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Abstract Using a nonlinear model of opinion dynamics on networks, we show the
existence of asymmetric majority rule solutions for symmetric initial opinion distri-
butions and symmetric network structure. We show that this occurs in triads as the
result of a pitchfork bifurcation and arises in both chain and complete topologies with
symmetric as well as asymmetric coupling. Analytical approximations for bifurca-
tion boundaries are derived which closely match numerically-obtained boundaries.
Bifurcation-induced symmetry breaking represents a novel mechanism for gener-
ating majority rule outcomes without built-in structural or dynamical asymmetries;
however, the policy outcome is fundamentally unpredictable.

1 Introduction

Small group opinion change has long been a subject of intense study in social science
with implications for decision making by a range of groups such as political lead-
ers, judicial panels, corporate committees, and juries [4, 8]. Mathematical models
of small group decision making have been proposed in social science disciplines
such as psychology, sociology, political science, economics, and law [2, 5, 9]. In this
paper, we put forth a novelmechanism for the generation ofmajority rule outcomes in
small groups via a symmetry-breaking pitchfork bifurcation. This mechanism allows
for asymmetric outcomes to appear for symmetric initial opinion distributions even
when group members are symmetrically coupled. It occurs in the nonlinear opinion
dynamics model of Refs. [6, 7] under conditions of high disagreement between the
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ends of the distribution along a continuous opinion axis. For example, in a triad net-
work consisting of a centrist bracketed by two opposed extremists, the centrist will
form a majority pair with one of the extremists. This runs counter to intuition rooted
in basic psychological mechanisms of attitude change which emphasize a conver-
gence process of group member attitudes, and so would anticipate either deadlock
or various degrees of compromise around the centrist’s position, but not majority
rule. In particular, it is not predicted by the most prominent network-based model
of small group opinion dynamics, the Friedkin-Johnsen model, which is linear in
the disagreement between group members [5]. The Friedkin-Johnsen and nonlinear
opinion dynamics models are described in the next section. The majority rule out-
come for a triad is demonstrated in simulation (Sect. 3) and via bifurcation analysis
(Sect. 4). Majority rule in five-node networks is presented in Sect. 5.

2 Opinion Dynamics Models

Most recent work on opinion network dynamics in the physics community has
focused on large networks motivated by an interest in population scale dynamics
[1]. Consensus in small networks has been studied in the literature on distributed
network control with sensor networks as a primary motivation [10, 11]. However,
our nonlinear model is most closely related to that of Friedkin and Johnsen, which
was explicitly developed for the social influence context and has been subjected to
empirical investigation [5].

2.1 Friedkin-Johnsen Model

The Friedkin-Johnsen model describes the temporal evolution of a linear discrete
time influence process in a group of N people (nodes) as a weighted average of their
previous opinions and their initial opinions [5]:

xi (k + 1) = ai

N∑

j=1

wi j x j (k) + (1 − ai )xi (0); i = 1, 2, . . . N , k ≥ 0, (1)

where xi (k) is the opinion of node i at time k; xi (0) is the initial opinion; ai is
the susceptibility of node i ; and wi j is the coupling weight scaling node j’s influ-
ence upon i . The wi j are non-negative and satisfy

∑N
j=1 wi j = 1. In addition, the

susceptibility is given by ai = 1 − wi i .
Equation (1) can be cast as a difference equation by subtracting xi (k) = (1 +

ai − ai )xi (k) from both sides and rearranging to yield
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xi (k + 1) − xi (k) = ai

N∑

j=1

wi j (x j (k) − xi (k)) − (1 − ai )(xi (k) − xi (0)). (2)

If ai = 1∀i in Eq. (2), then the node opinions will all converge to exactly the
same value for a (bidirectionally) connected network. The presence of xi (0) in the
dynamics of the Friedkin-Johnsen model prevents such a collapse onto an exact
consensus which would signify the unintuitive complete extinction of disagreement.
However, because of the linear coupling in the Friedkin-Johnsen model, equilibria
in which the member opinions are asymmetrically distributed around the mean must
arise from pre-existing asymmetries; either skewed initial opinion distributions or
lopsided coupling weights in favor of one extreme. This is not the case for the
nonlinear model which we turn to next.

