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Preface

Over the past three decades, the field of Nonlinear Science has evolved from being
a valuable theoretical tool to study physical systems with dynamic behavior in
space and time to a critical component to model, design and fabricate actual
devices that exploit the inherently nonlinear features of many natural phenomena.
Yet, while there has been significant progress in developing theoretical ideas and
methods to study nonlinear phenomena under an assortment of system boundary
conditions and preparations, there exist comparatively fewer devices that actually
take advantage of the rich behavior exhibited by theoretical models. Consider, for
instance, the fact that a shark’s sensitivity to electric fields is 400 times more
powerful than the most sophisticated, currently available, electric field sensor. In
fact, despite significant advances in material properties, in many cases it remains a
daunting task to duplicate the superior signal processing capabilities of most
animals.

Bridging the gap between theory and biologically inspired devices can only be
accomplished by bringing together researchers working in theoretical methods in
nonlinear science with those performing experimental works. Other areas of strong
interest among the research community, where theoretical findings can one day
lead to novel technologies that exploit nonlinear behavior, include: chaos gates,
social networks, communication, sensors, lasers, molecular motors, biomedical
anomalies and stochastic resonance. A common theme among these and many
other related areas is the fact that nonlinear systems tend to be highly sensitive to
perturbations when they occur near the onset of a bifurcation. This behavior is
universal among many nonlinear phenomena and, if properly understood and
manipulated, it can lead to significant enhancements in systems response.
Representative examples have been observed in a large number of laboratory
experiments on systems ranging from solid state lasers to superconducting loops,
and such behavior has been hypothesized to account for some of the more striking
information-processing properties of biological neurons. Furthermore, background
noise can precipitate this behavior, thereby playing a significant role in the
optimization of the response of these systems to small external perturbations.

Since 2005, we have held a series of meetings to bring together researchers
across various disciplines working on theory and experiments in nonlinear science.
The first meeting was 2005 Device Applications of Nonlinear Dynamics
(DANOLD) meeting, held in Catania, Italy. Then in 2007 ICAND, the research
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community met again in Poipu Beach, Koloa (Kauai), Hawaii, USA. More
recently, the 2010 ICAND meeting was held in Alberta, Canada, at the luxurious
Fairmont Chateau in Lake Louise. And, of course, 2012 ICAND was held in
Seattle, Washington, USA. This last meeting brought together researchers from
physics, engineering, and biology who were involved in the analysis and devel-
opment of applications that incorporate and, indeed, exploit the nonlinear behavior
of certain dynamical systems. The focus for 2012 ICAND was equally divided
between theory and implementation of theoretical ideas into actual devices and
systems. Contemporary topics on complex systems, such as social networks, were
also featured among selected lecturers.

The organizers extend their sincerest thanks to the principle sponsors of the
meeting: Army Research Office (Washington, DC), Office of Naval Research
(Washington, DC), Office of Naval Research-Global (Tokyo), San Diego State
University (College of Sciences), and SPAWAR Systems Center Pacific. A special
mention to Dr. Samuel Stanton from the Army Research Office and to Dr. Michael
Shlesinger from the Office of Naval Research for their support and insight to hold
such a diverse meeting. In addition, we extend our appreciation to Tania Gomez at
SDSU for their hardwork in preparation and financial duty, which enabled the
conference to run smoothly. We would also like to thank our colleagues who
chaired the session and to all the personal who spent many hours making this
meeting a success. Finally, we thank Springer for their production of an elegant
proceeding.

San Diego, USA, August 2013 Visarath In
Patrick Longhini
Antonio Palacios
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Exploiting Chaos for Quantum Control

Ying-Cheng Lai

Abstract The field of Quantum Chaos is referred to as the study of quantum
behaviors of systems whose corresponding classical dynamics are chaotic, or study
of quantum manifestations of classical chaos. Equivalently, it means that quantum
behaviors depend on the nature of the classical dynamics, implying that classical
chaos can be used to control or manipulate quantum behaviors. We discuss two
examples here: using transient chaos to control quantum transport in nanoscale sys-
tems and exploiting chaos to regularize relativistic quantum tunneling dynamics in
Dirac fermion and graphene systems.

1 Introduction

Controlling chaos in dynamical systems has been studied for more than two decades
since the seminal work of Ott, Grebogi, and Yorke [1]. The basic idea was that chaos,
while signifying random or irregular behavior, should not be viewed as a nuisance
in applications of nonlinear dynamical systems. In particular given a chaotic system,
the fact that there are an infinite number of unstable periodic orbits embedded in the
underlying chaotic invariant set means that there are an equally infinite number of
choices for the operational state of the system depending on need, provided that any
such state can be stabilized. Then, the intrinsically sensitive dependence on initial
conditions, the hallmark of any chaotic system, implies that it is possible to apply
small perturbations to stabilize the system about any desirable state. Controlling
chaos has since been studied extensively and examples of successful experimental
implementation abound in physical, chemical, biological, and engineering systems

Y.-C. Lai (B)

School of Electrical, Computer and Energy Engineering, Arizona State University,
Tempe, Arizona 85287, USA
e-mail: Ying-Cheng.Lai@asu.edu
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[2]. The vast literature on controlling chaos, however, has been limited to nonlinear
dynamical systems in the classical domain.

Recently, it has been articulated that chaos can be exploited to control or manip-
ulate quantum-mechanical behaviors [3, 4]. For example, in the context of quantum
transport through nanostructures, a fundamental characteristic is conductance fluc-
tuations. It has been demonstrated that chaos, more specifically transient chaos,
can be effective in modulating the conductance-fluctuation patterns, and it has been
suggested [4] that this can be realized experimentally by applying an external gate
voltage in a device of suitable geometry to generate classically inaccessible poten-
tial barriers. Adjusting the gate voltage allows the characteristics of the dynamical
invariant set responsible for transient chaos to be varied in a desirable manner which,
in turn, can induce continuous changes in the statistical characteristics of the quantum
conductance-fluctuation pattern. In another example, it has been shown that chaos
can be utilized to suppress, significantly, the spread in the tunneling rate commonly
seen in systems whose classical dynamics are regular, and this is called regularization
of quantum tunneling dynamics by chaos [3]. More recently, it has been demonstrated
that similar effects arise in relativistic quantum systems [5].

This Brief Review has two purposes: (1) to discuss the two aforementioned
examples of exploiting chaos for quantum control, and (2) to argue that the prin-
ciple of chaos-based quantum control is more general with potentially significant
applications in nanoscience.

2 Controlling Quantum Transport by Transient Chaos

A fundamental quantity characterizing the transport of an electron through a nanos-
tructure, such as a quantum dot or a quantum point contact, is quantum transmission
probability, or simply quantum transmission. In general, quantum transmission is
determined by many electronic and system parameters such as the Fermi energy, the
strength of external magnetic field (if there is one), and the details of the geometry of
the structure. If the structure is connected through electron waveguides (or leads) to
electron reservoirs (i.e., contacts) to form a circuitry, the conductances defined with
respect to various voltage biases among the contacts, together with the correspond-
ing currents, will be determined by the quantum transmission [6]. This means that
the conductances can also depend sensitively on electronic and geometrical para-
meters. For example, as the Fermi energy of the electron changes, the conductances
can exhibit wild fluctuations and sharp resonances [7–13]. In applications such as
the development of electronic circuits and nanoscale sensors, severe conductance
fluctuations are undesirable and are to be eliminated so that stable device operation
can be achieved. The outstanding question is then, can practical and experimentally
feasible schemes be articulated to modulate quantum conductance fluctuations? It
has been demonstrated recently and understood theoretically that classical transient
chaos can be used to effectively modulate conductance-fluctuation patterns associ-
ated with quantum transport through nanostructures [4].
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Intuitively, the basic principle underlying the transient-chaos based strategy for
modulating quantum transport is quantum interference. It has been known that quan-
tum pointer states, which are resonant states of finite but long lifetime formed inside
the nanostructure [14–16], can cause sharp conductance fluctuations - a kind of Fano
resonance [17, 18]. To give a specific example, consider quantum-dot systems, a par-
adigm for investigating all kinds of quantum transport phenomena through nanostruc-
tures. Such a system typically consists of a finite device region of certain geometrical
shape, such as a square, a circle, or a stadium, and a number of leads connected with
the device region. For a quantum-dot system whose classical dynamics is either regu-
lar or contains a significant regular component, there are stable periodic orbits in the
classical limit. If the dot geometry is closed, highly localized states can form around
the classically stable periodic orbits as a result of quantum interference. When elec-
tronic waveguides (leads) are attached to the quantum dot so that it is open, some
periodic orbits can still survive, leading to resonant states, or quantum pointer states.
Since the corresponding classical orbits are stable, the resonant states can have long
lifetime, so their coupling to the leads is weak. As a result, narrow resonances can
form around the energy values that are effectively the eigenenergies for the stable pe-
riodic orbits in the corresponding closed system. When the dot geometry is modified
so that the underlying classical dynamics becomes fully chaotic, no stable periodic
orbits can exist. Although scars can still form around classically unstable periodic
orbits in a closed chaotic system [19], the corresponding resonant states in the open
system generally will have much shorter lifetimes. This means that these resonant
states do couple to the leads more strongly, broadening the narrow resonances in
the conductance-fluctuation pattern. Here chaos is transient because the system is
open. According to the theory of transient chaos [20], the dynamical invariant sets
responsible for transient chaos are non-attracting chaotic sets in the phase space. If
the properties of transient chaos can be adjusted experimentally by parameter tuning,
the quantum conductance fluctuation-patterns can then be controlled in a desirable
manner. For example, one can change the effective geometry of the dot structure con-
tinuously so as to enhance the escape rate, a basic quantity characterizing transient
chaos, and this could lead to significantly smoother quantum-conductance fluctua-
tions.

To realize quantum control by using chaos, we conceive generating a region about
the center of the device or structure with high potential so that it is impenetrable to
classical particles. For example, consider a square quantum dot, a prototypical model
in semiconductor two-dimensional electron-gas (2DEG) systems. When the dot is
closed, the corresponding classical dynamics is integrable so that extremely nar-
row resonances can arise in the quantum transport dynamics of the corresponding
open-dot system. Now imagine applying a gate voltage perpendicular to the device
plane to generate a circular, classically forbidden region about the center of the dot,
as shown schematically in Fig. 1. In general, the potential profile will be smooth in
space. However, qualitatively, the classical scattering behavior is similar to that from
an infinite potential well. Thus it is reasonable to impose the infinite potential-well
assumption for the central region, which defines a “forbidden” region. Varying the
voltage V0 can change the effective radius R of the forbidden region. Classically, the
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R
Left Lead Right Lead

Fig. 1 Illustration of a possible scheme to control transport through a two-dimensional quantum-dot
system. When semiconductor materials (e.g., silicon) are used, the system is the traditional two-
dimensional electron-gas (2DEG) system described by the Schrödinger equation in non-relativistic
quantum mechanics. If the material is graphene, in certain energy regime the system is described
by the Dirac equation in relativistic quantum mechanics. By applying a suitable gate voltage per-
pendicular to the device plane to generate a circular forbidden region at the center of the device,
the resulting closed system is a Sinai billiard, whose classical dynamics is fully chaotic. Open
quantum-dot system can be formed by attaching two leads to the billiard system, one on the left and
another on the right side. The classical dynamics of the device can thus be characterized as chaotic
scattering

closed system is thus a Sinai billiard [21], which is fully chaotic, insofar as the radius
of the central potential region R is not zero. When leads are connected to the device
region so as to open the system, chaos becomes transient. The dynamical character-
istics of the underlying chaotic invariant set can be adjusted in a continuous manner
by increasing the radius R [22]. Quantum mechanically we thus expect to observe
increasingly smooth variations in the conductance with, e.g., the Fermi energy, which
has been demonstrated [4] using both semiconductor 2DEG and graphene [23–26]
systems.

Insights into why classical chaos can smooth out quantum conductance fluctua-
tions can also be gained from the semiclassical theory of quantum chaotic scattering
[27–29]. In particular, in the semiclassical regime, it was established by Blümel
and Smilansky that the energy autocorrelation function of the quantum transmission
fluctuation is proportional to the Fourier transform of the particle-decay law in the
classical limit [27]. For fully developed chaotic transport through a quantum dot, the
decay law is exponential with the rate κ . As a result, the quantum energy correlation
function decays as a Lorentzian function with the width given by �κ , where � is the
Planck’s contant. In the theory of transient chaos [20], κ is the escape rate associated
with the underlying non-attracting chaotic set. As the radius of the central potential
region is increased, κ also increases. The energy autocorrelation function then decays
more slowly, signifying less fluctuations, i.e., less number of sharp resonances in
the quantum transmission. This semiclassical argument suggests that the degree of
quantum transmission fluctuations can be controlled by classical chaos.

Extensive numerical support for the principle of transient-chaos based control of
quantum transport and a detailed theoretical analysis can be found in Ref. [4, 30].
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3 Effect of Chaos on Quantum Tunneling

The principle of regularization of quantum tunneling by chaos can be understood
by considering the prototypical system in Fig. 2, which consists of two symmetrical
cavities connected by a one-dimensional potential barrier along the line of symmetry.
When the classical dynamics in each cavity is integrable, for sufficiently large energy
the tunneling rate can have many values in a wide interval. Choosing the geometry
of the cavity such that the classical dynamics become chaotic can greatly enhance
and regularize quantum tunneling. Heuristically, this can be understood, as follows.
When the potential barrier is infinite, each cavity is a closed system with an infinite
set of eigenenergies and eigenstates. Many eigenstates are concentrated on classical
periodic orbits, forming quantum scars [19]. For a classically integrable cavity, some
stable or marginally stable periodic orbits can persist when the potential barrier
becomes finite so that each cavity system is effectively an open quantum system.
Many surviving eigenstates correspond to classical periodic orbits whose trajecto-
ries do not encounter the potential barrier, generating extremely low tunneling rate
even when the energy is comparable with or larger than the height of the potential
barrier. The eigenstates corresponding to classical orbits that interact with the poten-
tial barrier, however, can lead to relatively strong tunneling. In a small energy interval
the quantum tunneling rate can thus spread over a wide range. However, when the
classical dynamics is chaotic, isolated orbits that do not interact with the potential
barrier are far less likely and, consequently, the states associated with low tunneling
rates disappear, effectively suppressing the spread in the tunneling rate.

The idea of using chaos to regularize quantum tunneling dynamics was first
conceived and demonstrated in non-relativistic quantum systems governed by the
Schrödinger equation [3]. Recently, the question of whether chaos can regularize
tunneling in relativistic quantum systems has been addressed [5], where the motion
of massless Dirac fermions in the setting of resonant tunneling was investigated to
facilitate comparison with the non-relativistic quantum case. In general, it is a chal-

Fig. 2 A closed quantum
system of arbitrary shape in
two dimensions

Potential barrier
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lenging task to solve the Dirac equation in a confined geometry, due to the difficulties
to incorporate zero-flux boundary conditions and to remove artificial, non-physical
effects such as fermion doubling as a result of spatial discretization. A numerical
scheme has then been developed [31] to overcome these difficulties, which is based
on constructing a physically meaningful, Hermitian Hamiltonian. Extensive compu-
tations have revealed unequivocally the existence of surviving eigenstates that lead
to extremely low tunneling rates. As for the non-relativistic quantum case, making
the cavities classically chaotic can greatly regularize the quantum tunneling dynam-
ics. To explore the practical implications, resonant tunneling devices made entirely
of graphene [23] have been studied [5], where the tunneling rates for different en-
ergy values have been calculated. Qualitatively similar results have been obtained to
those for massless Dirac fermions. One unique feature for both the Dirac fermion and
graphene systems, which finds no counterpart in non-relativistic quantum tunneling
devices, is the high tunneling rate in the regime where the particle energy is smaller
than the height of the potential barrier. This is a manifestation of the Klein-tunneling
phenomenon [32–34]. A theory has been developed [5] to explain the numerical
findings, which is based on the concept of self energies and the complex energy
spectrum of the non-Hermitian Hamiltonian for the “open” cavity.

4 General Thoughts on Chaos-Based Quantum Control

The general principle of chaos-based control of quantum behaviors is motivated by
the term quantum chaos, which does not mean that there can actually be chaos in
quantum mechanical systems but is referred to as the study of quantum manifestations
of systems whose dynamics in the classical limit exhibit chaos [35, 36]. The basic
reason that chaos may be ruled out in quantum systems is that the fundamental
governing equations, the Schrödinger equation or the Dirac equation, are linear. At
the present, there is tremendous literature on quantum chaos, where various quantum
manifestations of classically chaotic systems have been studied. The general result is
that distinct classical dynamics, integrable or chaotic, can lead to characteristically
different quantum behaviors. Furthermore, different types of chaotic behaviors can
generate distinct quantum manifestations. From the point of view of control, all
these suggest that quantum behaviors can be manipulated or harnessed for desirable
applications by choosing distinct classical dynamical behaviors, in particular chaotic
dynamics.

The two examples discussed in this Brief Review, control of quantum transport
and quantum tunneling, are based on building chaos into the system. In the transport
problem that involves the Sinai billiard type of device structure, the properties of
the underlying chaotic set can be modified, for example, by an externally adjustable
gate voltage. In the tunneling problem, the geometry of the cavities are deliberately
designed to yield chaotic dynamics in the classical limit. Once the structure is fixed,
experimentally it may be difficult to change the characteristics of chaos. It is thus nec-
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Fig. 3 A four terminal device
in the presence of magnetic
field. The area enclosed by the
green lines indicates the region
in the physical space where
transient chaos can occur. The
black circle marks the region
in which the magnetic field is
applied

essary to search for experimentally feasible schemes to modulate the characteristics
of the underlying chaotic invariant sets in a continuous fashion.

Figure 3 presents a possible scheme where a single external parameter can be var-
ied to realize chaos-based control of quantum transport. It is a four-terminal device,
where four idealized leads join smoothly to form a quantum-dot structure, which has
been used widely in the study of, for example, quantum Hall effect [6]. The struc-
ture typically exhibits chaotic scattering (transient chaos) in the classical limit. A
perpendicular magnetic field can be applied. An earlier work [37] demonstrated that
the dynamical invariants of the underlying non-attracting chaotic set can be modi-
fied continuously by changing the strength of the magnetic field. It is thus possible
to modulate the quantum conductance-fluctuation patterns by simply adjusting the
magnetic-field strength [38].
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through extensive discussions with Dr. L. Pecora from Naval Research Laboratory in January 2011
at Dr. M. Shlesinger’s ONR Program Review Meeting at UCSD. The computations and theoretical
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Random Vibration of a Nonlinear
Autoparametric System

Kristjan Onu, Nishanth Lingala and N. Sri Namachchivaya

Abstract We examine a stochastically forced autoparametric system for its
stationary motion and stability. The deterministic form of this system is nearly
Hamiltonian (with small dissipation) and exhibits 1:2 resonance and phase-locking.
We develop a stochastic averaging technique to achieve a lower dimensional descrip-
tion of the dynamics of this system. Stochastic averaging is possible due to three
time scales involved in this problem. Each time scale is fully exploited while aver-
aging. The dimensional reduction techniques developed here consist of a sequence
of averaging procedures that are uniquely adapted to study stochastic autoparamet-
ric systems. What motivates our analysis is that classical averaging methods fail
when the original Hamiltonian system has resonances, because, at these resonances,
singularities arise in the lower-dimensional description. At these singularities we
introduce gluing conditions; these complete the specification of the dynamics of the
reduced model. Examination of the reduced Markov process (which takes values on
a nonstandard space) yields important results for probability density functions.

1 Introduction

We investigate the random vibrations of a nonlinear autoparametric system of the
form

q̈1(t) + ζ1q̇1(t) + f1(q1(t), q2(t)) = ξ(t)

q̈2(t) + ζ2q̇2(t) + f2(q1(t), q2(t)) = 0
t ≥ 0, (1)
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where for each time t > 0, (q1(t), q2(t)) represents the generalized coordinates of
the system, the constants ζ1 and ζ2 are damping coefficients, and ξ(t) is a stationary
random process. We are interested in questions of stability of the stochastic sys-
tem (1), and in the transfer of energy from the forced mode q1 to the unforced mode
q2. It is well known that, in the presence of 1 : 2 resonance and periodic excitation,
as the intensity of excitation is increased, the excited mode reaches a certain value
of amplitude at which saturation takes place and then the energy is transferred to the
unforced mode. This may be undesirable, because disturbances affecting one mode
may cause unwanted instability in another mode. Our effort is to answer whether the
saturation and energy transfer occurs in the presence of noisy input. Towards this
goal, we achieve a lower dimensional description of the above system.

