
Distributed Bandpass Filtering and Signal
Demodulation in Cortical Network Models

Mark D. McDonnell

Abstract Experimental recordings of cortical activity often exhibit narrowband
oscillations, at various center frequencies ranging in the order of 1–200Hz. Many
neuronal mechanisms are known to give rise to oscillations, but here we focus on a
population effect known as sparsely synchronised oscillations. In this effect, individ-
ual neurons in a cortical network fire irregularly at slow average spike rates (1–10Hz),
but the population spike rate oscillates at gamma frequencies (greater than 40Hz)
in response to spike bombardment from the thalamus. These cortical networks form
recurrent (feedback) synapses. Here we describe a model of sparsely synchronized
population oscillations using the language of feedback control engineering, where
we treat spiking as noisy feedback. We show, using a biologically realistic model
of synaptic current that includes a delayed response to inputs, that the collective
behavior of the neurons in the network is like a distributed bandpass filter acting on
the network inputs. Consequently, the population response has the character of nar-
rowband random noise, and therefore has an envelope and instantaneous frequency
with lowpass characteristics. Given that there exist biologically plausible neuronal
mechanisms for demodulating the envelope and instantaneous frequency, we sug-
gest there is potential for similar effects to be exploited in nanoscale electronics
implementations of engineered communications receivers.

1 Introduction and Background

Neuronal information processing relies on the dynamical electrical properties of
a neuron’s membrane, such as its conductance, capacitance, and the various ionic
currents that flow across it through ion channels, and which give rise to a time
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varying membrane potential. These currents are constantly changing over time, due
to external input into a neuron at synaptic junctions. This external input occurs when
an adjacent neuron ‘spikes,’ i.e. when its membrane potential reaches a large enough
size to cause a short duration but large amplitude pulse, called an action potential, to
propagate along cable-like structures called axons.When the action potential reaches
the end of an axon it can cause chemical neurotransmitters to be released and then
diffuse across a gap between neurons called a synapse. These neurotransmitters cause
a change in conductance in themembrane of the neuron on the far side of the synapse,
thus resulting in an ionic current flow across it [1].

Given that a neuron’s membrane can be modelled in terms of currents,
conductances and capacitance, it is no surprise that equivalent electrical circuits for
themcanbe studiedusing frequencydomainmethods favoured in electronic engineer-
ing [2] or in the analysis of stochastic noise [3]. In particular, neuronal membranes
can be studied as if they were electrical filters, and models of neuronal low, high and
bandpass filters, have been discussed in terms of neuronal ‘resonance’ [4]. There are
several biophysical mechanisms for achieving this, as reviewed by [5]. Examples
of single cell mechanisms include slow potassium ion currents [6], synaptic short-
term plasticity [7], and subthreshold membrane oscillations [1]. Mechanisms due to
interactions between cells also can cause band-pass filtering [8], while the basilar
membrane in the inner ear provides mechanical bandpass filtering of sounds prior to
transduction by inner hair cells [9].

In this paper we focus on neurons in a population that each achieve a bandpass
filtering characteristic solely through delayed distributed feedback, rather than their
intrinsic properties. Such a network has previously been studied and understood using
approaches favoured in nonlinear physics [10] in order to explain the phenomenon
of ‘sparsely synchronised population oscillations’ [11, 12]. These oscillations are
often observed in recordings of the overall electrical field produced in small volumes
of cortical region V1 when an experimental animal is awake and has their visual
field stimulated [13, 14]. The label ‘sparse synchronisation’ describes the fact that
individual neurons in the region spike in an irregular fashion with an average rate
much slower than the frequency of the population oscillation.

The novelty in the approach presented here is to recast the problem as one where
it is assumed that the network’s function is to act like a multivariate feedback system
operating close to instability, thus producing a bandpass filter like response. This
perspective leads us to posit that neuronal population spike rates, in the context of
our assumption, can be treated as both a noisy version of a feedback control signal,
as well as a compressed representation of the synaptic conductance or current.