2.2 Nonlinear Model

We use the following model for the evolution of the opinion xi [7]:

dxi

dt
= −γi (xi − μi ) +

N∑

j=1

κi j h(x j − xi ). (3)

The first term on the right is a linear “self-bias force” which expresses the psycho-
logical tension that a person feels if her opinion is displaced from her natural bias μi

and is proportional to her commitment γi . The second term is the “group influence
force” on i where κi j is the coupling strength and h(x j − xi ) is the coupling function.
The coupling strength, which we take to be non-negative, represents the components
of influence of j upon i arising from their relationship; it depends on factors such as
how often j communicates with i and the regard with which i holds j . The coupling
function represents how the influence of j upon i depends on the difference between
their opinions. We use a dependence motivated by social judgment theory [4] in
which the force grows for |x j − xi | < λi , where λi is is latitude of acceptance, but
wanes for differences in excess of λi :

h(x j − xi ) = (x j − xi )exp

[
−1

2

(x j − xi )
2

λ2i

]
. (4)

For situations in which a group first starts discussing an issue it is appropriate to use
natural bias initial conditions, xi (0) = μi .

In the linear limit, λi → ∞, it can readily be seen that the (discretized) nonlinear
model reduces to the form (2) of the Friedkin-Johnsen model, apart from parameter
constraints. The natural bias μi plays the same role in preventing the collapse onto
exact agreement in (3) as the initial opinion does in (1). When applied to group
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decision-making, we assume that a common decision can be reached between group
members if their final opinions xi (t f ) are sufficiently close. This is in accord with
the intuition that people need not precisely agree in order to reach a compromise
decision on a common course of action.

3 Triad Simulations

We simulate a triad network in which the natural biases are symmetrically distributed
around zero: μ1 = −Δμ/2, μ2 = 0, and μ3 = Δμ/2. We use a chain topology
whose ends, nodes 1 and 3, are not connected so that the symmetric, binary adjacency
matrix elements are A12 = A21 = A23 = A32 = 1 and A13 = A31 = 0 (and also
Aii = 0). However, the complete network in which all members are connected,
Ai j = 1 − δi j where δi j is Kroneckers delta, has similar behavior as will be seen in
Sect. 4. We use the parameter v to allow for the possibility of asymmetric coupling
between the center node 2 and the end nodes so that κ12 = κ32 = κ + v and
κ21 = κ23 = κ −v where |v| < κ . A positive value of v signifies that the center node
has greater influence on each of the end nodes than vice versa whereas negative v

signifies that the ends have more influence. The equations of motion for the triad are
then:

dx1
dt

= −
(

x1 + Δμ

2

)
+ (κ + v)h(x2 − x1) + κ A31h(x3 − x1),

dx2
dt

= −x2 + (κ − v)(h(x1 − x2) + h(x3 − x2)), (5)

dx3
dt

= −
(

x3 − Δμ

2

)
+ (κ + v)h(x2 − x3) + κ A31h(x1 − x3).

It will be useful to define the following pair of variables: the discord r = x3 − x1 ,
the opinion difference between the outer nodes and the asymmetry s = (x3 − x2) −
(x2 − x1), the difference in distances from the outer nodes to the middle node.

Figure1 shows simulations of the chain network for three values of the coupling
strength κ and with symmetric coupling between all nodes. The difference in the
natural biases of the end nodes isΔμ = 5 and the initial opinions are set equal to the
natural biases (except for a tiny displacement to the center node as an initial pertur-
bation which always moves x2 in the same direction for the asymmetric solutions).
Three qualitatively distinct equilibria are observed. At low coupling, Fig. 1a shows
a state of Symmetric High Discord (SHD) in which the end nodes barely move from
their natural biases and the center node remains at zero. At intermediate coupling,
Fig. 1b shows the Majority Rule (MR) state in which the center node moves toward
one of the end nodes to form a majority rule pair. At high coupling, the outer nodes
move considerably toward the center to form a Symmetric Low Discord (SLD) state
as shown in Fig. 1c. The SHD state corresponds to a deadlock situation in which
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Fig. 1 Equilibrium outcomes in symmetrically-coupled (v = 0) triad chain network with high
initial disagreement, Δμ = 5, at different coupling strengths: a κ = 1, symmetric high discord;
b κ = 1.5, majority rule; c κ = 3, symmetric low discord. Initial conditions: x1(0) = −2.5,
x2(0) = 10−6, x3(0) = 2.5

