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Abstract In this work we explore the use of Spin Torque Nano Oscillators (STNOs)
to produce a spintronics voltage oscillator in the microwave range. STNOs are quite
small—on the order of 10nm—and frequency agile. However, experimental results
to date have produced power outputs that are too small to be viable. We attempt
to increase power output by investigating the dynamics of a system of electrically-
coupledSTNOs.To set the foundation for further analysis,we consider bothSpherical
and Complex Stereographic coordinates for the Landau-Lifshitz-Gilbert Equation
with spin torque term. Both coordinate systems effectively reduce the equation of
a single STNO from three dimensions to two. Further, the Complex Stereographic
representation transforms the equation into a nearly polynomial form that may prove
useful for advanced dynamics analysis. Qualitative bifurcation diagrams show a rich
set of behaviors in the parallel and series coupled systems and serve to develop
intuition in system dynamics.

1 Introduction

Spin Torque Nano Oscillators (STNO) are a ferromagnet-based electronics compo-
nent. In certain steady-states, the magnetic moment precesses causing component re-
sistance to oscillate [1]. Based on this oscillating resistance, an STNO can be utilized
as a microwave-range voltage oscillator (see Fig. 1). STNOs offer many potential
advantages over existing semi-conductor voltage oscillators including small physi-
cal size (∼10nm), a large tunable frequency range, and small output linewidths [2].
However, STNOs tested to date have yet to produce adequate power. STNOs need
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to output at least 1mW to be applicable [3]. The microwave power generated by an
STNOwas first measured in 2009 on the order of 100nW [4]. STNOs cannot bemade
larger, so an obvious solution to increasing power is to couple multiple oscillators.
However, in experiments it has proven difficult to synchronize even two STNOs [5].
Thus we have begun to study the dynamics of coupled STNOs to determine condi-
tions for synchronization. In this article we report our initial findings starting with the
model itself. We first explore alternate coordinate systems to reduce the dimension
of the model and find a form that is more amenable to later analysis. Both spheri-
cal and complex stereographic coordinates are investigated. Next we vary the input
current and numerically integrate until steady-state to create qualitative bifurcation
diagrams. Bifurcation diagrams are generated for both parallel and series connected
STNOs.

2 The Model

Magnetization in the free ferromagnetic layer is described by the Landau-Lifshitz
equation with Gilbert damping and Slonczewski-Berger spin-torque term (LLGS)
[6–10]

dm
dt

=
precession

︷ ︸︸ ︷

−γ m × Heff +

damping
︷ ︸︸ ︷

λm × dm
dt

−
spin transfer torque

︷ ︸︸ ︷

γ a g
(

P, m · Sp
)

m × (

m × Sp
)

, (1)

where m represents the magnetization of the free ferromagnetic layer in Cartesian
coordinates, γ is the gyromagnetic ratio and Heff is the effective field. λ serves as
the magnitude of the damping term. In the spin torque term, a has units Oe and
is proportional to the electrical current density [11]. g is a function of the polar-
ization factor P , m, and the fixed-layer magnetization direction Sp. To determine
the change of field direction with respect to time, we must consider three different
classes of torques acting on the field direction m: effective external magnetic field
Heff, damping λ, and spin transfer torque.Heff is the sum of several factors that can be
effectively represented as external fields. The factors that we consider in this fashion
are exchange, anisotropy and demagnetization. The actual external, or applied, field
rounds out the sum

Heff = Hexchange + Hanisotropy + Hdemagnetization + Happlied.

We model the free layer as a single particle who’s magnetization m represents the
average of the layer. Thus there is no exchange with adjacent magnetic moments
Hexchange = 0.
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Spherical Coordinates

In Eq. (1), m has constant magnitude. We confine m to the surface of a unit sphere
by choosing ‖m‖2 = 1. Thus, spherical coordinates are a natural choice for m with
the radius ρ = 1. In [12], Sun showed that Eq. (1) can be converted to

dθ

dτ
= − α sin θ cos θ

− h p [(sin ϕ + α cosϕ) sin θ cosϕ]

− h [cosϕ sinψ + α (sin θ cosψ − cos θ sin ϕ sinψ)]

+ hs [α cosϕ sin φ + sin ϕ sin φ cos θ − cosφ sin θ ] , (2)

dϕ

dτ
= − cos θ

− h p [(cosϕ cos θ − α sin ϕ) cosϕ]

− h

[

sin θ cosψ − cos θ sin ϕ sinψ − α cosϕ sinψ

sin θ

]

+ hs

[

cosϕ sin φ − α sin ϕ sin φ cos θ

sin θ
+ α cosφ

]

,

where θ is the angle of inclination and ϕ is the azimuthal angle. These equations have
been time-scaled by γ hk

1+λ2
(hk is the magnitude of anisotropy) and parameters consol-

idated to: demagnetizationmagnitude h p (yz-easy-plane), applied fieldmagnitude h,
applied field angle from z-axis ψ (confined to yz-plane), spin torque magnitude hs ,
and spin torque angle from z-axis φ (also confined to yz-plane). Ultimately reducing
the representation of the system from three dimensions to two.

