
cast; Offline Dealer

Fair but not correct for UNF ≥
UTT in non-simultaneous case; Un-
conditional; (2, 2), t-out-of-n

Ong et al.
(2009) [16]

Majority: Ra-
tional; Minor-
ity: Honest

Non-Simultaneous
Broadcast; Offline
Dealer

Unconditional; only 2 rounds of
communication

Asharov
& Lindell
(2010) [2];
two protocols

2) UTT >
UNF &
UNF ≥ UTT

1) Simultaneous
Broadcast; Online
Dealer; 2) Non-
simultaneous; Offline
Dealer

Complete utility independence for
n ≥ 3; Unconditional; First to
achieve both correctness and fair-
ness in non-simultaneous chan-
nel (with UNF dependence). Also
proved impossibility of fair recon-
struction protocol in presence of
side information. Proved impossi-
bility of UNF independence in non-
simultaneous channel for (2, 2) case.

Fuchsbauer
et al. (2010)
[15]; three
protocols

UTT > UNF 1) Non-simultaneous,
2) point-to-point,
Synchronous 3)
Asynchronous; Of-
fline Dealer

(2, 2); exactly t-out-of-n; Verifiable
Random Function (VRF)

Lysyanskaya
& Segal
(2010) [21]

UTT > UNF Non-simultaneous,
point-to-point, syn-
chronous; Offline
Dealer

First fair reconstruction protocol in
presence of arbitrary side informa-
tion; (n, n) case; Use of Time De-
layed Encryption (TDE) and VRF

Proposed pro-
tocol

UTT > UNF

& UNF ≥
UTT

Non-Simultaneous
Broadcast; Offline
Dealer

UNF independence; (2, 2). (t, n)
cases; Use of TDE; Uses protocol
generated side information.

Our Contributions. Rational parties preferring to mislead others over every-
body knowing the correct output may be quite common. When a piece of secret
information is to be revealed, then a rational player who believes that others
may have the ability to derive a greater benefit from the information than he
can, may decide that it is better to mislead others with wrong information even
if that means not getting the correct information himself rather than everyone
getting the correct information. However, this scenario has received very little
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attention from researchers till now. In this work we propose a new (2, 2) correct
and fair rational secret sharing protocol for non-simultaneous channels even if
rational parties prefer to mislead and it is in computational strict Nash equilib-
rium in the presence of protocol-induced auxiliary information. The uniqueness
of our protocol is that it is independent of a rational party’s utility of mislead-
ing. The only other protocol suggested in this scenario [2] is dependent on this
utility. We also suggest generalization of our protocol to the (t, n) settings. We
allow each party to possess protocol-induced auxiliary information in the form
of a checking share to be able to check whether the last round was indeed a rev-
elation round. So even after one party aborts, the other party is armed to check
whether he has been misled. This in turn causes no party to have any incen-
tive to deviate from the protocol by aborting arbitrarily, before it has obtained
the output. The introduction of auxiliary information has its problems which
we combat using the time delayed encryption scheme based on cryptographic
memory bound functions as proposed in [21].

Organization of the Paper. The paper is organized as follows: in section 2 we
formally introduce the nature of parties and the concepts of fairness and correct-
ness and the role of auxiliary information that we use for further discussions; in
section 3 we provide an overview of our protocol, discuss about protocol-induced
membership-auxiliary information, checking shares, time delayed encryption and
the equilibrium concept used in our protocol and then formally present our proto-
col for rational secret sharing, followed by an analysis of the protocol. In section
4 we suggest extenstion to (t, n) setting and in section 5, we perform complexity
analysis. Finally we conclude in section 6.

2 Preliminaries

2.1 Rational Secret Sharing and the Preference of Rational Players

Shamir’s (t, n) secret sharing scheme [11] is used to distribute the shares of a
secret among n players such that the secret can be reconstructed only when at
least t of them cooperate. In the first phase of such a scheme, called the secret
sharing phase, a dealer generates n shares s1, . . . , sn of the original secret s and
distributes one share to each of the players. In the next phase, called the se-
cret reconstruction phase, the players exchange their shares. If at least t players
cooperate in this phase then the secret can be reconstructed. An adversary con-
trolling less than t players cannot reconstruct the secret. In this scenario, the
notion of rational players instead of honest players and players controlled by an
adversary was introduced in [6]. They pointed out that if players are rational
and have specific preferences such as getting the secret itself and allowing as few
others possible know the secret, then no player will ever send his share during
the reconstruction phase.

A (t, n) rational secret reconstruction protocol (Γ,−→σ )t,n (where −→σ =(σ1, . . . ,
σn) denotes the strategies followed by the players) may have different outcomes

where an outcome is denoted by
−−−−−−−−→
o((Γ,−→σ )t,n)=(o1, . . . , on). The utility function
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ui of each party Pi is defined over the set of possible outcomes of the game and
are polynomial in the security parameter k. Thus UTN

i = ui(1
k, (oi = s, oj =⊥)),

UTT
i = ui(1

k, (oi = s, oj = s)) (where i 	= j) and so on. Different outcomes of
the game may result due to the different preferences of each party. Table 2 3

describes the possible outcomes and corresponding utilities for t=n=2 and any
arbitrary alternative strategy σdev

i and the suggested strategy σi corresponding
to a party Pi, (i = 1, 2).

Table 2. Outcomes and Utilities for (2, 2) rational secret reconstruction

P1’s outcome P2’s outcome P1’s Utility P2’s Utility
(o1) (o2) U1(o1, o2) U2(o1, o2)

o1=s o2=s UTT
1 (U1) UTT

2 (U2)
o1=⊥ o2=⊥ UNN

1 (U−
1 ) UNN

2 (U−
2 )

o1=s o2=⊥ UTN
1 (U+

1 ) UNT
2 (U−−

2 )
o1=⊥ o2=s UNT

1 (U−−
1 ) UTN

2 (U+
2 )

o1=⊥ o2 �∈ {s,⊥} UNF
1 (Uf

1 ) UFN
2

o1 �∈ {s,⊥} o2=⊥ UFN
1 UNF

2 (Uf
2 )

There can be other combinations of the outcomes mentioned in the table,
other outcomes and corresponding utilities too but we shall consider only the
above. Players have their preferences based on the different possible outcomes.
We shall refer to the following preference relationships of a party Pi throughout
our paper:

1. R1 : UTN
i > UTT

i > UNN
i > UFN

i and UNF
i ≥ UTT

i

2. R2 : UTN
i > UTT

i > UNN
i > UFN

i and UNF
i < UTT

i

We call
{
UTN , UTT , UNN , UNT , UFN , UNF

}
the set of utility types. Since both

parties in a reconstruction protocol are considered to have the same preference
relation, we can represent the above preference relations (by using utility types
in place of particular utility values) respectively as follows:

1. UTN > UTT > UNN > UFN and UNF ≥ UTT

2. UTN > UTT > UNN > UFN and UNF < UTT

2.2 Correctness and Fairness

Let (Γ,−→σ )2,2 be a (2, 2) rational secret reconstruction mechanism. Then, we
follow the same definitions of complete fairness and correctness in [2] for the two
party scenario:

3 The notations (e.g., U1 , U−
1 etc.) in brackets for the last two columns represent the

corresponding notations used in [2] and [21].
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Definition 1. (Fairness) A rational secret reconstruction mechanism (Γ,−→σ ) is
said to be completely fair if for every arbitrary alternative strategy σ

′
i followed by

party Pi, (i ∈ {1, 2}) there exists a negligible function μ in the security parameter
k such that the following holds:

Pr[oi(Γ, (σ
′
i, σ−i)) = s] ≤ Pr[o−i(Γ, (σ

′
i , σ−i)) = s] + μ(k)

Definition 2. (Correctness) A rational secret reconstruction mechanism (Γ,−→σ )
is said to be correct if for every arbitrary alternative strategy σ

′
i followed by party

Pi, (i ∈ {1, 2}) there exists a negligible function μ in the security parameter k
such that the following holds:

Pr[o−i(Γ, (σ
′
i , σ−i)) 	∈ {s,⊥}] ≤ μ(k)

2.3 Utility-Independence

A mechanism (Γ,−→σ ) is said to be independent of a given utility type if it achieves
its desired set of properties for any value of that utility type [2]. We define utility-
independence as in [2]. We have U =

{
UTN , UTT , UNN , UNT , UFN , UNF

}
.

Definition 3. (utility independence, adapted from [2]) Let Ũ ∈ U be a particular
utility type and U

′
=
{
UTN
i , UTT

i , UNN
i , UFN

i , UNT
i , UNF

i

}n
i=1
\Ũn

i=1 be a set

of polynomial utility functions excluding all Ũi values. A mechanism (Γ,−→σ ) is
said to be Ũ–utility independent if for all polynomial utility functions Ũn

i=1 for

which the elements in U = U
′ ∪ Ũn

i=1 satisfies a certain preference relationship
R, it holds that (Γ,−→σ ) is a fair reconstruction mechanism for that preference
relationship R among the elements of U .

2.4 The Role of Auxiliary Information

[2] discusses the effect of side information possessed by a rational party in a secret
reconstruction mechanism. Referring to the secret reconstruction mechanism of
[9] they argued that given any auxiliary information about the secret or the ac-
cess to some membership oracle O that can be queried on whether the current
secret s

′
in the list is the actual secret s, a party possessing a list of fake secrets

and the real secret (the long party in the Kol-Naor mechanism) has no incentive
to broadcast the secret during the definitive iteration causing the other party
not to learn the secret. Prior protocols for secret reconstruction in the rational
setting did not allow side information although possession of side information is
natural in most practical scenarios. In [2], it has been shown that this limita-
tion is inherent to the non-simultaneous channel assumption. However, recently,
the authors in [21] have developed a time delayed encryption scheme based on
cryptographic memory-bound functions and using the same have overcome this
impossibility result. In this work, we use protocol-induced auxiliary information
to allow parties to check whether the secret they reconstruct is a correct one.
By ‘protocol–induced’we mean that such auxiliary information is a choice of the
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mechanism/protocol designer and participants of the protocol have no freedom
to choose it.

We adapt the definition of a membership oracle and a fair reconstruction
mechanism with membership-auxiliary information given by [2].

Definition 4. (membership oracle [2]). Let s be the actual secret and one needs
to check whether x is same as the actual secret or not. S is the set of all such
x. Then, a membership oracle O : S → {0, 1} is defined as follows:

OS(x) =

{
1 if x = s
0 otherwise

(1)

In previous works with auxiliary information, a general case was considered
where a party can possess any membership oracle or any side information that
enabled it to recognize the secret once it was reconstructed. Our aim is different.
When left to themselves, parties may not possess any side information at all or
the nature of side information can vary from party to party (some parties may
possess incorrect membership oracles). Therefore, the membership oracle that
we use must be correct and provided by the protocol itself to the participants.

Definition 5. (correct membership oracle) A correct membership oracle O :
S → 0, 1 is a membership oracle which has the following properties:

1. Pr[OS(x) = 1] ≤ μ(k) for any x 	= s and
2. Pr[OS(x) = 0] ≤ μ(k) for x = s.

where μ(k) is a negligible function in the security parameter k.

Definition 6. (protocol-induced membership oracle) A correct membership or-
acle Oπ

q,i provided by the protocol π to its participant Pi, (i = 1, 2) for the qth
execution of π is called a protocol-induced membership oracle.

3 Correct and Fair Reconstruction Mechanism in
Non-simultaneous Channel Model

In this section, we first provide a brief sketch of our (2, 2) rational secret sharing
protocol. Next we discuss the role of checking share used in our protocol in
more details as well as the time delayed encryption scheme and the equilibrium
concepts used before the final formal representation of our protocol.

3.1 Sketch of Our Protocol

The main idea behind our protocol is to release the secret gradually, share by
share. Each player is given a list of sub-shares, one for the share to be recon-
structed in each round. The secret can be reconstructed after sufficient number
of these shares have been reconstructed by each party.
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The minimum number of rounds r required to generate enough shares so that
the secret can be reconstructed is determined by the dealer randomly from a
geometric distribution with parameter β. We want β such that

β < (UTT − UNN )/(UTN − UNN ).

We call this round the revelation round. The dealer therefore has to generate
shares of the secret s according to (r, r + 1) Shamir’s secret sharing scheme so
that r + 1 shares are obtained. If each party possesses r of these shares of the
secret (called the reconstruction shares) then they can reconstruct the secret.
None of the parties are aware of the value of r.

The dealer randomly chooses one of the r + 1 shares as the checking share.
For each of the remaining shares, sub-shares are generated for each party so
that a list of sub-shares for each party is formed. The dealer also generates
shares of d fake secrets where d is also chosen from a geometric distribution with
parameter β. Therefore a list distributed to a player contains r sub-shares of
the shares of the actual secret followed by shares of d fake secrets such that the
total number of rounds is m=r+d, the rth round being the revelation round. The
fake secrets are required because each party is given the list of shares beforehand
to avoid repeated interaction with the dealer. The checking share is distributed
separately. The dealer is assumed to be honest and sends the sub-shares digitally
signed (information theoretically secure MACs are used).

In each round, players are required to send the sub-share corresponding to
the current round in their lists one by one i.e. non-simultaneously. Players are
capable of only two actions in a round: send the correct sub-share (if they send
an incorrect sub-share then it can be detected and the protocol can be aborted)
or remain silent. If in any round a player does not receive a sub-share from the
other party then it aborts. We also require that the first round cannot be chosen
to be the revelation round; the dealer may send a special abort message if he gets
r=1 and selects r once again. Players are guaranteed to be able to reconstruct
the secret if they cooperate and reconstruct all the shares from all the sub-shares
available in their lists.

Given the reconstruction shares and the secret, the extra share called the
checking share (which is the protocol induced auxiliary information in our case)
can be used to determine correctly whether the secret is the correct one. Also,
the checking share itself does not reveal any information about the secret. In
addition, the checking share acts as an indicator of the revelation round. So, the
purpose of the checking share is to achieve correctness. We provide a detailed
discussion on protocol-induced auxiliary information and specifically, the check-
ing share in section 3.2. Introduction of the checking share leads to the problem
that the party communicating last in any round can use it to identify the actual
secret and quit before the other party obtains the secret (this is discussed further
in section 3.2). We solve this problem by encrypting each share with the time–
delayed encryption scheme introduced in [21] and then generating sub-shares
from the encrypted share. A detailed description of this encryption scheme to-
gether with how it solves the problem due to introduction of the checking share
is given in section 3.3.
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Now, the question is whether a rational player Pj will want to deviate in this
situation. We shall show in section 3.6 that a player does not gain anything by
deviating.

3.2 Protocol-Induced Membership-Auxiliary Information

As mentioned before, we introduce protocol-induced membership-auxiliary in-
formation in the form of an extra share of the secret, called the checking share,
to check the correctness of the secret reconstructed. A protocol-induced mem-
bership oracle (see definition in section 2.3)should not reveal any information
about the secret itself i.e. a party should not be able to conclude anything about
the secret by simply observing the auxiliary information or by using arbitrary
values as input to the oracle. Moreover, given the secret, the oracle must always
(except with negligible probability) give the correct decision on whether this
input is the actual secret or not. The approach used by us does not benefit a
party considering deviation by giving it any additional power in discovering the
secret. This is because the additional information is very specific to the particu-
lar execution of the secret sharing and reconstruction mechanism and does not
impart any information about the secret when used without participating in the
protocol.

Let (Γf ,−→σf ) be a fair secret reconstruction mechanism that assumes only
UNF < UTT . Suppose that in each round r of the secret reconstruction mech-
anism, P1 communicates first and P2 communicates second. At the end of each
such round, a value of the form sr is reconstructed. If one of the parties quit at
any round j then the other party is supposed to output the value reconstructed
in the previous round i.e. sj−1. Now, let (Γfc,−→σfc) be a fair secret reconstruction
mechanism with a protocol-induced membership oracle Oπ

q .
−→σfc = (σfc,1, σfc,2)

is a slight modification of −→σf = (σf,1, σf,2). σfc,i tells party Pi to follow σf,i till
an output as defined by σf,i is obtained and then instructs it to query Oπ

q with
the value received in that step to check whether it is the correct one.

Theorem 1. Let (Γfc,−→σfc) be a (2, 2) fair secret reconstruction mechanism with
a protocol-induced membership oracle Oπ

q .Then (Γfc,−→σfc) is also a correct secret
reconstruction mechanism.

Proof. We delay the proof to Appendix A.

For our protocol, we shall consider that each party Pi is given the protocol-
induced auxiliary information auxπ,sq and the protocol–induced membership or-
acle Oπ,s

q . We note here that because of the presence of our protocol-induced
membership-auxiliary information, our protocol cannot tolerate any other aux-
iliary information that parties may possess themselves (See Appendix D).

Shamir’s (1979) (t, n) threshold secret sharing scheme [11] is inherently linked
with the protocol–induced membership oracle we use. Shamir’s scheme enables
one to generate n shares of a secret s such that any t out of these n shares can
be used to reconstruct the secret. The dealer chooses a random t − 1 degree
polynomial f(x) = a0+a1x+a2x

2+ . . .+at−1x
t−1 where a0 is set to be equal to
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the secret s and the remaining coefficients a1, . . . , at−1 are randomly chosen from
a uniform distribution over the integers in [0, p) where p is a prime greater than
both s and n. The shares are computed as si = f(yi)modp, where 0 < yi < p
and i = 1 . . . n.

Now let us consider that the value of t is unknown to Bob who wants to
reconstruct a secret from r shares (r < n) he has gathered. Therefore, it is
completely unknown to him whether he has sufficient shares (i.e. if r > t) to
reconstruct the secret. Even if he is told that he has sufficient shares, then also
he does not know exactly how many of these shares should be used to reconstruct
the correct secret. We use this fact to our benefit.

Bob can hold in reserve one of the shares he has and try to reconstruct the
secret using different numbers of shares from the remaining shares. After each
reconstruction he can use the reserved share to check whether the reconstructed
value is the correct secret or not. Specifically on reconstructing a secret s

′
r from

r
′
< r shares, he can write the following:

fr′ (x) = sr′ + a
′
1x+ a

′
2x

2 + . . .+ a′
r′−1

xr
′
−1

Now let us assume that the reserved share sq is represented as (yq, f(yq)modp).

Claim 1. If fr′ (yq) = f(yq), then a player can definitely conclude that sr′ = s;
otherwise it concludes that sr′ 	= s.

Proof. For the claim to be true the following two conditions should be fulfilled
[by definition of correct membership oracle]:

1. Pr[fr′ (yq) = f(yq)] ≤ μ(p) for any sr′ 	= s.
2. Pr[fr′ (yq) 	= f(yq)] ≤ μ(p) for sr′ = s.

The second condition always holds by the property of polynomial interpolation.
Now, is it possible that even if sr′ 	= s, fr′ (yq) = f(yq) holds true? Since f(x) is
a randomly chosen polynomial in [0, p), the probability of the point represented
by the reserved share lying on both f(x) and fr′ (x) where r

′ 	= t is negligible. So
the first condition also holds. Therefore we can conclude that the reserved share
(which we call checking share throughout the paper) can serve as a protocol-
induced auxiliary information.

Checking Shares. Let us suppose that the player P1 communicates first in each
round whereas the player P2 communicates last. When P2 quits in any round
then it can have two meanings for P1: 1) P2 has already obtained the secret in the
last round (i.e. P2 has the preference UNF

2 < UTT
2 ) or 2) P2 has not obtained the

secret but is trying to mislead P1 in believing that the secret has been obtained
in the last round (i.e. P2 has the preference UNF

2 ≥ UTT
2 ). By giving a checking

share (a share of the actual secret) we enable P1 to distinguish between scenarios
(1) and (2). However, if the checking share is available only to P1, then P2 is
dependent on the P1 to know when the revelation round takes place and is thus
vulnerable to deviations by P1. If the checking share is available only to P2 , then
at the end of each round P2 can check whether it has enough shares to be able
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to reconstruct the secret and hence comes to know the revelation round before
both parties obtain the secret thereby resulting in an unfair outcome. Therefore
the checking share needs to be given to both the parties in such a way that it
cannot be used to check whether the current round is the revelation round but
can be used to detect if the last round was a revelation round.

The advantage of such a checking share over indicators is that the checking
share does not require reconstruction and is readily available to both players
whereas indicators are only available to each player if both players send their
message in that round. So even when one party aborts prematurely, the other
party can check whether the secret reconstructed with the available shares is the
correct one by using the checking share. This is not possible with an indicator
bit which will not even be reconstructed in the event of one party deviating pre-
maturely. However, the disadvantage is that the checking share acts as auxiliary
information that enables to identify the correct secret whereas an indicator bit
is in no way related to the correct secret itself. Before sending its share in each
round, with the help of this checking share P2 can check whether it has obtained
the actual secret. If it has, then P2 will quit before sending its message for that
round to P1. Therefore, P1 will be unable to get the secret leading to an unfair
outcome. Therefore it is important to use the checking share in such a manner
that it cannot provide any undue advantage to any party in identifying the se-
cret (for example P2 cannot take the help of the checking share to identify the
revelation round before P1). In [21], the authors have proposed a secret recon-
struction mechanism in the standard point-to-point network where parties have
auxiliary information. Their protocol develops and uses the concept of Crypto-
graphic Memory-bound Functions which is used in a time delayed encryption
scheme to prevent a party from identifying the correct secret before others with
the help of the auxiliary information it has. We use the same concept to prevent
misuse of the checking share by any party.

We can show that the introduction of the checking share is done without
relying on the actual value of UNF .

3.3 Time Delayed Encryption

When players have auxiliary information, then in each round, a deviating player
tries to decide whether the current round is the revelation round by checking the
reconstructed secret with the auxiliary information. Once the auxiliary informa-
tion tells this player that the secret has been reconstructed, the player immedi-
ately quits without sending its own share. This results in unfairness as the other
player cannot reconstruct the secret. A time delayed encryption scheme becomes
handy in this situation. A message that has been encrypted by this scheme can
only be decrypted after a moderate amount of time has elapsed. Although there
has been much work on this type of schemes in the field of time release cryp-
tography, the construction of a time delayed encryption scheme where the time
delay is introduced with the help of cryptographic memory bound functions (in-
stead of Time Lock Puzzles [25] that require a huge computational overhead and
hence is dependent on CPU speed) was proposed in [21].
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A time delayed encryption scheme (Gen,EncK , DecK , UnsealF ) consists of
1) the algorithm Gen that on input the security parameter 1k and the hardness
parameter h (such that 2h is a large polynomial in k) outputs a key K, a sealed
keyK ′ and some additional information F used to find the key; 2) the encryption
and decryption algorithms EncK and DecK respectively that use the key K
and 3) the algorithm UnsealF such that UnsealF (K

′)=K. The time delay is
introduced by UnsealF because its running time is lower bounded by Ω(2h) i.e.
if the reconstructed message is each round is encrypted with this scheme then
none of the parties can recover the message in less than Ω(2h) steps. Because
Cryptographic Memory-Bound Function is used for the construction, these steps
are in fact memory accesses i.e. the evaluation of UnsealF (K̃) requires at least
Ω(2h) memory accesses.

We use this time-delayed encryption scheme to encrypt the r shares of the
secret generated by the dealer (i.e. all shares except the checking share) and then
generate sub-shares from the encrypted shares for distribution to the players.
This allows the players to reconstruct the encrypted share in each round but
does not allow any of them to decrypt the share obtained in the current round
till a certain time has elapsed. Each round has to be completed within a certain
time limit. If a party does not receive any message for a particular round from
the other party within this deadline then it assumes that the other party has
quit. If a player wants to decrypt the encrypted share then it has to make a
minimum number of memory accesses. The time delay in decryption is such that
it causes the party to miss the deadline for sending the message in this round.
Therefore a party cannot decide whether the actual secret has been obtained in
the current round without missing the deadline which in turn informs the other
party of the misbehavior.

We discuss the timing model necessary for fruitfully utilizing the time-delayed
encryption scheme in Appendix B.

3.4 Equilibrium Concept

Due to lack of space we defer a discussion on the equilibrium concepts used in
the literature of rational secret reconstruction mechanisms to Appendix C. For
our protocol we use computational strict Nash Equilibrium in the presence of
protocol-induced auxiliary information. We must note that in our case all the
players have the same side information denoted by (auxπ,sq , Oπ,s

q ) when induced
by the suggested strategy i.e. protocol π.

Definition 7. (Computational Nash Equilibrium with protocol-induced side
information [21]) The suggested strategy σ in the mechanism (Γ, σ) is a com-
putational Nash Equilibrium in the presence of protocol–induced auxiliary in-
formation (auxσ,π,sq , Oσ,π,s

q ) if for every Pi any probabilistic polynomial time

strategy σ
′
i, ui((σ

′
i , σ−i), aux

σ,π,s
q , Oσ,π,s

q ) ≤ ui(σ, aux
σ,π,s
q , Oσ,π,s

q ) + μ
′
(k) for

some negligible μ
′
.
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Let σ
′
i 	≈ (auxσ,π,sq , Oσ,π,s

q )σ denote equivalent play (originally defined in [15]
and modified in [21] for the case of side information) in the presence of protocol-
induced side information. We refer the reader to [21] for detailed discussion.

Definition 8. (Computational strict Nash Equilibrium with protocol-induced
side information [21]) The suggested strategy σ in the mechanism (Γ, σ) is a
computational strict Nash Equilibrium in the presence of protocol-induced aux-
iliary information if it is a Nash Equilibrium with protocol-induced auxiliary
information and for every Pifor any probabilistic polynomial time strategy σ

′
i 	≈

(auxσ,π,sq , Oσ,π,s
q )σ, ui((σ

′
i, σ−i), aux

σ,π,s
q , Oσ,π,s

q ) < ui(σ, aux
σ,π,s
q , Oσ,π,s

q )+μ
′′
(k)

for some negligible μ
′′
.

3.5 Our Protocol

In this section, we give the formal description of our protocol. Note that in the
description below (Gen,EncK , DecK , UnsealF ) is the time delayed encryption
scheme described in section 4.3.

Protocol ShareGen : The Dealer’s Protocol
Inputs. The secret s possessed by the dealer; β, the parameter for the geometric
distribution G(β)
Computation. The dealer does the following:

1. Generate r ∼ G(β).
2. Ki,K

′
i , Fi ← Gen(1k), i = 1, . . . , r.

3. Use (r, r + 1) Shamir’s Secret Sharing Scheme to generate r shares of s.
Suppose the polynomial used is f(x) where f(0) is set to be equal to the
secret s and the remaining coefficients a1, . . . , ar−1 are randomly chosen from
a uniform distribution over the integers in [0, p) where p is a prime number
greater than both s and r+1. Each share si can be represented as (yi, f(yi))

4

where 0 < yi < p for each i = 0, . . . , r, yi is chosen randomly.
4. Choose scheck to be the 0th share among these (r + 1) shares such. Then,

scheck is of the form (y0, f(y0)) .
5. For each share si, i = 1, . . . , r, compute ci ← EncKi(si) and set c

′
i ←

(ci,K
′
i).

6. For each encrypted share c
′
i, i = 1, . . . , r, generate sub-shares c

′
i,j (j = 1, 2)

such that c
′
i = c

′
i,1 ⊕ c

′
i,2.

7. Generate random values c
′
i,j (for i = r+1, . . . , r+d and j = 1, 2), d is chosen

according to the geometric distribution G(β).
8. Construct list listj, (j = 1, 2) to contain c

′
1,j, . . . , c

′
r+d,j for player Pj (j =

1, 2).

Output. Distribute to each player Pj a list listj, j = 1, 2. Also distribute the
checking share scheck to each player.

4 The accurate way to write is (yi, f(yi)modp). We drop modp for simplicity of
representation.
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Protocol Reconstruct: The Players’ Protocol
This protocol consists of two phases, the Communication Phase and the Pro-
cessing Phase. In the Communication Phase players communicate to gather
sub-shares, whereas in the Processing Phase players process these sub-shares
obtained in the Communication Phase to get the shares of the secret. Thus the
Processing Phase for one share works in parallel with the Communication Phase
for a subsequent share. An ’abort’ in any round of the Communication Phase im-
plies quitting further communication with the other party; however, the aborting
party still continues with the processing phase to see whether the secret can be
reconstructed from the shares obtained till that round. A ’quit’ in the Processing
Phase means either the secret has been obtained and hence the next round in the
Communication Phase is no longer required or the Communication Phase has
been aborted and the shares obtained till the round of abort are not sufficient
to reconstruct the secret.

Inputs. List of sub-shares listj received by each player Pj , j = 1, 2 from the
dealer.
Communication Phase
In each round, P1 communicates first.
P1 communicates first as follows:

1. If in the last round (except if the current round is the first one) P1 has
not received a share within the specified deadline from P2 or if the share
received is not signed properly then abort; else continue till the Processing
Phase outputs the secret.

2. Send the current share from list1.
3. Check for shares sent by P2 till the specified deadline.

P2 communicates next as follows:

1. If in the current round P2 has not received a share from P1 within the
specified deadline or if the share received is not signed properly then abort;
else continue till the Processing Phase outputs the secret.

2. Send the current share in the list list2.
3. Check for shares sent by P1 till the specified deadline.

Processing Phase
This phase is carried out by each party on its own in parallel to the communi-
cation phase. It can start at least after one round of communication i.e. after
the sub-shares of at least one encrypted share of the secret has been gathered
by each party.

Until the sub-shares obtained from the Communication Phase is exhausted
or until the secret is obtained, each Pj (j = 1, 2) does the following in the ith
round of the Processing Phase:

1. Reconstruct c
′
i from c

′
i,1 and c

′
i,2.

2. Interpret c
′
i as (ci,K

′
i).
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3. Compute Ki ← UnsealFi(K
′
i) and find sharei = DecKi(ci).

4. If i > 1, reconstruct a polynomial fi(x) of degree (i − 1) corresponding to
the shares decrypted till the ith round; else move to the first step.

5. Now, scheck is (y0, f(y0)). If fi(y0) = f(y0) then output the constant term
fi(0) of this polynomial as the desired secret and quit. Otherwise, continue.
If all sub-shares obtained from the communication round are exhausted and
fi(y0) = f(y0) does not hold then output ⊥.

Output. Either each party outputs the secret s or each party outputs ⊥.

3.6 Analysis

Theorem 2. Let our rational secret reconstruction mechanism be denoted by
(Γ,−→σ ). Then 1) the prescribed strategy −→σ of the game Γ is in computational
strict Nash Equilibrium in presence of protocol-induced auxiliary information;
2) the output obtained by following −→σ is correct and 3) (Γ,−→σ ) is UNF utility–
independent.

Proof. We consider that each share in the lists that the parties receive is signed
by the dealer. Therefore neither party can undetectably send a wrong message to
the other (since information theoretic MACs are used). In each round, each party
either sends the message or chooses not to send it. The point of contention is that
the protocol-induced auxiliary information may incentivize a party to deviate by
allowing it to check whether the shares obtained till a certain round gives the
correct secret or not thus helping in deciding whether to quit or send its share
in that round to the other party. We argue that our protocol is a computational
strict Nash equilibrium for a party Pi with UTN > UTT > UNN even in the
presence of protocol-induced auxiliary information.

Case I. Suppose, P1 follows the reconstruction protocol whereas P2 uses an al-
ternate strategy that instructs it to follow the protocol till the qth round. Now
if P2 decides to quit in round (q + 1), P1 aborts and henceforth no exchange
of shares takes place. Since P2 communicates his share following P1 in each
round, P2 receives the (q + 1)th sub–share from P1. However, by the dead-
line of round (q + 1), P2 cannot decipher his (q + 1)th share, by the property
of time–delayed encryption. If (q + 1) < r, then P2 has not gathered enough
shares to be able to reconstruct the secret. If (q + 1) > r then both parties
obtain the secret. The share obtained in the (q + 1)th round does not help
P2 in any way. Thus, P2’s expected utility of quitting at any round (q + 1) is
δUTN

2 + (1 − δ)UNN
2 ≤ βUTN

2 + (1 − β)UNN
2 < UTT

2 for r ≥ 1 (where the
probability that the secret is reconstructed with q + 1 = r shares is given by
δ = β(1 − β)r−1), by our choice of β. Note that if P2 uses its checking share
in place of the (q + 1)th share for the secret reconstruction, then it loses the
capability of making sure whether it has obtained the correct secret and hence
loses the capability to decide definitely (instead of guessing) whether to quit or
not.
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Case II. If we assume that P2 follows the reconstruction protocol whereas P1

deviates by using a strategy that instructs it to follow the protocol till the qth
round and quit immediately after that, then P1 does not even get the share in
the (q + 1)th round and the same reasoning as Case I also applies here.

What remains to be shown is that the protocol is correct and UNF indepen-
dent. We first argue that our protocol is a computational strict Nash equilibrium
with protocol-induced side information even when UNF ≥ UTT . Suppose that
P2 quits in the (q + 1)th round. Then, by the property of the checking share,
P1 instead of outputting a secret formed from all the shares till the qth round
can use the checking share to find whether q + 1 > r. If not, then P1 outputs
a default value. Therefore P1 can now distinguish between a silent party P2

with UNF
2 ≥ UTT

2 and a silent party P2 with UTT
2 > UNF

2 . So a party with
UNF ≥ UTT gains only UNN due to its deviation whereas if it follows the pro-
tocol it gains UTT . Since UTT > UNN , the protocol is a computational strict
Nash Equilibrium with protocol–induced side information even for UNF ≥ UTT .
Thus we observe that the equilibrium condition is satisfied for any value of UNF

as long as UTT > UNN holds. The value of UNF has not been used to introduce
the checking share which plays the crucial role in deciding whether the secret
obtained till a particular round is correct or not. Therefore, our protocol is UNF

independent. Moreover, by the properties of protocol-induced auxiliary infor-
mation/ membership oracle, the checking share always succeeds in identifying
correctly whether a secret is correct or not. Hence our protocol is correct.

4 Generalization to (t, n) Setting

Assuming the presence of non-simultaneous broadcast channel, our protocol can
be extended to the (t, n) setting with some modifications. The dealer would need
to generate (t, n) sub-shares from each encrypted share (by using (t, n) Shamir’s
secret sharing) and distribute these sub-shares to the n players. Players would
communicate one-by-one in each round. If within the deadline of any round a
player obtains less than t shares, he quits. Obviously, we can consider a rushing
adversary i.e. the deviating party is the last (i.e. the tth person) to communicate
in any round. In that case, this party has to decide whether or not to quit in any
round before he is able to decrypt the share he reconstructs from the sub-shares
obtained in that round. If he tries to decrypt before taking the decision then, by
the property of time-delayed encryption, the deadline for that round is over and
all other players quit. So, the same logic as presented in section 3.6 applies here
also.

However, if point-to-point network is considered for the (t, n) setting, then
the generalization is not easy. In that case, instead of the most general (t, n)
setting, we can first look at the (n, n) setting as in[21, 15] or exactly t-out-of-n
setting as in [15].
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5 Complexity Analysis

In our protocol, the communication phase and the processing phase run paral-
lely. For each player and for each share i to be reconstructed, we need a round
of communication phase i.e. CPi and a round of processing phase PPi. The pro-
cessing phase PPi will coincide in time with CPi+1 (since the processing phase
must start after one round of communication phase) and overlap partially with
CPi+2 in time. So the time required for one round of Processing Phase is (1+ θ)
times the time required for one round of Communication Phase where θ is chosen
by protocol designer and the time delay for the time-delayed encryption scheme
should be designed to accomodate θ. The number of rounds for both Communi-
cation Phase and Processing Phase is r. So the total elapsed time for Protocol
Reconstruct is (1 + r + θ)Tcp where Tcp is the time required for one round of
Communication Phase. Therefore we are interested on the upper-bound of r.

The size of each list of sub-shares distributed to each player will depend on
r + d. So we also calculate the upper-bound on r + d.

Upper-Bound on r. We have assumed that r is chosen according to a geo-
metric distribution G(β). Also, for a fair rational secret reconstruction protocol,
the choice of β is such that

0 < β < β0 = (UTT − UNN )/(UTT − UNN ) < 1.

Now, given any ε > 0 error, we wish to have

Pr[r > R] < ε

i.e.Pr[r > R] = (1 − β)R < ε

i.e.R > ln ε/ln(1− β)

Therefore, we have Pr[r ≤ !ln ε/ln(1− β)"] > 1− ε, where 0 < ε < 1.

Upper-Bound on r + d. We have r, d ∼ G(β), r and d are i.i.d random
variables, where 0 < β < β0 = (UTT − UNN )/(UTT − UNN) < 1.

Given any error ε > 0, to have Pr[r > T/2] < ε/2, we need

T/2 > ln(ε/2)/ln(1− β)

where T is a constant.
This also holds for d.
Now,

Pr[r + d > T ]

≤ Pr[r > T/2ord > T/2]

≤ Pr[r > T/2] + Pr[d > T/2]

= 2Pr[r > T/2] < ε,
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if T/2 > ln(ε/2)/ln(1− β) or T > 2 ln(ε/2)/ln(1− β).
Therefore,

Pr[r + d ≤ !2 ln(ε/2)/ln(1− β)"] > 1− ε

for 0 < ε < 1.

6 Conclusion

This paper deals with a problem in rational secret sharing that has received very
little attention till now. We have proposed a (2, 2) rational secret sharing protocol
that is fair and correct as well as independent of the UNF –utility of a rational
participant even when UNF ≥ UTT in the non-simultaneous channel model
and show that it is in computational strict Nash equilibrium in the presence of
protocol-induced auxiliary information. We have also given a generalization the
protocol to the (t, n) settings.
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A Correctness in Presence of Protocol-Induced Auxiliary
Information

Theorem. Let (Γfc,−→σfc) be a (2, 2) fair secret reconstruction mechanism with
a protocol-induced membership oracle Oπ

q .Then (Γfc,−→σfc) is also a correct secret
reconstruction mechanism.

http://eprint.iacr.org/2005/187
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Proof. By assumption, in spite of the presence of a membership oracle with each
party, the reconstruction mechanism is fair i.e. none of the parties can identify
the revelation round before the other. Now suppose party P2 has a deviation
strategy σdev that tells it to play according to σ2 for the first r

′
rounds and then

quit (i.e. remain silent in all rounds henceforth). By assumption, P1 possesses
Oπ

q,1 and P2 possesses Oπ
q,2. Now, if P2 quits in round (r

′
+ 1), then by the

suggested strategy fc,1, P1 outputs s
′
r if Oπ

q,1(s
′
r) = 1 else it outputs ⊥. The

same argument also holds if P1 is the deviating party and P2 the non-deviating
party. We have already seen that u2(σ1, σdev) = UNF

2 whereas u2(σ1, σ2) = UTT
2 .

Since UNF
2 ≥ UTT

2 , P2’s best strategy is to follow σdev rather than the suggested
strategy σ2. So (σ1, σ2) is no more an equilibrium strategy. On the other hand,
u2(σfc,1, σdev) = UNN

2 while u2(σfc,1, σfc,2) = UTT
2 . So (σfc,1, σfc,2) is a strictly

better strategy profile than (σfc,1, σdev) and is an equilibrium strategy whenever
there is a party with UNF ≥ UTT .

B Timing Model

If the time delayed encryption scheme is to be used fruitfully to prevent the
misuse of auxiliary information, then it is necessary for each party to know how
to find out whether a certain message from another party was received within a
given deadline. The timing model for this purpose is discussed in details in [21].
We describe it here very briefly. Both parties must agree on the maximum values
for clock drift (τ), network latency (Δ) and speed (speedmax) of each party. If
P2 is supposed to send a message to P1 at time t then P1 must know that if
P2 is following the protocol, then his message must reach P1 by the time his
local clock shows t+Δ+ τ . If any round requires l computation steps scheduled
to begin at time t then both parties must have completed the computation
by time t+ l/speedmin where speedmin is the minimum of the speeds of both
the parties. For our protocol we assume (as in [21]) that the first round of the
protocol begins at the pre–decided time t1. Henceforth, round q > 1 starts at
tq = tq−1 + Δ + τ + m/speedmin where m is the maximum number of steps
required for computations in each round. So at local time tq, each party checks
whether it can compute s or some party deviated in the last round (i.e. the
message from that party for round q− 1 did not reach till tq). If the later is true
then it quits and moves to the post-processing steps. Each party computes its
own message and sends it to the other by time tq +m/speedmin .

C Equilibrium Concepts Used in Rational Secret
Reconstruction Mechanisms

A rational secret reconstruction protocol should be such that no player has any
incentive to deviate from this protocol. Consequently, Nash equilibrium and
its several variants have been used as equilibrium concept in the literature of
rational secret sharing. A suggested strategy is in Nash equilibrium when given
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that everyone else is following the suggested strategy, there is no incentive for a
player to deviate from this strategy. However it can be easily shown that even
though Shamir’s (1979) secret sharing protocol is a Nash equilibrium for t < n,
there are still strategies that are weakly better than it. This suggests the need for
stronger versions of Nash equilibrium to remove such unstable solutions. Again,
in the setting of rational secret sharing, in most cases, players are assumed to
be polynomial time which calls for a suitable modification in the notion of Nash
equilibrium used. Taking such facts into consideration following variants of Nash
equilibrium have been used: 1) Nash equilibrium that survives iterated deletion
of weakly dominated strategies [6]; 2) strict Nash equilibrium which becomes
useful when the payoffs from playing a good strategy and a bad strategy are
so close that any minor changes in the beliefs of players about the strategy
others are going to adopt may lead each of them to play the bad strategy [9];
3) computational strict Nash equilibrium [15] where except for non-negligible
probability a polynomial time player has a non-negligible loss from deviating;
4) computational Nash equilibrium that is stable with respect to trembles [15]
where every other player follows the suggested strategy with high probability; 5)
computational strict Nash equilibrium with side information and computational
Nash equilibrium with respect to trembles [21] which take into account the fact
that each player has access to auxiliary information and a side information oracle.

D Fairness in Presence of Auxiliary Information

The protocol of [21] is fair in spite of the presence of arbitrary auxiliary infor-
mation. In contrast, our protocol cannot tolerate arbitrary auxiliary information
that parties may possess themselves, other than the protocol-induced one. When
a party possesses auxiliary information that enables it to identify the actual se-
cret, then it will use the checking share to reconstruct the secret instead of using
it for checking purpose. It will then use the auxiliary information it possesses
to verify whether the actual secret is obtained. Once it knows this, it will abort
early causing other parties to have one share less than required to reconstruct
the secret. Thus the protocol will then become unfair.
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Abstract. A large proportion of modern botnets are currently shifting
towards structured overlay topologies, using P2P protocols, for command
and control. These topologies provide a better resilience against detection
and takedown as they avoid single nodes of failure in the botnet architec-
ture. Yet current state of the art techniques to detect P2P bots mostly
rely on swarm effects. They detect bots only when there is multiple in-
fected nodes belonging to the same botnet inside a network perimeter.
Indeed, they cannot detect botnets that use public P2P networks such
as the TDSS malware using Kad, let alone botnets that encapsulate P2P
overlays within HTTP traffic, such as waledac, or even hide behind Tor
networks.

In this paper, we propose a new and fully behavioral approach to de-
tect P2P bots inside a network perimeter. Our approach observes only
high-level malware traffic features with no need of deep packet inspec-
tion. We run samples of P2P malware inside a sandbox and we col-
lect statistical features about malware traffic. We further use machine
learning techniques in order to first clean the features set by discarding
benign-like malware P2P behavior, and second to build an appropriate
detection model. Our experimental results prove that we are able to ac-
curately detect single infected P2P bots, while also satisfying a very low
false positives rate.

Keywords: Botnet detection, P2P malware, machine learning, netflow.

1 Introduction

Malware has recently become the mainstream arsenal for cyber attackers, includ-
ing thousands of malware samples being created every day [25]. It embeds zero-
day exploits, self replication mechanisms, propagation capabilities, and more
importantly it connects to a master server as to retrieve commands or to send
stolen data. Arguably, botnets are the most common type of malware today.
These are networks of infected nodes (bots) that are controlled by the same
entity (botmaster) via shared Command and Control (C&C) channels. Early
botnet C&C channels were mostly centralized, using protocols such as IRC and
HTTP [19]. Although being easy to manage and highly responsive, centralized
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C&C channels are susceptible to detection and takedown because they include
single nodes of failure in their botnet architecture. Therefore, botnet C&C chan-
nels started shifting towards decentralized architectures that use peer-to-peer
protocols (P2P) [21,23]. P2P botnets are robust because they constitute overlay
networks where bots can distribute commands without the need for a central
C&C server [10].

Nowadays, botnets are no longer being used only to trigger massive distributed
attacks such as spam and DDoS. They are becoming stealthier in the way they
perform malicious activities, seeking financial benefits and sensitive user data
[27]. Botnet herders also use code obfuscation in order to hide malware payloads
within the large amount of network traffic [18], and so to evade IDS signatures.
Network detection solutions are thus increasingly confronted to stealthy bots,
along with encrypted C&C communications and only few infections inside a
network perimeter. Yet the use of overlay networks makes detection more difficult
due to the inability to build blacklists of URLs or malicious domain names, as
for centralized botnet topologies [5]. We thus derive four main requirements for
network-based systems in order to detect P2P bots. First, they should be able
to detect bots even when no malicious activity is being observed. Besides, they
should be able to detect even single infected bots inside a network perimeter.
They should also detect P2P bots using only network layer features, without the
need to access encrypted packet payloads. Last of all, they should detect P2P
bots based on their overall network footprints, and not based on every single
connection. While the first three requirements look straightforward, the fourth
one stems from the fact that P2P bots locate and retrieve commands using the
overlay network. Two infected bots are thus unlikely to connect to the same set
of peers, even though some overlaps may occur. Therefore, the system should be
able to detect P2P infected nodes based on the way these nodes interact with
the overlay network, and not based on the single IP addresses being contacted.

This paper presents BotSuer, a system that detects P2P bots by monitor-
ing traffic inside a network perimeter. BotSuer leverages the fact that malware
belonging to the same family communicates with the overlay P2P botnet in a
similar way. In fact, P2P control flows implement multiple functionalities such
as keep-alive, route discovery and data queries. As shown in [14], flow size distri-
butions exhibit discontinuities almost for all P2P protocols. Such discontinuities
characterize clusters of flows that implement the same P2P functionality, and so
they would have similar network behavior in terms of flow size, number of pack-
ets and flow duration. While certain clusters may be common for both malware
and benign P2P communications (e.g. keep-alive messages), others clearly show
differences that can be accounted for during detection. For instance, data search
queries for the Zeus P2P botnet show periodicities that are unlikely to appear
in other benign kademlia P2P traffic [12]. Yet we observed a significantly lower
chunk rate for route discovery requests triggered by a Sality botnet, compared
to other benign P2P applications.
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BotSuer monitors network traffic triggered by P2P malware samples running
in a controlled environment. It builds a training set of malware P2P traffic by
first filtering non-P2P traffic, and then clustering malware P2P flows in order to
group together those that implement the same P2P functionality (e.g. keep-alive,
route discovery, data search and push requests). Some malware P2P clusters are
likely to appear in benign P2P traffic and these should be discarded as they
cannot be used during detection. For instance, keep-alive flows triggered by
a TDSS malware that uses the kad network are similar to those triggered by
benign P2P applications that implement the same kademlia protocol. BotSuer
thus correlates cluster footprints for both malware and benign P2P applications
in order to discard non-discriminatory P2P clusters. It uses remaining clusters
as a training set in order to build a P2P botnet detection model.

We evaluated BotSuer against real-world P2P traffic, including both botnet
and benign P2P applications. We obtained samples of P2P malware, all being
active in the wild by the time they were collected, and that implement different
P2P protocols. We also tested our system against traffic collected from a corpo-
rate network, as well as anonymized traffic collected from a large ISP network.
Our experimental results prove the ability of BotSuer to accurately differentiate
malware and benign P2P applications, with only few false positives.

This paper will be structured as follows. Section 2 summarizes related work.
Section 3 provides an overview of our system. Section 4 describes the workflow
and the different modules that constitute BotSuer. Section 5 presents our exper-
iments and main results. Section 6 discusses the limitations and provides future
work. Finally, section 7 concludes.

2 Related Work

Related work includes several approaches that detect P2P botnets by monitoring
network traffic. First of all, solutions such as BotGrep [16], BotTrack [9] and
BotMiner [11] correlate netflow data [6] and localize P2P bots based on their
overlay C&C topologies. They cluster hosts in order to isolate groups of hosts
that form P2P networks. Then they separate malicious and benign P2P groups
using information about infected nodes collected from multiple sources such as
honeypots and intrusion detection systems. However, botnet activity is becoming
stealthier and cannot be easily detected by IDS signatures, thus limiting the
coverage of these techniques.

Another trend of research aims at detecting infected P2P bots inside a given
network perimeter [29,30]. In this category, Yen et al. [29] discard benign P2P
applications based on features such as the volume of P2P traffic and the persis-
tence of P2P applications. Unfortunately, these features do not reliably separate
benign and botnet P2P flows. In fact, authors rule out the possibility that certain
benign P2P applications such as skype may not implement P2P file sharing and
so they would be difficult to separate from malicious P2P flows. On the other
hand, Zhang et al. [30] propose an alternative approach using only P2P control
flows. This approach is similar to ours by means of using only control flows for
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P2P botnet detection. However, it detects P2P bots only when there is multiple
infected nodes belonging to the same botnet. It computes distances between
clusters of flows triggered by different nodes in the network. It also uses flow
sizes and contacted IP addresses as a basis to compute distances between P2P
nodes. Indeed we believe these metrics would generate false positives in case
of popular P2P applications such as skype. For example, we observed strong
overlap between the remote IP addresses contacted by two skype clients running
on two different nodes in the same network. Hence, the approach presented in
this paper provides a better alternative as it only relies on the way bots interact
with their overlay C&C networks, and not on the single remote IP addresses
being contacted.

Last of all, Bilge et al. propose an alternative approach to detect botnets
through large scale netflow analysis [4]. This approach is similar to ours as it
processes and correlates netflow records in order to detect infected bots. Yet
it observes traffic at large ISP networks and detects only central C&C servers.
Therefore, it is efficient only against centralized botnet architectures, but does
not detect distributed P2P botnets.

3 System Overview

Our system operates in two phases, the training phase and the detection phase,
as illustrated in Fig. 1. The training phase builds a behavioral model using a
dataset of malware and benign P2P traffic. The detection phase applies the
behavioral model on network traffic in order to detect P2P bots.
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Netflow
traces
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Netflow
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Coarse P2P filter

Netflow clustering

P2P cluster filter

P2P
Netflow filter
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Fig. 1. Botnet Detection System
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In the training phase, malicious traffic is obtained by executing malware in
a controlled environment such as Anubis[2], CWSandbox[28] or Cuckoobox[1].
We pick-up P2P malware samples by checking antivirus (AV) signatures using
the virusTotal API1. Such malware often triggers non-P2P traffic in addition
to its C&C communications. We thus propose a filtering module that discards
non-P2P traffic and keeps only P2P flows as input to the training phase. Our
P2P filter implements two levels of filtering, including coarse and fine-grained
filtering. Coarse filtering discards flows using high-level features such as DNS
traffic and chunk rates. For example, overlay networks usually operate outside
the DNS system, so we discard flows preceded with a successful DNS resolution
as not being P2P flows. After the coarse filter, we cluster remaining flows for each
malware sample in order to group together flows that are similar enough to be
considered as part of the same application (e.g. spam campaign, scan, P2P keep
alive, P2P search queries). We use statistical features such as flow size, number
of packets, and the average bit rate. Control flows that implement the same P2P
functionality for a given P2P protocol have similar network features and so they
will be grouped within same clusters. The fine filter further eliminates clusters
that do not implement P2P functionalities, and keeps only P2P clusters as input
to train our detection module.

Benign P2P flows are more difficult to obtain as we lack the ground truth
about the legitimate behavior of these applications. In this paper, we collected
netflow packets from a well-protected corporate network. Terminals connected
to this network abide to strict security policies, and they are all equiped with
updated AV softwares. Access to this network is monitored using a proxy server
with SSL inspection capability. Therefore, it is fairly reasonable to consider as
benign all traffic collected from this network. Of course we cannot rule-out the
possibility of few terminals being infected. However, these would be limited if
compared to the overall amount of traffic and so they would have little impact
on our detection model. Then we discard non-P2P flows and we build benign
P2P clusters, using our P2P filter, the same way as we did for malware traffic.

The output of this process is a labeled set of malware and benign P2P flow
clusters. We further propose a comprehensive set of features that we use in
order to compute a network footprint for each cluster, including time, space and
flow size-based features. Time features capture unusual sequences of flows and
periodicities in a given cluster. Space features capture the dynamics of a P2P
network, including geographical distribution and chunk rate, which is the rate
of (new) IP addresses and ports contacted by a P2P application. Last of all,
size-based features capture high-level flow metrics such as the amount of bytes
and packets being shared by flows in a given cluster. We use cluster footprints
in order to first purge the training set by eliminating non-discriminatory P2P
clusters, and then to build our detection model. We propose a cross-correlation
process that discards P2P clusters that have similar footprints in both malware
and benign P2P applications. These are mostly keep-alive flow clusters that are
likely to have similar implementations in both categories of P2P application. We

1 http://www.virustotal.com/

http://www.virustotal.com/
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further use remaining cluster footprints as input to train and build our detection
model. In the detection phase, BotSuer applies this model on network traffic in
order to detect P2P bots, without the need to inspect packet payloads. In the
following section we describe our system and we build our detection model.

4 System Description

4.1 P2P Training Set

BotSuer processes P2P flows obtained during malware execution in a sandbox.
During the buildup phase, we discard non P2P malware by checking AV signa-
tures in virusTotal. Sure we may keep non P2P malware in our dataset due to
misclassifications in virusTotal, but this malware will be dropped by our system
as seen further in this section.

Coarse P2P filter applies to both malware and benign flows. It discards as
many non-P2P flows prior to flow clustering and the fine P2P filter.

First, it discards flows preceded with a successful DNS resolution. P2P net-
works constitute environments of unpredictable IP addresses where nodes con-
stantly join and leave the network. Peering nodes contact other peers using
routing tables for the overlay network, with no prior DNS resolution. When ac-
cess to a central server through DNS resolution is still possible at bootstrap,
nodes further communicate using IP addresses in the overlay network [3].

Second, the churn effect is an inherent property of P2P systems and critical
to their design and implementation [24]. It is a direct consequence of the inde-
pendent arrival and departure by thousands of peers in the network, and results
in a significant rate of failed connection attempts. We use this rate within mal-
ware and benign traffic in order to discard those that do not implement P2P
applications. We set a threshold τfc for the ratio of failed flows with respect
to the total number of flows triggered by a malware or a network terminal. We
empirically set τfc to 0.15, based on P2P malware samples that we observed in
our dataset. Our filter drops all malware and benign terminals whose rate of
failed connection attempts does not exceed this threshold.

Netflow Clustering: The coarse filter significantly reduces the volume of input
data by discarding flows that are unlikely to implement P2P applications. How-
ever, other non-P2P flows that have similar properties, such as spam and scan,
may also match this filter. Indeed, we want to cluster flows for a given malware
or benign terminal in order to put together flows that are likely to implement
the same functionality, and then to discard non-P2P clusters. As in [14], control
flows for a given P2P protocol usually implement preferred packet sizes, result-
ing in similar flows when observed at the network layer. These flows are grouped
into categories where they implement the same P2P control activity. We pro-
pose a clustering process where flows that implement similar functionalities for
a given malware or benign terminal are grouped within the same clusters. The
fine filter further keeps only P2P clusters as input to our learning module. In
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fact we cluster flows using high level features, without access to packet payloads.
We represent a flow f using the following features vector Vf :

Vf =< Pckts, P cktr, Bytes, Byter, BRates, BRater >

Pckts and Pcktr respectively represent the number of packets sent and received;
Bytes and Byter respectively represent the number of bytes sent and received;
and BRates and BRater represent the byte rate sent and received. We define the
distance between two flows as the Euclidian distance between their respective
feature vectors. Then we apply the unsupervised, incremental k-means [20] to
cluster flows Fα triggered by malware Mα or a terminal Tα. Incremental k-
means is a fast algorithm that requires no prior knowledge about the number
of clusters, which is a key requirement to our approach. It provides a better
alternative to the hierarchical clustering as we can set the threshold to create
a new cluster based on our learning set of malware and benign P2P flows. In
fact, incremental k-means creates a new cluster when the distance of an entry to
all existing clusters exceeds a given threshold (τcl). We tested the incremental
k-means algorithm against our set of malware P2P flows in order to find the
optimal threshold τcl. We manually checked the outcome of the clustering process
for different values of τcl. We thus empirically set τcl to the value 60, that we
found to give the best output clusters (section 5.1 discusses more in details the
impact of this threshold).

Fine P2P Filter implements two levels of filtering, using the distributions of
autonomous systems and destination ports contacted by flows in each cluster.

Filtering by destination ports distribution: P2P applications usually hide while
using nonstandard ports [13]. The use of multiple and oftentimes random des-
tination ports is a distinctive P2P characteristic, as opposed to other activities
such as spam or scan. For instance, a 10 minutes netflow trace includes at least
180 distinct destination port in case of skype, and almost 4690 distinct ports in
case of bittorrent. We discard non-P2P clusters based on the distribution of new
ports contacted. We compute the duration of each cluster, which is the lapse of
time between the first and the last flow in the cluster. We split this interval into
n sub-intervals of equal lengths. We compute, for each sub-interval, the number
of new destination ports, that is the destination ports not appearing in previous
sub-intervals. Then we compute the mean value for this distribution within each
cluster, and we discard clusters where this value does not exceed a threshold τnp.
We conservatively set the value of τnp using our dataset of malware P2P traffic,
and that corresponds to the value τnp = 0.6.

