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Abstract A modeling approach of nonlinear dynamics of neurons by an
asynchronous cellular automaton is introduced. It is shown that an asynchronous
cellular automaton neuron model can realize not only typical nonlinear response
characteristics of neurons but also their underlying occurrence mechanisms (i.e.,
bifurcation scenarios). Themodel can be implemented as an asynchronous sequential
logic circuit, whose control parameter is the pattern of wires that can be dynamically
updated in a dynamic reconfigurable FPGA. An on-FPGA learning algorithm (i.e.,
on-FPGA rewiring algorithm) is presented and is used to tune the model so that it
reproduces nonlinear response characteristics of a neuron.

1 Introduction

The neuron is one of the most sophisticated nonlinear dynamical systems and its
mathematical and hardware modelings have been investigated intensively [1–10].
Motivations for the hardware neuron include development of a neural prosthesis chip
for clinical applications [9, 10] and development of an artificial neural network chip
for engineering applications [1, 5–7]. Major classical approaches of hardware spik-
ing neurons include: (i) implementation of a nonlinear ordinary differential equation
(ab. ODE) by an analog circuit [1–4] and (ii) implementation of a numerical integra-
tion by a digital processor [5–8]. Recently, an alternative neuron modeling approach
has been proposed, where the nonlinear dynamics of a neuron is modeled by an asyn-
chronous cellular automaton that is implemented by an asynchronous sequential logic
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circuit [11–15]. The asynchronous sequential logic spiking neuron model (ab. ASN)
consists of registers, logic gates, and reconfigurable wires, where the pattern of the
wires among the registers and the gates is a control parameter that determines its
nonlinear dynamics. Some types of ASNs (e.g., integrate-and-fire type and rotate-
and-fire type) have been presented so far and their neuron-like properties have been
analyzed intensively [11–15]. In this paper, it is shown that the ASN can realize
typical nonlinear responses of neurons [11]. Also, some of our recent new results on
learnings of the ASN are presented. Significances of the ASN include the following
points. (a) The analog circuit neuron has a continuous time and a continuous state,
and the digital processor neuron has a discrete time and a discrete state. On the other
hand, the ASN has a discrete state and a continuous (state transition) time. Hence
the ASN belongs to a different class of nonlinear dynamical systems from the major
classical hardware spiking neuron models. We emphasize that investigation of such
a new neuron modeling approach is an important fundamental nonlinear problem.
(b) An important control parameter of the analog circuit neuron is a nonlinearity of
a circuit element. Hence, its dynamic parameter adjustment is often troublesome.
An important control parameter of the digital processor neuron is a coefficient of a
nonlinear function. Hence, its dynamic parameter adjustment is possible but needs a
numeric data processor. On the other hand, the control parameter of the ASN is the
wiring pattern that can be dynamically adjusted based on a dynamic reconfigurable
FPGA technology. (c) The ASN can be implemented with less hardware resources
(i.e., smaller number of configuration logic blocks) than the digital processor neuron
for some reasonable parameter cases. Such a low hardware cost property and the
dynamic reconfiguration ability will be significantly useful to develop future appli-
cations of the ASN, e.g., a neural prosthesis chip whose area is small and whose
parameters can be dynamically updated after implantation and an artificial neural
network chip with an on-chip learning capability.

2 Asynchronous Sequential Logic Neuron Model

In this section, an asynchronous sequential logic spiking neuron model (ab. ASN),
whosediagram is depicted inFig. 1, is introduced [11–15].TheASNhas the following
four registers whose bit lengths are denoted by positive integers N , M , K , and J ,
respectively.

(1) The membrane register is an N -bit bi-directional shift register having an integer
state V ∈ ZN ≡ {0, . . . , N − 1} encoded by the one-hot coding manner, where
“≡” denotes “is defined by” hereafter. From a neuron model viewpoint, the state
V can be regarded as a membrane potential.

