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Abstract We examine a stochastically forced autoparametric system for its
stationary motion and stability. The deterministic form of this system is nearly
Hamiltonian (with small dissipation) and exhibits 1:2 resonance and phase-locking.
We develop a stochastic averaging technique to achieve a lower dimensional descrip-
tion of the dynamics of this system. Stochastic averaging is possible due to three
time scales involved in this problem. Each time scale is fully exploited while aver-
aging. The dimensional reduction techniques developed here consist of a sequence
of averaging procedures that are uniquely adapted to study stochastic autoparamet-
ric systems. What motivates our analysis is that classical averaging methods fail
when the original Hamiltonian system has resonances, because, at these resonances,
singularities arise in the lower-dimensional description. At these singularities we
introduce gluing conditions; these complete the specification of the dynamics of the
reduced model. Examination of the reduced Markov process (which takes values on
a nonstandard space) yields important results for probability density functions.

1 Introduction

We investigate the random vibrations of a nonlinear autoparametric system of the
form

q̈1(t) + ζ1q̇1(t) + f1(q1(t), q2(t)) = ξ(t)

q̈2(t) + ζ2q̇2(t) + f2(q1(t), q2(t)) = 0
t ≥ 0, (1)
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where for each time t > 0, (q1(t), q2(t)) represents the generalized coordinates of
the system, the constants ζ1 and ζ2 are damping coefficients, and ξ(t) is a stationary
random process. We are interested in questions of stability of the stochastic sys-
tem (1), and in the transfer of energy from the forced mode q1 to the unforced mode
q2. It is well known that, in the presence of 1 : 2 resonance and periodic excitation,
as the intensity of excitation is increased, the excited mode reaches a certain value
of amplitude at which saturation takes place and then the energy is transferred to the
unforced mode. This may be undesirable, because disturbances affecting one mode
may cause unwanted instability in another mode. Our effort is to answer whether the
saturation and energy transfer occurs in the presence of noisy input. Towards this
goal, we achieve a lower dimensional description of the above system.

The dissipation and random perturbations are assumed to be small. This means
that their effect will be visible only over a long time horizon.When the nonlinearities
are also assumed small, the dominant part of the dynamics is that of two uncoupled
oscillators. In particular, the dynamics of the unperturbed system identify a reduced
phase space (the orbit space) on which to carry out stochastic averaging. While the
classical theory of stochastic averaging is a natural framework for such a program,
the equations of interest contain resonances and bifurcations, which precludes a
simple application of classical techniques. In particular, the resonance gives rise to an
intermediate scale, and the bifurcations give rise to some non-standard singularities
in the orbit space.

The equations of motion considered (1) can model the dynamics of a number
of mechanical systems, namely a random excitation of a initially deformed shallow
arch, a suspended elastic cable driven by planar excitation, or a water vessel subject
to longitudinal wave action. To keep things as simple as possible, we shall consider
a very simple system, namely a pendulum hanged from a mass which is attached
by a spring to a support (Fig. 1). The mass is randomly excited. For clarity, we use
mass to refer to the object at the free end of the spring, while the object at the end of
the pendulum is referred to as the bob. The quantity ϕ is the angle of the pendulum
(with respect to the vertical axis) and the quantity y represents the height of the mass
(relative to a rest position defined by the position of the pendulum). The mass is
forced according to a stochastic signalΞ(t). The subscripts here refer to the fact that
this is our original physical model. The equations for such a system can be written
as

Fig. 1 Schematic of autopara-
metric system
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(mo + m p)ÿ + do ẏ + ky + m pl(ϕ̈ sin ϕ + ϕ̇2 cosϕ) = Ξ,

m pl2ϕ̈ + dpϕ̇ + m pl(g + ÿ) sin ϕ = 0, (2)

wheremo, do and k are themass, damping and the spring constant of the spring-mass
system and m p, dp and l are the mass, damping and the length of the pendulum. The
kinetic and the potential energies of the system are given by

T = 1

2
(mo + m p)ẏ2 + 1

2
m p l2ϕ̇2 + m p l ẏ ϕ̇ sin ϕ,

U = m p gl(1 − cosϕ) + 1

2
ky2.