The dissipation and random perturbations are assumed to be small. This means
that their effect will be visible only over a long time horizon. When the nonlinearities
are also assumed small, the dominant part of the dynamics is that of two uncoupled
oscillators. In particular, the dynamics of the unperturbed system identify a reduced
phase space (the orbit space) on which to carry out stochastic averaging. While the
classical theory of stochastic averaging is a natural framework for such a program,
the equations of interest contain resonances and bifurcations, which precludes a
simple application of classical techniques. In particular, the resonance gives rise to an
intermediate scale, and the bifurcations give rise to some non-standard singularities
in the orbit space.

The equations of motion considered (1) can model the dynamics of a number
of mechanical systems, namely a random excitation of a initially deformed shallow
arch, a suspended elastic cable driven by planar excitation, or a water vessel subject
to longitudinal wave action. To keep things as simple as possible, we shall consider
a very simple system, namely a pendulum hanged from a mass which is attached
by a spring to a support (Fig. 1). The mass is randomly excited. For clarity, we use
mass to refer to the object at the free end of the spring, while the object at the end of
the pendulum is referred to as the bob. The quantity ϕ is the angle of the pendulum
(with respect to the vertical axis) and the quantity y represents the height of the mass
(relative to a rest position defined by the position of the pendulum). The mass is
forced according to a stochastic signal Ξ(t). The subscripts here refer to the fact that
this is our original physical model. The equations for such a system can be written
as

Fig. 1 Schematic of autopara-
metric system

o y

f

k d

p
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(mo + m p)ÿ + do ẏ + ky + m pl(ϕ̈ sin ϕ + ϕ̇2 cos ϕ) = Ξ,

m pl2ϕ̈ + dpϕ̇ + m pl(g + ÿ) sin ϕ = 0, (2)

where mo, do and k are the mass, damping and the spring constant of the spring-mass
system and m p, dp and l are the mass, damping and the length of the pendulum. The
kinetic and the potential energies of the system are given by

T = 1

2
(mo + m p)ẏ2 + 1

2
m p l2ϕ̇2 + m p l ẏ ϕ̇ sin ϕ,

U = m p gl(1 − cos ϕ) + 1

2
ky2.

It is clear that the nonlinearities in the equations of motion arise due to the grav-
itational restoring force and due to the dependence of kinetic energy on the angle
ϕ which leads to inertial coupling between the the two coordinates. It also turns
out (we shall use this later) that in the absence of noise and damping, this system
is Hamiltonian, so the dynamics of y and ϕ are governed by the geometry of this
Hamiltonian.

The above equations in dimensionless coordinates are

¨̂η + 2ζ̂o
˙̂η + η̂ + R(

˙̂
θ sin θ̂ + ˙̂

θ
2

cos θ̂ ) = ξ̂ (t),

R ¨̂
θ + 2Rζ̂p

˙̂
θ + R(q2 sin θ̂ + ¨̂η sin θ̂ ) = 0.

where

Fig. 2 Surface and contour plots of K (u1, u2). I = 1
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Fig. 3 State space M for Y ε
t
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Fig. 4 Probability density by FEM

ω2 def= g

l
, ω2

o
def= k

mo + m p
, q

def= ω

ωo
,

R
def= m p

mo + m p
, ζ̂o

def= do

2
√

k(mo + m p )
, ζ̂p

def= dp
√

(mo + m p )

2l2
√

k
= dp

2l2ωo
.

and where

ξ̂ (t) = ξ̂ (t/ωo)

kl
, η̂(t) = y(t/ωo)

l
, θ̂ (t) = ϕ(t/ωo)

for all t > 0.
Our interest here is a refined stability analysis near the fixed point (η̂, θ̂ ) ≡ 0

of the unperturbed system. In particular, we are interested in the effect of small
random perturbations, so we will let ξ̂ be of the form ξ̂ = ε2νξ , where ξ is a noise
process of “unit” variance and ν is some empirical parameter. Our dynamics are most
interesting when they are not over-damped, so let ζ̂o and ζ̂p be of the form ζ̂o = ε2ζo

and ζp = ε2ζp, where ζo and ζp are some positive constants (this corresponds to
letting do and dp be of size ε). Guided by the corresponding analysis for periodic
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Fig. 5 Probability density by numerical simulation

forcing, we are interested in the behavior when q2 is very close to q2
o ≡ 1/4. Let’s

replace q by qo +ε2μ, where μ is an unfolding parameter. Since we are interested in
η̂ and θ̂ near the fixed point 0, we should look at these quantities on a finer resolution.
Namely, let η and θ be defined by

η̂(t) = εη(t), θ̂ (t) = εθ(t)

then the dynamics of the system yields

η̈ + 2ε2ζoη̇ + η + R(θ̈ sin(εθ) + εθ̇2 cos(εθ)) = ενξ(t),

Rθ̈ + 2ε2 Rζp θ̇ + R

((
q◦ + ε2μ

) sin(εθ)

ε
+ η̈ sin(εθ)

)
= 0,

(3)

where ε is a small scaling parameter, q0 = 1/2 signifying 1 : 2 resonance, μ is the
parameter representing unfolding from the resonance, R is the ratio of mass of the
unforced mode to the total mass.

2 Single Mode Solutions

To clarify some general qualitative effects of noise, let’s consider a simple stability
analysis using some spectral methods and the first-order linearization. The mass on
the spring can move only in the vertical (η) direction and is excited by νξ . Assume
that the pendulum is locked vertically, i.e. θ(t) ≡ 0. We get the equation

η̈ + 2ε2ζoη̇ + η = ενξ.
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If ξ is white noise we can solve for η explicitly. Its power spectral density is

Sη(ω) = ε2ν2S0

(1 − ω2)2 + 4ε4ζ 2
o ω2 ,

where S0 is the power spectral density of ξ . The peak intensity and the carrying
frequency of η are determined by the filter parameter ζo.

The stability of the locked mass steady-state oscillation is now obtained by using
the first-order approximation of sine and cosine in the dynamics for θ . We get

θ̈ + 2ε2ζp θ̇ + ((q0 + ε2μ)2 + εη̈)θ = 0,

and the power spectral density of η̈ is given by

Sη̈(ω) = ω4ε2ν2S0

(1 − ω2)2 + 4ε4ζ 2
o ω2 .

The maximal Lyapunov exponent can now be easily calculated and the stability
boundary can be obtained in terms of excitation intensity ν and the dissipation coef-
ficients ζp. An explicit expression for the maximal Lyapunov exponents of the single
mode solution is given by expanding it in ε, we have

λ1 ≈ ε2
(

−ζp + 1

8 q2
o

Sη̈(2 (qo + ε2μ))

)
and λ2 = ε2

(
−ζp − 1

8 q2
o

Sη̈(2 (qo + ε2μ))

)
.

The noise has no effect on the other two exponents; i.e., λ3 = λ4 = −ε2ζo.
Since the point θ ≡ 0 is a stable point for the hanging pendulum, the pendulum

undergoes small random motion near θ ≡ 0, and all four Lyapunov exponents
are negative. However, as we further increase the noise intensity, the top exponent
becomes positive when ν2S0 = 8ζ 2

o ζp. The system then becomes unstable, and the
following question arises.

• Do both the mass spring oscillator and the pendulum undergo random vibrations
when the top exponent becomes positive (i.e., ν2 S0 > 8 ζ 2

o ζp), i.e., does a new
coupled-mode “stationary solution” or “stationary density function” appear?

3 Coupled Mode Solutions

Making use of a time-varying symplectic transformation (see [1] for details), we
arrive at

ẋε
t = εb1(xε

t , t) + ε2b2(xε
t , t : ζ, μ) + εσ (xε

t , t : ν)ξ(t), (4)

where (x1, x2) and (x3, x4) are conjugate pairs and can be thought of as the amplitudes
of periodic orbits of the dominant dynamics.
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The coefficients b1, b2, σ are periodic in time. Standard deterministic averaging
can be used to average out the effects of rapidly-oscillating periodic coefficients. Let
M be this averaging operator.

Definition 1 (Time averaging operator) For a function ϕ ∈ C∞(R4 × R) which is
2π periodic in its last argument, define the time averaging operator M by

(Mϕ)(x) ≡ 1

2π

∫ 2π

0
ϕ(x, t)dt.

From the explicit formulas (see [1]) for b1 (where q = 1/2), we see that for x =
(x1, x2, x3, x4) ∈ R

4,

(Mb1)(x) = (− 1
2 x2x4,

1
2 (x1x4 − x2x3),

1
4 (x2

2 − x2
4 ), 1

2 (x1x2 + x3x4)
)
.

Then the averaged system ẋt = (Mb1)(x) is a 4-dimensional Hamiltonian system
with two first integrals K and I in involution.

The Hamiltonian associated with these dynamics is

K (x) = 1

4
x1(x2

4 − x2
2 ) − 1

2
x2x3x4. (5)

The unperturbed four-dimensional Hamiltonian system

ż = ∇̄K (z) (6)

has two first integrals in involution, namely, the Hamiltonian itself (5) and a second
constant of motion (momentum variable)

I (x) = (x2
1 + x2

3 ) + 1

2
(x2

2 + x2
4 ). (7)

The invariant I is functionally independent of K , exists globally and is single
valued. Note that the Hamiltonian system’s equations remain unchanged when
t → −t, x1 → −x1 and x3 → −x3.

3.1 Dimensional Reduction

Our main analytical tool is a certain method of dimensional reduction of nonlinear
systems with symmetries and small noise. As the noise becomes asymptotically
small, one can exploit symmetries and a separation of scales to use well-known
methods (viz. stochastic averaging) to find an appropriate lower-dimensional
description of the system.
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In the flow given by (4), the quantities (K (x), I (x)) are slow-varying. The
variation of yε

t := (K (xε
t ), I (xε

t )) is given by the following set of equations

ẏε
t = εF1(xε

t , t) + ε2 F2(xε
t , t : ζ, μ) + εG(xε

t , t : ν)ξ(t), (8)

where Fi
j (x, t) = (bi (x, t).∇)y j and G j (x, t) = (g(x, t).∇)y j .

Since K and I are integrals of motion for ẋt = (Mb1)(x), it is clear that
MF1(X) = 0. Thus, to see the fluctuations of K and I , we need to look on a

time scale of order 1/ε2. Thus, we make a time rescaling, setting Xε
t

def= xε
t/ε2 and

Y ε def= yε
t/ε2 . Then we have

Ẋε
t = 1

ε
b1(Xε

t , t/ε2) + b2(Xε
t , t/ε2) + g(Xε

t , t/ε2)
1

ε
ξ(t/ε2),

Ẏ ε
t = 1

ε
F1(Xε

t , t/ε2) + F2(Xε
t , t/ε2) + G(Xε

t , t/ε2)
1

ε
ξ(t/ε2).

(9)

Roughly, our goal is to study (9) and show that as ε tends to zero, the dynamics of
Y ε(Xε

t ) tends to a lower-dimensional Markov process and to identify the infinitesimal
generator of the limiting law.

There are three time scales. The periodic fluctuations of the coefficients occur
over time scales of order ε2. The effects of drift due to b1 can be seen on time scales
of order ε. The drift and diffusion coefficients of Y ε

t are of order 1. We perform two
averaging steps, one to average (M) the periodic behavior of the coefficients, and
one to average (A) along the orbits of the Hamiltonian system ẋt = (Mb1)(x).

To understand the state space of the slow variable Y ε
t , we consider the following

symplectic transformation (it would also be useful later for simplifying calculations).

3.1.1 Structure of the Unperturbed System: Hamiltonian Structure

x1 = u1 cos(2ψ) + u2 sin(2ψ), x3 = −u1 sin(2ψ) + u2 cos(2ψ),

x2 =
√

2(I − u2
1 − u2

2) sin ψ, x4 =
√

2(I − u2
1 − u2

2) cos ψ.
(10)

The conjugate pairs are (u1, u2) and (ψ, I ). This transformation yields

u̇1t = −u1t u2t , u̇2t = 1

2
(3u1

2
t + u2

2
t − It ), ψ̇t = 1

2
u1t , İt = 0 (11)

and the corresponding Hamiltonian is

K = 1

2
u1

(
I − (u2

1 + u2
2)

)
. (12)
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The relation between K, u1, u2, and I is illustrated in Fig. 2. Note that this system’s
equations remain unchanged when t → −t , u2 → −u2 and ψ → −ψ . System (11)

has four fixed points. They are (u1, u2) = (0,±√
I ) and (u1, u2) = (±

√
3I
3 , 0).

The points on the u1 axis are saddle points and those on the u2 axis are center
fixed points.

3.1.2 State Space of Yε
t

The slow variable Y ε
t evolves on an arrowhead. Let S def={x ∈ R

4 : K∗ < K (x) <

K ∗, 0 < I (x) < I ∗}. Then define an equivalence relation ∼ on R
4 by identifying

x ∼ y if x and y are on the same orbit of the hamiltonian flow ẋt = (Mb1)(x).

Define M
def= S̄/ ∼, and endow M with the quotient topology defined by ∼. If x ∈ S̄,

we let [x] := {y ∈ S̄ : y ∼ x} be the equivalence class of x . π(x) := [x]. The slow
variable Y ε

t evolves on M = ⋃2
i=1 Γi ∪ ⋃2

i=0[ci ] ∪ ⋃2
i=1 �i where ci are the fixed

points, the �i are closed orbits whose union is ∂S̄, and each Γi is the π -image of a
maximal open subset of R4 which does not intersect any of the [ci ] or �i . The state
space is illustrated in Fig. 3.

3.1.3 M & A Averaging

If the external noise ξ(τ ) represents mean zero, stationary, independent stochas-
tic processes with the strong mixing property, then roughly, as ε → 0, 1

ε
ξ(t/ε2)

approaches a white noise process. Khasminskii [2] gave a rigorous proof that a fam-
ily of processes Xε

t converges to a diffusion process. The aim here is to make use of
this and derive a reduced graph-valued process for the integrals of motion, Y ε.

We have pointed out that that there are three time-scales involved in our averaging
problems. The first step is to average the periodic fluctuations of the coefficients and
obtain M-averaged quantities as the precursors to the stochastically averaged drift
and diffusion coefficients. Somewhat laborious calculations yield the M-averaged
quantities

mi (x) ≡
(
M

(
F2

1 + f1 + g1

))
(x) and ai j (x) ≡

(
M

(
σσ T

)

i j

)
(x). (13)

These calculations can be simplified by considering the symplectic transformation
(10) which provides a convenient geometric structure of the unperturbed integrable
Hamiltonian problem. In (K , I, u) coordinates, the drift and diffusion (13) coeffi-
cients are

m1(K , I, u) = −(ζo + 2ζp)K − 1

4
(8μ + 3I ) K

u2

u1
+ 1

2

(
3 + 1

R

)
K 2 u2

u2
1

,

m2(K , I, u) = 2[σ 2Sξξ (1) − ζo I + 2(ζo − ζp)K/u1],
(14)
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a11(K , I, u) = 1

2
σ 2Sξξ (1)K 2 1

u2
1

, a12(K , I, u) = σ 2Sξξ (1)K ,

a22(K , I, u) = 2σ 2Sξξ (1)(I − 2K/u1).

(15)

To obtain a limiting generator for the martingale problem, we need an averaging
operator where the averaging is done with respect to the invariant measure concen-
trated on the closed trajectories. Using (14) in the A-averaging operator yields on
each leaf Γi , for z = (K , I ) ∈ Γi ,

bi
j (z) = 1

Ti (z)

∫ Ti (z)

0
m j (z, u(t)) dt, ai

jk(z) = 1

Ti (z)

∫ Ti (z)

0
a jk(u(t), K , I )dt,

bi
1(z) = −(ζo + 2ζp)K , bi

2(z) = 2[σ 2 Sξξ (1) − ζo I ] + 4(ζo − ζp)K
I 1

i

Ti
,

ai
11(z) = 1

2
σ 2 Sξξ (1)K 2 I 2

i

Ti
, ai

12(z) = σ 2 Sξξ (1)K , ai
22(z) = 2σ 2 Sξξ (1)(I − 2K

I 1
i

Ti
).

Here, Ti (z) is the time period of the Hamiltonian orbit on leaf i with value of K and
I given by z and I 1

i = ∫ Ti
0

1
u1(t)

dt and I 2
i = ∫ Ti

0
1

u2
1(t)

dt .

3.1.4 Generator of the Reduced Markov Process

We want to put these Li ’s together to get a Markov process on M with generator
L †

M with domain D†
M, where M has a shape of an arrowhead.

Let us define the drift and diffusion coefficients

bi (z) ≡
(

A
(
M

(
F2

i + fi + gi

)))
(z), ai j (z) ≡

(
A

(
M

(
σσ T

)

i j

))
(z)

(16)
for i, j = 1, 2 and for all z ∈ M, where

fi (x, t) ≡
4∑

j=1

∂ F1
i

∂x j
(x, t) f̃ 1

j (x, t), f̃ 1
i (x, t) ≡

∫ t

0

{
b1

i (x, s) − Ms(b
1
i (x, s))

}
ds,

gi (x, t) ≡
∫ 0

−∞
E

[
∂Gi

∂x j
(x, t, ξt )g j (x, t + τ, ξt+τ )

]
dτ,

(
σσ T

)

jk
(x, t) ≡

∫ ∞
−∞

E
[
G j (x, t, ξt )Gk(x, t + τ, ξt+τ )

]
dτ.

exists uniformly in x ∈ R
4.

For notational convenience, we also define fi ≡ f
∣
∣
Γi

for all 1 ≤ i ≤ 2. From
the results of [3] , it is clear the gluing conditions, which we need to specify at the
interior edges, solely depend on the diffusion coefficients ai

jk . To this end, we define

åi
jk(z) ≡ ai

jk(z) T (z). The limiting domain for the graph valued process is
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D†
M =

{
f ∈ C(M) ∩ C2(∪2

i=1Γi ) : lim
z→(K (ci ),I (ci ))

(Li fi )(h) exists ∀i,

lim
I→I ∗(Li fi )(z) = 0 ∀i, and

2∑

i=1

{±} (åi
11

∂ fi

∂z1
)(c0) = 0

}

,

(17)

where the ‘+’ sign is taken if the coordinate h on the leg Γi is greater than 0 (the value
of z1(= h) at the vertex c0) and the ‘−’ sign is taken otherwise. Then for f ∈ D†

M,
the generator is

(L †
M f )(z) = lim

z′→z
z∈Γi

(Li fi )(z
′) =

2∑

j=1

bi
j (z)

∂ fi

∂z j
(z)+ 1

2

2∑

j,k=1

ai
jk(z)

∂2 fi

∂z j∂zk
(z) (18)

for all z ∈ Γ̄i .
The gluing conditions can be derived by determining the asymptotic values of the

drift and diffusion coefficients as K → 0. The period is asymptotically equivalent
to T (z) ∼ ln |K | as K → 0. This yields limK→0 b̊

i
1 = 0. Furthermore,

lim
K→0

åi
11(c0) ≡ lim

K→0

(
ai

11(z) Ti (z)
)

= σ 2Sξξ (1)
I
√

I

3
≥ 0.

The values of b̊i
2, å

i
12 and åi

22 in the limit K → 0 all approach infinity. Hence

− ∂ f1
∂z1

+ ∂ f2
∂z1

= 0.

3.2 Fokker–Planck Equation and Stationary
Probability Density Function

We turn our attention to producing solutions with the results of stochastic averaging
theory presented in the previous section. Specifically, stationary probability density
functions are produced. First, the Fokker–Planck equation is derived by taking the
adjoint of the reduced generator (18). Then the solutions for the the autoparametric
oscillator are obtained by a finite element formulation of the Fokker–Planck problem.
Finally, the finite element results are validated with a sample path method.

Finite-element triangulations of the K − I domains are produced using
TRIANGLE. The domains of the Fokker–Planck equation have boundaries defined
by polynomial functions. TRIANGLE does not allow specifying such boundaries
directly, rather a certain number of points on the boundary must be given. In order to
create elements of a specified area, TRIANGLE may place additional nodes between
points given to it as input. Experience with TRIANGLE shows that these problems
can be avoided by specifying the number of input points in (inverse) proportion to
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the requested element area. Specifically, input points are placed by calculating the
arc length along the boundary and the spacing between the points is made equal to
the length of the side of an equilateral triangle with an area equal to the requested ele-
ment area. As long as the domain triangulated does not include cusps, this procedure
seems to produce triangulation that have none, or few, Steiner points.

Across the gluing edge, the finite element method is formulated carefully so that
the solution does not exhibit any singularities. The solutions appear to be continuous
across the gluing edge, as expected based on analytic calculations.