(2) The recovery register is an M-bit bi-directional shift register having an integer
state U ∈ ZM ≡ {0, . . . , M − 1} encoded by the one-hot coding manner. From
a neuron model viewpoint, the state U can be regarded as a recovery variable.
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Fig. 1 Asynchronous sequential logic spiking neuron model (ab. ASN)

(3) The membrane velocity counter is a K -bit register having an integer state P ∈
ZK ≡ {0, . . . , K − 1} encoded by the thermometer coding manner. The state P
controls a velocity of the membrane potential V .

(4) The recovery velocity counter is a J -bit register having an integer state Q ∈
ZJ ≡ {0, . . . , J − 1} encoded by the thermometer coding manner.

The state Q controls a velocity of the recovery variable U . The states V , U , P ,
and Q are clamped to the ranges [0, N − 1], [0, M − 1], [0, K − 1], and [0, J − 1],
respectively. As shown in Fig. 1, the registers and the velocity counters are connected
to each other via the following twomemoryless units. (i) The vector field unit consists
of logic gates and reconfigurable wires. This unit determines the characteristics of a
vector field of the states (V, U ) as its name implies. (ii) The reset value unit consists
of logic gates and reconfigurable wires. From a neuron model viewpoint, this unit
determines values to which the states (V, U ) are reset when the ASN fires, as its
name implies. The ASN accepts a periodic internal clock Clk(t) described by

Clk(t) =
{
1 if t (mod 1) = 0,

0 otherwise,

where t ∈ [0,∞) is a continuous time. In the next subsection, autonomous behaviors
of the ASN (i.e., behaviors when no stimulation input spike-train Stm(t) is applied)
are investigated. After that, in the next subsection, non-autonomous behaviors of
the ASN (i.e., behaviors when a stimulation input spike-train Stm(t) is applied) are
investigated.
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Fig. 2 A phase plane and state transitions. V-nullcline (U-nullcline) is a border between DV ∈
{−1, 0} and DV = 1 (DU ∈ {−1, 0} and DU = 1). The bit lengths of the ASN are N = M = K =
J = 16. The parameters are Γ = (7, 0.3, 0.2, 3, 0.1, 16, 0.5, 0.3, 0) defined in (10). A periodic
stimulation input spike-train Stm(t) with a frequency 0.312 via the synaptic weight W = 1 is
applied to the ASN

2.1 Autonomous Behaviors

Let us begin with defining the following subset L in the state space ZN × ZM (see
also Fig. 2).

L ≡ {(V, U )|V = N − 1, U ∈ ZM } ⊂ ZN × ZM . (1)

From a neuron model viewpoint, L can be regarded as a firing threshold. First, let
us consider the case of (V, U ) �∈ L. In this case, the vector field unit in Fig. 1 triggers
the transition of the states (P, Q) of the velocity counters and the states (V, U ) of the
registers through signals (sV , sU ) ∈ {0, 1}2 and (δV , δU ) ∈ {−1, 0, 1}2 as follows.
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P(t+) =

⎧⎪⎨
⎪⎩

P(t) + 1 if sV (t) = 0, Clk(t) = 1,

0 if sV (t) = 1, Clk(t) = 1,

P(t) otherwise,

Q(t+) =

⎧⎪⎨
⎪⎩

Q(t) + 1 if sU (t) = 0, Clk(t) = 1,

0 if sU (t) = 1, Clk(t) = 1,

Q(t) otherwise,

V (t+) =
{

V (t) + δV if Clk(t) = 1,

V (t) otherwise,

U (t+) =
{

V (t) + δV if Clk(t) = 1,

V (t) otherwise,

(2)

where t+ = limε→+0 t + ε, the velocity counters accept the internal clock Clk(t)
and the signals (sV , sU ), and the registers accept the signals (δV , δU ) from the vector
field unit. The signals (sV , sU ) and (δV , δU ) are generated as follows.

sV =
{
1 if P ≥ Ph(V, U ),

0 if otherwise,

sU =
{
1 if Q ≥ Qh(V, U ),

0 if otherwise,

δV =
{

DV (V, U ) if P ≥ Ph(V, U ),

0 otherwise,

δU =
{

DU (V, U ) if Q ≥ Qh(V, U ),

0 otherwise,

Ph :ZN × ZM → ZK , Qh :ZN × ZM → ZJ ,

DV :ZN × ZM → {−1, 0, 1}, DU :ZN × ZM → {−1, 0, 1},

(3)

where the functions Ph(V, U ), Qh(V, U ), DV (V, U ), and DU (V, U ) are discrete
functions that are designed by the following rule.