It is clear that the nonlinearities in the equations of motion arise due to the grav-
itational restoring force and due to the dependence of kinetic energy on the angle
ϕ which leads to inertial coupling between the the two coordinates. It also turns
out (we shall use this later) that in the absence of noise and damping, this system
is Hamiltonian, so the dynamics of y and ϕ are governed by the geometry of this
Hamiltonian.

The above equations in dimensionless coordinates are

¨̂η + 2ζ̂o
˙̂η + η̂ + R(

˙̂
θ sin θ̂ + ˙̂

θ
2
cos θ̂ ) = ξ̂ (t),

R ¨̂
θ + 2Rζ̂p

˙̂
θ + R(q2 sin θ̂ + ¨̂η sin θ̂ ) = 0.

where

Fig. 2 Surface and contour plots of K (u1, u2). I = 1
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Fig. 3 State space M for Y ε
t
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Fig. 4 Probability density by FEM

ω2 def= g

l
, ω2

o
def= k

mo + m p
, q

def= ω

ωo
,

R
def= m p

mo + m p
, ζ̂o

def= do

2
√

k(mo + m p )
, ζ̂p

def= dp
√

(mo + m p )

2l2
√

k
= dp

2l2ωo
.

and where

ξ̂ (t) = ξ̂ (t/ωo)

kl
, η̂(t) = y(t/ωo)

l
, θ̂ (t) = ϕ(t/ωo)

for all t > 0.
Our interest here is a refined stability analysis near the fixed point (η̂, θ̂ ) ≡ 0

of the unperturbed system. In particular, we are interested in the effect of small
random perturbations, so we will let ξ̂ be of the form ξ̂ = ε2νξ , where ξ is a noise
process of “unit” variance and ν is some empirical parameter. Our dynamics are most
interesting when they are not over-damped, so let ζ̂o and ζ̂p be of the form ζ̂o = ε2ζo

and ζp = ε2ζp, where ζo and ζp are some positive constants (this corresponds to
letting do and dp be of size ε). Guided by the corresponding analysis for periodic
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Fig. 5 Probability density by numerical simulation

forcing, we are interested in the behavior when q2 is very close to q2
o ≡ 1/4. Let’s

replace q by qo +ε2μ, where μ is an unfolding parameter. Since we are interested in
η̂ and θ̂ near the fixed point 0, we should look at these quantities on a finer resolution.
Namely, let η and θ be defined by

η̂(t) = εη(t), θ̂ (t) = εθ(t)

then the dynamics of the system yields

η̈ + 2ε2ζoη̇ + η + R(θ̈ sin(εθ) + εθ̇2 cos(εθ)) = ενξ(t),

Rθ̈ + 2ε2Rζp θ̇ + R

((
q◦ + ε2μ

) sin(εθ)

ε
+ η̈ sin(εθ)

)
= 0,

(3)

where ε is a small scaling parameter, q0 = 1/2 signifying 1 : 2 resonance, μ is the
parameter representing unfolding from the resonance, R is the ratio of mass of the
unforced mode to the total mass.

2 Single Mode Solutions

To clarify some general qualitative effects of noise, let’s consider a simple stability
analysis using some spectral methods and the first-order linearization. The mass on
the spring can move only in the vertical (η) direction and is excited by νξ . Assume
that the pendulum is locked vertically, i.e. θ(t) ≡ 0. We get the equation

η̈ + 2ε2ζoη̇ + η = ενξ.
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If ξ is white noise we can solve for η explicitly. Its power spectral density is

Sη(ω) = ε2ν2S0
(1 − ω2)2 + 4ε4ζ 2

o ω2 ,

where S0 is the power spectral density of ξ . The peak intensity and the carrying
frequency of η are determined by the filter parameter ζo.

The stability of the locked mass steady-state oscillation is now obtained by using
the first-order approximation of sine and cosine in the dynamics for θ . We get

θ̈ + 2ε2ζp θ̇ + ((q0 + ε2μ)2 + εη̈)θ = 0,

and the power spectral density of η̈ is given by

Sη̈(ω) = ω4ε2ν2S0
(1 − ω2)2 + 4ε4ζ 2

o ω2 .