Filtering by destination AS: Certain P2P malware, such as waledac, may bypass
our port-based filter as it encapsulates its P2P activity within HTTP traffic, us-
ing the tcp port 80 [26]. However, the overlying P2P network still constitutes
an overlay architecture that connects nodes distributed on multiple autonomous
systems (AS). We thus use the number of contacted AS as another distinctive
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feature of P2P control clusters. Note that other clusters, mostly those contain-
ing malware scan flows, may also include a large number of destination AS.
However, these clusters include a large number of flows, resulting in a low ratio
of destination AS with respect to the number of flows in a cluster. We define
the ratio of contacted AS in a cluster c as RASc = #ASc

#Flwc
, where #ASc is the

number of destination AS and #Flwc is the number of flows in c. Values of
RASc for P2P applications in our dataset were all found to fit in the interval
[0.3, 0.5], whereas values of RASc for other malicious clusters such as scan ac-
tivities were all found to be less than 0.05. We thus conservatively introduce a
minimal threshold τas = 0.2 for RASc , and we discard all netflow clusters c that
match the condition RASc < τas.

4.2 Features Extraction

The use of netflow data for machine learning and botnet detection is often crit-
icized because it provides only generic information such as port numbers or
contacted IPs [6]. The raw use of those features usually leads to overfitted mod-
els that only detect malware in the initial training set. This paper thus proposes
a set of features that goes beyond the intrinsic characteristics of every single net-
flow record. It better describes the relationship and common trends among all
netflow records within a single cluster. Such features capture invariants in C&C
channels for P2P botnets. They cannot be easily evaded, yet they are generic
enough to detect P2P botnets not initially represented in the training set. Our
training features can be grouped into three categories, as follows.

Time-based features: Malware P2P control flows may be similar to benign flows
when observed during short intervals of time. However, observing these flows at
longer durations may reveal periodicities that are unlikely to exist in benign P2P
flows. Table 1 illustrates the periods between communication rounds for P2P
malware in our dataset. Time-based features capitalize on this observation in
order to characterize the occurrence of control flows within a cluster as a function
of time. We leverage periodicities in a cluster using the recurrence period density
entropy (RPDE)[15]. RPDE is a normalized metric in time series analysis that
determines the periodicity of a signal. It is equal to 0 in case of perfectly periodic
signals and equal to 1 for white random noise signals. We compute the RPDE
metric, the same as explained in [15], using a time series that represent the flow
arrival times within a cluster. In addition to the RPDE, we also compute the
mean and standard deviation (std) for inter-flow arrival times in each cluster.
The sequence of inter-flow arrival times is derived from the time series by taking
the difference between every couple of consecutive flows. However, the mean
inter-flow arrival time is a linear metric, as opposed to the RPDE metric that
rather applies in the phase space [15].

Space-based features characterize the way a P2P node contacts other peers in
the network. P2P bots usually have a lower chunk rate compared to other benign
peers [29]. During bootstrap, infected nodes often use hard-encoded lists of peers.
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Such lists imply a lower chunk rate, which makes it a distinctive feature for P2P
botnets. It is manifested through the number of IP addresses contacted and the
port distribution. We characterize space features using the mean and std for the
distributions of (new) IP addresses and destination ports contacted. We use the
same distribution of destination ports as the one described for P2P filtering,
and we add its mean and std to our features vector. Regarding IP addresses, we
compute the distributions of both IP addresses and new IP addresses contacted.
The former represents the distribution of the number of remote IP addresses
within n sub-intervals of short duration, compared to the longer duration of a
cluster. It characterizes the number of IP addresses concurrently contacted by a
P2P node at a given time. The latter distribution, computed the same way as
for destination ports, characterizes the chunk rate of a P2P application. We add
the means and stds of both distributions to our features vector.

Flow size-based features characterize the number of bytes and packets trans-
ferred in P2P flows. They capture specific control operations for a given P2P
application [14]. We extract both unique and statistical flow size features. The
former represents the distribution of unique flow sizes against the number of
flows that have a given size in a cluster. We compute the mean and std for this
distribution and add these to our features vector. On the other hand, statistical
flow sizes characterize the regularity of flow size behavior over time within a
cluster. We group flows in a cluster into a time series according to their arrival
times. We further split this interval into n sub-intervals of equal lengths. For
each sub-interval, we compute the mean size for all flows in this interval, thus
obtaining a time-based distribution of mean flow sizes in a cluster. We compute
both mean and std of this new distribution and add these to our features vector.

4.3 P2P Botnet Detection Model

P2P clusters cannot be all used for training as some of these are likely to appear
in both malware and benign P2P flows. In fact, while certain malware imple-
ments its own version of P2P protocols (e.g. waledac), others use existing overlay
protocols like overnet (e.g. Storm) and kademlia (e.g. TDSS). Clusters provided
by the second category of malware may share similar patterns with other benign
P2P flow clusters for specific P2P control operations such as keep alive or route
discovery, and so they would share similar network footprints. They should be
thus discarded prior to building the detection model. In fact, we want to keep
only clusters of P2P flows that implement P2P control operations that can be
accounted for during detection, such as P2P communication rounds, chunk rates
and IP distributions.

We discard non-discriminatory clusters by cross-correlating our combined set
of malware and benign P2P clusters. Non-discriminatory clusters include flows
triggered by malware and benign P2P applications that use the same P2P proto-
cols (e.g. emule, overnet) and that implement the same P2P functionalities. We
apply hierarchical clustering, using our features vector, in order to build a den-
drogram where leaf nodes are P2P clusters and the root node is a set of all P2P
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clusters. Then we use the Davies-Bouldin index [8] to find the best cut in the
dendrogram, and so we obtain meta-clusters of malware and benign P2P clus-
ters. A meta-cluster corresponds to a node in the dendrogram, and that includes
either or both malware and benign P2P clusters. Discriminatory meta-clusters
include almost only malware or benign P2P clusters, and these are kept as input
to the training phase. We thus discard as non-discriminatory meta-clusters all
meta-clusters where the proportion of malware or benign P2P clusters does not
exceed a threshold τd. We experimentally set the value of τd based on our P2P
training set, as seen further in section 5.2.

We tested multiple learning algorithms in order to build our detection model,
including SVM, J48 and C4.5 decision tree classifiers [7,22]. SVM provides an
extension to nonlinear models that is based on the statistical learning theory.
On the other hand, decision trees are a classic way to represent information
from a machine learning algorithm, and offer a way to express structures in
data. We evaluated the detection rates, including False Positives (FP) and False
Negatives (FN), for these available learning algorithms using our labeled set of
P2P clusters. We obtained higher detection accuracies using the SVM classifier,
and therefore we use this algorithm to build our detection model.

5 Experimentation

This section describes the design of our experiments, as well as the dataset that
we used in order to build and validate our approach. First, we build a P2P botnet
detection model using a learning set of malware and benign P2P applications.
Then we evaluate in this section three properties of our system. First, we use
a cross-validation method in order to assess the accuracy of our P2P botnet
detection model. Then, we evaluate the contribution for the different features of
our model towards detection and we discuss results of these experiments using
our initial P2P learning set. Last of all, we evaluate the coverage of our system
through application to live netflow traffic.

5.1 Training Dataset

We obtained samples of malware traffic from a security company which collects
binaries using its own honeypot platform. Traffic samples, provided as pcap files
labeled with the malware md5, included 1 hour of malware network activity
collected during execution in a sandbox. We use the virustotal API in order
to identify P2P malware samples in our dataset using their md5 labels. We
extracted all malware samples that were matching with more than 10 known
P2P antivirus signatures in virustotal. In fact current antivirus scanners usually
provide conflicting signatures for a same malware sample. Yet we need a valid
ground truth of P2P malware samples in order to build and evaluate our sys-
tem. Hence, we keep only malware samples that match with more than a single
known P2P malware signature in virusTotal. We empirically set the number of
matching P2P signatures to 10, which is almost the third of matching antivirus
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Table 1. Malware samples by families of malware

Family P2P functionality Period P2P Protocol

Sality (v3, v4) Primary C&C 40 min Custom protocol, encrypted-RC4 packets over UDP
Kelihos Primary C&C 10 min Custom protocol, P2P over HTTP traffic
Zeus v3 Primary C&C 30 min Kademlia-like protocol transported over UDP
TDSS Backup C&C – Public Kad network

Waledac Primary C&C 30 sec Custom protocol, P2P over HTTP traffic
ZeroAccess v1 Primary C&C 15 min Custom protocol, transported over TCP and UDP

Storm Primary C&C 10 min Overnet protocol

scanners, and that we believe it provides enough confidence of a P2P malware
sample. We obtained an overall number of 1, 317 distinct malware samples. Note
that malware uses P2P protocols for different purposes, including primary C&C,
bootstrap, spreading and failover. Table 1 illustrates the most predominant mal-
ware families that we found in our dataset.

We process malware samples using our P2P filter in order to build clusters
of P2P flows. We discard non-P2P flows using our coarse filter, then we create
clusters of flows for each malware sample. We implement the incremental k-
means algorithm, using different values for the threshold τcl. A low value of τcl
causes the clustering process to create almost a new cluster for every new flow.
Such clusters are usually discarded by the fine filter because of their relatively
low AS and port distributions, thus leading to higher false negatives rates. On
the other hand, a high value for τcl regroups flows that are not similar within the
same clusters. These clusters would include flows that are not triggered by the
same application, thus leading to more false positives. To find the best trade-off
for τcl, we applied the clustering process to our training set of P2P malware. We
tested several values for τcl, each time using the output clusters as input to our
fine P2P filter. The optimal value for τcl is the highest value that still provides
zero false negatives, assuming that there would be no false positives in case of
only P2P traffic. In our case, we achieved a maximum detection accuracy for a
value of τcl = 60. We obtained around 10 thousand clusters, that is almost 10
netflow clusters for each malware sample. The fine P2P filter further provided
around 3 thousand clusters, other clusters being dropped as non-P2P flows. In
fact, we observed that almost 60% of discarded clusters include less than 40
flows. These clusters mostly implement network discovery protocols or activities
related to the sandbox environment (e.g. SMB service). We also observed among
discarded clusters a long tail of clusters that include a high number of flows.
These are all scan clusters that were mostly discarded by the AS-based filter.
The remaining clusters include mostly P2P flows and spam flows. The latter
were discarded by the port-based filter, thus obtaining a total number of 2, 975
malware P2P clusters.

On the other hand, we build benign P2P clusters using traffic that we col-
lected from a well protected corporate network. It consists of netflow packets
obtained during one month of activity for nearly 150 network terminals. Unfor-
tunately certain P2P applications such as bittorrent were banned due to policy
restrictions. We thus completed our training set by manually executing P2P
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applications in a controlled environment. Then we applied our filter in order to
build clusters of benign P2P flows. We obtained a total number of 415 benign
P2P clusters, associated with 53 distinct IP addresses. Almost half of our benign
P2P clusters included skype flows (230), but we also obtained other clusters such
as eMule (43), kademlia (37) and Gnutella (35). We mostly obtained skype flows
mainly because the corporate network is aimed for professional usage, and other
P2P applications were being occasionally used. On the other hand, we collected
379 benign P2P clusters from manually executed P2P applications, including
bittorrent, eDonkey and Manolito. Our training set thus included 794 benign
P2P clusters that we used as input to our detection model.

5.2 P2P Botnet Detection Model

The P2P filter provided a resulting set of 3, 769 P2P clusters, including 2, 975
of malware and 794 of benign P2P clusters. The purging process discards P2P
clusters that are shared between both malware and benign P2P flows. Hence,
we cross-correlated our set of 3, 769 P2P clusters, using hiearchical clustering,
and we obtained 53 meta-clusters, including 41 discriminatory meta-clusters.
The latter include more than 93% of only benign or malware P2P flows, such
as 7 meta-clusters which clearly included Sality flows, 4 meta-clusters included
Waledac, and 9 meta-clusters included Skype flows. On the other hand, 12 meta-
clusters included both malware and benign flows, and so they are discarded as
non-discriminatory clusters. For instance, and regarding the kademlia protocol,
10 meta-clusters were found to include kademlia-like P2P clusters. In fact kadem-
lia protocol includes 4 message types: ping, store, find node and find value.
7 meta-clusters included more than 93% of only malware or benign P2P flows.
These meta-clusters included strictly find node and find valuemessages. Mal-
ware and benign P2P clusters were falling into different meta-clusters mostly be-
cause of their different chunk rates. The three remaining meta-clusters included
between 60 and 70% of malware clusters. These clusters included mainly ping

requests, which are dropped by the purging module as being non-discriminatory
flows. We obtained as output to this process a training set of 2, 647 P2P clusters,
including 2, 143 malware clusters and 504 benign P2P clusters.

Cross-Validation: We performed a cross validation experiment, using our la-
beled ground truth dataset, in order to evaluate the detection accuracy of Bot-
Suer. We split our malware dataset into two subsets: 80% of malware samples
that we use for training, and the remaining 20% that we use for evaluation. Yet
for the 53 IP addresses that were using P2P protocols in the corporate network,
we randomly extracted 10 IP addresses from our training set so we can use use
them for evaluation. Then we merged traffic for our 20% malware evaluation set
with random IP addresses that we extracted from the corporate network traffic.
We further use our training set of malware and benign P2P traffic as input to
our P2P filter, and then we applied our cluster purging module with different
values of the threshold τd. We obtained for each value of τd a different number of
labeled P2P clusters that we use to train our SVM classifier. We evaluated the
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Fig. 2. Contribution of features towards
detection

Fig. 3. Detection rate and false posi-
tives rate for BotSuer

detection models that we obtained using the validation dataset, including traffic
from the corporate network merged with the traffic from the 20% remaining
malware samples. We measured the detection rate and the false positives rate
for each value of τd, and that we illustrate with the ROC curve in Fig. 3.

As in Fig. 3, a high value for τd - i.e. closer to the y-axis - leads to lower
detection rates and less false positives. In fact, a high value for τd discards more
clusters during the learning process, and so it reduces the coverage of BotSuer.
On the other hand, lower values for τd allows less discriminatory clusters to
go through the purging process. These would reduce the accuracy of BotSuer,
leading to a higher false positives rate and a lower detection accuracy. We found
a linear increase in the detection rates for values of τd lower than 93%. Yet we
obtained the best detection rates for values of τd in the interval [90 − 93%],
including 97% detection rate and 1.6% false positives.

Contribution of Features towards Detection: We used the cross-validation
method to evaluate the contribution of our features towards detection. We built
detection models by separately using each class or combinations of these classes,
and then we evaluated the detection accuracy, including false positives and neg-
atives, as illustrated in Fig. 2.

Our model achieves almost 97% detection accuracy when combining all classes
of features. When evaluated separately, space-based features (S) provided the
best detection accuracy (93%). We believe this is due to the fact that our learning
set includes netflow packets collected during only 1 hour of malware execution
time. Hence, time-based features provided a lower accuracy because the exe-
cution time is not long enough to accurately characterize periodicities in P2P
control flows. On the other hand, size-based features provided low detection ac-
curacy when solely used to build the detection model, almost with 20% false
positives rate. This was not surprising because malware may still bypass size-
based features by adding noise or paddings to P2P control flows. Although only
few malware currently uses such techniques, we observe that size-based features
cannot be used as standalone features for P2P botnet detection. As opposed
to time and space features, size-based features may still be bypassed without
modifying the underlying overlay protocol.
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Testing with ISP Flows: The test against ISP flows was indeed challenging
because we lack the ground truth about the nature of detected infections. We
trained our detection model with all P2P clusters at our disposal, and we used
the value of τd that provided the best detection accuracy. The ISP flows included
3 hours of anonymized netflow for almost 4, 347 distinct IP addresses, collected
at a peek traffic rate. The DNS coarse filter was applied at the source, and so the
netflow trace that we obtained included only flows not preceded with susccess-
ful DNS resolutions. We split this traffic into one hour length intervals, which
corresponds to the malware execution time in our dataset. Then we applied our
P2P filter and botnet detection model on traffic in each time interval. Our fil-
ter extracted 793 P2P flow clusters, associated with 146 distinct IP addresses.
In order to validate our P2P filter, we also obtained from the ISP a list of the
anonymized IP addresses that were found to be implementing P2P applications
in our netflow trace, and that were detected using proprietary P2P protocol sig-
natures. We admit that these signatures cannot formally validate our approach,
but they may still provide a ground truth to evaluate our results. P2P signatures
detected 169 distinct IP addresses that implement P2P applications, including
23 IP addresses not detected by our filter. In fact 18 of these addresses triggered
less than 10 P2P flows. They provided small P2P clusters that are discarded
by our P2P filter. We asked the ISP to verify about the origin of these flows
since the source IP addresses for the traffic at our disposal were all anonymized.
We found that these were mostly signaling flows for external IP addresses being
routed through the ISP network. Therefore, we would not consider them as false
negatives. On the other hand, the 5 remaining IP addresses detected by the P2P
signatures were indeed false negatives. They mostly included utorrent P2P over
HTTP flows, and so they were discarded by our port-based filter. They were also
discarded by the AS-based filter most likely because these P2P applications were
dormant during the observation window. In fact we observed mostly incoming
flows, but there were relatively little outgoing P2P flows for these IP addresses.

We used the 793 P2P clusters as input to our detection model. It identified
11 malicious flow clusters associated with 3 distinct IP addresses. Since traffic
was all anonymized, we validated our approach using public IP blacklists2. In
fact we consider a cluster to include malware P2P flows when at least 20% of
remote IP addresses in this cluster appear in public backlists. Indeed we identified
using these blacklists 4 netflow clusters as being malicious, all associated with
the same IP address. We thus consider this as a strong evidence of a malware
infection, and so it is a true positive. Yet the same infected IP address was
appearing in the list of IP addresses that were found to be implementing P2P
applications by the proprietary ISP signatures. This is another clear evidence of
the ability of BotSuer to detect P2P bots that use known benign P2P protocols.
Unfortunately we couldn’t validate the 7 remaining clusters using the publicly
available blacklists, and so they are likely to be misclassified by our system.
We thus achieved 0.8% false positives, associated with two distinct IP addresses

2 RBLS is a free API to check multiple public IP blacklists - http://www.rbls.org/

http://www.rbls.org/
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during 3 hours of traffic monitoring for 4, 347 distinct IP addresses, which is a
fairly reasonable number of alerts to be handled by the system administrator.

6 Discussion

BotSuer detects malware using statistical features such as chunk rates, periodic-
ities and botnet distribution. It also classifies flows for a specific P2P application
using high level features such as flow size and number of packets. It would be
thus unable to accurately detect P2P bots if the attacker modifies P2P com-
munication intervals, contacts a larger set of peers, or uses random paddings
in its malware P2P traffic. Such maneuvers modify the statistical consistency
in malware P2P flows and so it makes detection more difficult. However, these
techniques require an attacker to rebuild its malware P2P toolkit. They also
increase overhead and reduce botnet stability, which makes botnet management
more difficult. Indeed botnets would no longer be able to dissimulate within
benign P2P flows, and so they will be exposed to other detection techniques.

On the other hand, BotSuer differentiates malware and benign P2P control
flows using only a binary classification. We aim to extend this study by proposing
new techniques to identify specific botnet families during detection. We will
explore unsupervised clustering algorithms that apply to our set of malicious P2P
flows. These algorithms separate in different clusters P2P flows that are likely
to be generated by common families of botnets (e.g. Sality, Storm, Nugache).

Certain malware uses P2P protocols only as a failover mechanism to replace its
primary C&C channels, and so it would not contribute to building the detection
model. In [17], authors propose an approach that detects primary C&C channels
during malware execution in a sandbox. It dynamically intercepts primary C&C
channels and forces malware to engage in a failover strategy. Using techniques
such as [17] enables to trigger P2P failover strategies so we can take these into
account in our detection model. These techniques usually apply during malware
sandbox analysis and so they are out of scope in this study.

7 Conclusion

This paper presented BotSuer, a new approach to detect P2P bots inside a net-
work perimeter. To the best of our knowledge, BotSuer is the first to detect even
single infected P2P bots. BotSuer implements a fully behavioral approach to
detect malware infected nodes in the network. Yet it does not use deep packet
inspection nor intrusion detection alerts. It is thus resilient against malware ob-
fuscation mechanisms and detects bots that use encrypted P2P communications
for command and control. It also detects stealthy P2P bots, as well as targeted
infections inside a network perimeter. We tested BotSuer against real world P2P
traffic, including malware and benign P2P flows. Our experimental results val-
idate our approach, which provides a high detection accuracy with a very low
false positives rate.
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Abstract. We study the fundamental security properties of resource
access control as suggested by the operation of current social networks
including Facebook. The “facebook model”, which treats the server as a
trusted party, suggests two fundamental properties, “owner privacy” and
“server consistency”, and two different modes of revocation, implicit and
explicit. Through black-box experimentation, we determine Facebook’s
implementation for resource access control and we analyze its security
properties within our formal model. We demonstrate, by the construction
of explicit attacks, that the current implementation is not secure: specif-
ically, we attack privacy with implicit revocation and server consistency.
We evaluate the implications of the attacks and we propose amendments
that can align the current implementation with all its intended security
properties. To the best of our knowledge this is the first time that a
security analysis of the Facebook resource access control mechanism is
performed within a proper security model.

Keywords: Access control, social networks, security analysis.

1 Introduction

Increasingly the basic mode of sharing resources between individuals over the
Internet is over social networking sites, of which the most popular by far is
Facebook [12]. A common characteristic of the majority of these systems is that
they rely on a trusted server that is supposed to manage the access control
of the submitted resources in a way that is consistent to the social graph that
reflects the relationships between the users. More sophisticated sites as Facebook
logically divide the entities of the system into resource owners and “resource
consumers” that, without loss of generality, can be all thought of as applications
that perform various functions over the resources of the social network that are
available to them. In the above setting, the social networking server, acting as a
trusted party, is supposed to maintain an access control matrix that pairs owners
and applications. Each entry specifies a level of access that an owner permits
to an application. A suite of protocols should be available to the entities of the
system that enable the update of the matrix according to a set of well-defined
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rules that are publicized by the server. In the case of Facebook the suite of
protocols broadly follows the directives set out in the OAuth standard [13], and
puts forth the following security rules regarding the management of resources.

– Each owner has a vector of resources so that each entry has at least two
levels of access: public and protected. The first suggests that the resource is
available to anyone, while the second suggests that its availability to other
users (the owner’s “friends”) will be explicitly managed by the owner.

– Each application can selectively request access to an owner’s resources in-
cluding the resources of the owner’s friends that are accessible to her, in
exchange for a certain service.

– Access to the resources can be revoked by the owner in at least two different
modes: (i) explicit, which takes place when the owner requests the server to
revoke access, (ii) implicit, which takes place when the owner ceases to use
the application for a certain specified period of time (this type of revocation
concerns only applications and not the owner’s friends).

Given the above rules, the suite of protocols that implements the access con-
trol system should meet the following intuitive objective: the access to resources
gained by an adversary that controls a set of malicious owners and applications
and is directing an orchestrated attack against the system should never exceed
the union of resources that the adversarially controlled entities can access indi-
vidually. Furthermore it is sensible that an additional property should also be
satisfied: the server should be capable of justifying any action of resource ac-
cess that takes place, by previous actions that have previously taken place. For
example, when an application A accesses a resource R of an owner O, this can
be justified by, e.g., the existence of a previous authorization action where O
explicitly allowed A to have access to R.

These two properties can be termed respectively “Owner Privacy” and “Server
Consistency.” The proper modeling of these properties in the setting of social
networks with a trusted server and the degree that the Facebook implementation
for resource access control satisfies them is the focus of our work.

Contribution #1: Security Model. We put forth a formal model for the
properties of owner privacy and server consistency. To this effect, we define
a security protocol problem that we call “Resource Access Control in Social
Networks” or RACS. The RACS problem calls for the design of a set of protocols
that enable parties of three types, the server, the owners and the applications
(or clients), to store and access resources.

An adversary attacking owner privacy against a RACS implementation, can
be thought of as playing a game with a challenger that represents the part of the
system that remains uncorrupted. The objective of the adversary is to distinguish
the value that is found in a certain resource location of an honest owner out
of two possible choices. The adversary in the course of the game can corrupt
owners and applications and request access to resources. The access may include
the target location provided the access is revoked (explicitly or implicitly) prior
to the challenge value being placed in the location. A RACS implementation
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satisfies owner privacy if no matter the course of action the adversary takes, it
gains no advantage in predicting the value of the target location.

An adversary attacking server consistency, aims to bring the server to a state
where it cannot justify a certain resource access action by the previous actions.
This attack can be also thought of as a game between the adversary and a
challenger. In this case, the challenger simply records all actions taken by the
adversary who as before controls a set of malicious owners and applications. The
challenger checks the history of all actions to ensure that all resource accesses
are justifiable. The adversary wins the game in case the challenger discovers an
unjustifiable action. A RACS implementation satisfies server consistency if no
adversary can win the above game with probability that is non-negligible.

Contribution #2: Experimenting with Facebook. From the perspective of
the above model, Facebook implements a protocol suite solving the RACS prob-
lem. While the implementation is private and one cannot be certain of the actual
source code, the implementation of the protocol suite can be relatively easily ex-
tracted at a sufficient level of detail to perform a security analysis. To achieve
that, we created several applications that used the most representative ways of
client authorization (server-side and client-side), either via custom code or via
the SDK’s provided by Facebook (specifically, the PHP SDK and the Javascript
SDK). We also created a small number of Facebook users and connected them
through “friend” relationships.

For each application we captured the transcripts that were generated during
the protocol execution and collected all artifacts produced by the protocols such
as access tokens and authorization codes. We attempted a variety of “improper”
protocol executions, such as sharing tokens from one protocol execution instance
to another and attempted to access resources with applications that were not
properly authorized. All the above operations gave a relatively complete picture
of the protocol implementation at least with respect to the security features that
are of interest in this work. In a nutshell, Facebook appears to be using standard
cryptographic primitives to generate tokens (such as pseudorandom functions
and encryption) and performs access control at the logical level as expected of
a system providing resource access control in the trusted server setting.

Contribution #3: Attacking the Facebook Implementation. We sub-
jected the Facebook RACS implementation to a security analysis with respect
to the properties of owner privacy and server consistency. Our findings are as
follows.

First, we discover an attack against owner privacy in the case of implicit
revocation. Recall that implicit revocation means that an application ceases to
have access to the owner’s data when the owner does not use it for a certain
period of time. This is something that Facebook supports as evidenced by the
following: “... If you haven’t used an app in a while, it won’t be able to continue
to update the additional information you’ve given them permission to access.”
[1]. A simple description of our attack is as follows: an adversarial application is
initially authorized by two users that are friends and has access to their resources.
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Subsequently, the access to the first user’s resources is implicitly revoked while
the second user continues to use the application. We show how the malicious
application can exploit an access token obtained via the second user to break
the implicit revocation from the first user and gain access to the resources that
should have been otherwise unavailable to it.

Second, we demonstrate that the Facebook implementation does not satisfy
server consistency. Specifically, we show that an adversary controlling two appli-
cations is capable of transferring access tokens from one application to the other,
thus generating access resource actions that cannot be justified by the server (we
note that this problem was already hinted in [17] in work independent to our
experiments that dealt with OAuth in general); still our work better exemplifies
the ramifications of the issue by putting it in the context of an attack against
the server consistency property. Note that the way access tokens are defined in
Facebook have lead to problems before [24]; as our work exemplifies, even though
they have been improved since then, they are still not entirely secure.

Third, we show that Facebook satisfies owner privacy when only explicit re-
vocation is taken into account. This holds true under the assumption that the
function that is used to implement the access tokens has the characteristics of a
pseudorandom function (a plausible assumption).

Finally, we complete our exposition with a set of modifications that can be
applied in order to enable Facebook to conform to the formal model and satisfy
both owner privacy and server consistency.

We stress that all our attacks were experimentally verified with the Facebook
API and that the Facebook security team was notified of our findings.

Related Work. Facebook follows the general OAuth standard. For OAuth,
there exist recent works formally studying its security [5],[6] and a security analy-
sis of OAuth implementations from the single-sign on perspective was performed
in [17]. These analyses do not capture what we term the “Facebook model”,
where a trusted server manages resources within a social network and takes into
account the fact that users can manage access to the resources of their friends
as well; this is an essential feature that goes beyond OAuth and for the case of
Facebook (and other social networking sites) security ought to be considered in
this perspective; our properties (and in fact some of our attacks as well) rely
critically on the social networking aspects.

Previous work for resource access control in the setting of social networks can
be divided in two broad categories.

First, there is a substantial amount of work, e.g., [14],[15],[16] that considers
the expression of access control directives in the setting of social networks. This
enhances classical ideas in access control (e.g., [19],[20],[21]) with the notion of
the social graph and the complexities that come with relationships between en-
tities in this setting. Our work is orthogonal to this line of work: we consider the
formal modeling of security properties and whether a certain protocol implemen-
tation conforms to the model independently of how the actual implementation
of the access control system works.
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Second, a sequence of works [7],[8],[9],[10],[11] considered the problem of pri-
vacy in the setting of an untrusted server. This work can be further divided
in works that attempt to provide privacy within an existing system (including
Facebook, e.g.,[7],[8],[9]), while others solved the problem following a “clean-
slate” approach redesigning the whole system from scratch, e.g., [10],[11]. While
considering privacy against an untrusted server is an important direction, our
work demonstrates that the problem of formally modeling privacy and consis-
tency in the trusted server model (for a sophisticated system such as Facebook)
is already challenging and there are substantial benefits to be gained from the
security analysis as the attacks we discovered exemplify.

2 The RACS Problem

The RACS problem refers to how owners, who have stored their protected re-
sources in a server, can share them with clients (applications) using the help of
the server. Since the RACS problem concerns social networks, owners are also
able to make connections and share their resources with other owners. Every
owner is entitled to share her resources as well as the resources that other own-
ers share with her by authorizing clients and declaring to the server the scope
of the clients’ access.

We express the RACS functionality by describing the valid set of actions that
captures all the possible interactions between the server and the client or the
owner. We will use the notation O and Oi, and C and Ci where i = 1, 2, .. to
represent the unique id that identifies owners and clients respectively. We assume
that these sets of clients’ ids and owners’ ids are disjoint.

Owner’s actions:

– register(O): O registers with the server,
– authenticate(O): O authenticates herself to the server,
– update(O, 〈resources〉): O updates her protected resources,
– authorize owner(O1, O2, fo): O1 makes a connection with O2 and authorizes

her to access the subset of her protected resources as expressed by the func-
tion fo. The function fo is a projection (Dn → Dk) where k ≤ n and D is
the space of the owner’s resources. We will also use f to represent the set of
indexes of the projection. Informally, this function defines the subset of the
resources O1 shares with O2,

– authorize client(O,C, fs, fg): O authorizes C to access the subset of her pro-
tected resources as expressed by the function fs, and the subset of the re-
sources of the owners connected to her, as defined by the intersection of
function fg and the resources accessible by her,

– use(O,C): O uses C’s service,
– revoke(O,C): O explicitly revokes C’s access to her protected resources,
– logout(O): O ceases interacting with the server.
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Client’s actions:

– register(C): C registers with the server,
– authenticate(C): C authenticates itself to the server,
– access resources(C,O, f): C makes a resource request to access the subset of

O’s protected resources defined by function f .

A solution to the RACS problem is a set of protocols that involve three par-
ties, the owner O, the client C and the server S. The owner O is an entity capable
of granting access to a protected resource, after registering and authenticating
with the server. The client C is an application offering a service to the owner
O. In order to do that it makes protected resource requests. The server S main-
tains a matrix r() containing the protected resources of each owner; moreover,
it has three access control matrices oos ac(), ocs ac(), ocg ac(), containing the
permissions owners have granted to: other owners (owner-to-owner for herself),
clients about their own resources (owner-to-client for herself), and clients about
the resources of their connections (owner-to-client according to social graph), re-
spectively. Also it keeps an expiration time matrix expt() and a log file log file

with all the actions generated by the affiliated parties (owners and clients).

Registration & Authentication Protocols. Firstly, both owners and clients have
to register to the server. When a party (owner or client) registers with the server,
it acquires a unique identifier id and the server records the action register(id).
Then, the server can identify a party as either an owner or a client with id id
and the action authenticate(id) is recorded.

Client Authorization Protocol. O authorizes C to access the subset of her re-
sources that is defined by the function fauthS and the subset of the resources of
the owners connected to her defined by fauthG. This protocol ends successfully if
the first function is stored in ocs ac[O,C], the second in ocg ac[O,C] and the
action authorize client(O,C, fauthS, fauthG) is recorded in the server’s log file.

Owner Authorization Protocol. With this protocol O1 can create a connection
between herself and O2. In this process O1 also provides to the server the func-
tion fo determining the resources she wishes to share with O2. The server is
responsible to store in the cell oos ac[O1, O2] the function fo. After updating
the matrix oos ac the server records the action authorize owner(O1, O2, fo).

Client Access Resources Protocol. This protocol enables C to accessO’s resources
from the server. It is divided into two cases depending on the party that initiates
the protocol.

In the first case, O wants to use C’s service. In return, C requests access to
a subset of O’s protected resources. To accomplish that, C, after being authen-
ticated by the server, makes a request providing its desired function f . If C is
not authorized, the “Client Authorization Protocol” is executed; else, the server
responds according to the information saved in its access control matrices and
the desired functions. Also the action use(O,C) will be recorded in log file.
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In the other case, C wishes to access a subset of O’s protected resources on
its own accord. To achieve that, after authenticating itself, it makes a protected
resource request to the server providing O’s id and its desired function f . Then,
the server can verify that C is authorized, that its access has not expired, and
responds accordingly to the information saved in its access control matrices and
the desired functions.

In both cases, if the protocol ends with the client acquiring any subset f ′ of
the requested resources, the action access resources(C,O, f ′) should be recorded
in the server’s log file.

Client Revocation Protocol. There are two cases in which C’s access can be
revoked. In the first case, C’s access is revoked implicitly by the server (Implicit
Revocation) after a certain period of time has passed since O used C’s service
for the last time. This period of time is set by the server. C’s access is revoked
until O uses its service again.

In the other case, C’s access is revoked explicitly by O (Explicit Revocation),
even if it has not expired. To accomplish that, the server, after authenticating
O and if O requests it, it will set the functions ocs ac[O,C] and ocg ac[O,C]
to be f∗ (the default level of public access). After the revocation is complete the
action revoke(O,C) is recorded in the server’s log file.

Owner Revocation Protocol. O1 is able to break a connection with O2 and revoke
O2’s access to her resources (explicit revocation); oos ac[O1, O2] is set to f∗ and
the action revoke(O1, O2) is recorded in the server’s log file.

2.1 Correctness and Security Properties

To argue about correctness and security we will introduce a security parameter
λ which will capture the level of security associated with our proposed solutions.

Correctness. For all O, O′ 	= O, C, f : Dn → Dk where k ≤ n, if(
(f ⊆ ocs ac[O,C]) ∧ (server time < expt[O,C])

)
∨(

(f ⊆ (ocg ac[O′, C]∩oos ac[O,O′])) ∧ (server time < expt[O′, C])
)
,

then C, by running the “Client Access Resources Protocol”, will receive the
resources f(r[O]) and the server will record the action access resources(C,O, f).

Owner Privacy. In order to reason about the owner privacy property, we have
to consider the two cases of revocation, explicit and implicit. In the case of owner
privacy with explicit revocation, we consider attacks where a client gains access
to an owner’s protected resources while it is not authorized (either because its
access was explicitly revoked by the owner or because it was never authorized).
In case of owner privacy with implicit revocation, we also consider attacks where
an authorized client accesses an owner’s resources while its access has expired.
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In both cases, we define an adversary A who has access to some owners’ and
clients’ accounts. We express the security property as a game GA between a
challenger and the adversary A. The challenger operates the server and all the
honest owners. The game allows the adversary to provide two values so that
one of them at random is stored at an adversarially chosen resource location
for an owner of the adversary’s choice that is outside of its social network.
The adversary, then, tries to find out which of the two values was used and
if it succeeds in its guess it wins the game. For this game GA, the suggested
protocol solution satisfies the security property only if the adversary cannot win
the game with significant advantage. Definition 1 in appendix formally describes
this property. Note that this type of modeling is similar to the modeling of
security of encryption in the IND-CPA sense [22].

In the other case, we have the adversary A, as we defined it in the previous
section, but we change the behavior of the challenger. The security property
related to implicit revocation is intended to capture the fact that a client C can
access the owner’s O resources even if the owner is not using the client’s service
in a period of time of dt units, however, after the end of this time period the
C’s access is revoked. The number dt is a system parameter that the server S
is initialized with and expresses the maximum amount of time that should pass
from the last use of the client by the owner within which the client is still allowed
to access the owner’s resources. Given that the security property is time sensitive
we need to capture the passage of time in the server. The challenger increases
by one the number of time units that have passed each time the adversary
completes an action; moreover, in the course of the game we allow the adversary
to advance the time of the server by issuing “advance clock” instructions if it
wishes. Definition 2 in appendix formally describes this property.

Server Consistency. In addition to the owner privacy property, the server
S should be able to justify, from its log file, every client’s access to owners’
resources. To accomplish that, it should not allow access to the owner’s resources
unless it authenticates the client and is certain that the client is authorized to
access these resources.

Fig. 1. The adversary A should not guess b
with probability different than 1

2
(Explicit

revocation)

Fig. 2. The adversary A should not
guess b with probability different than
1
2
(Implicit revocation)
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We define a predicate P (log file, dt) as follows, P is true if and only if every
record of the action access resources(·) in the log file log file follows one of the
sequences of actions mentioned below, for any O,C, t0, t1, t2, t3, t4, t5:

1. 〈authenticate(O), t0〉
2. 〈authorize client(O,C, fs, fg), t1〉
3. any of 〈authenticate(O), t2〉 or 〈use(O,C), t3〉
4. 〈authenticate(C), t4〉
5. 〈access resources(C,O, f ′

s), t5〉, where (f ′
s ⊆ fs).

In addition, the following statements should be also true (i) t0 < t1 < t3 < t5,
(ii) t4 < t5, (iii) if action use(·) exists then t5 − t3 < dt, else t5 − t1 < dt, (iv)
between t0 and t1, or t0 and t3, or t2 and t3 the action logout(O) should not
exist, (v) between t1 and t5 the action revoke(O,C) should not exist. As long as
these statements are true all protocol actions are allowed.

This sequence of actions expresses that O has given access to C. However,
C can gain access to O’s resources through the owners connected to her, as
a result the predicate will be true if an owner O′ exists such that the owner
O has shared her resources oos ac[O,O′] with O′, and O′ has authorized C
to access the resources of the owners connected to her defined by a function
ocg ac[O′, C]. Consequently, the action access resources(C,O, f ′), where f ′ ⊆
(oos ac[O,O′] ∩ ocg ac[O′, C]), would be justified.

Finally, for all PPT adversaries A, the probability of the event P to be false
should be negligible: Pr[P (log file, dt) = 0] = negl(λ), where P is the predi-
cate described before and log file is a random variable that reflects the log file
given the activity of A as described above.

3 Facebook’s Implementation

In this section we will focus on the implementation of Facebook as we observed
it works, based on its public documentation and our efforts to analyze it. The
correspondence between the parties of the RACS problem and the parties that
participate in the social network of Facebook is described as follows: Facebook is
the server, the client or Facebook app is the client and the user is the owner. A
connection between two users is called friendship and it requires authorization
from both users to be considered valid. However, the functions that define the
resources they share with each other do not have to be the same. The security
properties that Facebook intends to provide include explicit revocation as well
as implicit revocation.

As a solution to the RACS problem, Facebook implements a set of protocols
which involve three parties, the user U , Facebook S and the client C. We assume,
without loss of generality, that Facebook has the same matrices for access control
and storing resources as the server in RACS with one small deviation: it appears
that instead of the expiration time, it keeps the last time a user accessed a client
service, as a result matrix expt corresponds to the last time of usage plus dt.
We also assume that clients have a matrix c at to store access tokens.
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Registration & Authentication Protocols. Users register by providing an email
and a password and obtain a user account with a unique id. On the other hand,
clients register with Facebook and obtain a unique identifier “app id” and an
“app secret.” After the assignment of a unique identifier, the action register(·)
is recorded. Then, both owners and clients are able to use their credentials to
authenticate with Facebook. If Facebook identifies a user or a client with id id,
the action authenticate(id) is recorded.

Client Authorization Protocol. U is redirected by Facebook to a pop up dialog
that informs her about the users permissions, expressed by fauthS, and the friends
data permissions (which are about her friends), expressed by fauthG she has to
give to C in return for service. These functions are provided in every authoriza-
tion request by C. If U accepts to share these resources, the functions are stored
in ocs ac[U,C] and ocg ac[U,C]. Additionally, the action authorize client(U,C,
fauthS, fauthG) is recorded.

Friend Authorization Protocol. In Facebook, U1 is able to make a “friend request”
to U2 who has the choice to accept or decline. Only when U2 accepts the request,
Facebook stores in cell oos ac[U1, U2] the function f1 that defines the resources
U1 shares with U2 and in oos ac[U2, U1] the function f2 that expresses the re-
sources U2 shares with U1. In addition, the actions authorize owner(U1, U2, f1)
and authorize owner(U2, U1, f2) are recorded.

Client Access Resources Protocol. In order to gain access to U ’s resources, C
has to use an access token that represents its access rights. This token is issued
to C only when U initiates this protocol. U initiates the flow by requesting
C’s service from Facebook, (Fig. 3, step 1). Then, Facebook verifies that C is
authorized by checking the function in ocs ac[U,C], (Fig. 3, step 2). If U has
not authorized the client, Facebook initiates the “Client Authorization Protocol”
(Fig. 3, step 3). Else, the user is redirected immediately to C’s service providing
the signed request as shown in step 4 of Fig. 3.

The signed request is a signed parameter, which contains a “short-lived” ac-
cess token1. The signed request is the concatenation of an HMAC SHA-256
signature, a period ’.’ and a base64url encoded JSON object. The signature
potion is signed using the C’s app secret which is only known by it and Face-
book. A short-lived access token and its expiration time along with other public
information concerning U are included in the signed request [23].

Then, C has the option to send the short-lived access token to Facebook, along
with its app id and its app secret to get a “long-lived”2 one, (see Fig. 3, step
5). Based on our experiments, in this step Facebook considers that U accessed

1 This has duration 1 to 2 hours, it has the form CAA{(0 − 9) ∪ (a − z) ∪ (A −
Z)}9BA{(0− 9) ∪ (a− z) ∪ (A− Z)}lZDZD and is only acceptable when the user
is signed in.

2 This has duration 60 days and is renewed each time the user accesses the service; it
has the form CAA{(0− 9)∪ (a− z)∪ (A−Z)}9BA{(0− 9)∪ (a− z)∪ (A−Z)}lZD
and can be used even if the user is offline.
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C’s service, it stores the current server time (server time + dt in expt[U,C])
and the action use(U,C) is recorded. C can store the long-lived access token and
make protected resource requests with either the short-lived access token or the
long-lived one as it is described below.

Fig. 3. Client access resources protocol (when initiated by user)

If C is not authorized it can access only a user’s public resources (f∗). How-
ever, if it wishes to access more resources of U , C can make protected resource
requests providing an access token from a user that it has stored in c at and
the function f which expresses the desirable resources. If the access token has
expired or is invalid for any reason, C does not receive U ’s resources. On the
other hand, if the access token is valid, then Facebook responds to C with f ′,
the subset of resources defined by the intersection of f and the functions stored
in ocs ac and ocg ac(see Fig. 4 and Fig. 5). Additionally Facebook records the
action access resources(C,U, f ′). In our experiments we observed that when a
client makes a protected resource request and it is asking for resources that it
cannot access, then an empty vector is returned to it, which is justified by our
assumption that Facebook responds to a client’s request with the intersection of
the requested resources and the authorized ones.

Client Revocation Protocol

– Implicit Revocation. The access of C is implicitly revoked by Facebook if U
does not access C’s service for a certain period of time, currently set to 60
days [2]. If Facebook receives a protected resource request after expt[U,C]
has passed, it should not grant access to C until U visits C’s service again.

– Explicit Revocation. If U wishes to revoke C’s access, Facebook sets the
functions ocs ac[U,C] and ocg ac[U,C] to f∗ and the action revoke(U,C)
is recorded.

Unfriend Protocol. U1 can revoke U2’s access to her resources only by explicitly
requesting Facebook. To accomplish that, U1 can request to “unfriend” U2. As
a result, Facebook will change the functions oos ac[U1, U2] and oos ac[U2, U1]
to f∗ and the actions revoke(U1, U2) and revoke(U2, U1) are recorded.
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Fig. 4. Client access resources protocol
Fig. 5. Client accesses U ’s resources using
U ′’s access token

3.1 Our Attacks

Owner Privacy with Implicit Revocation. We show how an attacker is
able to access the user’s resources even after its access has expired (implic-
itly). The attack relies on the fact that during the client access resources
protocol (as described in Fig. 5), Facebook does not properly verify the
permissions that U ′ has given to the client regarding her friends. Conse-
quently a client can use a token issued by U ′ to access another user’s U
resources defined by ocs ac[U,C]∩oos ac[U,U ′] which may be a superset of
ocg ac[U ′, C]∩oos ac[U,U ′]; this will be in violation of access control rules in
the case that U has not used client C for a period of time and thus access to
resources ocs ac[U,C] should be implicitly revoked.

For example in Fig. 7, we define two friends U and U ′ and a resource j that
U shares with U ′. Further we define a client C that is authorized by U ′ but
is not given access to her friends’ resources (ocg ac[U ′, C] = f∗). However, C
is authorized by U to view resource j (j ∈ ocs ac[U,C]). Consider now that U
does not use C’s service for more than dt seconds, while U ′ continues using this
service. It follows that C should have access only to U ′’s resources and not to
the resource j of U . However, if C requests j using U ′’s access token, Facebook
will respond with (oos ac[U,U ′]∩ocs ac[U,C])(r[U ]) which contains (r[U ])j .

Attack Implementation. In this paragraph we will present an application that
implements the attack we described in Sec. 3.1. The application records in a
database every user that has used its service along with their access tokens. In
this way the application is able to request the users’ resources even if they are
offline and present them in a table. If the access of the application to a user’s
resources has expired, it tries to obtain her resources first as public information,
and then through her friends’ access tokens. This is possible by asking Facebook
for the user’s friends cross-referencing the response with its database and then
trying her friends’ access tokens until it is successful.

For instance, consider an attacker that wants to access user P ’s activities.
Suppose that user P has not used the application and its access has expired.
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Further, no other user that accesses this application has access to P ’s activities
which are private and hence the application cannot access the user’s activities.

Now consider a friend of P , named K, who has access to P ’s activities and
authorizes the application but without granting any friends data permissions,
hence the application should not be allowed to view P ’s activities via K’s autho-
rization. However, the application, in violation of the implicit revocation, will be
able to use the access token of K to obtain P ’s resources as we can see in Fig. 6.

Fig. 6. Implementation of the attack against privacy with implicit revocation (Sec. 3.1).
The application’s access to P ’s resources has expired and her resources are private,
however, because K is P ’s friend the application can use his valid token to access her
resources even though K has not authorized it.

Server Consistency. We next show how an attacker can violate the server
consistency property, i.e., bring the Facebook server to a state where a certain
access resources action takes place by a client without being justifiable given
Facebook’s access control matrices. The attack relies on the fact that Facebook
does not authenticate properly the client that transmits an access token3. For
example in Fig. 8 we define a user U and two clients C1, C2 both controlled by the
attacker. U revokes C2’s access while it authorizes C1. The attacker transfers the
access token to C2 and initiates the “Client Resource Access Protocol.” Facebook
does not authenticate the client - it only verifies the token. This means that
the predicate P (log file, dt) is false since in the log file log file the action
authenticate(C1) does not precede the action access resources(C1, U, j).

We also prove positive results about the Facebook implementation (correct-
ness and explicit revocation) that are presented in the appendix.

3.2 How to Fix It

As we have seen in Sec. 3.1 Facebook fails to satisfy the owner privacy property
with implicit revocation and the server consistency property. Both problems can
be easily fixed by changing the Facebook implementation.

Facebook does not satisfy the owner privacy property with implicit revoca-
tion because when it accepts a protected resource request in which the access
token does not correspond to the user U , who owns the resources, but to another

3 We note that a similar issue was pointed out in [17] however without a formal
framework within which an attack can be described.
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Fig. 7. Attack against privacy with im-
plicit revocation (Sec. 3.1). Client C2

has access to the user’s U resources us-
ing an access token bound to another
user U ′.

Fig. 8. Attack against server consistency
(Sec. 3.1). Client C2 gains access to a user’s U
resources using another client’s access token.

user U ′, it grants the client C access to the intersection of the resources that
were prior to revocation visible by the client and accessible to U ′ while it ig-
nores U ′’s friends data permissions. This enables the application to access data
that otherwise — per Facebook’s public policy — should have been unavail-
able to it. In order to satisfy this property and continue to operate correctly,
Facebook should respond with the intersection of the user’s U resources that
U ′ can access and the friends data permissions that U ′ has given to the client
i.e., (oos ac[U,U ′] ∩ ocg ac[U ′, C]). In this way, the access token provides the
access to friends’ resources that the user it is bound to has authorized and it is
consistent with the expiration time.

Facebook does not satisfy the server consistency property because the binding
of access tokens to clients is not properly verified during the resource access
protocol. In order to solve this problem Facebook should verify the identity of
the client and compare it to the client id extracted from the token. There are
various ways to achieve that, as we will discuss below.

Facebook may provide the opportunity to clients to sign in as users do.
Facebook could verify that the client requesting access through an authenti-
cated session matches the recipient of the access token. In this way, the action
authenticate(·) with the proper client will be recorded in the server log.

Another way of identifying the client can be through its IP address. Clients
are obliged to register their domain, so without adding any overhead to the
clients, Facebook could check that the IP address, from which the request came,
is registered by the client who is bound to the access token. In this case, if the
IP address matches, the action authenticate(·) will be recorded to the log and
hence server consistency will hold.

A more sound method would be to bind the resource request to the identity of
the client cryptographically. This functionality is already used elsewhere in the
Facebook implementation, since a message authentication code, signed request,
is used by the Facebook server to prove to a client that a short-lived access token



Resource Access Control in the Facebook Model 193

came from it. In the same way a client can use its app secret to sign the access
token and a random value to ensure liveness (for instance current time) and then
send it to Facebook. As a result, Facebook will be able to verify the identity of
the client and in this way record the action authenticate(·) to its log.

The above description treats the client as an independent entity from the
user. Facebook provides also a second way to execute client code, which is by a
JavaScript SDK. In this way the client’s service runs on the user’s browser. This
complicates matters further since it would be precarious to include the client’s
app secret into the Javascript code (as this would reveal it to the user). In this
case, Facebook may restrict the scope of the access token to be used within the
session that was issued only. Note that this only partially solves the problem as
the attack can still be mounted if the attacking clients are running concurrently
by the same user, however it prohibits sharing tokens across sessions and hence
restricts the inconsistency that can be introduced by the adversary.

4 Conclusion

In this work we presented a security model for the problem of resource access
control in social networks. We focused on the setting of a trusted server and ex-
tracted the basic rules of access control as suggested by the operation of Facebook
(hence the use of the term the “Facebook model”). We abstracted the problem
of solving access control in this setting as the RACS problem. Via experimen-
tation we extracted the RACS implementation of Facebook and we performed
a security analysis of it with respect to our two security properties: owner pri-
vacy and server consistency. Our analysis revealed vulnerabilities of Facebook’s
implementation that we exploited. The resulting attacks we described rendered
the implementation deficient in terms of owner privacy and consistency. We also
suggested ways that these vulnerabilities can be (easily) patched.

To the best of our knowledge this is the first time that a security analysis
of how Facebook manages resource access control is attempted within a proper
security model. While the vulnerabilities of Facebook we discover can be easily
fixed, our work shows the value of analysis within a security model and can
enable future work in the security evaluation of other social networking sites
with respect to the problem of sharing resources securely. Our security model
can be extended easily to capture more complex access control relations as well
as consider a partially malicious server. We leave these directions as future work.
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A Definitions

A.1 Definitions of Privacy

Here we present the formal definition of owner privacy property with explicit
revocation.

Definition 1. Given a RACS implementation, consider an adversary A who
controls a set of owners O∗ and a set of clients C∗ and performs the following
actions:

1. follows an arbitrary course of actions using the sets of owners O∗ and clients
C∗ and is able to request from the challenger to execute any action on behalf
of honest owners and clients; these actions include all the actions of the
protocol as described in Sec. 2.

2. chooses an owner O /∈ O∗, j ∈ {1, ..., n} ∧ (j /∈ f∗) and provides data to fill
the resource vector r[O],

3. then provides two values v0 and v1 so that the challenger can choose b ∈ {0, 1}
at random and set (r[O])j to be vb. For the game to continue it should be
that the adversary has neither direct access, authorized by the owner, to the
resources stored in index j nor through other owners (but it may still have
the ability to access the rest of the resources of the owner O). Formally: (i)
j /∈ ocs ac[O,C], where C ∈ C∗, (ii) j /∈ oos ac[O,O′], where O′ ∈ O∗,
(iii) j /∈ (ocg ac[O′′, C] ∩ oos ac[O,O′′]), for any owner O′′,

4. continues playing the game by following an arbitrary course of actions in
order to produce b∗; the challenger responds to all its requests except for
those that trivialize its task, namely: (i) authorize client(O,C, fs, f), (C ∈
C∗) ∧ (j ∈ fs), (ii) authorize owner(O,O′, fo), where (O′ ∈ O∗) ∧ (j ∈ fo),
(iii) authorize client(O′′, C, f, fg), (j ∈ (fg ∩ oos ac[O,O′′])).

5. the output of the game GA is 1 iff “(b∗ = b)”.

The Explicit Revocation property states that for all PPT adversaries A, A
should not win the game GA with probability different than 1

2 plus something
negligible. Formally, for all PPT A, Pr[GA(1λ) = 1] = 1

2 + negl(λ).

Definition 2. Given a RACS implementation, consider an adversary A who
controls a set of owners O∗ and a set of clients C∗ and performs the following
actions:

1. follows an arbitrary course of actions using the sets of owners O∗ and clients
C∗ and is able to request from the challenger to execute any action on behalf
of honest owners and clients; these actions include all the actions of the
protocol as described in Sec. 2.

2. chooses an owner O /∈ O∗, j ∈ {1, ..., n} ∧ j /∈ f∗ and provides data to fill
the resource vector r[O],

3. provided that for all O′ ∈ O∗, j /∈oos ac[O,O′], it provides two values v0
and v1 after which point, when dt units of time after the last authorization
of any adversarial client or the last use of client’s services took place by O
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or any other owner connected to O with access to index j of O’s resource
vector, the challenger chooses b ∈ {0, 1} at random and sets (r[O])j to be vb.
After this point, the actions:
– use(O,C), where C ∈ C∗,
– authorize client(O,C, fs, fg), where (C ∈ C∗) ∧ (j ∈ fs),
– authorize owner(O,O′, fo), where (O′ ∈ O∗) ∧ (j ∈ fo),
– use(O′′, C), where (C ∈ C∗) ∧ (j ∈ (ocg ac[O′′, C] ∩ oos ac[O,O′′])),
– authorize client(O′′, C, fs, fg), where (C ∈ C∗)∧(j ∈ (fg∩oos ac[O,O′′])),

are not allowed for the rest of the game.
4. continues playing the game by following an arbitrary course of valid actions

(all actions of the protocol except from the ones in the previous step) using
the sets of owners O∗ and clients C∗, in order to produce b∗, (Fig. 2)

5. the output of the game GA is ’1’ when the event “(b∗ = b)” happens,

The Implicit Revocation property states that for all PPT adversaries A, A should
not win the game GA with probability different than 1

2 plus something negligible.
Formally, for all PPT A, Pr[GA(1λ) = 1] = 1

2 + negl(λ).

A.2 Definition of Pseudorandom Functions

Definition 3. A function, F : X → {0, 1}λ is called pseudorandom if for every
probabilistic polynomial-time oracle machine M and for all sufficiently large λ

|Pr[MF (1λ)]− Pr[MH(1λ)]| < εPRF < negl(λ)

where function H : X → {0, 1}λ is a random function.

B The Security and Correctness Properties That Hold

Theorem 1. Facebook’s implementation is correct as it was defined in Sec. 2.1.

Proof. We will prove that if the assumptions of the definition in Sec. 2.1 are true
and a client runs the “Client Access Resources Protocol”, then the client will
receive the requested resources and Facebook will record the appropriate action.
Suppose that f is the requested resources of U by client C and(

(f ⊆ ocs ac[U,C]) ∧ (server time < expt[U,C])
)
∨(

(f ⊆ (ocg ac[U ′, C] ∩ oos ac[U,U ′])) ∧ (server time < expt[U ′, C])
)

where U ′ is any other user. We distinguish the following cases:
f ⊆ f∗ - In this case C asks for public information that can be recovered by
anyone hence correctness holds.
f ⊃ f∗ and f ⊆ ocs ac[U,C] - In this case, C already possesses an access token
from U by executing the protocol in Fig. 3. Thus, when C runs the “Client
Access Resources Protocol” in Fig. 4 it will receive f(r[U ]) since (server time <
expt[U,C]) and the action access resources(U,C, f) will be recorded.



Resource Access Control in the Facebook Model 197

f ⊃ f∗ and f ⊆ ocg ac[U ′, C]∩oos ac[U,U ′]) - In this case, C already possesses
an access token from U ′ authorizing to access the resources of U defined by
f . Running the protocol in Fig. 5 it will receive f(r[U ]) since server time <
expt[U ′, C] and the action access resources(U,C, f) will be recorded. �

Owner Privacy with Explicit Revocation

Theorem 2. Facebook satisfies the owner privacy property with explicit revo-
cation (Sec. 2.1) under the access token pseudorandomness assumption and the
assumption that the adversary cannot obtain an access token through any other
means4 (e.g., by hacking another client).