Fig. 2 Simulation of a symmetrically-coupled triad chain network over Δμ − κ parameter space
showing final: a discord and b asymmetry (absolute value). Simulation duration is t f = 200

all group members are far apart and no acceptable mutual decision can be made. In
the MR state, the majority pair can likely agree on a common policy which will be
the policy of the group if majority rule is sufficient for reaching a decision. In the
SLD state, the distance between the outer nodes is much reduced and the basis for a
compromise around the centrists position could be set. Simulations in which μ1, μ2,
and μ3 are randomly shifted by a small amount still display all three outcome types.

Figure2 plots the asymmetry and discord of the symmetrically-coupled chain
network with natural bias initial conditions. The emergence of the MR state only
occurs past a critical value of the natural bias differenceΔμc = 3.8whichwe call the
critical divergence. Also, note the sharp discontinuities at the boundaries between the
various outcome states. Below the critical divergence, asymmetric solutions do not
exist and the discord is smoothly and symmetrically reduced as the coupling strength
is raised as would occur in the equivalent case for the Friedkin-Johnsen model, for
which the transition from deadlock to compromise to consensus is gradual with no
possibility of an MR state.



172 M. Gabbay and A. K. Das

4 Bifurcation Analysis for Triad

In this section, we show that the majority rule state is the result of spontaneous
symmetry-breaking induced by a pitchfork bifurcation and we calculate bifurcation
boundaries. We do this for the chain topology in which A31 = 0. We transform
the system (5) into the discord and asymmetry variables, r and s, as well as the
mean node opinion, x̄ = 1

3

∑3
i=1 xi . Using the fact that the coupling function is odd,

h(−x) = −h(x), results in the system:

dr

dt
= −(r − Δμ) − (κ + v)

(
h

(
r + s

2

)
+ h

(
r − s

2

))
(6)

ds

dt
= −s − (3κ − v)

(
h

(
r + s

2

)
− h

(
r − s

2

))
(7)

dx̄

dt
= −x̄ − 2

3
v

(
h

(
r + s

2

)
− h

(
r − s

2

))
(8)

For symmetric coupling, Eq. (8) implies that the mean equilibrium opinion is zero,
the mean of the natural biases; this will not be the case for v �= 0 in the MR state in
which s �= 0.

For the equilibrium SHD state, denoted by (r, s), the asymmetry is by defini-
tion s = 0. For large Δμ we take the discord to be r ≈ Δμ + θ where θ � 1.
Before showing the existence of the pitchfork bifurcation, it will be useful below to
calculate θ . When s = 0, Eq. (6) becomes

dr

dt
= −(r − Δμ) − 2(κ + v)h

( r

2

)
, (9)

which upon substituting the above form for r yields

0 = θ + 2(κ + v)h

(
Δμ + θ

2

)
. (10)

Expanding the coupling function as h(
Δμ+θ

2 ) ≈ h(
Δμ
2 ) + h′(Δμ

2 ) θ
2 and substituting

into (10) enables us to solve for θ

θ = −
2(κ + v)h

(
Δμ
2

)

1 + (κ + v)h′
(

Δμ
2

) (11)

where h
(

Δμ
2

)
= Δμ

2 e− Δμ2

8 and h′
(

Δμ
2

)
=

(
1 − Δμ2

4

)
e− Δμ2

8 .

To show the bifurcation,we consider small perturbations s around s = 0 in Eq. (7).
This results in the Taylor expansion,
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ds

dt
≈ −

(
1 + (3κ − v)h′ ( r

2

))
s − 1

24
(3κ − v)h′′′ ( r

2

)
s3, (12)

where only the odd power terms survive. When the coefficient of the linear term is
positive, the symmetric state will be unstable. When h′′′ (r/2) > 0, we can rescale
as follows:

τ =
[
1

24
(3κ − v)h′′′ ( r

2

)]
t (13)

R = −1 + (3κ − v)h′ ( r
2

)

1
24 (3κ − v)h′′′ ( r

2

) (14)

which transforms (12) into the normal form of a supercritical pitchfork bifurcation,
ds/dτ = Rs − s3, where the bifurcation occurs for R = 0, beyond which the
symmetric s = 0 equilibrium is absolutely unstable and two stable asymmetric
branches emerge [12].