As the amplitude of stochastic forcing is varied, the peak of the probability distri-
bution moves to larger values of I while remaining symmetric about the I axis. The
latter fact is worth contemplating. Recalling the structure of the Hamiltonian, the
outer edge of the domain in the left hand plane corresponds to a sink and the outer
edge of the domain in the right hand plane is a valley. As such it seems reasonable
to think that as forcing amplitude increases, the peak of the PDF will shift from the
left hand plane to the right hand plane, but this is not observed in Figs. 4 or 5. In
fact, simply by looking at the form of b1 one notices that along the K axis, the drift
coefficient tends to center the probability density on the I axis. It is curious that b1
does not contain any stochastic effects; whether this is a generic feature for systems
in 1:2 resonance remains to be determined.

4 Conclusions

A two degree-of-freedom nonlinear autoparametric vibration absorber with weak
quadratic nonlinearities is considered. The averaged nonlinear response of the sys-
tem in the absence of disspative and random effects is Hamiltonian. A nonstandard
method of stochastic averaging is developed to reduce the dimension of a randomly-
perturbed four-dimensional integrable Hamiltonian systems with one-to-two reso-
nance. The reduction to a graph valued process was possible due to three time-scales
involved in this problem.

The interest of this paper is when the original Hamiltonian system has one-to-two
resonances. Hence the averaged nonlinear Hamiltonian system is integrable with both
homoclinic and heteroclinic orbits in the phase-space. This gives rise to singularities
in the lower-dimensional description. At these singularities, gluing conditions were
derived, these gluing conditions completing the specification of the dynamics of the
reduced model by examining the boundary-layer behavior close to homoclinic and
heteroclinic orbits.

In this context it is also important to point to the work in [4] and [5] where they
considered fast oscillating random perturbations of dynamical systems with first
integrals. Then under suitable regularity and ergodicity conditions it was shown that
the evolution of first integrals in an appropriate time scale is given by a diffusion
process. The main emphasis in these papers is the mixing properties of fast oscillating
random perturbations. The method used in this paper and the assumptions on the noise
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terms are different, and the presence of one-to-two resonance leads to an interesting
limiting generator.
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Nonlinear Dynamics of an Array of Nano Spin
Transfer Oscillators

B. Subash, V. K. Chandrasekar and M. Lakshmanan

Abstract The dynamics of a macrospin variable representing homogeneous
magnetization of the free layer of a nanospin transfer oscillator (STNO) can be
represented by the Landau–Lifshitz–Gilbert–Slonczewski (LLGS) equation. This is
a generalization of the evolution equation of a ferromagnetic spin system represented
by the Heisenberg interaction. STNO is a fascinating nonlinear system exhibiting an
interesting bifurcation-chaos scenario depending up on the nature of the applied
external magnetic field and the spin current. In order to enhance the microwave
power generated by STNOs, recently it has been suggested to consider series and
parallel arrays of STNOs with appropriate couplings so that the oscillators get syn-
chronized. We show here the interesting possibility of obtaining synchronization
with a common external periodically varying applied magnetic field. We also study
the mass synchronization in arrays of STNOs represented by phase oscillators and
study the underlying properties.

1 Introduction

From a phenomenological point of view, the Landau-Lifshitz-Gilbert(LLG)
equation is considered to be the basic dynamical equation for describing magne-
tization/magnetic moment or simply spin S(r, t), including the damping effects
[1–3], for bulk materials in applied magnetism. The Landau–Lifshitz (LL)
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equation can also be deduced in a systematic manner by starting with a lattice spin
Hamiltonian with Heisenberg type nearest neighbour interactions, by postulating
appropriate spin Poisson brackets, and writing down the Hamilton’s equation of
motion for the spins and then taking the classical limit (� ≥ 0) of the quantum
spin dynamical equation and then the continuum limit to obtain the LL equation [4,
5]. Then the Gilbert damping term can be introduced phenomenologically [6]. The
LLG equation is an extremely interesting nonlinear evolution equation, because of
its length constraint, normalized as |S|2 = 1. Correspondingly it admits a large vari-
ety of dynamical structures including spin waves, elliptic function waves, solitary
waves, solitons, lumps, dromions, vortices, bifurcations and chaos, spatio-temporal
patterns, etc. [5].

In recent times the study of nonlinear dynamics of spin systems has received
renewed interest due to the work of Slonczewski [7] and Berger [8] on the macrospin
behaviour of spins of the free layer of a nanospin valve pillar of Fe/Cu/Fe type trilayers
due to spin torque effect under the injection of a horizontal spin current in the presence
of applied magnetic fields. In the semiclassical representation the corresponding non-
linear evolution is represented by a Landau–Lifshitz–Gilbert–Slonczewski (LLGS)
equation [9] which includes an additional term to represent the effect of spin current
on the magnetization spin vector. In the case of homogeneous magnetization, the
dynamics of the macrospin of the free layer of the nano-valve pillar, the so called
spin transfer nano-oscillator (STNO), is effectively a nonlinear oscillator equation
exhibiting interesting bifurcation and chaos scenario.

Since the power generated by a single STNO is rather low for microwave
generation, it has been recently suggested that the property of synchronization of
nonlinear oscillators [10] can be profitably utilized for increased power generation
by appropriate coupling of STNOs in series or parallel arrays [11, 12], with or with-
out delay [13, 14]. Even a suitable addition of white noise to the injected current
has been shown to lead to in-phase and anti-phase synchronizations of limit cycle
oscillations of STNOs [15]. In this article, we investigate the interesting possibility
of synchronizing limit cycle oscillations due to the action of a common applied peri-
odically driven external magnetic field leading to synchronization of both in-phase
and anti-phase limit cycle oscillations. We also consider the possibility of mass syn-
chronization of coupled phase oscillators of different groups through appropriate
coupling as a means of high quality synchronization of STNOs.

2 Heisenberg Ferromagnetic Spin Equation and Extension
to STNO

It is well known that the expectation value of the spin angular momentum operator
of an electron or equivalently magnetization per unit volume, after normalization,
represented as a classical unit vector in three dimensions evolves [16] under the
action of a time dependent external magnetic field H(t) as
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dS(t)

dt
= −γ0[S(t) × H(t)], H = (H x , H y, H z), (1)

where S2 = 1, S = (Sx , Sy, Sz). Here γ0 is the gyromagnetic factor. From a
knowledge of the hysteresis curves of ferromagnetic substances where the magneti-
zation saturates, becomes uniform and aligns parallel to the magnetic field, Gilbert
[6] introduced the phenomenological damping term to modify Eq. (1) (after suitable
rescaling) as

dS
dt

= (S × H(t)) + λS × [S × H(t)], (2)

where λ is the phenomenological Gilbert damping coefficient. Extending the above
phenomenological form of the evolution equation for a single spin to a lattice of
spins representing a ferromagnetic material, for example a cubic lattice of N spins
with nearest neighbour interactions, onsite anisotropy, demagnetizing field, applied
external magnetic field and so on, the evolution equation for the spins can be written
[5] as

dSi

dt
= Si × He f f + λSi × [Si × He f f ], i = 1, 2, . . . , N , (3)

where

He f f = (Si+1 + Si−1 + ASx
i nx + BSy

i ny + C Sz
i nz + H(t) + · · · ). (4)

Here A, B and C are anisotropy parameters and nx , ny and nz are unit vectors. Going
over to a continuum limit such that Si (t) = S(r, t), r = (x, y, z) and Si+1 + Si−1 =
S(r, t) + a.√S + a2

2 √2S+ higher order (here a is the lattice vector), the Landau–
Lifshitz–Gilbert (LLG) equation for the spin vector in the form of a vector nonlinear
partial differential equation can be written down as

∂S(r, t)

∂t
= S × He f f (r, t) + S × (S × He f f (r, t)), (5)

S(r, t) = (Sx (r, t), Sy(r, t), Sz(r, t)), S2 = 1, (6)

and the effective field is given by

He f f = Hexchange + Hanisotropy + Hdemag + Happl,

= (√S)2 + ASx nx + BSyny + C Sznz + Hdemag + H(t). (7)

In the above, Hdemag is the demagnetizing field of the material and Happ is the
applied magnetic field. Equation (5) is a complicated vector nonlinear partial dif-
ferential equation. Depending upon the nature of the interactions present in the sys-
tem and the form of He f f , Eq. (5) can admit several kinds of interesting nonlinear
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dynamical structures. These include spin waves, elliptic function waves, solitary
waves, solitons, drominons, vortices, instability induced spatio-temporal patterns,
etc. [5]

3 LLGS Equation and the Dynamics of a STNO

The LLG equation has attracted renewed interest in recent times due to intense study
of magnetization dynamics in devices such as nanospin valves/pillars in connection
with spin torque transfer effect. Slonczewski [7] and Berger [8] have independently
shown in 1996 that when a polarized spin current passes through a trilayer of ferro-
magnetic/nonferromagnetic (conducting)/ferromagnetic materials of size 100 nm or
so, a spin torque transfer effect occurs. Slonczewski [7] further showed semiclassi-
cally that the influence of spin current can be effectively analysed with the addition
of a simple term to the LLG equation as

∂S
∂t

= S × [He f f + λ(S × ∂S
∂t

) + S × j], S = (Sx , Sy, Sz), S2 = 1, (8)

where the spin current term can be given in the form

j = a.SP

f (P)(3 + S.SP )
, f (P) = (1 + P3)

4P
3
2

. (9)

Here Sp is the pinned or fixed direction of the polarized spin current that is normally
taken as perpendicular to the direction of flow of current, a is related to the strength
of the spin current and f (P) is a polarization factor. A simple approximation can be
made to the above form of the spin current as

j = aSp. (10)

Then the spin torque transfer effect can be represented by the Landau–Lifshitz–
Gilbert–Slonczewski (LLGS) equation

∂S
∂t

= S × He f f + λS ×
[

S × ∂S
∂t

]
+ aS × [S × Sp], (11)

where He f f is as given in Eq. (4).
The LLGS equation can also be written in a more transparent form by projecting

the unit spin vector on a stereographic plane [17]

ω = Sx + i Sy

(1 + Sz)
(12)
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so that Eq. (8) becomes

i(1 − iλ)ωt + √2ω − 2ω≡(√ω)2

(1 + ωω≡)
+ A

2

(1 − ω2)(ω + ω≡)
(1 + ωω≡)

+ B

2

(1 + ω2)(ω − ω≡)
(1 + ωω≡)

− C(
1 − ωω≡

1 + ωω≡ )ω (13)

+ 1

2
(H x − i j x )(1 − ω2) + 1

2
i(H y + i j y)(1 + ω2) − (H z + i j z)ω = 0,

where j = aSp, ωt = ( ∂ω
∂t ). From the form of Eq. (14) it is clear that the effect of

the spin current term j simply is to change the magnetic field

H = (H x , H y, H z) ≥ (H x − i j x , H y + i j y, H z + i j z). (14)

Thus one may realize that the effect of spin current and magnetic field complement
each other.

Finally, when the free layer of the spin valve is homogeneous, the effect of
exchange term in Eq. (11) or (14) can be neglected. The resultant LLGS equation is
effectively that of a nonlinear oscillator (after rescaling),

dS
dt

= −γ S × H e f f + λS × dS
dt

− γ aS × (S × Ŝp), (15)

where now

S = S(t) (16)

only. Taking He f f = −4π S0Sx i +κSzk +ha3k, where the saturation magnetization
4π S0 = 8400 Oe for permalloy film, we can rewrite Eq. (15) equivalently in terms
of the stereographic variable ω(t) as

(1 − iλ)ω̇ = −γ (a − iha3)ω + iκγ
(1 − |ω|2)
(1 + |ω|2)ω (17)

+ iγ 2π S0

1 + |ω|2 [(1 − ω2 − |ω|2)ω + ω≡], (ω̇ = dω

dt
).

Here γ is the gyromagnetic ratio. Eq. (15) or (17) may be considered as the LLGS
equation describing the dynamics of the macrospin variable of a single STNO.
Depending upon the type of interactions, a STNO can exhibit the standard bifurction-
chaos scenario of a nonlinear oscillator [18, 19]. In Fig. 1, we represent the phase
diagrams in the (hdc − a) plane indicating periodic regimes, including limit cycles
and chaotic behaviour both for isotropic and anisotropic cases with oscillating mag-



30 B. Subash et al.

Fig. 1 Regions of chaos in
the a − ha3 space, for an
applied alternating magnetic
field along the z direction for
isotropic a and anisotropic
b cases. The dark regions
indicate values for which
the dynamics is chaotic, i.e,
regions where the largest
Lyapunov exponent is posi-
tive [19]. The white regions
are the periodic regimes or
limit cycles. Here ha3 is the
applied dc magnetic field
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netic field. Here H = (hdc + hac cos ωt)i. Note that periodic oscillations of different
types, chaos, period doubling transitions, etc. occur [19].

4 Dynamics of Arrays of STNOs

We next consider an array of two STNOs in the presence of a common applied
magnetic field (Fig. 2)

Happ = H(t) = (hdc + hac cos ωt, 0, 0), (18)

by the system of LLGS equations of the magnetizations of two STNOs
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Fig. 2 The schematic representation of an array of two STNOs placed in the oscillatory external
magnetic field

dS1

dt
= −γ S1 × H1e f f + λS1 × dS1

dt
− γ aS1 × (S1 × Sp), (19)

dS2

dt
= −γ S2 × H2e f f + λS2 × dS2

dt
− γ aS2 × (S2 × Sp),

where |S1|2 = S2
1x + S2

1y + S2
1z = 1, |S2|2 = S2

2x + S2
2y + S2

2z = 1 or equivalently one
can write down the corresponding evolution equation for the stereographic variables
ω1(t) and ω2(t). Here we take H1e f f = H2e f f = He f f with appropriate spin number.

We have numerically integrated the above set of equations and found that both
in-phase and anti-phase synchronizations occur in the presence of oscillating mag-
netic field and spin current. For example, in Fig. 3a, b, we plot the z component of
the spin vectors of the two oscillators for the anisotropic field strength κ = 45 Oe,
external magnetic field strength hdc = 500 Oe and external current a = 220 Oe, both
time series and phase space plot. The figure clearly shows the existence of anti-phase
synchronization.

In Fig. 3c, d, we present similar results for a different external magnetic field
strength hdc = 500 Oe and external current a = 221 Oe with all the other parameters
unchanged. It clearly shows the existence of in-phase synchronization of limit cycle
oscillations.

In order to confirm that the above synchronization aspects are robust, we present
the results of our numerical analysis for the case in which there is a slight mismatch
in the system parameters of the two STNOs with the choice of anisotropy strength
κ1 = 45.0 for the first oscillator and κ2 = 45.1 for the second oscillator. In Fig. 3e–h
we show the in-phase and anti-phase synchronizations for this case.

In Fig. 4 we show the occurrence of synchronization for 100 STNOs for external
magnetic field strength hdc = 500 Oe, external current a = 220 Oe and anisotropy
strength κi , i = 1, 2, . . . 100 distributed randomly between 45 and 46. In the phase
space plot, Fig. 4 (right), we show that the 61th STNO is in in-phase with the 17th
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with same anisotropy field κ = 45.0 (a–d) and with different anisotropy fields κ1 = 45.0 Oe,
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Fig. 4 The time series (left) and phase space (right) plots of an array of 100 nonidentical STNOs
shows the anti-phase synchronization. In the right panel we show that the 61th STNO is in in-phase
synchronization with the 17th STNO and in anti-phase synchronization with the 82nd STNO

STNO and in anti-phase synchronization with the 82nd STNO. So we confirm the
phenomenon of synchronization in the presence of the external driven magnetic field
even for large number of STNOs. For further details on synchronization of STNOs,
see Ref. [20].

5 Mass Synchronization in an Array of STNOs

The dynamics of an array of STNOs can also be represented using models of coupled
phase oscillators. For instance, if we consider the synchronization of coupled STNOs
via external ac field, we assume that all the STNOs have the same output frequency.



Nonlinear Dynamics of an Array of Nano Spin Transfer Oscillators 33

According to Ref. [21] the energy injected from the external ac field Hac to the ith
STNO is given as

Ei = −μ0 MS V0

∮
Hac.dmi , (20)

where mi is the orbit of the small amplitude in-plane oscillation, μ0 is the vacuum
permeability and V0 is the volume of the free layer. This energy injected by the ac
current is much lesser compared to that injected by the dc current and hence the
former can be treated as a perturbation. Thus one can represent the phase dynamics
of the ith STNO as

θ̇i = ωi − σ

N

N∑

j=1

sin(θi − θ j + α), i = 1, 2, . . . , N , (21)

where α is the phase shift. Georges et al. [11] found that in the case of series or parallel
arrays, there occurs a problem of impedance-matching where the output power does
not increase with the number of oscillators for large values of N if N R >> Z0
in the case of series arrays and the STNOs shunt each other with the output power
increasing as N 2 only if N Z0 << R; here Z0 is the load. Hence the authors of [11]
proposed hybrid arrays (a combination of series and parallel configuration). In this
configuration, the phase of the oscillator (n, m) in the hybrid array can be described
by the following equation

θ̇i
(η) = ω

(η)
i −

N ◦
∑

η◦=1

σηη◦

N

N∑

j=1

sin(θ
(η)
i − θ

(η◦)
j + αηη◦) + ζ

(η)
i (t), (22)

i = 1, 2, . . . , N ,

where N ◦ parallel branches have each N STNOs connected in series. σηη◦ is the

strength of the coupling between the STNOs in η◦ and those in η. Here ω
(η)
k is

the natural frequency of the kth STNO in the branch η and ζ
(1,2)
i are independent

Gaussian white noises with ≈ζ (η)
i (t)∈ = 0 and ≈ζ (η)

i (t) ζ
(η)◦
j (t)∈ = 2D(η)δ(t − t ◦)δi j

and D(η) are the noise intensities.
Now, a maximum output power can be harvested if all the STNOs are synchronized;

let us call this phenomenon as mass synchronization. In this section let us discuss a
method to induce mass synchronization in the system of STNOs that are in hybrid
configuration by inducing synchronization in any one of the series or parallel arrays.
That is, by inducing synchronization within the STNOs of any one of the series or
parallel arrays, mass synchronization can be achieved. For a better understanding of
the system configuration, let us refer to the following schematic diagram (Fig. 5).
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Fig. 5 Schematic representation of system (22) for N ◦ = 2. θ(1)
i is the source branch and θ

(2)
i is the

target branch. The coupling strengths within the branches are quantified by the parameters σ11 and
σ22. The coupling strengths from the source to the target and the target to the source are quantified
by the parameters σ12 = μσ21 and σ21, respectively [22]

In order to acheive mass synchronization, we plan to induce synchronization
in any one of the arrays. For the same, we need to quantify the strength of the
synchronization within each of the arrays.

We use Kuramoto’s complex order parameter to measure the strength of synchro-
nization within an array. The order parameter can be given as

zη = rηeiψ(η) = 1

N

N∑

j=1

eiθ(η)
j . (23)

When rη = 1 there is complete synchronization within the ηth array and when
rη = 0 there is complete desynchronization in the ηth array. When rη takes a value
between 0 and 1, there is a partial synchronization in the ηth array. We shall use the
time average of rη in order to characterize the occurrence of strong synchronization
within the corresponding array. Numerically, for T = 105 units, the occurrence of
synchronization within an array can be characterized by Rη > 0.8. Here Rη is the
time average of rη, that is,

Rη =< rη >= 1

T

∫ T

0
rηdt. (24)

In order to find out the dynamical factors that cause the occurrence of mass syn-
chronization, we numerically simulate system (22) using Runge–Kutta fourth order
routine. We use a time step of 0.01.

We have fixed N = 1000 and have assumed a Lorentzian distribution for the

oscillator frequencies given by g(ω(η)) = γη

π

[
(ω(η) − ωη)

2 + γη

]−1

, where γ is the

half width at half maximum and ωη is the central frequency. We consider a random
distributon for the initial phases of the STNOs, distributed between 0 and 2π .

Let us now discuss how the occurrence of synchronization in the source branch
induces mass synchronization in the other branches as well, leading to an increase
in the synchronized output power.
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Fig. 6 The time average of rη (a and b) and the time average local and global order parameters,
Ravg and Rg , (c and d) for increasing σ11 is plotted for two different noise strengths Dη = 0.1
(a and c) and Dη = 0.5 ((b) and (d)) for N ◦ = 3, η = 1, 2, 3. Here σηη = 0.01, ση1 = 1.5,
σ1η = μση1, for η = 2, 3, μ = 0.1, αi j = π/2 − 0.3, i, j = 1, 2, 3, γ1,2,3 = 0.05, ω1 = 1.5,
ω2,3 = 0.5, and σ23 = σ32 = 0.01. The regions DS and SS denote the desynchronization and
strong synchronization states characterized by the numerical thresholds of R = 0.3 and R = 0.8,
respectively

For the case N ◦ = 3 we consider three branches of coupled STNOs each having
1,000 oscillators. We set the values of the coupling parameters as follows:σηη = 0.01,
ση1 = 1.5, σ1η = μση1, for η = 2, 3, μ = 0.1, αi j = π/2 − 0.3, i, j = 1, 2, 3,
γ1,2,3 = 0.05, ω1 = 1.5, ω2,3 = 0.5, and σ23 = σ32 = 0.01.

