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Abstract The dynamics of a macrospin variable representing homogeneous
magnetization of the free layer of a nanospin transfer oscillator (STNO) can be
represented by the Landau–Lifshitz–Gilbert–Slonczewski (LLGS) equation. This is
a generalization of the evolution equation of a ferromagnetic spin system represented
by the Heisenberg interaction. STNO is a fascinating nonlinear system exhibiting an
interesting bifurcation-chaos scenario depending up on the nature of the applied
external magnetic field and the spin current. In order to enhance the microwave
power generated by STNOs, recently it has been suggested to consider series and
parallel arrays of STNOs with appropriate couplings so that the oscillators get syn-
chronized. We show here the interesting possibility of obtaining synchronization
with a common external periodically varying applied magnetic field. We also study
the mass synchronization in arrays of STNOs represented by phase oscillators and
study the underlying properties.

1 Introduction

From a phenomenological point of view, the Landau-Lifshitz-Gilbert(LLG)
equation is considered to be the basic dynamical equation for describing magne-
tization/magnetic moment or simply spin S(r, t), including the damping effects
[1–3], for bulk materials in applied magnetism. The Landau–Lifshitz (LL)
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equation can also be deduced in a systematic manner by starting with a lattice spin
Hamiltonian with Heisenberg type nearest neighbour interactions, by postulating
appropriate spin Poisson brackets, and writing down the Hamilton’s equation of
motion for the spins and then taking the classical limit (� → 0) of the quantum
spin dynamical equation and then the continuum limit to obtain the LL equation [4,
5]. Then the Gilbert damping term can be introduced phenomenologically [6]. The
LLG equation is an extremely interesting nonlinear evolution equation, because of
its length constraint, normalized as |S|2 = 1. Correspondingly it admits a large vari-
ety of dynamical structures including spin waves, elliptic function waves, solitary
waves, solitons, lumps, dromions, vortices, bifurcations and chaos, spatio-temporal
patterns, etc. [5].

In recent times the study of nonlinear dynamics of spin systems has received
renewed interest due to the work of Slonczewski [7] and Berger [8] on the macrospin
behaviour of spins of the free layer of a nanospin valve pillar of Fe/Cu/Fe type trilayers
due to spin torque effect under the injection of a horizontal spin current in the presence
of appliedmagnetic fields. In the semiclassical representation the corresponding non-
linear evolution is represented by a Landau–Lifshitz–Gilbert–Slonczewski (LLGS)
equation [9] which includes an additional term to represent the effect of spin current
on the magnetization spin vector. In the case of homogeneous magnetization, the
dynamics of the macrospin of the free layer of the nano-valve pillar, the so called
spin transfer nano-oscillator (STNO), is effectively a nonlinear oscillator equation
exhibiting interesting bifurcation and chaos scenario.

Since the power generated by a single STNO is rather low for microwave
generation, it has been recently suggested that the property of synchronization of
nonlinear oscillators [10] can be profitably utilized for increased power generation
by appropriate coupling of STNOs in series or parallel arrays [11, 12], with or with-
out delay [13, 14]. Even a suitable addition of white noise to the injected current
has been shown to lead to in-phase and anti-phase synchronizations of limit cycle
oscillations of STNOs [15]. In this article, we investigate the interesting possibility
of synchronizing limit cycle oscillations due to the action of a common applied peri-
odically driven external magnetic field leading to synchronization of both in-phase
and anti-phase limit cycle oscillations. We also consider the possibility of mass syn-
chronization of coupled phase oscillators of different groups through appropriate
coupling as a means of high quality synchronization of STNOs.

2 Heisenberg Ferromagnetic Spin Equation and Extension
to STNO

It is well known that the expectation value of the spin angular momentum operator
of an electron or equivalently magnetization per unit volume, after normalization,
represented as a classical unit vector in three dimensions evolves [16] under the
action of a time dependent external magnetic field H(t) as
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dS(t)

dt
= −γ0[S(t) × H(t)], H = (H x , H y, H z), (1)

where S2 = 1, S = (Sx , Sy, Sz). Here γ0 is the gyromagnetic factor. From a
knowledge of the hysteresis curves of ferromagnetic substances where the magneti-
zation saturates, becomes uniform and aligns parallel to the magnetic field, Gilbert
[6] introduced the phenomenological damping term to modify Eq. (1) (after suitable
rescaling) as

dS
dt

= (S × H(t)) + λS × [S × H(t)], (2)

where λ is the phenomenological Gilbert damping coefficient. Extending the above
phenomenological form of the evolution equation for a single spin to a lattice of
spins representing a ferromagnetic material, for example a cubic lattice of N spins
with nearest neighbour interactions, onsite anisotropy, demagnetizing field, applied
external magnetic field and so on, the evolution equation for the spins can be written
[5] as

dSi

dt
= Si × He f f + λSi × [Si × He f f ], i = 1, 2, . . . , N , (3)

where

He f f = (Si+1 + Si−1 + ASx
i nx + BSy

i ny + C Sz
i nz + H(t) + · · · ). (4)

