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Abstract The field of Quantum Chaos is referred to as the study of quantum
behaviors of systems whose corresponding classical dynamics are chaotic, or study
of quantum manifestations of classical chaos. Equivalently, it means that quantum
behaviors depend on the nature of the classical dynamics, implying that classical
chaos can be used to control or manipulate quantum behaviors. We discuss two
examples here: using transient chaos to control quantum transport in nanoscale sys-
tems and exploiting chaos to regularize relativistic quantum tunneling dynamics in
Dirac fermion and graphene systems.

1 Introduction

Controlling chaos in dynamical systems has been studied for more than two decades
since the seminal work of Ott, Grebogi, and Yorke [1]. The basic idea was that chaos,
while signifying random or irregular behavior, should not be viewed as a nuisance
in applications of nonlinear dynamical systems. In particular given a chaotic system,
the fact that there are an infinite number of unstable periodic orbits embedded in the
underlying chaotic invariant set means that there are an equally infinite number of
choices for the operational state of the system depending on need, provided that any
such state can be stabilized. Then, the intrinsically sensitive dependence on initial
conditions, the hallmark of any chaotic system, implies that it is possible to apply
small perturbations to stabilize the system about any desirable state. Controlling
chaos has since been studied extensively and examples of successful experimental
implementation abound in physical, chemical, biological, and engineering systems
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[2]. The vast literature on controlling chaos, however, has been limited to nonlinear
dynamical systems in the classical domain.

Recently, it has been articulated that chaos can be exploited to control or manip-
ulate quantum-mechanical behaviors [3, 4]. For example, in the context of quantum
transport through nanostructures, a fundamental characteristic is conductance fluc-
tuations. It has been demonstrated that chaos, more specifically transient chaos,
can be effective in modulating the conductance-fluctuation patterns, and it has been
suggested [4] that this can be realized experimentally by applying an external gate
voltage in a device of suitable geometry to generate classically inaccessible poten-
tial barriers. Adjusting the gate voltage allows the characteristics of the dynamical
invariant set responsible for transient chaos to be varied in a desirable manner which,
in turn, can induce continuous changes in the statistical characteristics of the quantum
conductance-fluctuation pattern. In another example, it has been shown that chaos
can be utilized to suppress, significantly, the spread in the tunneling rate commonly
seen in systems whose classical dynamics are regular, and this is called regularization
of quantum tunneling dynamics by chaos [3]. More recently, it has been demonstrated
that similar effects arise in relativistic quantum systems [5].

This Brief Review has two purposes: (1) to discuss the two aforementioned
examples of exploiting chaos for quantum control, and (2) to argue that the prin-
ciple of chaos-based quantum control is more general with potentially significant
applications in nanoscience.

2 Controlling Quantum Transport by Transient Chaos

A fundamental quantity characterizing the transport of an electron through a nanos-
tructure, such as a quantum dot or a quantum point contact, is quantum transmission
probability, or simply quantum transmission. In general, quantum transmission is
determined by many electronic and system parameters such as the Fermi energy, the
strength of external magnetic field (if there is one), and the details of the geometry of
the structure. If the structure is connected through electron waveguides (or leads) to
electron reservoirs (i.e., contacts) to form a circuitry, the conductances defined with
respect to various voltage biases among the contacts, together with the correspond-
ing currents, will be determined by the quantum transmission [6]. This means that
the conductances can also depend sensitively on electronic and geometrical para-
meters. For example, as the Fermi energy of the electron changes, the conductances
can exhibit wild fluctuations and sharp resonances [7–13]. In applications such as
the development of electronic circuits and nanoscale sensors, severe conductance
fluctuations are undesirable and are to be eliminated so that stable device operation
can be achieved. The outstanding question is then, can practical and experimentally
feasible schemes be articulated to modulate quantum conductance fluctuations? It
has been demonstrated recently and understood theoretically that classical transient
chaos can be used to effectively modulate conductance-fluctuation patterns associ-
ated with quantum transport through nanostructures [4].
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Intuitively, the basic principle underlying the transient-chaos based strategy for
modulating quantum transport is quantum interference. It has been known that quan-
tum pointer states, which are resonant states of finite but long lifetime formed inside
the nanostructure [14–16], can cause sharp conductance fluctuations - a kind of Fano
resonance [17, 18]. To give a specific example, consider quantum-dot systems, a par-
adigm for investigating all kinds of quantum transport phenomena through nanostruc-
tures. Such a system typically consists of a finite device region of certain geometrical
shape, such as a square, a circle, or a stadium, and a number of leads connected with
the device region. For a quantum-dot system whose classical dynamics is either regu-
lar or contains a significant regular component, there are stable periodic orbits in the
classical limit. If the dot geometry is closed, highly localized states can form around
the classically stable periodic orbits as a result of quantum interference. When elec-
tronic waveguides (leads) are attached to the quantum dot so that it is open, some
periodic orbits can still survive, leading to resonant states, or quantum pointer states.
Since the corresponding classical orbits are stable, the resonant states can have long
lifetime, so their coupling to the leads is weak. As a result, narrow resonances can
form around the energy values that are effectively the eigenenergies for the stable pe-
riodic orbits in the corresponding closed system. When the dot geometry is modified
so that the underlying classical dynamics becomes fully chaotic, no stable periodic
orbits can exist. Although scars can still form around classically unstable periodic
orbits in a closed chaotic system [19], the corresponding resonant states in the open
system generally will have much shorter lifetimes. This means that these resonant
states do couple to the leads more strongly, broadening the narrow resonances in
the conductance-fluctuation pattern. Here chaos is transient because the system is
open. According to the theory of transient chaos [20], the dynamical invariant sets
responsible for transient chaos are non-attracting chaotic sets in the phase space. If
the properties of transient chaos can be adjusted experimentally by parameter tuning,
the quantum conductance fluctuation-patterns can then be controlled in a desirable
manner. For example, one can change the effective geometry of the dot structure con-
tinuously so as to enhance the escape rate, a basic quantity characterizing transient
chaos, and this could lead to significantly smoother quantum-conductance fluctua-
tions.