Surprisingly, we find that the central assumption employed in electronic
engineering design, namely that electrical dynamics is governed by linear differ-
ential equations, can also be employed for studying filtering in such a population
of neurons, despite the obviously highly nonlinear behaviour that gives rise to the
crucial aspect of ‘spiking.’

The remainder of this paper articulates these ideas as follows.
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• Section2 describes how a single neuron with specified linear synaptic dynamics
would ideally implement negative feedback, with gain, in order to produce a band-
pass response.

• Section3 introduces the concept of distributed feedback within a population of
redundant neurons, as a means of implementing feedback gain without requiring
active amplifiers. This Section also shows how distributed feedback can have the
additional benefit of reducing additive noise on feedback signals via the averaging
effects inherent in redundancy. The Section next extends the analysis of feedback
noise by assuming that feedback is only possible via quantized signals. We study
this, as quantization is highly analogous to spiking in the real cortical network.
It is shown that performance close to the ideal bandpass filter response is readily
achievable by a population of neurons with distributed quantized feedback, par-
ticularly in the presence of stochastic noise.

• Section4 discusses the potential for exploiting effects like those discussed here in
bio-inspired engineering, such as in frequency demodulation.

Unlike the model of [10], here we do not consider sparsely connected networks
where neurons only rarely and asynchronously contribute feedback. This is an exten-
sion left for future work, as sparse connectivity has a significant impact on stability
analysis. However, the work discussed here is expected to be readily extendible to
the sparse connectivity scenario, as well as to randomly distributed delays.

2 Cortical Synapses as Filters: Open-Loop
and Feedback Responses

2.1 Low Pass Filtering Due to Synaptic Current Dynamics

Our starting point is the so-called ‘difference of two exponentials’ model that
describes how current flow across a neuron’s membrane changes over time in
response to a single synaptic event (i.e. a spike arrival). This model has been used
many times in computational neuroscience. However, we study a variation of the
model that includes a biophysically realistic delayed response, as in [10, 13], i.e. the
neuron responds to the arrival of a presynaptic spike only after a delay of τl > 0ms.

The model for the change in current in response to a single incoming spike at time
t = 0 is parameterised by two constants, the rise time τr and the fall time τd , where
τr < τd , and is expressed as

i(t) = 1

τd − τr

(
exp

(
− (t − τl)

τd

)
− exp

(
− (t − τl)

τr

))
u(t − τl), (1)

where u(·) is the Heaviside unit step function. It can easily be verified that Eq. (1)
is the solution to a pair of first order differential equations, which can be rewritten
compactly in state-space form as
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ż = Az + u, (2)

where u = [0, δ(t − τl)/τr ]T is the input vector, z = [z1(t), z2(t)]T is the state
vector, and A = [−1/τd , 1/τd ; 0,−1/τr ], and the synaptic current is i(t) = z1(t).
We write the input as δ(t − τl), which means we model the single input spike as a
Dirac delta function, i.e. a single event (the spike arrival) occurs at time t = 0, buts
its influence is seen only after delay t = τl .

Equation (1) is also the solution to the following second order differential equation

τrτd
d2i(t)

dt2
+ (τr + τd)

di(t)

dt
+ i(t) = x(t), (3)

where x(t) = δ(t − τl). Given that there is no feedback in this system, we can for
the time being ignore τl in our analysis of the system itself, as it can be incorporated
into the signal itself, by letting x(t) = δ(t − τl). We thus can consider the response
of the system to arbitrary inputs x(t) into the dynamic of the systems. The fact that
0 < τr < τd ensures that the system only has damped solutions in response to
bounded inputs, as expressed in Eq. (1).