Proof. Access Token Pseudorandomness Assumption. We will assume that the
functions longTokenGenerator(U,C, origin, session) and shortTokenGenerator(U,
C, u session, exp, origin) are pseudorandom. Informally, a pseudorandom func-
tion is a function which cannot be distinguished from a truly random function
by any efficient procedure which can get the value of the function at arguments
of its choice. Hence, the distinguishing procedure may query the function being
examined at various points, depending possibly on previous answers obtained,
and yet cannot tell whether the answers were supplied by a pseudorandom func-
tion or by a random function (see Definition 3 in the appendix). We will assume
that there is a PPT adversary A, as described in Sec. 2.1, and we define WINA

the event “(b = b∗)”. Let us first assume that the functions are random. Then
we construct an algorithm B (Fig. 9) who will simulate the user U and Facebook
in the game (as described in Sec. 2.1) to the adversary A. B answers all requests
from A but it does not authorize it to gain access to index j of the user’s resource
vector. Additionally, if requested, B can authorize clients that are not controlled
by A to access the target resource.

The event D, which represents that A found a token that grants access to the
target resource, is defined in the environment created by B.

Pr[WINA] = Pr[WINA|D] ∗ Pr[D] + Pr[WINA|D̄] ∗ Pr[D̄]

The event WINA|D̄ means that A did not find the user’s access token (long-
lived or short-lived), so it does not have access to the user’s resources and the
way it chooses between ’0’ and ’1’ is arbitrary. Due to the fact that algorithm
B chooses b uniformly over {0, 1} the probability is 1

2 . Pr[WINA|D] is less or
equal 1 from the definition of probability. So:

Pr[WINA] ≤ Pr[D] +
1

2
∗ Pr[D̄]⇒ Pr[WINA] ≤ 1

2
+

Pr[D]

2

If A asks B to authorize q clients that are not controlled by it to access index
j of U ’s protected resources, then B will have to generate q access tokens that

4 In order to prove that the implementation satisfies the owner privacy property with
explicit revocation we are going to assume that a PPT adversary A has negligible
probability to find a long-lived or a short-lived access token that was produced by
Facebook and was not given to it.
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will grant access to the target resource. The probability of A to guess a specific
token is 1

2λ
, assuming that the count of all possible long-lived and short-lived

access tokens is 2λ. Consequently, Pr[D] is q
2λ and the probability of A winning

the game is: Pr[WINA] ≤ 1
2 + q

2λ+1 . Finally, if we add the cost of the PRF to
this probability, we have:

Pr[WINA] ≤ 1

2
+

q

2λ+1
+ εPRF

Since q
2λ+1 + εPRF is negligible, A cannot win the game with significant prob-

ability and owner privacy property with explicit revocation is proven under the
access token pseudorandomness assumption. �

Fig. 9. Algorithm B simulates Facebook S and user U to the adversary A (part of
proof of theorem 2)
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Abstract. Mobile devices, such as smartphones and tablets, offer a wide
variety of important services to everyday users. Many of these services
(such as NFC payments) are highly sensitive and can be abused by ma-
licious entities, without the knowledge of the device user, in the form
of insider attacks (such as malware) and/or outsider attacks (such as
unauthorized reading and relay attacks).

In this paper, we present a novel application permission granting ap-
proach that can be used to protect any sensitive mobile device service. It
captures user’s intent to access the service via a lightweight hand waving
gesture. This gesture is very simple, quick and intuitive for the user, but
would be very hard for the attacker to exhibit without user’s knowledge.
We present the design and implementation of a hand waving gesture
recognition mechanism using an ambient light sensor, already available
on most mobile devices. We integrate this gesture with the phone dialing
service as a specific use case to address the problem of malware that
makes premium rate phone calls. We also report on our experiments to
analyze the performance of our approach both in benign and adversarial
settings. Our results indicate the approach to be quite effective in pre-
venting the misuse of sensitive resources while imposing only minimal
user burden.

1 Introduction

The deployment and usage of mobile devices, such as smartphones and tablets, is
continuously rising. These devices open up immense opportunities for everyday
users offering valuable resources and services. In addition to traditional capa-
bilities, such as voice calling, SMS and web browsing, many smartphones come
equipped with the NFC (Near Field Communication) functionality, a form of
RFID (Radio Frequency IDentification). An NFC phone can be used as a RFID
contactless payment token, such as a credit or an ATM card. It can also be used
as an RFID reader that can “read” other RFID cards or NFC phones in close
physical proximity. NFC equipped devices, such as Samsung Galaxy Nexus and
Nexus 7 are already in the US market. All these different features on modern
mobile devices have attracted not only millions of consumers to smartphones
and tablets but have also motivated the developers to write varieties of apps
for these devices, such as the Google Wallet app for NFC-based payment using
Android phones.
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1.1 Security and Privacy Threats

Due to the increasing popularity of mobile devices, they have become a prime
target of malicious attackers and cyber criminals. In particular, such malicious
entities attempt to misuse the sensitive services provided by these devices. For
example, they might be interested in making free (premium rate) phone calls or
sending free SMS using a legitimate user’s phone, or want to make NFC payments
which will be charged to the user’s account. Specifically, two major threats exist
that form the primary focus of this paper: (1) the insider attacks in the form of
malware, and (2) the outsider attacks in the form of NFC unauthorized reading,
as explained below.

Mobile Device Malware: There has been a rapid increase in mobile device
malware targeting different smartphone platforms [15, 17, 16, 7, 33, 22, 28, 30].
This is made possible especially because users often download applications from
untrusted sources, many of which may contain hidden malicious code. Such mal-
ware, once installed on the smartphone, can exploit the smartphones in many
different ways. For example, the malware can use the resources/sensors of the
phone to learn something sensitive about the user, such as it can use the camera
and take the pictures of the user and surrounding, or it can make premium rate
phone calls or send premium rate SMS messages without user’s knowledge, or
use NFC reader to skim for physical credit cards in close proximity. Indeed, a
proof-of-concept Trojan Horse electronic pickpocket program under the cover of
a tic-tac-toe game has already been developed by Identity Stronghold [2].

Unfortunately, current operating systems (e.g., Android and iOS) provide in-
adequate security against these malware attacks. For granting permission to an
application requiring access to the resources, these operating systems either re-
quire out-of-context, uninformed decisions at the time of installation via manifest
[3, 32] or prompt users to determine their interest via system prompt [29, 32].
This approach relies upon user diligence and awareness – it is well-known that
most users do not pay attention to such “Yes/No” prompts and frequently just
select “Yes” so as to proceed with the installation. Once granted the permission,
applications have full authority over the resources and can access them without
owner’s consent. In addition to relying upon user permission, application review
process is also undertaken. However, review process has failed in the past [40, 23],
and users gaining the root permission/ jail-breaking the phone can easily install
the third party applications which may not have been reviewed [40, 23].

NFC Unauthorized Reading and Relay Attacks: The NFC (tag) chip
on a smartphone stores sensitive information. In particular, it stores the credit
card number and other relevant information. Such an information can easily
be subject to clandestine eavesdropping. For example, an adversary with an
NFC reader can walk past a victim carrying an NFC phone, and can read the
credit card information stored on the NFC chip. This clearly allows for fraud or
illegitimate purchases for which the owner will be charged. It can also lead to
owner tracking and privacy problems [1]. This information may also be used to
impersonate an NFC device via cloning [1].
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Furthermore, similar to RFID tags, NFC devices are susceptible to “ghost-
and-leech” relay attacks [42]. Here an adversary, called a “ghost,” relays the
information surreptitiously read from a legitimate RFID device to another col-
luding adversary, called a “leech.” The leech transmits this information to a
legitimate reader and vice versa, and can thus impersonate the RFID tag. All
cryptographic authentication protocols are vulnerable to this form of an attack
[18].

1.2 Controlling Access via Intuitive Gestures

In this paper, we set out to defend against the aforementioned insider attacks
(malware) and outsider attacks (unauthorized reading and relay attacks) against
critical mobile device services. We observe that all these attacks, in order to
remain stealthy, occur in scenarios where the device user has no intention to
access the underlying services. Thus, if the user’s intent to access the services
can be captured in some way, these attacks could be prevented. We propose to
elicit user’s intent via simple gestures performed by the user prior to accessing
the services. In other words, whenever the user wants to access the service, she
will simply perform a particular gesture. On the other hand, if the attacker
attempts to access the service, the gesture will be missing and the access request
will be blocked. This general idea was first introduced in a recent (short) paper
[27] limited to address the specific problem of NFC malware-based attacks. In the
current paper, we extend the scope of the approach to cover NFC unauthorized
reading and relay attacks as well as introduce novel gesture recognition schemes
for malware-based attacks against any sensitive service.

Access control using a simple gesture has significant usability advantages when
compared to typing in a complex password, which are often forgotten, and has
significant security advantages over using nothing at all. The approach is also
more secure than using a “Yes/No” dialog box, given that most users are already
habituated to pressing “Yes” when prompted. Hand waving gesture is only one
of the gestures for human-enabled authorization of actions, and there can be a
number of gestures in the future, which when used carefully can overcome the
problem of habituation of pressing “Yes.” Moreover, a Yes/No dialog box will
require the user to explicitly press a button when an application requires access
to a resource while the user is performing another activity on the device. The
gesture-based approach, on the other hand, would not require a user interface,
but rather the user can just be prompted using a “Toast” mechanism, available
for example in Android, or notified using a notification bar.

1.3 Our Contributions

We propose how a gesture-based mechanism can be used to elevate the permis-
sion for applications which require access to critical mobile device resources and
services (see Figure 2). The main contributions of this paper are summarized as
follows.
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1. We propose a novel approach to malware defense for mobile devices based
on intuitive gesture recognition. Specifically, we suggest a new lightweight
hand waving gesture that utilizes the ambient light sensor and accelerometer,
ubiquitously available on smartphones and tablets.

2. We also introduce the use of the waving gesture for the purpose of selec-
tive unlocking for NFC/RFID tag. Instead of promiscuously providing the
information to any reader, we argue for a model which only approves the
permission to read the tag’s information once the gesture is detected.

3. We report on the implementation of our prototypes for the wave gesture
recognition scheme on the Android platform. As a specific use case for de-
fending against malware that makes premium rate phone calls, we integrate
this gesture recognition scheme with the phone’s voice dialing service. The
resulting app requires the user to perform the wave gesture before making a
phone call (or a phone call to a premium rate number) .

4. To evaluate our approach, we conduct many experiments simulating the
behavior of malicious attacker and normal user usage activity. Our results
demonstrate the waving gesture to be quite effective in protecting critical
mobile device services without imposing much burden on the user.

2 Related Work

2.1 Malware Detection and Prevention

There is a plenty of prior work on defending against malware on traditional
desktop computers. Static analysis[10, 38, 36], also known as signature-based
detection, is based on source or binary code inspection to find suspicious patterns
(malware) inside the code. However, malware authors can evade this analysis by
simple obfuscation, polymorphism and packing techniques. Also it cannot detect
zero day attacks. Dynamic analysis[14, 39, 5, 41], also known as behavior-based
detection, monitors and compares the running behavior of an application (e.g.,
system calls, file accesses, API calls) against malicious and/or normal behavior
profiles through the use of machine learning techniques. It is more resilient to
polymorphic worms and code obfuscation and has the potential to defeat zero-
day worms.

These techniques for desktop computers are still considered too time consum-
ing for resource-constrained mobile devices operated on battery. Most existing
research focuses on optimizing desktop solutions to fit on mobile devices. The
work of [38] tries to speed up the signature lookup process in static analysis by
using hashes. Several collaborative analysis techniques have been proposed to
distribute the work of analysis by a network of devices [34, 37]. Remote server
assisted analysis techniques have also been proposed to reduce the overhead of
computation on individual devices [9, 6].

2.2 Gesture Recognition and Security

Gesture recognition has been extensively studied to support spontaneous inter-
actions with consumer electronics and mobile devices in the context of pervasive
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computing [4, 8, 25]. Due to the uniqueness of gestures to different users, per-
sonalized gestures have been used for various security purposes.

Gesture recognition has been used for user authentication to address the prob-
lem of misuse of stolen devices [19, 11]. In [19], a mobile device gets unlocked for
use when it detects the gait (walking pattern) of the legitimate owner. In [11],
a smartphone gets locked when it does not detect the “picking-up phone” ges-
ture which the owner naturally performs to answer a phone. Both works provide
transparent user authentication and do not require explicit user involvement.
[26] reports a series of user studies that evaluate the feasibility and usability
of light-weight user authentication based on gesture recognition using a single
tri-axis accelerometer.

Related to our work, gesture recognition has also been suggested to defend
against unauthorized reading and ghost-and-leech relay attacks in RFID systems
[12, 21]. The secret handshakes scheme proposed in [12] allows an RFID tag to
respond to reader query selectively when the tag owner moves the tag in a
certain pattern (i.e., secret handshake). In contrast to our hand waving gesture
recognition, secret handshakes requires a pre-stored template, and the underlying
gestures themselves may not be very intuitive for the user. The work of [21] uses
posture as a valid context to unlock an implanted RFID device without changing
the underlying user usage model. This approach, however, can have high false
positive rate in practice and is not applicable in the context of mobile devices
that are not implanted.

The use of unique key press gestures or secure attention sequences (SASs),
such as CTRL-ALT-DEL, may also serve as a means to defend against malware
and unauthorized reading attacks. However, we are not aware of SASs being
currently used on mobile phones. SASs need to be unique and usually require
multiple key presses simultaneously (e.g., CTRL-ALT-DEL). Such sequences will
be very hard for the user to perform on phones. The hand waving gesture pro-
posed in our paper can be viewed as a form of novel and user-friendly SAS
suitable for phones.

Recently published paper [20] is also relevant to our work. Like ours, it fo-
cuses on the hand-wave gesture but utilizes reflected sound waves instead of
light. Specifically, it applies “Doppler Effect” to sense hand waving gestures. It
uses speaker to generate inaudible sound waves and microphone to receive the re-
flected frequency-shifted wave. The approach involves calculating the frequency
of the received signal to infer various gestures such hand wave, double-tap, and
two-handed seesaw movements. Based on these “in-air” gestures, the paper sug-
gests different non-security use cases and applications. It might be possible to
use this gesture recognition scheme for the purpose of protecting sensitive mobile
device services. However, there are a few caveats. First, an adversary can send
inaudible sound waves to a victim’s smartphone with varying frequency so as to
mimic one of the gestures. This will undermine the security of this scheme. Sec-
ond, the sound wave generated by the speaker can be annoying for children and
pets who can hear the high frequency sound waves. Furthermore, compared to
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our gesture recognition mechanism, this approach is computationally-intensive,
and power-exhaustive, for mobile phones.

3 Threat Model and Design Goals

3.1 Threat Model

In our security model, we consider both insider attacks and outsider attacks
against mobile devices. In the context of an insider attack, the attacker is as-
sumed to be a malicious application or malware. We assume that attackers use
malware to access sensitive services (such as phone call, SMS, NFC, or GPS)
for various malicious intentions. The malware can be hidden in a normal ap-
plication. Malware can spread through various paths to the phone via various
communication channels such as Bluetooth, WiFi, and GSM. We assume that
the malware has already been downloaded and installed on the phone without
any user suspicion. This can happen, for instance, when a user downloads an
application from an untrustworthy source that looks like a game but contains
malicious code. How to prevent malware from being installed on the phone is
beyond the scope of our model.

In the context of an outsider attack against the NFC service running on a
mobile device, the attacker is a device that can read the contents stored on
the NFC chip and can later use this information for illegitimate purposes. The
attacker could also constitute two colluding entities who can launch a ghost-and-
leech attack against NFC.

We assume the mobile device OS kernel itself is healthy and immune to mal-
ware infection; hardening the kernel is an orthogonal problem [35, 31]. So the
malware is not able to maliciously alter the kernel control flow. The malware is
not able to alter data values of on-board sensors too. Otherwise, the malware can
supply fake sensor data to escape detection. However, the action from malware
is neither human triggered nor can it maliciously alter the kernel control flow.

We assume the attacker may be physically near the user. The attacker is
unable to persuade the user to perform the gesture to access a particular service.
However, she may coerce/fool the user into moving a particular manner with a
hope that such movement can generate similar motion as a valid gesture. We
do not, however, allow this attacker to have physical access to the phone. That
is, if the attacker has physical access to the phone, then he can lock/unlock
a resource just like the phone’s user. In other words, our mechanisms are not
meant for user authentication and do not provide protection in the face of loss
or theft of phone.

3.2 Design Goals

For our security approach to be useful in practice, it must satisfy the following
properties:
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– The approach should be lightweight in terms of the various resources avail-
able on the phone, such as memory, computation and battery power. A
biometrics-based approach does not satisfy our goal as it is not lightweight
and can be time-consuming [24].

– The approach should incur little delay. Otherwise, it can affect the overall
usability of the system. We believe that no more than a few seconds should
be spent executing the approach.

– The approach should be tolerant to errors. Both the False Negative Rate
(FNR) and False Positive Rate (FPR) should be quite low. A low FNR
means that a user would, with a high probability, be able to execute an
application (which accesses some sensitive services) without being rejected.
Low FNR also implies a better usability. On the other hand, low FPR means
that there should be a little probability to grant access to a sensitive service
when a user does not intend to do so. Low FPR clearly implies a little chance
for malicious entity to evade detection.

– The solution should require little changes to the usage model of existing
smartphone applications. An intuitive gesture should be required from the
user that may involve simple hand movements defined by that gesture. In
this case, only minor changes to the adopted usage model will be imposed.

4 Hand Wave Detection

The primary sensor that we use to detect the hand waving gesture is an ambient
light sensor, commonly available on smartphones and tablets.1 A light sensor
measures the intensity of ambient light. The light intensity is measured in lux
which defines how bright or dark the surrounding environment is. The primary
reason the light sensors are deployed on smartphones, and tablets and laptops,
is for prolonging battery life. The brightness of the screen display of the phone is
adjusted according to the intensity of the surrounding light measured by the light
sensor. For example, in a dark environment, the display is dimmed which helps
reduce the battery consumption. This is the reason the light sensor is located
in the front of the mobile phone at the top of its display (see Figure 1). This is
true for most, if not all, smartphones and tablets, including the Androids and
iPhones. We note that this is a property that we carefully leverage in developing
our waving gesture mechanism aimed at improving the security of mobile phones.
Specifically, our gesture interfaces with the light sensor, and due to the location
of the light sensor, it does not interfere with the gestures made by the user
while interacting with the device’s (touch screen) display, thereby significantly
reducing the False Positive Rate (FPR).

In order to utilize the light sensor for our purpose, we needed a human gesture
that can “trigger” the sensor in some way and is not likely to be exhibited
in daily activities. We chose waving (depicted in Figure 2) as a simple and a
convenient gesture mechanism since it can be easily executed by a human user

1 A proximity sensor may also be used to detect a hand wave as suggested in [27], but
tablets do not commonly come equipped with this sensor.
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Fig. 1. Location of the Light Sen-
sor (Samsung Galaxy Nexus)

Fig. 2. Permission Granting via a Hand
Waving Gesture. In order to access a sensi-
tive service, the user is asked to simply wave
her hand in front of the phone; this unlocks the
service for use. A malicious application, in con-
trast, would fail to exhibit such a gesture and
will not be able to access the service.

and easily detected by a smartphone. The algorithm to detect quick fluctuations
in the reading of the light sensor is very simple and straightforward, and, unlike
many other gesture recognition algorithms, do not even need any pre-established
templates. This makes our approach extremely lightweight, satisfying one of our
design goals (Section 3.2).

To detect the hand wave gesture, whenever there is a change in reading from
the light sensors, we record the light sensor readings along with their respective
timestamps. We then analyze this light data and time recorded to determine
the fluctuation in the light intensity. If the light value fluctuates beyond a given
threshold for certain number of times within an allocated time, then we consider
such fluctuations in light values as being triggered by the hand wave gesture.
The threshold to determine if the light has fluctuated depends upon the current
ambient light intensity. When it is dark, i.e, the ambient light intensity is below
200 lux, then using a threshold of 20 lux is optimal to detect the fluctuation as
per our measurements. However, when ambient light is around 60,000 lux, i.e,
in the presence of bright sunlight, optimum value of threshold is around 15,000
lux.

We used eight different thresholds for eight different ranges of light intensity to
accurately determine the wave gesture.2 For the analysis of fluctuation, we used
certain number of light readings WINDOW SIZE FOR LIGHT (16). If we
detect the change in light intensity beyond the LIGHT THRESHOLD (20 –
15,000 lux), then we add up the light change count (extremaCount). After analy-
sis ofWINDOW SIZE FOR LIGHT readings of data, if the light change count
is greater than CHANGE COUNT FOR LIGHT (6) and all the light under
analysis is within WAV E TIME LIMIT FOR LIGHT (2 seconds; the max-
imum duration for the hand wave gesture), then we determine it as a wave ges-
ture. However, sometimes environmental effects may trigger the light sensors to

2 All the thresholds and range bucketswere determined through active experimentation.
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Algorithm 1. Wave Detection using Light Sensor (and Accelerometer)

1: IF sensors are locked THEN wait for MOV EMENT LOCK TIME
ELSE get accelerometer sensor readings x, y and z.

2: IF √
x2 ∗ y2 ∗ z2 > ACC THRESHOLD

THEN lock the sensors for MOV EMENT LOCK TIME and RETURN to step
1.

3: IF sensors are not locked THEN get light sensors reading to check if wave gesture
is detected.

1. Analyze WINDOW SIZE FOR LIGHT data to find out how many ex-
tremas (maximas and minimas) were there using LIGHT THRESHOLD.

2. IF extremaCount > CHANGE COUNT FOR LIGHT AND All the light
data are recorded within WAVE TIME LIMIT FOR LIGHT THEN
SET unlockAttempted = true,
RECORD first unlock attempted time
DISPLAYMessage “StopWaving” forWAVE TIME LIMIT FOR LIGHT .

3. IF unlockAttempted THEN

(a) IF another unlockAttempt is obtained within less than
WAVE TIME LIMIT FOR LIGHT THEN Do not unlock, reset
everything and start over, i.e., return to Step 2.

(b) IF another unlockattempt is not obtained within
WAVE TIME LIMIT FOR LIGHT THEN Unlock the phone
for UNLOCK TIME FRAME.

detect it as wave gestures. So instead of unlocking the phone straightaway (i.e.,
allowing access to the requested service), we delay the unlock for certain time
WAV E TIME LIMIT FOR LIGHT . If no gesture is detectedwithin this time-
frame, then we unlock the phone for certain time UNLOCK TIME FRAME (1
second).

In our scheme, the light sensor data is used in conjunction with the accelerom-
eter data to detect the wave gesture. The accelerometer sensor is used for the
purpose of reducing FPRs. Whenever the phone is moved, there will be a relative
change in the position of the phone with respect to the light source triggering a
change in light intensity. This will in turn be detected as a wave gesture, leading
to a high FPR (since the user did not wave in front of the phone). In order to
reduce this effect, if the phone detects movement, greater than a certain thresh-
old (ACC THRESHOLD), as per the accelerometer data, it does not register
it as a hand wave gesture; further it locks the light sensor as well. Thus, when
an application requests for the permission to access the resource/service, the
algorithm will first check if the sensors are locked. If the sensors are locked, then
the algorithm will wait for certain time (MOV EMENT LOCK TIME) before
it starts reading the light and accelerometer signal again. Note that when the
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algorithm is first executed, both sensors are active, and the corresponding data is
read. A detailed pseudocode for this simple procedure is outlined as
Algorithm 1.

5 Implementation and Evaluation

5.1 Test Prototype: Wave-to-Call

To evaluate the feasibility of the wave gesture detection mechanism, we devel-
oped our prototype in Android Operating System using Motorola Droid X2. The
project build target was chosen for Android 2.3.3 platform or above using API
level 10. A simple UI was created to emulate the unlocking of a service using the
hand waving gesture. The goal of the prototype was to add a layer of security
to Android permission model where user needs to provide a gesture to use a
resource/service. In our prototype, we specifically asked user to wave their hand
in front of the phone as a gesture to make an outgoing call. If the gesture is not
received within 10 seconds, the application will not allow a call.

We created a service that intercepts all the outgoing calls and two activities,
one for turning on/off the service and another for receiving the wave gesture.
When the service is turned on, whenever there is an intent to make a phone call,
our service will intercept that intent and start the activity to receive the gesture.
This activity turns the sensors on and reads the sensor value to analyze it using
our gesture recognition algorithm (Algorithm 1). If the readings from the sensor
satisfy the algorithm, then it will return true and provides an approval token to
make a call. If the sensor data does not satisfy the algorithm within certain time
duration, then the service will shut down the activity waiting for gesture along
with the sensors, i.e., sensors are only activated whenever there is an intent to
use a service and not all the time. These steps while making a call are shown in
Figure 3.

The service to intercept outgoing calls is turned on when user sets his prefer-
ence via one of the activities mentioned above. However, the service must also
be turned on when the device boots up from being shutdown. We utilized the
BroadcastReceiver from Android SDK for this purpose. This is explained in
Figure 4.

Our approach does not involve any modification to the Android OS, rather we
created an application with about 500 lines of Java Code to turn on the service
as well as intercept the intent and make a call. Adding another intent intercept
will require few additional lines of code. Android OS provides limited number of
intents that we can intercept. Available intents can be found in [13].

5.2 Hand Wave Detection Experiments and Results

In this section, we report on the evaluation of our hand wave gesture recognition
scheme. This scheme is designed to protect against the malware and other mali-
cious entities trying to access phone’s resources or services without user aware-
ness. We conducted several experiments to evaluate our prototype implementing
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Fig. 3. Process while making a call

Fig. 4. Turning the service on/off. Ser-
vice can either be turned on by user via set-
ting up the preference or when the device
boots up after checking the user preference

the hand-wave detection mechanism. The goal of our tests was to primarily esti-
mate the error rates, i.e., FNR and FPR. A summary of our experimental results
is depicted in Table 1, and the details are explained below.

FNR Experiments: In order to determine the FNR, one of the authors at-
tempted to unlock the phone himself using the hand waving gesture. Out of
forty trials performed, the user failed to unlock the device only 3 times. Most of
these failures occurred when the user tried to wave the hand far away from the
phone (farther than 30 cm), resulting in an average recognition rate of 92.5%
(or FNR of 7.5%).

Since multiple trials may have trained this user significantly, likely leading to a
bias, we further conducted our tests with multiple other users. These volunteers
were drawn from our Department (Computer Science) and were mostly students
at undergraduate and graduate levels. The users were first explained the purpose
of the study and then demonstrated the gestures using which they were to unlock
a service on the phone. The users were specified the location of the light sensor
on the phone. Although in real life, users may not be aware of the location of
the light sensor, they can be easily provided with this information using a simple
interface. For example, an arrow pointer could be provided on the screen which
points to the light sensor, and user could be asked to execute the wave gesture
accordingly.

A total of 20 volunteers participated in our study. Each of them was requested
to perform the hand waving based unlocking procedure 10 times and the results
were recorded automatically by our program. The resulting average recognition
rate observed was 90.5% (181/200; FNR of 9.5%). Most of these FNR occurred
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Table 1. Recognition Rates for Hand Waving Detection. White cells: hand
waving attempts correctly detected as hand waving; Gray cells: other activities falsely
detected as hand waving

when there was less ambient light. When the light intensity was greater than
700 lux, recognition rate was observed to be 95.71% (67/70) whereas when it
was between 350 lux and 700 lux, the rate was 87% (87/100), and when it was
lower than 350 lux, it was observed to be 83.3% (35/40).

In general, these error rates can be deemed to be fairly low and are in line
with prior research on gesture recognition (e.g., [12, 21]). We expect them to
further reduce significantly as users become more and more familiar with the
hand waving gesture.

FPR Experiments: Next, we set out to evaluate the likelihood of false un-
locking under different activities. These activities might be just routine user
activities, or activities coerced by a nearby attacker. The experimenter con-
ducted several tests emulating different user activities that have the potential of
triggering the light sensor fluctuations. The phone recorded the number of times
it has been unlocked, i.e., when the activity is recognized as a wave gesture by
our algorithm, out of a total number of registered light fluctuations.

First, to simulate a walking activity, the mobile phone was stowed in a back-
pack and the experimenter, carrying the backpack on the shoulders, walked
around for 20 minutes. No unlocking events occurred in this case, although 155
light fluctuations were observed. This experiment was repeated at a later point
of time, but the phone was held in hand emulating the reading of text messages
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while walking (for 20 minutes). This time, the phone was unlocked 4 times, out
of 5138 light fluctuations, leading to an FPR of 0.08%. The phone was unlocked
when sunlight was coming from behind and shadow from the moving shoulder
was partially obstructing the phone. We further continued this walking experi-
ment for a duration of another 20 minutes but this time the phone was kept in
a pocket. No unlocking events occurred even in this case.

To verify if the phone will get unlocked when it is carried by its owner inside
a car, the phone was first kept on the passenger seat of a car, while the car was
driven. The phone did not get unlocked in this scenario. Next, the phone was
placed on the dashboard of the car underneath the windshield and the car was
driven around for one hour. In this case, we noticed that the phone got unlocked
14 times out of a total of 9053 light reading changes, which yields an FPR of
0.15%. Note that once the car moves at a constant speed, the accelerometer
reading will not change significantly, allowing the light sensor to detect the wave
gesture. Although not frequent, in general, we can see a potential for the phone to
get unlocked when there is bright light from windshield coming onto the phone,
while the car passes beneath a tree. The phone was further carried in the car in
the same way as above in dark (i.e. light intensity below 300 lux) for 5 minutes,
but, as expected, no unlocking was observed.

Next, the phone was treated as a user’s own phone for about one day (20
hours). Different routine activities were performed during this experiment, such
as walking with the phone in pocket, going upstairs/downstairs, and sending
messages and making/taking calls. The phone was also placed on a desk alongside
the user’s laptop. Only 1 unlock was registered in this case, out of a total of 8729
changes in the light values. This suggests that normal usage of the phone will
only have a little likelihood of unlocking.

Another experiment was conducted to see if a bright and dynamic light source,
such as a Television, can trigger the phone’s unlocking. Here, the phone was
placed in front of a Television, 6ft away from it, while watching a program for 1
hour. In this case, we found that the phone got unlocked 3 times, out of a total
of 449 light fluctuation events, equivalent to an FPR of 0.67%. Interestingly,
we also noticed that such event occurs only if the surrounding is dark enough
such that the threshold is low enough for the TV to fluctuate the light intensity.
Also, to unlock, the TV screen must display a bright light and flicker quickly.
Extending this general experiment further, the phone was also carried to a movie
theater, where it was kept outside the user’s pocket while the user watched a 2
hour long movie. In this case, interestingly, no unlocking was registered.

A similar experiment was conducted using a computer monitor. Here again,
we held the phone in front of a flickering monitor. We flickered the monitor with
different frequencies. The phone got unlocked twice, out of 623 light change
events (FPR of 0.32%), when the monitor was flickering with a frequency of 10
times/second. It unlocked thrice when the frequency was 5 times/second (633
light changes; FPR 0.47%), and five times when time interval for flickering rate
was 3.3 times/second (435 light changes; FPR 1.15%). When the frequency of
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flickering was reduced, it could not unlock the phone since time interval exceeded
WAV E TIME LIMIT FOR LIGHT .

To trigger sudden fluctuations to the light sensor readings, we next conducted
a “drop and fall” test. This mimicked a situation where the phone accidentally
drops on, or is thrown at, a surface. Clearly, we could not just drop or throw our
test device on the floor to avoid damaging it. To do this meaningfully, therefore,
we first threw our test device on a bed from a height of around 1 meter. Number
of trials of this test were performed for two minutes. Phone was thrown straight
to the bed as well as rolled over so that there is change in the relative position
of the light source. No unlocking events were recorded over this set of tests since
the change in accelerometer readings was large enough to even trigger the light
reading detection.

We also conducted tests to simulate a nearby adversary who may (deliber-
ately) try to change the surrounding ambient light and unlock the phone. Al-
though, this may create suspicion, we simulated such a scenario as the attacker
would have a high incentive to exploit. For example, the attacker can flicker
lights in a building which may enable all malware-infected mobile devices in
that building to access the phone’s resources. To do this, the light was turned
on and off in the evening when the primary source of light was the fluorescent
lamps. When the light was switched on/off slowly, i.e., 30 times per min, it
did not unlock the phone. However, when the light was turned on/off 40 times
per min, it unlocked the phone twice, out of a total of 408 light change events,
leading to a FPR of 0.49%.

Finally, we analyzed a scenario where the user would be playing a game on
her smartphone. We were interested in finding out the likelihood of unlocking
the phone by hand movements which may trigger the light sensor fluctuation
mimicking hand waving. We emulated the game play activity on the phone under
portrait and landscape orientations. When the phone was held in portrait mode,
fingers are far away from the light sensor and may not trigger the light sensor.
However, when the phone is held in either of the landscape orientations using
two hands, fingers plays a vital role in light sensor readings. The game playing
activity was mimicked by our experimenter for two minutes. It unlocked the
phone four times in each landscape orientation (out of 911 and 925 light changes;
FPR of 0.44% and 0.45%), and twice in portrait (out of 871 light changes; FPR
of 0.23%). Indeed, this confirmed our hypothesis that game play under portrait
mode is less likely to unlock the phone than under landscape modes.

6 Discussion

Overall, our experiment results in previous section show that hand waving can be
effectively used to infer the “right” human activity in order to unlock the use of
sensitive services/resources on smartphones, thus preventing unauthorized and
stealthy access by malicious entities. The low FNR (less than 10%) and short
delay (up to 2 seconds) demonstrate the usability of our approach. Note that, in
practice, the user will be given up to 3 attempts to perform the gesture correctly,
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which would mean that the effective FNR will be nearly 0%, and it will still
take only a few seconds to perform the gestures. We believe that the FNR can
be further reduced as users become more and more familiar with the underlying
gesture. The low FPR (less than 1% in most cases), on the other hand, shows that
our approach will provide a high degree of security in practice. Although there
exists some potential for unlocking the phone (e.g., while the user is watching
a TV or riding a car), the likelihood is extremely low. Moreover, it will be very
hard for the malicious attacker to constantly wait for, and synchronize with,
scenarios in which unlocking is possible, further confirming the robustness of
our approach.

In the rest of this section, we further analyze and interpret the performance of
our hand waving gesture recognition scheme, and discuss other relevant aspects.

Ease of Use and Convenience: Hand waving is a gesture that captures users’
intent to access a mobile device service. It simply requires user to perform a sim-
ple hand movement to unlock a desired service/resource. This does require an
extra user effort to access a service. However, hand wave gesture is quite intuitive
and can be easily performed unlike traditional passwords and PINs which user
has to memorize and input diligently, and add an extra burden when the user
forgets them. Certainly, passwords and PINs are more secure compared to ges-
tures, but we are, in this work, concerned about protection against the malware
and unauthorized reading attacks rather than against theft and unauthorized
usage by other person. The explicit gesture is a minimal cost required to add
security against such attacks. We believe that the hand waving gesture is as easy
as a ”finger-swiping” gesture commonly deployed on many smartphones.

The hand wave gesture is user-independent as shown by our experiment re-
sults. That means, the service/phone can be shared by multiple users without
registering his/her own template. In fact, there is no template employed in this
scheme and there is no need to train the device. This scheme therefore offers a
high level of convenience to the users, and might be easily adoptable. A men-
tioned above, it does not prevent unauthorized use of such service when the
phone is stolen. However, allowing the user to change the threshold and wave
time limit parameters are future modifications to personalize and detect the
wave gesture accurately for a specific device owner.

Battery Consumption and Efficiency: Another important issue to cover
in our work is the power consumed by the sensors while trying to capture the
user gesture. Since the battery-life is one of the most important factors to be
considered for user’s day to day activity, our design needs to be battery-friendly.

The waving gesture proposed by our design is very short (up to 2 seconds).
When there is a request for the sensitive service/resource which requires users
gestures, only then the sensors will be turned on and the gesture detection
algorithm will be executed. Once the kernel captures the required gesture, the
permission will be granted to the active application and sensor will be turned
off. If kernel fails to capture the gesture for certain duration, the sensor will be
turned off and application will be denied to use the resources.
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For the sake of our experiments, we have turned on the sensor all the time.
This was done so as to determine the FPRs, i.e., to calculate the rate at which
the algorithm will fail to provide security.

Effect of Light: Since we are using the light sensor, the ambient light plays a
crucial role in the detection of hand wave gesture. We can see from our experi-
ment that, as the surrounding light intensity decreased, the FNR increased. As
soon as the light intensity drops below a certain level, the hand wave gesture
will not be able to alter the light intensity even by a minimum threshold. Hence,
when it is completely dark, our hand wave detection will not work. This situa-
tion can be remedied by resorting to a more complex touch screen gesture from
the user, such as tapping on the screen a few times in succession, whenever the
phone detects the surrounding to be dark enough.

Targeted Attacks: Our experiments demonstrate very low FPR, which means
that there is little probability that an application will gain access to resources
without the knowledge of its owner. This is based on an assumption that the
attacker can not create the required gesture. However, a malware can fool a user
by launching a social-engineering attack. For example, a malware developer can
design a game such that user has to move his hand in certain ways mimicking the
hand wave gesture. While such attacks are likely, they still require the malware
program to constantly wait for, and synchronize with, the desired user gesture,
which may make these programs easily detectable by the OS. Nevertheless, our
approach still significantly raises the bar against many existing malware attacks,
a prominent advancement in state-of-the-art in smartphone malware prevention.

Sensitivity of Sensors: We are using two sensors to detect the hand wave
gesture, namely a light sensor and an accelerometer. There are different types of
these sensors available on different devices. The frequency at which the sensor
feeds the data to the kernel not only depends upon the kind of sensor but also
on the processor speed, and number of application the phone is running, among
other things. When we compared the sensor of our prototype device (Motorola
Droid X2 running Android 2.3.3 on a Dual-core 1 GHz Cortex-A9 processor)
with other devices (Samsung Galaxy Nexus (Android 4.0.3, Dual-core 1.2 GHz
Cortex-A9), we found that light sensor reading on our device (Droid X2) changes
quite frequently, i.e., the light sensor on this device is highly sensitive. On the
other hand, the accelerometer readings changes more rapidly on the other device
(Galaxy Nexus). For the hand wave gesture to be recognized accurately on a
given device, the threshold and the wave time limit should be modified according
to that device’s configuration and the sensitivity of its sensors.

Extending to RFID Tags: Our scheme is also applicable for preventing unau-
thorized reading and relay attacks against standalone RFID tags (such as con-
tactless credit cards or access cards). In this case, the RFID tag will need an
on-board ambient light sensor and an accelerometer, and the user will simply
need to wave in front of the tag to access it. Unlike prior security mechanisms
that use sensor-equipped tags (e.g., [12, 21]), our approach is very simple and
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lightweight, and can be easily accommodated within the constraints of typical
RFID tags.

7 Conclusion and Future Work

In this paper, we presented a novel approach to protecting sensitive mobile device
services against many prominent attacks. The approach captures user’s intent to
access a given service via a lightweight hand waving gesture. This gesture is very
simple, quick and intuitive for the user, but would be very hard for the attacker to
exhibit without user’s knowledge. We presented the design and implementation
of the hand waving gesture using an ambient light sensor, already available on
most smartphones and tablets. We also reported on our experiments to analyze
the performance of our approach. Our results indicate the approach to be quite
effective in preventing the misuse of sensitive resources with a very little user
effort. Our future work constitutes further evaluating our approach on different
devices and integrating it with services/resources beyond voice dialing, such as
SMS and NFC.
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Abstract. This paper explains that SS1-secure functional encryption
(FE) as defined by Boneh, Sahai and Waters implicitly incorporates
security under key-revealing selective opening attacks (SOA-K). This
connection helps intuitively explain their impossibility results and also
allows us to prove stronger ones. To fill this gap and move us closer to
the (laudable) goal of a general and achievable notion of FE security,
we seek and provide two “sans SOA-K” definitions of FE security that
we call SS2 and SS3. We prove various possibility results about these
definitions. We view our work as a first step towards the challenging goal
of a general, meaningful and achievable notion of FE security.

1 Introduction

Background. Functional encryption (FE) was introduced by Boneh, Sahai and
Waters (BSW) [14] and formalized independently by O’Neill [35]. A FE-scheme
for a functionality F : N×{0, 1}∗×{0, 1}∗ → {0, 1}∗∪{⊥} is a tuple of algorithms
FE = (Setup,KDer,Enc,Dec). An authority lets (pk, sk)←$ Setup(λ), where λ is
the security parameter, and publishes pk. Anyone may now encrypt an input
x via c←$Enc(pk, x). A user may provide the authority with a functionality
index a and receive a secret key ska←$KDer(sk, a). If the user now applies the
decryption algorithm to ska and any encryption c of x, the result Dec(ska, c)
will equal F(λ, a, x). Security requires that the user learns nothing more.

The intent was to generalize and unify many forms of encryption including IBE
(Identity-based encryption) [38,13], ABE (Attribute-based encryption) [37,26]
and PE (Predicate encryption) [28]. An existing form E of encryption would
correspond to a functionality Fe. IBE for example corresponds to the function-
ality Fibe which regards a as an identity and parses x as a pair (a′,m) consisting
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of another identity a′ and a message m, returning m if a = a′ and ⊥ otherwise.
PE generalizes to functionalities F for which there is a relation P such that F ,
given a and x = (a′,m), returns m if P(a, a′) is true and ⊥ otherwise, IBE being
the case where P(a, a′) is true iff a = a′. ABE schemes are a subclass of PE
schemes where a′ is revealed to anyone by the ciphertext.

The works [14,35] sought a general definition of security that applied to an ar-
bitrary functionality. They first provide an indistinguishability-based one (IND).
It had the attractive feature of coinciding, for the IBE and PE functionalities,
with the the existing definitions of these notions from the literature. But both
BSW [14] and O’Neill [35] point to inherent deficiencies of IND when it comes
to capturing security of general functionalities. The “main” definition of BSW
was accordingly a simulation-based semantic-security one that we call SS1.1 We
may now speak of the SS1-security of an FE scheme FE for any functionality F .

The FE framework is elegant and the goals are laudable. A proliferating num-
ber of notions of encryption are now put under a single umbrella, seen as special
cases of a single primitive. Ad hoc, notion-specific security definitions need not
be given. One only has to specify the functionality and SS1 security would return
a suitable definition.

Impossibility of SS1 in the NPROM. However, having introduced SS1,
BSW [14] claim that it can’t be achieved in the standard model, even for IBE,
which is the most basic functionality in this area. This is a strong and disap-
pointing claim. Before we delve into its implications, we take a closer look at it.
We point out that BSW don’t actually prove this. What they prove is that SS1-
secure IBE cannot be achieved in the NPROM (Non-Programmable Random
Oracle Model). At a first glance, this only sounds like a stronger claim. Every
standard model scheme is a NPROM scheme and every standard-model adver-
sary is a NPROM one, so if NPROM achievability is ruled out, isn’t standard
model achievability ruled out as well? The answer is no. BSW [14] establish their
claim by providing an adversary for which they prove that there is no simulator.
But their adversary makes calls to the RO, and this is exploited crucially in the
proof of non-existence of a simulator. Their proof does not rule out the existence
of a simulator for adversaries that do not call the RO, meaning for standard-
model adversaries, and thus it does not rule out standard-model achievability of
SS1, even for IBE.

This gives a ray of hope. Perhaps SS1-security can be achieved in the standard
model after all. This would be interesting even for IBE and certainly beyond.
This hope is fueled by a look at the technique underlying the negative result
of BSW [14]. It is not a priori clear how to extend this technique to rule out
simulators for standard-model adversaries.

A new impossibility result for SS1. We fill the gap by showing that SS1-
secure IBE is not achievable even in the standard model. The result is actually

1 Following [35] we use the terminology “semantic security” throughout the paper to
refer to this style of definition. However, [14] and some other works call it “simulation
based.” They mean the same thing.
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more general, ruling out SS1-security for any non-trivial functionality, IBE being
covered as a special case. Non-triviality essentially means the functionality is
not a constant function. The only assumption made is the existence of collision-
resistant hash functions.

Our result exploits the recent technique of Bellare, Dowsley, Waters and Yilek
(BDWY) [5], used to prove the impossibility of SOA-secure commitment, in com-
bination with techniques from Nielsen’s proof of impossibility of non-committing
encryption (NCE) [32]. We are able to present a standard model adversary for
which we can prove that there is no simulator.

Taking a closer look, our result, as is the case with those of Nielsen and BSW,
is actually a trade-off. It shows that SS1-security requires long keys, this meaning
that the total number of bits in messages securely encrypted must be bounded
by the length of a secret key. However, it does this in the standard model.

An explanation. This paper offers an explanation for this anamoly that seeds
further contributions in a natural way. We contend that SS1 does not capture
“plain” FE security. Instead, it captures FE security in the presence of key-
revealing selective-opening attacks (SOA-Ks). These are attacks where the ad-
versary may adaptively corrupt some users and obtain their decryption keys
without restrictions.2 The revealing fact is that, if we were to write down a defi-
nition of SOA-K-security for IBE, what emanates is exactly SS1-secure IBE. We
now have a natural explanation of why SS1 is subject to such broad unachiev-
ability and also why SS1-secure IBE is not the same as the classical IND-secure
IBE from [13]. Namely, the former incorporates SOA-K security and the latter
does not.

Why is SOA-K-security part of SS1? BSW [14] did not throw it in “on pur-
pose.” (Their work has no explicit recognition of the fact that their definition
incorporates security against SOA-K. They do however comment on the relation
to NCE and [32], which is only a step removed.) Rather, the natural approach to
defining semantic security for a general functionality, which is the one followed
by BSW [14], leads to the inadvertent incorporation of SOA-K security.

While it is usually easier to define “plain” security than security against SOA-
K, with FE, it seems to be the opposite. It is not clear how to define semantically-
secure FE in a way that “decouples” basic and SOA-K security. This, in our view,
is rather interesting.

SS2 and SS3. As indicated above, we believe that unifying different existing
forms of encryption under a general definition for FE is a highly worthwhile goal.
SS1 has not achieved this, capturing instead the SOA-K-secure versions of these
goals and thence being subject to strong impossibility results. We move towards

2 In the standard formulation of IBE, the adversary has a key-derivation oracle via
which it may obtain decryption keys for identities of its choice, but use of the oracle
is restricted to identities not underlying challenge ciphertexts. An SOA-K results
when there are many challenge ciphertexts and this restriction is dropped. This is
exactly what happens in SS1-secure FE. The interesting thing is that in the context of
semantic security for general FE it is not clear how to make appropriate restrictions
to exclude the SOA-K. We will elaborate in a bit.
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the just-stated goal with two new notions that we call SS2 and SS3. Definining
“sans SOA-K” FE security in forms of varying strength, they are able to meet
many of the broad goals in this domain and open the door to further efforts.

Our main result about SS2 is that it is equivalent to IND for all functionalities.
This equivalence has its plusses and its minuses. Let us begin with the former.
IND-secure IBE as per [13] is a well established definition, targeted in thousands
of papers and proven to work for applications, and IND-secure PE as per [28]
is also accepted. The SS2=IND equivalence provides a semantic-security based
backing for this IND definition which has so far been absent. Conceptually, it
mirrors in the FE setting the classic equivalence between semantic-security and
indistinguishability in the PKE setting [23] that is a cornerstone of our under-
standing of, and faith in, these definitions. More pragmatically, it immediately
yields possibility results for semantically-secure FE which were absent under
SS1. This is because IND-secure IBE is well-known to be achievable in the stan-
dard model [11,42,40], and various possibility results for ABE and PE are known
as well (e.g. [26,36,28,33,39,29,2,31,30,34]).3

We believe this is progress towards bringing semantically-secure FE closer.
But, while the equivalence of SS2 with IND is a plus for common functionali-
ties like ABE, PE and IBE, it is a minus when looking further, for we already
know that IND is not a good definition of FE security in general [35]. Thus, we
would like another definition to complement SS2. We suggest SS3, a strengthen-
ing of SS2. We believe SS3 is a good candidate for a general definition of FE for
arbitrary functionalties. One reason is that it does not appear to have the draw-
backs of IND for beyond-PE functionalities. (BSW [14] and O’Neill [35] present
IND-secure FE schemes that are intuitively insecure. However, their schemes
will correctly be SS3-insecure.) Another reason is that our impossibility result
for SS1 does not extend to SS3. (So in particular, SS3-secure IBE is not ruled
out.)

In support of SS3 we show that it is equivalent to IND for “re-sampleable”
functionalities. Unfortunately, re-sampleable functionalities does not seem to
include common functionalities of interest such as IBE. Indeed, we have not
been able to either prove or disprove the equivalence of SS3 with IND for PE
functionalities. We suggest that IBE and PE schemes may be directly proven to
meet SS3 and leave this as an interesting subject for future work.

Due to space constraints, details about all results concerning SS2 and SS3 can
be found in the full version [7].

A closer look. Recall that in IBE, the adversary is given a key-derivation
oracle, allowing it to obtain a secret key for any identity of its choice. This does
not by itself constitute a SOA-K because the adversary is not allowed to call this
oracle for the identities underlying challenge ciphertexts. In the SS1 definition,
the adversary also gets a key-derivation oracle to obtain a secret key for any

3 Indeed, a starting point for our work was to posit that existing IND-secure such
schemes should be deemed secure under whatever SS-type definition one proposes
to use. This makes our approach philosophically different from BSW and some con-
current and subsequent works, discussed later.
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functionality index a of its choice. But there seems no simple or natural way to
make a rule disallowing querying this oracle on “challenge” ciphertexts because
there is no general way to “match” indexes with ciphertexts. Indeed, any key
allows the adversary to learn, in principle, something from all challenge cipher-
texts and we can hardly disallow all queries. Instead, SS1 allows unrestricted
key-derivation queries and gives a compensating ability to the simulator. But
now it incorporates SOA-K and is thus rarely achievable.

Roughly, the idea for SS2 is to run in parallel to the real game a “shadow”
game where the inputs are independently generated as per the adversary-provided
distributions. Key-derivation queries remain unrestricted. But at the end of the
game, we check that the revealed keys don’t “differentiate” the real and shadow
games. We disallow adversaries who create such differentiation. In essence, this
means that we require that the functionality take predictable values on the chal-
lenge messages when evaluated with the adversary’s key derivation queries. One
can compare this to the IND definition where the adversary is required to make
key derivation queries that take the same value on the (known) challenge mes-
sages, so the adversary knows these values. Our definition may be written quite
modularly relative to SS1, by adding appropriate boxed statements and checks
in the games for the latter.

Our SS3 definition strengthens SS2 by dropping the restriction put by SS2
on key-derivation queries made by an adversary before seeing a challenge cipher-
text. As such, we believe the SS3 definition is an essentially as-strong-as-possible
security definition for FE subject to the constraint that it be achievable without
any unnatural restrictions on the adversary or message space. To see why, note
the definition of “unpredictable functionalities” used for our impossibility result
in Section 4 and the fact that the latter crucially uses the adversary’s ability to
make “adaptive” key-derivation queries—i.e., depending on a challenge cipher-
text. In essence, the SS3 definition demands that the functionality restricted to
the adversary’s adaptive key derivation queries be predictable wrt. the message
space.

Standard-model possibility of SS1. Returning to SS1, the negative results
discussed above imply that we will need long keys, but we do not know that
this is sufficient. There exists only one positive result, and this is in the PROM.
Namely, BSW [14] provide a long-key, SS1-secure FE scheme for any function-
ality F where the space of functionality indexes on which F is non-trivial has
polynomial size. We extend their result to the standard model. We do this by
(again) exploiting the SOA-K connection. Namely we establish the same conclu-
sion as BSW but assuming only the existence of a SOA-K-secure PKE scheme,
which we know exists in the standard model because we are allowing keys to be
long [15,17].

Summary of contributions.Wemake a connection between selective-opening
attacks (SOA-K) and FE by observing the implicit presence of the former in SS1,
an observation that seeds all the further contributions of this paper, summarized
as follows. (1) We show impossibility of SS1-secure FE in the standard model by
exploiting techniques underlying negative results for SOA-K [5]. (2) We present
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the SS2 definition for sans-SOA-K FE and prove it equivalent to IND for all
functionalties, thus obtaining a slew of possibility results for SS2 via known pos-
sibility results for IBE and PE. (3) We present the stronger SS3 definition to
function as a potential target for functionalites beyond PE and prove a possi-
bility result for it. (4) We extend the only known positive result for a general
functionality, namely one from BSW [14] for the case that the the set of in-
dexes on which the functionality is non-trivial has polynomial size, from the
PROM (Programmable Random Oracle Model) to the standard model, by using
as starting point a SOA-K-secure PKE scheme with large keys, which exists in
the standard model [15,17].

Discussion and Related work. The observation underlying BSW’s impos-
sibility proof is that SS1-secure IBE must achieve something similar to NCE.
O’Neill [35] had the same intuitive observation but did not take it to a result
or proof. Our work can be viewed as taking this intuition further to say that
SS1-secure IBE must be exactly SOA-K-secure IBE, and similarly for other func-
tionalities.

The difference between NCE and SOA-K is subtle but important, and under-
recognized by the community. For example, some works say (for the PKE case)
that SOA-K security is impossible with short keys, citing [32]. But, in ruling out
NCE, the latter does not rule out SOA-K-security because there are potentially
non-NCE ways to achieve SOA-K-security. Our techniques, however, rule out
SOA-K-secure PKE with short keys. Although we have known an impossibility
result for NCE for a decade, one for SOA-K has only emerged now.

SOAs have so far mainly been considered in the public-key setting. The adver-
sary gets a number of challenge ciphertexts, “opens” a subset of them, and aims
to discover something about the messages underlying the rest. There are two
kinds of SOAs. In a coin-revealing SOA (SOA-C) the ciphertexts are encrypted
under a single public key and opening reveals the coins. Achieving security is
challenging but has been done [6,18,27]. SOA-C-security was also considered and
achieved for IBE [9]. SOA-C is not relevant to our present concerns. In a key-
revealing SOA (SOA-K) for PKE, the ciphertexts are encrypted under different
public keys and opening reveals the corresponding decryption keys. But SOA-K
has not been defined or considered for IBE, let alone for FE. We claim SS1 is,
implicitly, defining SOA-K secure FE.

O’Neill [35] considers non-adaptive adversaries (meaning ones that don’t make
any key-derivation queries after seeing the challenge ciphertexts). He provides a
non-adaptive version of SS1 and shows it equivalent to a non-adaptive version of
IND for preimage sampleable functionalities. Most PE functionalities considered
in the literature have this property.

Concurrent and subsequent work. A number of concurrent and subse-
quent works make progress on broadening the class of functionalities for which we
have constructions of FE [24,41,20,25,22,21,19]. In particular, the recent break-
through work of [19] constructs IND-secure FE for the class of all polynomial-
time circuits, which can be bootstrapped to SS1-security against a bounded
number of non-adaptive key-derivation and encryption queries using the recent
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work of De Caro et al. [16]. We note that a downside of studying achievabil-
ity of SS1-security against a bounded number queries is that well-established
IND-secure schemes (e.g. Waters’ IBE [42]) do not meet it since SOA-K is still
present.

Regarding concurrent work on the definitional front, Agrawal, Gorbunov,
Vaikuntanathan and Wee (AGVW) [3] present impossibility results for a wPRF-
based functionality under SS1 against an unbounded number of non-adaptive
key-derivation queries. AGVW also propose a variant of SS1 that allows an un-
bounded simulator, which they call USIM. Interestingly, while they adapt BSW’s
impossibility proof to rule out USIM, this adaptation assumes “black-box” sim-
ulation. Moreover, our improved impossibility result for SS1 assumes collision-
resistant hash functions so does not to rule out USIM (because an unbounded
simulator can break collision-resistance). Thus, to the best of our knowledge,
whether USIM can be achieved using “non-blackbox” simulation is still open.

Additionally, Barbosa and Farshim (BF) [4] point to weaknesses in the BSW
definition having to do with “set-up” security. Our definition of SS1 and its
variants do not appear to inherit these weaknesses because the simulator is not
allowed to choose the auxilliary input. (See the body of the paper for further
explanation.) BF also propose a definition that is the same in spirit as our
SS3, but with the difference that the “ε-key” (which encodes the information
about the message that is publicly computable from the ciphertext) is, like keys
queried after seeing the challenge ciphertext, not allowed to differentiate between
the real and shadow games, despite the fact that this key is implicitly queried
at the beginning of the game by the adversary. (There are not real and shadow
games in the BF formalization, but we describe it this way for simplicity.) This
modification allows them to show equivalence between (their version of) SS3 and
SS1 for a broader class of functionalities than in our result, such as IBE.

2 Preliminaries

Notation and conventions. If A is an algorithm then y ← A(x1, . . . , xn; r)
means we run A on inputs x1, . . . , xn and coins r and denote the output by y. By
y←$A(x1, . . . , xn) we denote the operation of picking r at random and letting
y ← A(x1, . . . , xn; r). By [A(x1, . . . , xn)] we denote the set of all y that have
positive probability of being output by A on inputs x1, . . . , xn. Unless otherwise
indicated, an algorithm may be randomized. “PT” stands for “polynomial time.”
The security parameter is denoted λ ∈ N and whenever λ is input to an algorithm
it is understood that it is encoded in unary.

If s is a string then |s| denotes its length, s[i] denotes its ith bit, and s[i . . . j]
denotes the substring consisting of its ith through jth bits. If x is a vector then
|x| denotes the number of its components, x[i] denotes its ith component, and
x[i . . . j] denotes the subvector consisting of its ith through jth components. We
write El(x) to mean {x[i] : 1 ≤ i ≤ |x|}. If f is a function and x is a vector
then f(x1, . . . , xi−1,x, xi+1, . . . , xn) denotes the vector whose i-th component is
f(x1, . . . , xi−1,x[i], xi+1, . . . , xn) for 1 ≤ i ≤ |x|. A predicate is a function with
boolean output.
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Games. We use the language of code-based game-playing [8]. A game has an
Initialize procedure, procedures to respond to adversary oracle queries, and a
Finalize procedure. A game G is executed with an adversary A and security
parameter λ as follows. A is given input λ and can then call game procedures.
Its first oracle query must be Initialize(λ) and its last oracle query must be
to Finalize, and it must make exactly one query to each of these oracles. In
between it can query the other procedures as oracles as it wishes. The output of
Finalize, denoted GA(λ), is called the output of the game. Let AG(λ) denote
the output of the adversary and T(G, A, λ) denote Pr

[
GA(λ) outputs true

]
.