The maximal Lyapunov exponent can now be easily calculated and the stability
boundary can be obtained in terms of excitation intensity ν and the dissipation coef-
ficients ζp. An explicit expression for the maximal Lyapunov exponents of the single
mode solution is given by expanding it in ε, we have

λ1 ≈ ε2
(

−ζp + 1

8 q2
o

Sη̈(2 (qo + ε2μ))

)
and λ2 = ε2

(
−ζp − 1

8 q2
o

Sη̈(2 (qo + ε2μ))

)
.

The noise has no effect on the other two exponents; i.e., λ3 = λ4 = −ε2ζo.
Since the point θ ≡ 0 is a stable point for the hanging pendulum, the pendulum

undergoes small random motion near θ ≡ 0, and all four Lyapunov exponents
are negative. However, as we further increase the noise intensity, the top exponent
becomes positive when ν2S0 = 8ζ 2

o ζp. The system then becomes unstable, and the
following question arises.

• Do both the mass spring oscillator and the pendulum undergo random vibrations
when the top exponent becomes positive (i.e., ν2 S0 > 8 ζ 2

o ζp), i.e., does a new
coupled-mode “stationary solution” or “stationary density function” appear?

3 Coupled Mode Solutions

Making use of a time-varying symplectic transformation (see [1] for details), we
arrive at

ẋε
t = εb1(xε

t , t) + ε2b2(xε
t , t : ζ, μ) + εσ (xε

t , t : ν)ξ(t), (4)

where (x1, x2) and (x3, x4) are conjugate pairs and canbe thought of as the amplitudes
of periodic orbits of the dominant dynamics.
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The coefficients b1, b2, σ are periodic in time. Standard deterministic averaging
can be used to average out the effects of rapidly-oscillating periodic coefficients. Let
M be this averaging operator.

Definition 1 (Time averaging operator) For a function ϕ ∈ C∞(R4 × R) which is
2π periodic in its last argument, define the time averaging operator M by

(Mϕ)(x) ≡ 1

2π

∫ 2π

0
ϕ(x, t)dt.

From the explicit formulas (see [1]) for b1 (where q = 1/2), we see that for x =
(x1, x2, x3, x4) ∈ R

4,

(Mb1)(x) = (− 1
2 x2x4,

1
2 (x1x4 − x2x3),

1
4 (x22 − x24 ),

1
2 (x1x2 + x3x4)

)
.

Then the averaged system ẋt = (Mb1)(x) is a 4-dimensional Hamiltonian system
with two first integrals K and I in involution.

The Hamiltonian associated with these dynamics is

K (x) = 1

4
x1(x24 − x22 ) − 1

2
x2x3x4. (5)

The unperturbed four-dimensional Hamiltonian system

ż = ∇̄K (z) (6)

has two first integrals in involution, namely, the Hamiltonian itself (5) and a second
constant of motion (momentum variable)

I (x) = (x21 + x23 ) + 1

2
(x22 + x24 ). (7)

The invariant I is functionally independent of K , exists globally and is single
valued. Note that the Hamiltonian system’s equations remain unchanged when
t → −t, x1 → −x1 and x3 → −x3.

3.1 Dimensional Reduction

Our main analytical tool is a certain method of dimensional reduction of nonlinear
systems with symmetries and small noise. As the noise becomes asymptotically
small, one can exploit symmetries and a separation of scales to use well-known
methods (viz. stochastic averaging) to find an appropriate lower-dimensional
description of the system.



18 K. Onu et al.

In the flow given by (4), the quantities (K (x), I (x)) are slow-varying. The
variation of yε

t := (K (xε
t ), I (xε

t )) is given by the following set of equations

ẏε
t = εF1(xε

t , t) + ε2F2(xε
t , t : ζ, μ) + εG(xε

t , t : ν)ξ(t), (8)

where Fi
j (x, t) = (bi (x, t).∇)y j and G j (x, t) = (g(x, t).∇)y j .

Since K and I are integrals of motion for ẋt = (Mb1)(x), it is clear that
MF1(X) = 0. Thus, to see the fluctuations of K and I , we need to look on a

time scale of order 1/ε2. Thus, we make a time rescaling, setting Xε
t

def= xε
t/ε2

and

Y ε def= yε
t/ε2

. Then we have

Ẋε
t = 1

ε
b1(Xε

t , t/ε2) + b2(Xε
t , t/ε2) + g(Xε

t , t/ε2)
1

ε
ξ(t/ε2),

Ẏ ε
t = 1

ε
F1(Xε

t , t/ε2) + F2(Xε
t , t/ε2) + G(Xε

t , t/ε2)
1

ε
ξ(t/ε2).