One of the three branches is the source in which synchronization is first established.
The other two branches are target branches on to which synchronization will be
induced by the synchronized source branch. In Fig. 6a, b we have plotted the time-
averaged order parameter of the three branches R1, R2 and R3 against the coupling
strength of the source branch, for two different values of noise strengths, namely
Dη = 0.1 and Dη = 0.5, respectively. For both the values of noise strengths,
we see that when the synchronization of the source branch increases (R1), the
synchronization in the target branches also increases (R2 and R3). The synchro-
nization in the target branch is purely induced by the synchronization in the source
branch since the coupling strength of the oscillators within the target branches are
σ22 = σ33 = 0.01.

In Fig. 6c, d we have plotted the local and global order parameters, Ravg and Rg ,
for Dη = 0.1 and Dη = 0.5, respectively. The local and global order parameters are
given by the following expressions:



36 B. Subash et al.

Ravg = <
1

N ◦
N ◦
∑

η◦=1

rη◦ >, Rg =< | 1

N ◦
N ◦
∑

η◦=1

rη◦eiψη◦ | > . (25)

The local order parameter measures the occurrence of synchronization within a
branch, while the global order parameter quantifies the occurrence of synchronization
in all the branches, globally in the system. Thus if Rg = 1, all the branches in the
system are synchronized to a one and the same state.

The occurrence of synchronization in the source and the target branches are not
influenced by changes in the strength of the noise in the system. This is evident from
Fig. 6 panels (a) and (b), where for both the noise strengths the phenomenon of mass
synchronization occurs in a similar manner.

Likewise, the local and the global order parameters also behave in a very similar
manner for increasing σ11 for two different noise strengths. Thus we conclude that the
phenomenon of occurrence of mass synchronization is not affected by the strength
of the noise in the system.

6 Analytical Explanation

In order to analytically explain the occurrence of mass synchronization, we analyze
system (22) in the continuum limit N ≥ ∞. In this limit, the evolution equation for
the order parameter for Lorentzian distribution becomes (in the absence of noise)

żη + (γη − iωη)zη =
N ◦
∑

η◦=1

σηη◦

2

(
e−iαηη◦ zη◦ − eiαηη◦ z≡

η◦ z2
η

)
, (26)

η = 1, 2, . . . , N ◦.

Here we use Ott and Antonsen [23] ansatz to derive the amplitude equation (26). From
Fig. 6 one can note that the dynamics of the order parameter for all the target branches
are similar. Thus one can consider the sate rη ∇ rt and ψη ∇ ψt , η = 2, ..., N ◦ and
the amplitude equation (26) becomes (for αηη◦ = α)

ṙ1 = −γ1r1 + (
1 − r2

1

2
)(σ11r1 cos(α) + μσt1rt cos(ψ1 − ψt + α)), (27)

ψ̇1 = ω1 − (
1 + r2

1

2r1
)(σ11r1 sin(α) + μσt1rt sin(ψ1 − ψt + α)),

ṙt = −γt rt + (
1 − r2

t

2
)(σt t rt cos(α) + σt1r1 cos(ψt − ψ1 + α)), (28)

ψ̇t = ωt − (
1 + r2

t

2rt
)(σt t rt sin(α) + σt1r1 sin(ψt − ψ1 + α)),
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where γt = γη, ωt = ωη, σ1t = ∑N ◦
η◦=2 σηη◦ and σt t = ∑N ◦

η◦=2 σηη◦ , η = 2, ..., N ◦.
One can assume μ = 0 so that the source strongly (completely) drives the target
branches. We have taken μ = 0 for analytical convenience to start with. However, in
general one can observe the occurrence of mass synchronization for μ < 1 also as
in the case of numerical simulations where μ =0.1. Thus when the strength of the
synchronization increases in the source it induces synchronization in the targets.

From Eq. (27), for μ = 0, the synchronization of the source is characterized by
the stability of the fixed point rs

1 = →
1 − 2γ1/σ̄11, where σ̄ = σ cos(α). On the

other hand, the desynchronization state is characterized by the stability of the fixed
point rd

1 = 0. When σ̄11 < 2γ1, the fixed point rd
1 becomes stable and there is no

synchronization in the source. In this state the equation for the target branch is given
as

ṙt = −γt r2 + (
1 − r2

t

2
)(σt t rt cos(α), ψ̇t = ωt − (

1 + r2
t

2rt
)σt t rt sin(α). (29)

Again one can check that for σ̄t t < 2γt the fixed point rt = 0 is stable and the target
branch is desynchronized. Thus when the source is desynchronized, the target branch
is also desynchronized.

On the other hand, when the coupling strength in the source σ̄11 increases so
that σ̄11 > 2γ1 the fixed point rd

1 becomes unstable and rs
1 becomes stable thus

establishing synchronization in the source. The synchronization strength of the
source increases as

→
1 − 2γ1/σ̄11. After synchronization in the source is established,

Eq. (29) reduces to

ṙt = −γt rt + (
1 − r2

t

2
)(σt t rt cos(α) + σt1

√
1 − 2γ1/σ̄11 cos(ψ + α)), (30)

ψ̇ = ω̄ − (
1 + r2

t

2rt
)(σt t rt sin(α) + σt1

√
1 − 2γ1/σ̄11 sin(ψ + α)),

where ψ = ψt − ψ1 and ω̄ = ωt − ω1 + (σ11 − γ1) tan(α11). This equation does
not admit the fixed point rt = 0. This means that when synchronization emerges in
the source, the target branches also begin to get synchronized. The strength of the
synchronization in the target increases according to σt1

→
1 − 2γ1/σ̄11, eventually

leading to synchronization with the target. This result holds good for μ < 1 also as
is evident from our numerical findings as depicted in panels (a) and (b) of Fig. 6 for
μ = 0.1. Here we can establish that when the source is completely synchronized
the target is also completely synchronized. This means that the increase in σ11 to a
sufficiently high value induces synchronization in the target also apart from inducing
synchronization in the source.
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7 Summary and Conclusion

We have presented a systematic study of synchronization of STNOs coupled through
the external driven periodically varying magnetic field. We have studied in-phase and
anti-phase synchronization scenario of two STNOs and extended it to more number
of oscillators in the presence of a common oscillating magnetic field. We find that the
synchronization is induced though the oscillating magnetic medium. Further, in order
to check the practical possibility of this scenario we also find the same phenomenon
in the case of two different anisotropic STNOs. We also made a detailed analysis of
synchronization in terms of coupled phase models and brought out the phenomenon
of mass synchronization.
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Interactive Ensembles of Imperfect Models:
Lorenz 96 System

Lasko Basnarkov and Ljupčo Kocarev

Abstract Contemporary numerical weather prediction schemes are based on
ensemble forecasting. Ensemble members are obtained by taking different (per-
turbed) models started with different initial conditions. We introduce one type of
improved model that represents interactive ensemble of individual models. The
improved model’s performance is tested with the Lorenz 96 toy model. One complex
model is considered as reality, while its imperfect models are taken to be structurally
simpler and with lower resolution. The improved model is defined as one with ten-
dency that is weighted average of the tendencies of individual models. The weights
are calculated from past observations by minimizing the average difference between
the improved model’s tendency and that of the reality. It is numerically verified
that the improved model has better ability for short term prediction than any of the
individual models.

1 Introduction

Weather prediction and climate projection are among the fields whose progress
strongly depends on the development of the nonlinear dynamics [14]. Even the inter-
est in nonlinear dynamics has greatly increased after the seminal work of Lorenz
in 1963 with an atmospheric model [7]. The reason for such interconnectedness is
simple due to the fact that the models that are used in meteorology are described with
nonlinear differential equations. The Lorenz 63 model is simple nonlinear system
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of three ordinary differential equations. However, the weather prediction (short term
forecasting) and the climate projection (long term prediction of averages or fluctua-
tions) have a great impact on the life of humans. They demand elaborate models for
obtaining more reliable predictions and operational models for numerical weather
forecasting today have millions of degrees of freedom [14]. All atmospheric mod-
els are built upon the same basic physics laws and are mathematically represented
with nonlinear partial differential equations. The number of the degrees of free-
dom generally depends on three factors: the number of the dynamical variables used
in the model; the number of layers representing the atmosphere; and the number
of the components used in the decomposition of the fields of variables in spheri-
cal functions—largest factor. Due to the growth of power of computing facilities,
the dimensionality of the models permanently grows mainly through increase in the
resolution—the number of the spherical components. Another possibility to use the
available computer power is considering combinations of models. Today, weather
forecast is based on ensemble predictions—multiple runs of simulations with per-
turbed initial conditions [6, 18]. More interesting and more promising application
could be making interactive ensembles – simulations of models that dynamically
exchange information [4]. In this work we present a simple case of a model with
velocity vector that is weighted average of the vectors of the members of the ensem-
ble. This results in improved model that extends the short term prediction range. The
models and the truth are different versions of the Lorenz 96 system [8, 9]. The truth is
the more complex version (and with more degrees of freedom) because the reality is
always complex more than any model of it. In the following sections first we discuss
some basic facts related to the atmospheric models. Then we introduce the Lorenz
96 model and the interactive ensemble. Next follow the results from numerical sim-
ulations. We finish with the conclusions and directions for future work.

2 Atmospheric Models

Current understanding of the main sources of errors in weather forecasting was
pioneered by Bjerknes a century ago [3]. There are two types of errors: one is the
limitation of the estimate of the state of the atmosphere—initial condition or analysis
error and the other is imperfection of the models in duplicating the evolution of the
state—model error. Both are based on the fact that the model is always simpler than
the reality and that their comparison is performed in the state space of the model.
The analysis error is the mismatch between the projection of the state of reality into
the model’s space and the estimate of that projection based on the model—a point
from its attractor. The techniques used for decreasing this error are summarized
as data assimilation. The model error can be understood as the difference between
the equations of the model and the truth. It is closely related to the tendency error
which is the difference between the velocity vectors (or tendency in meteorological
community) of the model and of the trajectory consisting of the projections [5, 11].
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We would like to stress that usually the model error is disregarded in analysis. In
most of the works it is considered that one has the proper physical (and mathemati-
cal) model of the system that is under consideration. This means that the equations
of motion are known and possibly the parameter values should be adjusted to be
represent the reality. For this purpose very powerful techniques based on synchro-
nization were developed to determine the parameters [15]. Since the correct values
of the parameters are found the emergence of full synchronization means possibility
of prediction because both the truth and the model are governed with the same equa-
tions. However, the atmosphere is a system that hardly admits perfect reproduction
with models. Thus one should know that any of its models is imperfect.

The atmospheric models are based on the same fundamental laws of fluid mechan-
ics. Depending on the level of complexity they belong to one or another class of par-
tial differential equations that incorporate the basic processes involved in transport
of fluids. However there are a plentiful unresolved processes that are not captured
within this framework like the cloud formation or dissipation [14]. The influence
of these processes on the dynamical variables of the atmosphere is parameterized.
Mathematically, these processes are modeled with some parameters appearing in the
equations. The values of those parameters are adjusted with fitting of the model’s
outputs with the observations. The difference between the models developed at dif-
ferent meteorological centers around the world generally appears in the choice of the
parameterized processes and the values of the parameters.

In last years there was a change in the operational numerical weather prediction
and climate projection as well from deterministic to probabilistic approach [14].
Instead of basing the predictions on a single run of a model, the probability of occur-
rence of particular event is calculated from ensemble of simulations. The ensemble
consists of multiple runs of a single model started from different initial conditions.
This kind of perturbation of initial conditions aims at capturing the uncertainty in
knowledge of the state of the atmosphere—the analysis error. The uncertainties in
the model (its parameters) are handled with making perturbations of the parameters,
or with considering ensemble of models—grand ensemble [6, 18]. It is naturally to
assume that taking models from different meteorological centers as members of the
prediction ensemble should do even better. At the end of this line of reasoning comes
the interactive ensemble of models. Here, instead of combining only the outputs of
the models, they can exchange information on the fly, which means that the future
state of some model depends on the current states of the others. However, the issue of
designing the connection between the individual models represents a real challenge.
First ideas for that task can be borrowed from the synchronization theory where the
systems are diffusively coupled in order to nudge the states of one to the other. To
clarify this let us denote the state of the model identified with the set of parame-
ters μ as xμ. If one considers that model isolated, its evolution is described with a
differential equation (for simplicity ordinary differential equation)

xμ = fμ(xμ). (1)
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Within the last equation the tendency f is a function of the parameters μ as well,
but the dependence is expressed through subscript which also can serve to identify
particular model. We can further assume that all models have the same state variables
and just different values are assigned to them. Then the diffusive coupling or nudging
will make the model μ evolve according to

xμ = fμ(xμ) +
∑

ν

C(xν − xμ) (2)

where the model identifier ν runs through the set of all models, and the coupling
matrix C determines the strength of nudging between the individual models. This
kind of connected ensemble was used to test the idea of interactive ensembles for
the Lorenz 63 model [10, 19]. In that work as reality was considered one Lorenz
63 system, while as its models three other systems with different parameter values.
For proper choice of the connection coefficients the interactive ensemble can even
perfectly trace the truth, although the individual models do not. It was also found
that if the connection coefficients have infinite values, the interactive ensemble is
equivalent to a model with velocity vector that is weighted combination of the velocity
vectors of the individual models—weighted ensemble [20]. The weighted ensemble
is a good candidate for weather prediction models for decreasing the model error. In
the next section an example of weighted ensemble is analyzed in more details.

3 Interactive Ensemble of Lorenz 1996 Models

Edward Lorenz published very nice paper that explained how one can progressively
make more realistic models [9] based on a previous work [8]. He introduced a hier-
archy of three models that mimic the behavior of some scalar atmospheric variable
over one latitude circle. The models incorporated the basic processes present in the
fluid dynamics—damping and advection and also the influence of external forces.
For properly adjusted parameter values the solution of any of the three models has
chaotic nature with traveling waves corresponding to, for example, the west to east
wind jets. The models are systems of ordinary differential equations whose struc-
ture resembles spatially discretized version of a partial differential equation. The
relevance of the model was proven by numerous works based on it (for example
the Refs. [9, 12, 13]). The simplest version—model I describes the evolution of
the scalar variable X at N equally spaced points around the circle according to the
following cyclically symmetric system of equations

Ẋn = −Xn−2 Xn−1 + Xn−1 Xn+1 − Xn + Fn . (3)

The nonlinear terms correspond to the advection, the linear one models the damping,
while Fn is the spatially dependent external forcing. The system has chaotic dynamics
but the solution profile is not a smooth function and thus this model is used as a
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starting point. The medium complexity Lorenz 96 model II is a smoothed version of
the model I and is a good candidate for the role of a model in this work. Its definition
is similar to the previous one

Ẋn = [X, X ]K ,n − Xn + Fn, (4)

where the term in the brackets is short hand notation of the sum

[X, Y ]K ,n =
J∑

j=−J

´
J∑

i=−J

(́−Xn−2K−i Yn−K− j + Xn−K+ j−i Yn+K+ j )/K 2, (5)

The number K in the last equation determines the range of the influence, and J =
K/2 if K is even and J = (K − 1)/2 if K is odd. The sign prime at the sum is used
to note that in the case when K is even the first and last terms should be divided by 2
and when K is odd one has ordinary sum. As a truth, or real atmosphere, we use the
most complex model of the hierarchy—version III. It is characterized with small-
scale activity Yn combined with the large-scale one Xn . The dynamical variable of
the model III, Zn , evolves as

Żn = [X, X ]K ,n + b2[Y, Y ]1,n + c[Y, X ]1,n − Xn − bYn + Fn, (6)

where b and c are parameters and the large and small scale variables are given by

Xn =
I∑

i=−I

(́α − β|i |)Zn+i

Yn = Zn − Xn . (7)

The integer I and parameters α and β in the last equation are adjusted to make a
low-pass filter such that Xn will be smoothed version of Zn , and Yn will represent the
local weather. Again, the same short-hand notation is used with the brackets and the
sign prime denotes the modified sum. The aim of Lorenz was to construct a model
with traveling wave solution and chaotic dynamics and with large and small scale
features. In most of the works the number of gridpoints is chosen to be N = 960 while
the range of the interaction and the filter are K = 32 and I = 12. The parameters
are taken to have values b = 10, c = 2.5 and

α = (3I 2 + 3)/(2I 3 + 4I ),

β = (2I 2 + 1)/(I 4 + 2I 2). (8)

The forcing term in the original formulation was taken constant Fn = F . However
a more realistic choice is to consider it as spatially dependent. Because Lorenz 96
model is artificial we have taken random values of the forcing. In order to have a
smoothly varying forcing function along the circle one can take a periodic function
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with randomly selected Fourier components. For the model III—the truth—in this
work we have decided to take as non-zero the 10 lowest Fourier components. For the
average of the forcing the standard value was taken f0 = F = 15. Thus the forcing
term is given by the sum

Fn = f0

[

1 +
10∑

m=1

f c
m cos

(
2πmn

N

)
+ f s

m sin

(
2πmn

N

)]

, (9)

where the spectral components f c
m and f s

m have random values from the interval
[−0.5, 0.5]. As we have stated previously the models of the reality are assumed to be
more simple and also, due to the imperfection, the forcing terms of the models have
slightly perturbed values. The perturbation is performed in the same way by adding
a function with randomly selected Fourier components to the forcing function of the
truth. The number of harmonics is taken to be 10 again but with smaller amplitude.
Because any representation of the atmosphere is its coarse image we have taken the
number of the gridpoints of the models to be M < N . Thus, we have now models
of one truth different from each other and from the truth as well. The difference is
in the structure of equations and also in the only parameter—forcing term—which
mimics different parameterizations of the unresolved physical processes.

As was stated previously one source of errors in short term prediction is the mis-
match between the velocity vectors of the truth and its model—tendency error. A
proper linear combination, or weighting of the velocities of different models could
decrease that mismatch. The combination should be applied at every gridpoint gen-
erally with different weights at different positions. Denote with T μ

n the tendency of
the model μ at gridpoint n

Ẋμ
n = T μ

n = [Xμ, Xμ]K ,n − Xμ
n + Fμ

n . (10)

Then the tendency of weighted ensemble as linear combination of the tendencies is
given by

˙X I E
n = T I E

n =
∑

μ

wμ
n T μ

n . (11)

In operational weather prediction one is allowed to adjust the parameter values of the
models to optimize it. For this case that would mean optimizing the forcing terms Fn .
We assume that the optimization is done and the models are best solutions obtained
at different meteorological centers. Then the quality of the interactive ensemble will
depend only on the weights wμ

n . One possible solution for determination of optimal
weights is based on minimizing the average mismatch between the tendency of the
ensemble and the truth. This is identified as average tendency error

D = ≥
M−1∑

n=0

|T t
n − T I E

n |2√ =
M−1∑

n=0

≥
∣
∣
∣
∣
∣
T t

n −
∑

μ

wμ
n T μ

n

∣
∣
∣
∣
∣

2

√, (12)
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where the tendency of the truth T t
n is given by the RHS of Eq. (6) and angle brackets

denote time average. As is usually done with the operational atmospheric models
the optimization is based on the measurements data. In this case it is assumed that
the tendency of the truth is observed, or calculated. For real models the tendency
is not an observational quantity but should be estimated with interpolation and thus
is prone to errors. This error as well as the presence of measurement noise can be
modeled by adding noise to the tendency of the truth. Using all the observation data
the optimal weights are obtained with differentiation of the average tendency error
with respect to the weights

∂ D

∂wμ
n

= ∂≥∣∣T t
n − ∑

ν wν
nT ν

n

∣
∣2√

∂wμ
n

= 2≥T μ
n

(

T t
n −

∑

ν

wν
nT ν

n

)

√ = 0. (13)

One could introduce the covariances between the models’ tendencies Cμ,ν
n =

≥T ν
n T μ

n √ and between the truth and the models Cμ,t
n = ≥T t

n T μ
n √. The tendency covari-

ances between the models can be organized in a matrix Cn and tendency covariances
with the truth in a vector cn . Then the vector of weights wn at gridpoint n is obtained
from the following linear algebra problem

Cnwn = cn . (14)

The procedure that we have presented is a linear regression and is prone to over-fitting
of the parameters—weights in this case [2]. The standard remedy of this problem is
minimization od slightly modified error function

D + λ
∑

n,ν

(wν
n)2, (15)

where λ is the regularization coefficient. Repeating the procedure with the derivatives
one obtains the following equation for the weights

∑

ν

(
Cμ,ν

n − λ
)

wν
n − Cμ,t

n = 0. (16)

or in matrix form
(Cn − λI) wn = cn, (17)

The solution of the matrix is obtained straightforwardly and reads

wn = (Cn − λI)−1 cn . (18)

In summary, for this toy case from the simulations are obtained the tendencies at
every moment and every gridpoint and from them are calculated the covariances,
and finally the weights.
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4 Numerical Experiments

The numerical integration of the systems was performed with the fourth order
Runge–Kutta algorithm with time step 0.001. The truth was considered to have
N = 960 gridpoints—standard value in the literature, while to have simpler models
of the reality one should choose smaller resolution for them. The weighted ensem-
ble outperforms the individual models when the difference in resolution is larger,
but too small number of points for the models will make them completely deviate
from the truth. We have used in this study M = 60 points. The comparison of the
models with the truth is done in the state space of the model—at its 60 gridpoints.
Because in numerical weather forecasting the models are constantly fed with data
from new measurements, the models are started form the state of the truth (at the
models’ gridpoints) with small perturbations to include the observational error. For
technical reasons we have taken that this resetting is performed at some prescribed
interval—2,000 time units in this case. First test is the visual comparison of the
solution profiles at certain moment. In Fig. 1 are shown the solutions at two partic-
ular moments t = 0.2 and 1. It is evident that for small period the model’s profile
resembles to that of the truth—one has a good prediction. Clearly, as time goes on
the prediction ability of the model fades away.

