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Abstract It is well known that the resolution (defined as the smallest change in the
signal being detected or quantified) of a sensor can be improved by increasing the
observation time T of the measurement; typically, the resolution scales as 1/T a .
Typically a = 0.5, or a < 0.5 if low frequency noise is present. We show that a
neuronal system can display an enhanced scaling in the resolution,with the parameter
a = 1; this occurs when the “inter spike intervals” are negatively correlated. We also
show that, by introducing negative correlations into the time domain response of
a nonlinear dynamical sensor, it is possible to replicate this enhanced scaling. This
affords us the possibility of designing a novel class of biomimetic sensors that results
in improved signal resolution by functionally utilizing negative correlations.

1 Introduction

In any measurement, one aspires to the highest possible accuracy. If the accuracy
of a single measurement is not acceptable, usually due to unacceptable measure-
ment errors e.g. stemming from a noise-floor, than the measurements are repeated N
times and a statistical average (usually just the arithmetic mean) of the measurable
is computed. For statistically independent errors, the total error of the measure-
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ment is reduced as 1/
√

N , i.e. the accuracy of the measurement improves slowly
in comparison to the rate of accumulation of the (statistical) data that are a part
of the averaging operation. An improved scaling (improved rate of the reduction for
measurement errorwith accumulating statistical data) is possible if themeasurements
are negatively correlated. This has been predicted to be a possibility in physiology
[1]. Such living systems could, thus, improve their response to a weak target signal
thereby benefitting from neagative correlations.

It is, of course, a very attractive undertaking to design engineering systems (or
sensors) as analogs of a biological system which has (qualitative) matching dynam-
ics. This is the aim of this paper. We show how the configuration and operation of
a candidate nonlinear sensor having a temporal (in this case, event-based) readout,
can be adapted to mimic the dynamics of an integrate-fire neuron with negatively
correlated inter-spike intervals; these ideas were formulated by us in recent work [2].
We show that the sensor in this “biomimetic” mode yields a greatly reduced mea-
surement error with the improved scaling 1/N , when certain constraints (that will
be quantified) are met.

In what follows, we start with the simplest neural dynamical model (perfect
integrate-fire) and use it to explain the concept of “negative correlations”; we also
introduce a definition of the neuron’s resolution. The rest of the paper is concerned
with a simple nonlinear dynamic sensor, a single-core fluxgate magnetometer, that
operates in the time domain and whose dynamics can be mapped to the (integrate-
fire) neural dynamics. Operating the magnetometer in this “biomimetic mode” is
shown to lead to improved magnetic signal detection.

2 Perfect Integrate-Fire (PIF) Neuron Model

It has been shown [1] that electrosensory afferents of weakly electric fish have
non-renewal statistics characterized by the fourth (or higher) Markov order. This
means that a minimally correct model of neuronal spike trains for the electrosensory
afferents should comprise four stochastic equations. It was also shown [1], that the
observed significant improvement in the detectability of a weak signal by the elec-
trosensory afferents, can be accounted for by amodel ofMarkov order one. Such first
Markov order models as the Perfect Integrate Fire (PIF) model with noisy thresh-
old [3] are, in fact, known to describe a noise canceling mechanism that might, in
fact, be realized in real neurons. We will see, later in this work, that the simple PIF
model affords a prototype of the biomimetic magnetic field sensor. First, however,
we discuss the effects of negative correlations in a simple PIF model.

The PIF model with noisy threshold can be described by the following equation,

v̇ = β + s, (1)

where s is the (constant) signal to be estimated, β a constant bias current, and v
the voltage across the nerve membrane. The threshold θ is a uniformly distributed



Enhancing Signal Resolution in a Noisy Nonlinear Sensor 143

Fig. 1 The PIF model:
dynamics of the membrane
voltage v and the threshold θ

random variable, θ ∈ [θa − Du, θa + Du], that is independently defined for every
inter-spike interval. Du is the noise intensity, and θa the mean threshold, θa = 〈θ〉.
The mode of operation is as follows: when the voltage v reaches the threshold θ ,
a spike is fired, a new threshold is chosen, and the voltage is reset to a new level
η = θ − θa ; this is schematized in Fig. 1. The ISIs generated by the model (1), with
the above configuration of the threshold following each firing event, are strongly
negatively correlated.