Here A, B andC are anisotropy parameters andnx , ny andnz are unit vectors. Going
over to a continuum limit such that Si (t) = S(r, t), r = (x, y, z) and Si+1 + Si−1 =
S(r, t) + a.∇S + a2

2 ∇2S+ higher order (here a is the lattice vector), the Landau–
Lifshitz–Gilbert (LLG) equation for the spin vector in the form of a vector nonlinear
partial differential equation can be written down as

∂S(r, t)

∂t
= S × He f f (r, t) + S × (S × He f f (r, t)), (5)

S(r, t) = (Sx (r, t), Sy(r, t), Sz(r, t)), S2 = 1, (6)

and the effective field is given by

He f f = Hexchange + Hanisotropy + Hdemag + Happl,

= (∇S)2 + ASx nx + BSyny + C Sznz + Hdemag + H(t). (7)

In the above, Hdemag is the demagnetizing field of the material and Happ is the
applied magnetic field. Equation (5) is a complicated vector nonlinear partial dif-
ferential equation. Depending upon the nature of the interactions present in the sys-
tem and the form of He f f , Eq. (5) can admit several kinds of interesting nonlinear
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dynamical structures. These include spin waves, elliptic function waves, solitary
waves, solitons, drominons, vortices, instability induced spatio-temporal patterns,
etc. [5]

3 LLGS Equation and the Dynamics of a STNO

The LLG equation has attracted renewed interest in recent times due to intense study
of magnetization dynamics in devices such as nanospin valves/pillars in connection
with spin torque transfer effect. Slonczewski [7] and Berger [8] have independently
shown in 1996 that when a polarized spin current passes through a trilayer of ferro-
magnetic/nonferromagnetic (conducting)/ferromagnetic materials of size 100 nm or
so, a spin torque transfer effect occurs. Slonczewski [7] further showed semiclassi-
cally that the influence of spin current can be effectively analysed with the addition
of a simple term to the LLG equation as

∂S
∂t

= S × [He f f + λ(S × ∂S
∂t

) + S × j], S = (Sx , Sy, Sz), S2 = 1, (8)

where the spin current term can be given in the form

j = a.SP

f (P)(3 + S.SP )
, f (P) = (1 + P3)

4P
3
2

. (9)

Here Sp is the pinned or fixed direction of the polarized spin current that is normally
taken as perpendicular to the direction of flow of current, a is related to the strength
of the spin current and f (P) is a polarization factor. A simple approximation can be
made to the above form of the spin current as

j = aSp. (10)

Then the spin torque transfer effect can be represented by the Landau–Lifshitz–
Gilbert–Slonczewski (LLGS) equation

∂S
∂t

= S × He f f + λS ×
[

S × ∂S
∂t

]
+ aS × [S × Sp], (11)

where He f f is as given in Eq. (4).
The LLGS equation can also be written in a more transparent form by projecting

the unit spin vector on a stereographic plane [17]

ω = Sx + i Sy

(1 + Sz)
(12)
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so that Eq. (8) becomes

i(1 − iλ)ωt + ∇2ω − 2ω∗(∇ω)2

(1 + ωω∗)
+ A

2

(1 − ω2)(ω + ω∗)
(1 + ωω∗)

+ B

2

(1 + ω2)(ω − ω∗)
(1 + ωω∗)

− C(
1 − ωω∗

1 + ωω∗ )ω (13)

+ 1

2
(H x − i j x )(1 − ω2) + 1

2
i(H y + i j y)(1 + ω2) − (H z + i j z)ω = 0,

where j = aSp, ωt = ( ∂ω
∂t ). From the form of Eq. (14) it is clear that the effect of

the spin current term j simply is to change the magnetic field

H = (H x , H y, H z) → (H x − i j x , H y + i j y, H z + i j z). (14)

Thus one may realize that the effect of spin current and magnetic field complement
each other.