(9)

Roughly, our goal is to study (9) and show that as ε tends to zero, the dynamics of
Y ε(Xε

t ) tends to a lower-dimensionalMarkov process and to identify the infinitesimal
generator of the limiting law.

There are three time scales. The periodic fluctuations of the coefficients occur
over time scales of order ε2. The effects of drift due to b1 can be seen on time scales
of order ε. The drift and diffusion coefficients of Y ε

t are of order 1. We perform two
averaging steps, one to average (M) the periodic behavior of the coefficients, and
one to average (A) along the orbits of the Hamiltonian system ẋt = (Mb1)(x).

To understand the state space of the slow variable Y ε
t , we consider the following

symplectic transformation (it would also be useful later for simplifying calculations).

3.1.1 Structure of the Unperturbed System: Hamiltonian Structure

x1 = u1 cos(2ψ) + u2 sin(2ψ), x3 = −u1 sin(2ψ) + u2 cos(2ψ),

x2 =
√
2(I − u2

1 − u2
2) sinψ, x4 =

√
2(I − u2

1 − u2
2) cosψ.

(10)

The conjugate pairs are (u1, u2) and (ψ, I ). This transformation yields

u̇1t = −u1t u2t , u̇2t = 1

2
(3u1

2
t + u2

2
t − It ), ψ̇t = 1

2
u1t , İt = 0 (11)

and the corresponding Hamiltonian is

K = 1

2
u1

(
I − (u2

1 + u2
2)

)
. (12)
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The relation betweenK, u1, u2, and I is illustrated in Fig. 2. Note that this system’s
equations remain unchanged when t → −t , u2 → −u2 and ψ → −ψ . System (11)

has four fixed points. They are (u1, u2) = (0,±√
I ) and (u1, u2) = (±

√
3I
3 , 0).

The points on the u1 axis are saddle points and those on the u2 axis are center
fixed points.

3.1.2 State Space of Yε
t

The slow variable Y ε
t evolves on an arrowhead. Let S def={x ∈ R

4 : K∗ < K (x) <

K ∗, 0 < I (x) < I ∗}. Then define an equivalence relation ∼ on R
4 by identifying

x ∼ y if x and y are on the same orbit of the hamiltonian flow ẋt = (Mb1)(x).

DefineM
def= S̄/ ∼, and endowMwith the quotient topology defined by ∼. If x ∈ S̄,

we let [x] := {y ∈ S̄ : y ∼ x} be the equivalence class of x . π(x) := [x]. The slow
variable Y ε

t evolves on M = ⋃2
i=1 Γi ∪ ⋃2

i=0[ci ] ∪ ⋃2
i=1 �i where ci are the fixed

points, the �i are closed orbits whose union is ∂S̄, and each Γi is the π -image of a
maximal open subset of R4 which does not intersect any of the [ci ] or �i . The state
space is illustrated in Fig. 3.

3.1.3 M & A Averaging

If the external noise ξ(τ ) represents mean zero, stationary, independent stochas-
tic processes with the strong mixing property, then roughly, as ε → 0, 1

ε
ξ(t/ε2)

approaches a white noise process. Khasminskii [2] gave a rigorous proof that a fam-
ily of processes Xε

t converges to a diffusion process. The aim here is to make use of
this and derive a reduced graph-valued process for the integrals of motion, Y ε.