Denoting the times at which the level crossings occur as t0, t1, . . . , tk , the values
of the threshold at crossing as θ0, θ1, . . . , θk , and the reset levels as η0 = θ0 −
θa, . . . , ηk = θk − θa it is straightforward to show from (1) that the kth interspike
interval (ISI) is given by,

Tk = (tk − tk−1) = θk − θk−1 + θa

β + s
. (2)

We decompose the inter-spike interval Tk into three quantities so that

Tk = δk + Δ − δk−1,

where we introduce the “jitters” δk−1 and δk as

δk = θk/(β + s), δk−1 = θk−1/(β + s),

and the mean inter-spike interval,

Δ = 〈Tk〉 = θa/(β + s). (3)

If the threshold is noiseless, and the signal s = const , then the process is exactly
periodic because the spikes occur, precisely, at times tk = kΔ + t0.

The serial correlation coefficient of the stochastic process can be calculated as,

ρ(m) = 〈(Tk − 〈Tk〉)(Tk+m − 〈Tk+m〉)〉
σTk σTk+m

=
⎧
⎨

⎩

1 : m = 0,
− 1

2 : m = 1,
0 : m > 1.

(4)
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It is easy to see the ISIs generated by the model (1) are strongly negatively correlated
with ρ(1) = −0.5.

We now introduce the sum of N inter-spike intervals,

τob,N =
N∑

k = 1

Tk = δN − δ0 + NΔ, (5)

which is equivalent to an observation time in the measurement. The average of this
sum is the mean observation time

Tob = 〈τob,N 〉 = NΔ, (6)

and the variance,
σ 2

τob,N
= 2σ 2

δ , (7)

is independent of N . This means that the noise in our measurement does not accu-
mulate with an increasing number (N ) of measurements. This is a direct result of
the noise canceling mechanism that makes it attractive for practical applications to
engineered systems .

To characterize the accuracy of the signal s estimation from the ISIs, we introduce
the resolution R defined in [2, 4] as,

R =
∣
∣
∣
∣
∂Tob,N

∂s

∣
∣
∣
∣

−1

στob,N , (8)

R is the smallest resolvable value of the measured quantity. The resolution is readily
derived via a Taylor expansion of Tob about s = 0: Tob(δs) = Tob(0)+dTob/ds×δs.
Noting that, physically, the resolution represents the signal value that results in στob,N

being equal to the difference in Tob with andwithout signal, we see that the resolution
is given by dTob/ds × δs where the differential is evaluated at s = 0. Finally we set
δs = R when στob,N = Tob(0) − Tob(s). One can readily obtain the resolution R for
the PIF model in the limit of very small target signal as:

R =
∣
∣
∣
∣

∂

∂s

Nθa

β + s

∣
∣
∣
∣

−1

s = 0

√
2σδ =

√
2σδβ

2

θa

1

N
, (9)

which is seen to be proportional to 1/N , an improvement over the 1/
√

N dependence
for typical renewal processes (without negative correlations). We remind the reader
that a smaller value for R implies better signal detection/quantification performance.
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3 A Magnetic Field Sensor in the Biomimetic Mode

The PIF model, introduced above, can be characterized by (i) the dependence (i.e.
rise) of the membrane voltage with external signal, and (ii) a comparator which
imposes the thresholdwhich, in turn, triggers (iii) the resettingmechanism.Tooperate
in the “biomimetic mode”, a sensor should mimic the oscillatory dynamics of the
PIF model with negative correlations in its inter-spike intervals to exploit the noise
canceling mechanism. We now consider the dynamics of a fluxgate magnetometer
[4] that is operated in the temporal domain.

It is well known that the relaxation time of the magnetization variable in a fer-
romagnetic core depends on an applied external magnetic field. By altering the
directions of the applied magnetic field, we can generate conditions for the fer-
romagnet under which its magnetization will periodically increase and decrease, i.e.
it will oscillate (the oscillations are non-sinusoidal, of course). We can map the fer-
romagnetic core dynamics onto a PIF neuronal model by associating the increasing
magnetization with the increasing membrane voltage of the cell membrane, and the
decreasing magnetization with the reset in the membrane voltage.