Complex Stereographic Projection

A spherical surface can be projected onto a plane by using the complex variable ω

and the following relationships:

ω = mx + imy

1 + mz
⇒ m =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

ω + ω̄

1 + |ω|2

−i
(ω − ω̄)

1 + |ω|2
1 − |ω|2
1 + |ω|2

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

. (3)

Building on [11, 13], we reduce Eq. (1) to the form
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ω̇ = γ

1 − iλ

(

− aω + iha3ω + ha2

2
(1 + ω2)

+ im‖κ
[

cos θ‖ω − 1

2
sin θ‖

(

eiφ‖ − ω2e−iφ‖
)
]

− i4π So

(1 + |ω|2)
[

N3(1 − |ω|2)ω − N1

2
(1 − ω2 − |ω|2)ω (4)

− N2

2
(1 + ω2 − |ω|2)ω − (N1 − N2)

2
ω̄

])

,

where ha2 is the magnitude of the applied field in the y-direction and ha3 is the
magnitudes of the applied field in the z-direction. κ is the anisotropy magnitude
who’s direction is determined by θ‖ and φ‖. The anisotropy is scaled by m‖ = m · e‖
where

e‖ =
⎡

⎢

⎣

sin θ‖ cosφ‖
sin θ‖ sin φ‖

cos θ‖

⎤

⎥

⎦ .

S0 is the saturation magnetization. Finally, N1 + N2 + N3 = 1 and determine the
effective demagnetization field resulting from the shape of the free layer. Now we
have a two dimensional expression for the STNO that is close to polynomial form.

Coupling

Coupling is achieved by modeling a simple electrical circuit with STNOs arrayed in
series or parallel. Figure 1 depicts the series configuration. The resistance of each
STNO Ri is a function of the angle θi between M (fixed layer-green) and m (free
layer-red):

MM M

I0

R
C

Ij

R
1

R
N

R
2

Fig. 1 Series arrayed STNOs with input current I0 and output resistance Rc
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Fig. 2 Qualitative bifurcation diagram for 3 STNOs arranged in series and varying parameter I
over the interval [0:3]

Ri = R0i − ΔRi cos θi .

Here, R0 is the median resistance of an STNO and ΔR is the maximum variance in
resistance.

3 Numerical Exploration

Numeric simulations have revealed a rich variety of behaviors in a series-array
of three STNOs. Figure 2 depicts a few example behaviors found by varying the
current I . A high or low current simply causes all of the oscillators to converge
to an equilibrium point. However, in the intermediate range there are multiple
distinct regimes of oscillatory behavior. All numeric integrations in this diagram
use the parameters: λ = 0.1, h = 1, hs = −1, h p = 5, φ = 0, ψ = π/4,
R0 = 2, ΔR = 0.6, Rc = 50.

Performing similar integrations for 3 STNOs coupled in parallel generates the
qualitative bifurcation diagram in Fig. 3. As is seen, we find a region of oscilla-
tions in I bound on both sides by fixed points. Within the oscillatory region we
discovered six distinct sub-regions. Three sub regions tend to synchronization, two
show quasi-periodic motion, and one forms frequency synchronized orbits. All nu-
meric integrations in this diagram use the parameters: λ = 0.1, h = 1, hs = −1,
h p = 5, φ = 0, ψ = π/4, R0 = 0.1, ΔR = 0.03, Rc = 50.

4 Remarks

The LLGS Eq. (1) is a nonlinear first-order ordinary differential equation confined
to the unit sphere ‖m‖2 = 1. We are able to reduce the dimension of a system of
coupled STNOs by one-third using spherical or complex-stereographic coordinates.
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Fig. 3 Qualitative bifurcation diagram for 3 STNOs arranged in parallel and varying parameter I
over the interval [0:7]

Not only does this increase the efficiency of numerics, but will also help in the future
with a center manifold reduction. Furthermore, the form of the equations in complex
stereographic coordinates is polynomial-likewhichmay be helpful in future analysis.

In the series and parallel electric coupling scenarios, the system experiences all-
to-all coupling or SN symmetry. Most of the non-synchronous oscillating behaviors
observed in Figs. 2 and 3 are consistent with SN × S1 symmetry-breaking Hopf
bifurcations. This leads us to believe that we can leverage the work of [14] to deter-
mine the existence and stability of non-synchronous oscillations.
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