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Abstract The question of how noisy spiking neurons respond to external
time-dependent stimuli is a central topic in computational neuroscience. An impor-
tant aspect of the neural information transmission is, whether neurons encode pref-
erentially information about slow or about fast components of the stimulus (signal).
A convenient way to quantify this is the spectral coherence function, that in some
experimental data shows a global maximum at low frequencies (low-pass information
filter), in some other cases has a maximum at higher frequencies (band-pass or high-
pass information filter); information-filtering defined in this way is related but not
identical to the usual filtering of spectral power. Here I demonstrate numerically that
the leaky integrate-and-fire neuron driven by white noise (a stimulus without tem-
poral correlations) acts as a low-pass information filter irrespective of the dynamical
regime (fluctuation-driven and irregular or mean-driven and regular firing).

1 Introduction

Nerve cells in our brain transduce information about time-dependent stimuli like
visual or auditory signals into sequences of stereotype action potentials called spike
trains. An important aspect of neural information transmission is what are the most
important features that are encoded in the neural sequence of action potentials. One
important feature is the preferred frequency band in which neurons transmit infor-
mation or, put differently, whether neurons encode preferentially slow or fast com-
ponents of a time-dependent stimulus (signal). Experimentally one has seen both
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kinds of low-pass and high-pass filtering of information (not to be confused with the
common filtering of signal power). This raises the question about the properties of
neural dynamics or network properties that may lead to specific forms of information
filtering.

Simple neuron models like the stochastic integrate-and-fire model are able to
reproduce spiking statistics of cells in response to noisy currents to an astonishing
degree of accuracy [1, 2]. Upon changing the mean and variance of the current injec-
tion, IF models display transitions between distinct firing regimes: pacemaker-like
regular firing, the near-Poisson irregular firing with low rate, and the burst-like firing
with a coefficient of variation (Cv) beyond unity [3–5]. In the so-called nonlinear IF
model different response behavior with respect to additional stimulation is possible:
from non-resonant purely noise-controlled response function of the perfect IF model
to the resonances of the leaky, quadratic or exponential IF models [6, 7].

Despite all these differences for different nonlinearities of the model and despite
the existence of distinct firing regimes, a previous study [7] suggested that IF models
seem to share one property: they transmit most information about slow signal com-
ponents. This can be seen by looking at the coherence as a function of frequency: it
attains its global maximum at zero frequency. For the leaky IF model with selected
parameters, this has been found numerically already in the early 1970’s [8].

Here in this chapter, I discuss the coherence for the leaky IF model as a func-
tion of mean and intensity of its input fluctuations. It is shown that this model is
a low-pass filter of information in the sense that the maximum of the coherence is
at zero frequency. I also discuss how the half-width of the coherence behaves and
how it compares to other characteristic frequencies of the system, namely, the inverse
membrane-time constant and the firing rate of the model neuron. These results estab-
lish that for a white-noise driven leaky IF model a high-pass filtering of information
is not possible. If the latter is observed in a real neuron, this tells us that most likely
a more complicated dynamics than a one-dimensional IF model is involved.

2 Model and Measures of Interest

I consider a leaky integrate-and-fire (LIF) model with a noisy current input

v̇ = −v + μ + √
2Dbgξbg(t) + √

2Dstξst(t), (1)

which is complemented by a fire-and-reset rule: whenever v(t) crosses the thresh-
old vT , a spike is registered and the voltage is reset to vR and, after an absolute
refractory period τabs has passed, released to evolve again according to the above
equation. To reduce the number of free parameters, voltage is here defined as
the deviation from the reset (implying vR = 0) and is measured in multiples of
the reset-threshold distance (implying vT = 1); time is measured in multiples of the
membrane-time constant (see [5] for details of the transformation from the model with
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physical dimensions to the non-dimensional model considered here). Input parame-
ters are the constant base current μ, the intensity Dbg of the background noise ξbg(t)
(representing synaptic background fluctuations or channel noise), and the intensity
Dst of the stimulus ξst(t). Both background noise and stimulus signal are assumed
as Gaussian white noise with 〈ξi (t)ξ j (t ′)〉 = δi, jδ(t − t ′) (where i, j ∈ {bg, st}).