Inspection of Eq. (3) when x(t) = δ(t − τl) suggests that the current i(t) can be
interpreted as the impulse response of a linear time invariant filter, after a delay of τl .
In the language of analog filtering or feedback control system design, the transfer
function [15] of the system, G(s), is given by the ratio of the Laplace transform of
i(t) to the Laplace transform of x(t). For an arbitrary bounded input signal, x(t),
with Laplace transform X (s), the Laplace transform of the response of the system
can be written as Y (s) = G(s)X (s), and in the time domain, the response y(t) is the
inverse Laplace transform of Y (s).

For the system described by Eq. (3), the transfer function is

G(s) = I (s)

X (s)
= 1

τrτds2 + (τr + τd)s + 1
= 1

τd − τr

(
1

1
τd

+ s
− 1

1
τr

+ s

)
, (4)

which has the form of a typical ‘two pole’ analog low pass filter.
If x(t) is a stationary stochastic process with a power spectral density Sxx (ω), the

transfer function can also be expressed in terms of Fourier transforms by substitution
of s = iω, and it can be shown that the power spectral density of the response is
related to the power spectral density of x(t) as Syy(ω) = |G(iω)|2Sxx (ω). From
Eq. (4), we obtain

|G(iω)|2 = 1

(1 + τ 2r ω2)(1 + τ 2d ω2)
, (5)

and note that if x(t) is white noise (i.e. its power spectral density is constant for all
frequencies) then low frequencies ω � 1

τd
will be reproduced at the output without

attenuation, but frequencies ω � 1
τd

will be heavily attenuated, i.e. filtered.
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Inhibitory neurons in the cortex tend to have short rise times, τr ∼ 0.5ms, and
decay times τd ∼ 5ms [10], and thus the model expressed by Eq. (1) will, if isolated
from feedback, enable the membrane current to encode unattenuated the frequency
content of the input only up to about f = 1/(2πτd) � 30Hz.

2.2 The Impact of Negative Feedback due to Inhibition,
With Delays

Introducing negative feedback into a system with a low pass filtering characteristic
is well known to enable the possibility of inducing either a resonant response, or
unstable oscillations. When a delay is included in the feedback path, such a negative
feedback system is a simplemodel of an inhibitory neuron that connects to itself via an
autapse. Inhibitory neurons provide negative feedback because the neurotransmitters
they release after spiking have an inhibitory response on the neurons they synapse
with. If a neuron forms a synapse with itself, then the synaptic connection is known
as an autapse [16].

Consider for example, a systemwith an open loop transfer function given by G(s)
and negative feedback with gain K . When considering the model of Eq. (1), we must
also explicitly take into account that the synaptic response to the feedback will be
delayed relative to the response due to x(t). The feedback system is shown in Fig. 1,
and its closed loop transfer function is given by

H(s) = G(s)

1 + K exp (−τl s)G(s)
= 1

τrτds2 + (τr + τd)s + 1 + K exp (−τl s)
. (6)

Studying the transfer function with s = iω enables analysis of the steady-state
frequency response of the system when the input is either sinusoidal (or the sum of
sinusoids) or random noise. For an input x(t) = A cos (ωx t + φ(t)), the steady state
response of any linear time invariant system with transfer function H(s) is given by
i(t) = A|H(iω)| cos (ωx t + φ(t) − arg H(iω)) [15].

Fig. 1 Closed loop feedback system consisting of an external drive with Laplace transform X (s),
that is operated on by system G(s), along with negative feedback. The output response has Laplace
transform I (s), and the feedback signal has Laplace transform F(s). The feedback path consists of
a delay relative to X (s), a proportional gain K , and a subtraction from the input, X (s). The overall
closed loop transfer function, H(s) is defined such that I (s) = H(s)X (s)
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Moreover, the power spectral density (PSD) of the response, Syy(ω) can be
obtained for an input with arbitrary PSD, Sxx (ω) via the relationship Syy(ω) =
|H(iω)|2Sxx (ω). From Eq. (6) we obtain

|H(iω)| = 1√
(1 + K cos (τlω) − τrτdω2)2 + [(τr + τd)ω + K sin (τlω)]2

. (7)

Note that |H(0)|2 = 1/(K + 1)2, and thus the DC value of the output is yDC(t) =
xDC/(K + 1), so the feedback signal will have a DC component of K xDC/(K + 1).