As might be imagined, some engineering problems must be solved for a practical
realization of the biomimetic mechanism. First, the magnetization is an internal
parameter of the ferromagnet, and it is not easy to measure it directly. Therefore
we replace, in our measurements, the magnetization with the B-field that is a linear
combinationof anunknownfield B0 (the target field that is to bemeasured), the known
field B+ that is used to induce the relaxation dynamics, and the magnetization M :

B = B0 + B+ + μ0M, (10)

where μ0 is the magnetic constant. Since B0 and B+ are assumed to be constants
during the relaxation process, the B field relaxes like the magnetization with rate

θ

M
0B

B

J

J

1

2

−

(b)
θ τ τ

M
0B

+B

J

J

1

2

(a)

Fig. 2 The magnetic field sensor. a The magnetization M increases in the presence of the magnetic
fields B+ and B0. The field B+ is assumed to be B+ � |B0| and corresponds to the current J1 in
the coil. b The resetting of the core magnetization occurs when the it reaches a threshold value θ in
the magnetic comparator. At this point, the current J1, in the coil, is replaced by the current J2 for
a time interval τ ; this corresponds to a magnetic field switch from B+ to B− with an attendant coil
current J2



146 A. P. Nikitin et al.

d B/dt = μ0d M/dt . Having made the change in variables, we can use any B field
sensor,with a very sharp sigmoidal characteristic, as a comparator of the B fieldwith a
threshold θ that will trigger the reset mechanism (see Fig. 2). The second engineering
problem stems from the impossibility of, instantly, resetting the magnetization M in
the ferromagnet. To reset the magnetization, we need to replace the magnetic field
B+ with B− and this field is applied for a duration τ , to allow the magnetization
to reach an acceptable level (this level is a ‘design parameter’ that is controlled via
τ – careful selection is required for optimal performance); this is schematized in
Fig. 2b.

The dynamics of the magnetization M of a single–domain ferromagnetic core
in the one dimensional case can be described by the following differential Eq. (5)
(see [4]),

τa
d M

dt
= −M + Ms tanh

(
C B

μ0

)

, (11)

where Ms is the saturation level of the magnetization, and τa its characteristic
relaxation time. In Eq. (11), C is a non-linearity parameter that is proportional
to the Curie temperature-to-temperature ratio. The parameter C characterizes the
‘ferromagnet–paramagnet’ phase transition: if C > 1 the core remains in its ferro-
magnetic phase; if C < 1 the core is in the paramagnetic phase. We now consider
the magnetization in two operating scenarios.

3.1 The Noiseless Case

In the noiseless case, the magnetic sensor mimics a periodic oscillator. The phase
plane of this oscillator is plotted in Fig. 3 wherein we show a working region of
the parameters M and B bounded by the sections (branches) EF and GH. All the
nonlinear dynamics occur on these branches. Switches between the branches occur

Fig. 3 The phase plane of the
ferromagnetic oscillator in the
variables M and B. The “limit
cycle” E’F’G’H’ is shown in
red with the arrows indicating
the direction of motion on
the phase plane. Dashed
lines show the saturation
levels −Ms and Ms of the
ferromagnet, and the threshold
level θ

B

M

O θ

G F

Ms

s

E’

EH

H’

G’ F’

−M



Enhancing Signal Resolution in a Noisy Nonlinear Sensor 147

in two cases: when the B field crosses the threshold level θ ; and when the system is
forced to the branch GH for a duration τ .

The points in Fig. 3 have the following coordinates:

E = [
B0 + B+ + μ0MH , MH

]
,

F = [
B0 + B+ + μ0MF , MF

]
,

G = [
B0 + B− + μ0MF , MF

]
, (12)

H = [
B0 + B− + μ0MH , MH

]
,

where the parameters MH and MF can be found from the equation d M/dt = 0. This
condition leads to the transcendental equations:

MH = Ms tanh

(

C
B0 + B−

μ0
+ C MH

)

,

MF = Ms tanh

(

C
B0 + B+

μ0
+ C MF

)

,

whose solutions MH and MF can be found numerically (here we assume that−Ms <

MH < MF < Ms). We observe that the working region is less than the physically
permitted states [B, M] of the oscillator. The true region of acceptable values for the
magnetization would, normally, be bounded by the saturation values −Ms and Ms

instead of MH and MF . However, we are concerned with the working region of the
phase plane that is acceptable for the periodic oscillations, i.e. the region where an
attractor can be located.

The role of a limit cycle (attractor) is played by the quadrilateral E’F’G’H’.
Suppose a trajectory of the dynamical system starts at E’ where, according to the
equation B = B0 + B+ + μ0M , the magnetization M is linearly dependent on
the B field. Both M and B are non-linearly growing quantities due to Eq. (11). As
the B field crosses the threshold θ (pointF’), the trajectory is instantly switched to the
point G’. Now the trajectory, according to Eq. (11), relaxes during the time interval τ
to the point H’. Then, the trajectory instantly switches onto the branch EF (the point
E’). It is easy to see from Fig. 3 that, for the existence of periodic oscillations, the
threshold θ should satisfy the condition,

B0 + B+ + μ0MH < θ < B0 + B+ + μ0MF .