Public-key encryption schemes. An public-key encryption scheme Π =
(G, E ,D) is specified by three PT algorithms. Via (pk, sk)←$G(λ) the key-
generation algorithm G generates a public key and matching secret key. Via
c←$ E(pk,m) the encryption algorithm E takes pk and message m and returns
a ciphertext c ∈ {0, 1}∗ ∪ {⊥}. Via m ← D(sk, c), the deterministic decryption
algorithm V returns a message m. We require that D(sk, E(pk,m)) = m for all
λ ∈ N, all (pk, sk) ∈ [G(λ)], and all m ∈ {0, 1}∗

Hash Functions. A hash function H = (K,H) is a tuple of PT algorithms.
Via hk←$K(λ) the key-generation algorithm K produces a key hk. Via y ←
H(hk, x) the deterministic hashing algorithm H produces the hash of a string x
under key hk. Collision-resistance is defined via game CRΓ whose Initialize(λ)
procedure returns hk←$K(λ) and whose Finalize procedure on input (x, x′)
returns (x 	= x′) ∧ (H(hk, x) = H(hk, x′)). There are no other procedures. The
advantage of an adversary C is defined by Advcol

H,C(λ) = Pr
[
CRC

H(λ)
]
. We say

that H is collision-resistant (CR) if Advcol
H,C(·) is negligible for every PT C.

3 Functional Encryption and Its Security

Functionalities and FE schemes. A functionality F : N×{0, 1}∗×{0, 1}∗ →
{0, 1}∗ ∪ {⊥} is a deterministic PT algorithm. The first input is the security
parameter. The second input is called the index and the third input is called
the payload. A functional encryption (FE) scheme is a tuple of algorithms
FE = (Setup,KDer,Enc,Dec). The setup algorithm Setup on input λ returns
a key-pair (pk, sk), the master public and secret keys. The key-derivation al-
gorithm KDer on inputs sk, a returns a secret key dk for a. The encryption
algorithm Enc on inputs pk, x returns a ciphertext c. The deterministic de-
cryption algorithm Dec on inputs dk, c returns a string y. We say that an FE
scheme FE = (Setup,KDer,Enc,Dec) is F -correct, or simply an F -FE scheme,
if Dec(dk,Enc(pk, x; r)) = F(λ, a, x) for all λ, a, x, r satisfying F(λ, a, x) 	= ⊥,
all (pk, sk) ∈ [Setup(λ)] and all dk ∈ [KDer(sk, a)]. We stress that correct-
ness makes no requirements when F(λ, a, x) = ⊥. (We do not mandate that
Dec(dk,Enc(pk, x; r)) = F(λ, a, x) in this case, but we do not disallow it either.)

Syntax and correctness in BSW. The range of a functionality in the
formal definition of BSW [14] does not include ⊥, and correctness asks that
Dec(dk,Enc(pk, x; r)) = F(λ, a, x) for all λ, a, x, r, all (pk, sk) ∈ [Setup(λ)] and
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all dk ∈ [KDer(sk, a)]. However, specific functionalites given in BSW (such as

that for IBE, FP,p
ibe in our notation) do return ⊥. So it would appear that the for-

mal syntax ought to be amended to add ⊥ to the range of F . Once this is done,
the correctness condition of BSW must be revisited. If left unchanged, it would
be asking that Dec(dk,Enc(pk, x; r)) = F(λ, a, x) even when F(λ, a, x) = ⊥.
This, however, would be incorrect. Attacks from [1] show that BB-style IBE
schemes [10], including the BB IBE scheme [10] and Waters’s IBE scheme [42],

fail to meet this correctness condition relative to FP,p
ibe .

4 It was not clear to us
exactly what BSW intended but we expect they did intend for existing IBE
schemes to meet the correctness condition, and accordingly we have relaxed it
to only hold when F(λ, a, x) 	= ⊥.
Particular functionalities. The most important special case of FE in the
literature is predicate encryption (PE). We say that F is a predicate encryption
functionality if there is a predicate P such that F is P-induced. This means that
for all λ, all a 	= ε and all (a′,m) we have F(λ, a, (a′,m)) = m if P(λ, a, a′) = true
and ⊥ otherwise. (We also require that F(λ, a, x) returns ⊥ if x is not a pair.
Note that no requirement is made on F(λ, ε, (a′,m)), so a single predicate could
induce many different functionalities which vary in what is revealed under a = ε.)
We call m the message. The IBE predicate Pibe is defined by Pibe(λ, a, a

′) =
(a = a′), and we say that F is an IBE functionality if it is Pibe-induced. (So,
again, there may be many different IBE functionalities.) Within the class of PE
functionalities, we distinguish whether the index, the message, or both are to be
kept private, with corresponding IBE functionalities as canonical examples:

• Public index, private message: We say that F is a (P, p)-PE functional-
ity if F(λ, ε, (a′,m)) = (a′, |m|). Called PE with public index in the lit-

erature. The canonical example is the IBE functionality FP,p
ibe which sets

FP,p
ibe (λ, ε, (a

′,m)) = (a′, |m|), corresponding to IBE that hides the message
but not necessarily the identity.

• Private index, private message: We say that F is a (p, p)-PE functionality if
F(λ, ε, (a′,m)) = |m|. Called PE with private index in the literature. The
canonical example is the IBE functionalityFp,p

ibe which setsF
p,p
ibe(λ, ε, (a

′,m)) =
|m|, corresponding to IBE that hides both the message and the identity (i.e. is
anonymous).

• Private index, public message: We say that F is a (p,P)-PE functionality if
F(λ, ε, (a′,m)) = m. Called predicate-only PE in the literature. The canon-

ical example is the IBE functionality Fp,P
ibe which sets Fp,P

ibe (λ, ε, (a
′,m)) =

m, corresponding to IBE that hides the identity but not necessarily the
message. PEKS [12] is a (p,P)-PE functionality that additionally satisfies
robustness [1].

4 The difficulty is that correctness is required for all x, a and thus when x = (a′,m)
with a′ �= a, it is required that Dec(dk,Enc(pk, (a′,m); r)) = ⊥ when dk ∈
[KDer(sk, a)]. This is a form of robustness as defined in [1] and, as indicated there,
often useful, but it is not a standard requirement for IBE schemes and most don’t
meet it.
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proc Initialize(λ):

(pk, sk)←$Setup(λ)
z←$Z(λ)
i, j ← 0 ; St ← ε
Return (pk, z)

proc Enc(α):

i ← i+ 1
q[i] ← α ; t[i] ← enc
(St ,x[i])←$D(St , α)
c[i]←$Enc(pk,x[i])
Return (c[i],F(λ, ε,x[i]))

proc Kd(a):

i ← i+ 1
q[i] ← a ; t[i] ← kd
dk←$KDer(sk, a)
Return dk

proc Finalize(w):

Return R(λ, z,x,q, t,St , w)

proc Initialize(λ):

i, j ← 0 ; St ← ε
z←$Z(λ)
Return z

proc Msg(α):

i ← i+ 1
q[i] ← α ; t[i] ← enc
(St ,x[i])←$D(St , α)
Return F(λ, ε,x[i])

proc Op(a):

i ← i+ 1
q[i] ← a ; t[i] ← kd
Return ε

proc F(a, s):

If a ∈ El(a) and 1 ≤ s ≤ i then
Return F(λ, a,x[s])

Else return ⊥
proc Finalize(w):

Return R(λ, z,x,q, t,St , w)

Fig. 1. Left: “Real world” game RSS1FE,F,Z,D,R for the SS1 definition. Right: “Ideal
world” game ISS1F,Z,D,R for the SS1 definition.

We don’t discuss (P,P)-PE because it reveals everything and is uninteresting.

SS1 definition. The following definition is adapted from [14]. Let FE =
(Setup,KDer,Enc,Dec) be an F -FE scheme. The definition uses games
RSS1FE,F ,Z,D,R and ISS1F ,Z,D,R of Fig. 1. We provide some intuition for these
games below. We say that FE is SS1-secure if for every auxiliary input generator
Z, every PT message sampler D, every PT relation R and every PT adversary
A, there is a PT simulator S such that

Advss1
FE,F ,A,S,Z,D,R(·) = T(RSS1FE,F ,Z,D,R, A, ·)− T(ISS1F ,Z,D,R, S, ·)

is negligible. We note that the auxiliary input will be used in our impossibility
result in Section 4 (where it contains a key for a collision-resistant hash function).
Although we omit to do this for simplicity because it does not affect our results,
it can also be given as an additional argument to a functionality itself. For
example, in the case of the inner-product functionality introduced in [28] it can
then contain the modulus N of unknown factorization.

Intuitive overview of the definition. To gain some intuition for the games,
let us first look at the “real world” game with the adversary. It has access to
two main oracles, an encryption oracle Enc and key-derivation oracle Kd. The
former takes input α, which describes a message-space from which to sample,
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proc Initialize(λ):

(pk, sk)←$Setup(λ) ; i, j ← 0
Return pk

proc LR(x0, x1)

i ← i+ 1 ; (x0[i],x1[i]) ← (x0, x1)
c[i]←$Enc(pk, xb)
Return c[i]

proc Kd(a):

j ← j + 1 ; a[j] ← a
dk←$KDer(sk, a)
Return dk

proc Finalize(b′):

a[j + 1] ← ε
For j′ = 1, . . . , j + 1 do

If F(λ,a[j′],x0) �= F(λ,a[j′],x1) then
return false

Return (b′ = 1)

Fig. 2. Game INDFE,F,b for the IND definition

and outputs the encryption of a sampled message x. The latter takes as input a
functionality index a and returns a corresponding secret key. Note that the game
records the queries made to these oracles, in order, and provides this as input
to the relation R. Now let us look at the “ideal world” game with the simulator.
The simulator has access to not two but three main oracles, a message sampling
oracle Msg, an operation oracle Op, and a functionality oracle F. The first on
input α, which again describes a message-space from which to sample, samples
a message x but simply returns F(λ, ε, x). (We follow BSW [14] in using the
value under index ε to describe what information about the message is publicly
computable from a ciphertext.) The second records that an input functionality
index a is “legal to be used” by the last oracle. The last oracle takes such an index
a and a position s to return F(λ, a, xs) where xs is the sth sampled message by
Msg. Intuitively, Op queries of the simulator correspond to Kd queries of the
adversary, and indeed they are input to the relation R in the analogous manner.
F queries can always be made “for free” by the simulator (they are not input
to R).

Discussion of SS1. We have discussed SS1 as being the BSW [14] definition,
which it is in spirit, but there are some differences in detail. BSW indicate that
there are several dimensions of choice. They choose to formalize a non-adaptive
version with blackbox simulators, saying that variants may be formalized simi-
larly. We have chosen to formalize the variant with adaptive security and non-
blackbox simulation. BSW give pk as input to the relation and we do not, but
this choice does not matter. However, a novelty of our definition is the introduc-
tion of auxiliary inputs. Besides what is noted above in their regard, we note
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that our use of auxiliary inputs rescues our definitions from the weaknesses of
the BSW definition pointed out in BF [4]. The issue raised by the latter arises
with a functionality, such as inner-product PE [28], that depends on a parame-
ter, such as a hard-to-factor modulus, that must be generated in a setup phase.
Under BSW [14] and O’Neill [35], this would have to be done by the Setup al-
gorithm of the FE scheme and the modulus would be part of pk. The problem
raised by BF [4] then occurs because the simulator can pick pk. We, however,
do not give pk as input to F and would capture setup-based functionalities by
having the setup done by the auxiliary input generator algorithm Z, so that
the modulus, in our example, would be part of the output z of this algorithm.
However, the simulator is not allowed to pick z, and thus the attack of BF [4]
would not appear to apply.

IND definition. Let FE = (Setup,KDer,Enc,Dec) be an F -FE scheme. The
definition uses game INDFE,F ,b of Fig. 2 for b ∈ {0, 1}. We say that FE is IND-
secure if for every adversary B,

Advind
FE,F ,B(·) = T(INDFE,F ,1, B, ·)− T(INDFE,F ,0, B, ·)

is negligible.

Robustness. Robustness, introduced for IBE and PKE in [1], seems important
more generally for FE, particularly for predicate-only predicate encryption. To
explain the issue, recall that correctness was mute in the case thatF(λ, a, x) = ⊥,
meaning in this case no requirement was put on the output of Dec(dk,Enc(pk, x))
when dk ∈ [KDer(sk, a)]. Roughly, robustness asks that Dec(dk,Enc(pk, x)) = ⊥
in this case. In the case of PEKS this is important to avoid false positives in the
testing.

The reason it is not quite so simple is that asking for the above condition
globally and unconditionally seems to yield something that is hard to achieve.
Instead, one can ask for various computational relaxations in the style of [1]. To
exemplify, here is one that is very strong but attractive due to its simplicity:
procedure Initialize(λ) of game ROBFE,F lets (pk, sk)←$Setup(λ) and returns
both keys, meaning the adversary gets sk. Finalize(a, x) returns ((F(λ, a, x) =
⊥) ∧ (Dec(KDer(sk, a),Enc(pk, x)) 	= ⊥).

4 Impossibility Results

We show that the SS1 notion is impossible to achieve in the standard model,
so long as the functionality is reasonably likely to take more than one possible
value on a challenge message. This result only assumes the existence of a collision-
resistant hash function.

Following [14] we also consider a relaxation of the SS1 notion where vectors
a,α are replaced by unordered sets, thus giving the simulator more power (since
it can make its queries in a different order than the adversary). We obtain a
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similar but more restrictive impossibility result in this case. Here we present the
ordered case. The unordered case is given in the full version [7].

Unpredictable functionalities. In the ordered case our result applies to any
unpredictable functionality. Let F be a functionality, A = {aλ}λ∈N be a family
of functionality indices (strings), and X = {Xλ}λ∈N be a family of payload
distributions. We say that F is p(·)-unpredictable wrt. A,X if for all λ ∈ N and
all y ∈ {0, 1}∗ ∪ {⊥}, Pr[x←$Xλ : y = F(λ, aλ, x)] ≤ 1− 1/p(λ).

For example, the functionality FP,p
bit-ibe for a one-bit IBE scheme, which parses

x as (a′, b), and returns b if a = a′ and ⊥ otherwise, is a 2-unpredictable function
wrt. A,X where, for all λ ∈ N, we let aλ be a fixed but arbitrary identity and Xλ

return (aλ, d) where the message d ∈ {0, 1} is random. As another example, the

functionality Fp,P
peksfor a PEKS scheme, which returns 1 if a = x and ⊥ otherwise,

is a 2-unpredictable function wrt. A,X where for all λ ∈ N, we again let aλ be
fixed but arbitrary keyword and Xλ return a random keyword x ∈ {aλ, a′λ} for
some also fixed but arbitrary a′λ 	= aλ. Indeed, unpredictability with respect
to some family of input distributions and functionality indices is a minimal
requirement for a functionality to be interesting; otherwise, it is trivial to build
an FE scheme for it because anyone can decrypt correctly without even using
the ciphertext. In this sense, our result below rules out an SS1-secure FE scheme
for any non-trivial functionality.

Secret-key length. we say that an FE scheme FE = (Setup,KDer,Enc,Dec)
has secret-key length 
(·) if |dk| ≤ 
(λ) = F(λ, a, x) for all λ, a, x, r, all (pk, sk) ∈
[Setup(λ)], and all dk ∈ [KDer(sk, a)]. Note that every FE scheme must have
some polynomial 
(·) secret-key length in order to be efficient.

Theorem 1. Let p(·) > 1 be a polynomial. Suppose F is a p(·)-unpredictable
functionality wrt. A = {aλ}λ∈N,X = {Xλ}λ∈N,. Furthermore, suppose that for
every λ ∈ N , F(λ, ε, x) is the same for all x ∈ [Xλ]. Let H = (K,H) be a
collision-resistant hash function. Then there does not exist an SS1-secure F-FE
scheme. More precisely, suppose FE is a F-FE scheme with secret-key length

(·). Then for any function μ(·) there exists a PT auxiliary input generator Z,
message sampler D, PT adversary A, PT relation R, and CR-adversary C such
that for every simulator S

Advss
FE,F ,A,S,Z,D,R(·) ≥ 1−

√
Advcol

H,C(·) + 1/μ(·) .

Adversary A makes p(·)(
(·)+log μ(·)) encryption queries and two key-derivation
queries.

The proof is in the full version [7].
To compare, BSW [14] ruled out SS1-secure IBE against adversaries with ac-

cess to a non-programmable random oracle, so our result improves theirs in
two respects: to applies to any non-trivial functionality and standard-model
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adversaries. It also reveals a trade-off between secret-key length and the total
number of bits encrypted. Namely, when the difference is even one bit (i.e.,
the total number of bits encrypted is one more than the secret-key length) our
adversary’s advantage is non-negligible. We also note that, while for technical
reasons we require F(λ, ε, x) to take the same value on every possible challenge
payload x, this is not a major restriction in practice since typically F(λ, ε, x) =
|x|; then we are just requiring as usual that possible challenge messages have the
same length.

5 Brute-Force Construction Revisited

We now revisit the “brute-force” scheme defined by BSW [14], which provides a
way to construct FE for any functionality with a polynomially-sized index space.

Let F be a functionality. We say that F has polynomially-sized index space if
F(λ, a, x) = ⊥ if a /∈ Aλ where Aλ = {ε, a1, a2, . . . , ap(λ)} for a polynomial p(·).
Let (G, E ,D) be a PKE scheme. Then we define a the brute-force FE scheme for
F as follows:

Setup(λ)

For i = 1, . . . p(λ) do
(pk[i], sk[i])← G(λ)

Return (pk, sk)

KDer(sk, a)

For i = 1, . . . , p(λ) do
If ai = a then return (i, sk[i])

Enc(pk,m)

For i = 1, . . . , p(λ) do
c[i]←$ E (pk[i],F(λ, ai,m))

Return c

Dec((i, sk[i]), c))

If (sk[i] = ε) then return |m|
Return D(sk[i], c[i])

BSW [14] show that this construction is IND-secure (and hence, by our re-
sults detailed in the full version [7], SS2-secure) provided that the underlying
PKE scheme is semantically secure. Moreover, they show a slightly decorated
construction which is SS1-secure in the random oracle model. What we show is
that it suffices for the underlying PKE scheme to be secure against key-revealing
SOAs (SOA-K) for this FE scheme to be SS1-secure. In fact, for their result
BSW implicitly use the non-committing (which implies SOA-K) PKE scheme of
Nielsen [32] in the random oracle model as the underlying PKE scheme, so our
result is a generalization of theirs. In particular, it allows us to obtain instantia-
tions in the standard model by (necessarily) allowing long keys, meaning longer
than the total number of bits encrypted; SOA-K secure PKE is known to exist
in this setting [15,17].

Details are given in the full version [7].
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Abstract. We propose a generic construction of lossy trapdoor function
from the subgroup membership assumption. We present three concrete
constructions based on the k-DCR assumption over Z∗

N2 , the extended p-
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N2 , and the decisional RSA subgroup mem-
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∗
N . Our constructions are more efficient than
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1 Introduction

Peikert and Waters [1] proposed the notion of lossy trapdoor function (LTDF) in
STOC 2008. LTDF implies cryptographic primitives such as classic one-way trap-
door function [2], collision resistant hash function [3], oblivious transfer protocol
[4], chosen ciphertext secure (CCA) public key encryption scheme[1], determinis-
tic public key encryption scheme [5], OAEP based public key encryption scheme
[6], and selective opening secure public key encryption scheme [7]. LTDFs can be
constructed based on many assumptions, especially lattice-based assumptions.

Peikert and Waters [1] proposed two constructions of LTDFs, based on the
Decisional Diffie-Hellman (DDH) assumption and the Learning with Errors as-
sumption respectively. But the two constructions are not efficient since they
both require a function index of size O(n2). Boyen et al. [8] shrank the func-
tion index of the DDH-based construction from O(n2) to O(n) with common
reference string and pairing. But their method can only be applied to bilinear
groups and their algorithm requires computing pairing, which is an expensive
operation. Freeman et al. [9], [10] proposed a construction based on the d-linear
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assumption which is a generalization of the DDH assumption. This construction
is not efficient since the size of the function index is O(n2).

Under the quadratic residuosity (QR) assumption, two distinct constructions
of LTDFs were given in [9], [11]. The construction of [9] only loses one bit of the
input information. In the construction of [11], the inversion algorithm does not
use the factorization of N but performs a coordinated ElGamal decryption and
learns one bit at one time. Joye et al. [12] proposed the 2k-QR assumption, which
is a generalization of the QR assumption, and proved that it is implied by the
QR assumption. They proposed a LTDF based on DDH and 2k-QR assumptions
which is slightly different from Hemenway-Ostrovsky’s [11] method. In their
construction, the factorization of N is the trapdoor and the inversion algorithm
processes k bits at one time. With a well-chosen k, only a 18 × 18 matrix over
Z∗
N is needed which highly reduces the length of the output. But the length of

output and the function index is also too long for practical application.
The constructions above belong to the matrix based framework proposed by

Peikert and Waters [1]. More efficient constructions of LTDFs based on different
techniques were proposed. Kiltz et al. [6] showed that the RSA permutation
provides a lossy property under the Φ-hiding assumption. A efficient LTDF based
on the decisional composite residuosity (DCR) assumption over Z∗

Ns , for s ≥ 3,
was proposed in [9], [10] and Wee [13] described a generic construction of LTDFs
by using dual hash proof systems.

In the construction of Freeman et al. [9], the message is embeded into a sub-
group generated by (1 + N) mod Ns with order Ns−1 and the image is the
group of N -th residuosity with order φ(N) in lossy mode, s must be larger than
2 in order to make lossiness. It is a very interesting question if we could make
lossiness when s ≤ 2.

1.1 Our Contribution

We propose a generic construction of LTDFs based on the subgroup membership
assumption. For a finite cyclic group G with a non-trivial subgroup K, the
subgroup membership problem asserts that it is difficult to decide whether an
element is in K or G\K. To construct LTDFs, two special properties are needed.
Firstly, the subgroup discrete logarithm over G/K is easy to compute with the
help of a trapdoor. Secondly, the size of G/K is significantly larger than that
of K. The construction in [9] based on the DCR assumption over Z∗

Ns(s ≥ 3)
can be seen as a concrete example of our generic construction. According to our
generic construction, G = Z∗

Ns and K is the group of Ns−1-th residuosity.
We also present three concrete constructions over Z∗

N2 or Z∗
N which are more

efficient. The main idea is to shrink the size of K. Briefly, our constructions can
be described as follows.

– k-DCR based construction. We extend the 2k-QR problem from Z∗
N to

Z∗
N2 and get a new assumption named as k-DCR assumption. We prove that

the k-DCR assumption over Z∗
N2 is implied by the DCR assumption and

the QR assumption. We propose an efficient construction of (logN + k, 3k)-
LTDF based on the k-DCR assumption. This construction is more efficient
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than the DCR based construction [9] and the 2k-QR based construction [12].
With a well-chosen parameter k, we can get a (98 logN, 38 logN)-LTDF. To
our best knowledge, this is the first index independent LTDF over Z∗

N2 . We
can generalize this construction and get ((s−1) logN+k, (s−2) logN+3k)-
LTDFs over Z∗

Ns , for s ≥ 2.
– Extended p-subgroup based construction. We extend the p-subgroup

problem from Z∗
N to Z∗

N2 and get an extended p-subgroup assumption. We
propose a construction of (logN, 23 logN)-LTDF over Z∗

N2 . This construction
can also be generalized to Z∗

Ns , for s ≥ 2.
– Decisional RSA subgroup based construction. The decisional RSA

subgroup assumption over Z∗
N for N = (2p′rp + 1)(2q′rq + 1) was proposed

by Groth [14], where p′, q′ are primes and rp, rq consist of distinct odd prime
factors smaller than some low bound B. According to our generic construc-
tion, we get a LTDF based on the decisional RSA subgroup assumption.

Kiltz et al. [6] proposed an efficient LTDF based on the Φ-hiding assumption
over Z∗

N . They utilized a factor of φ(N) as the public key e in lossy mode. It
seems difficult to construct an ALL-But-One (ABO) LTDF for CCA application
following their steps. Our generic construction can easily be extended to the
ABO LTDF. We will describe the extension in section 3.

1.2 Outline

This paper is organized as follows. In Sect. 2, we introduce the notations and
recall the definition of lossy trapdoor function and subgroup membership prob-
lem. In Sect. 3, we present the generic construction of LTDF. In Sect. 4, we
present concrete constructions of LTDF based on the k-DCR assumption, the
extended p-subgroup assumption, and the decisional RSA subgroup assumption,
respectively. In Sect. 5, we compare our work with the precious constructions.
In Sect. 6, we conclude this paper.

2 Preliminaries

2.1 Notation

If S is a set, we denote its size by |S| and denote by x ← S the process of
sampling x uniformly from S. If A is an algorithm, we denote by z ← A(x, y, · · · )
the process of running A with input x, y, · · · and output z. For an integer n, we
denote by [n] the set of {0, 1, · · · , n − 1}. A function is negligible if for every
c > 0 there exists a λc such that f(λ) < 1/λc for all λ > λc.

2.2 Lossy Trapdoor Function

A collection of lossy trapdoor functions consists of two families of functions.
Functions in the first family are injective and can be inverted with the trapdoor,
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while functions in the second are lossy, meaning that the size of their image
is significantly smaller than the size of their preimage. For CCA applications,
it is convenient to work with the All-But-One lossy trapdoor function. In the
following, we recall the definition of lossy trapdoor functions and All-But-One
lossy trapdoor function.

Definition 1 (Lossy Trapdoor Functions). A collection of (m, l)-lossy trap-
door functions are 4-tuple of probabilistic polynomial time (PPT) algorithms
(Sinj , Sloss, Fltdf , F

−1
ltdf ) such that:

1. Sample Lossy Function Sloss(1
n). Output a function index σ ∈ {0, 1}∗.

2. Sample Injective Function Sinj(1
n). Output a pair (σ, τ) ∈ {0, 1}∗ × {0, 1}∗

where σ is a function index and τ is a trapdoor.
3. Evaluation algorithm Fltdf . For every function index σ produced by either

Sloss or Sinj , the algorithm Fltdf (σ, ·) computes a function fσ : {0, 1}m →
{0, 1}∗ with one of the two following properties:
– Lossy: If σ is produced by Sloss, then the image of fσ has size at most

2m−l.
– Injective: If σ is produced by Sinj, then the function fσ is injective.

4. Inversion algorithm F−1
ltdf . For every pair (σ, τ) produced by Sinj and every

x ∈ {0, 1}m, we have F−1
ltdf (τ, Fltdf (σ, x)) = x.

In the above algorithms, the two ensembles {σ, σ ← Sloss(1
n)} and {σ, (σ, τ) ←

Sinj(1
n)} are computationally indistinguishable.

Definition 2 (All-But-One Lossy Trapdoor Functions). A collection of
(m, l)-All-But-One lossy trapdoor functions are 4-tuple of PPT algorithms (B,
S, Fltdf , F

−1
ltdf ) such that:

1. Sample a branch B. On input 1n, B outputs a value b ∈ {0, 1}∗.
2. Sample a function S. For every value b produced by B, the algorithm S

outputs a triple (σ, τ, β) ∈ {0, 1}∗ × {0, 1}∗ × {0, 1}∗ where σ is a function
index, τ is a trapdoor, and β is a set of lossy branch.

3. Evaluation algorithm Fltdf . For any b
∗ and b produced by B(1n), every σ, τ, β

produced by S(1n, b∗), the algorithm Fltdf (σ, b, ·) computes a function fσ,b :
{0, 1}m → {0, 1}∗ with one of the two following properties:
– Lossy: If b = b∗, then the image of fσ has size at most 2m−l.
– Injective: If b 	= b∗, then the function fσ is injective.

4. Inversion algorithm F−1
ltdf . For any b∗ and b produced by B(1n) and every

(σ, τ, β) produced by S(1n, b∗) and every x ∈ {0, 1}m, we have

F−1
ltdf (τ, Fltdf (σ, b, x)) = x.

– In the above algorithms, the two ensembles {σ, (σ, τ, β) ← S(1n, b)} and{σ,
(σ, τ, β) ← S(1n, b∗)} are computationally indistinguishable.

– Any PPT algorithm A that receives as input (σ, b∗), where b∗ ← B(1n)
and (σ, τ, β) ← S(1n, b∗), has only a negligible probability of outputting an
element b ∈ β \ {b∗}.
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2.3 Subgroup Membership Assumption

Gjφsteen [15] discussed the subgroup membership problem. A subgroup member-
ship problem considers a groupG with a non-trivial subgroupK. The problem as-
serts that it is hard to distinguish elements ofK from elements ofG\K. Brown [16]
analysed instances of subgroup membership problems and concrete schemes ob-
tained by following the Cramer-Shoup framework [17]. Brown gave the construc-
tions of CCA secure scheme based on the GBD subgroupmembership assumption
[18] , the r-th residuosity assumption [19], and the p-subgroup assumption [20].
Groth [14] proposed another example of the subgroup membership assumption,
the decisional RSA subgroup assumption. Paillier and Pointcheval [21] discussed
the subgroup variant of DCR-based encryption. The DCR assumption over this
subgroup variant is also a subgroup membership assumption.

Definition 3 (SubgroupMembership Assumption). Let G be a finite cyclic
group G with subgroupK. Let g(resp. h) be a generator of group G (resp. K). The
subgroup membership problem SM(G,K) asserts that, for any PPT distinguisherD,
the adavantage

Adv
SM(G,K)

D = |Pr[A(G,K, x) = 1|x← K]− Pr[A(G,K, x) = 1|x← G \K]|.

is negligible, where the probability is taken over coin tosses.

There are three interesting subgroup membership problems. We illustrate
them here since they are useful for our construction of LTDFs.
The 2k-QR assumption. Joye et al. [12] proposed the 2k-QR assumption. Let
N = pq be the product of two large primes p and q with p = 2kp′ + 1, q =
2kq′ + 1, where p′, q′ are primes. The internal direct product of Z∗

N is: Z∗
N
∼=

Gp′q′ ·G2k ·K2K . The decomposition is unique except for the choice of K2k . Let
G = Gp′q′ ·G2k andK = Gp′q′ , the 2

k-QR assumption asserts that it is infeasible
to distinguish elements of G \K from that of K.
The p-subgroup membership assumption. Okamoto and Uchiyama [20]
proposed the p-subgroup assumption. Let p, q be primes and set N = p2q. Let g
be a random element of Z∗

N such that the order of gp = gp−1 mod p2 is p. Let
h = gN mod N and G = {x = gmhr mod N |m ∈ Zp, r ∈ ZN}, K = {x = hr

mod N |r ∈ ZN}. The p-subgroup assumption is that it is infeasible to distinguish
elements of K from that of G \K given N and g.
The decisional RSA subgroup assumption. Groth [14] described a deci-
sional RSA subgroup assumption over Z

∗
N with semi-smooth order. Let N =

pq = (2p′rp + 1)(2q′rq + 1), with p, q, p′, q′ primes and rp, rq consists of distinct
odd prime factors smaller than some bound B. The internal direct product of
Z∗
N is: Z∗

N
∼= Grprq ·Gp′q′ ·G2 ·T. Let G be Grprq ·Gp′q′ and K = Gp′q′ . The deci-

sional RSA subgroup assumption asserts the hardness of distinguishing elements
in G \K from K.

Gjφsteen also gave the definition of subgroup discrete logarithm problem
which is a generalization of Paillier’s [22] partial discrete logarithm problem.
In their definition, g is a group element such that its residue class generates
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G/K and λ : G → Z|G/K| is the group homomorphism defined by λ(g) = 1
with ker(λ) = K. The subgroup discrete logarithm problem is: given a random
x ∈ G, compute λ(x). The formal definition follows.

Definition 4 (SubgroupDiscrete LogarithmProblem).Assume that group
G has a non-trivial subgroupK and let g be a generator ofG. If ϕ : G→ G/K is the
canonical epimorphism, then the subgroup discrete logarithm problem SDL(G,K,g)

is: given a random x ∈ G , to compute logϕ(g)(ϕ(x)).

3 A Generic Construction of LTDF

In order to make lossiness in LTDFs, we assume a generic subgroup assumption
having two special properties. The first property (namely SDL property) we
assume is that the subgroup discrete logarithm problem is solvable with a trap-
door. For a subgroup membership problem SM(G,K), let τ be the corresponding
trapdoor, there is a PPT algorithm to solve SDL(G,K,g) with the trapdoor τ .
The second property (namely lossy property) we require is that the length of
G/K’s order is significantly larger than that of K’s order. The input message in
[|G/K|] can be embeded into G by computing a pre-image of the map ψ. In the
lossy mode, we just compute a pre-image falling into subgroup K. The length
of G/K’s order should be significantly larger than that of K in order to get
lossiness.

In this subsection, we give the generic construction of LTDF based on the
subgroup membership assumption with special property. We assume that there
is a PPT generator Gen of groups with the subgroup membership assumption.
The generator Gen takes the security parameter n and outputs (G,K, g, h, τ),
where g (resp. h) is the generator of G (resp. K) and τ is the corresponding
trapdoor. The order of G is a polynomial of n.

We construct a (log |G/K|, log |G/K|− log |K|)-lossy trapdoor function
LTDFSM = (Sinj , Sloss, Fltdf , F

−1
ltdf ) as follows:

1. Sample Injective Function Sinj . On input 1n, Sinj chooses a random r ∈ Z|K|
and computes c := ghr. The function index is σ = (G, g, h, c). The trapdoor
is t = τ .

2. Sample Lossy Function Sloss. On input 1n, Sloss chooses a random r ∈ Z|K|
and computes c := hr. The function index is σ = (G, g, h, c).

3. Evaluation algorithm Fltdf . Given a function index σ = (N, g, h, c) and input
x ∈ {0, 1}l where l is the length of |G/K|, the algorithm computes and
outputs z = cx.

4. Inversion algorithm F−1
ltdf . Given a function index (N, g, h, c), the trapdoor

t = τ and a message z, the algorithm recovers x with the algorithm of solving
SDL(G,K,g)(z) problem.

Theorem 1. If the membership assumption holds and the group G has the SDL
property and the lossy property, then LTDFSM is an (log |G/K|, log |G/K| −
log |K|)-lossy trapdoor function.
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Proof. The algorithm to solve SDL(G,K,g) guarantees the correctness of inversion

algorithm F−1
ltdf . The subgroup membership assumption implies that the indices

of injective and lossy functions are computationally indistinguishable. The out-
put of the lossy function falls in subgroup K. The size of the lossy function’s
image is at most log |K|. Consequently, the lossiness is log |G/K| − log |K|. �
Remark 1. The construction [9] based on the DCR assumption is a concrete
example of this generic construction. The DCR construction is over Z∗

Ns , where
N = (2p′ + 1)(2q′ + 1). The group structure of Z∗

Ns is

Z
∗
Ns
∼= GNs−1 ·Gn′ ·G2 · T,

where Gt is the group of order t, T is a group with {−1, 1} and n′ = p′q′.
The decomposition is unique except for the choice of G2. In their construction,
G = GNs−1 · Gn′ · G2 · T , K = Gn′ · G2 · T with (N + 1) be the generator

of GNs−1 . The injective (resp. lossy) function index is (1 + N)rN
s−1

mod Ns

(resp. rN
s−1

mod Ns) for randomly chosen r ∈ Z∗
N . For a randomly chosen

g0 ∈ K, let g be (1 + N)g0 and h be a random element in K, then LTDFSM

is exactly the DCR construction. The SDL(G,K,(1+N)g0) problem can be solved
with decryption algorithm of [23] and the lossiness property is satisfied. The
disadvantage of the DCR construction is that s should be larger than 2.

The generic construction can easily be extended to a ABO LTDF. We describe
the extension here and the security proof is similar with that of Theorem 5.4
in [9] and is therefore omitted. We also assume that there is a PPT generator
Gen of groups with the subgroup membership assumption. The construction of
LTDFABO

SM = (B,S, Fltdf , F
−1
ltdf ) follows:

1. Sample a branch B. On input 1n, the algorithm B outputs a uniformly
distributed b ∈ {0, 1, . . . , |G|}.

2. Sample a function S. On input 1n and a lossy branch b∗, S chooses a random
r ∈ Z|K| and computes c := g−b∗hr. The function index is σ = (G, g, h, c).

3. Evaluation algorithm Fltdf . Given a function index σ = (N, g, h, c), a branch
b and input x ∈ {0, 1}l where l is the length of |G/K|, the algorithm com-
putes and outputs z = (gbc)x.

4. Inversion algorithm F−1
ltdf . Given a function index (N, g, h, c), the trapdoor

t = τ , a branch b 	= b∗ and a message z, the algorithm recovers x with the
algorithm of solving SDL(G,K,gb−b∗)(z) problem.

Theorem 2. If the membership assumption holds and the group G has the SDL
property and the lossy property, then LTDFABO

SM is an (log |G/K|, log |G/K| −
log |K|)-All But One lossy trapdoor function.

4 Concrete Constructions of LTDF

This section shows new efficient concrete constructions of LTDFs based on three
reasonable assumptions: the k-DCR assumption (implied by DCR and QR as-
sumptions), the extended p-subgroup assumption, and the decisional RSA sub-
group membership assumption.
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4.1 LTDF Based on k-DCR Assumption

Joye et al. [12] proposed the 2k-QR assumption and proved that it is implied
by the classical QR assumption. We first review 2k-QR assumption and DCR
assumption, then give the formal definition of k-DCR assumption.

Definition 5 ([12] Definition 1). Let p be an odd prime and 2k|p − 1. Then
the symbol (a

p

)
2k

:= a
p−1

2k mod p,

is called the 2k-th power residue symbol modulo p, where a
p−1

2k mod p are in
[−(p− 1)/2, (p− 1)/2].

LetN = pq be the product of two prime numbers, and p = 2kp′+1, q = 2kq′+1
with p′, q′ be primes. Let JN := {a ∈ Z∗

N |( a
N )2 = 1}, QRN := {a ∈ Z∗

N |(ap )2 =

(aq )2 = 1} and QNRN := JN \QRN .

Definition 6. Let N = pq be the product of two large primes p and q with
p, q ≡ 1 mod 2k. Define two sets

W0 := {x ∈ QNRN},

W1 := {y2
k

mod N |y ∈ Z∗
N}.

The Gap 2k Residuosity assumption (2k-QR) asserts that, for any PPT distin-
guisher D, the advantage

Adv2
k-QR

D = |Pr[D(x,N) = 1|x←W0]− Pr[D(x,N) = 1|x←W1]|

is negligible, where the probability is taken over coin tosses.

Definition 7. Let N = pq be the product of two large primes p and q. Define
two sets

P := {a = xN mod N2|x ∈ Z
∗
N},

M := {a = (1 +N)yxN mod N2|x ∈ Z
∗
N , y ∈ ZN}.

The Decisional Composite Residuosity (DCR) assumption asserts that, for any
PPT distinguisher D, the advantage

AdvDCR
D = |Pr[D(x,N) = 1|x← P ]− Pr[D(x,N) = 1|x← Z

∗
N2 ]|

is negligible, where the probability is taken over coin tosses.

The 2k-QR assumption is over the group Z∗
N . We embed Z∗

N into the group Z∗
N2

and get a k-DCR assumption by combining 2k-QR and DCR assumptions. We
also prove that the k-DCR assumption is implied by QR and DCR assumptions.
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Definition 8. Let N = pq be the product of two large primes p and q with
p = 2kp′ + 1, q = 2kq′ + 1. For random element y ∈ QNRN , define two sets

W0 := {a = r2
kN mod N2|r ∈ Z

∗
N},

W1 := {a = (1 +N)zytNr2
kN mod N2|r ∈ Z

∗
N , t ∈ [2k], z ∈ ZN}.

The k Decisional Composite Residuosity (k-DCR) assumption asserts that, for
any PPT distinguisher D, the advantage

Advk-DCR
D :=|Pr[D(x, y,N) = 1|x←W0, y ← QNRN ]

− Pr[D(x, y,N) = 1|x←W1, y ← QNRN ].

is negligible, where the probability is taken over coin tosses.

With overwhelming probability, random element y ∈ QNRN has order 2kp′q′

in Z∗
N . In detail, let d1 be the order of y modulo p, we have that d1 equals to 2kp′

or 2k since that (yp )2 ≡ y2
(k−1)p ≡ −1 mod p. Similarly, the order of y modulo

q, d2, is 2
kq′ or 2k. Consequently, the order of random element y in Z

∗
N is 2kp′q′

with probability 1− 1
p′ − 1

q′ +
1

p′q′ . We decompose Z∗
N2 as an inner direct product

Z
∗
N2
∼= GN ·G2k ·Gp′q′ ·K2k ,

where each group Gt is a group of order t. The decomposition is not unique,
but if given an element yN mod N2 where y ∈ QNRN has order 2kp′q′, the
subgroup GN ·G2k ·Gp′q′ is unique. Note that the element (1 +N) has order N
in Z∗

N2 , i.e. it generates GN while yN mod N2 has order 2kp′q′, i.e. it generates
G2k ·Gp′q′ . We have that (1 +N)yN generates the group GN ·G2k ·Gp′q′ which
is actually W1 in Definition 8. And W0 in Definition 8 is actually group Gp′q′ .

Theorem 3. The k-DCR assumption is implied by the 2k-QR assumption and
QR assumption. It satisfies that,

Advk-DCR
D ≤ 2Adv2

k-QR
B +AdvDCR

C ≤ 8kAdvQR
A +AdvDCR

C .

Proof. The complete proof of the theorem can be found in Appendix.

Now, we show a construction of LTDF based on the k-DCR assumption
over Z∗

N2 . The output of our construction is much shorter, as compared with
construction based on the DCR assumption [9] and Joye et al.’s construction
based on the 2k-QR assumption [12]. Specifically, the DCR based construc-
tion is over Z∗

Ns for s ≥ 3. The output has s logN bits for s ≥ 3. For well-
chosen parameters, the output of 2k-QR construction is a 18 × 18 matrix over
ZN with 234 logN bits. Our construction is computed over Z

∗
N2 . We define

LTDFk-DCR = (Sinj , Sloss, Fltdf , F
−1
ltdf ) as follows
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1. Sample Injective Function Sinj . On input 1n, Sinj chooses an n-bits N = pq
where p = 2kp′+1, q = 2kq′+1 and p, q, p′, q′ are prime numbers. It chooses
a random y ∈ QNRN and computes g = yN mod N2. Then it chooses a

random h1 ∈ Z∗
N and compute h = h2kN

1 mod N2. It chooses a random r ∈
[N4k ] and let c = (1+N)ghr mod N2. The function index is σ = (N, g, h, c).
Let λ = (p− 1, q − 1) then the trapdoor is t = {λ, p}.

2. Sample Lossy Function Sloss. On input 1n, Sloss chooses an n-bits N = pq
where p = 2kp′+1, q = 2kq′+1 and p, q, p′, q′ are prime numbers. It chooses
a random y ∈ QNRN and computes g = yN mod N2. Then it chooses a

random h1 ∈ Z∗
N and compute h = h2kN

1 mod N2. It chooses a random
r ∈ [ N4k ] and let c = hr mod N2. The function index is σ = (N, g, h, c).

3. Evaluation algorithm Fltdf . Given a function index σ = (N, g, h, c) and input
x ∈ [2kN ] the algorithm outputs z = cx.

4. Inversion algorithm F−1
ltdf . Given the function index (N, g, h, c), trapdoor

t = {λ, p} and a message z, the algorithm first computes x1 = zλ−1
N λ−1

mod N , then finds an x2 ∈ [2k] such that the following holds,[(g
p

)
2k

]x2

=
(z
p

)
2k

mod p.

Finally, it computes x with the Chinese Reminder Theorem:{
x = x1 mod N,

x = x2 mod 2k.

Theorem 4. Under the k-DCR assumption, it holds that LTDFk-DCR is an
(n+ k, 3k)-lossy trapdoor function.

Proof. Let G = GN · G2k · Gp′q′ and G = G2k · Gp′q′ , the SMG,K is the k-
DCR assumption. The decryption algorithms of Paillier’s scheme [22] and Joye’s
scheme [12] solve the SDL(G,K,(1+N)g) problem correctly with the trapdoor.

The order of G/K here is 2kN and the order of K is p′q′. It’s a direct result of
Theorem 1. �

Remark 2. Joye et al. pointed out that for security parameters n, we can choose
k ≤ 1

4 logN − n. If k = n, it is sufficient to set k = 1
8 logN . This construction

can be generalized to groups over Z∗
Ns , s ≥ 2 by following the step of [23]. We

note that if g is omitted, then LTDFk-DCR has less lossiness.

4.2 LTDF Based on Extended p-Subgroup Assumption

Okamoto and Uchiyama [20] proposed the p-subgroup assumption. with N =
p2q. We restrict p, q to be safe primes for technical reasons. Now we consider the
group Z

∗
N2 with N = p2q. The element (1+N) has order N in Z

∗
N2 . Consider the

integer (1+N)i ≡
∑i

j=0 C
j
i N

j mod N2. The number is 1 modulo N2 for some i
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if and only if (1+ iN) ≡ 1 mod N2. Clearly this is the case i = aN for a ∈ N, so
it follows that the order of (1+N) mod N2 is N . For random element y ∈ Z∗

N ,

g = y2N
2

has order p′q′ modulo N2 with overwhelming probability. Indeed the
order of g modulo p4 (resp. q2) is p′ (resp. q′) with probability 1 − 1

p′ (resp.

1− 1
q′ ). The above g has order p′q′ modulo N2 with probability 1− 1

p′ − 1
q′ +

1
p′q′ .

If the inner direct product of Z∗
N2 is

Z
∗
N2
∼= GN ·Gp ·Gn′ ·K4,

then (1+N) is a generator of GN and g is a generator of Gn′ with overwhelming
probability. Consequently, (1+N)g is a generator of GN ·Gn′ with overwhelming
probability.

Next, we consider the subgroup problem SM(GNGn′ ,Gn′) over Z
∗
N2 and propose

another example of the subgroup membership assumption.

Definition 9 (Extended p-subgroup assumption). With the notions above,
let G = GN · Gn′ and K = Gn′ . The extended p-subgroup assumption asserts
that the subgroup membership problem SM(G,K) is difficult.

Now, we construct a LTDF based on the extended p-subgroup assumption.
We define LTDFE p-sub = (Sinj , Sloss, Fltdf , F

−1
ltdf ) as follows.

1. Sample Injective Function Sinj.On input security parameter 1n, Sinj chooses
N = p2q where p = 2p′ + 1, q = 2q′ + 1 and p, q, p′, q′ are prime numbers. It
chooses y randomly in Z∗

N and computes h = y2N
2

mod N2. Sinj chooses a
random r ∈ ZN and computes c = (1 +N)hr mod N2. The function index
is σ = (N, h, c). The trapdoor is t = p′q′.

2. Sample Lossy Function Sloss. On input security parameter 1n, Sloss chooses
N = p2q where p = 2p′ + 1, q = 2q′ + 1 and p, q, p′, q′ are prime numbers. It
chooses y randomly in Z∗

N and computes h = y2N
2

mod N2. Sloss chooses
a random r ∈ ZN and computes c = hr mod N2. The function index is
σ = (N, h, c).

3. Evaluation algorithm Fltdf . Given a function index σ = (N, h, c) and input
x ∈ ZN the algorithm outputs z = cx.

4. Inversion algorithm F−1
ltdf . Given the function index (N, g, h, c), trapdoor t

and a message z, the algorithm computes x = zt−1
N t−1 mod N .

Theorem 5. Under the extended p-subgroup assumption, it holds that
LTDFE p-sub is an (logN, 13 logN)-lossy trapdoor function.

Proof. Let G = GN · Gn′ and K = Gn′ , the inversion algorithm solve the
SDL(G,K(1+N)h) correctly. The order of G/K is N and the order of K is n′.
It is a direct result of Theorem 1. �

4.3 LTDF Based on the Decisional RSA Subgroup Assumption

Groth [14] described a decisional RSA subgroup assumption over Z∗
N with semi-

smooth order and gave a chosen plaintext secure encryption scheme over this
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group. Let N = pq = (2p′rp + 1)(2q′rq + 1), where p, q, p′, q′ are primes and rp,
rq consist of distinct odd prime factors smaller than some low bound B. The
internal direct product of Z∗

N is:

Z
∗
N
∼= Grprq ·Gp′q′ ·G2 · T.

In fact, Grprq · Gp′q′ is the quadratic residue group QRN of Z∗
N . Let g be

a generator of QRN then h = grprq is a generator of Gp′q′ . The decisional
RSA subgroup assumption asserts that it is hard to distinguish elements drawn
randomly from QRN or from Gp′q′ . Let G = Gp′q′ ·Grprq and K = Gp′q′ , then
the decisional RSA subgroup assumption is another instance of the subgroup
membership assumption.

Let t be the number of distinct primes of rprq, and we assume the length l of
the prime factors is about logB. Lemma 2 in [14] shows that a randomly chosen
g in QRN has order larger than p′q′2(t−d)(l−1) with overwhelming probability.
To encrypt a message with length (t − d)(l − 1), where d is an integer smaller
than t, we can encrypt m as c = gmhr. To decrypt c, we compute cp

′q′ = gp
′q′m

mod N . The message m can be derived since the order of gp
′q′ has only small

prime factors. The decryption algorithm is efficient with the help of a storage
list. Groth gave an example of parameters, where lN = 1280, lp′ = lq′ = 160,
B = 215, t = 64, d = 7. The length of message space is no smaller than 698 with
probability higher than 1 − 2−80. With well chosen parameters, this decisional
RSA subgroup assumption can be used to construct efficient LTDF.

Next, we construct a LTDF based on the decisional RSA subgroup assump-
tion. We define LTDFRSA = (Sinj , Sloss, Fltdf , F

−1
ltdf ) as follows.

1. Sample Injective Function Sinj. On input 1n, Sinj chooses N = pq with
p = 2p′rp + 1, q = 2q′rq + 1 where p, q, p′, q′ are prime numbers. Let rp, rq
be B-smooth with distinct prime factors. It chooses g ∈ QRN randomly,
and chooses a generator h of Gp′q′ . It chooses proper parameters t and d
and denotes lx = (t − d)(l − 1). It chooses a random r ∈ ZN and computes
c = ghr mod N . The function index is σ = (N, g, h, c). The trapdoor is the
factorization of ϕ(N).

2. Sample Lossy Function Sloss. On input 1n, Sloss chooses N = pq with p =
2p′rp + 1, q = 2q′rq + 1 where p, q, p′, q′ are prime numbers. Let rp, rq be
B-smooth with distinct prime factors. It chooses g ∈ QRN randomly, and
chooses a generator h of Gp′q′ . It chooses proper parameters t and d and
denotes lx = (t−d)(l−1). It chooses a random r ∈ ZN and computes c = hr

mod N . The function index is σ = (N, g, h, c).
3. Evaluation algorithm Fltdf . Given a function index σ = (N, g, h, c) and the

input x ∈ {0, 1}lx the algorithm outputs z = cx.
4. Inversion algorithm F−1

ltdf . Given the function index (N, g, h, c), the factor-
ization of ψ(N) and the message z, the algorithm invokes the inversion algo-
rithm provided by the decryption algorithm of Groth’s scheme. We compute
Cp = zp

′q′ = (gp
′q′)x mod N . Since the order of gp

′q′ is B-smooth, we can

derive x by computing discrete log of Cp base gp
′q′ .
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Theorem 6. Under the decisional RSA subgroup assumption, it holds that
LTDFRSA is an (lx, lx − (lp′ + lq′))-lossy trapdoor function.

Proof. Let G be the group generated by g and K be the group generated by h,
this is a direct result of Theorem 1. �

5 Comparison

In the Table 1, we compare the three constructions instantiated with the generic
construction in Section 3 with previous LTDFs. The second column lists the basic
number-theoretic assumptions used for guaranteeing the security. The third and
fourth columns show the size of a input message in bits and that of lossiness,
respectively. The fifth column lists the size of the function index. The last column
indicates if there there a direct extension to ABO-LTDF from the construction
of LTDF or not.

Table 1. Comparison with existing LTDFs

Assumption Input size Lossiness Index size Efficiency ABO?

[1] DDH n n− |G| n2
G n2 Multi Yes

[1] LWE n cn n(d+ w)Zq n(d+ w) Multi Yes
[9], [10] d-linear n n− d|G| n2

G n2 Multi Yes
[9], [10] DCR (s− 1) logN (s− 2) logN Z

∗
Ns 1 Modular Exp Yes

[9], [10] QR logN 1 Z
∗
N 1 Multi Yes

[12] DDH& QR n n− logN (n
k
)2Z∗

N (n
k
)2 Multi Yes

[6] Φ-hiding logN log e Z
∗
N 1 Modular Exp No

Sect.4.1 QR & DCR logN + k 3k Z
∗
N2 1 Modular Exp Yes

Sect.4.2 E p-sub logN 3
4
logN Z

∗
N2 1 Modular Exp Yes

Sect.4.3 D RSA lx lx − lp′ − lq′ Z
∗
N 1 Modular Exp Yes

In the first and third line, n is the number of rows used in the matrix. It has to be larger
than |G|. In the second line, 0 < C < 1, n is the rows used in the matrix, w = n

log p

with p2 ≥ q and d < w. In the forth line, s has to be larger than 2. In the sixth line
and the construction in Sect. 4.1, k is less than 1

4
logN − κ where κ is the security

parameter. In the seventh line, e is the factor of φ(n). In the last line, lx is the length
of the semi-smooth subgroup’s order and lp′ (resp. lq′) is the length of p′ (resp. q′).

The LTDFs based on the QR, DCR and Φ-hiding assumptions are efficient.
The QR based LTDF in [9], [10] has only one bit lossiness which is useless
for some applications. Compared with the DCR based LTDF in [9], [10], our
construction in Sect. 4.1 is computed over Z∗

N2 and the LTDF in Sect. 4.3 is
computed over Z∗

N . Compared with the Φ-hiding based LTDF in [6], our con-
structions have a direct extension to ABO-LTDFs.
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6 Conclusion

We proposed a generic construction of lossy trapdoor function from the subgroup
membership assumption. We presented three concrete constructions based on
the k-DCR assumption over Z∗

N2 , the extended p-subgroup assumption over
Z∗
N2 , and the decisional RSA subgroup membership assumption over Z∗

N . Our
constructions are more efficient than the previous construction from the DCR
assumption over Z∗

Ns(s ≥ 3).

Acknowledgments. The authors would like to thank anonymous reviewers for
their helpful comments and suggestions.
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Appendix: Proof of Theorem 3

Proof. Denote by V0 the set {a = r2
k

mod N |r ∈ Z∗
N}. D is an algorithm

which takes x, y, N as input and returns 0 or 1. We shall need the following
experiments, Experiment i for i = 1, 2, 3, 4.

Experiment 1 :
Input: D, N , y ∈ QNRN

1. t← [2k], z ← ZN .
2. r ← Z∗

N .
3. b← {0, 1}.
4. If b = 1, then x = r2

kN mod N2,

otherwise x = r2
kNytN (1 + N)z

mod N2.
5. b′ ← D(N, x, y).

Output: If b′ = b output 1, otherwise
0.

Experiment 2 :
Input: D, N , y ∈ V0

1. t← [2k], z ← ZN .
2. r ← Z∗

N .
3. b← {0, 1}.
4. If b = 1, then x = r2

kN mod N2,

otherwise x = r2
kNytN(1 + N)z

mod N2.
5. b′ ← D(N, x, y).

Output: If b′ = b output 1, otherwise
0.
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Experiment 3 :
Input: D, N , y ∈ V0

1. z ← ZN .
2. r ← Z∗

N .
3. b← {0, 1}.
4. If b = 1, then x = r2

kN mod N2,

otherwise x = r2
kN (1 + N)z

mod N2.
5. b′ ← D(N, x, y).

Output: If b′ = b output 1, otherwise
0.

Experiment 4 :
Input: D, N , y ∈ QNRN

1. r ← Z∗
N .

2. b← {0, 1}.
3. Set x = r2

kN mod N2.

4. b′ ← D(N, x, y).

Output: If b′ = b output 1, otherwise
0.

Let Ti, i = 1, 2, 3, 4 denote the event that the Experiment i returns 1. By the
definition of k-DCR, Experiment 1 is exactly the k-DCR experiment, and we
have

Advk−DCR
D ≤ |2Pr[T1]− 1|.

Now we consider the Experiment 2, the only difference between Experiment
1 and 2 is that y is sampled from V0 instead of QNRN . We have,

2|Pr[T1]− Pr[T2]| ≤ Adv2
k-QR

B .

In Experiment 3, if y is chosen from V0 uniformly, then Experiment 2 and 3
are identical. We have that, Pr[T2] = Pr[T3].

Now we consider Experiment 4. The difference between Experiment 4 and 3

is the choice of x and y. Define X := {r2kN (1+N)z mod N2|r ← Z∗
N , z ← ZN}

and L := {r2kN mod N2|r ← Z∗
N}. Given input x of classical DCR problem, if

x is chosen uniformly from M (resp. P ), then x2
k

is uniformly distributed over
X (resp. L). The indistinguishability of y in Experiment 3 and 4 is implied by
2k-QR assumption. Consequently, the difference between Experiment 4 and 3 is
bounded by DCR and 2k-QR assumptions.

2|Pr[T3]− Pr[T4]| ≤ AdvDCR
B +Adv2

k-QR
B .