The frequency response, |H(iω)2| is shown in Fig. 2a for both τl = 0ms and
τl = 1mswith τr = 0.5ms, τd = 5ms and various value of K . Clearly, for τl = 1ms,
as K increases the closed loop system begins to show a bandpass filter characteristic,
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Fig. 2 a Frequency response of the closed loop negative feedback system, H(s), for τl = 0 ms
(left panel) and τl = 1ms (right panel). b Illustration of resonant bandpass-filter like response, and
stability, for the closed loop negative feedback system with delay. The maximum value of K that
provides closed loop stability is shown with a circle for each value of τl . The time constants are
τr = 0.5ms, and τd = 5ms.
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with a resonant frequency near 200Hz. The maximum response and the frequency
of maximum response increase with K . However, there is a limit to howmuch K can
be increased, because if it is too large, then the closed loop system becomes unstable.
On the other hand, in the absence of a delay, although the system exhibits a bandpass
characteristic for sufficiently large K , the resonant frequency is much higher than
with the delay present. Moreover, the input is highly attenuated at all frequencies
with respect to the open loop system (K = 0), which is not the case when τl = 1ms.

The closed loop system H(s) has an unstable oscillatory mode if any root of its
denominator has positive real part (it may alsomay have transient damped oscillatory
modes even though G(s) does not). Given that stability depends on the roots of the
denominator, whether an unstable solution exists depends on the values of both K
and τl . There is no closed form solution for the roots, but they can be obtained
numerically as a function of K and τl .

Note that due to the physical constraint that the time constants τr and τd are both
positive, the open loop system, G(s) cannot have a bandpass characteristic. For the
closed loop system without a delay (i.e. τl = 0), the system will resonate and have
a bandpass filtering characteristic if K is sufficiently large, and also be stable for
all K . However, as suggested by Fig. 2a (left panel), the resonant frequency will be
much larger than that of oscillations encountered in recordings of cortical activity,
and moreover, the damping ratio, and therefore the peak response, grows very slowly
with feedback gain.

These model deficiencies with respect to known biophysics are readily overcome
by the inclusion of non-zero time delays. When these are included, as suggested by
Fig. 2a (right panel), the closed loop transfer function can exhibit a bandpass filter
characteristic with a resonant frequency at much lower (and therefore biophysically
plausible) frequencies, and with a higher damping ratio.

However, non-zero delays make the closed loop system unstable when K is suf-
ficiently large. Therefore, we will seek an appropriately small value of K , such that
there is a large resonant (and therefore bandpass filter like) response, but a stable
system.

To illustrate the resonant or bandpass filter-like behaviour of the closed loop
system, Fig. 2b shows the maximum response of |H(iω)|2, and the frequency of the
maximum response (in hertz) as a function of K , up to the maximum stable K , for
four values of delay, τl . The other time constants are τr = 0.5ms, and τd = 5ms.
The figure shows that although the system is always stable for τl = 0, it only shows a
bandpass response at high frequencies, and with very large attenuation with respect
to K = 0. As τl increases, however, the frequency of the maximum response also
decreases, while still enabling a gain in amplitude responsewith respect to the system
without delay or with respect to K = 0 with delay.

2.3 Example Simulations

We consider τr = 0.5ms, τd = 5ms and τl = 1ms. With these values, it can easily
be shown numerically that the closed loop system is unstable for k � 7, as illustrated
in Fig. 2b. As shown in Fig. 2a, the system has a bandpass filter characteristic with a
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Fig. 3 a Simulated response of the closed loop system with feedback gain K = 6 and delay
τl = 1ms, in response to a chirp input, for three values of K . b Simulated response of the closed
loop system with feedback gain K = 6 and delay τl = 1ms, in response to white noise, for three
values of K .

frequency of maximum response approaching 180Hz as K approaches its maximum
stable value, near K = 7. To illustrate the bandpass response for a non-random signal
we use a swept chirp input of the form x(t) = sin (πkt2), which is a signal with
instantaneous frequency fi = kt Hz that linearly increases with time.