We have pointed out that that there are three time-scales involved in our averaging
problems. The first step is to average the periodic fluctuations of the coefficients and
obtain M-averaged quantities as the precursors to the stochastically averaged drift
and diffusion coefficients. Somewhat laborious calculations yield the M-averaged
quantities

mi (x) ≡
(
M

(
F2
1 + f1 + g1

))
(x) and ai j (x) ≡

(
M

(
σσ T

)

i j

)
(x). (13)

These calculations can be simplified by considering the symplectic transformation
(10) which provides a convenient geometric structure of the unperturbed integrable
Hamiltonian problem. In (K , I, u) coordinates, the drift and diffusion (13) coeffi-
cients are

m1(K , I, u) = −(ζo + 2ζp)K − 1

4
(8μ + 3I ) K

u2

u1
+ 1

2

(
3 + 1

R

)
K 2 u2

u2
1

,

m2(K , I, u) = 2[σ 2Sξξ (1) − ζo I + 2(ζo − ζp)K/u1],
(14)
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a11(K , I, u) = 1

2
σ 2Sξξ (1)K 2 1

u2
1

, a12(K , I, u) = σ 2Sξξ (1)K ,

a22(K , I, u) = 2σ 2Sξξ (1)(I − 2K/u1).

(15)

To obtain a limiting generator for the martingale problem, we need an averaging
operator where the averaging is done with respect to the invariant measure concen-
trated on the closed trajectories. Using (14) in the A-averaging operator yields on
each leaf Γi , for z = (K , I ) ∈ Γi ,

bi
j (z) = 1

Ti (z)

∫ Ti (z)

0
m j (z, u(t)) dt, ai

jk(z) = 1

Ti (z)

∫ Ti (z)

0
a jk(u(t), K , I )dt,

bi
1(z) = −(ζo + 2ζp)K , bi

2(z) = 2[σ 2Sξξ (1) − ζo I ] + 4(ζo − ζp)K
I 1

i

Ti
,

ai
11(z) = 1

2
σ 2Sξξ (1)K 2 I 2

i

Ti
, ai

12(z) = σ 2Sξξ (1)K , ai
22(z) = 2σ 2Sξξ (1)(I − 2K

I 1
i

Ti
).

Here, Ti (z) is the time period of the Hamiltonian orbit on leaf i with value of K and
I given by z and I 1

i = ∫ Ti
0

1
u1(t)

dt and I 2
i = ∫ Ti

0
1

u21(t)
dt .

3.1.4 Generator of the Reduced Markov Process

We want to put these Li ’s together to get a Markov process on M with generator
L †

Mwith domain D†
M, where M has a shape of an arrowhead.

Let us define the drift and diffusion coefficients

bi (z) ≡
(

A
(
M

(
F2

i + fi + gi

)))
(z), ai j (z) ≡

(
A

(
M

(
σσ T

)

i j

))
(z)

(16)
for i, j = 1, 2 and for all z ∈ M, where

fi (x, t) ≡
4∑

j=1

∂ F1
i

∂x j
(x, t) f̃ 1j (x, t), f̃ 1i (x, t) ≡

∫ t

0

{
b1i (x, s) − Ms(b

1
i (x, s))

}
ds,

gi (x, t) ≡
∫ 0

−∞
E

[
∂Gi

∂x j
(x, t, ξt )g j (x, t + τ, ξt+τ )

]
dτ,

(
σσ T

)

jk
(x, t) ≡

∫ ∞
−∞

E
[
G j (x, t, ξt )Gk(x, t + τ, ξt+τ )

]
dτ.

exists uniformly in x ∈ R
4.

For notational convenience, we also define fi ≡ f
∣
∣
Γi

for all 1 ≤ i ≤ 2. From
the results of [3] , it is clear the gluing conditions, which we need to specify at the
interior edges, solely depend on the diffusion coefficients ai

jk . To this end, we define

åi
jk(z) ≡ ai

jk(z) T (z). The limiting domain for the graph valued process is
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D†
M =

{
f ∈ C(M) ∩ C2(∪2

i=1Γi ) : lim
z→(K (ci ),I (ci ))

(Li fi )(h) exists ∀i,

lim
I→I ∗(Li fi )(z) = 0 ∀i, and

2∑

i=1

{±} (åi
11

∂ fi

∂z1
)(c0) = 0

}

,

(17)

where the ‘+’ sign is taken if the coordinate h on the legΓi is greater than 0 (the value
of z1(= h) at the vertex c0) and the ‘−’ sign is taken otherwise. Then for f ∈ D†

M,
the generator is

(L †
M f )(z) = lim

z′→z
z∈Γi

(Li fi )(z
′) =

2∑

j=1

bi
j (z)

∂ fi

∂z j
(z)+ 1

2

2∑

j,k=1

ai
jk(z)

∂2 fi

∂z j∂zk
(z) (18)

for all z ∈ Γ̄i .
The gluing conditions can be derived by determining the asymptotic values of the

drift and diffusion coefficients as K → 0. The period is asymptotically equivalent
to T (z) ∼ ln |K | as K → 0. This yields limK→0 b̊

i
1 = 0. Furthermore,

lim
K→0

åi
11(c0) ≡ lim

K→0

(
ai
11(z) Ti (z)

)
= σ 2Sξξ (1)

I
√

I

3
≥ 0.