F (V, U )= N (γ1 (V/N − γ2)
2 + γ3 − U/M)/λ,

G (V, U )=μM(γ4 (V/N − γ2) + (γ3 + γ5) − U/M)/λ,

Ph(V, U )=	|F−1(V, U )|
−1, Qh(V, U )=	|G−1(V, U )|
−1,
DV (V, U )=sgn(F (V, U )), DU (V, U )=sgn(G (V, U )),

(4)

where (γ1, γ2, γ3, γ4, γ5) are parameters that characterize nullclines, (λ, μ) are para-
meters that work as time constants, the function 	x
 gives the integer part of a
real number x , Ph(V, U ) and Qh(V, U ) are clamped to the ranges [0, K − 1] and
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Table 1 Summary of the implementation and execution methods of Eqs. (1)–(9), and their orders
of hardware costs

Equation Implement or not Hardware cost

Eq. (2) O(1)
Eq. (3) Implemented as O(N × M)

Eqs. (1) and (5) logic gates and O(N + M)

Eq. (6) reconfigurable wires O(N + M)

Eq. (8) O(1)
Eq. (9) O(1)
Eq. (4) Wiring pattern setting rules
Eq. (7) (not implemented as a part of ASN)

[0, J − 1], and the signum function sgn(x) gives the sign of a real number x , respec-
tively.

Second, let us consider the case of (V, U ) ∈ L. In this case, the reset value unit
in Fig. 1 triggers the reset of the states (P, Q) of the velocity counters and the states
(V, U ) of the registers through integer signals (A, B) ∈ ZN × ZM encoded by the
one-hot coding manners as follows.

(P(t+), Q(t+), V (t+), U (t+)) ={
(0, 0, A, B) if (V, U ) ∈ L, Clk(t) = 1,

(P(t), Q(t), V (t), U (t)) otherwise,
(5)

where the signals (A, B) are generated as follows.

(A, B) = (A ,B(U ))

A ∈ ZN , B(U ) : ZM → ZM ,
(6)

where A is an integer and B(U ) is a discrete function that are designed by the
following rule.

A = 	ρ1N
, B(U ) = U + 	ρ2M
, (7)

where (ρ1, ρ2) are parameters, andA andB(U ) are clamped to the ranges [0, N −1]
and [0, M − 1], respectively. Repeating the resets, the ASN generates the following
firing spike-train Y (t).

Y (t) =
{
1 if (V (t), U (t)) ∈ L, Clk(t) = 1,

0 otherwise .
(8)

Note that Eqs. (2) and (5) represent the discrete state transitions triggered by the
discrete signals, and Eqs. (3) and (6) represent the discrete functions. Also, Eq. (8)
with Eq. (1) is the discrete function. Hence, they can be implemented by logic gates
and reconfigurable wires, where the functional relations are determined by the wiring
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patterns in the vector field unit and the reset value unit (see Table1). On the other
hand, Eqs. (4) and (7) represent the parameter (i.e., wiring pattern) setting rules and
are not implemented as a part of the ASN (see Table1).

2.2 Non-autonomous Behaviors

Let us now apply the following stimulation input spike-train Stm(t) to the ASN.

Stm(t) =
{
1 if t = t1, t2, . . . ,

0 otherwise,

where t = t1, t2, . . . are input spike positions. From a neuron model viewpoint,
the stimulation input spike-train Stm(t) can be regarded as a stimulation input. A
stimulation input spike Stm = 1 induces the transition of the membrane potential V
as follows.