Finally, when the free layer of the spin valve is homogeneous, the effect of
exchange term in Eq. (11) or (14) can be neglected. The resultant LLGS equation is
effectively that of a nonlinear oscillator (after rescaling),

dS
dt

= −γ S × H e f f + λS × dS
dt

− γ aS × (S × Ŝp), (15)

where now

S = S(t) (16)

only. Taking He f f = −4π S0Sx i +κSzk +ha3k, where the saturation magnetization
4π S0 = 8400 Oe for permalloy film, we can rewrite Eq. (15) equivalently in terms
of the stereographic variable ω(t) as

(1 − iλ)ω̇ = −γ (a − iha3)ω + iκγ
(1 − |ω|2)
(1 + |ω|2)ω (17)

+ iγ 2π S0
1 + |ω|2 [(1 − ω2 − |ω|2)ω + ω∗], (ω̇ = dω

dt
).

Here γ is the gyromagnetic ratio. Eq. (15) or (17) may be considered as the LLGS
equation describing the dynamics of the macrospin variable of a single STNO.
Depending upon the type of interactions, a STNO can exhibit the standard bifurction-
chaos scenario of a nonlinear oscillator [18, 19]. In Fig. 1, we represent the phase
diagrams in the (hdc − a) plane indicating periodic regimes, including limit cycles
and chaotic behaviour both for isotropic and anisotropic cases with oscillating mag-
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Fig. 1 Regions of chaos in
the a − ha3 space, for an
applied alternating magnetic
field along the z direction for
isotropic a and anisotropic
b cases. The dark regions
indicate values for which
the dynamics is chaotic, i.e,
regions where the largest
Lyapunov exponent is posi-
tive [19]. The white regions
are the periodic regimes or
limit cycles. Here ha3 is the
applied dc magnetic field
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netic field. Here H = (hdc + hac cosωt)i. Note that periodic oscillations of different
types, chaos, period doubling transitions, etc. occur [19].

4 Dynamics of Arrays of STNOs

We next consider an array of two STNOs in the presence of a common applied
magnetic field (Fig. 2)

Happ = H(t) = (hdc + hac cosωt, 0, 0), (18)

by the system of LLGS equations of the magnetizations of two STNOs
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Fig. 2 The schematic representation of an array of two STNOs placed in the oscillatory external
magnetic field

dS1

dt
= −γ S1 × H1e f f + λS1 × dS1

dt
− γ aS1 × (S1 × Sp), (19)

dS2

dt
= −γ S2 × H2e f f + λS2 × dS2

dt
− γ aS2 × (S2 × Sp),

where |S1|2 = S2
1x + S2

1y + S2
1z = 1, |S2|2 = S2

2x + S2
2y + S2

2z = 1 or equivalently one
can write down the corresponding evolution equation for the stereographic variables
ω1(t) andω2(t). Herewe takeH1e f f = H2e f f = He f f with appropriate spin number.

We have numerically integrated the above set of equations and found that both
in-phase and anti-phase synchronizations occur in the presence of oscillating mag-
netic field and spin current. For example, in Fig. 3a, b, we plot the z component of
the spin vectors of the two oscillators for the anisotropic field strength κ = 45 Oe,
external magnetic field strength hdc = 500 Oe and external current a = 220 Oe, both
time series and phase space plot. The figure clearly shows the existence of anti-phase
synchronization.

In Fig. 3c, d, we present similar results for a different external magnetic field
strength hdc = 500 Oe and external current a = 221 Oewith all the other parameters
unchanged. It clearly shows the existence of in-phase synchronization of limit cycle
oscillations.

In order to confirm that the above synchronization aspects are robust, we present
the results of our numerical analysis for the case in which there is a slight mismatch
in the system parameters of the two STNOs with the choice of anisotropy strength
κ1 = 45.0 for the first oscillator and κ2 = 45.1 for the second oscillator. In Fig. 3e–h
we show the in-phase and anti-phase synchronizations for this case.