Fig. 3a shows the input chirp when turned on after allowing transient response
to a step DC input to die away. The figure also shows the results of simulations of
system response, i(t), for K = 0, K = 2 and K = 6. For K = 6, the closed loop
gain exceeds unity in the neighbourhood of the resonant frequency, and therefore the
feedback can be interpreted as amplifying frequencies within the passband. We also
illustrate the bandpass response using white noise. Simulated closed loop responses
are shown in Fig. 3b for three values of K . When the input is white noise, the power
in the system response is many times smaller than that of the input, and its peak
amplitude is much smaller than transient damped oscillations, and therefore we
have not shown the input noise, or the transient responses. This example shows that
narrowband oscillations are clearly observable in the case of K = 6.

A source of energy is required for the feedback amplification factor K , and in the
biophysical system it is not clear how this amplification factor may be realised. In the
following section we consider one biophysically plausible mechanism for enabling
proportional gain, K . We then study the impact of feedback noise.

3 Feedback Amplification and Noise Reduction Via Redundancy

We now compare the ‘autapse’ model—a single neuron with ideal noiseless negative
feedback (with gain)—with several scenarios where the feedback is noisy: (i)
distributed feedback with stochastic additive noise; (ii) distributed feedback with
quantization noise; (iii) distributed feedback with quantization and stochastic noise.



Distributed Bandpass Filtering and Signal Demodulation 163

We find that when distributed feedback is quantized, stochastic noise significantly
enhances overall performance compared with the absence of stochastic noise.

3.1 Ideal Distributed Feedback Equivalent to Feedback Gain of K

We consider now the case where feedback amplification is due to redundancy. The
ideal scenario is that K parallel and identical systems receive the same input, but as
well as self-feedback, each system receives feedback from all the other systems. To
enable more general analysis below, we write the feedback signal from system i to
system j as Fi j (s) = fi j [Ii (s)], where fi j (·) is an arbitrary function, and also write
the overall feedback to system j as Fj (s)—see Fig. 4.

Without any noise, we have fi j [Ii (s)] = Ii (s)∀ j . Therefore if we set N = K ,
then Fj (s) = ∑K

i=1 Ii (s)∀ j . Given that each system receives the same input, it will
also produce the same output and feedback signal, I (s), and therefore all feedback
signals are identical with Fj (s) = K I (s) exp (−τl s). This illustrates that redundancy
achieves feedback gain K in the overall system.

3.2 Distributed Feedback with Additive White Noise

Now we consider the same scenario but suppose each output signal, Ii (s) acquires
independent additive Gaussian white noise, ηi (t) with mean zero, and variance σ 2,
prior to being fed back. We write the Laplace transform of the noise as Ni (s), and
thus Fi j (s) = fi j [Ii (s)] = Ii (s) + Ni (s)∀ j . Due to the independence of the noise
from x(t), and the linearity of the system, each feedback noise is equivalent to input
noise that subtracts from x(t). The subtraction is equivalent to an addition, due to the
symmetry of Gaussian noise about its mean. Therefore, since there are K feedback
signals, the total equivalent input noise for system j is ξ j (t), where ξ(t) is white
noise with zero mean and variance Kσ 2. However, this compares very favourably

Fig. 4 Parallel redundant network of systems receiving the same input (left panel). The feedback
signal paths to each system are shown in the right panel: system j receives feedback from all
systems including itself, and as in the original stand-alone system, the feedback path is delayed
with respect to the output of the system
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with the situation in the ideal non redundant ‘autapse’ model. If there were feedback
noise in that system, the feedback noise would be amplified, resulting in variance
K 2σ 2. Therefore, the distributed feedback model will have a signal-to-noise ratio
K times larger than the noisy autapse model, and is equivalent to the autapse model
with additive input noise with variance Kσ 2. We can write the feedback signal into
each system j as Fj (s) = K I (s)+∑K

i=1 Ni (s), and thus the noise signal is identical
in each output as well as the input.