The input of D in Experiment 4 includes no information of b, we have that
Pr[T4] =

1
2 . Combining the above, we have

Advk-DCR
D ≤ |2Pr[T1]− 1|

≤ 2|Pr[T1]− Pr[T4]|
≤ 2|Pr[T1]− Pr[T2]|+ 2|Pr[T2]− Pr[T3]|+ 2|Pr[T3]− Pr[T4]|

≤ 2Adv2
k-QR

B +AdvDCR
C .

With the result of Theorem 2 in [12], Adv2
k-QR

B ≤ 4kAdvQR
A , we have that

Advk-DCR
D ≤ 8kAdvQR

A +AdvDCR
C .

�
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Abstract. The computation process of a Distributed Verifiable Random
Function (DVRF) on some input specified by the user involves multiple,
possibly malicious servers, and results in a publicly verifiable pseudoran-
dom output to the user. Previous DVRF constructions assumed trusted
generation of secret keys for the servers and imposed a threshold on the
number of corrupted servers.

In this paper we propose the first generic approach for building DVRFs,
under much weaker setup assumptions, where we only require existence
of a shared random string. More precisely, we first aim at constructions of
Distributed Verifiable Unpredictable Functions (DVUF) that can then be
converted to DVRF using inner products with a random string as spec-
ified by Micali, Rabin, and Vadhan (FOCS’99) for the non-distributed
VUF/VRF case.

Our main contribution are generic DVUF constructions from aggre-
gate signatures that satisfy the property of uniqueness. We define unique-
ness for two flavors of aggregate signatures (with public and sequen-
tial aggregation) and show that both flavors can be used to obtain
DVUF. By proving uniqueness of existing pairing-based aggregate sig-
nature schemes we immediately obtain several concrete communication-
efficient DVUF/DVRF instantiations.

1 Introduction

Unique Signatures and VRFs. The uniqueness property for digital signa-
tures, introduced by Goldwasser and Ostrovsky [19], guarantees that all sig-
natures produced by one signer on the same message remain “similar” in that
there exists an efficient publicly computable function that yields the same unpre-
dictable value on input of any such signature. This property has been explored
for traditional signature schemes [19,24] and more recently in the context of
advanced schemes such as group signatures [14] and ring signatures [15] where
it enabled more efficient anonymity revocation resp. linkability procedures. The
uniqueness property doesn’t require all signatures to be identical as it is the
case for deterministic schemes. In fact, it is sufficient for an unique signature to
contain some unique component that can be used to link different signatures of
the same signer on the same message.
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Goldwasser and Ostrovsky [19] established the equivalence between unique
signatures and non-interactive zero-knowledge proofs (NIZK) for hard-to-predict
languages. The main application of unique signatures, e.g. in [24,12], has been
the construction of Verifiable Random Functions (VRF) [25] — these are pseu-
dorandom functions with a corresponding private/public key pair (sk, pk) that
on some input x output a pair (F (sk, x), π(sk, x)) where F (sk, x) is pseudo-
random and π(sk, x) represents a proof for the correctness of the computation
that can be verified in a public fashion using pk. In order to construct VRFs
from unique signatures one first needs to construct a so-called Verifiable Unpre-
dictable Function (VUF) and then apply the transformation from [25] to convert
VUF into VRF. For the actual construction of VUF out of a unique signature
scheme one simply considers the signer’s secret key as a secret seed and treats
the resulting unique signature (or its unique component) as a VUF output,
whose correctness can be checked publicly using the verification procedure of
the signature scheme and the signer’s public key. As observed in [1], who con-
structed VRFs in the identity-based setting, VRFs turned out to be very useful
for many applications, including resettable zero-knowledge proofs [26], micro-
payment schemes [28], updatable zero-knowledge databases [21], and verifiable
transaction escrow schemes [20].

Distributed VRFs. In a distributed VRF (DVRF) setting, considered by
Dodis [11], there are multiple parties (servers), each in possession of its own
secret and public key such that any subset of n servers can participate in the
computation process. The approach taken in [11] to build a DVRF scheme was
to first propose a concrete VRF construction and then turn it into DVRF by
using the (t+1, n)-secret sharing technique [30] to equip servers with individual
shares ski of the private VRF key sk. In addition, for each party i an individ-
ual public key pki is derived from ski. In order to compute the DVRF output
(F (sk, x), π(sk, x)) the input x is communicated by the user to each of the n
parties that reply with their intermediate VRF outputs (F (ski, x), π(ski, x)). If
at least t+1 intermediate VRF proofs π(ski, x) are valid (which is checked using
corresponding public keys pki) then the final DVRF output (F (sk, x), π(sk, x))
can be computed by the user through polynomial interpolation. The validity of
the resulting DVRF proof π(sk, x) can be checked publicly using the original pk
of the underlying VRF scheme.

The DVRF construction from [11] is reasonably efficient, yet has a few limi-
tations, as discussed in the following. One consequence of using (t+ 1, n)-secret
sharing is that in order to guarantee pseudorandomness of F (sk, x) at least t+1
parties involved in its computation process must remain honest. The DVRF
scheme from [11] requires a trusted setup procedure for the generation and dis-
tribution of shares ski, which is a strong assumption. The assumption on trusted
setup could possibly be removed by adopting a matching Distributed Key Gener-
ation (DKG) protocol, e.g. [16], yet at the cost of reduced efficiency and possibly
further restrictions on the ratio between the threshold value t+ 1 and n.
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We observe that the approach taken in [11] to apply threshold cryptography
on top of a non-distributed VRF scheme is so far the only known way to construct
DVRF schemes.

The original motivation for DVRF schemes given in [11] is the practical re-
alization of random oracles, a theoretical construct introduced in [4] that is
frequently used in security proofs of cryptographic schemes. In a nutshell, ran-
dom oracle is a mathematical function that on any new input outputs a random
string from the output domain. Goldreich, Goldwasser and Micali [17] were the
first who showed how to simulate a random oracle for fixed-length input and
output strings by using a PRF. Canetti et al. [10] showed that no fixed public
function can generically replace the random oracle. They demonstrated that a
PRF should not be expected to offer a general solution for realizing random
oracles. Micali, Rabin, and Vadhan [25] suggested that a random oracle can be
realized using VRF schemes. Dodis observed that this would require a significant
amount of trust put into a single party that computes VRF outputs and argued
that it is desirable to distribute this trust across multiple, ideally independent
parties.

Our DVRF Approach: Unique (Sequential) Aggregate Signatures. In
this work we propose another approach for building DVRF schemes without
imposing trust assumptions on the generation of secrets keys ski for the in-
volved servers and without requiring any particular threshold on the number
of honest servers. Our main contribution is to build DVRF schemes generically
from different flavors of aggregate signatures [7,23,22] where each signer i has
its own private/public key pair (ski, pki) and a set of n signers contributes to
the computation of an aggregate signature σ̄ on some set of (possibly different)
messages m = {m1, . . . ,mn} where the size of resulting σ̄ is independent of n.
The signature can be verified using the set of public keys pk = {pk1, . . . , pkn}.

Just as in case of a VRF that can be obtained from a VUF we show that
different flavors of aggregate signatures can be used to build a distributed VUF
(DVUF), which can then be converted to a DVRF using the techniques from [25].
In order to construct DVUFs from aggregate signatures the latter require some
sort of uniqueness. Since the property of uniqueness in the context of aggregate
signatures has not been considered so far, we first need to define it. We define
uniqueness for aggregate signatures with public aggregation (cf. [7]) and denote
such schemes by UAS, and for sequential aggregate signatures (cf. [23,22]), de-
noted by USAS. Our definition of uniqueness in both cases roughly means that
for any aggregate signature σ̄ produced on the same set of messages m using
the same set of private keys sk = {sk1, . . . , skn} there exists no other aggregate
signature ¯̄σ such that Verify(pk,m, σ̄) = Verify(pk,m, ¯̄σ) = 1.

At a high level, our DVUF construction from any UAS/USAS scheme pro-
ceeds as follows: the DVUF public key pk consists of all UAS/USAS public keys
pki while each UAS/USAS secret key ski is generated individually by the respec-
tive DVUF server i. The DVUF output (F (sk, x), π(sk, x)) is essentially given
by (unq(σ̄), σ̄) where unq(σ̄) determines the unique component of aggregate sig-
nature σ̄, which in turn plays the role of the proof. Note that each server signs



254 V. Kuchta and M. Manulis

the same message x that is specified by the user as input to DVUF. The actual
computation process and interaction differs for UAS and USAS schemes. Our
most efficient UAS-based DVUF construction requires only one communication
round in which the user sends x to each of the n servers, obtains their individual
signatures and then aggregates them locally to obtain the DVUF output. In the
USAS-based DVUF construction the user needs to contact n servers sequentially
and obtains the resulting DVUF output and the proof upon contacting the last
server in the sequence.

Our UAS/USAS-based approach for constructing DVUF and consequently
DVRF has two advantages over [11]: (1) the uniqueness and unforgeability prop-
erties of UAS/USAS schemes will guarantee that the DVRF output F (sk, x) is
pseudorandom even if the adversary corrupts up to n− 1 servers; (2) since each
server i can generate her own UAS/USAS key pair (ski, pki) independently, our
DVUF construction doesn’t require any trusted setup procedure for the distribu-
tion of ski. When using the inner product-based technique from [25] to convert
out DVUF outputs into DVRF outputs we need to impose existence of a shared
random string [13] as an additional, albeit much weaker setup assumption than
the trustworthy generation of secret keys adopted in [11].

DVUF/DVRF Instantiations. We obtain several concrete DVUF/DVRF in-
stantiations from existing (sequential) aggregate signatures schemes by proving
the uniqueness property for the (pairing-based) aggregate signature schemes by
Boneh et al. [7], Lu et al. [22], and Schröder [31]. The scheme from [7] is a very
efficient random oracle-based construction that supports public aggregation of
signatures. The schemes from [22,31] offer sequential aggregation in the stan-
dard model and are based on two popular signature schemes; in particular, [22]
offers aggregation of Waters signatures [32], while [31] shows how to aggregate
Camenisch-Lysyanskaya [9] signatures.

A Note on Multisignatures. In our generic DVUF constructions parties com-
pute aggregate signatures on the same input message, specified by the user. This
step can also be realized using multisignatures [5] that represent a special case
of aggregate signatures in that all signers are required to use the same mes-
sage in the execution of the signing protocol. Our generic DVUF constructions
can therefore be analysed from the perspective of unique multisignatures, yet
their instantiations may not necessarily be more communication-efficient than
those presented in our work. This is because all existing aggregate signatures
are non-interactive in that at most one message needs to be exchanged between
the signers, which is not the general case for multisignatures. For instance, the
signing process of multisignature schemes from [27,3,2] requires several rounds
of interaction amongst the participating signers. Those schemes, if unique, can
be possibly used to realize a DVUF but at the cost if the increased communi-
cation overhead, in comparison to non-interactive aggregate signature schemes
used in our constructions. On the other hand, there exist several multisigna-
ture schemes where the signing process is non-interactive, e.g. [5,22,6,33]. These
schemes seem to satisfy the uniqueness property and could possibly be used to
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obtain communication-efficient DVUF constructions. For instance, Boldyreva’s
scheme [5] that uses Gap Diffie-Hellman groups and is based on BLS signa-
tures [8], when realized using pairings, would offer a similar performance for a
DVUF, in the random oracle model, as the aggregate signature scheme from [7]
that is used in our work. Similarly, the multisignature scheme from [22], which
is based on the signature scheme by Waters [32], could be used to build DVUF
in the standard model. The resulting scheme would offer similar communication
performance to the DVUF construction that we obtain by using their aggregate
signature scheme. One advantage of using these non-interactive multisignatures
in comparison to corresponding aggregate signatures is that by adding further
“proofs of secret key possession” from [29] one could obtain a higher level of
security against rogue key attacks that is notoriously difficult to achieve for the
more general case of aggregate signatures.

2 Preliminaries

All concrete constructions used in this paper are in the setting of bilinear groups,
defined in the following.

Definition 1 (Bilinear Groups). Let G(1λ), λ ∈ N be an algorithm that on
input a security parameter 1λ outputs the description of two cyclic groups G1 =
〈g1〉 and G2 = 〈g2〉 of prime order q with |q| = 1λ, where possibly G1 = G2,
and an efficiently computable e : G1 × G2 → GT with GT being another cyclic
group of order q. The group pair (G1,G2) is called bilinear if e(g1, g2) 	= 1 and
∀u ∈ G1, v ∈ G2, ∀a, b ∈ Z : e(ua, vb) = e(u, v)ab.

3 Unique Aggregate Signatures

In this section we recall definitions of aggregate signatures with public aggrega-
tion and define their uniqueness property. We adopt the syntax and the security
model from [7].

Definition 2 (AS scheme). An aggregate signature scheme AS consists of
the following algorithms:

ParGen(1λ) is a PPT algorithm that takes as input the security parameter 1λ

and outputs public system parameters I.
KeyGen(I) is a PPT algorithm that takes as input I and generates a private/public

key pair (ski, pki) for an user i.
Sign(ski,mi) is a possibly deterministic algorithm that takes as input a secret

key ski and a message mi and outputs a signature σi.
Verify(pki,mi, σi) is a deterministic algorithm that takes as input a candidate

signature σi, a public key pki, and a message mi, and outputs 1 if the sig-
nature is valid and 0 otherwise.

Aggregate(pk,m,σ) is an algorithm that takes as input a set of signatures σ =
(σ1, ..., σn), public keys pk = (pk1, . . . , pkn), andmessagesm = (m1, . . . ,mn),
and outputs an aggregate signature σ̄.
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AggVerify(pk,m, σ̄) is a deterministic algorithm that takes as input a candidate
aggregate signature σ̄, a set of messages m and public keys pk, and outputs
1 if the signature is valid, or 0 otherwise.

Definition 3 (Unforgeability of AS). An aggregate signature scheme is un-
forgeable if for any PPT adversary A, running in time at most t and invoking
the signing oracle at most qS times, the probability that the following experiment
outputs 1 remains negligible in the security parameter λ.

Experiment ForgeAS
A (λ)

I ← ParGen(1λ)
(skc, pkc)← KeyGen(I)
(m∗,pk∗, σ∗)← AOSign(skc,·)(I, pkc)
Let mc be the message those index in m∗ corresponds to the index of pkc in
pk∗.
Output 1 if all of the following holds:
– AggVrfy(σ∗,m∗,pk∗) = 1,
– mc ∈m∗ was never submitted to OSign(skc, ·)

where A is given access to the following aggregate signing oracle:

OSign(skc·): The adversarial input to the oracle contains a message mi under
the public key pkc, the oracle computes the signature σi on mi using skc and
gives the signature to A.

Our definition of uniqueness for aggregate signatures with public aggregation is
given in Definition 4. This definition fits likewise probabilistic and deterministic
schemes due to the use of function unq, even though we are not aware of any
(non-interactive) probabilistic scheme that supports public aggregation.

Definition 4 (Unique AS). An unforgeable AS scheme is said to be unique,
denoted by UAS, if there exists an efficient deterministic function unq which
on input an aggregate signature σ̄ outputs a string of polynomial-size in the
security parameter of the scheme such that for any ordered sequence of mes-
sages m = (m1, . . . ,mn) and public keys pk = (pk1, . . . , pkn) there exist no
two aggregate signatures σ̄ and ¯̄σ for which it holds that Verify(pk,m, σ̄) =
Verify(pk,m, ¯̄σ) = 1, and unq(σ̄) 	= unq(¯̄σ).

3.1 Uniqueness of Boneh-Gentry-Lynn-Shacham AS Scheme

We recall the aggregate signature scheme with public aggregation from [7] where
the hash function H : {0, 1}∗ → G1 is modeled as a random oracle.

ParGen(1λ). On input of the security parameter 1λ this algorithm outputs public
parameters I = (G1,G2, g1, g2, ψ, e,GT , q), with ψ(g2) = g1, where ψ is a
computable isomorphism from G2 to G1.

KeyGen(I). For an user i, choose randomly xi
r← Zq and compute vi ← gxi

2 . It
outputs (ski, pki) = (xi, vi).
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Sign(mi, ski). For all i, it takes as input ski and a message mi ∈ {0, 1}∗. The
algorithm computes hi ← H(mi), where hi ← G1 and σi ← hxi

i . Output is
σi ∈ G1.

Verify(mi, pki, σi). For all i ∈ [n] the algorithm takes as input mi and σi. It
outputs 1 if e(σi, g2) = e(hi, vi) and 0 otherwise.

Aggregate(pk,m,σ). On the input pk,m,σ the algorithm computes σ̄ ←
n∏

i=1

σi. The aggregate signature is σ̄ ∈ G1.

AggVerify(pk,m, σ̄). This algorithm takes as input an aggregate signature σ̄,a
sequence of messages m = (m1, ...,mn) and a sequence of pubic keys pk =
(v1, . . . , vn) ∈ G2, for all users ui. The algorithm outputs 1 if the messagesmi

are all distinct and e(σ̄, g2) =
n∏

i=1

e(hi, vi). Otherwise the algorithm outputs 0.

The above scheme offers unforgeability in the random oracle model, as already
proven in [7]. Interestingly, our Theorem 1 shows that this scheme is unique
without imposing the random oracle assumption on H .

Theorem 1. The Boneh-Gentry-Lynn-Shacham AS scheme is unique according
to Definition 4.

Proof. Assume that there exist two valid aggregate signatures σ̄ and ¯̄σ on an or-
dered sequence of messages m = (m1, ...,mi) such that the equation Verify(pk,
m, σ̄) = Verify(pk,m, ¯̄σ) = 1. We define unq(σ̄) as an identity function. That

is, unq(σ̄) = σ̄ and unq(¯̄σ) = ¯̄σ. We know that σ̄ =
i∏

j=1

h
xj

j . In the following we

prove by induction on i that ¯̄σ = σ̄:

Base step: i = 1. The signature ¯̄σ must satisfy the verification process e(σ, g2) =
e(h, v), i.e. e(¯̄σ, g2) = e(h, gx2 ) = e(hx, g2). It holds only if ¯̄σ = hx = σ̄.

Induction step: i− 1 -→ i . Let the theorem hold for i − 1. The verification al-
gorithm will accept ¯̄σi if it satisfies the verification equation e(¯̄σi, g2) =
i∏

j=1

e(hj, vj). By the induction hypothesis we have the validity for i − 1 ag-

gregated signatures, i.e. ¯̄σi−1 =
i−1∏
j=1

h
xj

j and ¯̄σi = ¯̄σi−1 · σ̃i. We put this value

into the verification equation such that:

e

⎛⎝⎛⎝i−1∏
j=1

h
xj

j

⎞⎠ · σ̃i, g2
⎞⎠ =

i∏
j=1

e(hj , vj) =

i∏
j=1

(hj , g
xj

2 )

⇔ e

⎛⎝i−1∏
j=1

h
xj

j , g2

⎞⎠ e(σ̃i, g2) =

i−1∏
j=1

e(hj, g
xj

2 )e(hi, g
xi
2 )

⇔ e(σ̃i, g2) = e(hi, g
xi
2 ) = e(hxi

i , g2)⇔ σ̃i = hxi

i
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Therefore we have ¯̄σi = ¯̄σi−1 · σ̃i =
i−1∏
j=1

h
xj

j · h
xi

i = σ̄i. �

4 Unique Sequential Aggregate Signatures

In the following we recall definitions of sequential aggregate signatures using the
syntax and security model from [23,22] and define their uniqueness.

Definition 5 (SAS scheme). A sequential aggregate signature scheme SAS
consists of the following algorithms:

ParGen(1λ) is a PPT algorithm that takes as input the security parameter 1λ

and outputs public system parameters I.
KeyGen(I) is a PPT algorithm that takes as input I and outputs a private/public

key pair (ski, pki) for an user i.
AggSign(ski,mi, σ̄i−1,mi−1,pki−1) is a PPT algorithm that on input a pri-

vate key ski, a message mi ∈ {0, 1}∗, an aggregate-so-far signature σ̄i−1,
a sequence of messages mi−1 = (m1, . . . ,mi−1) and public keys pki−1 =
(pk1, . . . , pki−1), outputs the aggregate-so-far signature σ̄i for the updated
sequences mi = (m1, . . . ,mi) and pki = (pk1, . . . , pki).

AggVerify(σ̄i,mi,pki) takes as input an aggregate-so-far signature σi, a se-
quence of messages mi and public keys pki and outputs 1 if the signature is
valid, or 0 otherwise.

An SAS scheme is said to be complete, if for any sequence (sk1, pk1), . . . ,
(skn, pkn) with each (ski, pki)← KeyGen(I), (m1, ...,mn) with each mi ∈ {0, 1}∗,
and some non-empty σ̄i−1 for which AggVerify(σ̄i−1,mi−1,pki−1) = 1, for any
σ̄i ← AggSign(ski,mi, σ̄i−1,mi−1,pki−1): AggVerify(σ̄i,mi,pki) = 1.

Definition 6 (Unforgeability of SAS). An SAS scheme is unforgeable if for
any PPT adversary A, running in time at most t and invoking the signing oracle
at most qS times, the probability that the following experiment outputs 1 remains
negligible in the security parameter λ.

Experiment ForgeSAS
A (λ)

I ← ParGen(1λ)
(skc, pkc)← KeyGen(I)
(m∗,pk∗, σ∗)← AOSeqAgg(skc,·)(I, pkc)
Let C denote the list of all registered key pairs (ski, pki) and mc be the
message those index in m∗ corresponds to the index of pkc in pk∗.
Output 1 if all of the following holds:
– for any pair pki, pkj ∈ pk∗ with i 	= j: pki 	= pkj
– AggVerify(σ∗,m∗,pk∗) = 1,
– mc ∈m∗ was never amongst the inputs to OSeqAgg(skc, ·)

where A is given access to the following sequential aggregate signing oracle and
the key registration oracle:
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OSeqAgg(skc, ·): The adversarial input to the signing oracle consists of a mes-
sage m, an aggregate-so-far signature σ̄i−1, a sequence of messages mi−1

and public keys pki−1. The oracle computes σ̄i ← AggSign(skc,m, σ̄i−1,
mi−1||m,pki−1||pkc) and returns σ̄i to A.

Our definition of uniqueness for unforgeable SAS schemes is given in Defi-
nition 7. Note that by requiring the existence of an appropriate deterministic
function unq we can cover uniqueness in deterministic and probabilistic SAS
schemes. For example, USAS instantiations that we focus on later are all prob-
abilistic SAS schemes that output signatures consisting of multiple components
from which one component remains unique. We will prove the uniqueness prop-
erty of those schemes by using appropriate unq functions for each scheme.

Definition 7 (Unique SAS). An unforgeable SAS scheme is said to be unique,
denoted by USAS, if there exists an efficient deterministic function unq which on
input the aggregate-so-far signature σi outputs a string of polynomial-size in the
security parameter of the scheme such that for any ordered sequence of messages
mi and public keys pki there exist no two aggregate-so-far signatures σ̄i and ¯̄σi
for which it holds that AggVerify(σ̄i,mi,pki) = 1, AggVerify(¯̄σi,mi,pki) = 1,
and unq(σ̄i) 	= unq(¯̄σi).

Note that the uniqueness property of an SAS scheme as defined above respects
the order of messages in m = (m1, ...,mn). That is, the resulting aggregate
signatures output on permuted sequences of messages in m for the same set of
public keys pk will differ from each other.

4.1 Uniqueness of Lu-Ostrovsky-Sahai-Shacham-Waters SAS
Scheme

The SAS scheme proposed by Lu et al. [22] offers sequential aggregation of
Waters signatures [32]. We breifly recall their scheme and explore its uniqueness
property.

ParGen(1λ). On input the security parameter 1λ output I = (q,G,GT , g, e) for
the bilinear group setting according to Definition 1.

KeyGen(I). Pick random α, y
r← Zq and a random vector y = (y1, ..., yk)

r← Z
k
q .

Compute:

u′ ← gy
′
, u = (u1, ..., uk)← (gy1 , ..., gyk), A← e(g, g)α.

The private key is set to sk = (α, y′,y) ∈ Zk+2
q , while the the public key is

set to pk = (A, u′,u) ∈ GT ×G
k+1. The algorithm outputs (sk, pk).

AggSign(ski,mi, σ̄i−1,mi−1,pki−1). If AggVerify(σ̄i−1,mi−1,pki−1) = 1 pro-

ceed; else output 0. Parse σ̄i−1 as (S
′
1, S

′
2) ∈ G

2. For each 1 ≤ i ≤ n and

1 ≤ l ≤ k set mi = (mi,1, ...,mi,k) ∈ {0, 1}k as k-bit message of user i and

pki = (Ai, u
′
i, ui,1, ..., u

k
i ) ∈ GT ×Gk+1 as public key of user i. Compute:

w1 ← S
′
1g

α
(
S

′
2

)y′+
k∑

l=1

ylml

, w2 ← S
′
2.
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Proceed with the re-randomization step, i.e. pick random r̃ ∈ Zq and output
σ̄i = (S1, S2) where

S1 ← w1 ·
(
u′

k∏
l=1

uml

l

)r̃

·
i∏

j=1

(
u

′
j

k∏
l=1

u
mj,l

j,l

)r̃

and S2 ← w2g
r̃.

(Note that σ̄i = (S1, S2) is an aggregate-so-far signature on an updated
list of messages mi−1||mi and corresponding public keys pki−1||pki. The
re-randomization step results in randomness update to r + r̃.)

AggVerify(σ̄i,mi,pki). The input is a candidate aggregate signature σ̄i on mes-
sages mi under public keys pki. Set σ̄i = (S1, S2) ∈ G. Check the following
equation:

e(S1, g) · e

⎛⎝S2,

i∏
j=1

(
u

′
j

k∏
l=1

u
mj,l

j,l

)⎞⎠−1

=

i∏
j=1

Aj

If the above equation holds output 1, else output 0.

Theorem 2. The Lu-Ostrovsky-Sahai-Shacham-Waters SAS Scheme is unique
according to Definition 7.

Proof. Let unq be a function that outputs the first component of the aggregate
signature σ̄ = (S1, S2), i.e. unq(σ̄) = S1. Assume that there exists another
signature ¯̄σ that passes the verification process for the same set of messages and
public keys as σ̄ and for which unq(¯̄σ) = Ŝ1. In the following we prove that
Ŝ1 = S1 by induction on i:

Base step: i = 1. The verification algorithmwill accept the signature ¯̄σ = (Ŝ1, S2)
if it satisfies the following verification equation

e(Ŝ1, g) · e
(
S2, u

′
k∏

l=1

uml

l

)−1

= e(g, g)α

⇔ e(Ŝ1, g) · e
(
g,

(
u

′
k∏

l=1

uml

l

)r)−1

= e(g, g)α.

It holds only if Ŝ1 = gα
(
u

′ k∏
l=1

uml

l

)r

, because we have then:

e(Ŝ1, g) · e
(
g,

(
u

′
k∏

l=1

uml

l

)r)−1

= e(g, g)α

⇔ e

(
gα

(
u

′
k∏

l=1

uml

l

)r

, g

)
· e
(
g,

(
u

′
k∏

l=1

uml

l

)r)−1

= e(g, g)α

⇔ e(gα, g)e

((
u

′
k∏

l=1

uml

l

)r

, g

)
e

(
g,

(
u

′
k∏

l=1

uml

l

)r)−1

=e(g, g)α.
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Induction step: i− 1 -→ i. Let the theorem hold for i− 1. The verification algo-
rithm will accept unq(¯̄σi) = (Ŝ1)i if it satisfies the verification equation:

e((Ŝ1)i, g) · e

⎛⎝S2,
i∏

j=1

(u
′
j

k∏
l=1

u
mj,l

j,l )

⎞⎠−1

=
i∏

j=1

Aj

⇔ e((Ŝ1)i, g) · e

⎛⎝g,
i∏

j=1

(u
′
j

k∏
l=1

u
mj,l

j,l )r

⎞⎠−1

=
i∏

j=1

e(g, g)αj

By induction hypothesis we have (Ŝ1)i−1 =
i−1∏
j=1

gαj

i−1∏
j=1

(u
′
j

k∏
l=1

u
mj,l

j,l )r, such

that (Ŝ1)i = (Ŝ1)i−1 · δ. We obtain the following equation:

e
(
(Ŝ1)i−1 · δ, g

)
· e

⎛⎝S2,

i∏
j=1

(u
′
j

k∏
l=1

u
mj,l

j,l )

⎞⎠−1

=

i∏
j=1

Aj

⇔ e
(
(Ŝ1)i−1 · δ, g

)
· e

⎛⎝g,

i−1∏
j=1

(u
′
j

k∏
l=1

u
mj,l

j,l )r ·
(
u

′
i

k∏
l=1

u
mi,l

i,l

)r
⎞⎠−1

=
i∏

j=1

e(g, g)αj ⇔
i−1∏
j=1

e(g, g)αje(g, δ)e

(
g,

(
u

′
i

k∏
l=1

u
mi,l

i,l

)r)−1

=
i∏

j=1

e(g, g)αj

The last equation holds if δ = gαi

(
u

′
i

k∏
l=1

u
mi,l

i,l

)r

. This implies the desired

equality

(Ŝ1)i = (Ŝ1)i−1 · δ =

i∏
j=1

gαj

(
u

′
j

k∏
l=1

u
mj,l

j,l

)r

= S1 = unq(σ̄).

�

4.2 Uniqueness of Schröder SAS Scheme

The SAS scheme proposed by Schröder [31] offers sequential aggregation for
Camenisch-Lysyanskaya (CL) signatures [9]. The SAS scheme slightly modifies
the original CL signatures by introducing an additional signature component,
denoted in the following by D. We will essentially rely on this new component
when proving the uniqueness property of the scheme.

ParGen(1λ). Output the public parameters I = (G,GT , g, e) for the bilinear
group setting according to Definition 1.

KeyGen(I). For each signer i choose xi ← Zq and yi ← Zq and sets Xi =
gxi , Yi = gxi for i ∈ [n]. The algorithm returns ski = (xi, yi) and pki =
(Xi, Yi).
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AggSign(ski,mi, σ̄i−1,mi−1,pki−1). The algorithm takes as input a secret sign-
ing key ski, a message mi ∈ Zq, an aggregate-so-far σ̄i−1 a sequence of
messages mi−1 = (m1, ...,mi−1) and a sequence of public keys pki−1 =
(pk1, ..., pki−1). The algorithm first checks that |m| = |pk| and that the se-
quential verification AggVerify(σ̄i−1,mi−1,pki−1) = 1. If the verification
holds, than it parses σ̄i−1 = (A′, B′, C′, D′), where unq(σ̄i−1) = D′ is the
unique component.

A′ = gr, B′ =
i∏

j=1

gryj , C′ =
i∏

j=1

gr(xj+mjxjyj), D′ =
i∏

j �=k

gmjxjyk ,

and it computes the signature σ̄i = (A,B,C,D):

A = gr, B = B′ ·A′yi =

i∏
j=1

gryj , C = C′(A′)xi+mixiyi =

i∏
j=1

gxj+mjxjyj ,

D = D′ ·

⎛⎝i−1∏
j=1

gxjmjyigyjximi

⎞⎠ =

i∏
j �=k

gxjmjyk

AggVerify(σ̄i,pki,mi): On input of a sequence of public keys pki, sequence of
messages mi and σ̄i = (A,B,C,D). The verification algorithm first checks
if |m| = |pk|. It then validates the structure of the elements A,B,D:

e(A,

i∏
j=1

Yj) = e

⎛⎝g,

i∏
j=1

gryj

⎞⎠ and

i∏
j �=k

e (Xk, Yj)
mk = e(g,D)

and checks that C is also formed correctly:

i∏
j=1

(e (Xj , A) · e (Xj , B)
mj ) e(A,D)−1 = e(g, C).

If all equations are valid, then the algorithm outputs 1; otherwise it returns
0.

Theorem 3. Schröder SAS Scheme is unique according to Definition 7.

Proof. Let unq be a function that outputs the fourth component of the aggregate
signature σ̄ = (A,B,C,D), i.e. unq(σ̄) = D. Assume that there exists another
aggregate signature ¯̄σ that passes the verification procedure on the same set of
messages and public keys as σ̄ such that unq(¯̄σ) = D̃. We prove by induction on i
that in this case D̃ = D must hold. We use ¯̄σ to check the verification equations.

Base step: i = 2. The verification algorithm will accept ¯̄σ, if D̃ satisfies the ver-
ification equations.
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We check first the second equation
2∏

j �=k

e (Xj, Yk)
mj = e(g, D̃) and compute:

e (X1, Y2)
m1 e (X2, Y1)

m2 = e(g, D̃)

⇔ e (gx1, gy2)
m1 · e (gx2 , gy1)

m2 = e(g, D̃)

⇔ e(g, g)m1x1y2 · e(g, g)m2x2y1 = e(g, D̃)

⇔ e(g, g)m1x1y2+m2x2y1 = e(g, D̃)

⇔ e(g, gm1x1y2+m2x2y1) = e(g, D̃)

The last equation holds only if D̃ = gm1x1y2+m2x2y1 = D.

Induction step: i− 1 -→ i. Let the theorem hold for i − 1. The verification al-
gorithm will accept unq(¯̄σi) = D̃i if it satisfies the verification equation
i∏

j �=k

(Xj, Yk)
mj = e(g, D̃i). By the induction hypothesis we have D̃i−1 =

i−1∏
j �=k

gmjxjyk such that D̃i = D̃i−1 · δ. Considering the following verification

equation we get:

i∏
j �=k

e (Xj, Yk)
mj = e(g, D̃i) ⇔

i∏
j �=k

e (gxj , gyk)mj = e(g, D̃i)

⇔
i−1∏
j �=k

(g, g)mjxjyk

i−1∏
j=1

e(g, g)mixiyj+mjxjyi = e(g,

i−1∏
j �=k

gmjxjyk · δ)

=

i−1∏
j �=k

e(g, g)mjxjyke(g, δ)⇔
i−1∏
j=1

e
(
g, gmixiyj+mjxjyi

)
= e(g, δ)

The last equation holds if δ =
i−1∏
j=1

gmixiyj+mjxjyi . We therefore obtain the

desired equality D̃i = Di = unq(σ̄i).
�

5 Distributed Verifiable Random Functions

Distributed Verifiable Random Functions (DVRF) were introduced by Dodis [11].
The so-far only DVRF construction in [11] was obtained by first constructing a
non-distributed VRF scheme (based on a variant of the well-known Decisional
Diffie-Hellman assumption) and then by making it distributed using threshold
secret sharing techniques; more precisely by issuing secret shares of the VRF
secret key sk to the n servers and then by combining their individual VRF
outputs into the DVRF output, whose validity could be checked publicly using
the original VRF public key pk. This approach, however, imposed undesirable
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trust assumptions on the trustworthy generation of secret keys (shares) for the
n servers and resulted in a threshold on the number of corrupted servers.

In contrast, our approach for building DVRF is generic, proceeds under much
weaker setup assumptions, and requires only one server to remain uncorrupted.
As a guideline we adopt the approach by Micali, Rabin, and Vadhan [25] that has
been used in a non-distributed VRF case, namely to first focus on a weaker family
of functions those outputs are unpredictable but not necessarily pseudorandom,
the so-called Verifiable Unpredictable Functions (VUF). We observe that the
generic transformation from [25] for converting VUF outputs into VRF outputs
— by adding a random string r to the VUF public key pk and then computing
VRF outputs as inner products of VUF outputs and r (which takes its roots
in [18]) — works just fine for the case where the VUF output has been previously
obtained in a distributed way. In a distributed VUF setting the required random
string r can be made part of a shared random string (SRS) [13], which we consider
as the only setup assumption in our DVRF schemes. Note that the SRS model
is much weaker than the assumed trustworthy generation of secret keys in [11]
and belongs to standard cryptographic assumptions.

Following the above approach we thus need to define the notion of Distributed
VUF (DVUF). Our Definition 8 essentially tweaks the original definition of VUF
from [25] to the distributed setting.

Definition 8 (Distributed Verifiable Unpredictable Function (DVUF)).

Let F(·)(·) : {0, 1}a(λ) → {0, 1}b(λ) denote a family of functions with associated
algorithms:

Gen(1λ) is a PPT algorithm that takes as input the security parameter 1λ and
outputs a private/public key pair (ski, pki) for a server i ∈ {1, . . . , n}. Let
sk = {sk1, . . . , skn} and pk = {pk1, . . . , pkn}.

Prove(sk,pk, x) is an interactive protocol executed between an user and n servers
with common input x chosen by the user and pk = (pk1, . . . , pkn) such that at
the end of the execution the user obtains a VUF value F (sk, x) = y and the
corresponding proof π.

Verify(pk, x, y, π) is a deterministic algorithm that takes as input pk, x, y and
a candidate proof π, and outputs 1 if π is a valid proof for y = F (sk, x) and
0 otherwise.

F is a family of Distributed Verifiable Unpredictable Functions (DVUF) if it
satisfies:

– Uniqueness: The DVUF value y = F (sk,m) with proof of correctness π is
unique if there exists no tuple (pk, x, y1, y2, π) with y1 	= y2 but Verify(pk, x,
y1, π) = Verify(pk, x, y2, π) = 1.

– Provability: For all (y, π)← Prove(sk, x): Verify(pk, x, y, π) = 1.
– Residual Unpredictability: For any PPT algorithm A = (A1,A2) the proba-

bility that A succeeds in the following experiment is negligible in the security
parameter 1λ :
1. (ski, pki)← Gen(1λ) for all i ∈ [n].
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2. [n] . c← A1(pk)

3. (x∗, y∗, π∗)← AOProve(skc,·)
2 (sk \ {skc}).

4. A succeeds if x∗ ∈ {0, 1}a(λ) , Verify(pk, x∗, y∗, π∗) = 1 and x∗ was not
queried to the OProve(skc, ·) oracle by A,

where
OProve(skc, ·): The adversarial input to the oracle is a DVUF input x ∈
{0, 1}a(λ). The oracle responds on behalf of server c according to the
specification of the Prove protocol.

The following lemma from [25] when applied to the distributed setting shows
how to convert DVUF outputs into DVRF outputs. The resulting transformation
holds in the shared random string model that provides involved parties with the
random string r. Lemma 1 essentially allows us to focus on DVUF constructions
in the remaining part of this work.

Lemma 1 (FromDVUFtoDVRF[25]).For anyDVUF (Gen,Prove,Verify)
with input length a(λ), output length b(λ), and security s(λ), there exists a
DVRF in the shared random string model with the following three algorithms:(
Gen, Prove, Verify

)
with input length a′(λ) ≤ a(λ), output length b′(λ) = 1, and

security s′(λ) = s(λ)1/3/(poly(λ) · 2a′(λ)):

– Gen(1λ, r) where r ← {0, 1}b(λ) is shared random string computes pub-
lic/private keys (ski, pki)← Gen(1λ) and outputs (sk,pk) = (sk, (pk, r)).

– Prove(sk, x, r) computes (y, π)← Prove(sk, x), y = 〈y, r〉 as inner product of
y and r, π := (y, π) and outputs (y, π).

– Verify (pk, x, y, π) outputs 1 if Verify(pk, x, y, π) = 1 and y = 〈y, r〉. Other-
wise it outputs 0.

Proof. Since any DVUF/DVRF family F is also a VUF/VRF family the proof
of this lemma is implied by the result from [25, Section 5].

5.1 Generic Construction of DVUF from UAS Schemes

We obtain our first generic DVUF construction from UAS schemes where the
aggregation process is public. The major benefit of this construction is that
it requires only one communication round between the user and the n servers
and is thus as efficient in terms of communication as the approach in [11]. The
algorithms of our UAS-based DVUF construction are detailed in the following
using the UAS syntax from Definition 2:

Gen(1λ) computes public parameters I ← ParGen(1λ) of the UAS scheme. Each
server Si, i ∈ [n] computes its private/public UAS key pair (ski, pki) ←
KeyGen(I). Let sk = (sk1, ..., skn) and pk = (pk1, . . . , pkn).

Prove(sk, x) Protocol: This is a protocol between user U and servers Si, i =
1, . . . , n with each server in possession of ski ∈ sk. The common input is x
and pk. Each server Si computes σi ← Sign(ski, x) and sends it to U . For
all i ∈ [n], U checks whether Verify(pki, x, σi) = 1 using the verification
algorithm of the UAS scheme. If so U computes σ̄ ← Aggregate(pk, x,σ)
and outputs (y, π) = (unq(σ̄), σ̄).
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Verify(pk, x, y, π): Parse π as σ̄. If AggVerify(pk, x, σ̄) = 1 and y = unq(σ̄)
then output 1, else output 0.

Theorem 4. Let UAS be a unique aggregate signature scheme according to Def-
initions 3 and 4. Then our DVUF construction from UAS fulfills the properties
of Definition 8.

Proof. The uniqueness of UAS scheme implies the uniqueness property of DVUF.
Because individual UAS signatures σi, which pass the UAS verification procedure
Verify from Definition 2 can be aggregated into a signature σ̄, which satisfies the
UAS AggVerify algorithm, we can conclude that for all (y, π) ← Prove(sk, x)
we have Verify(pk,m, y, π) = 1, where y = unq(σ̄), π = σ̄ and x is a value to
be signed. This implies the provability of our DVUF scheme.

In the following we thus focus on the residual unpredictability of our DVUF
construction. Assuming an adversary A which breaks the unpredictability of the
DVUF scheme, i.e. outputs a valid tuple (x∗, y∗, π∗) according to the experiment
in Definition 8, we construct an adversary B that simulates the environment of
A and breaks the unforgeability of the underlying UAS scheme by outputting a
valid tuple (m∗,pk∗, σ∗) according to the experiment in Definition 3.

The UAS forger B is initialized with system parameters I and the challenge
public key pkc. For all i ∈ [n], i 	= c, where c is treated as a random index in [n]
it computes (ski, pki) ← KeyGen(I) using the key generation algorithm of the
UAS scheme and invokes the two-stage DVUF adversary A = (A1,A2). First
it invokes A1(pk) where pk is comprised of all generated pki and pkc whereby
index c for pkc in pk is assigned randomly by B. If the index c output by A1(pk)
doesn’t match that of pkc the simulation aborts. The probability that the index
matches is given by 1/n. Otherwise, B invokes A2(sk

′), where sk′ is comprised
of all generated ski (i.e. doesn’t include skc which is unknown to B) and answers
the OProve(skc, ·) oracle queries of A2 using its own oracle OSign(skc, ·). That
is, B performs the computation step of the protocol Prove on behalf of server
Sc by obtaining individual signatures σc on a given DVUF input x from its own
signing oracle. At some point, A2 outputs a tuple (x∗, y∗, π∗) aiming to break
the unpredictability property of the DVUF scheme. This tuple is valid if A2

never queried x∗ to its OProve(skc, ·) oracle and Verify(pk, x∗, y∗, π∗) = 1. B
checks the validity of the tuple and if valid outputs (m∗,pk∗, σ∗) = (x∗,pk, π∗)
where x∗ is a set consisting of n values x∗ as its own forgery.

Let SuccB denote the probability that B outputs a valid forgery for the UAS
scheme and SuccA denote the probability that A = (A1,A2) breaks the DVUF
construction. If the index c assigned by B matches the one output by A1 then its
simulation for A is perfect. It is easy to see that in this case the resulting tuple
(x∗,pk, π∗) constitutes a valid forgery for the UAS scheme since B never queried
the message x∗ to its OSign(skc, ·) oracle. Considering that indices match with
probability 1/n we get SuccA ≤ n · SuccB. �
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5.2 Generic Construction of DVUF from USAS Schemes

Our second generic DVUF construction is based on an USAS scheme where the
aggregation process is sequential. This implies that the user must approach each
server one-by-one until it obtains the resulting DVUF output from the last server
in the sequence. The algorithms of our USAS-based DVUF are detailed in the
following using the USAS syntax from Definition 5:

Gen(1λ) computes public parameters I ← ParGen(1λ) of the USAS scheme. Each
server Si, i ∈ [n] computes its private/public USAS key pair (ski, pki) ←
KeyGen(I). Let sk = (sk1, ..., skn) and pk = (pk1, . . . , pkn).

Prove(sk, x) Protocol: This is a protocol between user U and servers Si, i =
1, . . . , n with each server in possession of ski ∈ sk. The common input is
x and pk. Each server Si computes σ̄i ← AggSign(ski, x, σ̄i−1,pki−1) and
sends it to U . For all i ∈ [n], U checks whether AggVerify(σ̄i, x,pki) = 1
using the verification algorithm of the USAS scheme. If so U gives as input
to server Si+1 an aggregate-so-far σ̄i and value x. Finally it outputs (y, π) =
(unq(σ̄), σ̄).

Verify(pk, x, y, π): Parse π as σ̄. If AggVerify(pk, x, σ̄) = 1 and y = unq(σ̄)
then output 1, else output 0.

Theorem 5. Let USAS be a unique sequential aggregate signature scheme ac-
cording to Definitions 6 and 7. Then our DVUF construction from USAS fulfills
the properties of Definition 8.

Proof. The uniqueness of USAS scheme implies the uniqueness property of DVUF.
Because each aggregate-so-far signature σ̄i−1 from USAS scheme, which pass
the USAS verification procedure AggVerify from Definition 5 can be aggre-
gated into an aggregate signature σ̄i by adding the signature σi on message m
signed by signer i, we can conclude that for all (y, π) ← Prove(sk, x) we have
Verify(pk,m, y, π) = 1, where y = unq(σ̄i), π = σ̄i and x is a value to be
signed. This implies the provability of our DVUF scheme.

Similar to the last construction we thus focus here on the residual unpre-
dictability of our DVUF construction. Assuming an adversary A which breaks
the unpredictability of the DVUF scheme, i.e. outputs a valid tuple (x∗, y∗, π∗)
according to the experiment in Definition 8, we construct an adversary B that
simulates the environment of A and breaks the unforgeability of the underly-
ing USAS scheme by outputting a valid tuple (m∗,pk∗, σ∗) according to the
experiment in Definition 6.

The USAS forger B is initialized with system parameters I and the challenge
public key pkc. For all i ∈ [n], i 	= c, where c is treated as a random index in [n]
it computes (ski, pki) ← KeyGen(I) using the key generation algorithm of the
USAS scheme and invokes the two-stage DVUF adversaryA = (A1,A2). Because
the first stage adversary A1(pk) with pk being comprised of all generated pki
and given pkc with a randomly assigned index c ∈ [n] runs in analogue way
to the proof of Theorem 4, we skip here its description and proceed with the
invocation of A2(sk

′), where sk′ is comprised of all generated ski, i.e. sk
′ doesn’t
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include skc which is unknown to B. B answers the OProve(skc, ·) oracle queries
of A2 on input (x, σ̄c−1) where x is the provided DVUF input and σ̄c−1 is the
aggregate-so-far signature that is expected by the server Sc during the execution
of the Prove protocol as follows. Upon receiving such query from A2 it queries
its own oracle OAggSign(skc, ·) on input (x, σ̄c−1,xc−1,pkc−1) where xc−1 is a
set of c − 1 messages all of which are equal to x and pkc−1 is comprised of
all pki, i = 1, . . . , c − 1. Recall that the entire set of DVUF public keys pk is
considered as common input to the Prove protocol. In response to its query,
B obtains the aggregate-so-far signature σ̄c that it forwards on to A2 which is
inline with the specification of the Prove protocol. At some point, A2 outputs
a tuple (x∗, y∗, π∗) aiming to break the unpredictability property of the DVUF
scheme. This tuple is valid if A2 never queried x∗ to its OProve(skc, ·) oracle
and Verify(pk, x∗, y∗, π∗) = 1. B checks the validity of the tuple and if valid
outputs (m∗,pk∗, σ̄∗) = (x∗,pk, π∗) where x∗ is a set consisting of n values x∗

as its own forgery.
Let SuccB denote the probability that B outputs a valid forgery for the USAS

scheme and SuccA denote the probability that A = (A1,A2) breaks the DVUF
construction. If the index c assigned by B for pkc matches the one output by A1

then its simulation for A is perfect. It is easy to see that in this case the resulting
tuple (x∗,pk, π∗) constitutes a valid forgery for the USAS scheme since B never
queried the message x∗ to its OAggSign(skc, ·) oracle. Considering that indices
match with probability 1/n we get SuccA ≤ n · SuccB. �

6 Conclusion

We explored the uniqueness property of aggregate signatures and showed that it
gives rise to generic DVUF constructions, whose outputs can be made pseudo-
random in the shared random string model using the techniques from [25]. This
gives us first generic DVRF constructions that do not impose assumptions on
trusted generation of secret keys and those outputs remain pseudorandom even
in presence of up to n− 1 corrupted servers. A number of concrete DVRF con-
structions follows immediately from our proofs of uniqueness for the aggregate
signature schemes from [7,22,31].
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Abstract. The MMB block cipher (Modular Multiplication-based Block
cipher) is an iterative block cipher designed by Daemen, Govaerts, and
Vandewalle in 1993 as an improvement of the PES and IPES ciphers.

In this paper we present several new related-key differential char-
acteristics of MMB. These characteristics can be used to form several
related-key boomerangs to attack the full MMB. Using 220 adaptive cho-
sen plaintexts and ciphertexts we recover all key bits in 235.2 time for
the full MMB. Our attack was experimentally verified, and it takes less
than 15 minutes on a standard Intel i5 machine to recover the full MMB
key.

After showing this practical attack on the full key of the full MMB,
we present attacks on extended versions of MMB with up to 8 rounds
(which is two more rounds than in the full MMB). We recover 64 out
of the 128 key in time of 232.2 for 7-round MMB, and time of 232 for
8-round MMB using 220 plaintexts.

Keywords: MMB, Differential Cryptanalysis, Related-Key Boomerang
Attack.

1 Introduction

The MMB block cipher (Modular Multiplication-based Block cipher) is an it-
erative block cipher designed by Daemen, Govaerts, and Vandewalle [5] as an
improvement of the PES and IPES ciphers [10,11]. The cipher works with blocks
of 128 bits and an equal key length. The cipher’s non-linearity comes from multi-
plication mod 232− 1 (hence the cipher’s name). The cipher consists of 6 rounds
without any initialization or finalization steps.

Previously published work on MMB includes two papers in the single-key
model [7, 13]. Both papers were able to recover the full key of the full MMB.
In [13] Wang et al. use a 5-round differential in a 1R attack in 295.91 time, 2118

chosen plaintexts, and 265 32-bit memory words to break the full MMB. In [7] Jia
et al. present several attacks, the best of which is a sandwich attack using 213.4
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time, 240 adaptive chosen plaintexts and ciphertexts, and 220.6 32-bit memory
words. We summarize these results in Table 2.

In this paper we present a related-key attack that allows an adversary to
recover all key bits in time of 235.2 using 220 adaptive chosen plaintexts and
ciphertexts encrypted under 4 related-keys. We first present two related-key
differential characteristics of two and three rounds, respectively, and use them
to construct two boomerangs covering 5 rounds of MMB. We then use these 5-
round boomerangs to attack the full (6 rounds) MMB. Each of the boomerangs
can be used to recover 32 bits of the key. The 64 recovered bits are then further
used to recover another 32 bits of the key using a 1R related-key differential
attack. The remaining 32 bits are then found by a simple exhaustive search.

To verify our results experimentally, we implemented the attack on the full
(6-round) MMB using a C program. The program generates the required data,
encrypts and decrypts it through the presented related-key boomerangs, identi-
fies the right quartets, and recovers the key bits in about 15 minutes on a home
PC.

After presenting our results, we show that even if MMB was extended to 7 or
8 rounds, it would still be insecure. To prove this claim, we extend the first phase
of our attack to extended 7-round and 8-round variants of MMB with similar
complexity. In other words, we show that using 220.6 adaptive chosen plaintexts
and ciphertexts, encrypted under 4 related keys for the 7-round variant, and
6 related keys for the 8-round variant, in time of about 232 encryptions, an
adversary can recover 64 bits out of the 128-bit key.

This paper is organized as follows: In Section 2 we give a brief description
of the MMB block cipher; Section 3 describes some of the previous work done
to analyze MMB; in Section 4 we describe the cryptanalytic techniques we use
in the paper. In Section 5 we describe the related-key differential characteristics
we use and how we use them to create the related-key boomerangs; Section 6
explains how to use the related-key boomerangs to recover the entire key of the
full MMB; Section 7 discusses an extended variants of MMB with 7 and 8 rounds
and how to attack them, and Section 8 concludes the paper.

2 A Brief Description of MMB and Our Notations

As mentioned before, MMB is an iterative block cipher with a 128-bit block and
a 128-bit key. The message and key are each divided into four 32-bit words
x0, x1, x2, x3, and k0, k1, k2, k3, respectively. In each round, four operations,
σ[kj ], γ, η, and θ are performed over the state words. Three of the four oper-
ations, namely, σ[kj ], η, and θ are involutions (i.e., they are their own inverse).

The key injection operation, σ[kj ], XORs the subkey into the message such
that σ[kj ](x0, x1, x2, x3) = (x0 ⊕ kj0, x1 ⊕ kj1, x2 ⊕ kj2, x3 ⊕ kj3) where ⊕ denotes
the exclusive-or operation and j denotes the round number. The key injection
operation is done 7 times, once at the beginning of the each round and once
more after the last round.
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The modular multiplication operation, γ, is the only non-linear operation in
the cipher. In each encryption round, each of the 32-bit words is multiplied by
a fixed constant such that the result yi is

yi =

{
xi if xi = 232 − 1
xi ⊗Gi if xi 	= 232 − 1

Where the operator ⊗ is the modular multiplication operator (i.e., a ⊗ b =
(a∗ b) mod (232−1)) and G0 = 025F1CDBx, G1 = 2⊗G0 = 04BE39B6x, G2 =
8 ⊗G0 = 12F8E6D8x, and G3 = 128⊗G0 = 2F8E6D81x. The result of the γ
operation is therefore (y0, y1, y2, y3) = γ(x0, x1, x2, x3).

Inverting γ is done by multiplying the ciphertext with G−1
i such that

xi =

{
yi if yi = 232 − 1
yi ⊗G−1

i if yi 	= 232 − 1

where G−1
0 = 0DAD4694x, G

−1
1 = 06D6A34Ax, G

−1
2 = 81B5A8D2x and G−1

3 =
281B5A8Dx.

For every word entering γ, the trivial differential transition 0→ 0 holds with
probability 1. Another interesting property that was mentioned in [5] is that the
differential transition FFFFFFFFx → FFFFFFFFx through γ also holds
with probability 1. The use of these transitions is described in Section 5.

The η operation is a data-dependent operation on the leftmost and rightmost
words of the state. If the LSB of the word is 1 it XORs a predefined constant
δ into the word, otherwise it does nothing. Namely, η(x0, x1, x2, x3) = (x0 ⊕
(lsb(x0) · δ), x1, x2, x3 ⊕ (lsb(x3) · δ)) where δ = 2AAAAAAAx.

The diffusion between words comes from the θ operation that mixes the
round’s words such that every change in any word affects three words in the out-
put. Namely, θ(x0, x1, x2, x3) = (x0⊕x1⊕x3, x0⊕x1⊕x2, x1⊕x2⊕x3, x0⊕x2⊕x3).

The jth round of MMB over the block X = (x0, x1, x2, x3) is: ρ[kj ](X) =
θ(η(γ(σ[kj ](X)))). A full description of MMB with plaintext P is:

σ[k6](ρ[k5](ρ[k4](ρ[k3](ρ[k2](ρ[k1](ρ[k0](P )))))))

A schematic view of MMB’s round function can be found on Figure 1.

2.1 Key Schedule

The original version of MMB used a simple key schedule algorithm that rotates
the key words one position to the left (e.g. the key for round 0 is (k0, k1, k2, k3),
the key for round 1 is (k1, k2, k3, k0) etc.). The key schedule is cyclic and repeats
every 4 rounds [5]. To avoid exploitable symmetry properties a new version of
MMB was published where in each round, in addition to the position change,
each key word is XORed with a round-dependent constant. Therefore, the key
word i for round j is kji = ki+j mod 4 ⊕ (2j · B) with B = DAEx [4].1

1 We note that the change in the key schedule algorithm does not affect our attack
which is differential in nature. In other words, all the attacks reported in this paper
work for both key schedules, i.e., the original one and the tweaked one.
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Fig. 1. MMB’s Round Function in Round j

2.2 Notations

The notations used throughout the paper are described in Table 1 for the readers’
convenience.

Table 1. Notations Used Throughout this Paper

Symbol Meaning/Value

⊕ Exclusive-or
⊗ Multiplication modulo 232 − 1

X → Y Differential transition from X to Y

0 00000000x
0̄ FFFFFFFFx

δ 2AAAAAAAx

δ̄ δ ⊕ FFFFFFFFx

G0 025F1CDBx

G1 04BE39B6x
G2 12F8E6D8x
G3 2F8E6D81x
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Table 2. Summary of the Attacks on MMB

Rounds Attack Time∗ Data Memory† Keys Source

6 Differential Cryptanalysis 295.91 2118 CP∗∗ 264 1 [13]
6 Rectangle-like sandwich 264 266.5 CP 270.5 1 [7]
6 Sandwich attack 213.4 240 ACPC∗∗∗ 216 1 [7]

6 Related-key boomerang 235.2 220 ACPC 220.3 4 Section 6
7 Related-key boomerang 235.3 220.6 ACPC 220.3 4 Section 7
8 Related-key boomerang 235.2 220.6 ACPC 220.3 6 Section 7

∗ The time complexity reported in [7,13] does not take into account the time needed for generating the data.

∗∗ Chosen plaintexts.

∗∗∗ Adaptive chosen plaintexts and ciphertexts.

† Memory is measured in 32-bit memory words.

3 Previous Attacks on MMB

Wang et al. identified for MMB a 2-round differential characteristic with prob-
ability 1 [13]. This 2-round differential characteristic, described in Equation (1)
was extended into a 5-round differential characteristic with probability of 2−110.
This 5-round differential characteristic can be used in an attack that recovers
all of MMB’s key bits with data complexity of 2118 chosen plaintexts, time com-
plexity of 295.91 encryptions, and memory requirements of 265 32-bit blocks. We
note that the time complexity described in [13] does not take into account the
fact that the time required to encrypt 2118 plaintexts cannot be less than 2118.