The information transmission of this spiking model can be quantified by means
of the spectral coherence function. To this end, one considers the Fourier transform
in a time window [0, T ]

x̃T (ω) =
T∫

0

dteiωt x(t) (2)

of the spike train
x(t) =

∑
δ(t − ti ) (3)

where the ti are the time instants of threshold crossings. The cross-spectrum of spike
train and stimulus and the spike train power spectrum are defined as follows

Sx,s(ω) = lim
T →∞

〈x̃(ω)s̃∗(ω)〉
T

, Sx,x (ω) = lim
T →∞

〈x̃(ω)x̃∗(ω)〉
T

. (4)

The coherence function for the input signal and the output spike train is the squared
correlation coefficient between input and output

Cx,s = |Sx,s(ω)|2
Sx,x (ω)Ss,s(ω)

(5)

and yields at each frequency a number between 0 and 1. Low or high information
transmission in a certain frequency band is indicated by a coherence close to zero or
one, respectively.

Generally, a system that shows under white-noise stimulation a coherence which
decreases (increases) with frequency can be regarded as a low-pass (high-pass) filter
of information. This kind of information filter is related but not identical with the
commonly considered power filter. A linear bandpass-filter, for instance, driven by
white background noise and a white noise stimulus would not act as an information
filter—its coherence is simply flat. One formal reason for this is that the frequency
dependences of cross-spectrum and power spectrum in Eq. (5) cancel out for a linear
system. When both signal and noise pass through the same power filter, the filter
cannot change the signal-to-noise ratio, which is what is essentially quantified by the
coherence.

Despite the linearity of Eq. (1), the spiking LIF neuron model is not linear; it
possesses the strong nonlinearity of the reset rule and thus we can expect that the LIF
model performs one or the other kind of information filtering and that this information
filter potentially depends on the firing regime that is set by the input parameters μ and
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D. For the LIF driven by white Gaussian current noise, we fortunately know all the
spectral functions of interest analytically. The cross-spectrum between input signal
and output spike train is given by the product of input spectrum (just the constant
2Dst) and the complex rate-modulation factor, the so-called susceptibility [9, 10]

Sx,s(ω) = 2Dst√
D

r0iω

iω − 1

Diω−1

(
μ−vT√

D

)
− eΔDiω−1

(
μ−vR√

D

)

Diω

(
μ−vT√

D

)
− eΔeiωτabsDiω

(
μ−vR√

D

) (6)

where

Δ = v2
R − v2

T + 2μ(vT − vR)

4D

and Da(x) is the parabolic cylinder function [11]. The firing rate r0 is given by

r0 =
⎡

⎢
⎣τabs + √

π

(μ−vR)/
√

2D∫

(μ−vT )/
√

2D

dz ez2
erfc(z)

⎤

⎥
⎦

−1

. (7)

Alternative expressions for the susceptibility with vanishing refractory period have
been derived by Brunel et al. (see [12] and References there in).

The power spectrum of the spike train is given by [3]

Sx,x (ω) = r0

∣
∣
∣Diω

(
μ−vT√

D

)∣
∣
∣
2 − e2Δ

∣
∣
∣Diω

(
μ−vR√

D

)∣
∣
∣
2

∣
∣
∣Diω

(
μ−vT√

D

)
− eΔeiωτabsDiω

(
μ−vR√

D

)∣
∣
∣
2 (8)

In both these expressions, D = Dbg + Dst denotes the total noise intensity.
Combining Eqs. (6) and (8), the coherence of the LIF model reads:

Cx,s = 2Dst

D

r0ω
2

1 + ω2

∣
∣
∣Diω−1

(
μ−vT√

D

)
− eΔDiω−1

(
μ−vR√

D

)∣
∣
∣
2

∣
∣
∣Diω

(
μ−vT√

D

)∣
∣
∣
2 − e2Δ

∣
∣
∣Diω

(
μ−vR√

D

)∣
∣
∣
2 (9)

It can be seen that the absolute refractory period does enter this expression only
via the firing rate and, hence, has no effect on the frequency dependence of the
coherence. Increasing τabs leads only to an overall reduction of the coherence. For
this reason, we consider in the following the special case of a vanishing refractory
period τabs = 0.