When h′′′ (r/2) < 0, the pitchfork bifurcation is subcritical, exhibiting a hard
loss of stability, multistability, and hysteresis. The relevant zero crossing of h′′′(x) =
(−x4+6x2−3)e− 1

2 x2 in marking the boundary between supercritical and subcritical
bifurcations occurs at x = (3 + √

6)1/2 corresponding to a discord of r = 4.66.

4.1 SHD Upper Boundary: κ1

We now calculate the boundary inΔμ−κ parameter space given by the critical value
of the coupling strength κ1 at which the SHD state becomes absolutely unstable.
Setting the coefficient of the first term on the righthand side of (12) equal to zero
yields

κ = − 1

3h′( r
2 )

+ v

3
. (15)

Substituting r ≈ Δμ + θ , and expanding (15) to first order in θ gives

κ1 ≈ 1

3

{
1

h′(Δμ
2 )

− h′′(Δμ
2 )

h′2(Δμ
2 )

θ

2

}
+ v

3
(16)

The expression (11) for θ can be inserted into the above which, after rearranging,
yields the characteristic equation

0 = 3h′(Δμ

2
)κ2

1 +
(
4 + M + 2vh′(Δμ

2
)

)
κ1+ 1

h′(Δμ
2 )

+ Mv−v2h′(Δμ

2
), (17)



174 M. Gabbay and A. K. Das

where M = Δμ4−12Δμ2

(Δμ2−4)2
. This can be solved to give the following approximation

for κ1:

κ1 ≈2

3

e
Δμ2

8

(Δμ2 − 4)

{
4 + M + 2vh′

(
Δμ

2

)
−

[
4 + 8M + M2

+8vh′
(

Δμ

2

)(
2 − M + 2vh′(Δμ

2
)

)] 1
2
}

. (18)

This increases rapidly as Δμ becomes very large. The appearance of v as a product
with the very small h′(Δμ) implies that κ1 will be nearly identical to the v = 0 case
as Δμ gets large.

4.2 MR Lower Boundary in Subcritical Zone: κ2

Turning now to the disappearance of the asymmetric solutions in the subcritical
bifurcation regime, this corresponds to the transition between the multistable zone
where the MR and SHD states coexist to the zone in which only the SHD state
exists as the coupling strength is lowered. This transition occurs via a saddle-node
bifurcation in which stable and unstable asymmetric equilibria collide. The associ-
ated bifurcation boundary κ2 can be calculated by analyzing Eq. (7) around the MR
equilibrium in which the minority node x1 stays near its natural bias while the major-
ity pair (x2, x3) is very nearly symmetrically positioned around themidpoint between
their natural biases, Δμ/4. Asymmetric coupling, v �= 0, will shift the equilibrium
mean of the majority rule pair by an amount given by ε = (x2 + x3)/2 − Δμ/4.
For largeΔμ , x2 − x1 = (r − s)/2 is large and we can neglect the term h((r − s)/2)
in Eq. (7). Accordingly, we make the approximations for the outer opinion coor-
dinates: x1 ≈ −Δμ/2 and x3 ≈ Δμ/2 + 2ε − x2. The asymmetry is then
s = x3 − 2x2 + x3 = −3x2 + 2ε. Rearranging yields x2 = −s/3 + 2ε/3 and
then x3 = s/3 + Δμ/2 + 4ε/3 so that the discord can now be written in terms of s
as r = x3 − x1 = s/3 + Δμ + 4ε/3. The argument of the coupling function term
retained from Eq. (7) is (r + s)/2 = 2/3(s + 3/4Δμ + ε). Finally, we transform to
the variable s̃ = s + 3Δμ/4 + ε and Eq. (7) becomes

ds̃

dt
= −(s̃ − 3

4
Δμ − ε) − (3κ − v)h

(
2

3
s̃

)
. (19)