(0, 0̄, 0̄, 0)
σ[k0]−−−→ (0, 0̄, 0̄, 0)

γ−→ (0, 0̄, 0̄, 0)
η−→ (0, 0̄, 0̄, 0)

θ−→ (0̄, 0, 0, 0̄) (1)

σ[k1]−−−→ (0̄, 0, 0, 0̄)
γ−→ (0̄, 0, 0, 0̄)

η−→ (δ̄, 0, 0, δ̄)
θ−→ (0, δ̄, δ̄, 0)

Jia et al. [7] improved Wang’s analysis to build a 5-round sandwich distin-
guisher (an extension of the boomerang distinguisher) with probability 1. This
attack exploits the 2-round differential characteristic identified in [13] to con-
struct a 5-round sandwich that is then used to recover the full key of the full
MMB with 240 adaptive plaintexts and ciphertexts, 213.4 time, and 216 mem-
ory bytes. They also showed how to transform their attack into a rectangle-like
sandwich that can recover the full key of MMB in 264 time, 266.5 memory, and
270.5 chosen plaintexts.

Table 2 summarizes all previous results on MMB and compares them with
ours.

4 Cryptanalytic Techniques for Block Ciphers Used
in This Paper

4.1 Differential Cryptanalysis

One of the most notable techniques in cryptanalysis is differential cryptanal-
ysis. Developed by Biham and Shamir [3], differential cryptanalysis examines
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the evolution of differences between two inputs. An input difference is the dif-
ference between two inputs entering a cryptosystem, usually with respect to
the exclusive-or operation. The output difference is the difference between the
outputs of two such inputs. We say that an input difference Δ can cause an
output difference Δ∗ under the function f with probability p if a portion p of
the possible pairs of messages having a difference Δ result in outputs having a

difference Δ∗ after applying f . If these conditions hold we write that Δ
f−→ Δ∗

with probability p.
A differential characteristic that describes a single encryption round is called

a 1-round differential characteristic. Biham and Shamir showed that two or more
differential characteristics can be concatenated to form a longer differential char-
acteristics if the output difference of one differential characteristic is the input
difference of the other differential characteristic.

Once a good long differential characteristic is identified, the adversary tries
to find a pair of messages that satisfies it. By examining many plaintext pairs,
the adversary tries to distinguish the wrong pairs (i.e., those pairs which do
not satisfy the differential characteristic) from the right pairs (i.e., those pairs
which satisfy the differential characteristic). The amount of data needed to find
a right pair is proportional to the inverse of the probability of the differential
characteristic used and can be somewhat reduced by various techniques. Once a
right pair is found, it can be used to recover the keys used in the cryptosystem
by examining which keys cause the messages to satisfy the required differences.

4.2 Related-Key Differential Attack

Since its publication in 1990, differential cryptanalysis received a great deal of
attention in the cryptographic community. Several researchers published exten-
sions for the core technique. One of these extensions is the related-key differential
attack published by Kelsey et al. in 1997 [8]. In a related-key differential attack
the adversary is allowed, in addition to examining the evolution of differences
between inputs, to introduce differences to the key. Namely, in the attack, two
plaintexts are encrypted using two keys that have some difference chosen by the
adversary. This difference is injected into the intermediate encryption values by
the key injection operation and sometimes cancel previous differences. Modulo
some small technical issues, the remainder of the attack is the same as in regular
differential attacks.

4.3 The Boomerang Attack

Another extension to differential cryptanalysis is the boomerang attack sug-
gested by Wagner in 1999 [12]. A boomerang attack uses two differential charac-
teristics of relatively small number of rounds n and m with probabilities p and
q, respectively, to construct a distinguisher for m+ n rounds.

A boomerang is composed of two differential characteristics 0 → 0∗ for n
rounds and 1∗ → 1 for m rounds with probabilities p and q, respectively.
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The adversary chooses two plaintexts P1 and P2 such that P1 ⊕ P2 = 0 and
asks for their respective values C1 and C2 after m + n encryption rounds. The
adversary then XORs these ciphertexts with 1 to obtain the ciphertexts C3 and
C4, respectively, and asks for their decrypted values P3 and P4. The boomerang
suggests that P1 ⊕ P2 = P3 ⊕ P4 = 0 with probability p2 · q2.

4.4 Related-Key Boomerang Attack

The related-key boomerang attack is an extension of the boomerang attack first
suggested in 2004 by Kim et al. [2,6,9]. The idea of a related-key boomerang is to
use two related-key differentials to construct the boomerang. After constructing
this boomerang, the attack is then carried in the same way as with regular
boomerangs (again, modulo a few small differences).

5 A Related-Key Boomerang Attack for the Full MMB

Before we describe the related-key differential characteristics used to construct
the boomerangs we observe that for any plaintext, and any operation, the triv-
ial differential transition 0 → 0 holds with probability 1. Another interesting
property which is described in [5] is that an input difference FFFFFFFFx be-
tween two input words to ⊗ cause an output difference of FFFFFFFFx with
probability 1 (independent of Gi).

Another point worth mentioning is that if the difference between the left-
most or the rightmost words entering η is 0̄, the output difference must be
δ ⊕ FFFFFFFFx. The η operation XORs the constant δ = 2AAAAAAAx to
the leftmost and rightmost words if their least significant bit is 1. In the event
that the difference between two input words is FFFFFFFFx, one of them must
have 1 as its least significant bit while the other must have 0, thus, δ is XORed
only to one of them, causing the transition.

We present three related-key differentials: The 3-round related key differential
0 → 0∗ with input difference (0, 0, 0̄, 0̄) and key difference (0, 0, 0̄, 0̄). This
differential is an extension of Equation (1) where we use the key difference to
control the propagation of the difference. The related-key differential

0 = (0, 0, 0̄, 0̄)
σ[k1]−−−−−→

(0,0,0̄,0̄)
(0, 0, 0, 0)

γ−→ (0, 0, 0, 0)
η−→ (0, 0, 0, 0)

θ−→ (0, 0, 0, 0)

σ[k2]−−−−−→
(0,0̄,0̄,0)

(0, 0̄, 0̄, 0)
γ−→ (0, 0̄, 0̄, 0)

η−→ (0, 0̄, 0̄, 0)
θ−→ (0̄, 0, 0, 0̄)

σ[k3]−−−−−→
(0̄,0̄,0,0)

(0, 0̄, 0, 0̄)
γ−→ (0, 0̄, 0, 0̄)

η−→ (0, 0̄, 0, δ̄)
θ−→ (δ, 0̄, δ, δ̄) = 0∗

holds with probability 1. We can extend this related-key differential by prepend-
ing an additional round

(X̄, 0̄, 0, 0̄)
σ[k0]−−−−−→

(0̄,0,0,0̄)
(X, 0̄, 0, 0)

γ−→ (δ̄, 0̄, 0, 0)
η−→ (0̄, 0̄, 0, 0)

θ−→ (0, 0, 0̄, 0̄) = 0,

(2)
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where X̄ is some undetermined difference satisfying X̄
⊕k0

0−−→ X and X
⊗G0−−−→ δ̄.

The second related-key differential we use is a 4-round related-key differential
1∗ →1 with input difference (0, 0, 0̄, 0) and key difference (0, 0, 0̄, 0)

1∗ = (0, 0, 0̄, 0)
σ[k1]−−−−−→

(0,0,0̄,0)
(0, 0, 0, 0)

γ−→ (0, 0, 0, 0)
η−→ (0, 0, 0, 0)

θ−→ (0, 0, 0, 0)

σ[k2]−−−−−→
(0,0̄,0,0)

(0, 0̄, 0, 0)
γ−→ (0, 0̄, 0, 0)

η−→ (0, 0̄, 0, 0)
θ−→ (0̄, 0̄, 0̄, 0)

σ[k3]−−−−−→
(0̄,0,0,0)

(0, 0̄, 0̄, 0)
γ−→ (0, 0̄, 0̄, 0)

η−→ (0, 0̄, 0̄, 0)
θ−→ (0̄, 0, 0, 0̄)

σ[k4]−−−−−→
(0,0,0,0̄)

(0̄, 0, 0, 0)
γ−→ (0̄, 0, 0, 0)

η−→ (δ̄, 0, 0, 0)
θ−→ (δ̄, δ̄, 0, δ̄) = 1

that also holds with probability 1. This differential can also be extended by
prepending an additional round:

(0, 0̄, 0̄, Ȳ )
σ[k0]−−−−−→

(0,0,0,0̄)
(0, 0̄, 0̄, Y )

γ−→ (0, 0̄, 0̄, δ̄)
η−→ (0, 0̄, 0̄, 0̄)

θ−→ (0, 0, 0̄, 0) = 1∗,

(3)

where like in the case of X̄ , Ȳ is an undetermined difference satisfying Ȳ
⊕k0

3−−→ Y

and Y
⊗G3−−−→ δ̄. We list the most probable values of Y’s and X’s (with their

probability) in Appendix A. In Section 6 we show how to use the birthday
paradox to construct pairs which satisfy these differences regardless of the exact
probabilities.

The third related-key differential we use is a 2-round related-key differential
τ → τ∗ with input difference (0, 0, 0, 0̄) and key difference (0, 0, 0, 0̄) that holds
with probability2 1:

τ = (0, 0, 0, 0̄)
σ[k4]−−−−−→

(0,0,0,0̄)
(0, 0, 0, 0)

γ−→ (0, 0, 0, 0)
η−→ (0, 0, 0, 0)

θ−→ (0, 0, 0, 0)

σ[k5]−−−−−→
(0,0,0̄,0)

γ−→ (0, 0, 0̄, 0)
η−→ (0, 0, 0̄, 0)

θ−→ (0, 0̄, 0̄, 0̄) = τ∗

We construct two boomerangs. The first 5-round related-key boomerang is the
concatenation of τ → τ after 0 → 0∗ without the additional round presented
in Equation (2). This boomerang has probability 1 and can only be used as a
distinguisher. Prepending one more round (as specified in Equation (2)) to 0→
0∗ forms a 6-round related-key boomerang we denote by B0. This boomerang
is depicted in Figure 2.

The second boomerang, which we denote by B1 is constructed by concate-
nating the first round of 0 → 0∗ after 1∗ → 1 to form a 5-round boomerang

2 Note that the key difference for the differential for �∗ → � is the same as for the
differential τ → τ∗
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Boomerang’s flow direction

Key differences

Fig. 2. The Description of B0

with probability 1. We then prepend one more round (as specified in Equation
(3)) to 1→ 1∗ to form a 6-round boomerang that can be used in a 1R attack.
The second boomerang is depicted in Figure 3.

6 Description of the Key Recovery Attack

In this section we describe our related-key boomerang attack on MMB and the
key recovery phase that is used to recover 64 bits out of the 128-bit key. We then
show how to efficiently recover the remaining 64 key bits given the knowledge of
the previous 64, for the full MMB. We conclude the section with a description
of our experimental verification of this attack.

6.1 Related-Key Boomerang Attack

We recall that the 128-bit key is composed of four 32-bit key words (k0, k1, k2, k3).
We recover each of these words separately. The first 32 key bits (those of k0)
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Fig. 3. The Description of B1

are recovered using the boomerang B0 and the last 32 key bits (those of k3) are
recovered using the boomerang B1.

In order to use B0 we need 4 related-keys. Two of them, namely

K1 = (k0, k1, k2, k3);K
2 = K1 ⊕ (0̄, 0, 0, 0̄)

are used for encryption and the other two, namely

K3 = K1 ⊕ (0, 0, 0, 0̄);K4 = K2 ⊕ (0, 0, 0, 0̄) = K1 ⊕ (0̄, 0, 0, 0),

are used for decryption.
We pick a set of 217 random plaintexts P1 = {P 1

0 , ..., P
1
217−1} all having the

same value in bits 32–127 and different values in bits 0–31. Then, we generate
another set of 217 plaintexts P2 = {P 2

0 , ..., P
2
217−1} where P 2

i = P 1
i ⊕ (0, 0̄, 0, 0̄).

We then ask for the encryption of all the values in P1 under K1 to obtain the
set of respective ciphertexts, C1 = {C1

0 , ..., C
1
217−1}, and ask for the encryption

of all values in P2 under K2 to obtain the respective set of ciphertexts C2 =
{C2

0 , ..., C
2
217−1}.
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We XOR all values of C1 and C2 with (0, 0, 0̄, 0̄) to obtain C3 = C1⊕(0, 0, 0̄, 0̄) =
{C3

0 , ..., C
3
217−1} and C4 = C2 ⊕ (0, 0, 0̄, 0̄) = {C4

0 , ..., C
4
217−1}. We ask for the

decryption of the ciphertexts in C3 under K3 to obtain a set of plaintexts P3 =
{P 3

0 , ..., P
3
217−1}, and the decryption of the ciphertexts in C4 under K4 to obtain

a set of plaintexts P4 = {P 4
0 , ..., P

4
217−1}.

We expect, due to the birthday paradox, that two plaintexts P 1
i and P 2

j , taken

from P1 and P2, respectively, will collide (i.e., have a zero difference) in bits 0–31
after a single round of σ[k0], γ, and η with a non-negligible probability.3 Such
two colliding plaintexts form a pair with input difference 0 as required by the
differential characteristic 0 → 0∗ (the difference in the remaining words is set
with probability 1). Since both differentials used in the boomerang hold with
probability 1, the encryption, XOR by (0, 0, 0̄, 0̄) and 5-round decryption of it
will inevitably result with a difference of Δ causing its respective P 3

i and P 4
j to

also have a difference of the form (X̄ ′, 0̄, 0, 0̄) after the decryption.
Analyzing the expected number of right pairs is straightforward using the

birthday paradox framework. The values of P1 occupy 217 bins out of the 232

possible bins. Therefore, each of the 217 possible values of P2 has a chance of
217

232 = 2−15 to collide with a value from P1. Hence, the expected number of right

pairs (which lead to right quartets with probability 1) is 217 · 217232 = 4. In Section
6.4 we test this prediction empirically.

We store all values of P3 in a hash table using bits 32–127 as the hash key.
Then, once obtaining the values of P4 we search for “collisions” in these bits
(taking into account the expected difference between them) to identify a candi-
date pair (and thus, a candidate quartet). The probability that among all the
possible 234 pairs, two plaintexts form a wrong pair (i.e., agreeing on bits 32–
127 without following the boomerang) is 234 · 2−96 = 2−62. Thus, we can safely
assume that all candidate quartets are right quartets. Note that we do not need
to store the plaintexts with their respective ciphertexts, hence, reducing the
memory complexity.

Once we identify the four plaintexts forming a right quartet,
((P 1

i ,P
2
j ), (P

3
i , P

4
j )), we try all the 232 possible values for k10 = k30 and

k20 = k40 = k10 ⊕ 0̄ (the first 32 bits of K1,K2,K3, and K4) to see which of them
causes both pairs to have a zero difference in the first word after one round.
These 232 trials suggest two possible values as the key word, either k10 or k̄10 .
Note that usually in related-key attacks we expect one solution for these cases.
However, in the specific case of ⊗, complementing the entire input necessarily
complements the entire output. Hence, if the two inputs to ⊗ are x and x′, and
a 32-bit key word k satisfies ((x ⊕ k) ⊗ G0) ⊕ (x′ ⊕ k̄) ⊗ G0 = 0̄, then k̄ also
satisfies this relation, as both results are complemented when the value of k0 is
complemented. At the last part of the attack, we encrypt a plaintext using all

3 As we discuss later, we actually expect four such pairs. Given that the actual number
of such pairs follows a Poisson distribution with a mean value of 4, we expect at least
one such pair to exist with probability of 98.2%.
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key combinations to determine which value is the right key and which value is
its complementary.

To recover bits 96–127 of the key we use the same method. We pick 217

random plaintexts Q1 = {Q1
0, ..., Q

1
217−1} all having the same value in bits 0–95

and different values in bits 96–127. Then, we generate another 217 plaintexts
Q2 = {Q2

0, ..., Q
2
217−1}, where Q2

i = Q1
i ⊕ (0, 0̄, 0̄, 0) and use the same algorithm

to encrypt the plaintexts under K1 and K3, XOR the ciphertexts with 0∗ and
decrypt them under K2 and K4, respectively. The key word k3 is then recovered
by 232 trials in a similar way to the one described for recovering k0.

6.2 Recovering the Remaining Key Bits

Recovering Bits 32–63 of the Key. Once we obtained key bits 0–31 and
96–127, we use an extension of the related-key differential 1∗ → 1 to recover
key bits 32–63 with a simple 1R attack. The 4-round related-key differential
characteristic

1∗ = (0, 0, 0̄, 0)
σ[k1]−−−−−→

(0,0,0̄,0)
(0, 0, 0, 0)

γ−→ (0, 0, 0, 0)
η−→ (0, 0, 0, 0)

θ−→ (0, 0, 0, 0)

σ[k2]−−−−−→
(0,0̄,0,0)

(0, 0̄, 0, 0)
γ−→ (0, 0̄, 0, 0)

η−→ (0, 0̄, 0, 0)
θ−→ (0̄, 0̄, 0̄, 0)

σ[k3]−−−−−→
(0̄,0,0,0)

(0, 0̄, 0̄, 0)
γ−→ (0, 0̄, 0̄, 0)

η−→ (0, 0̄, 0̄, 0)
θ−→ (0̄, 0, 0, 0̄)

σ[k4]−−−−−→
(0,0,0,0̄)

(0̄, 0, 0, 0)
γ−→ (0̄, 0, 0, 0)

η−→ (δ̄, 0, 0, 0)
θ−→ (δ̄, δ̄, 0, δ̄) = 1

holds with probability 1. With the extension in Equation (3) it forms a 5-round
related-key differential characteristic for MMB. i.e., once we know a quartet of
values which satisfy Equation (3) (for example, as part of a right quartet in
B1) we can use it as two right pairs with respect to this 5-round related-key
differential characteristic.

Let Q1
i ∈ Q1 and Q2

j ∈ Q2 be two plaintexts forming a right pair, and let

D1
i = (w6 ⊕ k60 , x6 ⊕ k61 , y6 ⊕ k62 , z6 ⊕ k63) and D2

j = (w∗
6 ⊕ k60 , x

∗
6 ⊕ k61 , y

∗
6 ⊕

k̄62 , z
∗
6 ⊕ k63) be their respective ciphertexts. We observe that each of the words

w, x, y, z, w∗, x∗, y∗, and z∗ is the result of the θ operation which XORs three
intermediate values. We denote these intermediate values as a, b, c, d, a∗, b∗, c∗,
and d∗, i.e.,

w6 = a6 ⊕ b6 ⊕ d6;w
∗
6 = a∗6 ⊕ b∗6 ⊕ d∗6

x6 = a6 ⊕ b6 ⊕ c6;x
∗
6 = a∗6 ⊕ b∗6 ⊕ c∗6

y6 = b6 ⊕ c6 ⊕ d6; y
∗
6 = b∗6 ⊕ c∗6 ⊕ d∗6

z6 = a6 ⊕ c6 ⊕ d6; z
∗
6 = a∗6 ⊕ c∗6 ⊕ d∗6.
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To recover k2 we simply XOR the first three words of each ciphertext

w6⊕k
6
0⊕x6⊕k

6
1⊕y6⊕k

6
2 = a6⊕b6⊕d6⊕k

6
0⊕a6⊕b6⊕c6⊕k

6
1⊕b6⊕c6⊕d6⊕k

6
2 = b6⊕k

6
0 ⊕k

6
1⊕k

6
2

and

w∗
6 ⊕k6

0⊕x∗
6⊕k6

1⊕y∗
6 ⊕k̄6

2 = a∗
6 ⊕b∗6⊕d∗

6⊕k6
0⊕a∗

6⊕b∗6 ⊕c∗6⊕k6
1⊕b∗6⊕c∗6⊕d∗

6⊕k̄6
2 = b∗6 ⊕k6

0⊕k6
1⊕k̄6

2

where the values of k60 and k61 are the 64 key bits previously recovered. The
adversary then searches for the values of k62 and k̄62 that satisfy the equation
((b∗⊕ k̄62 ⊕ k60 ⊕ k61)⊗G−1

2 )⊕ ((b⊕ k62 ⊕ k60 ⊕ k61)⊗G−1
2 ) = δ̄. Taking the second

pair of a right boomerang quartet allows discarding a few more of the remaining
wrong options.

Recovering Bits 64–95 of the Key. After recovering k0, k2, and k3, the
remaining k1 (32 bits) is recovered by exhaustive search (i.e., brute force).

Analysis of the Full Attack. The first part of the attack allows recovering
64 key bits in 232.4 time, using 4 related keys, 220.3 memory,4 and 220 adaptive
chosen plaintexts and ciphertexts. The second part of the attack requires running
232 round operations (which are about 1

6 · 232=229.4 full MMB encryptions)
with no additional memory and data requirements. The third part of the attack
requires running 8 · 232 =235 full MMB encryptions, again, with no additional
memory and data requirements. Thus, the overall complexity of this attack is
235.2 time, 220.3 memory, and 220 adaptive chosen plaintexts and ciphertexts
encrypted under 4 related-keys.

6.3 Experimental Verification

The low time, data, and memory complexities of the attack allow verifying it
experimentally. The implementation of the attack uses two programming lan-
guages: C and Python. The C program was used to implement the cryptographic
parts of the attack (i.e. the boomerangs and the key search). Python was used
to invoke different modules of the attack and collect data for statistical analysis.

The C program was compiled and ran on a Debian Linux machine using GCC
4.4.5 with the -O3 optimization flag. The program starts by generating a random
128-bit plaintext and a random 128-bit key. It then forks into two processes, one
implementing B0 and the other implementing B1. The first process generates a
second plaintext and a second key with the appropriate differences and replaces
the first word of both plaintexts with a random one. It then saves the two
plaintexts and encrypts them under the related-keys to obtain their respective
ciphertexts. The ciphertexts and the keys are then XORed with the appropriate
values and decrypted to obtain new plaintexts. For each such new plaintext, the

4 We alert the reader that in each boomerang we need to store 218 128-bit plaintexts
from P 3 and P 4, and 218 32-bit representations of the plaintexts from P 1 and P 2.
The ciphertexts themselves are not used in the key recovery part, and thus are not
stored.
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program stores it for later use. Once all plaintexts are decrypted, the program
searches for right quartets. This is done by searching for pairs in which bits
32–127 of the decrypted plaintexts have difference of (0̄, 0, 0̄).5

Once a right quartet is found, the key recovery is done by trying all possible
values as the key for the first plaintext word in both pairs and checking which
value leads to a zero difference after a single round of σ[k0], γ, and η. All such
values are written into the output file as possible keys. This process is repeated
for all quartets satisfying the conditions (i.e., the candidate quartets). The second
process does the same with the minor change that it searches for decrypted pairs
in which bits 0–95 has difference of (0, 0̄, 0̄) and searches for the forth key word
instead of the first.

The Python program was written in Python 2.6.6 over GCC 4.4.5. Once the
C program finishes its execution the Python program reads the two output files
and invokes another C program that uses the results of the previous phase to
recover key bits 32–63 by iterating over all possible key values which satisfy the
conditions in Subsection 6.2. The python program then runs another C program
that exhaustively searches for the last key word. The program tries in parallel all
8 possible key words combinations with all 232 possible values for the remaining
key word. Once the full key is identified in one of the subprograms, the program
outputs it and terminates.

6.4 Results of the Experimental Verification

Our experiment included running the program 100 times. Out of these 100 trials,
recovering k0 was successful 98 times (98%), Recovering k3 was successful 98
times (98%). In 98 of the trials (98%), both k0 and k3 were recovered successfully.
The key word k2 was recovered successfully 98 times (98%), i.e., whenever k0 and
k3 were both recovered, so was k2. We consider the experiment to be successful
in recovering a key word when the Python program returns exactly 2 possible
values for that word: the correct one and its complement.

We also tested the actual amount of quartets. Out of the 100 trials, the pro-
gram found on average 4.06 candidate quartets for B0 and 4.01 candidate quar-
tets for B1. This result is perfectly aligned with the calculation we presented in
Section 6.1.

The average running time of the program on an i5 personal computer with 4
GBs RAM, running Debian Linux is 196.56 seconds for the first phase and 106.38
seconds for the second phase with standard deviations of 61.47 seconds and
52.19 seconds, respectively. Executing 232 encryptions of the full MMB requires
341.57 seconds. When parallelized over an i5 CPU with 4 cores and terminated
on key detection, the average running time of this stage is 504.40 seconds with
a standard deviation of 329.01 seconds. Hence, the average total time required
for the recovery of the full key is 13.5 minutes with a standard deviation of 4.19
minutes.
5 Although an implementation using a hash-table is faster in theory, we found out
that in practice, the required bookkeeping induces higher overhead than a simple
list of values.
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Our implementation of the attack presented in Section 5 is available upon
request from the authors (via the program chairs, to maintain anonymity). [1]

7 Attacking More Rounds of MMB

In this section we expand our attack to show that even if MMB was extended to 7
or 8 rounds our attack could still be used to recover 64 bits of the key, namely, k0
and k3. We first show how to extend the existing boomerangs to cover 6 rounds
of MMB, and recover 64 key bits of the 7-round variant. Then, we use the same
related-key differentials in different settings to construct related-key boomerangs
for the 8-round variant of MMB. Both attacks have been verified experimentally,
and can recover the key bits in only a few minutes using a home PC.

7.1 Attacking 7 Rounds of MMB

We start by showing that the related-key differential characteristic τ → τ∗ can
be extended by one more round and thus, B0 can be extended to cover 7 rounds
of MMB. This extended boomerang can be used to recover k0 as before.

To attack the 7-round variant of MMBwe reuse the previously used differential
0→ 0∗

0 = (0, 0, 0̄, 0̄)
σ[k1]−−−−−→

(0,0,0̄,0̄)
(0, 0, 0, 0)

γ−→ (0, 0, 0, 0)
η−→ (0, 0, 0, 0)

θ−→ (0, 0, 0, 0)

σ[k2]−−−−−→
(0,0̄,0̄,0)

(0, 0̄, 0̄, 0)
γ−→ (0, 0̄, 0̄, 0)

η−→ (0, 0̄, 0̄, 0)
θ−→ (0̄, 0, 0, 0̄)

σ[k3]−−−−−→
(0̄,0̄,0,0)

(0, 0̄, 0, 0̄)
γ−→ (0, 0̄, 0, 0̄)

η−→ (0, 0̄, 0, δ̄)
θ−→ (δ, 0̄, δ, δ̄) = 0∗

which holds with probability 1 by

(X̄, 0̄, 0, 0̄)
σ[k0]−−−−−→

(0̄,0,0,0̄)
(X, 0̄, 0, 0)

γ−→ (δ̄, 0̄, 0, 0)
η−→ (0̄, 0̄, 0, 0)

θ−→ (0, 0, 0̄, 0̄) = 0

to form a 4-round related-key differential which is used as the basis of the
boomerang. We also append one more round to the related-key differential char-
acteristic τ → τ∗ presented in Section 5 to form a 3-round related-key differential
characteristic τ → τ∗e with probability 1:

τ = (0, 0, 0, 0̄)
σ[k4]−−−−−→

(0,0,0,0̄)
(0, 0, 0, 0)

γ−→ (0, 0, 0, 0)
η−→ (0, 0, 0, 0)

θ−→ (0, 0, 0, 0)

σ[k5]−−−−−→
(0,0,0̄,0)

(0, 0, 0̄, 0)
γ−→ (0, 0, 0̄, 0)

η−→ (0, 0, 0̄, 0)
θ−→ (0, 0̄, 0̄, 0̄)

σ[k6]−−−−−→
(0,0̄,0,0)

(0, 0, 0̄, 0̄)
γ−→ (0, 0, 0̄, 0̄)

η−→ (0, 0, 0̄, δ̄)
θ−→ (δ̄, 0̄, δ, δ) = τ∗e .
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Using this extended differential, the extended B0 (namely Be
0) is constructed

by appending the 3 rounds of τ → τ∗e after the 3 rounds of0→ 0∗ and prepend-
ing the additional input rounds of Equation (2) to form a 7-round boomerang
with keys K1 = (k0, k1, k2, k3) and K2 = K1⊕ (0̄, 0, 0, 0̄), which are used for en-
cryption, and K3 = K1⊕ (0, 0, 0, 0̄) and K4 = K2⊕ (0, 0, 0, 0̄) = K3⊕ (0̄, 0, 0, 0̄)
which are used for decryption.

The extended B1 is constructed by appending the first 2 rounds of 0 → 0∗

after the 4 rounds of 1∗ →1

1∗ = (0, 0, 0̄, 0)
σ[k1]−−−−−→

(0,0,0̄,0)
(0, 0, 0, 0)

γ−→ (0, 0, 0, 0)
η−→ (0, 0, 0, 0)

θ−→ (0, 0, 0, 0)

σ[k2]−−−−−→
(0,0̄,0,0)

(0, 0̄, 0, 0)
γ−→ (0, 0̄, 0, 0)

η−→ (0, 0̄, 0, 0)
θ−→ (0̄, 0̄, 0̄, 0)

σ[k3]−−−−−→
(0̄,0,0,0)

(0, 0̄, 0̄, 0)
γ−→ (0, 0̄, 0̄, 0)

η−→ (0, 0̄, 0̄, 0)
θ−→ (0̄, 0, 0, 0̄)

σ[k4]−−−−−→
(0,0,0,0̄)

(0̄, 0, 0, 0)
γ−→ (0̄, 0, 0, 0)

η−→ (δ̄, 0, 0, 0)
θ−→ (δ̄, δ̄, 0, δ̄) = 1

and prepending the additional input round

(0, 0̄, 0̄, Ȳ )
σ[k0]−−−−−→

(0,0,0,0̄)
(0, 0̄, 0̄, Y )

γ−→ (0, 0̄, 0̄, δ̄)
η−→ (0, 0̄, 0̄, 0̄)

θ−→ (0, 0, 0̄, 0) = 1∗,

thus, forming the 7-round boomerang Be
1 which uses K1 and K3 for encryption,

and K2 and K4 for decryption.
We use the same method as in Section 6 to generate two sets of plaintexts of

size 217 each, that differ only in bits 0–31, and another two sets of plaintexts of
size 217 each, that differ only in bits 96–127. Then, we encrypt the plaintexts
under the appropriate related-keys, XOR them with the required differences and
decrypt under the appropriate keys to find right quartets with respect to Be

0 and
Be

1 . As in Section 6 we expect two plaintexts, one of each set to collide with non-
negligible probability, thus, satisfying the required input differences for 0→ 0∗

and 1∗ → 1. The 32 bits of k0 are then recovered by 232 trials and the bits of
k3 are recovered by another 232 trials.

This attack uses an overall time of 232.2, 220.3 memory, and 220 adaptive
chosen plaintexts and ciphertexts encrypted under four related-keys.

7.2 Attacking 8 Rounds of MMB

To attack the 8-round variant of MMB we use the related-key differentials in
a different setting. We build another boomerang, B2, which is constructed by
appending the 4 rounds of 1∗ →1
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1∗ = (0, 0, 0̄, 0)
σ[k1]−−−−−→

(0,0,0̄,0)
(0, 0, 0, 0)

γ−→ (0, 0, 0, 0)
η−→ (0, 0, 0, 0)

θ−→ (0, 0, 0, 0)

σ[k2]−−−−−→
(0,0̄,0,0)

(0, 0̄, 0, 0)
γ−→ (0, 0̄, 0, 0)

η−→ (0, 0̄, 0, 0)
θ−→ (0̄, 0̄, 0̄, 0)

σ[k3]−−−−−→
(0̄,0,0,0)

(0, 0̄, 0̄, 0)
γ−→ (0, 0̄, 0̄, 0)

η−→ (0, 0̄, 0̄, 0)
θ−→ (0̄, 0, 0, 0̄)

σ[k4]−−−−−→
(0,0,0,0̄)

(0̄, 0, 0, 0)
γ−→ (0̄, 0, 0, 0)

η−→ (δ̄, 0, 0, 0)
θ−→ (δ̄, δ̄, 0, δ̄) = 1

after the 3 rounds of 0→ 0∗

0 = (0, 0, 0̄, 0̄)
σ[k1]−−−−−→

(0,0,0̄,0̄)
(0, 0, 0, 0)

γ−→ (0, 0, 0, 0)
η−→ (0, 0, 0, 0)

θ−→ (0, 0, 0, 0)

σ[k2]−−−−−→
(0,0̄,0̄,0)

(0, 0̄, 0̄, 0)
γ−→ (0, 0̄, 0̄, 0)

η−→ (0, 0̄, 0̄, 0)
θ−→ (0̄, 0, 0, 0̄)

σ[k3]−−−−−→
(0̄,0̄,0,0)

(0, 0̄, 0, 0̄)
γ−→ (0, 0̄, 0, 0̄)

η−→ (0, 0̄, 0, δ̄)
θ−→ (δ, 0̄, δ, δ̄) = 0∗

and prepend the extra input round

(X̄, 0̄, 0, 0̄)
σ[k0]−−−−−→

(0̄,0,0,0̄)
(X, 0̄, 0, 0)

γ−→ (δ̄, 0̄, 0, 0)
η−→ (0̄, 0̄, 0, 0)

θ−→ (0, 0, 0̄, 0̄) = 0.

The new boomerang, B2, usesK
1 = (k0, k1, k2, k3) andK2 = K1⊕(0̄, 0, 0, 0̄), for

encryption, andK3 = K1⊕(0, 0, 0̄, 0) andK4 = K2⊕(0, 0, 0̄, 0) = K3⊕(0̄, 0, 0, 0̄)
for decryption.

The second boomerang is the extension of Be
1 (namely, Bee

1 ) where the 3
rounds of 0 → 0∗ are concatenated after the 4 rounds of 1∗ → 1, and the
additional input round

(0, 0̄, 0̄, Ȳ )
σ[k0]−−−−−→

(0,0,0,0̄)
(0, 0̄, 0̄, Y )

γ−→ (0, 0̄, 0̄, δ̄)
η−→ (0, 0̄, 0̄, 0̄)

θ−→ (0, 0, 0̄, 0) = 1∗,

is prepended. This boomerang uses K1 and K5 = K1⊕(0, 0, 0, 0̄) for encryption,
and K2 and K6 = K5 ⊕ (0̄, 0, 0, 0̄) = K1 ⊕ (0̄, 0, 0, 0) for decryption.

The same method as before is used when we generate two sets of plaintexts
of size 217 each, that differ only in bits 0–31, and another two sets of plaintexts
of size 217 each, that differ only in bits 96–127. Then, we encrypt the plaintexts
under the appropriate related-keys, XOR them with the required differences and
decrypt under the appropriate keys to find right quartets with respect to Bee

0

and Bee
1 . As in Section 6 we expect two plaintexts, one of each set to collide

with non-negligible probability, thus, satisfying the required input differences
for 0 → 0∗ and 1∗ → 1. The 32 bits of k0 are then recovered by 232 trials
and the bits of k3 are recovered by another 232 trials.

This part of the attack uses an overall time of 232, 220.3 memory, and 220

adaptive chosen plaintexts and ciphertexts encrypted under six related-keys.
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7.3 Attacking 9 Rounds of MMB

We note that one can use our 4-round related-key differential characteristic1∗ →
1 twice, to obtain a related-key boomerang distinguisher with probability 1 for
8-round MMB. We note that this distinguisher requires only two keys as the
same key differences are needed for the two differentials. Using the techniques
mentioned before, it can be easily transformed into a 9-round key recovery attack
that retrieves 32 bits of the key in time of about 232 encryptions. At the moment,
we are not aware of methods to extract more key bits.

8 Conclusions

In this paper we have used various techniques from the differential cryptanalysis
family to break the MMB block cipher. By extending previous results along
with a new related-key differential we discovered, we were able to identify three
related-key differentials that allowed us to construct two 5-round related-key
distinguishers with probability 1. We then used each of these distinguishers as
the basis for a 6-round boomerang that is able to recover 32 key bits using 219

data in 219.22 time using four related keys. We then used the already recovered
key bits to recover another 32 key bits using a simple 1R attack. The last 32 bits
are recovered by exhaustive search. The suggested attack can recover all the key
bits in 235.2 time using 220 adaptive chosen plaintexts and ciphertexts and 220.3

memory.
We verified our results experimentally by writing a program that recovers

the required key bits in about 15 minutes on a home PC. To the best of our
knowledge, though it has been many years since MMB was presented, this is the
first practical time attack that recovers its full key.

Finally, we showed that even if MMB had been extended to include 7 or 8
rounds an adversary can still recover half of its key bits using the same tech-
niques, with similar time, data and memory complexities.
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A Probabilities for the Transitions X
⊗G0−−→ δ̄ and

Y
⊗G3−−→ δ̄

In this Appendix we present a list of transitions from some input differences to
δ with respect to modular multiplication by G0 and G3, and their probabilities:

Table 3. Most Probable Transitions for Multiplications in MMB

Input Difference (X) Probability −log2(p)

7FBFFB64x 32768 · 2−32 17
45440164x 31872 · 2−32 17.03
7F3FFB64x 31744 · 2−32 17.04
C5440164x 28032 · 2−32 17.22
4000C164x 26912 · 2−32 17.28
C000C164x 26336 · 2−32 17.31
90440164x 26112 · 2−32 17.32
88240164x 26112 · 2−32 17.32
08240164x 26112 · 2−32 17.32
80240164x 26112 · 2−32 17.32
00240164x 26112 · 2−32 17.32
10440164x 26112 · 2−32 17.32
90C40164x 25344 · 2−32 17.37
10C40164x 25344 · 2−32 17.37
C0014404x 25024 · 2−32 17.38
C0014164x 24992 · 2−32 17.39
C00A0164x 24960 · 2−32 17.39
80012404x 24576 · 2−32 17.41
80011C04x 24576 · 2−32 17.41
00012404x 24576 · 2−32 17.41
00011C04x 24576 · 2−32 17.41
400A0164x 24192 · 2−32 17.43
40014164x 24160 · 2−32 17.43
40014404x 24128 · 2−32 17.44
D77FFB64x 23328 · 2−32 17.49

25 Most Probable Transitions for X
⊗G0−−−→ δ̄

Input Difference (Y ) Probability −log2(p)

7FFD7FF1x 17920 · 2−32 17.87
FFF7FED1x 16640 · 2−32 17.97
7FFD7FF9x 16384 · 2−32 18
409004D1x 14848 · 2−32 18.14
C09004D1x 14336 · 2−32 18.19
7FFBF9D1x 14336 · 2−32 18.19
5FDED9D1x 12480 · 2−32 18.39
400801C9x 12304 · 2−32 18.41
7FFBFDD9x 12288 · 2−32 18.41
C00801C9x 12272 · 2−32 18.41
5FFD79D1x 12032 · 2−32 18.44
D41004D1x 11400 · 2−32 18.52
775F7FF9x 11280 · 2−32 18.53
775F7FF1x 11280 · 2−32 18.53
541004D1x 10632 · 2−32 18.62
77FDFE51x 10016 · 2−32 18.70
FFF7D9D1x 9984 · 2−32 18.71
7FDFD851x 9984 · 2−32 18.71
C30011D1x 9760 · 2−32 18.74
508011D1x 9632 · 2−32 18.76
430011D1x 9504 · 2−32 18.78
805041D1x 9472 · 2−32 18.79
005041D1x 9472 · 2−32 18.79
C41111D1x 9456 · 2−32 18.79
908011D1x 9440 · 2−32 18.79

25 Most Probable Transitions for Y
⊗G3−−−→ δ̄
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Abstract. In this paper we present truncated differential analysis of
reduced-round LBlock by computing the differential distribution of ev-
ery nibble of the state. LLR statistical test is used as a tool to apply
the distinguishing and key-recovery attacks. To build the distinguisher,
all possible differences are traced through the cipher and the truncated
differential probability distribution is determined for every output nib-
ble. We concatenate additional rounds to the beginning and end of the
truncated differential distribution to apply the key-recovery attack. By
exploiting properties of the key schedule, we obtain a large overlap of key
bits used in the beginning and final rounds. This allows us to significantly
increase the differential probabilities and hence reduce the attack com-
plexity. We validate the analysis by implementing the attack on LBlock
reduced to 12 rounds. Finally, we apply single-key and related-key at-
tacks on 18 and 21-round LBlock, respectively.

Keywords: Block cipher, LBlock, Truncated differetial analysis, Prob-
ability distribution, Log-likelihood ratio, Key-recovery attack.

1 Introduction

With the advent of RFID technology in communication applications, tradi-
tional block ciphers are generally not suitable for resource constrained devices.
Lightweight block ciphers (with smaller block and key size) are a new class of
ciphers designed for such environments. Recently there have been a lot of new
lightweight designs, examples include: HIGHT [8], PRESENT [5], PRINTcipher
[9], and LBlock [17]. Security analysis of lightweight primitives is currently re-
ceiving considerable attention.

Similarly to the other lightweight block ciphers, LBlock has attracted a signif-
icant amount of cryptanalysis. For instance, related-key impossible differential
attacks were successfully applied to 21 and 22-round LBlock [13,14]. A 16-round
related-key truncated differential is exploited to launch an attack on 22-round
LBlock [12]. In [15], a 15-round distinguisher is proposed, allowing an integral
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attack for up to 22 rounds. Zero-correlation linear cryptanalysis of 22-round
LBlock is presented in [16]. All attacks published so far require high amount of
memory and data.

The standard differential analysis and its derivatives usually follow a differen-
tial trail and compute probabilities for known expected differences. Recently dif-
ferential distribution analysis got high attention in the analysis of block ciphers.
These type of attacks typically require lower amount of data in comparision to
the standard differential. In the case of lightweight block ciphers, Albrecht and
Leander explained in [1], that it is feasible to find the probability distribution
of all output differences from one (or more) input difference. In a similar work,
multiple differential cryptanalysis using the LLR and χ2 statistical tests dis-
cussed in [3]. However in [1,3] the differential distribution is found for the whole
state, which makes the attack possible only on a cipher with a small block size.
The link between differential analysis and correlations of linear approximations,
was exploited in [4] to compute truncated differential probabilities. This method
combined with LLR test used to apply multiple differential cryptanalysis on
PRESENT.

In this paper we present the truncated differential analysis of LBlock by look-
ing at the difference distributions of the state nibbles independently. After finding
a distribution that significantly differs from that of a random permutation, we
use LLR statistical test to build the distinguisher. The way we find the trun-
cated differential distribution in the markov model, makes our attack possible
on the ciphers with relatively larger states than [1,3]. Additional rounds are
added to the end of the distinguisher to be used in a partial key recovery phase.
Moreover, by exploiting related key bits in the key schedule, we concatenate ad-
ditional rounds to the beginning of the distinguisher. Differentials through these
beginning rounds have high probability, allowing us to extend the attack without
significantly increasing the complexity. We apply the attack on a reduced round
LBlock and construct single key and related key attacks up to 18 and 21 rounds,
respectively. A comparison with attack complexities from prior work is given in
Table 1.

The rest of the paper is structured as follows. Preliminaries are explained in
Section 2. A framework to apply the key-recovery attack using the truncated dif-
ferential distribution, while benefiting the key schedule properties is introduced
in Section 3. Section 4 discusses the complexity of the attack and includes the
empirical results. Section 5 presents a single-key attack on 18 rounds as well
as related-key attacks on 20 and 21 rounds of LBlock. Finally, we conclude the
paper in Section 6.

2 Preliminaries

2.1 LBlock Description

LBlock [17] is a lightweight block cipher with a block size of 64 bits and a key
size of 80 bits. The design is a 32 round balanced Feistel where the input block
is divided into two 32-bit halves, denoted the left-hand half (most significant
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Table 1. Attacks on LBlock

Type of Attack rounds Data Time Reference
Related-key impossible differential 22 268 270 [14]

Related-key differential 22 264.1 267 [12]
Integral 18 262 + 220 memory 236 [17]
Integral 22 261 + 263 memory 270 [15]

Zero-correlation linear 22 260 + 264 memory 279 [16]
Truncated differential 18 223 268.71 This paper

Related-key truncated differential 20 227 274.55 This paper
Related-key truncated differential 21 230 277.56 This paper

bits) and the right-hand half (least significant bits). Each round includes a key
addition, where the round sub-keys are 32-bit values denoted by SK[i]. The
structure of LBlock is shown in Fig. 1a.

<<< 8 

x15 x14 x13 x12 x11 x10 x9 x8 x7 x6 x5 x4 x3 x2 x1 x0 

F 

<<< 8 
F 

30 rounds 

SK[1] 

SK[32] 

y15 y14 y13 y12 y11 y10 y9 y8 y7 y6 y5 y4 y3 y2 y1 y0 

(a) Feistel network

 

 

x15 x14 x13 x12 x11 x10 x9 x8 

SK[i] 

s7 s6 s5 s4 s3 s2 s1 s0 

(b) The round function

Fig. 1. LBlock structure

The round function includes a XOR key addition, a nonlinear S-box layer (S)
and a linear permutation layer (P ). The S-box layer S applies 8 different S-boxes
(si) in parallel. The linear layer P simply reorders the 8 nibbles in the state.
The round function is show in Fig. 1b. Since all the state functions operate on
4 bits, it is convenient to represent the state as a sequence of nibbles using the
following notation x = (x15, . . . , x1, x0). LBlock uses a key scheduling function
to expand the 80 bit master key K into 32 round sub-keys SK[i], each being 32
bits in size. The master key K is stored in a register, denoted by the sequence of
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bits k79k78k77k76 . . . k1k0. The key register is updated by the scheduling process
and the 32 most significant bits of the register become the round sub-key. The
key scheduling process is as follows:
For i = 1, 2, . . . , 31:

1. K ≪ 29

2. [k79k78k77k76] = s9[k79k78k77k76] and [k75k74k73k72] = s8[k75k74k73k72]

3. [k50k49k48k47k46]⊕ [i]2
4. Output the leftmost 32 bits of the current content of register K as the round

sub-key SK[i+ 1].

where s8 and s9 are two 4-bit S-boxes.

2.2 Likelihood Test

Let P = (p0, p1, . . . , pn) and Q = (q0, q1, . . . , qn) denote two discrete probability
distributions of random variables X and Y , respectively. The relative entropy,
or Kullback-Leibler divergence, is a measure between two distributions, see [2,6].

Definition 1. The Kullback-Leibler (KL) divergence between P and Q is defined
as follows:

D(P ||Q) =

n∑
i=0

pi · ln(
pi
qi
) (1)

As in [6], we use the convention that 0 · log 0
q = 0 and p · log p

0 =∞.

In the binary hypothesis testing problem, one is given a set of empirical data
x = (x0, x1, . . . , xn) taken from N samples. The empirical probability distri-
bution is equal to P̂ = (p̂0, p̂1, . . . , p̂n) = 1/N · (x0, x1, . . . , xn). According to
the Neyman-Pearson Lemma, the log-likelihood ratio is the optimal method for
determining if the sample data belongs to one of two different probability dis-
tributions P or Q, see [6,7].

Definition 2. The log-likelihood ratio (LLR) is defined as

LLR(P̂ , P,Q) = N
n∑

i=0

p̂i · ln(
pi
qi
) (2)

If LLR(P̂ , P,Q) ≥ Θ (Θ is a threshold parameter), the empirical data is
accepted as a sample from the distribution P (rejecting Q as the hypothesis).
Otherwise, P is rejected in favour of Q. In our analysis, we use this to distinguish
between distributions representing the right key and the wrong keys which is
explained in later sections.
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3 Truncated Differential Analysis

The analysis is structured in to the following three phases: Standard Differential
phase (SD), Truncated Differential Distribution (TDD), and Partial-Key Recov-
ery phase (PKR). Fig. 2 depicts the range of each phase. SD phase starts from
state S0 with a known input difference α, and follows a standard differential
trail through SD-rounds up to state S1 with specific output difference β. TDD
phase calculates the truncated differential distribution from input β through
TDD-rounds to state S2 with output Γ . The output Γ here is not a specific
difference but a probability distribution over all possible differences. PKR phase
involves partial decryption of the ciphertext to determine S2 from the observed
output state S3. The difference in state S2 is measured and compared against
the expected distribution Γ .

SDS0 TDDS1 PKRS2 S3

Fig. 2. The attack model

3.1 Standard Differential Phase

The Standard Differential (SD) phase involves finding a high probability differen-
tial characteristic through some number of rounds. The XOR-difference between
two states x and x′ is denoted by α = (α15 . . . α1α0) = (x15 ⊕ x′15, . . . , x1 ⊕
x′1, x0 ⊕ x′0). Note that αi represents exact difference of 4-bits, hence αi ∈
{0, . . . , 15}. The differential trail maps a specific input difference α to a spe-
cific output difference β with probability denoted PSD(α→ β).

For example, let the input difference be α = (10000000 00002000). A possible
output difference, after one round, is β = (00000000 10000000). The probability
of this differential is 2−2.

SD : (10000000 00002000)→ (00000000 10000000) (3)

The probability is computed under the assumption that the input values of S-
box s7 are not known. If the inputs to the S-box are known, we can detect (with
probability 1) whether the differential trail is followed. This requires knowledge
of nibble 7 of SK[0]. Conversely, given the values of the state, we can find
solutions to the sub-key SK[0]7 such that the differential trail is followed.

3.2 Truncated Differetial Distribution Phase

In this phase, we model the difference distribution of all possible output differ-
ences for every nibble based on a chosen distribution of input differences. This
generalisation is the fundamental idea behind truncated differential analysis [10]
and all-in-one differential analysis [1].
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Computing Truncated Differential Distribution. The round function con-
sists of two components that affect the probability distribution, S-box transfor-
mation and XOR addition. Proposition 1, describes probability of differences for
each nibble after an S-box transformation, and Proposition 2 shows how XOR
addition affect the difference probability distribution.

Proposition 1. For an S-box sn : F4
2 → F4

2 and input difference probability
distribution x = (x0x1 . . . x15), where xi is the probability of difference i for
nibble n, the output difference probability yi after S-box transformation sn is
calculated as

yi =

15∑
j=0

xj ·P(sn(j) = i) (4)

Proof. Assume the difference J occurs with probability xJ and 4-bit S-box sn
transfers difference J to difference I with probability P(sn(J) = I). Hence,
difference I happens from input diffrence J with probability xJ ·P(sn(J) = I).
However, difference I might occur from s-box transformation of the other 15
input differences; therefore output difference I happens with probability yI as
yI =

∑15
j=0 x

j · P(sn(j) = I). The same way is used to calculate probability yi

for every output difference 0 ≤ i ≤ 15. �

Proposition 2. For two input difference probabilities x = (x0x1 . . . x15) and
y = (y0y1 . . . y15), the output XOR-difference probability zi is

zi =

15∑
j=0

xj · yi⊕j (5)

Proof. Assume nibble Z is the XOR-additoion of nibbles X and Y . Difference J
at nibble X happens with probability xJ ; while, in nibble Y , difference K = I⊕J
happens with probability yK . By XORing differences J and K, nibble Z has
difference I with probability zI = xJ · yI⊕J . However, difference I might be the
result of XORing other 15 differences 0 ≤ j ≤ 15 of nibble X with difference
k = I ⊕ j of nibble Y . Thus, overall difference I happens with probability
zI =

∑15
j=0 x

j · yI⊕j. For every difference 0 ≤ i ≤ 15 of nibble Z probability zi

is calculated with the same way. �

These propositions allow us to construct the differential transformation matrix
for the round function; and, given an input distribution, obtain the output trun-
cated differential distribution after a number of rounds. Thus, the TDD phase
maps a difference vector β to a distribution matrix Γ . We denote the probability
distribution matrix PTDD(β → Γ ). For example, let the input difference vec-
tor be β = (00000000 10000000). Table 2 lists the output truncated differential
distribution PTDD(β → Γ ) for the right-hand half nibbles after 8 rounds of
LBlock, calculated using Propositions 1 and 2.

The analysis is more effective if a differential distribution profile is chosen
in a way that is easiest to distinguish. More specifically, a distribution that
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Table 2. Example truncated differential distribution after 8 rounds

Diff\Nibble 7 6 5 4 3 2 1 0

0 0.0610 0.0654 0.0000 0.0000 0.0667 0.0667 0.0000 0.0000
1 0.0000 0.0592 0.0312 0.0693 0.0625 0.0625 0.0625 0.0645
2 0.0649 0.0620 0.1562 0.0732 0.0626 0.0624 0.0312 0.0635
3 0.0649 0.0619 0.0312 0.0684 0.0623 0.0626 0.0938 0.0649
4 0.0610 0.0608 0.0469 0.0698 0.0620 0.0625 0.0625 0.0654
5 0.0732 0.0646 0.0469 0.0610 0.0626 0.0625 0.0625 0.0664
6 0.0703 0.0657 0.0781 0.0649 0.0622 0.0624 0.1250 0.0654
7 0.0684 0.0604 0.1094 0.0698 0.0625 0.0625 0.0625 0.0688
8 0.0703 0.0588 0.0625 0.0635 0.0617 0.0646 0.0625 0.0649
9 0.0679 0.0663 0.0625 0.0649 0.0618 0.0583 0.0625 0.0757
A 0.0659 0.0627 0.0469 0.0635 0.0623 0.0604 0.0312 0.0659
B 0.0649 0.0626 0.0469 0.0728 0.0619 0.0626 0.0312 0.0684
C 0.0615 0.0615 0.0781 0.0659 0.0621 0.0646 0.0625 0.0649
D 0.0679 0.0634 0.1094 0.0654 0.0619 0.0583 0.0625 0.0728
E 0.0693 0.0591 0.0625 0.0620 0.0626 0.0645 0.1250 0.0630
F 0.0684 0.0656 0.0312 0.0654 0.0623 0.0626 0.0625 0.0654

D(P||U) 6.59e-2 7.37e-4 1.81e-1 6.59e-2 1.55e-4 5.6e-4 1.46e-1 6.57e-2

is significantly different from uniformly random. As described in Section 2.2,
KL-divergence is the most accurate way to measure the distance between two
distributions [2]. The last row in Table 2 lists the KL-divergence between calcu-
lated probability distribution and uniform distribution for every nibble. Here, U
denotes the uniform probability distribution with equal probability PU = 1/16.
Note, from Table 2, there are impossible differentials in nibbles 0, 1, 4, 5 and
7. This is due to the short number of rounds used in the sample and does not
generally occur in longer trails.

3.3 Partial Key Recovery Phase

Similar to a classical differential attack, additional rounds are added to the end
of the truncated differential distinguisher. In this analysis, the method for dis-
tinguishing is based on the variance between a differential distribution P and
the uniform distribution U . From the truncated differential distribution table,
we choose one (or more) nibbles with significantly large KL-divergence. This
nibble we term the target nibble and set P equal to the probability distribution
for this nibble. By guessing a subset of the round keys and decrypting cipher-
text pairs through the final rounds, we observe the target nibble differential
distribution. For LBlock, it is not required that the entire sub-key be known
to determine nibbles from previous rounds. For example, we choose nibble 3
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(of the right-hand half) as the target nibble. Table 3 lists the nibbles required
to decrypt 3 rounds and determine nibble 3. The X signifies nibbles that must
be calculated in order to decrypt back to the target nibble. The master key bits
are the key bits used relative to the master encryption key at round n− 3.

Table 3. Nibbles required to decrypt 3 rounds

Round Left nibbles Right nibbles sub-key nibbles Master Key bits
n-3 - - - - - - - - - - - - X - - - X - - - - - - - 79-78-77-76
n-2 - - X - - - - - X - - - - - - - - - - - X - - - 34-33-32-31
n-1 - - - - - - X - - - X - X - - - X X - - - - - - 21-20-19-18

17-16-15-14
n X - X - - - - - X X - - - - X - - - - - - - - -

For every partial key guess, we decrypt N ciphertext pairs and count the
frequency of each difference in the target nibble. The difference frequency is
stored in an array of 16 counters c = (c0c1 . . . c15). The corresponding probability
distribution P̂ for this sample is P̂ = 1/N · c which allows us to calculate the
LLR for each key guess. The LLR is used to determine if the observed data most
likely belongs to distribution P or U . If P is chosen in favour of U , the guessed
key is considered a potential solution for the real key. Otherwise, it is discarded.

3.4 Combining SD and TDD Phases

We can combine the standard differential trail of SD with the truncated differen-
tial distribution of TDD to achieve a differential profile over an extended number
of rounds. However, the expected output difference probabilities of TDD change
due to the success probability of each possible SD differential output. The prob-
ability distribution of differences resulting from the input difference α can be
computed as follows:

PTDD(α→ Γ ) =
∑
i

PSD(α→ βi) ·PTDD(βi → Γi)

= PSD(α→ βj) ·PTDD(βj → Γj)

+
∑
i�=j

PSD(α→ βi) ·PTDD(βi → Γi),

(6)

where βi are all possible output difference vectors of the SD phase. In Equation
(6), βj is the input difference for the truncated differential distribution TDD
that has the most distinguishable profile (highest KL-divergence). Usually, βj

is the difference with the lowest hamming weight. Also, in practice, all other βi

lead to probability distributions that are much closer to uniform (in comparison
to βj). That is,∑

i�=j

PSD(α→ βi) ·PTDD(βi → Γi) ≈ (1 −PSD(α→ βj)) ·PU (7)
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From (6) and (7), the output probability distribution is approximated by

PTDD(α→ Γ ) ≈ PSD(α→ βj) ·PTDD(βj → Γj) + (1−PSD(α→ βj)) ·PU

(8)

3.5 Dependencies between SD and PKR Phases

From the key schedule, there is a strong dependency between the sub-key bits
guessed in PKR and the sub-key bits affecting SD. This changes the success
probability PSD. Note there are two S-boxes s8 and s9 used in the key scheduling.
These S-boxes introduce nonlinear relationships between sub-keys, meaning the
PKR key bits are not always directly obtained from SD key bits. We select the
SD and PKR phases in a way such that there are as many common bits as
possible for the key bits used in the PKR and SD phases.