More precise estimate of the deviation of the prediction from the real trajectory
is done by observing the evolution of Euclidean distance between the states of the
model μ and the truth—prediction error

eμ(t) =
√√
√
√

M−1∑

m=0

|Zm(t) − Xμ
m(t)|2. (19)
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Fig. 1 Comparison of solution profiles of the truth—Lorenz 96 model III (in black) and its simpler
representation—Lorenz 96 model II (in red) in the state space of the model. At left are shown the
solutions at moment 0.2 after start at close initial condition, while in the right panel the moment
when the solutions are taken is t = 1
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The trajectories from identical nonlinear dynamical systems originating from close
starting points initially separate with exponential rate on average [7, 17]. But if the
dynamical systems are different the divergence should not be exponential [16]. This
is particularly relevant for the meteorology because the atmosphere and any of its
models are far from identical. In this study the exponential divergence is verified only
when one takes the model to be the same class of functions as is the truth—model III.
This is shown in left panel of the Fig. 2. If the model is different (or simpler) from the
truth—class II, the separation is linear [11]. This happens regardless of whether the
model has equal or smaller number of gridpoints. To explain this result one should
remind that the state of the truth and its tendency are represented in the state space
of the model. For small periods the evolutions of both states are governed by nearly
constant tendencies. But it is almost impossible for the tendencies to coincide at
every moment. This can be modeled with two particles moving along intersecting
lines with constant velocities and starting from the intersection point at the same
moment. With elementary kinematics it can be easily shown that the distance between
the particles will grow linearly. In the case of perturbation of the initial condition,
the lines do not intersect and then the separation is linear asymptotically. In the
right panel are shown the prediction errors for three different models (class II) of
the truth. Also are shown the prediction errors of the average of the outputs of the
models X av

m = (
∑

μ Xμ
m)/3 and of the improved model. The improvement with the

interactive ensemble is obtained for longer periods. The amount of improvement
depends on the value of the regularization parameter λ which is obtained by trying
different values. For this case its value was obtained λ = 1,000.

A more convenient measure for determination of the predictability range of a
model is the anomaly correlation—AC [1]. It is cross correlation between two time
series at the same moment—one obtained from the observations and the other from
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Fig. 2 If the model is identical with the truth (Lorenz 96 model III), the average initial error
growth is exponential—verification at left panel. When the model and the truth are different the
separation is linear—verification at right panel. Lowest curve in that plot corresponds to the weighted
ensemble, while the others correspond to the individual models or the average of their output. To the
observations of the state of the truth, as well as its tendency was added uniform noise with maximal
value 5 % of the observed values
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Fig. 3 Anomaly correlation AC between the truth and the models. The top curve (in blue) cor-
responds to the perfect model, the middle (in green) is for the improved model, and lower curves
(almost indistinguishable) are for the individual models and average output of them

the model. For the model μ it is

ACμ =
∑M−1

m=0 ≥(Zm − ≥Zm√)(Xμ
m − ≥Xμ

m√)√
√∑M−1

m=0 (Zm − ≥Zm√)2
√∑M−1

m=0 (Xμ
m − ≥Xμ

m√)2
, (20)

where the angular brackets denote time average for the testing period. As a
predictability boundary is considered the time when AC falls below value 0.6 [1].
The AC curves for three individual models, their average output and the improved
model are compared in Fig. 3. This confirms that the weighted ensemble is better
model—17 % in this particular example. The top curve in the figure corresponds to
the AC between a model that is identical with the truth (perfect model) started from
perturbed initial condition. This shows that the imperfect models are weaker for pre-
diction. The AC curves for the imperfect models have atypical behavior—increasing
for short time and then decreasing instead of only decreasing. Maybe this is result
of the structural difference between them and the truth.

5 Discussion

We have presented a procedure for combining systems with aim to make an improved
model of some structurally more complex reality. As the truth was considered the
most complex version of the Lorenz 96 model, while as models were taken the simpler
versions. The models were assumed to have less degrees of freedom as well. The
improved model was defined to be an interactive ensemble with velocity vector, or
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tendency, that is a weighted combination of the tendencies of the individual models.
The weights are obtained from past observations of the tendency of the truth such
that the time average of the difference between the tendency of the improved model
and the truth is minimal. For some choice of the parameters the weighted ensemble
outperforms the individual models for 17 % according to the anomaly correlation as
a predictability metric.

The traditional physical modeling of dynamical systems rests upon constructing
the functions of velocity vectors from first principles. With machine learning and
artificial intelligence tools those functions are determined from some prescribed
set. This approach is using both—finding a good combination of different physical
models. The meteorology is the area that is particularly relevant for this way of
modeling because of existence of dozens of different atmospheric models. Other
fields can use these ideas as well.

There is lot of work left to be done. First, the concept could be verified for models
that are structurally different from each other—at least in presence (or absence) of
some small magnitude terms. Another interaction combinations should be studied
as well. One of them is the diffusive coupling, or nudging of the state variables
of coupled models which is implemented in synchronization theory. This may be
necessary for making interactive ensembles for climate projection—estimate of the
averages, or fluctuations of the variables. In this work we have checked whether the
weighted ensemble is better for predicting the climate than the individual models.
As climatological variables were considered the time averages of the field at certain
gridpoints—≥Zn√ and ≥Xμ

n √. After calculating average mismatch (≥Zn√− ≥Xμ
n √)2 for

whole space we found that it is not smaller for the improved model than the individual
models. In that case the average output of the models X av

n has best performance.
This happens probably because the improvement is based on optimization of the
tendency which is a short-term property. Maybe training the ensemble directly for
the climatological variables will lead to the desired improvement. How to try this is
an open question.
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Abstract Nonlinearity and chaos can illustrate numerous behaviors and patterns,
and one can select different patterns from this rich library of patterns. In this paper we
focus on synthetic computing, a field that engineers and synthesizes nonlinear sys-
tems to obtain computation. We explain the importance of nonlinearity, and describe
how nonlinear systems can be engineered to perform computation. More specifically,
we provide an overview of chaos computing, a field that manually programs chaotic
systems to build different types of digital functions. Also we briefly describe logical
stochastic resonance (LSR), and then extend the approach of LSR to realize combi-
national digital logic systems via suitable concatenation of existing logical stochastic
resonance blocks. Finally we demonstrate how a chaotic system can be engineered
and mated with different machine learning techniques, such as artificial neural net-
works, random searching, and genetic algorithm, to design different autonomous
systems that can adapt and respond to environmental conditions.
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1 Introduction

Nonlinearity and chaos have been known and recognized as one of the main sources
of variety, diversity, and adaption in nature and living systems [1, 2]. Nonlinearity
and chaos provide a system with different types of solutions and behaviors to cope
with different conditions, while preserving the determinism of the system. In this
paper we provide an overview, discuss, and demonstrate how this nonlinearity and
chaos can be engineered to perform different types of computations in a manual or
adaptive fashion, and we name this field synthetic computing.

Chaos computing explains how a chaotic system can be engineered to implement
different types of computations using different intrinsic patterns available in the
system, and how by perturbing the chaotic system we can switch from one function
to another [3–6]. In this approach we manually perform the function switching using
the perturbation as a “knob” mechanism to program the computing. Here, manual
switching means that we ourselves control and program the chaos-based system in
order to obtain the desired functionality from it.

As another approach to synthetic computing, logical stochastic resonance has been
introduced [7, 8]. It describes how by tuning parameters of a bistable nonlinear system
in a noisy environment, we can build different types of computations. Bistability
is widely observed in nature and living organisms. Logical stochastic resonance
explains how a nonlinear, bistable system can be synthesized and engineered so
that input and control data deepen and widen the potential well that corresponds to
the state that represents the correct answer to the computation. In this process, the
second well, which represents the wrong well, can be totally removed, making the
system monostable. But in some natural bistable systems of interest, such as genetic
regulatory networks, it is hard, if not impossible, to totally remove the wrong well.
In such conditions the best we can do is to make the wrong well as shallow as possible,
and use background noise to virtually cancel out the effects of its presence. Using
noise to enhance the performance of a bistable system has been named stochastic
resonance [9, 10]. Following this terminology, plus the fact that here noise is used to
improve the logical performance of the system, the field is named logical stochastic
resonance, or simply LSR [7].

In this paper, we have extended the approach of LSR to realize, systematically (i.e.,
directly implementing conventional higher level logic architecture or typical digital
electronic structures), the combinational digital logic systems via suitable concate-
nation of bistable logic elements that follow the LSR paradigm through carefully
crafted coupling schemes.

Taking a very different approach, we then introduce and demonstrate how a chaos-
based system can learn to automatically select intrinsic patterns and behaviors as a
solution or response to different input conditions. In other words, we present an
adaptive version of chaos computing, where the chaos-based system evolves and
learns to select the correct response, instead of being programmed or commanded to
do so. In this approach, we combine different machine learning techniques, such as
genetic algorithm, random search, and artificial neural network, with chaos theory
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to enable the system to learn to select correct patterns and behaviors without need
for explicit programming.

The organization of the paper is as follows: in Sect. 2, we explain the concept
of synthetic computing, why it is important, and why we have named it synthetic
computing. In Sect. 3, we overview and explain the first approach to synthetic com-
puting, where chaotic systems are programmed to build different digital functions.
Then in Sect. 4, we briefly overview LSR, and then we extend the approach of LSR
to realize combinational digital logic systems via suitable concatenation of exisitng
LSR blocks. In Sect. 5, we demonstrate how chaos theory and conventional machine
learning techniques can be collected together so that an engineered system adap-
tively selects an optimal intrinsic solution or action. Finally in Sect. 6, the paper is
concluded.

2 Synthetic Computing

Nonlinearity, especially when it leads to chaos, is a very unique condition. It combines
the main advantage of random systems, namely rich behavior, with the determinism
of a periodic system [11].

Unlike in linear systems, in a nonlinear system by changing parameters the system
may undergo qualitative as well as quantitative changes in its behavior. As an exam-
ple, consider the bifurcation diagram of the logistic map, xn+1 = r xn(1− xn), where
r is the bifurcation parameter as depicted in Fig. 1.

A bifurcation diagram represents the steady state solutions of a chaotic system
versus a given parameter, called the bifurcation parameter [12]. As is illustrated in
Fig. 1, by changing one parameter, the system exhibits completely different behav-
iors. At some parameter values the system is periodic, and at some others it is chaotic
(periodic with periodicity of infinity). Even more, at parameter values where there is
chaos, the system is composed of an infinite number of unstable periodic orbits [12].
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Fig. 1 Bifurcation diagram of a very simple map, Logistic map, is depicted. Despite the simplicity
of the map, it exhibits a very rich dynamics
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Furthermore, since the dynamics is deterministic, these patterns or behaviors are
distinct and can be selected or stabilized [13]. For example, as explained earlier in
Fig. 1, by tuning the bifurcation parameter, one can get very different periodic and
orbits from the system. Also by using different chaos control techniques, such as
OGY, one can stabilize one of the preexisting unstable periodic orbits (UPO) of
the chaotic attractor [13]. Or using some other control techniques such as threshold
controlling mechanism, one can stabilize a new UPO [14]. In another approach, very
different orbits and behaviors can be selected by perturbing a chaotic system [4].
Or two identical or topologically conjugate chaotic systems can be synchronized to
evolve identically or similarly in time [15].

All the techniques mentioned above for manipulating a nonlinear system can be
observed and considered as a “knob” mechanism, which can be used to tune or
program the nonlinear system. Different applications for nonlinear systems have
been introduced based on this “knob” mechanism. The main motivation is that a
nonlinear or a chaotic system contains all, or at least the majority of, behaviors
or solutions of desire, and each of these solutions can be selected and extracted.
The main proposed advantage of synthesizing and engineering nonlinear systems
to build different applications is that since all solutions and behaviors are packed
in one system, it will require less power and energy, area, time, and speed than in
the case that all individual behaviors have to be implemented separately and then
gathered together to achieve the same amount of performance and functionality.
Chaos computing [3–6], data transmission using symbolic representation of chaotic
orbits [16], or chaos based speech coding and synthesizing [17] are good examples
of synthesizing chaotic systems to build practical applications.

After introducing the advantages of nonlinear systems, it is worthwhile to take a
look back at linear systems and compare them with nonlinear systems. A linear system
lacks the broad range of patterns and behaviors that a nonlinear system exhibits.
Changing a parameter of a linear system results in changes of amplitude and/or
frequency of the system solution. Linearity is a very positive attribute when it comes
to analytical study of a system. But the truth is that a linear system has very little
to contribute to building sophisticated engineering systems. A linear system has a
very linear and restricted behavior. To obtain needed complex behavior, one would
have to gather and combine a large group of such linear systems and organize them
together to obtain the required functionality from them. This is in sharp contrast to
nonlinearity where different behaviors coexist in one single, nonlinear system.

In this paper, we engineer and synthesize nonlinear systems to use the intrinsic rich
behavior of nonlinear systems in computations and we call it synthetic computing.
We have borrowed the term “synthetic” from synthetic biology and call our field
synthetic computing, because, similar to synthetic biology where existing biological
systems are re-designed and engineered to obtain something new, here we re-design
and engineer nonlinear systems to obtain computations.
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3 Chaos Computing

The main idea behind chaos computing is to harness the library of orbits/patterns
inherent in chaotic systems in order to select out logic operations and then to uti-
lize the sensitivity to initial conditions of those systems to perform rapid switching
(morphing) between all of these logic functions [3, 4, 6]. These features are sufficient
to perform reconfigurable logic operations using a chaotic system.

Data and control inputs to a chaotic system may be encoded as either the initial
conditions or the parameters of the chaotic system. Here the focus is on the for-
mer (initial condition selection) technique. After applying the inputs, the system is
allowed to evolve for a predefined time, after which the “final state” of the chaotic
system is decoded as the computation’s output.

To be more precise, consider the m digital data inputs, X1
Data, X2

Data, . . . , Xm
Data ,

to a computing engine, and the n digital control inputs, X1
Control , X2

Control , . . . ,

Xn
Control . Computation using this system consists of three steps:
Step 1: Each set of data and control inputs is mapped to a point on the unstable

manifold of the chaotic system. This point is used as the initial condition for the
chaotic system. Let T map (encode) the m data and n control inputs onto the space of
the initial conditions. If L is a binary set {0,1}, then L(n+m) represents the domain of
T, which consists of all the possible combinations of digital data and control inputs.
Let β be the unstable manifold of the chaotic system, Rs the general state space of
the chaotic system, and Y the output of the encoding map on the unstable manifold.
In this case the general form of the encoding map, T, is as follows:

T : L(n+m) ≥ β, β √ Rs, L = {0, 1}
Y = T

(
X1

Data, X2
Data, . . . , Xm

Data, X1
Control , X2

Control , . . . , Xn
Control

)
(1)

Step 2: Starting from the initial conditions produced by the encoding map, the
chaotic system evolves for a fixed time (or for a fixed iteration number, if the chaotic
system is discrete).

Step 3: After the evolution time, the system stops working and its state at the end
of the evolution time is sampled and decoded to the outputs using a decoding map.

The encoding map maps different sets of the inputs to different points on the
unstable manifold of the chaotic system, and these points are used as initial conditions
for the chaotic system. Since the system is on the unstable manifold, the orbits of the
chaotic system are very sensitive to the inputs, and the orbits dramatically change
with just a one-bit change in the control input. Thus control inputs can select a chaotic
logic function. To evaluate which digital function is selected with a particular control
input, the association of a control input with a logic function are noted and then all
possible combinations of data inputs are enumerated to construct the truth table of
the function.

By changing the control input, and repeating this procedure (of constructing the
truth table of the digital function), a second digital function different (with high
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probability) from the first one is observed. This is the meaning of the reconfigurability
of chaos computing. By using all possible control inputs and finding the type of
function that the chaotic system implements, the full instruction set of the chaotic
system is obtained [3].

Recently it was demonstrated how unstable periodic orbits, and a model based
on them, both explains and predicts how, and how well, a chaotic system can do
computations [4]. Furthermore, since unstable periodic orbits and their stability
measures in terms of eigenvalues are extractable from experimental times series,
time series technique for modeling and predicting chaos computing from a given
time series of a chaotic system has been developed [3].

4 Logical Stochastic Resonance

Over the last few years, it has become increasingly obvious that understanding how
noise and nonlinearity cooperate in a dynamical system to produce novel effects, is
critical in understanding how complex systems behave and evolve. Stochastic res-
onance (SR) provides one such example wherein the cooperative behavior between
noise and dynamics produces interesting, often counter intuitive, physical phenom-
ena. SR has received much attention over the past few decades [9, 10] and con-
sists of the enhancement of weak input signals through a delicate interplay between
the signal, noise, and nonlinearity (threshold). Recently, it has been shown that a
noisy bistable system, subjected to two square waves as inputs, produces a logi-
cal response in some optimal range of noise [7, 8]. The probability of getting such
response increases to unity with increasing noise intensity, and then decreases for
noise strengths exceeding the optimal window; this effect has been named “logical
stochastic resonance” (LSR). To date, the relevance of LSR has been experimentally
tested and used in assorted applications in fields including electrical, nanomechani-
cal, optical, chemical and biological systems [8, 18–21].

In this section, we elucidate the implementation details of certain representa-
tive combinational logic systems using a concatenation of LSR elements. First we
consider a simple combinational logic operation namely a half-adder. A typical half-
adder can be realized with a XOR and an AND logic gates. As a standard practice,
one can realize the XOR operation with a set of NOR or NAND gates [22]. Now we
configure the single LSR element to emulate the NAND logic operation by fixing its
nonlinearity or by fixing the constant bias value C; by using such a set of elements, the
XOR logic operation is realized first. Then AND and OR logic operations with LSR
elements are realized, easily, by inverting the logic output from NAND and NOR
operations. The XOR logic circuit implementation using LSR modules is depicted in
Fig. 2. Here the XOR logic operation is realized with five NAND gate LSR modules.
The model equations with proper coupling for realizing the XOR logic operation are
given as
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Fig. 2 Schematic diagram for realizing conventional XOR logic gate using LSR based NAND
gates

Fig. 3 Timing sequences from top to bottom for XOR logic gate implementation with individual
LSR elements emulating NAND gate

ẋ1 = −αx1 + βg(x1) + Dη(t) + 2I1 + C,

ẋ2 = −αx2 + βg(x2) + Dη(t) + 2I2 + C,

ẋ3 = −αx3 + βg(x3) + Dη(t) − εx1 + I2 + C,

ẋ4 = −αx4 + βg(x4) + Dη(t) − εx2 + I1 + C,

ẋ5 = −αx5 + βg(x5) + Dη(t) − εx3 − εx4 + C,

(2)

where the parameters α, β and C are fixed as 1.8, 3.0 and −0.8 respectively, ε (the
coupling parameter) is fixed at 0.3, and the nonlinear function g(x) is given by:

g(x) = x when x≡
l < x < x≡

u
g(x) = x≡

l when x < x≡
l

g(x) = x≡
u when x≡

u < x
(3)

Depending upon the parameter C = −0.8 or 0.0, the individual system emulates
NAND or NOR logic respectively. MATLAB–SIMULINK simulation for the XOR
logic results for noise intensity D = 2.3, x≡

u = 1.5 and x≡
l = −1.0 has been carried

out. For the given logic inputs I1 and I2, the corresponding simulated waveforms are
presented in Fig. 3.
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Fig. 4 Density map of P(logic) (see text) for the XOR logic operation by using Eq. (2)

Fig. 5 Schematic diagram for realizing conventional half-adder circuit using LSR based NAND
gates. A set of five LSR based NAND gates are used for realizing XOR logic gate to generate SUM
output and two LSR based NAND gates are used to realize AND gate to generate CARRY output

Figure 4 depicts the probability P (logic) obtained from extensive numerical
simulations for different bias and noise intensities. It is evident that the logic operation
XOR is realized, consistently, in an optimal band of moderate noise using Eq. (2).