If θ > B0 + B+ + μ0MF (the vertical dashed line does not cross the branch EF),
then F is a stable point. We note that we are using a discrete two-state dynamical
characterization i.e. for simplicity, we are using the instantaneous switches and the
resetting time τ instead of a system of differential equations and their solutions. This
means that a bifurcation (likely of saddle-node type) occurs at θ = B0+ B++μ0MF

but cannot be correctly characterized unless we use the full differential equations to
characterize the dynamical behavior (i.e. switching events and the resetting mecha-
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nism). The above treatment (assuming the device to behave like a static nonlinearity)
is valid as long as the characteristic time constant τa is the smallest time-scale in the
system.

3.2 The Threshold Noise Case

Analogous with [3] we introduce noise in the threshold θ as a uniformly distributed
variable in the interval [θa −Du : θa +Du]. According to our analysis of themagnetic
sensor model in Sect. 3.1, the sensor output will retain its oscillatory properties if the
parameters of the threshold noise satisfy the following inequalities, θa − Du > MH

and θa + Du < MF . It is important to note that, for modeling purposes, all noise
sources are assumed to be internal to the sensor (the resolution is an intrinsic property
of the sensor and cannot be defined in the presence of external noise); these are

Fig. 4 a The correlation coefficient ρ(n). b and c The magnetization M as a function of time t for
the model described via (11). The time series corresponds to non-correlated intervals in b (τ = 3.0)
and negatively correlated intervals in c (τ = 0.5). The parameters are θa = 2.5, Du = 0.05, μ0 =
1, B+ = −B− = 2, C = 3, and B0 = 0
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“consolidated” into an effective threshold noise. In our experiments (see e.g. [4] and
references therein) we find that this is, in fact, a good assumption; the switching
events are relatively clean with sensor noise appearing as a flucuating threshold.

Numerical simulations of Eq. (11) show that the level that the magnetization
is reset to is strongly dependent on τ . For large τ (see Fig. 4b for τ = 3)
the magnetization approaches the saturation value and this reduces the negative
correlation, as observed in the behavior of ρ(1) (see Fig. 4a for τ = 3.0). The reduc-
tion in negative correlation occurs because saturation of the magnetization results in
a loss of memory in the magnetization variable when the threshold is crossed; for
very strong saturation the magnetization is, effectively, reset to the same value every
time with all memory effects being removed. In the opposite case, when τ is small,
the level that the magnetization is reset to strongly depends on the value of the mag-
netization when the threshold was crossed and, hence, strong negative correlation is
observed (see Fig. 4c for τ = 0.5). The negative correlations can be characterized
by the parameter ε, introduced as the half distance to −1/2 (see Fig. 4a),

ρ(1) = −1

2
+ ε

2
.

The target magnetic field B0 can be estimated from N time intervals, Ti , i =
1, 2, ..., N as the total observation time τob = ∑N

i = 1 Ti . The resolution, R, of the
magnetic sensor is, then, defined via Eq. (8) with the replacement

στob,N = στob =
√

〈[τob − Tob]2〉,

with the mean observation time identified as Tob = 〈τob〉, and s = B0 the target
signal.

The (monotonic) dependence of the observation time Tob on the external magnetic
field B0 is shown in Fig. 5a. This dependence can be used to estimate the target field.
Fig. 5b shows that the resolution, R, has the scaling T −0.5

ob for the non-correlated
intervals (e.g. for parameter value τ = 3.0). However, when strong negative correla-
tions exist (e.g. τ = 0.1) the scaling is more complex. The scalings T −1

ob and T −0.5
ob

are shown as the black and red straight lines and these are seen to asymptote to the
τ = 0.1 data at small and large observation times respectively. This provides clear
evidence that, at short observation times, the enhanced scaling T −1

ob is observed; this
scaling crosses over to T −0.5

ob at large observation time.
We have obtained theoretical results [6] that show that this dual scaling behavior

appears to be a universal property in the sense that it occurs for linear and nonlinear
reset mechanisms and in models of sensors and neural models. Moreover, our theory
predicts the number of periods N∗ at which the scaling crosses over from T −1

ob to
T −0.5

ob ; the result is N∗ � 1/ε (see Fig. 5b) (note that the parameter ε can be estimated
directly from the numerical results presented in Fig. 4a).
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Fig. 5 a The observation time Tob as a function of the external magnetic field B0. b The resolution,
R, versus the observation time, Tob. The parameters are θa = 2.5, Du = 0.05, μ0 = 1, B+ =
−B− = 2, C = 3