If we want to graphically illustrate the above results, this requires the numerical
evaluation of the parabolic cylinder function at complex-valued index, a nontrivial
task that can be achieved using software like MapleTM or MathematicaTM. An alter-
native way to determine cross- and power spectra is the threshold-integration method
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by Richardson [13], which can be easily implemented in common programming lan-
guages like C and can be readily extended to nonlinear IF models. In this work, I
have mainly used the latter method but verified for selected parameter sets that this
provides the same results as the explicit result evaluated in Maple16TM.

Note that for fixed total noise intensity D the stimulus intensity Dst only scales
the coherence function by a factor Dst/D . For this reason we set in the following
D = Dst implying Dbg = 0. With the same total noise intensity D, the coherence
function with finite Dbg is obviously smaller than without intrinsic noise [8]. This is
not in contradiction to the fact that the LIF displays stochastic resonance [9] because
to see the latter phenomenon, we should keep the signal amplitude constant and vary
the background noise intensity Dbg; in this case the total noise intensity is not fixed.
Indeed, if μ < vT , the coherence at any frequency (proportional to the signal-to-
noise ratio for periodic stimulation at this frequency) passes through a maximum as
a function of Dbg [10].

3 Results

In Fig. 1 we show examples of power spectra, cross-spectra, and coherence functions
for an LIF in the fluctuation-driven firing regime of high irregularity (a) and the
mean-driven firing regime of rather regular firing pattern (b). For the setting in the
fluctuation-driven regime, the steady state firing rate is r0 ≈ 0.16 and a coefficient
of variation of the interspike interval is about Cv ≈ 0.835 while for the parameters
in Fig. 1b we have a higher firing rate r0 ≈ 0.924 and a considerably lower Cv ≈
0.166. Despite pronounced differences in the cross—and power spectra, that reflect
differences in the spiking statistics and in the response to time-dependent signals, the
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Fig. 1 Power spectrum (top panel), cross-spectrum (mid panel) and coherence as functions of
frequency in the mean-driven regime (a) and the fluctuation driven regime (b) with mean input μ

and total noise intensity as indicated in the figure.
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coherence function in both cases attains its maximum at zero frequency and decays
quite rapidly with increasing frequency.

The only qualitative difference occurs around the frequency comparable to the
firing rate: the LIF in the regular (mean-driven) firing regime possesses a local
minimum at this frequency, whereas the coherence of the LIF in the irregular
(noise-induced or fluctuation-dominated) firing regime decays monotonically with
frequency. Given that coherence has a global maximum around zero in both cases
and given that the main share of information is transmitted in this low-frequency
range, these difference appear as rather unimportant.

How can we quantify whether this low-pass behavior of the coherence is present
for all combinations of base currents and noise intensities? To this end, we can
consider a number of characteristics of the coherence function that are illustrated in
Fig. 2.

We can first of all find the global maximum of the coherence curve as a function
of frequency for various combinations of base current μ and noise (signal) intensity
D. In the broad range of values considered, this yields always ω = 0 as the frequency
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Fig. 2 Coherence function for μ = 1.2 and D = 0.1. Indicated are the maximum, Cmax, the
half value of the maximum (dotted line), and the frequency ωc at which this half value is attained
(vertical line)
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Fig. 3 The maximum (a) and the half-width (b) of the coherence between the driving noise and
the output spike train as a function of the base current μ and the noise intensity D.
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of this global maximum. In Fig. 3a, we show this maximum value of the coherence
Cmax = Cxs(ω = 0) as a function of the base current μ and the noise intensity D.
This value increases both with the noise intensity (here also the signal amplitude)
and the base current. In the limit of large base current, the coherence approaches one
which agrees with the limit for a perfect IF model, in which a leak term is absent. The
main reason for this increase in the maximum value of the coherence is the increase
in firing rate with growing base current - with an increasing number of spikes per
unit time it becomes possible to encode an arbitrary slow stimulus (corresponding
to the coherence at ω = 0, i.e. its maximum) arbitrarily reliable. In the opposite
limit of negative base current, the firing rate becomes exponentially small and thus
the coherence is essentially zero unless a large noise intensity compensates for the
decrease in base current.