Then to realize a typical half-adder logic operation, we need a XOR logic gate
and an AND logic gate. To realize AND logic, we need two NAND logic gates. The
schematic diagram depicting the half-adder implementation using LSR elements is
given in Fig. 5. The corresponding model equations are

ẋ1 = −αx1 + βg(x1) + Dη(t) + 2I1 + C,

ẋ2 = −αx2 + βg(x2) + Dη(t) + 2I2 + C,

ẋ3 = −αx3 + βg(x3) + Dη(t) − εx1 + I2 + C,

ẋ4 = −αx4 + βg(x4) + Dη(t) − εx2 + I1 + C,

ẋ5 = −αx5 + βg(x5) + Dη(t) − εx3 − εx4 + C,

ẋ6 = −αx6 + βg(x6) + Dη(t) + I1 + I2 + C,

ẋ7 = −αx7 + βg(x7) + Dη(t) − 2εx6 + C,

(4)
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Fig. 6 Timing sequences from top to bottom for half adder implementation with individual LSR
elements emulating NAND gate with C = −0.8. a Input I1, b Input I2, c Output −x5(t) corre-
sponding to SUM, d Output −x7(t) corresponding to CARRY. Here the noise intensity D = 2.3,
thresholds (x≡

l , x≡
u) = (−1.0, 1.5) are used

where, the parameter values are fixed as in Eq. 2. The simulated waveforms are shown
in Fig. 6.

5 Adaptive Computing

The logic blocks and operations introduced in previous sections have no degree
of freedom in choosing the type of computation they perform, rather they follow
instructions received from a control unit. In this section we demonstrate how we can
design a new generation of chaos computing systems that work autonomously to
perform computations as they adapt to their environment with no need for external
programming. Here we show how such chaos-based systems evolve to communicate
with the environment in a meaningful manner to accomplish tasks and computations.

The aim is to extend the scope of chaos computing from chaos-based digital logic
design and implementation to achieving artificial intelligence. Here by “intelligence”
we mean the capability of the system to perceive its environment and take actions
that maximize its fitness in that environment [23]. We introduce new models of
chaos computing in which a chaos-based creature autonomously reconfigures itself
to adapt to the environment. In this new scenario there are no external instructions and
the system itself learns/evolves/adapts to external inputs. We call these synthesized
intelligent systems “chaos based creatures.”

Nonlinear and chaotic systems provide us with a library of different solutions
and actions that coexist inside a system. We examined this fact in detail in Sect. 2.
It is believed that the flexibility of natural and living systems and their ability for
adaptation and coping with different conditions originates from nonlinearity as well
[24]. We can safely assume that intelligence arises from a nonlinear system. So we



60 B. Kia et al.

choose a chaotic system as the source of different solutions and actions and we use
it as the main body of the model for intelligent creatures.

The next question is how a chaotic creature can know which intrinsic pattern and
behavior is the optimal solution or reaction? In previous models of chaos computing
we, or the control unit, explicitly control the chaos based logic block and select the
demanded function. Instead, here we mate the chaos-based system with different
machine learning techniques so that the creature itself learns to select appropriate
actions.

For simplicity, assume the dynamics of the creature is modeled with a 1-D discrete
logistic chaotic map:

x(n+1) = r xn(1 − xn) (5)

where r is the bifurcation parameter.
Here as an example we assume the creature responds to the environment by

adjusting its oscillation periodicity.
We use two different techniques to extract different behaviors from the logistic

map. First we use the bifurcation parameter as a “knob” and let the machine learning
techniques to adjust this parameter to extract different periods as a response to the
environment. Later we will use a chaos control technique to stabilize a periodic orbit
as a response to the environment.

We have developed an artificial life environment, and then simulate the behavior
of the creatures in this environment. This artificial life environment itself knows the
appropriate and optimal solution to any environmental condition, and rewards or
punishes the creatures based on how well (or badly) they respond to it. This is a
supervised learning technique, where the optimal solutions are known and creatures
are rewarded or punished accordingly.

5.1 Chaotic Creature with Random Searching (Learning)

We equip the chaotic creature with a random searching mechanism to adjust the
bifurcation parameter to find the optimal response to the environment.

A random searching (learning) technique is a very simple search mechanism that
takes random steps in the parameter domain to find the optimal solution [25]. We
can formulate the random search as:

xn+1 = r j xn(1 − xn)

re+1 = re + λ, λ ◦ N (0, 0.065)
(6)

where the bifurcation parameter, r, is updated based on a random search method.
The random changes of the bifurcation parameter have a Gaussian distribution with
zero mean and 0.01 variance. This very simple mechanism enables the creature to
adjust its bifurcation parameter and choose different periods.
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In a constant artificial life environment, where the environmental condition does
not change, the creature is expected to adapt and adjust its oscillation periodicity
to a fixed value, which is demanded and enforced by the artificial life environment,
and stays there. This demanded period by the artificial life environment could be
any period. In simulation, we observed periods that have small-sized intervals in the
bifurcation diagram require longer training time than periods with larger intervals in
the bifurcation diagram.

The creature can be improved to survive in a variable artificial life environment
by addition of a simple perception artificial neural network (ANN) to the design. A
variable artificial life environment is an environment that changes, and as a result a
creature needs to change accordingly to survive. Here for simplicity we assume the
variable environment has four different states, and each state demands the creature
to oscillate at a specific period.

This artificial neural network is a very simple perception ANN, composed of two
layers. The first layer is the input layer and the second layer is the output layer.
The input layer is composed of two neurons, and a two bit state condition (00, 01,
10, or 11) is fed to this layer of neurons. The output layer has a single neuron,
and the output of this neuron is the bifurcation parameter of the chaotic system.
The activation function of these neurons is a sigmoidal function. This neuron maps
the state condition of the artificial life environment to the bifurcation parameter of
the chaotic system. One can consider this simple ANN as a classifier also. Its job
is similar to the operation of the brain of a living system, although this perception
network is very much simpler. This ANN drives the chaotic body based on the inputs.

The ANN needs to be trained first. Random searching is used here again to train
the ANN through adjusting the synaptic weights between neurons. At each step of
training, four different sets of inputs (00, 01, 10, and 11) are fed to the ANN, and the
periods that the chaotic system oscillates at are measured and used to compute the
fitness measure.

Using this model, a chaotic creature learns to respond appropriately to variable
environmental conditions through adjusting its period. The number of iterations
required to train the ANN greatly depends on the size of the intervals of the solution
parameters in the bifurcation diagram of the chaotic system. Periods that have small-
sized intervals in the bifurcation diagram require longer training time than periods
with larger intervals in the bifurcation diagram.

5.2 Evolution of Chaotic Creatures

Now we introduce and study another model of creatures, in which they evolve to
respond appropriately to their environment. We start from a constant artificial life
environment, where the environment is unchanging and the creatures need to evolve
to oscillate at a fixed period. This new model of creature is composed of a chaotic
system to represent the library of different actions, and a controller to select different
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intrinsic patterns from the chaotic system. Here we use a threshold mechanism for
controlling chaos due to the simplicity of the controller.

Threshold mechanisms can be formulated as follows [14]: When the dynamics
of the uncontrolled system is given by: xn+1 = f (xn) where f is a nonlinear func-
tion, the threshold mechanism is simply implemented as the following condition: if
variable xn+1 > x≡ then the variable is adjusted back to x≡. The threshold control
parameter x≡ is the critical value that the state variable is not allowed to exceed,
and control is triggered whenever the variable exceeds this threshold [14]. A chaotic
system controlled by a threshold controller can yield periodic orbits of various orders
under different threshold values [14].

This controlling methodology is implemented on the logistic map.
The important remaining question is how creatures know which period they need

to choose, or to be more specific, which threshold value they need to use? We use
a population of these creatures and apply genetic algorithm that let them evolve to
find the appropriate periods.

Genetic algorithm is a branch of artificial intelligence that mimics the process of
natural evolution [25]. Genetic algorithm operates on a population of individuals.
Each individual represents one possible solution, which is encoded as the chro-
mosome of the individual. The initial population is randomly crated, meaning that
the initial chromosomes are randomly selected from the possible set of solutions.
A fitness function is normally used to evaluate each individual to measure the effec-
tiveness and performance of the solution that the individual represents.

The existing generation of individuals is then evolved to create a new generation.
The key point is that the individuals with higher fitness value are more likely to
reproduce the individuals of the second generation, and as a result they pass the
good genes to the future generations. Based on a selection technique two parents are
selected, and using crossover operator they reproduce a new individual for the new
generation. But the new individual is normally is not a combination of its parents,
rather in involves some random mutation as well.

The loop of creation of a new generation from the old generation continues until
a termination condition has been reached. This termination condition can be conver-
gence of the whole population to an optimal solution, production of an individual
that meets the requirement for an optimal solution, or a fixed number of generations
reached [25].

In the genetic algorithm we used here, the threshold value of the controller is
used as the chromosome of the creature, and our creatures evolve to converge to suit-
able chromosomes (threshold value) that direct the system to oscillate at demanded
periodicity by the artificial life environment.

We create an initial population of 100 chaos-based creatures with chromosomes
randomly chosen from [0.9, 1]. Then based on the genetic algorithm, the creatures
evolve. The fitness function that we use is: If the frequency of oscillation of the ith
individual with ζ as chromosome (threshold value) is the demanded period, then set
its fitness value to a positive constant value, otherwise set its fitness value to 0. For
selecting a pair of parents for mating we have applied a tournament method [26].
We set the tournament size to four and selection probability to 0.9.
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These selected parents can be mutated and copied to the new generation (cloning)
with a probability of 0.1, or mated and mutated with a probability of 0.9. Here 0.9 is
the probability of mating.

The crossover operator to compute the chromosomes of the offspring from the
chromosomes of the parents is:

oi = p≈
i + r(p≈≈

i − p≈
i ) (7)

where pi
≈ and p≈≈

i are the chromosomes of parents, oi is the chromosome of the
offspring, and r is a random number in the interval [0, 1].

The mutation operator used here is:

s = s × (1 − c + 2cr) (8)

where s is the chromosome of the individual, c is creep rate, which represent how
much mutation can change individuals and is set it to 0.0001, and r is a random
number in the interval [0, 1].

The genetic algorithm halts when all individuals of the population oscillate at the
desired periodicity.

The required evolution time for convergence depends on the size of the solution
interval. Genetic algorithm can find periods with large solution intervals in 10 itera-
tions or so, but periods with smaller interval size require longer evolution time.

Similar to the creatures introduced in the previous section, these new creatures
can be improved to survive in a variable artificial life environment by addition of
a simple perception artificial neural network (ANN). The artificial life environment
in this example is just like the environment introduced in previous part; it has four
states, and 00, 01, 10, and 11, represent those states.

Here the ANN is very similar to the ANN used in the previous part. It is a simple
perception ANN, composed of two layers. The first layer is the input layer and the
second layer is the output layer. The input layer is composed of two neurons, and
a two bit state condition (00, 01, 10, or 11) is fed to these two neurons. The output
layer has a single neuron and the output of this neuron is the threshold value. The
activation function of these neurons is a sigmoidal function. This neuron maps the
state condition of the artificial life environment to the threshold value, which will be
used by the chaos controller.

This ANN needs to be trained also, so a genetic algorithm is used to evolve a
population of these creatures to one that responds to the variable environmental
condition appropriately. The genetic algorithm we use here is very similar to the
algorithm that is used for training the creatures in a constant environment, but with
the difference that the weights of the ANN are now the chromosomes.

Using this model, the population of chaotic creatures evolves appropriately to
respond to the variable environmental condition by adjusting their periods. The evo-
lution time required to train the ANN largely depends on the size of the intervals of
solution parameters. Periods that have small-sized intervals require a longer evolution
time than periods with larger intervals.
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6 Conclusions

In this paper we explained the importance of nonlinearity and chaos, and described
how nonlinear and chaotic systems can be utilized as sources of different behaviors
and patterns. We introduced the field of synthetic computing, where nonlinear and
chaotic systems are engineered to perform computation, with the hope that utilizing
the rich dynamics of nonlinear and chaotic systems can reduce the engineering effort
required to build complex computing systems, and that it may result in efficiencies
in terms of size, speed, energy, and power. Chaos computing was introduced as a
field where we can manually program a chaotic system. In a different direction, we
demonstrated how a chaotic system can be mated with machine learning techniques
to build intelligent creatures that automatically select an optimal solution. With this
new direction we proposed that nonlinearity and chaos provide a suitable framework
for the evolution of order and intelligence. Different intrinsic patterns or behaviors
of a chaotic system represent different possible solutions or reactions, and by using
machine-learning techniques such as genetic algorithm or random searching, a crea-
ture is capable of selecting an optimal solution or reaction to an encountered problem
or environmental conidia. This work introduces the possibility of new chaotic robots
or intelligent systems, where solutions, reactions, and a portion of decision-making
are embedded in a chaotic system.

We gave an overview of logical stochastic resonance (LSR), and then showed
the intriguing possibility of concatenating nonlinear bistable oscillators with suit-
ably chosen cross-coupling to realize different combinational digital logic circuit
operations in the emergent dynamics of coupled LSR systems. Very recently, the
feasibility of LSR in nano-mechanical oscillators, chemical systems, biological sys-
tems, and optical systems has been demonstrated. For example, it is demonstrated
through simulation that LSR can work in a well-established dynamical model of
bacteriophage-lambda, which could, in the presence of additive and/or multiplica-
tive noise, form the basis of a biological computing element [20, 27–29]. Such results
underscore the broad reach of the concept of LSR. Concatenating LSR elements with
proper coupling to formulate coupled LSR modules can realize even higher-level
logic architectures, which opens new vistas in noise-assisted computing devices.
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research under STTR grant and grant N00014-12-1-0026.

References

1. P. Collard, M. Clergue, Genetic algorithms: from hegemony to chaos. Complex Syst. 12, 1–29
(2000)

2. C. Langton, Life at the edge of chaos, in Artificial Life II, ed. by C. Langton (Addison-Wesley
Longman, Boston, 1991), pp. 41–91

3. B. Kia, A. Dari, W.L. Ditto, M. Spano, Unstable periodic orbits and noise in chaos computing.
Chaos 21, 047520–047528 (2011)



Synthetic Computation 65

4. B. Kia, M. Spano, W. Ditto, Chaos computing in terms of periodic orbits. Phys. Rev. E. 84,
036207–036214 (2011)

5. J.P. Crutchfield, W. Ditto, S. Sinha, Introduction to focus issue: intrinsic and designed com-
putation: information processing in dynamical systems—beyond the digital hegemony. Chaos
20, 037101–037106 (2010)

6. S. Sudeshn, W. Ditto, Dynamics based computation. Phys. Rev. Lett. 81, 2156–2159 (1998)
7. K. Murali, S. Sinha, W. Ditto, A. Bulsara, Reliable logic circuit elements that exploit nonlin-

earity in the presence of a noise-floor. Phys. Rev. Lett. 102, 0104101–0104104 (2009)
8. A. Bulsara, D. Dari, W. Ditto, K. Murali, S. Sinha, Logical stochastic resonance. Chem. Phys.

375, 424–434 (2010)
9. L. Gammaitoni, P. Hanggi, P. Jung, F. Marchesoni, Stochastic resonance. Rev. Mod. Phys. 70,

223–287 (1998)
10. A. Bulsara, L. Gammaitoni, Tuning it no noise. Phys. Today 49, 39–45 (1996)
11. W. Ditto, T. Munakata, Principles and applications of chaotic systems. Commun. ACM 38,

96–102 (1995)
12. A. Afraimovich, S. Hsu, Lectures on Chaotic Dynamical Systems (American Mathematical

Society, Providence, 2003)
13. B. Andrievskii, A. Fradkov, Control of chaos: methods and applications II. Applications.

Autom. Remote Control 65, 505–533 (2004)
14. S. Sinha, Unidirecional adaptive dynamics. Phys. Rev. E. 49, 4832–4842 (1994)
15. L. Pecora, T. Carroll, Synchronization in chaotic systems. Phys. Rev. Lett. 64, 821–824 (1990)
16. E. Bollt, Review of chaos communication by feedback control of symbolic dynamics. IJBC

13, 269–285 (2003)
17. B. Kia, W. Ditto, M. Spano, Chaos for speech coding and production. Lect. Notes Comput.

Sci. 7015, 270–278 (2011)
18. D. Guerra, A. Bulsara, W. Ditto, S. Sinha, K. Murali, P. Mohanty, A noise-assisted reprogram-

mable nanomechanical logic gate. Nano Lett. 10, 1168–1171 (2010)
19. H. Ando, S. Sinha, R. Storni, K. Aihara, Synthetic gene networks as potential flexible parallel

logic gates. Europhys. Lett. 93, 50001 (2011)
20. A. Dari, B. Kia, A. Bulsara, X. Wang, W. Ditto, Noise-aided computation within a synthetic

gene network through morphable and robust logic gates. Phys. Rev. E 83, 041909–041920
(2011)

21. K. Murali, R. Mohamed, S. Sinha, W. Ditto, A. Bulsara, Realization of reliable and flexible
logic gates using noisy nonlinear circuits. Appl. Phys. Lett. 95, 194102–194105 (2009)

22. M. Mano, Computer System Architecture (Prentice-Hall, Englewood cliffs, 1993)
23. J. Russell, P. Norvig, Artificial Intelligence: A Modern Approach (Prentice Hall, Upper Saddle

River, 2010)
24. M. Conrad, What is the use of chaos?, in Chaos, ed. by A. Holden (Manchester University

Press, Manchester, 1986)
25. S. Sumathi, P. Surekha, Computational Intelligence Paradigms, Theory and Applications Using

MATLAB (CRC Press, Boca Raton, 2010)
26. H. Stern, Y. Chassidim, M. Zo, Multiagent visual area coverage using a new genetic algorithm

selection scheme. Eur. J. Oper. Res. 175, 1890–1907 (2006)
27. A. Dari, B. Kia, A. Bulsara, A. Ditto, Creating morphable logic gates using logical stochastic

resonance in an engineered gene network. Europhys. Lett. 93, 18001 (2011)
28. A. Dari, B. Kia, A. Bulsara, W. Ditto, Logical stochastic resonance with correlated internal

and external noise in a synthetic biological logic block. Chaos 21, 047521 (2011)
29. A. Dari, A. Bulsara, W. Ditto, X. Wang, Reprogrammable biological logic gate that exploits

noise, in Biomedical Circuits and Systems Conference (BioCAS), IEEE conference, pp. 337–
340, 2011



Delay Differential Equation Models of Normal
and Diseased Electrocardiograms

Claudia Lainscsek and Terrence J. Sejnowski

Abstract Time series analysis with nonlinear delay differential equations (DDEs)
is a powerful tool since it reveals spectral as well as nonlinear properties of the
underlying dynamical system. Here global DDE models are used to analyze elec-
trocardiography recordings (ECGs) in order to capture distinguishing features for
different heart conditions such as normal heart beat, congestive heart failure, and
atrial fibrillation. To capture distinguishing features of the different data types the
number of terms and delays in the model as well as the order of nonlinearity of the
DDE model have to be selected. The DDE structure selection is done in a supervised
way by selecting the DDE that best separates different data types. We analyzed 24 h of
data from 15 young healthy subjects in normal sinus rhythm (NSR) of 15 congestive
heart failure (CHF) patients as well as of 15 subjects suffering from atrial fibrillation
(AF) selected from the Physionet database. For the analysis presented here we used
5 min non-overlapping data windows on the raw data without any artifact removal.
For classification performance we used the Cohen Kappa coefficient computed
directly from the confusion matrix. The overall classification performance of the
three groups was around 72–99 % on the 5 min windows for the different approaches.
For 2 h data windows the classification for all three groups was above 95 %.
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1 Introduction

In many physical and biological processes, DDEs have been used to describe
the underlying dynamics. Such processes are typically characterized by a delayed
reaction on some physical process (see Driver [1] for a list of examples). Delays play
an important role in ECG data [2].