Equation (8) can be used to calculate the shift ε in the mean of x2 and x3 (neglecting
the h((r −s)/2) term and using x1 = −Δμ/2) yielding ε = −vh( r+s

2 ) = −vh( 23 s̃).
Taking v � κ , the first order contribution of v resulting from the last term in Eq. (19)
is given by vh( 23 s̃) which cancels out the ε term. Thus, we get
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ds̃

dt
= −(s̃ − 3

4
Δμ) − 3κh(

2

3
s̃), (20)

andwe see that the effect of asymmetric coupling between the center and the extremes
disappears for small v and so will not impact the bifurcation boundary.

The equilibrium value for which the saddle-node bifurcation occurs is marked by
the vanishing of the right-hand side of the above equation as well as its derivative,
yielding upon rearrangement the conditions:

s̃ − 3

4
Δμ = −2κ2s̃e− 2

9 s̃2 (21)

1 = −2κ2(1 − 4

9
s̃)e− 2

9 s̃2 , (22)

where κ2 denotes the coupling strength at which the bifurcation occurs. Taking the
ratio of (21) to (22) and rearranging yields the cubic equation

0 = s̃3 − 3

4
Δμs̃2 + 27

16
Δμ. (23)

For large Δμ, it can be readily verified that to O( 1
Δμ

), the solution to this equation

is given by s̃ = 2(1 + 1
Δμ

). Employing (21) to solve for κ2 and then substituting in
this approximation for s̃ yields

κ2 =
3
4Δμ − s̃

2s̃

2
9 s̃2

≈ 1

4

Δμ2 − 2Δμ − 2

Δμ + 1
e
1
2 (1+ 1

Δμ
)2

, (24)

which increases linearly to leading order in Δμ. While the rapidly increasing κ1
marks when the MR state will ensue from natural bias initial conditions, the linear
dependence of κ2 shows that the coupling strength for which a stable MR state is
available does keep pace with Δμ . This is significant because if a stochastic forcing
is added to Eq. (3) to simulate random incoming external information for instance
then transitions between states can occur in which the SHD state jumps to the MR
state (and vice versa) as we have observed in simulations.

4.3 SLD Lower Boundary: κ3

We now calculate the boundary κ3 below which the SLD state given by (r, s = 0)
becomes absolutely unstable. The boundary can be calculated by usingEq. (9) and the
coefficient of s in Eq. (12) to solve for r for which the system undergoes a pitchfork
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bifurcation from the SLD equilibrium to the MR state. We obtain the conditions:

r − Δμ = −(κ3 + v)re−r2/8 (25)

1 = −(3κ3 − v)

(
1 − r2

4

)
e−r2/8. (26)

Neglecting small v, then taking the ratio of the above pair and rearranging gives

0 = r3 − Δμr2 − 8

3
r + 4Δμ. (27)

Near the bifurcation, the equilibrium discord for the SLD state is r ≈ 2 and the
solution to (27) to O(1/Δμ) is r ≈ 2 + 2/(3Δμ). Using this in (25) enables us to
calculate κ3

κ3 + v = −r − Δμ

r
er2/8 (28)

κ3 ≈ Δμ2 − 2Δμ + 2
3

2Δμ + 2
3

e
1
8

(
2+ 2

3
1

Δμ

)2
− v. (29)

κ3 shows a linear dependence for large Δμ as did κ2 but, significantly, it also has a
linear dependence upon small v.

4.4 Chain and Complete Stability Diagrams

Figure3a displays the stability diagram of the chain network showing the regimes
in Δμ − κ parameter space where the different outcomes are stable and the bound-
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Fig. 3 Stability diagram of triad with symmetric coupling for: a chain network and b complete
network.Open markers are numerically obtained boundaries.Solid lines are chain analytical approx-
imations (18), (24), and (29) for κ1, κ2, and κ3 respectively
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aries between them. The open markers represent numerically-obtained bifurcation
boundaries as foundusing theMATCONTsoftware package for prediction-correction
continuation [3]. The numerical curves agree very well with the analytical approxi-
mations (18), (24), and (29) for κ1, κ2, and κ3 respectively, except in the immediate
vicinity of the critical divergence. Also shown is the boundary κ4 beyond which the
MR state is no longer present. Note the presence of a substantial zone where only the
MR state is stable. There are also multistable zones in which two or all three states
are stable.