3.6 12-Round Example

This section gives details about how the analysis is applied to a 12-round version
of LBlock. We construct a 9-round differential distinguisher by combining the
1-round SD(α→ β) (from (3)) with 8-round TDD(β → Γ ) (from Section 3.2).
An additional 3 rounds are added for the PKR phase (described in Section 3.3).
The entire attack structure is depicted in Fig. 3.

To cover the general application of the analysis, we choose nibble 3 as the
target nibble for the PKR phase, which does not benefit from the impossible dif-
ferential. The sub-keys required to decrypt the ciphertext in the PKR phase (i.e.
The underlined sub-key nibbles in Fig. 3c) include SK[11]7, SK[11]6, SK[10]5
and SK[9]2, a total of 16 unique bits. The sub-key used in SD phase is SK[0]7.
From the key schedule we get

SK[0]7 = ((s−1
9 (SK[11]7) & 0x7)
 1) | (s−1

8 (SK[11]6) & 0x1).

That is, for a given guess in PKR phase, we determine the sub-key used in the
SD phase.

For a chosen input plaintext pair (with difference α), we say it is a right-pair
if it follows the differential SD. Otherwise, the pair is termed a wrong-pair. Note
that the attacker does not have access to the internal differential states, he only
sees the ciphertext pair. For random input pairs, PSD(α → β) = 2−2, and
we expect 1/4 right-pairs on average. Henceforth, we denote the total number
of plaintext pairs Np and the number of right-pairs N . For every guess of key
bits in PKR, we determine SK[0]7 and distinguish right-pairs from wrong-pairs
(with respect to the key guess). By disregarding wrong-pairs we can increase
the probability of the SD phase such that PSD(α → β) = 1. Therefore, from
Equation (8), PTDD(α→ Γ ) = PTDD(β → Γ ).

When SK[0]7 is incorrect (due to an incorrect guess in PKR), we mistake a
wrong-pair for a right-pair. This false-positive results in the addition of noise
to the observed probability distribution. The noise is assumed to be uniformly
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Fig. 3. 3 phases of the 12-round example

random, a similar assumption to the Wrong Key Randomization Hypothesis [11]
(explained later). However, this false-positive only occurs for incorrect guesses
and does not affect the correct guess distribution.

4 Complexity Analysis

For each key guessed in the PKR phase, we calculate the LLR between the
observed truncated differetial distribution and the expected one. If the LLR is
above some threshold (Θ), we consider the guessed key a candidate for the right
key. The resulting list of candidate keys are checked for correctness. The attack
is successful if the right key is among the list of candidate keys, we call this the
attack success rate. In [1], the “gain” of the attack is the fraction of wrong keys
ranked above the expected rank of the right key. We extend this concept and
determine the expected number of candidate keys and the effort required to find
the right key among them.

Assume R is a random variable for the LLR of the right candidate. After
decrypting N pairs of ciphertexts, the expected count for the right candidate
is defined by E(R) in Equation (9). Likewise, random variable W is defined for
the wrong candidates. The value E(W ) gives the expected count of the wrong
candidate, defined in Equation (10).

E(R) = N
∑
i

pi ln(
pi
qi
) (9)

E(W ) = N
∑
i

qi ln(
pi
qi
) (10)
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Here N is the number of right-pairs, pi is the probability of the expected right
key that gives the difference i (which is found in the TDD phase), and qi is the
probability of getting the difference by a wrong key. According to the Wrong
Key Randomization Hypothesis [11], difference probabilities after decryption by
a wrong key candidate are distributed as for a random permutation. Our exper-
iments on LBlock confirm the hypothesis for two or more rounds of decryption.

It is shown in [1] that LLR distribution of the right key is approximated by
a normal distribution with a mean of E(R) and variance of V ar(R) defined in
Equation (11). Likewise, the average distribution of the wrong keys, is approx-
imated by another normal distribution with a mean of E(W ) and variance of
V ar(W ), given in Equation (12).

V ar(R) = N

((∑
i

pi

(
ln(

pi
qi
)
)2)

−
(∑

i

piln(
pi
qi
)

)2
)

(11)

V ar(W ) = N

((∑
i

qi

(
ln(

pi
qi
)
)2)

−
(∑

i

qiln(
pi
qi
)

)2
)

(12)

To verify the theoretical findings by experiments, we implemented the analysis
on the 12-round example of Section 3.6. We ran the analysis 1000 times with
N = 216 right-pairs each, and found the LLR distribution for random variables
R and W . Note in this example we guess 16 key bits in the PKR phase, therefore
there are 216 candidate keys. Fig. 4b shows the LLR distribution for the right key
from the experiments. Likewise, Fig. 4a shows the average LLR distribution of all
the wrong keys. The theoretical values describing these distributions are, E(R) =
10.2242, E(W ) = −10.0356, V ar(R) = 20.8225, and V ar(W ) = 19.7064.

Assume random variable X follows a normal distribution N (μ, σ2), where μ
and σ2 are the mean and variance, respectively. According to the cumulative
distribution function (CDF), the probability of the random variable X falling
into the interval [x,∞) is (erf is the error function of the distribution):

P(X ≥ x) =
1

2

(
1− erf

(
x− μ

σ
√
2

))
(13)

If Θ represents a threshold for the LLR, P(R ≥ Θ) gives the probability that
the right key LLR is greater than the threshold. Likewise, P(W ≥ Θ) gives the
probability of a wrong key LLR greater than the threshold Θ. Both probabili-
ties are calculated from Equation (13). Since E(R) is the mean for the normal
distribution of the expected right key, the right key LLR is higher than E(R)
with probability 1

2 . While P(W ≥ E(R)) gives the probability of a wrong key
being ranked higher than the expected right key. If there are NK key candidates
in the test, Nwk denotes the wrong keys ranked higher than the threshold. The
expected value of Nwk is

Nwk = NK ·P(W ≥ Θ) (14)

The attack success rate for finding the right key is related to the threshold
Θ and N the number of right-pairs (accounting for the SD phase) used in the
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(c) Combined diagrams

Fig. 4. Empirical diagrams of the LLR distributions for the 12-round example

attack. By adjusting Θ and N , the attacker is able to find a higher success rate
or a lower Nwk.

In the 12-round example attack, we choose Np = 218 chosen plain-
text/ciphertext pairs and expect to get N = 216 right-pairs from the SD phase.
We ran the experiments 100 times for each chosen threshold. Table 4 shows the
results for different success rates by selecting various LLR thresholds. It is clear
in Table 4 that the experiments confirm the theory.

After the partial key-recovery, each candidate key should be checked for cor-
rectness to do the full key-recovery. One naive method is to guess the remaining
unknown key bits by exhaustive search. Assume bP is the number of PKR-key
bits, then the key-recovery attack complexity is

C = N 2bP + (Nwk + 1) 280−bP (15)
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Table 4. 12-round LBlock results for N = 216 right-pairs

Θ P(R ≥ Θ) P(W ≥ Θ) Nwk Empirical P(R ≥ Θ) Average empirical Nwk

2.6189 0.95 0.0021 143 0.94 154.07
5.6610 0.84 0.0002 14 0.87 15.16
7.1821 0.74 5.25e-05 4 0.73 3.68
8.7032 0.63 1.21e-05 0.79 0.61 0.92
10.2242 0.5 2.51e-06 0.16 0.45 0.19

By choosing Np = 218 plaintext pairs (results in 216 right-pairs) in the 12-round
attack, the distinguisher complexity is 216 × 216 = 232. While the whole key
recovery attack time complexity is C = 216 × 216 + 264 � 264 encryptions. Note
here, exhaustive key search of the remaining bits dominates the complexity.
There are more efficient methods for recovering the remaining bits. In cases
where the initial phase is the dominant task, the exhaustive search may be used
as it does not significantly increase the total complexity.

5 Key-Recovery Attack on LBlock

5.1 Single-Key Attack on 18 Rounds

Fig. 5 describes the truncated differential distribution attack on 18-round LBlock.
We divide the 18 rounds into 3 parts to apply the attack. The SD phase takes
the first 4 rounds, the TDD phase consists of the next 8 rounds, and the PKR
phase includes the 6 final rounds.

The input state of the 4-round SD phase includes 3 nibbles with non-zero
differences in the left-hand half and 5 nibbles with non-zero differences in the
right-hand half as shown in Fig. 5a. Through the 4-round standard differential
almost all the differences are cancelled. So the output state has difference zero
in all the nibbles except nibble 7 of the right-hand half. The TDD phase is very
similar to that explained in the 12-round attack. It starts with a low weight
state (with only difference 4 at nibble 7). Calculating the truncated differential
distribution for the right-hand half nibbles at the output state after 8 rounds,
the highest KL-divergence occurs with nibble 5 (i.e. D(P ||Q) = 2.184e − 01).
Therefore, nibble 5 is chosen as the target nibble for the 6-round PKR phase. To
find the LLR distribution for the target nibble, the attacker needs to guess 52
key-bits in the PKR phase. Observing the SD phase, if the attacker knows the
values of 3 sub-key nibbles SK[0]1, SK[0]2 and SK[0]3, he is able to find the
output of the 3 active S-boxes in the first round with no extra effort. Likewise,
by knowing the values of sub-key nibbles SK[0]6, SK[0]7, SK[1]5 and SK[1]7,
he finds the output of 2 active S-boxes in the second round. Overall, he needs to
know the values of 28 key bits. These bits are guessed in PKR phase, however
going through the key scheduling process the values of bits 73 and 72 are lost.
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Fig. 5. Truncated differential distribution attack on 18-round LBlock

By re-guessing these key bits and guessing one more (bit 0), all the required
28 bit values are revealed for the SD phase. Therefore, the probability of the
SD phase is increased to PSD = 2−4. As mentioned in Section 3.4, difference
probability distribution is updated after combining the SD and TDD phases
estimated by Equation (6). Probability distribution of the target nibble 5, is
shown in Table 5 before and after combining with the SD phase (PT and PST,
respectively).

Adjusting N in Equations (9) and (10), the attacker finds N = 213 as the
value with the best trade off between success rate and complexity. The sta-
tistical characteristic of the right key and the wrong key distributions are as
follows: E(R) = 6.44, E(W ) = −6.40, V ar(R) = 12.99, and V ar(W ) = 12.71.
Table 6 shows the result on 18-round key-recovery attack with different chosen
thresholds. Note, the number of plaintext pairs includes those satisfying the first
two rounds of the SD phase. Therefore, we need Np = 213+10 = 223 pairs of
plaintext/ciphertext to apply the attack. If the attacker chooses the threshold
Θ = E(R), the probability that he finds the right key is 50% and the attack
complexity is 268.71.

Table 5. Difference probability distribution of the target nibble

Diff 0 1 2 3 4 5 6 7 8 9 A B C D E F
PT 0.000 0.156 0.031 0.093 0.046 0.046 0.015 0.109 0.078 0.109 0.031 0.062 0.093 0.031 0.046 0.046
PST 0.058 0.068 0.060 0.064 0.061 0.061 0.059 0.065 0.063 0.065 0.060 0.062 0.064 0.060 0.061 0.061
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Table 6. Analysis results of 18-round LBlock for 223 plaintext pairs

Θ P(R ≥ Θ) P(W ≥ Θ) Nwk Time Complexity

1.043 0.93 0.018 6.62e+14 274.25

2.245 0.87 0.007 2.75e+14 273.01

3.446 0.79 0.002 1.033e+14 271.67

4.647 0.69 0.0009 3.49e+13 270.31

6.449 0.5 0.0001 5.63e+12 268.71

5.2 Related-Key Attack on 20 and 21 Rounds

The related key truncated differential distribution attack applies to LBlock re-
duced to 20 and 21 rounds. Considering the key scheduling process, when the key
difference goes through the S-boxes s8 or s9 the output difference is unknown.
However, due to the slow avalanche effect of the key schedule, it takes multiple
rounds for key differences to reach these S-boxes. Therefore, it is easy to find the
truncated difference probability distribution for all the possible key differentials.
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During the attack, we test each expected key differential in parallel to determine
the correct key differential path.

The related key attack on 20 rounds consists of a 4-round SD phase, 10-round
TDD, and 6-round PKR phase (see Fig. 6). The SD phase starts with 5 non-zero
differences which are all cancelled through the 4 rounds differential trail, finishing
with no difference in the output state. The key-register at the first round of the
TDD phase has difference in just one bit (the 13th least significant bit). The key
difference does not affect the round sub-keys for two rounds. The truncated dif-
ferential distribution is calculated for the 10-round TDD phase. Nibble 5 (of the
output right-hand half) has the highest KL-divergenceD(P ||Q) = 2.189429e−03
and is chosen as the target nibble. Finally, 6 final rounds are added as the PKR
phase, requiring 52 key bits be guessed to reach the target nibble. From these
key bits, two sub-key nibbles SK[0]2 and SK[0]4 are determined for the first
round of the SD phase. Consequently, the input values of the active S-boxes are
known in the first round and the overall probability of the SD phase increases
to PSD = 2−6.

Table 7, shows the results for the 20-round related key attack with different
success rates. Note that the number of plaintext/ciphertext pairs includes the
amount required to follow the SD phase. Considering the LLR threshold equal to
the expected value of the right key (E(R)), with 227 chosen plaintexts (N = 223

right-pairs), the complexity of the key recovery attack is 274.55.
The related-key attack is extended to 21 rounds by adding one more round

to the beginning of the SD phase in the above 20-round attack. Fig. 7 shows
the SD phase in 21-round attack. The other phases are similar to the ones in
the 20-round attack. If the attacker guesses 5 more key bits in the PKR phase
(a total of 57 bits), he finds the 3 sub-key nibbles (SK[0]1, SK[0]2 and SK[0]4)
required to know the values of the active S-boxes in the first SD round. Also, the
input values of 2 active S-boxes in the second round is clear by knowing sub-key
nibbles SK[0]0, SK[0]5, SK[1]2 and SK[1]4. The analysis results of the attack
on 21 rounds is shown in Table 7. Overall, the related-key attack on 21-round
LBlock is possible with Np = 230 chosen plaintexts (N = 220 right-pairs) and
277.56 time complexity, when the attack success rate is 50%.

Table 7. Related-key analysis results on reduced LBlock

Specification Θ P(R ≥ Θ) P(W ≥ Θ) Nwk Time Complexity

20 rounds, 1.6798 0.84 0.0183 8.28e+13 275.36

Np = 227 pairs, 3.7397 0.63 0.0029 1.31e+13 274.66

E(R) = 4.7696 4.7696 0.5 0.0010 4.51e+12 274.55

21 rounds, -0.1320 0.74 0.3355 4.83e+16 278.61

Np = 230 pairs, 0.2320 0.63 0.2240 3.23e+16 278.11

E(R) = 0.5962 0.5962 0.5 0.1373 1.98e+16 277.56
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6 Conclusion

In this paper we presented truncated differential analysis of block cipher LBlock
by analysing probability distribution of the truncated differences. Also we used
LLR statistical test to employ the key-recovery attacks. The attack uses a distin-
guisher based on truncated differential distribution that are significantly different
from a random permutation. Candidate sub-keys are guessed over several final
rounds and the observed differences are measured against the expected distri-
bution. We extend the distinguisher by concatenating additional rounds to the
beginning which follow a classical differential characteristic. By exploiting the
properties of the key schedule, we greatly increase the probabilities of differentials
passing through the beginning rounds. We verified the analysis by implementing
an example attack on 12-round LBlock and provide empirical data conforming
the theory. Finally, we describe single-key and related-key attacks on LBlock re-
duced to 18 and 21 rounds, respectively. Finding probability distribution of the
truncated differential, our attack can be applied on the ciphers with relatively
large block size.
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Abstract. In a searchable symmetric encryption (SSE) scheme, a client
can store encrypted documents to a server in such way that he can later
retrieve the encrypted documents which contain a specific keyword, keep-
ing the keyword and the documents secret. In this paper, we show how to
update (modify, delete and add) documents in a verifiable way. Namely
the client can detect any cheating behavior of malicious servers. We then
prove that our scheme is UC-secure in the standard model.

Keywords: keyword search, searchable symmetric encryption, update,
verifiable.

1 Introduction

We consider a scheme such as follows [15]: a client stores some files Di in an
encrypted form Ci on a remote server in the store phase. Later, in the search
phase, the client can efficiently retrieve the encrypted files containing specific
keywords w, keeping the keywords themselves secret and not jeopardizing the
security of the remotely stored files. Such a scheme is called a searchable sym-
metric encryption (SSE) scheme because a symmetric key encryption scheme is
used to encrypt files. (For example, a client may want to store old email mes-
sages encrypted on a server managed by Google or another large vendor, and
later retrieve certain messages while traveling with a mobile device.)

The notion of SSE schemes was introduced by Song et al. [25]. Then after a
series of works [25, 17, 1, 15], Curtmola, et al. [10, 11] gave a rigorous definition
of privacy against passive adversaries. Namely a server is an advresary who is
honest but curious. They then showed two schemes, SSE-1 and SSE2-2, where
SSE-1 is more efficient than SSE-2, and SSE-2 is more secure than SSE-1. In
particular, SSE-2 is secure against adaptive chosen keyword attacks.

On the other hand, Kurosawa et al. [21] considered a case such that the
server is malicious. A malicious server may delete some encrypted files to save
her memory space, for example. Even if the server is honest, a virus, worm,
trojan horse or a software bug may delete, forge or swap some encrypted files.
An adversary would then make a profit if the files are related to bank accounts,
tax or some critical information. They [21] then showed a verifiable SSE scheme
in which the client can detect any cheating behavior of malicious servers.
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In fact, Kurosawa et al. [21] proved that their scheme is UC-secure, where
UC (universal composability) is a very strong notion of security. In the UC
framework [7–9], the security of a protocol is maintained under a general protocol
composition. Therefore their SSE scheme [21] is secure even when it is composed
with itself and/or other cryptographic protocols and primitives.

Recently Kamara et al. [23] constructed a dynamic SSE scheme such that
the client can add and delete documents. They then proved that their scheme
is secure against adaptive chosen keyword attacks. Further the search time is
sublinear. Subsequently Kamara et al. [22] showed a parallel and dynamic SSE
scheme. However, these dynamic schemes [23, 22] are not verifiable. Namely the
client cannot detect cheating behavior of malicious servers. (Also the security
holds in the random oracle model only.)

In this paper, we first show a more efficient verifiable SSE scheme than Kuro-
sawa et al. [21]. In this scheme, the client sends only n+ 128 bits in the search
phase while (logn+ 
+ 1)× n bits must be sent in [21], where n is the number
of documents and 
 is the bit length of each keyword.

Table 1. Comparison with The Previous Works

Curtmola et al. Kurosawa et al. Kamara et al. This paper
[10] [21] [23, 22]

Verifiability × © × ©
Dynamic (Update) × × © ©

We next extend our verifiable SSE scheme to a verifiable dynamic SSE scheme.
Namely the client can update (modify, delete and add) documents, and he can
detect any cheating behavior of malicious servers. See Table 1 for the comparison
with the previous works.

We illustrate our idea of the construction by using an example. Suppose that
the client wants to search on a keyword Austin, and Austin is included in three
documents D1, D3, D5 whose ciphetexts are C1, C3, C5. In the verifiable SSE
scheme of [21], the client sends a query t(Austin) to the server, and the server
returns (C1, C3, C5) together with tag = MAC(t(Austin), (C1, C3, C5)), where
t(Austin) is some trapdoor information. Namely the client authenticates the
whole communication sequence, t(Austin) and (C1, C3, C5). He then stores the
authenticator, tag, on the server in the store phase.

In this scheme, however, the client cannot modify Ci efficiently. For ex-
ample, suppose that C1 includes two keywords, Austin and Washington.
To modify C1 to C′

1, the client must store two updated authenticators,
MAC(t(Austin), (C′

1, C3, C5)) and MAC(t(Washington), (C′
1, · · ·)), to the server in

the update phase. If C1 includes more keywords, then the client must updates
more authenticators.

Now our idea is that the client authenticates only (t(Austin), 1, 3, 5). He sepa-
rately authenticates each (i, Ci) also. Then to update C1 to C′

1, the client stores
just an authenticator on (1, C′

1) to the server. The update cost is only this no
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matter how many keywords are included in C1. Thus the client can update each
Ci efficiently.

To delete a document C1, the client updates it to a special symbol C′
1 = delete

similarly. To add a new document D6 which includes Austin, the client updates
the authenticator on (t(Austin), 1, 3, 5) to that on (t(Austin), 1, 3, 5, 6).

Finally, we prove that our verifiable dynamic SSE scheme is UC-secure in the
standard model.

1.1 Related Work

Conjunctive keyword search in the SSE setting was first considered by Golle et
al. [19]. In their scheme, a client specifies at most one keyword in each keyword
field. This framework was followed up by [3, 4]. Wang et al. [26] gave a scheme
which does not have such a structure. Recently Cash et al. [12] showed a keyword
field free scheme which can support general Boolean queries.

Chase et al. [13] extended and generalized the security model of SSE schemes
to complex data (e.g., graphs) and introduced the notion of associated data that
allows to compose different components of the protocol.

2 Verifiable Searchable Symmetric Encryption

If X is a string, then |X | denotes the bit length of X . [X ]1..u denotes the first
u bits of X , and [X ]u denotes the uth bit of X . If X is a set, then |X | denotes
the cardinality of X . PPT means probabilistic polynomial time.

2.1 Verifiable SSE Scheme

Let D = {D1, · · · , Dn} be a set of documents and W = {w1, · · · , wm} be a set
of keywords. Let Index = {ei,j} be an m× n binary matrix such that

ei,j =

{
1 if wi is contained in Dj

0 otherwise
. (1)

Let D(w) denote the set of documents which contain a keyword w ∈ W . Also let
List(w) = {i | Di contains w}.

A verifiable SSE scheme is a protocol between a client and a server as follows.

(Store phase)
On input (D,W , Index), the client sends (C, I) to the server, where C =

(C1, · · · , Cn) is the set of encrypted documents, and I is an encrypted Index.

(Search phase)

1. On input a keyword w ∈ W , the client sends a trapdoor information t(w) to
the server.

2. The server somehow computes C(w) = {Ci | Di contains w}, and returns
(C(w), T ag) to the client, where Tag is an authenticator.
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Real Game (Gamereal)� �

– In the store phase, an adversary A chooses (D,W, Index) and sends them to
the challenger. The challenger returns (I, C).

– In the search phase, for i = 1, · · · , q,
1. A chooses a keyword wai ∈ W and sends it to the challenger.
2. The challenger returns a trapdoor information t(wai) to A.

– Finally A outputs a bit b.

� �

Fig. 1. Real Game: Gamereal

3. The client verifies the validity of (C(w), T ag). If he accepts, then he decrypts
each Ci ∈ C(w), and outputs D(w) = {Di | Di contains w}. Otherwise he
outputs reject.

The definition of usual searchable symmetric encryption (SSE) schemes [10,
11] is obtained by deleting Tag from the verifiable SSE schemes.

2.2 Privacy

Suppose that the server (who is an adversary A) is honest but curious. In any
SSE scheme, the server learns |D1|, · · · , |Dn| and |W| in the store phase. Also
in the search phase, she learns List(w) = {i | Di contains w} for the search
keyword w because she must be able to return C(w). Now the server should not
be able to learn any more information. Curtmola, Garay, Kamara and Ostrovsky
[10, 11] formulated this security notion as follows.

We consider a real game Gamereal and a simulation game Gamesim. Gamereal is
played by a challenger and an adversary A as shown in Fig.1. Gamesim is played
by a challenger, an adversary A and a simulator Sim as shown in Fig.2.

Let

p0 = Pr(A outputs b = 1 in Gamereal),

p1 = Pr(A outputs b = 1 in Gamesim).

Definition 1. We say that a (verifiable) SSE scheme satisfies privacy if there
exists a PPT simulator Sim such that |p0− p1| is negligible for any PPT adver-
sary A.

2.3 Reliability (Verifiability)

Suppose that the server (who is an adversary A) is malicious. In verifiable SSE
schemes, the server should not be able to forge a search result (C(w), T ag) in the
search phase. This security notion is formulated as follows [21].

Fix (D,W , Index) and search queries w1, · · · , wq ∈ W arbitrarily. We say
that A wins if she can return (C(wi)

∗, T ag∗) for some query t(wi) such that
C(wi)

∗ 	= C(wi) and the client accepts (C(wi)
∗, T ag∗).
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Simulation Game (Gamesim)� �

In the store phase,

– A chooses (D,W, Index) and sends them to the challenger.
– The challenger sends |D1|, · · · , |Dn| and |W| to simulator Sim, where D =

{D1, · · · , Dn}.
– Sim returns (I′, C′) to the challenger, and he replays them to A.

In the search phase, for i = 1, · · · , q,

1. A chooses a keyword wai ∈ W and sends it to the challenger.
2. The challenger sends List(wai) = {j | Dj contains wai} to Sim.
3. Sim returns t′ to the challenger, and he relays it to A.

Finally A outputs a bit b.

� �

Fig. 2. Simulation Game: Gamesim

Definition 2. We say that a verifiable SSE satisfies reliability if for any PPT
adversary A, Pr(A wins) is negligible for any (D,W , Index) and any search
queries w1, · · · , wq.

Kurosawa et al. [21] proved the following proposition.

Proposition 1. A verifiable SSE scheme satisfies privacy and reliability if and
only if the corresponding protocol is UC-secure against non-adaptive adversaries.

3 Our Efficient Verifiable SSE Scheme

In this section, we show a more efficient verifiable SSE scheme than the previous
one [21]. In this scheme, the client sends only n + 128 bits in the search phase
while (log n + 
 + 1) × n bits must be sent in [21], where n is the number of
documents and 
 is the bit length of each keyword.

Remember that D = {D1, · · · , Dn} is a set of documents, W = {w1, · · · , wm}
is a set of keywords and Index = {ei,j} is an m× n binary matrix such that

ei,j =

{
1 if wi is contained in Dj

0 otherwise
.

Let indexi denote the ith row of Index.

3.1 Our Efficient SSE Scheme

In this subsection, we assume that the server is honest but curious. Let PRFk :
{0, 1}� × {0, 1}∗ be a pseudorandom function, where k is a key. Let SKE =
(G,E,E−1) be a symmetric-key encryption scheme, where G is a key generation
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algorithm, E is an encryption algorithm and E−1 is a decryption algorithm. We
assume that SKE is CPA-secure in the left-or right sense [2].

Now our SSE scheme is as follows.

(Store phase)

1. The client generates (ke, k0, k1) randomly, where ke is a key of SKE, and
k0, k1 are keys of PRF. He then keeps (ke, k0, k1) secret.

2. The client computes Ci = Eke(Di) for each document Di ∈ D. He also
computes

labeli = [PRFk0(wi)]1..128

indexi = indexi ⊕ [PRFk1(wi)]1..n

for each keyword wi ∈ W . He also chooses a random permutation σ on
{1, · · · ,m}. He then stores

C = (C1, · · · , Cn) and I = {(labelσ(i), indexσ(i)) | i = 1, · · · ,m}

to the server.

(Search phase) Suppose that the client wants to search on a keyword wa.

1. The client computes labela and pada = [PRFk1(wa)]1..n. He then sends
t(wa) = (labela, pada) to the server.

2. The server finds (labela, indexa) ∈ I by using labela. She then computes

indexa = indexa ⊕ pada

Let indexa = (e1, · · · , en). She returns C(w) = {Ci | ei = 1} to the client.
3. The client decrypts all Ci such that Ci ∈ C(w), and outputs {Di | Ci ∈ C(w)}.

Suppose that there are 5 documents D = {D1, · · · , D5} and 2 keywords W =
{w1, w2} such that D(w1) = {D1, D3, D5} and D(w2) = {D2, D4}. Then

index1 = (1, 0, 1, 0, 1)⊕ [PRFk1(w1)]1..5

index2 = (0, 1, 0, 1, 0)⊕ [PRFk1(w2)]1..5

Theorem 1. The above scheme satisfies privacy if SKE is CPA-secure and PRF

is a pseudorandom function.

Proof. (Sketch) In Gamesim, our simulator Sim behaves as follows.

(Store phase) Sim receives |D1|, · · · , |Dn| and m = |W| from the challenger.

1. Sim generates a key ke of SKE randomly. It also chooses a random permu-
tation σ on {1, · · · ,m}.

2. Sim computes Ci = Eke(0
|Di|) for i = 1, · · · , n. Sim also chooses labeli ∈

{0, 1}128 and indexi ∈ {0, 1}n randomly for i = 1, · · · ,m.
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3. Finally Sim returns C′ = (C1, · · · , Cn) and I ′ = {(labelσ(i), indexσ(i)) | i =
1, · · · ,m} to the challenger.

(Search phase) Sim receives List(wai) = {j | Dj contains wai} from the chal-
lenger for i = 1, · · · , q. For each i, let

ej =

{
1 if j ∈ List(wai )
0 otherwise

.

Sim then computes pad∗ = indexσ(i) ⊕ (e1, · · · , en) and returns t′ =
(labelσ(i), pad

∗) to the challenger.

Now the adversary A has (D,W , Index). Still in the store phase, A cannot
distinguish C′ from C because SKE is CPA-secure. Also A cannot distinguish I ′
from I because PRF (which is used in Gamereal) is a pseudorandom function.

In the search phase, A cannot distinguish t′ = (labelσ(i), pad
∗) from t(wa) =

(labela, pada) because PRF is a pseudorandom function and σ is a random per-
mutation. Therefore A cannot distinguish Gamesim from Gamereal. �

3.2 Our Efficient Verifiable SSE Scheme

In this subsection, we assume that the server is malicious, and extend the above
SSE scheme to a verifiable SSE scheme. (It is more efficient than the previous
verifiable SSE scheme [21].) Let MACkm be a tag generation algorithm of MAC,
where km is a key. We assume that MAC is a pseudorandom function. (This
means that it is unforgeable against chosen message attack.)

For keyword w1, a malicious server may return (C2, C3, C5) instead of
(C1, C3, C5). A naive approach to prevent such active attacks would be to re-
place each Ci with (Ci, MACkm(Ci)). However, this method does not work because
(C2, MACkm(C2)) is a valid pair. In our verifiable SSE scheme, the server returns
MACkm(label1, (C1, C3, C5)). This method can prevent the above attack because
the server must forge
MACkm(label1, (C2, C3, C5)).

Now our verifiable SSE scheme is obtained by modifying the SSE scheme of
Sec.3.1 as follows.

(Store phase)

1’ The client generates a MAC key km randomly, and keeps it secret together
with (ke, k0, k1).

2’ The client computes tagi = MACkm(labeli, C(wi)) for each keyword wi ∈ W ,
and stores

I = {(labelσ(i), indexσ(i), tagσ(i)) | i = 1, · · · ,m} (2)

to the server, where labeli and indexi are computed in the same way as in
Sec.3.1, and σ is a random permutation on {1, · · · ,m}.

(Search phase) Suppose that the client wants to search on a keyword wa.
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1’ The client sends (labela, pada) to the server in the same way as in Sec.3.1.
2’ The server finds (labela, indexa, taga) ∈ I by using labela. She then re-

turns taga and C(w) to the client.
3’ If taga = MACkm(labela, C(w)), then the client decrypts all Ci such that

Ci ∈ C(w), and outputs them. Otherwise he outputs reject.

In the example of Sec.3.1,

tag1 = MACkm(label1, (C1, C3, C5)), tag2 = MACkm(label2, (C2, C4)),

Theorem 2. The above scheme satisfies privacy and reliability if SKE is CPA-
secure, and PRF and MAC are pseudorandom functions.

Proof. (Sketch) We can prove the privacy similarly to the proof of Theorem 1.
Hence will will prove the reliability.

Suppose that there exists an adversary A who breaks the reliability for some
(D,W , Index) and some search queries w1, · · · , wq. We will show a forger B for
the underlying MAC. B runs A by playing the role of a client with (D,W , Index)
and w1, · · · , wq as an input.

In the store phase, to compute I, B obtains each tagi = MACkm(labeli, C(wi))
from his MAC oracle, where km is randomly chosen by the MAC oracle. That
is, for i = 1, · · · , q, B queries (labeli, C(wi)) to the MAC oracle, and receives
tagi.

In the search phase, if A returns (C(wi)
∗, tag∗i ) such that C(wi)

∗ 	= C(wi) for
some (labeli, padi), then B outputs (labeli, C(wi)

∗) and tag∗i as a forgery.
From our assumption, A returns such (C(wi)

∗, tag∗i ) with non-negligible prob-
ability. It also holds that

tag∗i = MACkm(labeli, C(wi)
∗)

with non-negligible probability from our assumption. Finally note that B never
queried (labeli, C(wi)

∗) 	= (labeli, C(wi)) to the MAC oracle.
ThereforeB succeeds in forgery with non-negligible probability. This is against

our assumption on MAC. Hence our scheme satisfies reliability. �

4 How to Update Documents

4.1 Our Idea

In the scheme of Sec.3.2, the client stores tag1 = MACkm(label1, (C1, C3, C5)) for a
keyword w1. In this scheme, however, the client cannot modify each Ci efficiently.
For example, suppose that C1 includes two keywords,w1 and w2. To modify C1 to
C′

1, the client must store two updated authenticators, MAC(label1, (C
′
1, C3, C5))

and MAC(label2, (C
′
1, · · ·)), to the server in the update phase. If C1 includes more

keywords, then the client must updates more authenticators.
Now our idea is that the client authenticates only (label1, 1, 3, 5). He sepa-

rately authenticates each (i, Ci) also. Then to update C1 to C′
1, the client stores
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just an authenticator on (1, C′
1). The update cost is only this no matter how many

keywords are included in C1. Thus the client can update each Ci efficiently.
To delete a document C1, the client updates it to a special symbol C′

1 = delete
similarly. To add a new document D6 which includes w1, the client updates the
authenticator on (label1, 1, 3, 5) to that on (label1, 1, 3, 5, 6).

4.2 How to Time Stamp

The last problem is how to times tamp on the current (i, Ci), and how to time
stamp on the current/updated (label1, 1, 3, 5, 6).

We can solve this problem by using an authentication scheme which posses the
timestamp functionality such as Merkle hash tree [24], or authenticated skiplist
[18] or the RSA accumulator [5, 14]. Such a scheme allows one to hash a set
of inputs into one short accumulation value, such that there is a witness that a
given input was incorporated into the accumulator, and at the same time, it is
infeasible to find a witness for a value that was not accumulated.

The size of witness is O(log n) in the Merkle hash tree and the authenticated
skiplist, where n is the number of documents. It is O(λ) in the RSA accumulator,
where λ is the security parameter. We can use any one of them. In what follows,
we present our scheme based on the RSA accumulator.

4.3 RSA Accumulator

Let p = 2p′ + 1 and q = 2q′ + 1 be two large primes such that p′ and q′ are also
primes and |pq| > 3λ. Let N = pq and let

QRN = {a | a = x2 mod N for some x ∈ Z∗
N}.

Then QRN is a cyclic group of size (p − 1)(q − 1)/4. Let g be a generator of
QRN . We say that a family of functions F = {f : A → B} is two-universal if
Pr[f(x1) = f(x2)] = 1/|B| for all x1 	= x2 and for a randomly chosen function
f ∈ F .

Proposition 2. [16] For any y ∈ {0, 1}λ, we can compute a prime x ∈ {0, 1}3λ
such that f(x) = y by sampling O(λ2) times with overwhelming probability from
the set of inverses f−1(y), where the probability is taken over f ∈ F .

Let F = {fa : {0, 1}3λ → {0, 1}λ} be a two-universal family of functions and
choose f ∈ F randomly. (Such functions can be built easily. For instance, view
a and x as members of GF (23λ), and let fa(x) be the λ least significant bits of
a× x.)

For a set E = {y1, · · · , yn} with yi ∈ {0, 1}λ, the RSA accumulator works as
follows.

1. For each yi, Alice chooses a prime xi such that f(xi) = yi randomly. Let
prime(yi) denote such a prime xi. She then computes the accumulated value
of E = {y1, · · · , yn} as

Acc(E) = g
∏n

i=1 prime(yi) mod N

and sends Acc(E) to Bob.
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2. Later Alice proves that yj ∈ E to Bob as follows. She computes

πj = g
∏

i�=j prime(yi) mod N

and sends πj and prime(yj) to Bob.
3. Bob verifies that

Acc(E) = (πj)
prime(yj) mod N.

Definition 3. [6] (Strong RSA assumption) Given N = pq and a random ele-
ment y ∈ ZN , it is hard to find x and e > 1 such that y = xe mod N .

Proposition 3. Given N, g, f and E = {y1, · · · , yn}, it is hard to find y 	∈ E
and π such that

πprime(y) = Acc(E) mod N (3)

under the strong RSA assumption.

If we want to apply the above protocol to a set A = {a1, · · · , an} with ai 	∈
{0, 1}λ for some i, then we define the accumulated value of A as

Acc(A) = g
∏n

i=1 prime(H(ai)) mod N,

where H : {0, 1}∗ → {0, 1}λ is a collision resistant hash function. Namely we
apply the above protocol to the set {H(a1), · · · , H(an)}.

Note that prime(H(ai)) is a prime xi ∈ {0, 1}3λ such that f(xi) = H(ai),
where f : {0, 1}3λ → {0, 1}λ is a two-universal hash function. We can compute
such a prime xi efficiently for any H(ai) ∈ {0, 1}λ from Proposition 2.

5 Proposed Verifiable Dynamic SSE Scheme

In this section, we show the details of our idea, i.e., how to modify, delete and add
documents efficiently in a verifiable SSE scheme, where the server is a malicious
adversary. We call such a scheme a verifiable dynamic SSE scheme.

5.1 Scheme

In the proposed scheme,

– The client applies the RSA accumulator to the sets

EC = {(i, Ci) | i = 1, · · · , n},
EI = {(labeli, j, [indexi]j) | i = 1, · · · ,m, j = 1, · · · , n},

and compute their accumulated values Acc(EC) and Acc(EI).
– He updates Acc(EC) each time when he modifies or deletes a document, and

updates Acc(EI) each time when he adds a document.
– In the search phase, the client checks if a server returned the valid (updated)

ciphertexts based on Acc(EC) and Acc(EI).
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A subtle problem is how the client and the server compute the same prime(y)
locally, where y = (i, Ci) or (labeli, j, [indexi]j). Remember that prime(y) is
a prime x such that f(x) = y. and such x is chosen randomly. In the proposed
scheme, the client chooses ka randomly, and sends it to the server at the begin-
ning of the protocol. Then they use PRFka(y) as the randomness when computing
prime(y). Thus they can compute the same prime(y) locally.

Let F = {f : {0, 1}3λ → {0, 1}λ} be a two-universal family of functions, and
H : {0, 1}∗ → {0, 1}λ be a collision-resistant hash function. Let [indexi]j denote
the jth bit of indexi.

(Store phase)

1. The client generates (N(= pq), g) as shown in Sec. 4.3 and chooses f ∈ F
randomly. He also generates (ke, k0, k1, ka) randomly, where ke is a key of
SKE, and k0, k1, ka are keys of PRF. He further chooses a random permu-
tation σ on {1, · · · ,m}. He then sends (N, g, f, ka) to the server and keeps
(p, q, ke, k0, k1, σ) secret.

2. The client computes Ci = Eke(Di) for each document Di ∈ D. He also
computes

labeli = [PRFk0(wi)]1..128, padi = [PRFk1(wi)]1..n, indexi = padi ⊕ (ei,1, · · · , ei,n)

for each keyword wi ∈ W . He then stores C = (C1, · · · , Cn) and

I = {(labelσ(i), indexσ(i)) | i = 1, · · · ,m} (4)

to the server.
3. He also computes

AC = g
∏n

i=1 prime(H(i,H(Ci))) mod N,

AI = g
∏m

i=1

∏n
j=1 prime(H(labeli,j,[indexi]j)) mod N.

He then keeps n,AC and AI .

(Search phase) Suppose that the client wants to search on a keyword wa.

1. The client computes (labela, pada) and sends them to the server.
2. The server finds (labela, indexa) ∈ I by using labela. She computes

(e1, · · · , en) = pada ⊕ indexa

and sets C′(w) = {(i, Ci) | ei = 1}. She next computes

πC = g
∏

ei=0 prime(H(i,H(Ci))) mod N,

πI = g
∏

i�=a{
∏n

j=1 prime(H(labeli,j,[indexi]j))} mod N.

Finally she returns (C′(w), πC , πI) to the client.
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3. The client first computes xi = prime(H(i,H(Ci))) for each (i, Ci) ∈ C′(w),
and checks if

AC = (πC)
∏

ei=1 xi mod N (5)

The client next reconstructs (e1, · · · , en) from C′(w) and computes indexa =
pada ⊕ (e1, · · · , en). He then computes zj = prime(H(labela, j, [indexa]j))
for j = 1, · · · , n, and checks if

AI = (πI)
∏n

j=1 zj mod N (6)

If all the checks succeed, then the client decrypts all Ci such that ei = 1 and
outputs the documents {Di | ei = 1}. Otherwise he outputs reject.

(Remark.)

– Eq.(5) verifies the correctness of C′(wa) = {(i, Ci) | Di contains wa}. Eq.(6)
verifies the correctness ofindexa.Hence it verifies the correctness of (e1, · · · , en).

– For example, if both (e1, · · · , e5) = (1, 0, 1, 0, 1) and (1, C1), (3, C3), (5, C5)
are valid, then it is clear that (C1, C3, C5) are the correct ciphertexts.

(Modify) Suppose that the client wants to modify Ci to C′
i.

1. The client send (i, C′
i) to the server.

2. The server computes

πi = g
∏

j �=i prime(H(j,H(Cj ))) mod N

and returns (H(Ci), πi) to the client.
3. The client computes xi = prime(H(i,H(Ci))) and checks if

AC = (πi)
xi mod N. (7)

If the check fails, then he outputs reject. Otherwise he computes

x′i = prime(H(i,H(C ′
i))),

d = x′i/xi mod (p− 1)(q − 1),

A′
C = (AC)

d = gx1···x′
i···xn mod N.

He finally updates AC to A′
C .

(Delete) Suppose that the client wants to delete Ci. He frist sends (i, delete) to
the server. Then apply (Modify) to C′

i = delete.

(Add) Suppose that the client wants to add a document Dn+1. Let

ei,n+1 =

{
1 if wi is contained in Dn+1

0 otherwise
. (8)
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1. The client computes Cn+1 = Eke(Dn+1), and sends Cn+1 to the server. He
also updates AC to

A′
C = (AC)

prime(H(n+1,H(Cn+1))) mod N.

2. The client also computes ai = [PRFk1(wi)]n+1⊕ei,n+1 for i = 1, · · · ,m, where
[PRFk1(wi)]n+1 denotes the (n+ 1)th bit of PRFk1(wi).
He then sends (aσ(1), · · · , aσ(m)) to the server.

3. The server updates indexσ(i) to index
′
σ(i) = indexσ(i)||aσ(i) for i = 1, · · · ,m,

where || denotes concatenation.
4. The client computes zi = prime(H(labeli, n+ 1, ai)) for i = 1, · · · ,m, and

updates AI to
A′

I = (AI)
z1···zm mod N.

Finally he updates n to n+ 1.

5.2 Example

Consider the example shown in Sec.3.1. In the store phase, the client computes

AC = g
∏5

i=1 prime(H(i,H(Ci))) mod N,

AI = g
∏2

i=1

∏5
j=1 prime(H(labeli,j,[indexi]j)) mod N

and keeps n = 5, AC and AI .

(Search phase) Suppose that the client wants to search on w1. He then sends
(label1, pad1) to the server.

1. The server finds index1 from I, and computes pad1⊕index1 = (1, 0, 1, 0, 1).
From this (1, 0, 1, 0, 1), she sets C′(w1) = {(1, C1), (3, C3), (5, C5)}. She then
computes

πC = g
∏

i=2,4 prime(H(i,H(Ci))) mod N,

πI = g
∏5

j=1 prime(H(label2,j,[index2]j)) mod N.

Finally she returns (C′(w1), πC , πI) to the client.
2. The client computes xi = prime(H(i,H(Ci))) for i = 1, 3, 5, and checks if

AC = (πC)
∏

i=1,3,5 xi mod N. (9)

Also he reconstructs index1 = pad1 ⊕ (1, 0, 1, 0, 1) from C′(w1). He then
computes zj = prime(H(label1, j, [index1]j)) for j = 1, · · · , 5, and checks
if

AI = (πI)
∏5

j=1 zj mod N. (10)

If all the checks succeed, then the client decrypts (C1, C3, C5), and outputs
the documents (D1, D3, D5). Otherwise he outputs reject.
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(Modify) Suppose that the client wants to modify C1 to C′
1.

1. The client sends (1, C′
1) to the server.

2. The server computes

π1 = g
∏5

j=2 prime(H(j,H(Cj ))) mod N

and returns (H(C1), π1) to the client.
3. The client computes x1 = prime(H(1, H(C1))) and checks if

AC = (π1)
x1 mod N.

If the check fails, then he outputs reject. Otherwise he computes

x′1 = prime(H(1, H(C′
1))),

d = x′1/x1 mod (p− 1)(q − 1),

A′
C = (AC)

d = gx
′
1x2···x5 mod N.

He finally updates AC to A′
C .

(Delete) Suppose that the client wants to delete C2. He first sends (2, delete) to
the server. Then apply (Modify) to C′

2 = delete.

(Add) Suppose that the client wants to add a document D6 which contains w1

as a keyword.

1. The client computes C6 = Eke(D6), and sends C6 to the server.
He also updates AC to A′

C = (AC)
prime(H(6,H(C6))) mod N.

2. The client also computes a1 = [PRFk1(w1)]6 ⊕ 1 and a2 = [PRFk1(w2)]6 ⊕ 0.
He then sends (aσ(1), aσ(2)) to the server.

3. The server updates indexσ(i) to index
′
σ(i) = indexσ(i)||aσ(i) for i = 1, 2.

4. The client computes zi = prime(H(labeli, 6, ai)) for i = 1, 2, and updates
AI to A′

I = (AI)
z1·z2 mod N . Finally he updates n = 5 to n = 6.

6 Security

In this section, we prove that the proposed verifiable dynamic SSE scheme is
UC-secure. If a protocol Σ is secure in the universally composable (UC) security
framework, its security is maintained under a general protocol composition [7–9].

In the UC framework, there exists an environmentZ which generates the input
to all parties, reads all outputs, and in addition interacts with an adversary A
in an arbitrary way throughout the computation.

A protocol Σ is said to securely realize a given functionality F if for any
adversary A, there exists an ideal world adversary S such that no environment
Z can tell whether it is interacting with A and parties running the protocol, or
with S and parties that interact with F in the ideal world.
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6.1 Ideal Functionality

We describe the ideal functionality F of verifiable dynamic SSE schemes in Fig.3.
In the ideal world, Z interacts with the dummy client and the dummy server,
where the dummy players communicate with F .

Our F provides an ideal world because the ideal world adversary S (i.e., a
malicious server) learns only |D1|, · · · , |Dn| and |W| for the store command of
Z, only List(w) for a search command on keyword w, only (i, |D′

i|) for a modify
command on (i,D′

i), only i for a delete command on i, and only |D| for an add
command on D. (See the beginning of Sec.2.2.)

We say that a protocol (client, server) is UC-secure if it securely realizes the
ideal functionality F .

Ideal Functionality F� �

Running with the dummy client P1, the dummy server P2 and an adversary S.

– Upon receiving (store, sid,D,W, Index) from P1, verify that this is the
first input from P1 with (store, sid). If so, store (n,D,W, Index), and send
|D1|, · · · , |Dn| and |W| to S. Otherwise ignore this input.

– Upon receiving (search, sid, wa) from P1, send List(wa) to S, where wa ∈ W.
1. If S returns OK, then send D(wa) to P1.
2. If S returns reject, then send reject to P1.

– Upon receiving (modify, sid, i, D′
i) from P1, send (i, |D′

i|) to S.
1. If S returns OK, then replace Di with D′

i.
2. If S returns reject, then send reject to P1.

– Upon receiving (delete, sid, i) from P1, send i to S.
1. If S returns OK, then let Di := delete.
2. If S returns reject, then send reject to P1.

– Upon receiving (add, sid,D) from P1, add D to D, and send |D| to S.

� �

Fig. 3. Ideal Functionality of Dynamic SSE

6.2 UC-Security of Our Scheme

Theorem 3. The proposed scheme is UC-secure against non-adaptive adver-
saries under the strong RSA assumption if SKE is CPA-secure, PRF is a pseudo-
random function and H is a collision-resistant hash function.

A proof is given in Appendix A.

7 Efficiency

7.1 Efficiency of the Proposed Verifiable Dynamic SSE Scheme

Table 2 shows the communication overheads and the computation costs of the
proposed verifiable dynamic SSE scheme. For example, in the search phase, to



324 K. Kurosawa and Y. Ohtaki

search on a keyword wa, the client sends (labela, pada) to the server, and the
server returns (C′(w), πC , πI), where C

′(w) = {(i, Ci) | Di contains w}. Therefore
the total communication cost is

Ts = |labela|+ |pada|+ |C′(w)| + |πC |+ |πI |.

Hence the communication overhead is

Ts − |C′(w)| = |labela|+ |pada|+ |πC |+ |πI | = n+O(λ),

where λ is the security parameter of the RSA accumulator.

Table 2. Efficiency of the Proposed Verifiable Dynamic SSE Scheme

search modify delete add

communication overhead n+O(λ) O(λ) O(λ) m

computation cost of the server O(nm) O(n) O(n) O(m)

computation cost of the client O(n) O(1) O(1) O(m)

The storage overhead is n(m+ 128).

7.2 More Efficient Variant with No Add

Suppose that the client does not add new documents. Then we can consider a
more efficient variant of the proposed scheme such that the RSA accumulator is
not used to authenticate Index.

Instead, the client computes tagi = MACkm(labeli, List(wi)) for each keyword
wi ∈ W , and stores

I = {(labelσ(i), indexσ(i), tagσ(i)) | i = 1, · · · ,m} (11)

to the server in the store phase.
In the search phase, the server returns taga to the client for a search keyword

wa instead of πI . Then the computation cost of the server is reduced from O(nm)
to O(n) in the search phase. The computation cost of the client is reduced from
O(n) to O(na), where na is the number of documents which contain wa. See
Table 3.

Table 3. A Variant with No Add

search modify delete

communication overhead n+O(λ) O(λ) O(λ)

computation cost of the server O(n) O(n) O(n)

computation cost of the client O(na) O(1) O(1)
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A Proof of Theorem 3

(1) Suppose that the real world adversary A does not corrupt any party in our
protocol. Then it is easy to see that the client outputs the correct documents for
each search keyword. Further Z interacts only with the client (= P1). Therefore
no Z can distinguish the real world from the ideal world.

(2) Suppose that Z asks A to corrupt the client (= P1) in our protocol. In this
case, A may report the communication pattern of the client to Z. Consider an
ideal world adversary S who runs A internally by playing the role of the server
(= P2), forwarding all messages from Z to A and vice versa. Note that S can
play the role of the server faithfully because it has no interaction with Z. This
means that no Z can distinguish the real world from the ideal world.

(3) Suppose that Z asks A to corrupt the server (= P2). In this case, our ideal
world adversary S runs A internally by playing the role of the client (= P1),
forwarding all messages from Z to A and vice versa.

(Store) Suppose that Z sends a store command to P1. P1 relays it to F . F then
sends |D1|, · · · , |Dn| and |W| to S.

1. S runs the client’s algorithm on input D′ = {D′
i = 0|Di| | i = 1, · · · , n},

W ′ = {1, · · · ,m} and Index′ = {e′i,j} with e′i,j = 0 for all (i, j).
2. By doing so, S sends (N, g, f, ka) and (I, C) to A, and keeps

sk = (p, q, ke, k0, k1, σ)

secret, where C = (C1, · · · , Cn) and I = {(labelσ(i), indexσ(i))}.

http://en.wikipedia.org/wiki/Merkle~tree
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(Search) Suppose that Z sends the ith search command on a keyword wa ∈ W
to P1. P1 relays it to F . F then sends List(wa) = {j | Dj contains wa} to S.

1. Let

ej =

{
1 if j ∈ List(wa)
0 otherwise

.

S computes pad∗ = indexσ(i) ⊕ (e1, · · · , en) and sends (labelσ(i), pad
∗) to

A.
2. A returns (C′(wa), πC , πI).
3. S runs the client’s algorithm on input (C′(wa), πC , πI) and sk. If the client

outputs reject, then S sends reject to F . Otherwise S sends OK to F .

(Modify) Suppose that Z sends a modify command (i,D′
i) to P1. Then S is given

|D′
i| by F .

1. S first computes C′
i = Eke(0

|D′
i|).

2. Then S runs our protocol (Modify) with A by playing the role of the client.
3. If the client outputs reject, then S sends reject to F . Otherwise S sends

OK to F .

(Delete) Suppose that Z sends a modify command i to P1. Then S is given i by
F . S runs our protocol (Delete) with A by playing the role of the client. If the
client outputs reject, then S sends reject to F . Otherwise S sends OK to F .

(Add) Suppose that Z sends an add command D to P1. Then S is given |D|
by F . S first computes Cn+1 = Eke(0

|D|). S then runs our protocol (Add) with
A by playing the role of the client. If the client outputs reject, then S sends
reject to F . Otherwise S sends OK to F .

Now because SKE is CPA-secure, each Eke(D) and Eke(0
|D|) are indistinguish-

able in the store phase, in the search phase, when modifying a document, and
when adding a document. Further because PRF is a pseudo-random function, we
can see that:

– The real I and the simulated one are indistinguishable.
– In the search phase, the real pad and the simulated pad∗ are indistinguish-

able.
– When adding a document, the real (a1, · · · , am) and the simulated one are

indistinguishable.

Therefore the inputs to A inside of S are indistinguishable from those in the real
world. This means that inside of S, A behaves in the same way as in the real
world.

We next show that the outputs of the client (which Z receives) in the real
world are indistinguishable from those in the ideal world. Remember that A
inside of S behaves in the same way as in the real world.

For a modify query (i,D′
i),
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1. the client sends (i, C′
i) to the server, and

2. the server returns (H(Ci), πi) to the client.

First suppose that A returns (H(Ci), πi) correctly.

– In the real world, the client updates AC correctly, and outputs nothing.
– In the ideal world, S returns OK to F , and F replaces Di with D′

i.

Next suppose that A returns an invalid (H(Ci), πi). Then eq.(7) does not hold
with overwhelming probability from Proposition 3. Hence

– In the real world, the client outputs reject, and Z receives reject.
– In the ideal world, S returns reject to F , F sends it to P1, and P1 relays

it to Z.
Therefore the real world and the ideal world are indistinguishable.

Similarly, for a delete query, the real world and the ideal world are indistin-
guishable.

For an add query D, the client receives nothing from the server (= A). Hence
he always updates AC and AI correctly, and outputs nothing.

Finally for a search query on a keyword w,

1. the client sends (label, pad) to the server, and
2. the server returns (C′(w), πC , πI) to the client, where C′(w) = {(i, Ci) |

Di contains w}.
First suppose that A returns (C′(w), πC , πI) correctly.

– In the real world, the client outputs D(w) = {Di | Di contains w} correctly.
– In the ideal world, S returns OK to F , and F sends D(w) to P1.

Next suppose that A returns an invalid (C′′(w), π′
C , π

′
I) such that

(C′′(w), π′
C , π

′
I) 	= (C′(w), πC , πI).

We will show that eq.(6) or eq.(5) does not hold with overwhelming probability.

– (Case 1) C′′(w) = C′(w) and (π′
C , π

′
I) 	= (πC , πI). In this case, the client

computes {zj} and {xi} correctly. Hence eq.(6) or eq.(5) does not hold clearly
because (π′

C , π
′
I) 	= (πC , πI).

– (Case 2) C′′(w) 	= C′(w). If the client does not compute {zj} correctly, then
we can see that eq.(6) does not hold from Proposition 3.
Suppose that the client computes {zj} correctly. Then he reconstructed
(e1, · · · , en) and indexa correctly. This means that there exist some (i, C′

i) ∈
C′′(w) and (i, Ci) ∈ C′(w) such that C′

i 	= Ci because C′′(w) 	= C′(w). For
such i, H(i,H(C′

i)) 	= H(i,H(Ci)) because H is collision-resistant. Hence
eq.(5) does not hold from Proposition 3 because prime(H(i,H(C′

i))) 	=
prime(H(i,H(Ci))).

Therefore in the real world, the client outputs reject, and Z receives reject.
In the ideal world, S returns reject to F , F sends it to P1, and P1 relays it to
Z. Consequently, we can see that Z cannot distinguish the real world from the
ideal world. Q.E.D.
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Abstract. Verifiable computation (VC) allows a computationally weak
client to outsource evaluation of a function on many inputs to a pow-
erful but untrusted server. The client invests a large amount of off-line
computation to obtain an encoding of its function which is then given
to the server. The server returns both the evaluation of the function
on the client’s input and a proof with which the client can verify the
correctness of the evaluation using substantially less effort than doing
the evaluation on its own. We consider privacy preserving VC schemes
whose executions reveal no information on the client’s input or function
to the server. We construct VC schemes with input privacy for univariate
polynomial evaluation and matrix multiplication and then extend them
to achieve function privacy. Our main tool is the recently proposed mu-
tilinear maps. We show that the proposed VC schemes can be used to
implement verifiable outsourcing of private information retrieval (PIR).

1 Introduction

The rise of cloud computing in recent years has made outsourcing of storage and
computation a reality. There are many scenarios where outsourcing computation
will provide an attractive solution to the problem at hand. For example, large
computations have a severe impact on resources (e.g. battery) of weak clients and
outsourcing computation will provide an ideal way of freeing up the resources
of the client. A natural question however is how to trust the computation result
without trusting the server. The required assurance is not only against malicious
behavior of the server but also random faults in the server infrastructure that
can result in undetectable error in computation results. Verifiable computation
(VC) systems [16] provide such assurance for many scenarios where computation
must be delegated. The client in this model invests a large amount of off-line
computation and generates an encoding of its function f . Given this encoding
and any input α, the server computes and responds with y and a proof that
y = f(α). With the server’s response, the client can verify if the computation has
been carried out correctly using substantially less effort than computing f(α) on
its own. The client’s off-line computation cost is amortized over the evaluations
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of f on multiple inputs α and will become negligible when computations of the
same function is required.