As a measure of the bandwidth over which the LIF transmits the stimulus, I con-
sider the (minimal) frequency ωc at which the coherence attains half of its maximal
value (cf. Fig. 2); ωc is in the following referred to as the half-width. Also of interest
is the ratio of this (cyclic) frequency to the frequency associated with the inverse
membrane time constant (which we set to one):

α = ωc

2π
. (10)

The parameter α will tell us whether the half-width is constrained by the inverse
membrane time constant or not. In Fig. 3b α is plotted as a function of μ and D
illustrating that for low firing rate (for μ < 1 and small noise intensity D), the
coherence halfwidth is smaller than the inverse membrane time constant, while at
higher firing rate (in the mean-driven firing regime with μ > 1) the information
bandwidth is not limited by the membrane-time constant. In particular in this latter
regime it is also instructive to compare ωc to another typical frequency in the system,
namely the firing rate:

β = ωc

2πr0
. (11)

Because r0 is also measured in multiples of the membrane time constant, the latter
drops out of the ratio β.

Fig. 4 Halfwidth normalized
by the firing rate as a function
of base current μ and noise
intensity D
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In Fig. 4 it becomes apparent that at high firing rate (large μ, small D), the
halfwidth is determined mainly by the firing rate - the inverse membrane time constant
does not play a role in this limit. There seems to be a saturation at about half of the
width of the firing rate, i.e. frequencies sufficiently below the firing rate (smaller by a
factor of two or three) are transmitted reliably (C(ω) > 0.5). Expressed in multiples
of the firing rate, the information bandwidth diverges in the opposite limit of vanish-
ing firing rate. Here, however, one should keep in mind that in terms of the inverse
membrane-time constant the halfwidth is still very small in this limit (cf. Fig. 3b).

4 Summary and Conclusions

In this chapter I have inspected the coherence function of a leaky integrate-and-
fire neuron driven by white Gaussian noise. In accordance with previous findings
at selected parameter sets [7] I have found that the LIF neuron acts as a low-pass
filter on information about a time-dependent uncorrelated Gaussian stimulus for a
broad range of input parameters. I have studied the magnitude and halfwidth of the
coherence function. At low firing rate (subthresholdμ and small noise intensity D) the
coherence is generally low and its half-width is constrained by the inverse membrane
time constant (which was one in our units). At high firing rate (for suprathreshold
μ > 1), information transmission is high up to frequencies that are well below the
firing rate; for large μ, the halfwidth seems to be given by ωc ≈ πr0.

Results from Ref. [7] indicate that low-pass information filtering is also prevailing
in other integrate-and-fire models, as for instance, the perfect and the quadratic IF
neurons. The bandwidth inspected here, however, may certainly differ. It is, for
instance, known that the coherence of the perfect IF model at zero frequency is
always one irrespective of the parameter values (similar to what seems to be the limit
of the LIF model for μ → ∞). Furthermore, the halfwidth is solely controlled by the
noise intensity [7]. The numerical methods by Richardson [13], which were applied
here to the LIF can be also applied to the perfect and quadratic IF models as well as
to the so-called exponential IF model [2, 6].

Desirable would be also to analytically study the coherence of a general nonlinear
IF model at low frequencies: the conjecture of low-pass information filtering entails
a negative curvature of the coherence at low frequencies that may be provable by
perturbation methods. Unfortunately, this is already highly nontrivial for the LIF
model for which we know the exact result for the coherence, namely, Eq. (9) but lack
a simple small-frequency expansion that would permit to determine the sign of the
curvature at ω = 0.

The results achieved in this paper indicate that the LIF model is unable to repro-
duce cases of information highpass-filtering that have been observed in experiments.
At the population level the coding by synchronous spikes provides a coherence func-
tion that is suppressed at low frequencies [14], an experimental observation that has
been modeled and theoretically analyzed with populations of LIF neurons [15]. At the
single-cell level possible candidates for information filtering are short-term synaptic
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plasticity (however, see [16] but also [17]), spike-frequency adaptation [18], or sub-
threshold oscillations [19, 20]. Also the effect of temporally correlated background
spiking [21] or synaptic filtering of uncorrelated input [22] will result in colored
instead of white background noise and may thus lead to a decrease or increase of
the coherence at low frequencies compared to the case of white noise. Filtering of
information, regarded as a simple form of information processing, could thus assign
(an additional) functional role to certain biophysical features of the neural dynamics.

Acknowledgments This research has been funded by the BMBF (FKZ: 01GQ1001A).