4 PIF Model with Deterministic Errors in the Reset

To explain the double scaling in the magnetometer model (see previous section), we
introduce here the following solvable model with “deterministic errors” in the reset.
The model is a modified PIF model (MPIF); it differs from the standard PIF model
only through the different reset mechanism. In the PIF model, the resetting levels are
ηk = θk − θa , i.e. the resetting level ηk is the result of a precisely shifted threshold
θk . In the MPIF model, the shift of the threshold θk occurs with a “distortion” due to
the transformation,

ηk = (θk − θa)(1 − c).

In Fig. 6, it is easy to see that the function η(t) reproduces the dynamics of θ(t) with
a compression on the v-axis. Thus, the parameter c is called the “compression”. If
c = 0, the MPIF model coincides with the PIF model; for c = 1, the resetting occurs
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Fig. 6 Modified PIF (MPIF)
model: typical dynamics of
the membrane voltage v, the
threshold θ and the resetting
level η

tt4t1 t t32 5 t

v

θ
θ1 θ2

θ3 θ4
θ5

θa

η
η η η η η1 2 3 4 5

at the constant level, ηk = 0. In this case, it should produce renewal oscillations.
Hence, the compression c plays a role similar to the parameter τ in the magnetometer
model.

Since the kth inter-spike interval produced by the MPIF model is

Tk = (tk − tk−1) = θk − θk−1 + (1 − c)θa + cθk

β + s
, (13)

we can decompose it into three random variables so that

Tk = δk + Δk − δk−1,

where we introduce the “jitter” terms δk = θk/(β + s), δk−1 = θk−1/(β + s), and
the noisy component of the ISI

Δk = θa

β + s
+ c

θk−1 − θa

β + s
. (14)

The variableΔk in Eq. (14) differs fromΔ in Eq. (3) through a noisy component that
is proportional to the parameter c. Therefore, the sum of N time intervals

τob,N =
N∑

k = 1

Tk = δN − δ0 + N
θa

β + s
+ c

β + s

N−1∑

k = 0

(θk − θa) (15)

includes the noisy term that is proportional to c and increasing with N .
The serial correlation coefficient differs from the one calculated for the PIFmodel;

it has the additional term,

ρ(1) = −1

2
+ ε

2
, (16)

where the parameter ε is introduced as

ε = c2

2(1 − c) + c2
. (17)

For very weak compression, c 	 1, the last equation reduces to
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ε � c2

2
. (18)

It is easy to show that the average observation times for both the PIF and theMPIF
models are identical, Tob = 〈τob,N 〉 = Nθa/(β + s), but the variances are different.
Moreover, in contrast to Eq. (7), the variance for the MPIF model,

σ 2
τob,N

= 2σ 2
δ

(

1 + c + N
c2

2

)

, (19)

increases with N . This dependence on N influences the resolution R. The resolution
R for the MPIF model in the limit of an infinitesmially small target signal is

R =
√
2σδβ

2

θa

1

N

√

1 + c + N
c2

2
, (20)

which, for a very weak compression c 	 1, and using the approximation Eq. (18)
becomes

R =
√
2σδβ

2

θa

1

N

√
1 + εN . (21)

Now, it is easy to see that the resolution R has different scaling for different ranges
of N . If N 	 1/ε, the resolution is

R �
√
2σδβ

2

θa

1

N
;

If N � 1/ε, the resolution is

R � cσδβ
2

θa

1√
N

.

Since the observation time Tob is proportional to N , the resolution also has the double
scaling in the terms of the observation times, 1/Tob and 1/

√
Tob.

5 Conclusion

We conclude that operating a nonlinear sensor in the biomimetic mode can improve
its performance, as quantified via the resolution. In particular, the analysis indicates
that, absent the luxury of a long observation time, the above mode of operation might
be particularly helpful. We reiterate that there is nothing special about the single core
fluxgate magnetometer (used, here, as a test device); operating a generic nonlinear
sensor in the correct working range should allow the benefits of negative correlations
to be realized.
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