VC schemes were formally defined by Gennaro, Gentry and Parno [16] and
then constructed for a variety of computations [11,3,25,2,23,13,12]. We say that
a VC scheme is privacy preserving if its execution reveals no information on
the client’s input or function to the server. Protecting the client’s input and
function from the server is an essential requirement in many real-life scenarios.
For example, a health professional querying a database of medical records may
need to protect both the identity and the record of his patient. VC schemes with
input privacy have been considered in [16,2] where a generic function is written
as a circuit, and each gate is evaluated using a fully homomorphic encryption
scheme (FHE). These VC schemes evaluate the outsourced functions as circuits
and are costly in practice. However, the outsourced function is given to the server
in clear and so function privacy is not provided. Benabbas, Gennaro and Vahlis
[3] and several other works [13,12,23] design VC schemes for specific functions
without using FHE. One scheme of [3] even achieves function privacy. However,
they do not consider the input privacy.

1.1 Results and Techniques

In this paper, we consider privacy preserving VC schemes for specific function
evaluations without using FHE. The function evaluations we study include uni-
variate polynomial evaluation and matrix multiplication. Our privacy definition
is indistinguishability based and guarantees no untrusted server can distinguish
between different inputs or functions of the client. In privacy preserving VC
schemes both the client’s input and function must be hidden (e.g., encrypted)
from the server and the server must evaluate the hidden function on the hid-
den input and then generate a proof that the evaluation has been carried out
correctly. We note that such a proof can be generated using the non-interactive
proof or argument systems from [22,4] but they require the use of either ran-
dom oracle or knowledge of exponent (KoE) type assumptions, both of which
are considered as strong [23] and have been carefully avoided in VC literatures
[16,3,25].

We construct VC schemes for univariate polynomial evaluation and matrix
multiplication that achieve input privacy and then extend them such that the
function privacy is also achieved. Our main tool is the multilinear maps [14,15].
Recently, Garg, Gentry, and Halvei [14] proposed a candidate mechanism that
would approximate multilinear maps for many applications. The proposed in-
stantiation has generated much interest and promise of studying new construc-
tions using a multilinear map abstraction [15]. We use a framework of leveled
multilinear maps where one can call a group generator G(1λ, k) to obtain a se-
quence of groups G1, . . . , Gk of order N along with their generators g1, . . . , gk,
where N = pq for two λ-bit primes p and q. Slightly abusing notation, if i+j ≤ k,
we can compute a bilinear map operation on gai ∈ Gi, g

b
j ∈ Gj as e(g

a
i , g

b
j) = gabi+j .

These maps can be seen as implementing a k-multilinear map. We denote by

Γk = (N,G1, . . . , Gk, e, g1, . . . , gk)← G(1λ, k) (1)
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a random k-multilinear map instance, where N = pq for two λ-bit primes p and
q. We start with the BGN encryption scheme (denoted by BGN2) of Boneh,
Goh and Nissim [6] which is based on Γ2 and semantically secure when the
subgroup decision assumption (abbreviated as SDA, see Definition 1) for Γ2

holds. It is well-known that BGN2 is both additively homomorphic and mul-
tiplicatively homomorphic, i.e., given BGN2 ciphertexts Enc(m1) and Enc(m2)
one can easily compute Enc(m1+m2) and Enc(m1m2). Furthermore, BGN2 sup-
ports an unlimited number of additive homomorphic operations: for any integer
k ≥ 2, given BGN2 ciphertexts Enc(m1), . . . ,Enc(mk) one can easily compute
Enc(m1 + · · ·+mk). This means one can easily compute Enc(f(α)) from Enc(α)
for any quadratic polynomial f(x). On the other hand, BGN2 supports only one
multiplicative homomorphic operation: one cannot compute Enc(m1m2m3) from
Enc(m1),Enc(m2) and Enc(m3). In particular, one cannot compute Enc(f(α))
from Enc(α) for any polynomial f(x) of degree ≥ 3. In Section 2.2, we introduce
BGNk, which is a generalization of BGN2 over Γk and semantically secure under
the SDA for Γk. BGNk supports both an unlimited number of additive homo-
morphic operations and up to k − 1 multiplicative homomorphic operations. As
a result, it allows us to compute Enc(f(α)) from Enc(α) for any degree-k poly-
nomial f(x). In our VC schemes, the client’s input and function are encrypted
using BGNk for a suitable k and the server computes on the ciphertexts.

Polynomial Evaluation. In Section 3.1 we propose a VC scheme Πpe with
input privacy (see Fig. 2) that allows the client to outsource the evaluation of
a degree n polynomial f(x) on any input α from a polynomial size domain D.
We use a polynomial commitment scheme proposed in [20] to construct a basic
VC scheme and then show how to convert it into a privacy preserving scheme.
The polynomial commitment scheme uses the algebraic property that there is a
polynomial c(x) of degree n−1 such that f(x)−f(α) = (x−α)c(x). The basic VC
scheme works as follows. Let e : G1×G1 → G2 be a bilinear map, where G1 and
G2 are cyclic groups of prime order p and G1 is generated by g1. In the basic VC

scheme, the client makes public t = g
f(s)
1 and gives pk = (g1, g

s
1, . . . , g

sn

1 , f(x))
to the server, where s is uniformly chosen from Zp. To verifiably compute f(α),
the client gives α to the server and the server returns ρ = f(α) along with a

proof π = g
c(s)
1 . Finally the client verifies if e(t/gρ1 , g1) = e(gs1/g

α
1 , π). The basic

VC scheme is secure under the SBDH assumption [20]. It is the univariate case
of the VC schemes for multivariate polynomial evaluation of [23].

In Πpe, the α should be hidden from the server (e.g., the client gives Enc(α) to
the server) which makes the server’s computation of ρ and π (as in the basic VC
scheme) impossible. Instead, the best one can expect is to compute a ciphertext
ρ = Enc(f(α)) from Enc(α) and f(x). This can be achieved if the underlying
encryption scheme Enc is an FHE which we want to avoid. On the other hand, a
proof π that the computation of ρ has been carried out correctly should be given
to the client. To the best of our knowledge, for generating such a proof π, one may
adopt the non-interactive proofs or arguments of [22,4] but those constructions
require the use of either random oracles or KoE type assumptions which we want
to avoid as well. Our idea is to adopt the multilinear maps [14,15] which allow
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the server to homomorphically compute on Enc(α) and f(x) and then generate
ρ = Enc(f(α)). In Πpe, the client picks a (2k + 1)-multilinear map instance Γ

as in (1). It stores t = g
f(s)
1 and gives ξ = (g1, g

s
1, g

s2

1 . . . , gs
2k−1

1 ) and f(x) to
the server, where k = log!n+1". It also sets up BGN2k+1. In order to verifiably
compute f(α), the client gives k ciphertexts σ = (σ1, . . . , σk) to the server and
the server returns ρ = Enc(f(α)) along with a proof π = Enc(c(s)), where

σ� = Enc(α2�−1

) for every 
 ∈ [k]. Note that f(α) and c(s) = (f(s)−f(α))/(s−α)
are both polynomials in α and s. In Section 2.2, we show how the server can
compute ρ and π from f(x), σ and ξ. Upon receiving (ρ, π), the client decrypts
ρ to y and verifies if e(t/gy1 , g

p
2k) = e(gs1/g

α
1 , π

p). We can show the security and
privacy of Πpe under the assumptions (2k+1, n)-MSDHS (see Definition 2) and
SDA (see Definition 1).

Matrix Multiplication. In Section 3.2 we propose a VC scheme Πmm with
input privacy (see Fig. 3) that allows the client to outsource the computation of
Mx for any n × n matrix M = (Mij) and vector x = (x1, . . . , xn). It is based
on the algebraic PRFs with closed form efficiency (firstly defined by [3]). In
Section 2.3, we present an algebraic PRF with closed form efficiency PRFdlin =
(KG,F) over a trilinear map instance Γ , where for any secret key K generated
by KG, FK is a function with domain [n]2 and range G1. In Πmm, the client
gives both M and its blinded version T = (Tij) to the server, where Tij =

g
p2aMij

1 ·FK(i, j) for every (i, j) ∈ [n]2 and a is randomly chosen from ZN and is
fixed for any (i, j) ∈ [n]2. It also sets up BGN3. In order to verifiably compute
Mx, the client stores τi =

�n
j=1 e(FK(i, j), g

pxj

2 ) for every i ∈ [n], where τi can
be efficiently computed using the closed form efficiency property of PRFdlin. It
gives the ciphertexts σ = (Enc(x1), . . . ,Enc(xn)) to the server and the server
returns ρi = Enc(

�n
j=1 Mijxj) along with a proof πi =

�n
j=1 e(Tij ,Enc(xj))

for every i ∈ [n]. Upon receiving ρ = (ρ1, . . . , ρn) and π = (π1, . . . , πn), the
client can decrypt ρi to yi and verify if e(πi, g

p
1) = ηpyi · τi for every i ∈ [n],

where η = gp
2a

3 . Finally, we can show the security and privacy of Πmm under the
assumptions 3-co-CDHS (see Definition 5), DLIN (see Definition 5) and SDA.

Applications. Our VC schemes can be used to implement verifiable outsourcing
of private information retrieval (PIR) where a client stores a large database w
(which is modeled as a bit string w = w1 · · ·wn ∈ {0, 1}n) with the cloud and
later retrieves a bit without revealing which bit he is interested in. This is a
scenario that is well motivated by real life applications. For example a health
professional that stores a database of medical records with the cloud may want
to privately retrieve the record of a certain patient. Our VC schemes provide
easy solutions for outsourcing PIR. A client with database w can outsource a
polynomial f(x) to the cloud using Πpe, where f(i) = wi for every i ∈ [n]. The
client can also represent its database as a

√
n ×
√
n matrix M = (Mij) and

outsource it to the cloud using Πmm. Retrieving any bit Mij can be reduced to

computing Mx for a 0-1 vector x ∈ {0, 1}
√
n whose j-th bit is 1 and all other

bits are 0. Our indistinguishability based definition of input privacy (see Fig. 1)
guarantees that the server cannot learn which bit the client is interested in.
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Discussions. We note that decrypting ρ = Enc(f(α)) in Πpe requires com-
puting discrete logarithms (see Section 2.2). Hence, the f(α) should be from a
polynomial-size domainM since otherwise the client will not be able to decrypt ρ
and then verify its correctness. In fact, this is an inherent limitation of [6] and in-
herited by the generalized BGN encryption schemes. However, in Section 3.3 we
shall see that in many applications such as outsourcing PIR where f(α) ∈ {0, 1},
the limitation does not affect the applicability of our VC schemes in practice.
One may also argue that with f(x) and the knowledge of “f(α) ∈ M”, the server
may learn a polynomial size domain D where α is drawn from and therefore guess
α with non-negligible probability. We note that the input privacy (see Definition
9) achieved by Πpe is indistinguishability based and does not contradict to the
above argument. In Section 3.4, we show how to modify Πpe such that f(x) is
also hidden and therefore prevent the cloud from learning any information about
α. Discussions similar to above are also applicable to Πmm.

Extensions. In Section 3.4, we modify Πpe and Πmm such that the function
privacy is also achieved. In the modified schemes Π ′

pe (see Fig. 4) and Π ′
mm (see

Fig. 5), the outsourced functions are encrypted and then given to the server.
The basic approach is to increase the multi-linearity by 1 such that both the
server and the client can compute on encrypted inputs and functions with one
more application of the multilinear map e. The modified schemes Π ′

pe and Π ′
mm

achieve both input and function privacy.

1.2 Related Work

Verifiable computation can be traced back to the work on interactive proofs or
arguments [19,22]. In the context of VC, the non-interactive proofs or arguments
are much more desirable and have been considered in [22,4] for various compu-
tations. However, they use either random oracles or KoE type assumptions.

Gennaro, Gentry and Parno [16] constructed the first non-interactive VC
schemes without using random oracles or KoE type assumptions. Their con-
struction is based on the FHE and garbled circuits. Using FHE, Chung et al.
[11] proposed a VC scheme that requires no public key. Applebaum et al. [1]
reduced VC to suitable variants of secure multiparty computation protocols.
Barbosa et al. [2] also obtained VC schemes using delegatable homomorphic en-
cryption. Although the input privacy has been explicitly considered in [16,2],
those schemes evaluate the outsourced functions as circuits and are not efficient.
None of them provides function privacy.

Benabbas et al. [3] initiated a line of research on efficient VC schemes for
specific function (polynomial) evaluations based on algebraic PRFs with closed
form efficiency. In particular, one of their VC schemes achieves function privacy
but not input privacy. Parno et al. [25] initiated a line of research on public VC
schemes for evaluating Boolean formulas, where the correctness of the server’s
computation can be verified by any client. Using algebraic PRFs with closed form
efficiency, Fiore et al. [13,12] constructed public VC schemes for both polyno-
mial evaluation and matrix multiplication. Using the idea of polynomial commit-
ments [20], Papamanthou et al. [23] constructed public VC schemes that enable
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efficient updates. The schemes of [3,25,13,12,23] do not provide input privacy.
Extensions of VC schemes to other different models have also been constructed
in [18,22,10,4,8,9]. However, none of them is privacy preserving.

Organization. In Section 2, we firstly review several cryptographic assump-
tions related to multilinear maps; then introduce a generalization of the BGN
encryption scheme [6]; we also recall algebraic PRFs with closed form efficiency
and the formal definition of VC. In Section 3, we present our VC schemes for
univariate polynomial evaluation and matrix multiplication. In Section 4, we
show applications of our VC schemes in outsourcing PIR. Section 5 contains
some concluding remarks.

2 Preliminaries

For any finite set A, the notation ω ← A means that ω is uniformly chosen from
A. Let λ be a security parameter. We denote by neg(λ) the class of functions
ε(·) that are negligible in λ, i.e., for every constant c > 0, ε(λ) < λ−c as long as
λ is large enough. We denote by poly(λ) the class of polynomial functions in λ.

2.1 Multilinear Maps and Assumptions

In this section, we review several cryptographic assumptions concerning multi-
linear maps. Given the Γk in (1) and x ∈ Gi, the subgroup decision problem in
Gi is deciding whether x is of order p or not, where i ∈ [k]. When k = 2, Boneh
et al. [6] suggested the Subgroup Decision Assumption (SDA) which says that
the subgroup decision problems in G1 and G2 are intractable. In this paper, we
make the same assumption but for a general integer k ≥ 2.

Definition 1. (SDA) We say that SDAi holds if for any probabilistic polynomial
time (PPT) algorithm A, |Pr[A(Γk, u) = 1]−Pr[A(Γk, u

q) = 1]| < neg(λ), where
the probabilities are taken over Γk ← G(1λ, k), u ← Gi and A’s random coins.
We say that SDA holds if SDAi holds for every i ∈ [k].

The k-Multilinear n-Strong Diffie-Hellman assumption ((k, n)-MSDH) was

suggested in [24]: Given gs1, g
s2

1 , . . . , gs
n

1 for some s ← ZN , it is difficult for any

PPT algorithm to find α ∈ ZN \ {−s} and output g
1/(s+α)
k .

Definition 2. ((k, n)-MSDH) For any PPT algorithm A, Pr
�
A(p, q, Γk, g1, g

s
1,

. . . , gs
n

1 ) = (α, g
1

s+α

k )
�
< neg(λ), where α ∈ ZN \ {−s} and the probability is

taken over Γk ← G(1λ, k), s← ZN and A’s random coins.

In the full version [26], we are able to construct a privacy preserving VC scheme
for univariate polynomial evaluation which is secure based on (k, n)-MSDH.
Under the (k, n)-MSDH assumption, the following lemma (see [26] for the proof)
shows that either one of the following two problems is difficult for any PPT

algorithm: (i) given g1, g
s
1, . . . , g

sn

1 for some s ← ZN , compute g
p/s
k ; (ii) given

g1, g
s
1, . . . , g

sn

1 for some s← ZN , compute g
q/s
k .
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Lemma 1. If (k, n)-MSDH holds, then except for a negligible fraction of the k-
multilinear map instances Γk ← G(1λ, k), either Pr[A(p, q, Γk, g1, g

s
1, . . . , g

sn

1 ) =

g
p/s
k ] < neg(λ) for any PPT algorithm A or Pr[A(p, q, Γk, g1, g

s
1, . . . , g

sn

1 ) =

g
q/s
k ] < neg(λ) for any PPT algorithm A, where the probabilities are taken over
s← ZN and A’s random coins.

Due to Lemma 1, it looks reasonable to assume that (i) (resp. (ii)) is difficult.
Furthermore, under this slightly stronger assumption (i.e., (i) is difficult, called
(k, n)-MSDHS from now on), we can construct a VC scheme Πpe (see Fig. 2)
that is more efficient than the one based on (k, n)-MSDH. In this version, we
only present the scheme Πpe based on (k, n)-MSDHS.

Definition 3. ((k, n)-MSDHS) For any PPT algorithm A, Pr[A(p, q, Γk, g1, g
s
1,

. . . , gs
n

1 ) = g
p/s
k ] < neg(λ), where the probability is taken over Γk ← G(1λ, k),

s← ZN and A’s random coins.

The k-Multilinear Decision Diffie-Hellman assumption (k-MDDH) was sug-
gested in [14,15]: Given gs1, g

a1
1 , . . . , gak

1 ← G1, it is difficult for any PPT algo-
rithm to distinguish between gsa1···ak

k and h← Gk.

Definition 4. (k-MDDH) For any PPT algorithm A, |Pr[A(p, q, Γk, g
s
1, g

a1
1 , . . . ,

gak
1 , gsa1···ak

k ) = 1] − Pr[A(p, q, Γk, g
s
1, g

a1
1 , . . . , gak

1 , h) = 1]| < neg(λ), where the
probabilities are taken over Γk ← G(1λ, k), s, a1, . . . , ak ← ZN , h← Gk and A’s
random coins.

Let Γ3 = (N,G1, G2, G3, e, g1, g2, g3) ← G(1λ, 3) be a random trilinear map in-
stance. Let h1 = gp1 and h2 = gp2 . The trilinear co-Computational Diffie-Hellman
assumption for the order q Subgroups (3-co-CDHS) says that given ha

1 ← G1

and hb
2 ← G2, it is difficult for any PPT algorithm to compute hab

2 .

Definition 5. (3-co-CDHS) For any PPT algorithm A, Pr[A(p, q, Γ3, h
a
1 , h

b
2) =

hab
2 ] < neg(λ), where the probability is taken over Γ3 ← G(1λ, 3), a, b← ZN and
A’s random coins.

The following lemma shows that 3-co-CDHS is not a new assumption but weaker
than 3-MDDH (see [26] for the proof).

Lemma 2. If 3-MDDH holds, then 3-co-CDHS holds.

The Decision LINear assumption (DLIN) has been suggested in [5] for cyclic
groups that admit bilinear maps. In this paper, we use the DLIN assumption on
the groups of Γ3.

Definition 6. (DLIN) Let G be a cyclic group of order N = pq, where p, q
are λ-bit primes. For any PPT algorithm A, |Pr[A(p, q, u, v, w, ua, vb, wa+b) =
1]−Pr[A(p, q, u, v, w, ua, vb, wc) = 1]| < neg(λ), where the probabilities are taken
over u, v, w ← G, a, b, c← ZN and A’s random coins.
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2.2 Generalized BGN Encryption

BGN2 [6] allows one to evaluate quadratic polynomials on encrypted inputs (see
Section 1.1). Boneh et al. [6] noted that this property arises from the bilinear map
and a k-multilinear map would enable the evaluation of degree-k polynomials on
encrypted inputs. Let M be a polynomial size domain, i.e. |M| = poly(λ). Below
we generalize BGN2 and define BGNk = (Gen,Enc,Dec) for any k ≥ 2, where

– (pk, sk) ← Gen(1λ, k) is a key generation algorithm. It picks Γk as in (1)
and then outputs both a public key pk = (Γk, g1, h) and a secret key sk = p,
where h = uq for u← G1.

– c ← Enc(pk,m) is an encryption algorithm which encrypts any message
m ∈M as a ciphertext c = gm1 hr ∈ G1, where r ← ZN .

– m ← Dec(sk, c) is a decryption algorithm which takes as input sk and a
ciphertext c, and outputs a message m ∈M such that cp = (gp1)

m.

Note that all algorithms above are defined over G1 but in general they can be
defined over Gi for any i ∈ [k]. This can be done by setting pk = (Γk, gi, h) and
replacing any occurrence of g1 with gi, where h = uq for u← Gi. Similar to [6],
one can show that BGNk is semantically secure under the SDA.

Below we discuss useful properties of BGNk. For every integer 2 ≤ i ≤ k,
we define a map ei : G1 × · · · × G1 → Gi such that ei(g

a1
1 , . . . , gai

1 ) = ga1···ai

i

for any a1, . . . , ai ∈ ZN . Firstly, we shall see that BGNk allows us to com-
pute Enc(m1 · · ·mk) from Enc(m1), . . . ,Enc(mk). Suppose Enc(m�) = gm�

1 hr�

for every 
 ∈ [k], where h = gqδ1 for some δ ∈ ZN and r� ← ZN . Let hk =

ek(h, g1, . . . , g1) = gqδk . Then ek(Enc(m1), . . . ,Enc(mk)) = gmk hr
k is a ciphertext

of m = m1 · · ·mk in Gk, where r = 1
qδ (

�k
�=1(m� + qδr�)−m).

Computing ρ with Reduced Multi-linearity Level. In Πpe, the client gives
a polynomial f(x) = f0+f1x+ · · ·+fnx

n and k ciphertexts σ = (σ1, σ2, . . . , σk)

of α, α2, . . . , α2k−1

under BGN2k+1 to the server and the server returns ρ =
Enc(f(α)), where k = !log(n+ 1)". Below we show how to compute the ρ using

σ and f(x). Suppose σ� = gα
2�−1

1 hr� for every 
 ∈ [k], where h = gqδ1 for some
δ ∈ ZN and r� ← ZN . Clearly, any i ∈ {0, 1, . . . , n} has a binary representation

(i1, . . . , ik) such that i =
�k

�=1 i�2
�−1. Then αi = αi1 · (α2)i2 · · · (α2k−1

)ik is the

product of i1 + · · · + ik elements of {α, α2, . . . , α2k−1}. For every 
 ∈ [k], let
φ� = σ� if i� = 1 and φ� = g1 otherwise. Then ρi � ek(φ1, . . . , φk) = gμi

k = gmk hr
k

is a ciphertext of m = αi under BGN2k+1, where μi =
�k

�=1(α
2�−1

+ qδr�)
i� and

r = 1
qδ (μi −m). Thus, ρ =

�n
i=0 ρ

fi
i is a ciphertext of f(α) under BGN2k+1.

Computing π with Reduced Multi-linearity Level. In Πpe, k + 1 group

elements ξ = (g1, g
s
1, . . . , g

s2
k−1

1 ) are also known to the server as part of the pub-
lic key, where s ← ZN . The server must return π = Enc(c(s)) as the proof that
ρ = Enc(f(α)) has been correctly computed. Below we show how to compute π

using ξ and σ. Note that c(s) = (f(s)−f(α))/(s−α) =
�n−1

i=0

�i
j=0 fi+1α

jsi−j .
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It suffices to show how to compute πij � Enc(fi+1α
jsi−j) for every i ∈

{0, 1, . . . , n − 1} and j ∈ {0, 1, . . . , i}. Let (j1, . . . , jk), (i1, . . . , ik) ∈ {0, 1}k be
the binary representations of j and i− j, respectively. Let φ� = σ� if j� = 1 and

φ� = g1 otherwise. Let ψ� = gs
2�−1

1 if i� = 1 and ψ� = g1 otherwise. Then it is easy
to see that πij = e(ek(φ1, . . . , φk), ek(ψ1, . . . , ψk)) = g

νij
2k = gm2kh

r
2k is a cipher-

text of m = αjsi−j , where νij = si−j
�k

�=1(α
2�−1

+ qδr�)
j� , h2k = gqδ2k and r =

1
qδ (νij −m). Let ν =

�n−1
i=0

�i
j=0 fi+1νij . Thus, π � gν2k =

�n−1
i=0

�i
j=0 π

fi+1

ij =

Enc(c(s)).

2.3 Algebraic PRFs with Closed Form Efficiency

In Πmm, the client gives both a square matrix M = (Mij) of order n and its
blinded version T = (Tij) to the server. The computation of T requires an al-
gebraic PRF with closed form efficiency, which has very efficient algorithms for
certain computations on large data. Formally, an algebraic PRF with closed
form efficiency is a pair PRF = (KG,F), where KG(1λ, pp) generates a secret
key K from any public parameter pp and FK : I → G is a function with
domain I and range G (both specified by pp). We say that PRF has pseu-
dorandom property if for any pp and any PPT algorithm A, it holds that
|Pr[AFK(·)(1λ, pp) = 1]−Pr[AR(·)(1λ, pp) = 1]| < neg(λ), where the probabilities
are taken over the randomness of KG,A and the random function R : I → G.
Consider an arbitrary computation Comp that takes as input R = (R1, . . . , Rn) ∈
Gn and x = (x1, . . . , xn), and assume that the best algorithm to compute
Comp(R1, . . . , Rn, x1, . . . , xn) takes time t. Let z = (z1, . . . , zn) ∈ In. We say
that PRF has closed form efficiency for (Comp, z) if there is an efficient algo-
rithm CFE such that CFEComp,z(K,x) = Comp(FK(z1), . . . ,FK(zn), x1, . . . , xn)
and its running time is o(t).

A PRF with Closed Form Efficiency. Fiore et al. [13] constructed an alge-
braic PRF with closed form efficiency PRFdlin based on the DLIN assumption
for the bilinear groups. We generalize it over trilinear groups. In the generalized
setting, KG generates Γ3 ← G(1λ, 3), picks αi, βi ← ZN , Ai, Bi ← G1 for every
i ∈ [n], and outputs K = {αi, βi, Ai, Bi : i ∈ [n]}. The function FK maps any

pair (i, j) ∈ [n]2 to FK(i, j) = Aαi

j Bβi

j . The closed form efficiency of PRFdlin is de-
scribed as below. Let x = (x1, . . . , xn) ∈ Zn

N . The computation Comp we consider
is computing

�n
j=1 FK(i, j)xj for all i ∈ [n]. Clearly, it requires Ω(n2) exponen-

tiations if no CFE is available. However, one can precompute A = Ax1
1 · · ·Axn

n

and B = Bx1
1 · · ·Bxn

n and have that
�n

j=1 FK(i, j)xj = AαiBβi for every i ∈ [n].

Computing AαiBβi requires 2 exponentiations and hence the PRFdlin has closed
form efficiency for (Comp, z), where z = {(i, j) : i, j ∈ [n]}. The PRFdlin in [13]
is pseudorandom merely based on the DLIN for bilinear groups. Similarly, the
generalized PRFdlin is also pseudorandom based on the DLIN assumption for
trilinear groups. Consequently, we have the following lemma.

Lemma 3. If DLIN holds in the trilinear setting, then PRFdlin is an algebraic
PRF with closed form efficiency.
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2.4 Verifiable Computation

Verifiable computation [16,3,13] is a two-party protocol between a client and
a server, where the client gives encodings of its function f and input x to the
server, the server returns an encoding of f(x) along with a proof, and finally
the client efficiently verifies the server’s computation. Formally, a VC scheme
Π = (KeyGen,ProbGen,Compute,Verify) is defined by four algorithms, where

– (pk, sk)← KeyGen(1λ, f) takes as input a security parameter λ and a func-
tion f , and generates both a public key pk and a secret key sk;

– (σ, τ)← ProbGen(sk, x) takes as input the secret key sk and an input x, and
generates both an encoded input σ and a verification key τ ;

– (ρ, π) ← Compute(pk, σ) takes as input the public key pk and an encoded
input σ, and produces both an encoded output ρ and a proof π;

– {f(x),⊥} ← Verify(sk, τ, ρ, π) takes as input the secret key sk, the verifica-
tion key τ , the encoded output ρ and a proof π, and outputs either f(x) or
⊥ (which indicates that ρ is not valid).

Correctness. The scheme Π should be correct. Intuitively, the scheme Π is
correct if an honest server always outputs a pair (ρ, π) that gives the correct
computation result. Let F be a family of functions.

Definition 7. The scheme Π is said to be F -correct if for any f ∈ F , any
(pk, sk) ← KeyGen(1λ, f), any input x to f , any (σ, τ) ← ProbGen(sk, x), any
(ρ, π)← Compute(pk, σ), it holds that f(x) = Verify(sk, τ, ρ, π).

Experiment ExpVerA (Π,f, λ)

1. (pk, sk) ← KeyGen(1λ, f);
2. for i = 1 to l = poly(λ) do
3. xi ← A(pk, x1, σ1, . . . , xi−1, σi−1);
4. (σi, τi) ← ProbGen(sk, xi);
5. x̂ ← A(pk, x1, σ1, . . . , xl, σl)
6. (σ̂, τ̂ ) ← ProbGen(sk, x̂);
7. (ρ̄, π̄) ← A(pk, x1, σ1, . . . , xl, σl, σ̂)
8. ȳ ← Verify(sk, τ̂ , ρ̄, π̄);
9. output 1 if ȳ /∈ {f(x̂),⊥} and 0 other-

wise.

Experiment ExpPriA (Π,f, λ)

1. (pk, sk) ← KeyGen(1λ, f);
2. (x0, x1) ← APubProbGen(sk,·)(pk);
3. b ← {0, 1};
4. (σ, τ ) ← ProbGen(sk, xb);
5. b′ ← APubProbGen(sk,·)(pk, x0, x1, σ)
6. output 1 if b′ = b and 0 otherwise.

Remark: PubProbGen(sk, ·) takes as input
x, runs (σ, τ) ← ProbGen(sk, x) and re-

turns σ.

Fig. 1. Experiments for security and privacy [16]

Security. The scheme Π should be secure. As in [16], we say that the scheme
Π is secure if no untrusted server can cause the client to accept an incorrect
computation result with a forged proof. This intuition can be formalized by an
experiment ExpVerA (Π, f, λ) (see Fig. 1) where the challenger plays the role of the
client and the adversary A plays the role of the untrusted server.

Definition 8. The scheme Π is said to be F -secure if for any f ∈ F and any
PPT adversary A, it holds that Pr[ExpVerA (Π, f, λ) = 1] < neg(λ).
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Privacy. The client’s input should be hidden from the server in Π . As in [16], we
define input privacy based on the intuition that no untrusted server can distin-
guish between different inputs of the client. This is formalized by an experiment
ExpPriA (Π, f, λ) (see Fig. 1) where the challenger plays the role of the client and
the adversary A plays the role of the untrusted server.

Definition 9. The scheme Π is said to achieve input privacy if for any function
f ∈ F , any PPT algorithm A, it holds that Pr[ExpPriA (Π, f, λ) = 1] < neg(λ).

Efficiency. The algorithms ProbGen and Verify will be run by the client for
each evaluation of the outsourced function f . Their running time should be
substantially less than evaluating f .

Definition 10. The scheme Π is said to be outsourced if for any f ∈ F and
any input x to f , the running time of ProbGen and Verify is o(t), where t is the
time required to compute f(x).

3 Our Schemes

3.1 Univariate Polynomial Evaluation

In this section, we present our VC scheme Πpe with input privacy (see Fig. 2)
for univariate polynomial evaluation. In Πpe, the client outsources a degree n
polynomial f(x) = f0 + f1x+ · · ·+ fnx

n ∈ Zq[x] to the server and may evaluate
f(α) for any input α ∈ D ⊆ Zq, where q is a λ-bit prime not known to the server
and |D| = poly(λ). Our scheme uses a (2k+ 1)-multilinear map instance Γ with
groups of order N = pq, where k = !log(n+ 1)" and p is also a λ-bit prime not

known to the server. The client stores t = g
f(s)
1 and gives (gs1, g

s2

1 . . . , gs
2k−1

1 , f)
to the server, where s ← ZN . It also sets up BGN2k+1 based on Γ . In order to
verifiably compute f(α), the client gives σ = (σ1, . . . , σk) to the server and the

server returns ρ = Enc(f(α)) along with π = Enc(c(s)), where σ� = Enc(α2�−1

)
for every 
 ∈ [k] and (ρ, π) is computed using the techniques in Section 2.2. At
last, the client decrypts ρ to y and verifies if the equation (2) holds.

Correctness. The correctness of Πpe requires that the client always outputs
f(α) as long as the server is honest, i.e., y = f(α) and (2) holds. It is shown by
the following lemma (see [26] for the proof).

Lemma 4. If the server is honest, then y = f(α) and (2) holds.

Security. The security of Πpe requires that no untrusted server can cause the
client to accept a value ȳ 	= f(α) with a forged proof. It is based on the (2k+1, n)-
MSDHS assumption (see Definition 2).

Lemma 5. If (2k + 1, n)-MSDHS holds for Γ , then the scheme Πpe is secure.

Proof. Suppose that Πpe is not secure. Then there is a PPT adversary A that
breaks its security with non-negligible probability ε1. We shall construct a PPT
simulator B that simulates A and breaks the (2k + 1, n)-MSDHS for Γ .
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– KeyGen(1λ, f(x)): Pick Γ = (N,G1, . . . , G2k+1, e, g1, . . . , g2k+1) ← G(1λ, 2k+1).

Pick s ← ZN and compute t = g
f(s)
1 . Pick u ← G1 and compute h = uq , where

u = gδ1 for an integer δ ∈ ZN . Set up BGN2k+1 with public key (Γ, g1, h) and

secret key p. Output sk = (p, q, s, t) and pk = (Γ, g1, h; g
s
1, g

s2

1 , . . . , gs
2k−1

1 ; f).

– ProbGen(sk,α): For every � ∈ [k], pick r� ← ZN and compute σ� = gα
2�−1

1 hr� .
Output σ = (σ1, . . . , σk) and τ =⊥ (τ is not used).

– Compute(pk, σ): Compute ρi = gμi
k for every i ∈ {0, 1, . . . , n} using the tech-

nique in Section 2.2. Compute ρ =
�n

i=0
ρfii . Compute πij = g

νij
2k for every

i ∈ {0, 1, . . . , n − 1} and j ∈ {0, 1, . . . , i} using the technique in Section 2.2.

Compute π =
�n−1

i=0

�i

j=0
π
fi+1

ij . Output ρ and π.

– Verify(sk, τ, ρ, π): Compute the y ∈ Zq such that ρp = (gpk)
y. If

e
�
t/gy1 , g

p
2k

�
= e

�
gs1/g

α
1 , π

p
�
, (2)

then output y; otherwise, output ⊥.

Fig. 2. Univariate polynomial evaluation (Πpe)

The simulator B takes as input (p, q, Γ, g1, g
s
1, . . . , g

sn

1 ), where s ← ZN . The

simulator B is required to output g
p/s
2k+1. In order to do so, B simulates A as

below:

(A) Pick a polynomial f(x) = f0 + f1x + · · · + fnx
n ∈ Zq[x]. Pick u ← G1,

compute h = uq and set up BGN2k+1 with public key (Γ, g1, h) and secret key
p. Pickβ ← D and implicitly set ŝ = s+β (ŝ is not known toB).MimicKeyGen

by sending pk = (Γ, g1, h, g
ŝ
1, g

ŝ2

1 . . . , gŝ
2k−1

1 , f) toA (note thatB can compute

gŝ
2�−1

1 for every 
 ∈ [k] based on the knowledge of β and g1, g
s
1, . . . , g

sn

1 ). Set

sk = (p, q, t), where t = g
f(ŝ)
1 (note that sk does not include ŝ as a component

because ŝ is neither known to B nor used by B);
(B) Upon receiving α ∈ D from A, mimic ProbGen as below: pick r� ← ZN and

compute σ� = gα
2�−1

1 hr� for every 
 ∈ [k]; send σ = (σ1, . . . , σk) to A.

It is trivial to verify that the pk and σ generated by B are identically distributed
to those generated by the client in an execution of Πpe. We remark that (A)

is the step 1 in ExpVerA (Π, f, λ) (see Fig. 1) and (B) consists of steps 3 and 4
in ExpVerA (Π, f, λ). Furthermore, (B) may be run l = poly(λ) times as described
by step 2 of ExpVerA (Π, f, λ). After l executions of (B), the adversary A will
provide an input α̂ on which he is willing to be challenged. If α̂ 	= β, then the
simulator B aborts; otherwise, it continues. Note that both β and α̂ are from the
same polynomial size domain D, the event that α̂ = β will occur with probability
ε2 ≥ 1/|D|, which is non-negligible. If the simulator B does not abort, it next runs
(σ̂, τ̂)← ProbGen(sk, α̂) and gives A an encoded input σ̂. Then the adversary A
may maliciously reply with (ρ̄, π̄) such that Verify(sk, τ̂ , ρ̄, π̄) � ȳ /∈ {f(α̂),⊥}.
On the other hand, an honest server inΠpe will reply with (ρ̂, π̂). Due to Theorem

4, it must be the case that Verify(sk, τ̂ , ρ̂, π̂) � ŷ = f(α̂). Note that the event
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that ȳ /∈ {f(α̂),⊥} occurs with probability ε1. Suppose the event ȳ /∈ {f(α̂),⊥}
occurs, then the equation (2) is satisfied by both (ȳ, π̄) and (ŷ, π̂), i.e.,

e
�
t/gȳ1 , g

p
2k

�
= e

�
gŝ1/g

α̂
1 , π̄

p
�
and e

�
t/gŷ1 , g

p
2k

�
= e

�
gŝ1/g

α̂
1 , π̂

p
�
. (3)

The equalities in (3) imply that e
�
gȳ−ŷ
1 , gp2k

�
= e

�
gŝ−α̂
1 ,

�
π̂/π̄

�p�
. Hence,

g
p

ŝ−α̂

2k+1 = e
�
g1,

�
π̂/π̄

�p� 1
ȳ−ŷ

. (4)

Note that the left hand side of (4) is g
p/s
2k+1 due to β = α̂. Therefore, (4) means

that the simulator B can break the (2k + 1, n)-MSDHS assumption (Definition
3) with probability ε = ε1ε2, which is non-negligible and contradicts to the
(2k+1, n)-MSDHS assumption. Hence, under the (2k+1, n)-MSDHS assumption,
ε1 must be negligible in λ, i.e., the scheme Πpe is secure.

Privacy. The input privacy of Πpe requires that no untrusted server can dis-
tinguish between different inputs of the client. This is formally defined by the
experiment ExpPriA (Π, f, λ) in Fig. 1. The client in our VC scheme encrypts its
input α using BGN2k+1 which is semantically secure under SDA for Γ . As a
result, our VC scheme achieves input privacy under SDA for Γ (see [26] for the
proof of the following lemma).

Lemma 6. If SDA holds for Γ , then the scheme Πpe achieves the input privacy.

Efficiency. In order to verifiably compute f(α) with the cloud, the client com-
putes k = !log(n + 1)" ciphertexts σ1, . . . , σk under BGN2k+1 in the execution
of ProbGen; it also decrypts one ciphertext ρ = Enc(f(α)) under BGN2k+1 and
then verifies the equation (2). The overall computation of the client will be
O(log n) = o(n) and therefore Πpe is outsourced. On the other hand, the server
needs to perform O(n2 logn) multilinear map computations and O(n2) exponen-
tiations in each execution of Compute, which is comparable with the VC schemes
based on FHE. Based on Lemmas 4, 5, 6 and the efficiency analysis, we have the
following theorem.

Theorem 1. If the (2k + 1, n)-MSDHS and SDA assumptions for Γ both hold,
then Πpe is a VC scheme with input privacy.

3.2 Matrix Multiplication

In this section, we present our VC scheme Πmm with input privacy (see Fig.
3) for matrix multiplication. In Πmm, the client outsources an n × n matrix
M = (Mij) over Zq to the server and may compute Mx for an input vector
x = (x1, . . . , xn) ∈ D ⊆ Zn

q , where q is a λ-bit prime not known to the server
and |D| = poly(λ). Our scheme uses a trilinear map instance Γ with groups of
order N = pq, where p is also a λ-bit prime not known to the server. In Πmm, the
client gives both M and its blinded version T = (Tij) to the server, where T is
computed using the PRFdlin. It also sets up BGN3. In order to verifiably compute
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– KeyGen(1λ,M): Pick a trilinear map instance Γ = (N,G1, G2, G3, e, g1, g2, g3) ←
G(1λ, 3). Consider the PRFdlin in Section 2.3. Run KG(1λ, n) and pick a secret

key K. Pick a ← ZN and compute Tij = g
p2aMij

1 · FK(i, j) for every (i, j) ∈ [n]2.
Pick u ← G1 and compute h = uq . Set up BGN3 with public key (Γ, g1, h)
and secret key p. Output sk = (p, q,K, a, η) and pk = (Γ, g1, h,M, T ), where

η = gp
2a

3 .
– ProbGen(sk, x): For every j ∈ [n], pick rj ← ZN and compute σj = g

xj

1 hrj .
For every i ∈ [n], compute τi = e(

�n

j=1
FK(i, j)xj , gp2) using the efficient CFE

algorithm in Section 2.3. Output σ = (σ1, . . . , σn) and τ = (τ1, . . . , τn).

– Compute(pk, σ): Compute ρi =
�n

j=1
σ
Mij

j and πi =
�n

j=1
e(Tij , σj) for every

i ∈ [n]. Output ρ = (ρ1, . . . , ρn) and π = (π1, . . . , πn).
– Verify(sk, τ, ρ, π): For every i ∈ [n], compute yi such that ρpi = (gp1)

yi . If

e(πi, g
p
1) = ηpyi · τi (5)

for every i ∈ [n], then output y = (y1, . . . , yn); otherwise output ⊥.

Fig. 3. Matrix multiplication (Πmm)

Mx, the client stores τ = (τ1, . . . , τn), where each τi is efficiently computed using
the closed form efficiency property of PRFdlin. It gives σ = (Enc(x1), . . . ,Enc(xn))
to the server and the server returns ρ = (ρ1, . . . , ρn) = Enc(Mx) along with
π = (π1, . . . , πn). At last, the client decrypts ρi to yi and verify if (5) holds for
every i ∈ [n].

Correctness. The correctness of Πmm requires that the client always outputs
Mx as long as the server is honest, i.e., y = Mx and (5) holds for every i ∈ [n].
It is shown by the following lemma (see [26] for the proof).

Lemma 7. If the server is honest, then y = Mx and (5) holds for every i ∈ [n].

Security. The security of Πmm requires that no untrusted server can cause the
client to accept ȳ /∈ {Mx,⊥} with a forged proof. It is based on the 3-co-CDHS
assumption for Γ (Lemma 2) and the DLIN assumption (Definition 6).

Lemma 8. If the 3-co-CDHS assumption for Γ and the DLIN assumption both
hold, then the scheme Πmm is secure.

Proof. We define three games G0,G1 and G2 as below:

G0 : this is the standard security game ExpVerA (Π,M, λ) defined in Fig. 1.
G1 : the only difference between this game and G0 is a change to ProbGen. For

any (x1, . . . , xn) queried by the adversary, instead of computing τ using
the efficient CFE algorithm, the inefficient evaluation of τi is used, i.e.,
τi =

�n
j=1 e(FK(i, j)xj , gp2) for every i ∈ [n].

G2 : the only difference between this game and G1 is that the matrix T is com-

puted as Tij = g
p2aMij

1 · Rij , where Rij ← G1 for every i, j ∈ [n].
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For every i ∈ {0, 1, 2}, we denote by Gi(A) the output of game i when it is run
with an adversary A. The proof of the theorem proceeds by a standard hybrid
argument, and is obtained by combining the proofs of the following three claims.

Claim 1. We have that Pr[G0(A) = 1] = Pr[G1(A) = 1].
The only difference between G1 and G0 is in the computation of τ . Due to the

correctness of the CFE algorithm, such difference does not change the distribution
of the values τ returned to the adversary. Therefore, the probabilities thatA wins
in both games are identical.

Claim 2. We have that |Pr[G1(A) = 1]− Pr[G2(A) = 1]| < neg(λ).
The only difference between G2 and G1 is that we replace the pseudorandom

group elements FK(i, j) with truly random group elements Rij ← G1 for every
i, j ∈ [n]. Clearly, if |Pr[G1(A) = 1] − Pr[G2(A) = 1]| is non-negligible, we
can construct an simulator B that simulates A and breaks the pseudorandom
property of PRF with a non-negligible advantage.

Claim 3. We have that Pr[G2(A) = 1] < neg(λ).
Suppose that there is a PPT adversary A that wins with non-negligible prob-

ability ε in G2. We want to construct a PPT simulator B that simulates A and
breaks the 3-co-CDHS assumption (see Definition 5) with non-negligible prob-

ability. The adversary B takes as input a tuple (p, q, Γ, hα
1 , h

β
2 ), where h1 =

gp1 , h2 = gp2 and α, β ← ZN . The adversary B is required to output hαβ
2 . In order

to do so, B simulates A as below:

(A) Pick an n× n matrix M and mimic the KeyGen of game G2 as below:

– implicitly set a = αβ by computing η = e(hα
1 , h

β
2 ) = gp

2αβ
3 ;

– pick u← G1, compute h = uq and set up BGN3 with public key (Γ, g1, h)
and secret key p;

– pick Tij ← G1 for every i, j ∈ [n] and send pk = (Γ, g1, h,M, T ) to A,
where T = (Tij);

(B) Upon receiving a query x = (x1, . . . , xn) from A, mimic ProbGen as below:

– for every j ∈ [n], pick rj ← ZN and compute σj = g
xj

1 hrj ;
– for every i, j ∈ [n], compute Zij = e(Tij , g

pxj

2 )/ηpMijxj ;
– for every i ∈ [n], compute τi =

�n
j=1 Zij ;

– send σ = (σ1, . . . , σn) to A.

It is straightforward to verify that the pk, σ and τ generated by B are identically
distributed to those generated by the client in game G2. We remark that (A) is
the step 1 in ExpVerA (Π,M, λ) (see Fig. 1) and (B) consists of steps 3 and 4 in
ExpVerA (Π,M, λ). Furthermore, (B) may be run l = poly(λ) times as described
by step 2 of ExpVerA (Π,M, λ). After l executions of (B), the adversary A will
provide an input x̂ = (x̂1, . . . , x̂n) on which he is willing to be challenged. Upon
receiving x̂, the simulator B mimics ProbGen as (B) and gives A an encoded
input σ̂. Then the adversary A may maliciously reply with ρ̄ = (ρ̄1, . . . , ρ̄n)
and π̄ = (π̄1, . . . , π̄n) such that Verify(sk, τ̂ , ρ̄, π̄) � ȳ /∈ {Mx̂,⊥}. On the other
hand, an honest server in our VC scheme will reply with ρ̂ = (ρ̂1, . . . , ρ̂n) and
π̂ = (π̂1, . . . , π̂n). Due to Lemma 7, it must be the case that Verify(sk, τ̂ , ρ̂, π̂) �
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ŷ = Mx̂. Note that the event ȳ /∈ {Mx̂,⊥} occurs with probability ε. Suppose
it occurs. Then there is an integer i ∈ [n] such that ȳi 	= ŷi. Note that neither
ȳ nor ŷ is ⊥, the equation (5) must be satisfied by both (ȳ, π̄) and (ŷ, π̂), which
translates into e(π̄i, g

p
1) = ηpȳi · τ̂i and e(π̂i, g

p
1) = ηpŷi · τ̂i, we have that

e(π̂i/π̄i, g
p
1) = ηp(ŷi−ȳi) = e(g

p2αβ(ŷi−ȳi)
2 , gp1),

which in turn implies that π̂i/π̄i = g
pαβ·p(ŷi−ȳi)
2 . Let φ ∈ Z∗

q be the multiplicative

inverse of p(ŷi − ȳi) ∈ Z∗
q . Then gpαβ2 = (π̂i/π̄i)

φ, i.e., hαβ
2 = (π̂i/π̄i)

φ, which
implies that B can break the 3-co-CDHS with probability at least ε. Therefore,
this ε must be negligible in λ, i.e., Pr[G2(A) = 1] < neg(λ).

Privacy. The input privacy of Πmm requires that no untrusted server can dis-
tinguish between different inputs of the client. This is formally defined by the
experiment ExpPriA (Π, f, λ) in Fig. 1. The client in our VC scheme encrypts its
input x using BGN3 which is semantically secure under SDA for Γ . As a result,
Πmm achieves input privacy under SDA for Γ (see [26] for the proof).

Lemma 9. If the SDA for Γ holds, then Πmm achieves the input privacy.

Efficiency. In order to verifiably compute Mx with the cloud, the client com-
putes n ciphertexts σ1, . . . , σk under BGN3 and n verification keys τ1, . . . , τn
in the execution of ProbGen; it also decrypts n ciphertext ρ = Enc(Mx) under
BGN3 and then verifies the equation (5). The overall computation of the client
will be O(n) = o(n2) and therefore Πpe is outsourced. On the other hand, the
server needs to perform O(n2) multilinear map computations and O(n) exponen-
tiations in each execution of Compute, which is comparable with the VC schemes
based on FHE. Based on Lemmas 7, 8, 9 and the efficiency analysis, we have the
following theorem.

Theorem 2. If the 3-co-CDHS, DLIN and SDA assumptions for Γ all hold,
then Πmm is a VC scheme with input privacy.

3.3 Discussions

A theoretical limitation of our VC schemesΠpe andΠmm is that the computation
results (i.e., f(α) and Mx) must belong to a polynomial size domain M since
otherwise the client will not be able to decrypt ρ and then verify its correctness.
However, we stress that this is not a real limitation when we apply both schemes
in outsourcing PIR (see Section 4) where the computation results are either 0
or 1. On the other hand, with f(x) and the knowledge “f(α) ∈ M” (resp. M
and the knowledge “Mx ⊆ M”), one may argue that the cloud can also learn
a polynomial size domain D where α (resp. Mx) is drawn from and therefore
guess the actual value of α (resp. x) with non-negligible probability. However,
recall that our privacy experiment ExpPriA (Π, f, λ) in Fig. 1 only requires the
indistinguishability of different inputs. This is achieved byΠpe andΠmm (though
for polynomial size domains) and suffices for our applications. Furthermore, in
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Section 3.4, we shall show how to modify Πpe and Πmm such that the functions
(i.e., f(x) and M) are encrypted and then given to the cloud. As a consequence,
the cloud learns no information on either the outsourced function or input unless
it can break the underlying encryption scheme.

3.4 Function Privacy

Note that Πpe and Πmm only achieve input privacy. We say that a VC scheme
achieves function privacy if the server cannot learn any information about the
outsourced function. A formal definition of function privacy can be given using
an experiment similar to ExpPriA (Π, f, λ). Both Πpe and Πmm can be modified
such that function privacy is also achieved. In the modified VC scheme Π ′

pe

(see Fig. 4 in Appendix A), the client gives BGN2k+2 ciphertexts Enc(f) =

(Enc(f0), . . . ,Enc(fn)) and σ = (Enc(α), . . . ,Enc(α2k−1

)) to the server. Then the
server can compute ρ = Enc(f(α)) along with a proof π = Enc(c(s)) using Enc(f)
and σ. In the modified VC scheme Π ′

mm (see Fig. 5 in Appendix A), the client
gives BGN3 ciphertexts Enc(M) = (Enc(Mij)) and σ = (Enc(x1), . . . ,Enc(xn))
to the server. Then the server can compute Enc(

�n
j=1Mijxj) along with a proof

πi using Enc(M) and σ for every i ∈ [n]. It is not hard to prove that the schemes
Π ′

pe and Π ′
mm are secure and achieve both input and function privacy.

4 Applications

Our VC schemes have application in outsourcing private information retrieval
(PIR). PIR [21] allows a client to retrieve any bit wi of a databasew = w1 · · ·wn ∈
{0, 1}n from a remote server without revealing i to the server. In a trivial solu-
tion of PIR, the client simply downloads w and extracts wi. The main drawback
of this solution is its prohibitive communication cost (i.e. n). In [21,7,17], PIR
schemes with non-trivial communication complexity o(n) have been constructed
based on various cryptographic assumptions. However, all of them assume that
the server is honest-but-curious. In real-life scenarios, the server may have strong
incentive to give the client an incorrect response. Such malicious behaviors may
cause the client to make completely wrong decisions in its economic activities
(say the client is retrieving price information from a stock database and decid-
ing in which stock it is going to invest). Therefore, PIR schemes that are secure
against malicious severs are very interesting. In particular, outsourcing PIR to
untrusted clouds in the modern age of cloud computing is very interesting. Both
of our VC schemes can provide easy solutions in outsourcing PIR. Using Πpe, the
client can outsource a degree n polynomial f(x) to the cloud, where f(i) = wi for
every i ∈ [n]. To privately retrieve wi, the client can execute Πpe with input i. In
this solution, the communication cost consists of O(log n) group elements. Using
Πmm, the client can represent the w as a square matrix M = (Mij) of order√
n and delegate M to the cloud. To privately retrieve a bit Mij , the client can

execute Πmm with input x ∈ {0, 1}
√
n, where xj = 1 and all the other bits are

0. In this solution, the communication cost consists of O(
√
n) group elements.
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Note that in our outsourced PIR schemes, the computation results always belong
to {0, 1} ⊆ M. Therefore, the theoretical limitation we discussed in Section 3.3
does not really affect the application of our VC schemes in outsourcing PIR.

5 Conclusions

In this paper, we constructed privacy preserving VC schemes for both univariate
polynomial evaluation and matrix multiplication, which have useful applications
in outsourcing PIR. Our main tools are the recently developed multilinear maps.
A theoretical limitation of our constructions is that the results of the computa-
tions should belong to a polynomial-size domain. Although this limitation does
not really affect their applications in outsourcing PIR, it is still interesting to re-
move it in the future works. We also note that our VC schemes are only privately
verifiable. It is also interesting to construct privacy preserving VC schemes that
are publicly verifiable.

Acknowledgement. This research was in part supported by Alberta Innovates
Technology Future, Alberta, Canada.
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– KeyGen(1λ, f(x)): Pick Γ = (N,G1, . . . , G2k+2, e, g1, . . . , g2k+2) ← G(1λ, 2k+2).

Pick s ← ZN and compute t = g
f(s)
1 . Pick u ← G1 and compute h = uq,

where u = gδ1 for an integer δ ∈ ZN . Set up BGN2k+2 with public key (Γ, g1, h)
and secret key p. For every i ∈ {0, 1, . . . , n}, pick vi ← ZN and compute γi =

gfi1 hvi . Output sk = (p, q, s, t) and pk = (Γ, g1, h, g
s
1, g

s2

1 , . . . , gs
2k−1

1 , γ), where
γ = (γ0, . . . , γn).

– ProbGen(sk,α): For every � ∈ [k], pick r� ← ZN and compute σ� = gα
2�−1

1 hr� .
Output σ = (σ1, . . . , σk) and τ =⊥ (τ is not used).

– Compute(pk, σ): Compute ρi = gμi
k for every i ∈ {0, 1, . . . , n} using the technique

in Section 2.2. Compute ρ′i = e(γi, ρi) = g
μ′
i

k+1, where μ
′
i = (fi+qδvi)μi. Compute

ρ =
�n

i=0
ρ′i. Compute πij = g

νij
2k using the technique in Section 2.2 for every

i ∈ {0, 1, . . . , n − 1} and j ∈ {0, 1, . . . , i}. Compute π′
ij = e(γi+1, πij) = g

ν′
ij

2k+1,

where ν′
ij = (fi+1 + qδvi+1)νij . Set π =

�n−1

i=0

�i

j=0
π′
ij .Output ρ and π.

– Verify(sk, τ, ρ, π): Compute the y ∈ Zq such that ρp = (gpk+1)
y . If the equality

e
�
t/gy1 , g

p
2k+1

�
= e

�
gs1/g

α
1 , π

p
�
holds, output y; otherwise, output ⊥.

Fig. 4. Univariate polynomial evaluation (Π ′
pe)

– KeyGen(1λ,M): Pick Γ = (N,G1, G2, G3, e, g1, g2, g3) ← G(1λ, 3). Consider the
PRFdlin in Section 2.3. Run KG(1λ, n) and pick a secret key K. Pick a ← ZN

and compute Tij = g
p2aMij

1 · FK(i, j) for every (i, j) ∈ [n]2. Pick u ← G1 and
compute h = uq , where u = gδ1 for an integer δ ∈ ZN . Set up BGN3 with
public key (Γ, g1, h) and secret key p. For every (i, j) ∈ [n]2, pick vij ← ZN and

compute γij = g
Mij

1 hvij . Output sk = (p, q,K, a, η) and pk = (Γ, g1, h, γ, T ),

where η = gp
2a

3 and γ = (γij).
– ProbGen(sk, x): For every j ∈ [n], pick rj ← ZN and compute σj = g

xj

1 hrj .
For every i ∈ [n], compute τi = e(

�n

j=1
FK(i, j)xj , gp2) using the efficient CFE

algorithm in Section 2.3. Output σ = (σ1, . . . , σn) and τ = (τ1, . . . , τn).
– Compute(pk, σ): Compute ρi =

�n

j=1
e(γij , σj) and πi =

�n

j=1
e(Tij , σj) for

every i ∈ [n]. Output ρ = (ρ1, . . . , ρn) and π = (π1, . . . , πn).
– Verify(sk, τ, ρ, π): For every i ∈ [n], compute yi such that ρpi = (gp2)

yi . If
e(πi, g

p
1) = ηpyi · τi for every i ∈ [n], then output y = (y1, . . . , yn); otherwise,

output ⊥.

Fig. 5. Matrix multiplication (Π ′
mm)
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