We do not try to find DDEs that model the data for the purpose of prediction but
rather seek for global DDE models that capture distinguishing features of data for
different heart conditions such as normal heart beat, congestive heart failure, and
atrial fibrillation that could be used to discriminate between the three conditions.

A motivation for DDE analysis of nonlinear data comes from embedding theory
in nonlinear time series analysis. An embedding converts a single time series into
a multidimensional object in an embedding space (Whitney [3], Packard et al. [4],
Takens [5], and Sauer et al. [6]). The reconstructed attractor reveals basic properties
(dimension, Lyapunov spectrum, entropy) of the true attractor of the system. Thus,
we can obtain valuable information about the dynamics of the system, even if we
dont have direct access to all the systems variables. There are two basic ways of
embeddings, the delay and the derivative embedding. For a delay embedding the
time series itself and its delayed versions are used to construct the embedding, but
the derivative embedding uses the time series and its successive derivatives. Judd
and Mees [7] introduced the idea of non-uniform embeddings for time series with
components of multiple timescales. DDE analysis utilizes all those ideas in a novel
way for detection and classification.

DDE data analysis can also be seen as a novel way of combining Fourier analysis
and higher order statistics in a time domain framework. The linear terms of a DDE
correspond to the main frequencies or time-scales in the signal while the nonlinear
terms in the DDE are related to nonlinear couplings between the harmonic signal
parts.

Global vector field reconstruction [6, 8–10] uses the recorded data to generate a
model whose integration provides a dynamical behavior equivalent to the behavior
generated by the original system. Such a severe demand of equivalence, requiring
a strong closeness between the original and the reconstructed vector fields, is not
required for our data analysis method. However, as in global vector field recon-
struction, the identification technique provides a global model which captures some
essential features of the underlying dynamics.

This paper is organized as follows. Section 2 introduces the data used. In Sect. 3
good classifiers for ECG data are found via DDE analysis. Section 4 is the conclusion.

2 Data

We analyze 24 h data of 15 young healthy persons in normal sinus rhythm (NSR)
(ECG sample frequency: 128 Hz) of 15 congestive heart failure (CHF) patients (ECG
sample frequency: 250 Hz) as well as of 15 subjects suffering from atrial fibrillation
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Table 1 ECG data used. The three conditions are normal sinus rhythm (NSR), congestive heart fail-
ure (CHF), and atrial fibrillation (AF). The data were downloaded from the Physionet database [11]

NSR CHF AF
Subj. http://physionet.org/physiobank/database/
# nsrdb/ chfdb/ itadb/

1 16265m.dat chf01m.dat 11m.dat
2 16272m.dat chf03m.dat 12m.dat
3 16788m.dat chf07m.dat 15m.dat
4 16795m.dat chf08m.dat 17m.dat
5 19090m.dat chf12m.dat 18m.dat
6 16273m.dat chf02m.dat 03m.dat
7 16420m.dat chf04m.dat 05m.dat
8 16483m.dat chf05m.dat 06m.dat
9 16539m.dat chf06m.dat 07m.dat
10 16773m.dat chf09m.dat 08m.dat
11 17052m.dat chf10m.dat 10m.dat
12 17453m.dat chf11m.dat 00m.dat
13 18177m.dat chf13m.dat 01m.dat
14 18184m.dat chf14m.dat 13m.dat
15 19088m.dat chf15m.dat 16m.dat

(AF) (ECG sample frequency: 128 Hz) selected from the Physionet database [11].
Table 1 lists the files used. The first five subjects of each group are those of the CHAOS
Controversial Topics in Nonlinear Dynamics “Is the Normal Heart Rate Chaotic?
Data for study (http://physionet.org/challenge/chaos/).” The other ten subjects from
each group are randomly selected records from the same databases.

3 DDE Analysis

Typically, a nonlinear delay differential equation has the form

ẋ = f (ai , xτ j )

= a1xτ1 + a2xτ2 + a3xτ3 + · · · + ai−1xτn

+ ai x2
τ1
+ ai+1xτ1 xτ2 + ai+2xτ1 xτ3 + · · ·

+ a j−1x2
τn
+ a j x3

τ1
+ a j+1xτ1 2xτ2 + · · ·

...

· · · + al x
m
τn

(1)

http://physionet.org/physiobank/database/
http://physionet.org/challenge/chaos/
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where x = x(t) and xτ j = x(t−τ j ). In the form (1), a DDE has n delays, l monomials
with coefficients a1, a2, . . . , al , and a degree m of nonlinearity. By a k-term DDE, we
mean a DDE with k monomials selected from the right-hand side of Eq. (1). Although
quite flexible, as for any global modeling technique there is a significant gain in
accuracy by carefully selecting the structure of the model [12–14]. By structure
selection or model learning, we mean retaining only those monomials that make the
most significant contribution to the data dynamics. An equally important task is to
select the right time-delays, since they are directly related to the primary time-scales
and nonlinear couplings between them of the dynamics under study.

Lainscsek et al. [14] used a genetic algorithm to find a single DDE model for the
classification of Parkinson movement data. Here we want to do an exhaustive search
of models and delays to find the terms in Eq.(1) that best separate classes of data. To
do so we look at all possible polynomial DDE models up to third order

ẋ = a1xτ1 + a2xτ2

+ a3x2
τ1
+ a4xτ1 xτ2 + a5x2

τ2

+ a6x3
τ1
+ a7x2

τ1
xτ2 + a8xτ1 x2

τ2
+ a9x3

τ2 (2)

with some of the ai equal to zero. Only models with up to three terms are considered.
If the analysis did not give any satisfactory results additional delays, increase the
order of nonlinearity and/or use DDEs with more than three terms would be needed.
There are 5 one-term models, 18 two-term models, and 32 three-term models.

Tables 2 and 3 list all these models. Note that e.g. the DDE models ẋ = a1xτ1 +
a2xτ1 xτ2 and ẋ = a1xτ2 + a2xτ1 xτ2 are the same with exchanged delays τ1 and τ2.
Therefore only the first of these two models was used. All such redundant DDE
models were omitted. There are two linear DDEs (model 1 and 5) while all others
are nonlinear. Seven of the DDEs have only one delay (models 1, 2, 4, 7, 9, 17, and
30) and nine models are symmetric (models 3, 6, 16, 22, 23, 25, 43, 52, 53) with two
interchangeable delays.

The data were analyzed without filtering or artifact removal from the data. The
NSR and AF data were sampled at 128 Hz, while the CHF data were sampled at
250 Hz. To use the same DDE with the same delays for all data, the NSR and AF
data were upsampled using the MATLAB function resample [15] with the default
options. Throughout this paper we use 5 min non-overlapping data windows for our
analysis. Each window was renormalized to zero mean and unit variance to be able
to compare data of different origin. The derivatives were computed numerically with
an center difference algorithm [16].

For our supervised model selection task, we have to choose a classifier, select
training data, select a classification tool, and cross-validate to take the small number
of subjects into account. Here we chose seven different classifiers and tested the
performance of each separately. Those classifiers are: (1) NSR versus AF versus
CHF, (2) NSR versus AF, (3) NSR versus CHF, (4) AF versus CHF, (5) NSR versus
(AF and CHF), (6) AF versus (NSR and CHF), and (7) CHF versus (NSR and AF).
As training data we selected one 5 min data window every 20 min (e.g. for a 20 h
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Table 2 One- and two-term DDE models. An ‘x’ denotes that the term a is nonzero. The different
types of models are: L - linear, S - symmetric, 1 - single delay DDE. All other DDEs are nonlinear
and have two non-interchangeable delays

Model a1 a2 a3 a4 a5 a6 a7 a8 a9 Model
# x1 x2 x2

1 x1x2 x2
2 x3

1 x2
1 x2 x1x2

2 x3
2 type

1 × 1, L
2 × 1
3 × S
4 × 1
5 ×
6 × × S, L
7 × × 1
8 × ×
9 × × 1
10 × ×
11 × ×
12 × ×
13 × ×
14 × ×
15 × ×
16 × × S
17 × × 1
18 × ×
19 × ×
20 × ×
21 × ×
22 × S
23 × × S

recording of one subject 65 min data windows were used). We used repeated random
sub-sampling validation [17] where we trained on 10 subjects of each group and
tested on the remaining 5 subjects of each group. This was repeated 300 times with
each subject equally often used as training and testing subject. As classifier we used
singular value decomposition (SVD) [18]. The measure of performance was Cohens
kappa κ [19–22] which can be computed directly from the confusion matrix [23]. A
confusion matrix (also known as matching matrix, contingency table, or error matrix)
is a specific table layout that allows visualization of the performance. Each column
of the matrix represents the instances in a predicted class, while each row represents
the instances in an actual class. A kappa value of one indicates perfect separation
while a kappa value of zero indicates no separation of the 2 classes.

The best models and delays for the seven classification tasks can be selected in
two different ways: Given the 55 different DDE models (see Tables 2 and 3) and all
possible delays ranging from 1 to 100 time-steps (1 time-step is 1

250 seconds since
the sampling rate is 250 Hz) we have 431,350 different model/delay combinations.
For each of those model/delay combinations the repeated random sub-sampling vali-
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Table 3 Three term DDE models. An x denotes that the term a is nonzero. The different types of
models are: L - linear, S - symmetric, 1 - single delay DDE. All other DDEs are nonlinear and have
two non-interchangeable delays

Model a1 a2 a3 a4 a5 a6 a7 a8 a9 Model
# x1 x2 x2

1 x1x2 x2
2 x3

1 x2
1 x2 x1x2

2 x3
2 type

24 × × ×
25 × × × S
26 × × ×
27 × × ×
28 × × ×
29 × × ×
30 × × × 1
31 × × ×
32 × × ×
33 × × ×
34 × × ×
35 × × ×
36 × × ×
37 × × ×
38 × × ×
39 × × ×
40 × × ×
41 × × ×
42 × × ×
43 × × × S
44 × × ×
45 × × ×
46 × ×
47 × × ×
48 × × ×
49 × × ×
50 × × ×
51 × × ×
52 × × × S
53 × × × S
54 × × ×
55 × × ×

dation yields 300 different Cohen kappa values. We could take the mean over the 300
kappa values for each candidate model and select the model with the highest mean.
We otherwise could look for the best worst case scenario: search the highest mini-
mal value for each of the 300 kappa values and then report the mean of this model.
For either strategy we would get a different model. In [24] we chose to pursue the
second strategy while we here go for the first. Figure 1 illustrates for distinguishing
between NSR and AF that the two approaches are highly correlated. In the case of
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Fig. 1 Good model selec-
tion strategies: highest mean
method versus best worst case
scenario method. The selected
value for both strategies is
marked with a circle

Table 4 Best DDE models selected for the seven classification tasks. The 5th column lists the mean
kappa value from the sub-sampling validation for the listed model and delays. The last column lists
the kappa for all data using the mean weights from the sub-sampling validation. The delays are
reported in time steps, where 1 time step is 1

250 second giving a sampling rate of 250 Hz

Classifier Model # Delays Mean (κ) κall

NSR-AF-CHF 46 14 1 0.78 ± 0.07 0.83
NSR-AF 32 12 18 0.90 ± 0.07 0.96
NSR-CHF 39 15 8 0.99 ± 0.02 0.99
AF-CHF 51 5 49 0.81 ± 0.10 0.85
NSR-(AF, CHF) 32 12 18 0.93 ± 0.05 0.97
AF-(NSR, CHF) 38 16 3 0.64 ± 0.10 0.72
CHF-(NSR, AF) 25 1 5 0.84 ± 0.09 0.88

Table 5 List of SVD target values for the sub-sampling validation

Classifier Classification Target
# task NSR AF CHF

1 NSR-AF-CHF −1 0 1
2 NSR-AF −1 1
3 NSR-CHF −1 1
4 AF-CHF −1 1
5 NSR-(AF,CHF) −1 1 1
6 AF-(NSR,CHF) 1 −1 1
7 CHF-(NSR,AF) 1 1 −1

choosing the best mean model we would get a mean kappa value of 0.90 while for
the best worst case scenario choice the mean kappa value would be 0.85. Also the
selected models are quite different: For the best mean a 3 term model with 1 linear
and 2 nonlinear terms was selected while for the second approach a 2 term model
with 2 nonlinear terms was selected. For this classifier the difference is big, while
for most of the others (except AF CHF) the difference is neglectable. Table 4 lists
the so selected best models and delays using the first approach. The mean of the 300
SVD weights from the sub-sampling validation for the selected model is then used
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Fig. 2 Combined classifier outputs from Eq. (3). The left column shows the features for all 5 min
data windows and the right column shows the outputs for 2 h data segments

to compute the kappa value on all data (all 5 min data windows). These values are
listed in the last column in Table 4.

Table 5 lists the SVD target values for each data class. We combined all seven
classifiers of Table 4 in the following way: C1 is the mean of all targets when NSR
is +1 and others are −1, C2 is the mean of all targets when AF is +1 and others are
−1, and C3 is the mean of all targets when CHF is +1 and others are −1:
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Table 6 Classification performance of all 2 h data windows for all 15 subjects of each condition
computed by combining all 7 classifiers in Table 4

NSR AF CHF
% classified as

NSR AF CHF NSR AF CHF NSR AF CHF

1 100.0 0.0 0.0 0.0 100.0 0.0 0.0 0.0 100.0
2 99.9 9.1 0.0 0.0 100.0 0.0 0.0 0.0 100.0
3 100.0 0.0 0.0 0.0 100.0 0.0 0.0 0.0 100.0
4 100.0 0.0 0.0 0.0 100.0 0.0 0.0 0.0 100.0
5 100.0 0.0 0.0 0.0 100.0 0.0 0.0 0.0 100.0
6 100.0 0.0 0.0 0.0 100.0 0.0 0.0 0.0 100.0
7 100.0 0.0 0.0 0.0 100.0 0.0 0.0 11.1 88.9
8 100.0 0.0 0.0 0.0 100.0 0.0 0.0 0.0 100.0
9 100.0 0.0 0.0 0.0 100.0 0.0 0.0 33.3 66.7
10 100.0 0.0 0.0 0.0 100.0 0.0 0.0 11.1 88.9
11 100.0 0.0 0.0 0.0 100.0 0.0 0.0 11.1 88.9
12 100.0 0.0 0.0 0.0 100.0 0.0 0.0 0.0 100.0
13 100.0 0.0 0.0 0.0 100.0 0.0 0.0 0.0 100.0
14 100.0 0.0 0.0 0.0 100.0 0.0 0.0 0.0 100.0
15 100.0 0.0 0.0 0.0 90.9 9.1 0.0 0.0 100.0
Mean 99.4 0.6 0.0 0.0 99.4 0.0 0.0 4.4 95.6

C1 = mean(2round(−C1) − 0.5,−C2,−C3,−C5, C6, C7)

C2 = mean(1 − 2|round(C1)|, C2,−C4, C5,−C6, C7) (3)

C3 = mean(round(C1) − 0.5, C3, C4, C5, C6,−C7)

where Ci denotes the features (distances from the SVD hyperplane) for the 7
(i = 1, 2, . . . , 7) classifiers. Figure 2 shows the combined classifier outputs from
Eq. (3) for 5 min data windows (left column) as well as for 2 h data segments (right
column). The three classes are fairly well separated. Table 6 then lists the classifica-
tion performance of all 2 h windows for each of the 15 subjects and 3 data classes
using Eq. (3). NSR and AF can be detected with 99 % accuracy and CHF were
detected with 96 % accuracy (Fig. 2).

4 Conclusion

We analyzed 24 h ECG data from healthy subjects and patients with either atrial
fibrillation or congestive heart failure downloaded from the the Physionet database.
While most published papers on this data set use the heart rate variability (HRV), the
time interval between heart beats, we used the waveforms themselves. HRV analysis
needs sophisticated pre-processing to automatically annotate that the time intervals
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between the heart beats. HRV analysis is highly sensitive to artifact and errors and
it is critical to manage artifact and time-interval detection errors appropriately prior
to performing any HRV analyses. Using the data waveforms themselves, this is not
an issue.

We analyzed the data using DDEs. The data were sampled at different sampling
rates and we therefore upsampled the NSR and AF data to the same sampling rate
as the CHF data. No other pre-processing of the data was done. We segmented the
data into 5 min non-overlapping independent data windows and selected a subset of
the data to select the best DDE models. This was done in a supervised way using
repeated random sub-sampling validation. We searched for models that separated the
different classes best. The so obtained models were then tested on the whole data set
using 5 min and 2 h data segments. For the 5 min data windows we could separate
the different data classes with a 72 % to 99 % accuracy. The models were also tested
on 2 h data windows and achieved a 95 % to 99 % accuracy on all classes, NSR, AF
and CHF.
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Abstract Multi-loop arrays of Josephson Junctions (JJ) with non-uniform area
distributions, which are known as Superconducting Quantum Interference Filters
(SQIF), are the most highly sensitive sensors of changes in applied magnetic field as
well as the absolute magnitude of magnetic fields. The non-uniformity of the loop
sizes allows the array to produce a unique collective voltage response that has a
pronounced single peak with a large voltage swing around zero magnetic field. To
obtain high linear dynamic range, which is critical for a wide variety of applications,
the linearity of the slope of the anti-peak response must be improved. We propose
a novel scheme for enhancing linearity—a new configuration combining the SQIF
array concept with the recently introduced bi-SQUID configuration, in which each
individual SQUID loop is made up of three JJs as oppose to using two JJs per loop in
standard DC SQUIDs. We show, computationally, that the additional junction offers
a viable linearization method for optimizing the voltage response and dynamic range
of SQIF arrays. We have realized SQIF arrays based on bi-SQUID cells and present
first experimental results.
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1 Introduction

The Superconductive Quantum Interference Device (SQUID) is one of the most
sensitive magnetic field devices, and is used for wide range of applications including
biology, medicine, geology, systems for semiconductor circuit diagnostics, security
MRI and even cosmology research [1, 2]. In recent years, arrays of coupled oscillators
have been considered as a general mechanism for improving signal detection and
amplification [3]. Indeed, theoretical [4, 5] and experimental studies [6] have shown
that arrays of SQUIDs can yield comparable improvements in signal output, relative
to background noise, over those of a single device. A peculiar configuration that
has gained considerable attention among the physics and engineering community is
that of multi-loop arrays of JJs with non-uniformly distributed loop areas. Typically,
each loop contains two JJs, i.e., a standard DC SQUID, but their size vary from
loop to loop. These types of unconventional geometric structures of JJs are known
to exhibit a magnetic flux dependent voltage response V (ϕe), where ϕe denotes
an external magnetic flux normalized by the quantum flux, that has a pronounced
single peak with a large voltage swing at zero magnetic field. The potential high
dynamic range and linearity of the anti-peak voltage response render the array an
ideal detector of absolute strength of external magnetic fields, so these arrays are also
commonly known as Superconducting Quantum Interference Filters (SQIFs). Since
it was theoretically proposed [7, 8] and experimentally demonstrated for the first
time [9] the SQIF concept is investigated and exploited by a continuously growing
number of groups with respect to its basic properties [10, 11] and its suitability in
various fields of application like magnetometry and RF electronics.

In this paper, we investigate numerically and experimentally a different approach,
one that involves a change in the configuration of the array. Mainly, each individual
array cell will now contain three JJs as oppose to the standard practice of two JJs per
loop. These new type of SQUIDs are also known as bi-SQUIDs because the addi-
tional junction and main inductance form an additional single-junction SQUID. Since
its invention in 2009 [12], theoretical works have shown that the voltage response
of individual bi-SQUIDs can lead to achieving a response linearity close to 120 dB
[12, 13]. The uniform arrays of bi-SQUIDs were also investigated and showed signifi-
cant improvement in the response linearity in comparison with arrays of conventional
dc SQUIDs. However, the linearity improvement was also quite sensitive to the fabri-
cation spread in JJ critical currents resulting in some degradation of the array transfer
function [14–16]. We consider serial and parallel multi-loop arrays of non-uniform
bi-SQUIDs and examine in great detail their voltage response as a function of con-
trolled parameters, including: inductive coupling between loops, number of loops,
bias current, and distribution of loop areas.
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(a) (b)

Fig. 1 a Circuit representation of a DC bi-SQUID device. ‘P’ is a phase source that accounts for
the phase shift due to the external magnetic flux ϕe. b its time-averaged voltage response between
the two junctions, as a function of the normalized external magnetic flux ϕe

2 Background

2.1 The DC Bi-SQUID

The DC bi-SQUID was originally introduced by Kornev et al. [12, 13] as a modified
version of a conventional SQUID device but with the ability to produce a highly linear
voltage response. Figure 1 shows a schematic diagram of the proposed bi-SQUID
device. The main modification is the addition of a nonlinear inductance, in the form
of a third Josephson Junction. This third junction, when combined with the main
inductance in the loop, acts as a single-junction SQUID thus leading to a combined
bi-SQUID system. More importantly, the works in Refs. [12, 13] demonstrate that
tuning of the nonlinear inductance, through the critical current of the junctions, can
lead to significant improvements in the linearity of the V (ϕe) curve.