In Fig. 4 we show the occurrence of synchronization for 100 STNOs for external
magnetic field strength hdc = 500 Oe, external current a = 220 Oe and anisotropy
strength κi , i = 1, 2, . . . 100 distributed randomly between 45 and 46. In the phase
space plot, Fig. 4 (right), we show that the 61th STNO is in in-phase with the 17th
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Fig. 3 The time series (a, c, e, f) and phase space plots (b, d, f, h) of an array of two STNOs
with same anisotropy field κ = 45.0 (a–d) and with different anisotropy fields κ1 = 45.0 Oe,
κ2 = 45.1 (e–h) placed in the oscillating external magnetic field of strength hac = 10 Oe of
frequency ω = 15 ns−1, exhibiting anti-phase (a, b, e, f) and in-phase (c, d, g, h) synchronizations.
Other parameters are (a, b) hdc = 500 Oe and a = 220 Oe, (c, d) hdc = 500 Oe and a = 221 Oe,
(e, f) hdc = 350 Oe and a = 245 Oe and (g, h) hdc = 500 Oe and a = 220 Oe
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Fig. 4 The time series (left) and phase space (right) plots of an array of 100 nonidentical STNOs
shows the anti-phase synchronization. In the right panel we show that the 61th STNO is in in-phase
synchronization with the 17th STNO and in anti-phase synchronization with the 82nd STNO

STNO and in anti-phase synchronization with the 82nd STNO. So we confirm the
phenomenon of synchronization in the presence of the external driven magnetic field
even for large number of STNOs. For further details on synchronization of STNOs,
see Ref. [20].

5 Mass Synchronization in an Array of STNOs

The dynamics of an array of STNOs can also be represented using models of coupled
phase oscillators. For instance, if we consider the synchronization of coupled STNOs
via external ac field, we assume that all the STNOs have the same output frequency.
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According to Ref. [21] the energy injected from the external ac field Hac to the ith
STNO is given as

Ei = −μ0MS V0

∮
Hac.dmi , (20)

where mi is the orbit of the small amplitude in-plane oscillation, μ0 is the vacuum
permeability and V0 is the volume of the free layer. This energy injected by the ac
current is much lesser compared to that injected by the dc current and hence the
former can be treated as a perturbation. Thus one can represent the phase dynamics
of the ith STNO as

θ̇i = ωi − σ

N

N∑
j=1

sin(θi − θ j + α), i = 1, 2, . . . , N , (21)

whereα is the phase shift. Georges et al. [11] found that in the case of series or parallel
arrays, there occurs a problem of impedance-matching where the output power does
not increase with the number of oscillators for large values of N if N R >> Z0
in the case of series arrays and the STNOs shunt each other with the output power
increasing as N 2 only if N Z0 << R; here Z0 is the load. Hence the authors of [11]
proposed hybrid arrays (a combination of series and parallel configuration). In this
configuration, the phase of the oscillator (n, m) in the hybrid array can be described
by the following equation

θ̇i
(η) = ω

(η)
i −

N ′∑
η′=1

σηη′

N

N∑
j=1

sin(θ(η)
i − θ

(η′)
j + αηη′) + ζ

(η)
i (t), (22)

i = 1, 2, . . . , N ,

where N ′ parallel branches have each N STNOs connected in series. σηη′ is the

strength of the coupling between the STNOs in η′ and those in η. Here ω
(η)
k is

the natural frequency of the kth STNO in the branch η and ζ
(1,2)
i are independent

Gaussian white noises with 〈ζ (η)
i (t)〉 = 0 and 〈ζ (η)

i (t) ζ
(η)′
j (t)〉 = 2D(η)δ(t − t ′)δi j

and D(η) are the noise intensities.
Now, amaximumoutput power canbeharvested if all theSTNOsare synchronized;

let us call this phenomenon as mass synchronization. In this section let us discuss a
method to induce mass synchronization in the system of STNOs that are in hybrid
configuration by inducing synchronization in any one of the series or parallel arrays.
That is, by inducing synchronization within the STNOs of any one of the series or
parallel arrays, mass synchronization can be achieved. For a better understanding of
the system configuration, let us refer to the following schematic diagram (Fig. 5).
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Fig. 5 Schematic representation of system (22) for N ′ = 2. θ(1)
i is the source branch and θ

(2)
i is the

target branch. The coupling strengths within the branches are quantified by the parameters σ11 and
σ22. The coupling strengths from the source to the target and the target to the source are quantified
by the parameters σ12 = μσ21 and σ21, respectively [22]

In order to acheive mass synchronization, we plan to induce synchronization
in any one of the arrays. For the same, we need to quantify the strength of the
synchronization within each of the arrays.