Increasing redundancy (more parallel systems) whilst retaining only K feedback
signals would potentially enable the noise at the output to be non-identical for each
system, and thus allow noise reduction by averaging the outputs. However as soon as
the feedback signals become sparse rather than dense, this introduces the possibility
of instability, since some systems will impact on other systems after longer delays.
Even in the case of K +1 systems with only autapses forbidden, this leads to positive
feedback loops, and quite complex equivalent transfer functions. Therefore, we leave
study of this for future work.

3.3 Distributed Quantized Feedback

In many engineered systems, feedback is only available in a digitized form. This
means the feedback signal has been quantized in amplitude, and this quantization
can be considered as a form of noise. Often quantization noise is modelled as additive
white noise, but this is only an approximation that is more inaccurate as the number
of quantization levels becomes small. We now consider a scenario similar to that of
the previous subsection, except that instead of additive white feedback noise, each
feedback signal is quantized. Like the additive white noise case, we can expect that
each system j will have identical outputs, due to the redundancy. The overall output
noise should decease as the number of quantization levels increases. However, unlike
the additive stochastic noise case, the overall output variance will be of the order of
K 2 rather than K , since the noise signals will not be independent, and redundancy
does not provide a benefit in terms of noise reduction comparedwith the noisy autapse
model.

3.4 Distributed Quantized Feedback with Independent
Stochastic White Noise Prior to Quantisation

If the feedback signal is corrupted by white noise prior to quantization, then this
can make the quantization noise largely independent for each feedback signal. This
again enables the possibility of noise reduction due to averaging where the feedback
signals enter each system. See [17, 18] for discussion.
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3.5 Example Results

Figure5 shows how well the models described above perform in comparison with
the ideal autapse model described in Sect. 2. In each case we simulate the system
for a variety of noise levels, and then calculate the output signal-to-noise ratio in
comparison with the ideal response.

These results show that the distributed feedback model with stochastic noise
provides much improved performance than the autapse model with feedback noise,
as expected. They also show that when the feedback is quantized, that stochastic
noise significantly enhances performance over quantization alone. This is in line
with theoretical work presented in [17], and implies that the stochastic and quantized
feedback noise model can be described as a stochastic pooling network [18].

4 Possibilities for Bio-Inspired Engineering

We have discussed a model that plausibly explains why narrowband oscillations
are often observed in recordings of cortical activity [10]. Models of this type
have received much attention in neuroscience and computational neuroscience
[10, 13, 14]. What is not known, however, is how cortical networks may utlize such
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bandpass filter-like characteristics, if at all. From an engineering perspective, how-
ever, is it possible that a designed system may benefit from mimicking some aspect
of how the cortical network achieves a resonant characteristic?

One common use for bandpass filters is in modulated communication. Their use
enables frequency multiplexing, and they are also useful in demodulation of FM
signals. Given that in the first case an ideal filter has a flat passband, its seems
unlikely that one would wish to design a filter like the cortical network. However,
there is more potential for demodulation of FM signals, since a filter with a linear
increase in gain with frequency is required in a frequency discriminator.

We therefore propose in future work to compare performance achieved by each
model described in Sect. 3, when the input is a linearly swept chirp, or other FM
signal, and the output of the system is used to estimate instantaneous frequency as a
function of time. We also propose that the distributed noisy feedback model may be
adapted in designs of distributed communication systems consisting of small, cheap
and redundant nodes, similar to models discussed in [18].
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