To realize quantum control by using chaos, we conceive generating a region about
the center of the device or structure with high potential so that it is impenetrable to
classical particles. For example, consider a square quantum dot, a prototypical model
in semiconductor two-dimensional electron-gas (2DEG) systems. When the dot is
closed, the corresponding classical dynamics is integrable so that extremely nar-
row resonances can arise in the quantum transport dynamics of the corresponding
open-dot system. Now imagine applying a gate voltage perpendicular to the device
plane to generate a circular, classically forbidden region about the center of the dot,
as shown schematically in Fig. 1. In general, the potential profile will be smooth in
space. However, qualitatively, the classical scattering behavior is similar to that from
an infinite potential well. Thus it is reasonable to impose the infinite potential-well
assumption for the central region, which defines a “forbidden” region. Varying the
voltage V0 can change the effective radius R of the forbidden region. Classically, the
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Fig. 1 Illustration of a possible scheme to control transport through a two-dimensional quantum-dot
system. When semiconductor materials (e.g., silicon) are used, the system is the traditional two-
dimensional electron-gas (2DEG) system described by the Schrödinger equation in non-relativistic
quantum mechanics. If the material is graphene, in certain energy regime the system is described
by the Dirac equation in relativistic quantum mechanics. By applying a suitable gate voltage per-
pendicular to the device plane to generate a circular forbidden region at the center of the device,
the resulting closed system is a Sinai billiard, whose classical dynamics is fully chaotic. Open
quantum-dot system can be formed by attaching two leads to the billiard system, one on the left and
another on the right side. The classical dynamics of the device can thus be characterized as chaotic
scattering

closed system is thus a Sinai billiard [21], which is fully chaotic, insofar as the radius
of the central potential region R is not zero. When leads are connected to the device
region so as to open the system, chaos becomes transient. The dynamical character-
istics of the underlying chaotic invariant set can be adjusted in a continuous manner
by increasing the radius R [22]. Quantum mechanically we thus expect to observe
increasingly smooth variations in the conductance with, e.g., the Fermi energy, which
has been demonstrated [4] using both semiconductor 2DEG and graphene [23–26]
systems.

Insights into why classical chaos can smooth out quantum conductance fluctua-
tions can also be gained from the semiclassical theory of quantum chaotic scattering
[27–29]. In particular, in the semiclassical regime, it was established by Blümel
and Smilansky that the energy autocorrelation function of the quantum transmission
fluctuation is proportional to the Fourier transform of the particle-decay law in the
classical limit [27]. For fully developed chaotic transport through a quantum dot, the
decay law is exponential with the rate κ . As a result, the quantum energy correlation
function decays as a Lorentzian function with the width given by �κ , where � is the
Planck’s contant. In the theory of transient chaos [20], κ is the escape rate associated
with the underlying non-attracting chaotic set. As the radius of the central potential
region is increased, κ also increases. The energy autocorrelation function then decays
more slowly, signifying less fluctuations, i.e., less number of sharp resonances in
the quantum transmission. This semiclassical argument suggests that the degree of
quantum transmission fluctuations can be controlled by classical chaos.

Extensive numerical support for the principle of transient-chaos based control of
quantum transport and a detailed theoretical analysis can be found in Ref. [4, 30].
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3 Effect of Chaos on Quantum Tunneling