The values of b̊i
2, å

i
12 and åi

22 in the limit K → 0 all approach infinity. Hence

− ∂ f1
∂z1

+ ∂ f2
∂z1

= 0.

3.2 Fokker–Planck Equation and Stationary
Probability Density Function

We turn our attention to producing solutions with the results of stochastic averaging
theory presented in the previous section. Specifically, stationary probability density
functions are produced. First, the Fokker–Planck equation is derived by taking the
adjoint of the reduced generator (18). Then the solutions for the the autoparametric
oscillator are obtained by a finite element formulation of the Fokker–Planck problem.
Finally, the finite element results are validated with a sample path method.

Finite-element triangulations of the K − I domains are produced using
TRIANGLE. The domains of the Fokker–Planck equation have boundaries defined
by polynomial functions. TRIANGLE does not allow specifying such boundaries
directly, rather a certain number of points on the boundary must be given. In order to
create elements of a specified area, TRIANGLE may place additional nodes between
points given to it as input. Experience with TRIANGLE shows that these problems
can be avoided by specifying the number of input points in (inverse) proportion to
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the requested element area. Specifically, input points are placed by calculating the
arc length along the boundary and the spacing between the points is made equal to
the length of the side of an equilateral triangle with an area equal to the requested ele-
ment area. As long as the domain triangulated does not include cusps, this procedure
seems to produce triangulation that have none, or few, Steiner points.

Across the gluing edge, the finite element method is formulated carefully so that
the solution does not exhibit any singularities. The solutions appear to be continuous
across the gluing edge, as expected based on analytic calculations.

As the amplitude of stochastic forcing is varied, the peak of the probability distri-
bution moves to larger values of I while remaining symmetric about the I axis. The
latter fact is worth contemplating. Recalling the structure of the Hamiltonian, the
outer edge of the domain in the left hand plane corresponds to a sink and the outer
edge of the domain in the right hand plane is a valley. As such it seems reasonable
to think that as forcing amplitude increases, the peak of the PDF will shift from the
left hand plane to the right hand plane, but this is not observed in Figs. 4 or 5. In
fact, simply by looking at the form of b1 one notices that along the K axis, the drift
coefficient tends to center the probability density on the I axis. It is curious that b1
does not contain any stochastic effects; whether this is a generic feature for systems
in 1:2 resonance remains to be determined.

4 Conclusions

A two degree-of-freedom nonlinear autoparametric vibration absorber with weak
quadratic nonlinearities is considered. The averaged nonlinear response of the sys-
tem in the absence of disspative and random effects is Hamiltonian. A nonstandard
method of stochastic averaging is developed to reduce the dimension of a randomly-
perturbed four-dimensional integrable Hamiltonian systems with one-to-two reso-
nance. The reduction to a graph valued process was possible due to three time-scales
involved in this problem.

The interest of this paper is when the original Hamiltonian system has one-to-two
resonances.Hence the averaged nonlinearHamiltonian system is integrablewith both
homoclinic and heteroclinic orbits in the phase-space. This gives rise to singularities
in the lower-dimensional description. At these singularities, gluing conditions were
derived, these gluing conditions completing the specification of the dynamics of the
reduced model by examining the boundary-layer behavior close to homoclinic and
heteroclinic orbits.

In this context it is also important to point to the work in [4] and [5] where they
considered fast oscillating random perturbations of dynamical systems with first
integrals. Then under suitable regularity and ergodicity conditions it was shown that
the evolution of first integrals in an appropriate time scale is given by a diffusion
process. Themain emphasis in these papers is themixing properties of fast oscillating
randomperturbations. Themethodused in this paper and the assumptions on the noise
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terms are different, and the presence of one-to-two resonance leads to an interesting
limiting generator.
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