The stability diagram for the complete network is shown in Fig. 3b. For κ1 and κ2
the approximations derived for the chain network, (18) and (24), agree very well with
the numerically-determined boundaries. This indicates that the coupling between the
two outer nodes can be safely neglected due to their extremely disparate opinions in
the SHD and MR states. However, the chain approximation for κ3 is substantially
higher than the complete network’s κ3. This is due to the significantly lower discord
of the SLD state in the complete network, thereby making that state more robust.
This reduces the size of the MR-only zone as compared with the chain. In addition,
κ4 shifts to the right in the complete network which has the effect of expanding the
SLD-only zone.

For the asymmetric coupling case of v < 0, i.e., when the end nodes are more
influential than the center node, κ3 shifts upward as evident from (29) whereas κ1
and κ2 are nearly unchanged for largeΔμ . This decreases the size of the zone where
the SLD state is stable and increases the size of the MR-only and MR-SHD zones
as observed in simulations; in addition, the critical divergence shifts to lower values
of Δμ . For v > 0, κ3 shifts downward and the critical divergence shifts to the right
so that the MR-only and MR-SHD zones decrease in size. However, it is significant
that skewed majority rule outcomes can arise even when the center node has greater
influence than the end nodes.

5 Five-Node Networks

We have also observed majority rule outcomes in five node topologies as shown in
Fig. 4. In the simulations, the natural biases are distributed uniformly over the range
Δμ = 6 and ordered so that (μ1, . . . , μ5) = (−3,−1.5, 0, 1.5, 3). Three different

Fig. 4 Final node opinion versus coupling scale for five-node networks: a chain; b complete; c
star. Simulation duration, t f = 200
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topologies are used: (1) the chain in which each node is connected only to its nearest
neighbor along the opinion axis, Ai j = δi, j±1; (2) the complete network where all
nodes are connected to each other; and (3) the star in which the off-center nodes are
only connected to the center node having μ3 = 0 so that Ai3 = A3i = 1 for i ∈
1, 2, 4, 5 else Ai j = 0. The coupling strengths are identical for all ties, κi j = κ Ai j .
But comparing the topologies for the same κ would allow topologies with more ties
to have greater total coupling, thereby affording them a greater communication rate,
for instance. Consequently, to compare topologies on a common basis, we relate the
coupling strengths to the coupling scale α via the relationship κi j = αAi j/d̄ where
d̄ is the mean degree, d̄ = ∑

i, j Ai j/N . From this form we see that α is equal to
the average coupling strength, α = ∑

i, j κi j/N . It is observed that in the MR state,
the majority is 3-2 in the chain and complete networks whereas it is 4-1 in the star
in which the intermediate negative node, x2, is drawn upward into the positive x
majority. We also note that the discontinuous transitions along the α axis occur first
for the chain then the complete network and last for the star. The earlier transition to
the SLD state for the chain network as compared with the star is striking since they
both have the same number of directed edges, 12, and can be attributed to the fact
that the couplings between the center and the outermost nodes present in the star are
weaker compared with the only nearest-neighbor couplings in the chain; however,
once achieved, the SLD state is much tighter in the star.

6 Conclusion

Wehave shown that an asymmetric outcome ofmajority rule arises from a symmetry-
breaking pitchfork bifurcation using amodel that is a nonlinear variant of the influen-
tial Friedkin-Johnsen model of opinion network dynamics. This symmetry-breaking
route to majority rule only occurs for initial disagreements above the critical diver-
gence. For lower disagreement, the more intuitive process of convergence toward the
center applies as would be expected from the Friedkin-Johnsen model. This qual-
itative difference at low and high disagreement suggests that bifurcation-induced
majority rule may be observable in laboratory experiments involving group dis-
cussion. Finally, we note that although there is a regime in which majority rule is
predicted, the actual policy outcome in this regime is fundamentally unpredictable
and may depend on relatively minor or random variables such as who speaks first.
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