V (t+) = V (t) + W · Stm(t), (9)

where W ∈ {1,−1} is a parameter that can be regarded as a synaptic weight and
W = 1 (W = −1) implies that the stimulation weight is excitatory (inhibitory).
Note that the membrane register of the previous model [14] accepts the single signal
Stm(t)only and themodel has the excitatory synapticweightW = 1only. In contrast,
the membrane register of the ASN accepts the two signals W and Stm(t) and the
ASN has both the excitatory and the inhibitory synaptic weights W ∈ {1,−1}. Note
also that Eq. (9) represents the discrete state transitions and thus is implemented
by logic gates and reconfigurable wires (see Table1). Figure2 shows basic non-
autonomous behaviors of the ASN, where the V-nullcline (U-nullcline) is a border
between DV ∈ {−1, 0} and DV = 1 (DU ∈ {−1, 0} and DU = 1). As a result,
the dynamics of the ASN is described by Eqs. (2)–(9), and is characterized by the
following parameters.

N , M, K , J, Γ = (γ1, γ2, γ3, γ4, γ5, λ, μ, ρ1, ρ2). (10)

3 Reproduction of Inhibitory Dynamic Response Behaviors

For simplicity, we focus on the following periodic stimulation input spike-train
Stm(t).

Stm(t) =
{
1 if (t + θ0) (mod f −1

S ) = 0,

0 otherwise,

where fS is an input frequency, θ0 ∈ [0, f −1
S ) is an initial input phase, and a post-

synaptic stimulation input I to the ASN is defined as
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(a)

(b)

(c)

(d)

(e)

Fig. 3 Numerical simulation results of inhibitory dynamic response behaviors of the
ASN (each left figure) and those of the Izhikevich simple model [16] (each right figure),
where v denotes the membrane potential and i denotes the current input. a–e corre-
spond to (a)–(e) in Table2, respectively. The bit lengths of the ASN are N = M =
K = J = 64. The parameters Γ of the ASN and the heights of the post-synaptic
stimulation I are as the followings. a Γ = (7, 0.3, 0.2, 3,−0.1, 64, 0.5, 0.3, 0), I =
−0.8. b Γ = (7, 0.3, 0.2, 3,−0.1, 64, 0.5, 0.48,−0.4), I = −0.8.
c Γ = (7, 0.3, 0.2, 3, 0.1, 64, 0.5, 0.3, 0), I = 0.2,−0.5. d
Γ = (7, 0.3, 0.5,−5, 0, 64,−0.2, 0.3, 0.1), I = −0.2. e Γ =
(7, 0.3, 0.5,−5, 0, 64,−0.1, 0.55,−0.1), I = −0.3. The parameter values of the Izhikevich
simple model can be found in [16]
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I = fS · W.

According to [16, 17], biological and model neurons typically exhibit dynamic
response behaviors (i.e., waveforms of the membrane potential in response to the
stimulation input) that can be classified intofifteen excitatory types andfive inhibitory
types as shown in Table2. It has been shown the ASN can reproduce all the twenty
types of dynamic response behaviors. In this paper, we focus on the following
inhibitory ones (a)–(e), which are shown in Table2 [11]. (a) A rebound spike is
a spike induced by an inhibitory stimulation input. (b) A rebound burst is a burst
induced by an inhibitory stimulation input. (c) Threshold variability is a phenom-
enon that whether the stimulation input of the same strength induces a spike depends
on the preceding inhibitory stimulation input. (d) Inhibition-induced spiking is per-
sistent spike-train generation while an inhibitory stimulation input is applied. (e)
Inhibition-induced bursting is persistent burst-train generation while an inhibitory
stimulation input is applied. Numerical simulation results corresponding to the above
behaviors (a)–(e) are shown in Fig. 3a–e, respectively.