We use Kuramoto’s complex order parameter to measure the strength of synchro-
nization within an array. The order parameter can be given as

zη = rηeiψ(η) = 1

N

N∑
j=1

eiθ(η)
j . (23)

When rη = 1 there is complete synchronization within the ηth array and when
rη = 0 there is complete desynchronization in the ηth array. When rη takes a value
between 0 and 1, there is a partial synchronization in the ηth array. We shall use the
time average of rη in order to characterize the occurrence of strong synchronization
within the corresponding array. Numerically, for T = 105 units, the occurrence of
synchronization within an array can be characterized by Rη > 0.8. Here Rη is the
time average of rη, that is,

Rη =< rη >= 1

T

∫ T

0
rηdt. (24)

In order to find out the dynamical factors that cause the occurrence of mass syn-
chronization, we numerically simulate system (22) using Runge–Kutta fourth order
routine. We use a time step of 0.01.

We have fixed N = 1000 and have assumed a Lorentzian distribution for the

oscillator frequencies given by g(ω(η)) = γη

π

[
(ω(η) − ωη)

2 + γη

]−1

, where γ is the

half width at half maximum and ωη is the central frequency. We consider a random
distributon for the initial phases of the STNOs, distributed between 0 and 2π .

Let us now discuss how the occurrence of synchronization in the source branch
induces mass synchronization in the other branches as well, leading to an increase
in the synchronized output power.
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Fig. 6 The time average of rη (a and b) and the time average local and global order parameters,
Ravg and Rg , (c and d) for increasing σ11 is plotted for two different noise strengths Dη = 0.1
(a and c) and Dη = 0.5 ((b) and (d)) for N ′ = 3, η = 1, 2, 3. Here σηη = 0.01, ση1 = 1.5,
σ1η = μση1, for η = 2, 3, μ = 0.1, αi j = π/2 − 0.3, i, j = 1, 2, 3, γ1,2,3 = 0.05, ω1 = 1.5,
ω2,3 = 0.5, and σ23 = σ32 = 0.01. The regions DS and SS denote the desynchronization and
strong synchronization states characterized by the numerical thresholds of R = 0.3 and R = 0.8,
respectively

For the case N ′ = 3 we consider three branches of coupled STNOs each having
1,000oscillators.We set the values of the couplingparameters as follows:σηη = 0.01,
ση1 = 1.5, σ1η = μση1, for η = 2, 3, μ = 0.1, αi j = π/2 − 0.3, i, j = 1, 2, 3,
γ1,2,3 = 0.05, ω1 = 1.5, ω2,3 = 0.5, and σ23 = σ32 = 0.01.

Oneof the three branches is the source inwhich synchronization is first established.
The other two branches are target branches on to which synchronization will be
induced by the synchronized source branch. In Fig. 6a, b we have plotted the time-
averaged order parameter of the three branches R1, R2 and R3 against the coupling
strength of the source branch, for two different values of noise strengths, namely
Dη = 0.1 and Dη = 0.5, respectively. For both the values of noise strengths,
we see that when the synchronization of the source branch increases (R1), the
synchronization in the target branches also increases (R2 and R3). The synchro-
nization in the target branch is purely induced by the synchronization in the source
branch since the coupling strength of the oscillators within the target branches are
σ22 = σ33 = 0.01.

In Fig. 6c, d we have plotted the local and global order parameters, Ravg and Rg ,
for Dη = 0.1 and Dη = 0.5, respectively. The local and global order parameters are
given by the following expressions:
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Ravg = <
1

N ′
N ′∑

η′=1

rη′ >, Rg =< | 1

N ′
N ′∑

η′=1

rη′eiψη′ | > . (25)

The local order parameter measures the occurrence of synchronization within a
branch,while the global order parameter quantifies the occurrence of synchronization
in all the branches, globally in the system. Thus if Rg = 1, all the branches in the
system are synchronized to a one and the same state.

The occurrence of synchronization in the source and the target branches are not
influenced by changes in the strength of the noise in the system. This is evident from
Fig. 6 panels (a) and (b), where for both the noise strengths the phenomenon of mass
synchronization occurs in a similar manner.

Likewise, the local and the global order parameters also behave in a very similar
manner for increasing σ11 for two different noise strengths. Thuswe conclude that the
phenomenon of occurrence of mass synchronization is not affected by the strength
of the noise in the system.

6 Analytical Explanation

In order to analytically explain the occurrence of mass synchronization, we analyze
system (22) in the continuum limit N → ∞. In this limit, the evolution equation for
the order parameter for Lorentzian distribution becomes (in the absence of noise)

żη + (γη − iωη)zη =
N ′∑

η′=1

σηη′

2

(
e−iαηη′ zη′ − eiαηη′ z∗

η′ z2η

)
, (26)

η = 1, 2, . . . , N ′.