The principle of regularization of quantum tunneling by chaos can be understood
by considering the prototypical system in Fig. 2, which consists of two symmetrical
cavities connected by a one-dimensional potential barrier along the line of symmetry.
When the classical dynamics in each cavity is integrable, for sufficiently large energy
the tunneling rate can have many values in a wide interval. Choosing the geometry
of the cavity such that the classical dynamics become chaotic can greatly enhance
and regularize quantum tunneling. Heuristically, this can be understood, as follows.
When the potential barrier is infinite, each cavity is a closed system with an infinite
set of eigenenergies and eigenstates. Many eigenstates are concentrated on classical
periodic orbits, forming quantum scars [19]. For a classically integrable cavity, some
stable or marginally stable periodic orbits can persist when the potential barrier
becomes finite so that each cavity system is effectively an open quantum system.
Many surviving eigenstates correspond to classical periodic orbits whose trajecto-
ries do not encounter the potential barrier, generating extremely low tunneling rate
even when the energy is comparable with or larger than the height of the potential
barrier. The eigenstates corresponding to classical orbits that interact with the poten-
tial barrier, however, can lead to relatively strong tunneling. In a small energy interval
the quantum tunneling rate can thus spread over a wide range. However, when the
classical dynamics is chaotic, isolated orbits that do not interact with the potential
barrier are far less likely and, consequently, the states associated with low tunneling
rates disappear, effectively suppressing the spread in the tunneling rate.

The idea of using chaos to regularize quantum tunneling dynamics was first
conceived and demonstrated in non-relativistic quantum systems governed by the
Schrödinger equation [3]. Recently, the question of whether chaos can regularize
tunneling in relativistic quantum systems has been addressed [5], where the motion
of massless Dirac fermions in the setting of resonant tunneling was investigated to
facilitate comparison with the non-relativistic quantum case. In general, it is a chal-

Fig. 2 A closed quantum
system of arbitrary shape in
two dimensions

Potential barrier
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lenging task to solve the Dirac equation in a confined geometry, due to the difficulties
to incorporate zero-flux boundary conditions and to remove artificial, non-physical
effects such as fermion doubling as a result of spatial discretization. A numerical
scheme has then been developed [31] to overcome these difficulties, which is based
on constructing a physically meaningful, Hermitian Hamiltonian. Extensive compu-
tations have revealed unequivocally the existence of surviving eigenstates that lead
to extremely low tunneling rates. As for the non-relativistic quantum case, making
the cavities classically chaotic can greatly regularize the quantum tunneling dynam-
ics. To explore the practical implications, resonant tunneling devices made entirely
of graphene [23] have been studied [5], where the tunneling rates for different en-
ergy values have been calculated. Qualitatively similar results have been obtained to
those for massless Dirac fermions. One unique feature for both the Dirac fermion and
graphene systems, which finds no counterpart in non-relativistic quantum tunneling
devices, is the high tunneling rate in the regime where the particle energy is smaller
than the height of the potential barrier. This is a manifestation of the Klein-tunneling
phenomenon [32–34]. A theory has been developed [5] to explain the numerical
findings, which is based on the concept of self energies and the complex energy
spectrum of the non-Hermitian Hamiltonian for the “open” cavity.

4 General Thoughts on Chaos-Based Quantum Control

The general principle of chaos-based control of quantum behaviors is motivated by
the term quantum chaos, which does not mean that there can actually be chaos in
quantum mechanical systems but is referred to as the study of quantum manifestations
of systems whose dynamics in the classical limit exhibit chaos [35, 36]. The basic
reason that chaos may be ruled out in quantum systems is that the fundamental
governing equations, the Schrödinger equation or the Dirac equation, are linear. At
the present, there is tremendous literature on quantum chaos, where various quantum
manifestations of classically chaotic systems have been studied. The general result is
that distinct classical dynamics, integrable or chaotic, can lead to characteristically
different quantum behaviors. Furthermore, different types of chaotic behaviors can
generate distinct quantum manifestations. From the point of view of control, all
these suggest that quantum behaviors can be manipulated or harnessed for desirable
applications by choosing distinct classical dynamical behaviors, in particular chaotic
dynamics.

The two examples discussed in this Brief Review, control of quantum transport
and quantum tunneling, are based on building chaos into the system. In the transport
problem that involves the Sinai billiard type of device structure, the properties of
the underlying chaotic set can be modified, for example, by an externally adjustable
gate voltage. In the tunneling problem, the geometry of the cavities are deliberately
designed to yield chaotic dynamics in the classical limit. Once the structure is fixed,
experimentally it may be difficult to change the characteristics of chaos. It is thus nec-
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Fig. 3 A four terminal device
in the presence of magnetic
field. The area enclosed by the
green lines indicates the region
in the physical space where
transient chaos can occur. The
black circle marks the region
in which the magnetic field is
applied

essary to search for experimentally feasible schemes to modulate the characteristics
of the underlying chaotic invariant sets in a continuous fashion.

Figure 3 presents a possible scheme where a single external parameter can be var-
ied to realize chaos-based control of quantum transport. It is a four-terminal device,
where four idealized leads join smoothly to form a quantum-dot structure, which has
been used widely in the study of, for example, quantum Hall effect [6]. The struc-
ture typically exhibits chaotic scattering (transient chaos) in the classical limit. A
perpendicular magnetic field can be applied. An earlier work [37] demonstrated that
the dynamical invariants of the underlying non-attracting chaotic set can be modi-
fied continuously by changing the strength of the magnetic field. It is thus possible
to modulate the quantum conductance-fluctuation patterns by simply adjusting the
magnetic-field strength [38].
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