References

1. L. Badel, S. Lefort, R. Brette, C.C.H. Petersen, W. Gerstner, M.J.E. Richardson, Generalized
integrate-and-fire models of neuronal activity approximate spike trains of a detailed model to
a high degree of accuracy. J. Neurophysiol. 92, 959 (2004)

2. L. Badel, S. Lefort, R. Brette, C.C.H. Petersen, W. Gerstner, M.J.E. Richardson, Dynamic I-V
curves are reliable predictors of naturalistic pyramidal-neuron voltage traces. J. Neurophysiol.
99, 656 (2008)

3. B. Lindner, L. Schimansky-Geier, A. Longtin, Maximizing spike train coherence or incoherence
in the leaky integrate-and-fire model. Phys. Rev. E 66, 031916 (2002)

4. A. N. Burkitt, A review of the integrate-and-fire neuron model: I. homogeneous synaptic input.
Biol. Cyber. 95(1) (2006)

5. R.D. Vilela, B. Lindner, Are the input parameters of white-noise-driven integrate & fire neurons
uniquely determined by rate and CV? J. Theor. Biol. 257, 90 (2009)

6. N. Fourcaud-Trocmé, D. Hansel, C. van Vreeswijk, N. Brunel, How spike generation mecha-
nisms determine the neuronal response to fluctuating inputs. J. Neurosci. 23, 11628 (2003)

7. R.D. Vilela, B. Lindner, A comparative study of three different integrate-and-fire neurons:
spontaneous activity, dynamical response, and stimulus-induced correlation. Phys. Rev. E 80,
031909 (2009)

8. R.B. Stein, A.S. French, A.V. Holden, The frequency response, coherence, and information
capacity of two neuronal models. Biophys. J. 12, 295 (1972)

9. B. Lindner, L. Schimansky-Geier, Transmission of noise coded versus additive signals through
a neuronal ensemble. Phys. Rev. Lett. 86, 2934 (2001)

10. B. Lindner, J. García-Ojalvo, A. Neiman, L. Schimansky-Geier, Effects of noise in excitable
systems. Phys. Rep. 392, 321 (2004)

11. M. Abramowitz, I.A. Stegun, Handbook of Mathematical Functions (Dover, New York, 1970)
12. N. Fourcaud, N. Brunel, Dynamics of the firing probability of noisy integrate-and-fire neurons.

Neural Comp. 14, 2057 (2002)
13. M. J. E. Richardson, Spike-train spectra and network response functions for non-linear

integrate-and-fire neurons. Biol. Cybern. (to appear) 99, 381–392 (2008)
14. J.W. Middleton, A. Longtin, J. Benda, L. Maler, Postsynaptic receptive field size and spike

threshold determine encoding of high-frequency information via sensitivity to synchronous
presynaptic activity. J. Neurophysiol. 101, 1160 (2009)

15. N. Sharafi, J. Benda, B. Lindner, Information filtering by synchronous spikes in a neural
population. J. Comp. Neurosci. 34, 285 (2013)

16. B. Lindner, D. Gangloff, A. Longtin, J.E. Lewis, Broadband coding with dynamic synapses.
J. Neurosci. 29, 2076 (2009)

17. R. Rosenbaum, J. Rubin, B. Doiron, Short term synaptic depression imposes a frequency
dependent filter on synaptic information transfer. PLoS Comput. Biol. 8, e1002557 (2012)



258 B. Lindner

18. J. Benda, A.V.M. Herz, A universal model for spike-frequency adaptation. Neural Comp. 15,
2523 (2003)

19. M.J.E. Richardson, N. Brunel, V. Hakim, From subthreshold to firing-rate resonance. J. Neu-
rophysiol. 89, 2538 (2003)

20. T.A. Engel, L. Schimansky-Geier, A.V.M. Herz, S. Schreiber, I. Erchova, Subthreshold
membrane-potential resonances shape spike-train patterns in the entorhinal cortex. J. Neu-
rophysiol. 100(3), 1576 (2008)

21. B. Lindner, Superposition of many independent spike trains is generally not a poisson process.
Phys. Rev. E 73, 022901 (2006)

22. N. Brunel, S. Sergi, Firing frequency of leaky integrate-and-fire neurons with synaptic current
dynamics. J. Theor. Biol. 195, 87 (1998)


	22 Low-Pass Filtering of Information in the Leaky Integrate-and-Fire Neuron Driven by White Noise
	1 Introduction
	2 Model and Measures of Interest
	3 Results
	4 Summary and Conclusions
	References