HereweuseOtt andAntonsen [23] ansatz to derive the amplitude equation (26). From
Fig. 6 one can note that the dynamics of the order parameter for all the target branches
are similar. Thus one can consider the sate rη 	 rt and ψη 	 ψt , η = 2, ..., N ′ and
the amplitude equation (26) becomes (for αηη′ = α)

ṙ1 = −γ1r1 + (
1 − r21

2
)(σ11r1 cos(α) + μσt1rt cos(ψ1 − ψt + α)), (27)

ψ̇1 = ω1 − (
1 + r21
2r1

)(σ11r1 sin(α) + μσt1rt sin(ψ1 − ψt + α)),

ṙt = −γt rt + (
1 − r2t

2
)(σt t rt cos(α) + σt1r1 cos(ψt − ψ1 + α)), (28)

ψ̇t = ωt − (
1 + r2t
2rt

)(σt t rt sin(α) + σt1r1 sin(ψt − ψ1 + α)),
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where γt = γη, ωt = ωη, σ1t = ∑N ′
η′=2 σηη′ and σt t = ∑N ′

η′=2 σηη′ , η = 2, ..., N ′.
One can assume μ = 0 so that the source strongly (completely) drives the target
branches. We have taken μ = 0 for analytical convenience to start with. However, in
general one can observe the occurrence of mass synchronization for μ < 1 also as
in the case of numerical simulations where μ =0.1. Thus when the strength of the
synchronization increases in the source it induces synchronization in the targets.

From Eq. (27), for μ = 0, the synchronization of the source is characterized by
the stability of the fixed point rs

1 = √
1 − 2γ1/σ̄11, where σ̄ = σ cos(α). On the

other hand, the desynchronization state is characterized by the stability of the fixed
point rd

1 = 0. When σ̄11 < 2γ1, the fixed point rd
1 becomes stable and there is no

synchronization in the source. In this state the equation for the target branch is given
as

ṙt = −γt r2 + (
1 − r2t

2
)(σt t rt cos(α), ψ̇t = ωt − (

1 + r2t
2rt

)σt t rt sin(α). (29)

Again one can check that for σ̄t t < 2γt the fixed point rt = 0 is stable and the target
branch is desynchronized. Thus when the source is desynchronized, the target branch
is also desynchronized.

On the other hand, when the coupling strength in the source σ̄11 increases so
that σ̄11 > 2γ1 the fixed point rd

1 becomes unstable and rs
1 becomes stable thus

establishing synchronization in the source. The synchronization strength of the
source increases as

√
1 − 2γ1/σ̄11. After synchronization in the source is established,

Eq. (29) reduces to

ṙt = −γt rt + (
1 − r2t

2
)(σt t rt cos(α) + σt1

√
1 − 2γ1/σ̄11 cos(ψ + α)), (30)

ψ̇ = ω̄ − (
1 + r2t
2rt

)(σt t rt sin(α) + σt1
√
1 − 2γ1/σ̄11 sin(ψ + α)),

where ψ = ψt − ψ1 and ω̄ = ωt − ω1 + (σ11 − γ1) tan(α11). This equation does
not admit the fixed point rt = 0. This means that when synchronization emerges in
the source, the target branches also begin to get synchronized. The strength of the
synchronization in the target increases according to σt1

√
1 − 2γ1/σ̄11, eventually

leading to synchronization with the target. This result holds good for μ < 1 also as
is evident from our numerical findings as depicted in panels (a) and (b) of Fig. 6 for
μ = 0.1. Here we can establish that when the source is completely synchronized
the target is also completely synchronized. This means that the increase in σ11 to a
sufficiently high value induces synchronization in the target also apart from inducing
synchronization in the source.
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7 Summary and Conclusion

We have presented a systematic study of synchronization of STNOs coupled through
the external driven periodically varyingmagnetic field.We have studied in-phase and
anti-phase synchronization scenario of two STNOs and extended it to more number
of oscillators in the presence of a common oscillating magnetic field.We find that the
synchronization is induced though the oscillatingmagneticmedium. Further, in order
to check the practical possibility of this scenario we also find the same phenomenon
in the case of two different anisotropic STNOs. We also made a detailed analysis of
synchronization in terms of coupled phase models and brought out the phenomenon
of mass synchronization.
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