4 Learning and Neural Responses

This section shows that the ASN can reproduce desired responses characteristics
(i.e., relationships between the stimulation strength and the average firing frequency)
obtained from a biological or model neuron, which is called a teacher neuron. As the
teacher neuron, Izhikevich’s resonatormodel [17] is used,whose stimulation strength
is denoted by I . The control parameter, i.e., the wiring pattern, of the ASN is dynam-
ically updated to reproduce the response characteristics of the teacher, where the
distance between the responses of them is defined by using the metric-space analy-
sis [18]. This procedure is called a learning hereafter. Figure4 shows the responses
characteristics of the teacher, the ASN before the learning, and the ASN after the
learning. The response characteristics of the ASN before the learning is different
from that of the teacher. The response characteristics of the ASN after the learning
is similar to that of the teacher. This indicates that the learning enables the ASN to
reproduce the responses characteristics of the teacher. More detailed investigations
on the learning will be presented in our future works.

The ASN is implemented on Xilinx’s FPGA Veitex-5 XUPV5-LX110T mounted
on Digilent’s OpenSPARC evaluation platform. The FPGA-implemented ASNN
occupies 123 slices (each slice includes four 6-input LUTs and four FFs) of the
FPGA device. For comparison, the teacher is also implemented on the same FPGA
device using a forward Euler numerical integration with a time step 3kHz. The
implemented teacher occupies 532 slices, where the resolutions of the states are
16-bit binary fixed point numbers. These facts indicate that the ASN requires less
hardware resources then a digital processor neuron. More detailed investigations on
the hardware will be presented in our future works.



110 H. Torikai and T. Matsubara

Table 2 The table summarizes reproduction abilities of dynamic response behaviors by typical
neuronmodels and ourmodels, where “+” denotes “reproducible”, “−” denotes “not reproducible”,
and “·” denotes “partially reproducible”. Each empty square denotes that sufficient parameter and
initial value conditions are unknown but the model satisfies necessary conditions in principle [16].
Each dynamic response behavior is as follows. a Rebound spike. b Rebound bursting. c Threshold
variability. d Inhibition-induced spiking. e Inhibition-induced bursting. f Tonic spiking. g Phasic
spiking. h Tonic bursting. i Phasic bursting. j Mixed mode. k Spike frequency adaptation. l Class 1
excitable.mClass 2 excitable. n Spike latency. o Subthreshold oscillation. pResonator. q Integrator.
r Bistability. s Depolarizing after-potential. t Accommodation

Inhibitory Excitatory dynamic response behaviors
dynamic response
behaviors

Neuron model (a) (b) (c) (d) (e) (f) (g) (h) (i) (j) (k) (l) (m) (n) (o) (p) (q) (r) (s) (t)

Izhikevich [17] + + + + + + + + + + + + + + + + + + + +
Hodgkin Huxley [19] + + + + + + + + + + + + + + + + +
ASN [11–13, 15] + + + + + + + + + + + + + + + + + + + +

Fig. 4 Learning. a Teacher
neuron = Izhikevich’s res-
onator model. b1 The ASN
before learning. The sizes
of registers are 32 and the
internal clock frequency is
fC = 3kHz. b2 The ASN
after learning

(a)

(b1)

(b2)

5 Conclusions

The asynchronous sequential logic spiking neuron model (ab. ASN) was introduced.
It was shown that the ASN can reproduce the typical twenty types of the dynamic
response behaviors of neurons. Especially, in this paper, it was demonstrated that
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the ASN can reproduce the five inhibitory dynamic response behaviors. Further-
more, it was shown that the learning algorithm enables the ASN to automatically
reproduce the nonlinear response characteristics of an ODE-based neuron model.
It was also confirmed that the ASN can be implemented with less hardware resources
than a digital processor neuron for a reasonable parameter case. These reproduction
abilities of neural dynamics and the low hardware cost property will be the keys
to developing future applications of the ASN. Future problems include: (a) bifur-
cation analyses of the ASN, (b) clarification of relationships between the parame-
ters of the ASN and experimentally measurable parameters of biological neurons,
(c) development of a multi-compartment neuron model based on the ASN, including
register-dynamics models of synaptic connections, and (d) development of a network
of multi-compartment ASNs and its bio-inspired learning mechanisms such as the
spike-timing dependent plasticity.

The authors would like to thank Professor Toshimitsu Ushio of Osaka University
for valuable discussions. This work is partially supported by Toyota Riken Scholar
and KAKENHI (24700225).
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