Figure 1a shows a circuit design of a bi-SQUID device in which the individual
inductances, L ja and L jb, where j = 1, 2, 3, were added to resemble as close as
possible the actual fabricated bi-SQUID thin-film structure.

Assuming identical junctions, direct calculations lead to the following governing
equations for the phase dynamics:

(L1 + L2a) ϕ̇1 − L2bϕ̇2 − L1ϕ̇3 = L1bib + ϕ2 − ϕ1 + 2 πϕean + L1ic3 sin ϕ3

+ L2b sin ϕ2 − (L1 + L2a) sin ϕ1

L2aϕ̇1 − (L1 + L2b)ϕ̇2 − L1ϕ̇3 = − L1aib + ϕ2 − ϕ1 + 2πϕean + L1ic3 sin ϕ3

− L2a sin ϕ1 + (L1 + L2b) sin ϕ2 (1)

L2aϕ̇1 − L2bϕ̇2 − (L3a + L3b)ϕ̇3 = ϕ2 − ϕ3 + ϕ1 − (L3a + L3b) ic3 sin ϕ3

− L2a sin ϕ1 + L2b sin ϕ2,
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Fig. 2 a Numerical simulations of the voltage response of a single bi-SQUID as a function of the
critical current ic3. Parameters are: ib = 2, an = 1, L1a = L1b = 0.27, L2a = L2b = 0.24,
and L3a = L3b = 0.3. b Linearity test via linear fitting error and through calculations of Spur
Free Dynamic Range (SFDR). Observe that best linear response is directly correlated with highest
SFDR. Development of cusp for ic3 > 1

where ϕi are the phases on each of the junctions Jn , n = 1, 2, 3, L1 = (L1a + L1b),
ic3 = Ic3/Ic, is the normalized critical current across the third junction J3, Ic1 =
Ic2 = Ic, an is a nonlinearity parameter related to the loop size between J1 and J2,
and (˙) denotes differentiation with respect to the normalized time τ = ωct , ωc =
2πVc/Φ0, Vc = Ic RN . Figure 1(bottom) illustrates the average voltage response of
a bi-SQUID device obtained numerically by integrating Eq. (1) and then calculating
< v > through

< v >= 1

T

T∫

0

(
ϕ̇1 + ϕ̇2

2

)
(2)

with the following parameters: ib = 2, an = 1, L1a = L1b = 0.27, L2a = L2b =
0.24, L3a = L3b = 0.3. The voltage response of the bi-SQUID is significantly more
linear than that of the conventional SQUID. In fact, a linear fitting (not shown for
brevity) of the V (ϕe) curve confirms an almost perfect match with a straight line.

In Fig. 2 we now explore the effects of changing the nonlinear inductance on
the linearity of the average voltage response curve V (ϕe). Parameter values are the
same as in Fig. 1(bottom) except that now the critical current ic3 is varied. The
dashed lines in Fig. 2 are the projections of the individual voltage response curves
(solid curves) for the particular values of ic3 = 0, 1, and 2.5. At small magnitudes
of the critical current ic3, the shape of the voltage response curve closely resembles
that of a conventional SQUID. As the parameter ic3 increases, the transfer function
linearity increases while the voltage response approaches a triangular shape. For
larger values of the ic3 > 1.0 parameter, the voltage response curve develops a cusp
which results in a hysteresis loop and a decrease in linearity. Thus, there appears to



Voltage Response of Non-Uniform Arrays of Bi-SQUIDs 81

be an optimal value of the critical current ic3, located at intermediate magnitudes,
where a bi-SQUID device can generate the most linear voltage response. To find
that optimal value using SFDR, we compute the linearity of the voltage response as
in Ref. [12], i.e., by biasing a single tone sinusoidal flux input at Φ0/4 with amplitude
A, were A/Amax = 0.3 given that Amax corresponds to the flux amplitude Φ0/4
and then measuring the total harmonic distortion. Another approach for computing
linearity is to calculate the slope of the voltage response and then fit a line using
the nonlinear least squares method. Thus, our linear fit measure is computed by
using the error from the linear fit and then dividing by the square of the slope of
V (ϕe) at the individual working point for each individual value of ic3. Again we
bias the sinusoidal flux input at Φ0/4 with an amplitude of A/Amax = 0.3. Note
that the fitting of the line corresponds to the same amplitude as used in the SFDR.
In Fig. 2b there is no loss in linearity because we never exceed the according branch
of the hysteresis loop during the calculation of the fit error and SFDR. The linear fit
measure can then be used as a test for linearity, i.e., small values would be indicative
of high linearity. Likewise, large SFDR would indicate high linearity. In this work
we adopted the nonlinear least squares approach and the results are shown in Fig. 2b.

Experiments with non-uniform multi-loop serial arrays of conventional SQUIDs
have shown that the voltage swing of the response curve V (ϕe) increases proportion-
ally to the number of SQUIDs in the array. This critical observation should extend
in a natural way to arrays of bi-SQUIDs with the potential for increasing SFDR and
linearity beyond the values shown in Fig. 2. We explore this hypothesis next with
two types of bi-SQUID arrays, one where the loops are connected serially and one
where they are connected in parallel.

3 Serial Bi-SQUID Array

Generically, a serial array of N SQUIDs is able to yield a significantly higher out-
put power than a single SQUID. In particular, dynamic range is known to increase
as N 1/2 in the presence of thermal noise [11]. Furthermore, as suggested in Refs.
[12, 13], a serial bi-SQUID array can be designed to produce a voltage output with a
unique “anti-peak” at the zero applied magnetic flux. Thus, in principle, serial arrays
of bi-SQUIDs can be implemented to produce a voltage anti-peak response with
increased dynamic range and improved voltage linearity. Indeed, the motivation of
this work is to build a (serial) SQIF [7, 8] array consisting of bi-SQUIDs. To pursue
this goal, we consider in this section a serial array of N bi-SQUIDs, designed as is
shown in Fig. 3. The phase dynamics of the serial array shown in Fig. 3 is described
by the following system of differential equations.
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Fig. 3 Circuit representation of an array of bi-SQUID devices connected in series. ‘P’ is a phase
source that accounts for the phase shift due to the external magnetic flux ϕe

(L1,i + L2a,i ) ϕ̇i,1 − L2b,i ϕ̇i,2 − L1,i ϕ̇i,3 = L1b,i ib + ϕi,2 − ϕi,1 + 2 πϕean,i + MΦi

+ L1,i ic3,i sin ϕi,3 + L2b,i sin ϕi,2

− (L1,i + L2a,i ) sin ϕi,1

L2a,i ϕ̇i,1 − (L1,i + L2b,i )ϕ̇i,2 − L1,i ϕ̇i,3 = − L1a,i ib + ϕi,2 − ϕi,1 + 2πϕean,i + MΦi

+ L1,i ic3,i sin ϕi,3 − L2a,i sin ϕi,1

+ (L1,i + L2b,i ) sin ϕi,2 (3)
L2a,i ϕ̇i,1 − L2b,i ϕ̇i,2 − (L3a,i + L3b,i )ϕ̇i,3 = ϕi,2 − ϕi,3 + ϕi,1 + MΦi

− (
L3a,i + L3b,i

)
ic3,i sin ϕi,3

− L2a,i sin ϕi,1 + L2b,i sin ϕi,2,

where ϕi, j are the phases on each of the junctions Ji, j , i = 1, . . . , N , j = 1, 2, 3,
L1,i = (L1a,i + L1b,i ), an,i is a parameter related to the loop size between Ji,1
and Ji,2, and M is the coupling strength for the phase interaction Φi between near-
est neighbors—one neighbor for the edge elements, two for the inner elements—
according to

Φi =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1

an,2
(ϕ2,1 − ϕ2,2 − 2πϕean,2), for i = 1

1

an,i+1
(ϕi+1,1 − ϕi+1,2 − 2πϕean,i+1)

+ 1

an,i−1
(ϕi−1,1 − ϕi−1,2 − 2πϕean,i−1), for i = 2, . . . , N − 1

1

an,N−1
(ϕN−1,1 − ϕN−1,2 − 2πϕean,N−1), for i = N

(4)

where, ib is the bias current, ic3 = Ic3/Ic is the normalized critical current of the third
junction J3 in each bi-SQUID cell, an,i is the nonlinearity parameter related to the i th
bi-SQUID loop. For simplicity, in this work we assume all inductances to be identical
throughout the array. However, the computer code that was written to simulate the
voltage response of the array can easily handle the case of non-identical inductances.
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Fig. 4 Numerical simulations
of the voltage response of a
non-uniform serial bi-SQUID
array (N = 20) as a function
of the critical current ic3 and
external flux ϕe. Loop sizes
are selected according to a
Gaussian distribution. L1a =
L1b = 0.27, L2a = L2b =
0.24, L3a = L3b = 0.3,
M = 0.005

The main differences from the single bi-SQUID are the mutual inductances between
elements.

Numerical simulations of Eq. (3) were carried out to explore, computationally,
the voltage response of the serial array as a function of the external field ϕe and the
critical current ic3. Different distributions of loop sizes were investigated for each
array, including: linear, Gaussian, exponential, logarithmic, and equal size. Among
them, the Gaussian distribution in a serial array produced the highest linear response
around the anti-peak. Note that other distributions excluding the equal sized were
very similar to the Gaussian, however, the Gaussian was only slightly better and it
would be redundant to display results on the other distributions. From now on in
the article we are assuming that the distribution of loop sizes is Gaussian. Figure 4
shows the results of the simulations for a specific array with N = 20 bi-SQUID
loops with loop sizes that vary according to a Gaussian distribution. As expected, the
voltage output forms an anti-peak at ϕe = 0 magnetic flux and, more importantly,
the linearity around the anti-peak appears to be changing as ic3 changes. For small
magnitudes of that parameter the voltage response curve appears to mimic that of a
conventional SQIF device made up of two-junctions per loop. But as the parameter
increases the linearity of the anti-peak appears to increase and starts to resemble,
near zero flux, the triangular shape of the voltage output of a single bi-SQUID.
This numerical exploration suggests that careful adjustment of the critical current
parameter can lead to significant improvements of linearity. As we did in Sect. 2 we
can also use the least squares approximation method to fit a line to measure linearity.
Figure 5 shows the results of the linear fitting and SFDR. Indeed, the error in the linear
fitting decreases as ic3 increases thus indicating an increase in the linearity of the
voltage output. The increase in linearity is similar to what was observed previously
in a single bi-SQUID, see Fig. 2, except that now the voltage output does not develop
a hysteresis loop so that the linearity does not decrease for larger values of the critical
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Fig. 5 Linearity test (dashed line) via linear fitting error of the voltage response of an array
of N = 20 bi-SQUID devices connected in series as a function of the critical current ic3 and
corresponding SFDR (solid line). The test shows that there exists a critical current where the error
decreases significantly such that the linearity increases. It also shows an optimal value of the critical
current where SFDR is optimum and beyond which only marginal improvements in linearity can
be achieved

current. Instead, there appears to be a threshold value of the critical current ic3 beyond
which the linearity remains unchanged as is shown in Fig. 5.

We wish to recall that in the special case of serial arrays the maximum voltage
swing Vmax (Φ) and transfer factor ∂V/∂Φ increase directly proportional to the
number of loops N in the array [17, 18] while the thermal noise voltage VF is
proportional to the square root of N . These relations imply that the dynamic range
increases as N 1/2. However, we emphasize that for parallel arrays the situation is
different: Vmax (Φ) remains constant while the transfer factor ∂V/∂Φ still increases
proportional to N . Thermal noise voltage VF scales as N−1/2 [6, 9]. Therefore, the
dynamic range is given by Vmax (Φ)/VF = N 1/2.

In the next section we focus on the design of a parallel array of bi-SQUIDs which
could also lead to additional benefits in the linearity of the voltage output, specially
when the critical current ic is no longer uniform [20].

4 Parallel Bi-SQUID Array

We now consider a one-dimensional array of N bi-SQUIDs connected in parallel
as is shown schematically in Fig. 6. The coupling topology is based on designs
discussed in Refs. [20–22]. Observe that now in the parallel array the junctions are
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Fig. 6 Circuit representation of an array of bi-SQUID devices connected in parallel. ‘P’ is a phase
source that accounts for the phase shift due to the external magnetic flux ϕe

shared among neighboring loops, so that the indices of the phase differences φn of the
“classical” SQUID junctions count the junctions and not the loops. This is in direct
contrast to the phase differences φ3,n of the third (bi-SQUID specific) junctions and
to the serial arrays where the junctions from one loop to the next are different. As we
did in the case of serial arrays, the derivation of the modeling equations was carried
out based on conservation of current across the loops.

for n = 1:

B1ϕ̇1 −
(

L2b,1

2A1

)
ϕ̇2 − ϕ̇3,1 =

(
1

A1

)
(
L1b,1ib + ϕ2 − ϕ1 + 2πϕean,1

)

−
(

L2a,1

A1
+ 1

)
sin ϕ1 +

(
L2b,1

2A1

)
sin ϕ2 + ic3,1 sin ϕ3,1,

L2a,1ϕ̇1 − L2b,1

2
ϕ̇2 + C1ϕ̇3,1 = ϕ2 − ϕ1 − ϕ3,1 − L2a,1 sin ϕ1 + L2b,1

2
sin ϕ2

− C1ic3,1 sin ϕ3,1,

for n = 2 . . . N :
(

L2a,n−1

2An−1

)
ϕ̇n−1 − Bn

2
ϕ̇n

(
L2b,n

2An

)
ϕ̇n+1 + ϕ̇3,n − ϕ̇3,n−1 =

((
L1b,n−1

An−1

)
−

(
L1b,n

An

)
− 1

)
ib

−
(

1

An

)
(
ϕn+1 − ϕn + 2πϕean,n

)

+
(

1

An−1

)
(
ϕn − ϕn−1 + 2πϕean,n−1

)

−
(

L2a,n−1

2An−1

)
sin ϕn−1 + Bn

2
sin ϕn

−
(

L2b,n

2An

)
sin ϕn+1 − ic3,n sin ϕ3,n + ic3,n−1 sin ϕ3,n−1,

L2a,n

2
ϕ̇n − L2b

2
ϕ̇n+1 + Cnϕ̇3,n = ϕn+1 − ϕn − ϕ3,n − L2a,n

2
sin ϕn + L2b

2
sin ϕn+1

− Cnic3,n sin ϕ3,n,

for n = N + 1:
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Fig. 7 Numerical simulations of the voltage response of a non-uniform parallel bi-SQUID array
as a function of the critical current ic3 and external flux ϕe. Loop sizes are selected according to a
Gaussian distribution. Other parameters are the same as in Fig. 4

(
L2a,N

2AN

)
ϕ̇N − BN+1ϕ̇N+1 − ϕ̇3,N =

(
1

AN

)
(−L1b,N ib + ϕN+1 − ϕN + 2πϕean,N

)

−
(

L2a,N

2AN

)
sin ϕN +

(
1 + L2b,N

AN

)
sin ϕN+1

+ ic3,N sin ϕ3,N , (5)

where An = L1a,n+L1b,n for n = 1 . . . N , B1 =
⎥

L2a,1
A1

+ 1
⎦

, Bn =
⎥

L2a,n
An

+ L2b,n−1
An−1

+ 2
⎦

for n = 2, . . . , N , BN+1 =
⎥

1 + L2b,N
AN

⎦
, Cn = (L3a,1 + L3b,1) for n = 1 . . . N ,

and ϕn is the phase difference for the nth junction (Jn), ib is the normalized bias
current, ic3,n is the normalized critical current for the third junction of the nth
loop and it is assumed to be identical for each loop, Inductances are given by
Ln = [

L1a,n, L1b,n, L2a,n, L2b,n, L3a,n, L3b,n
]

for n = 1, . . . , N . As we did in
the serial case, we can simplify the inductances to Ln = an,nL1, where an,n corre-
sponds to the nth bi-SQUID loop dynamics. Computer simulations of Eq. (5) were
performed to calculate the voltage response of the parallel array of bi-SQUIDs as
function of the external field and the critical current ic3. Figure 7 shows a represen-
tative example of these simulations for an array of N = 20 bi-SQUID loops. All
other parameter values are the same as those used to generate Fig. 4. As expected,
the parallel array can also produce an anti-peak voltage response centered around
zero flux but the linearity appears to be not as good as in the case of a serial array.
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5 Experimental Evaluation

We have designed various configurations of bi-SQUID SQIF arrays using HYPRES
thin-film fabrication process [23] in order to study various different layout config-
urations, junction damping, and coupling schemes. Figure 8 shows fabricated chips
microphotographs of representative chips, e.g., a set of 256 bi-SQUID-cell arrays
connected in series and a set of four different designs of a parallel array with 10
bi-SQUID cells.

Figure 9 shows the measured flux-voltage characteristics of serial and parallel bi-
SQUID SQIF arrays (Fig. 8). The measurements were done in liquid Helium using
HYPRES cryogenic immersion probe. A DC current bias source was used to set an

(a)

(c) (d)

(b)

Fig. 8 Microphotographs of the fabricated bi-SQUID-SQIFs integrated on 5 mm×5 mm chips
a serial meander arrays consisting of 256 bi-SQUID cells. b a set of parallel 10 bi-SQUID cell
arrays. c Serial meander SQIF array with 1,445 bi-SQUID cells. d Serial spiral SQIF array with
1,315 biSQUID cells
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(a)

(c) (d)

(b)

Fig. 9 Measured flux-voltage characteristics of bi-SQUID SQIF arrays: a a serial 256 bi-SQUID
array. Voltage–Flux (V–F) response with 500µA/div, 5 mV/div, maximum voltage ∼27 mV, coef-
ficient of transformation is 68.75 mV/mA for Φ0/2 (Φ0 is flux quantum); b a parallel 10 bi-SQUID
array with 200µA/div, 20µV/div, maximum voltage ∼0.19 mV, coefficient of transformation is
3.75 mV/mA for Φ0/2; c Serial meander 1,445-cell array with 2 mA/div, 50 mV/div; maximum
voltage 295 mV, coefficient of transformation 735 mV/mA for Φ0/2. d Serial spiral 1,315-cell array
with 0.5 mA/div, 50 mV/div; maximum voltage 320 mV, coefficient of transformation 3200 mV/mA
for Φ0/2

appropriate bias point for the arrays. A function generator supplied a sweep signal
to applied variable flux bias to the arrays via the integrated magnetically coupled
control lines.
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Experimental measurements shown in Fig. 9 confirm that the collective voltage
output of both serial and parallel types of arrays exhibits a pronounced single peak
with a large voltage swing about zero magnetic flux. It also shows that bi-SQUIDs
can be integrated into SQIF arrays and exhibit a linear response as predicted by
results of modeling and simulations.

6 Conclusion

We have studied, analytically, computationally, and experimentally, the behavior of
non-uniformarea in multi-loop arrays of Josephson Junctions, also known as Super-
conducting Quantum Interference Filters. Analytically, we used basic circuit laws
to derivemodel equations for the phase across each of the junction. Two types of
arrays were considered. One where the multi-loops are connected in series and one
where the connections are in parallel. Numerical simulations of the model equations
revealed that the collective voltage output of both arrays exhibits a pronounced single
peak with a large voltage swing about zero magnetic flux. The shape of the anti-peak
is due, mainly, to the non-uniformity of the multi-loop structure while its linearity
appears to be directly correlated to parameter ic3. The Gaussian distribution of loop
sizes were used in a serial array which produced a clear linear response around the
anti-peak. Various configurations of serial and parallel arrays of bi-SQUIDs were
designed, fabricated, and tested. The test results validated the theoretical findings: a
serial array of bi-SQUIDs with loop sizes spread according to a Gaussian distribution
produces a highly linear anti-peak voltage response. The linearity and size of the anti-
peak in the serial bi-SQUID array can be optimized by changing the critical current
through the third junction of each bi-SQUID element and by changing the number
of loops. We anticipate that both serial and parallel bi-SQUID SQIF arrays can be
integrated into a two-dimensional (2D) array structure to deliver superior linearity at
appropriate impedance. Interweaving the ideas of bi-SQUID and SQIF devices we
produced a new devices that can be used as an absolute measurement devices that
has improved dynamic range and linearity. Again the linearity is directly related to
the spur free dynamic range. For practical application of this device a cross between
a parallel series array of bi-SQUID should take advantage of each of the strengths
of series and parallel arrays.
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A Bistable Microelectronic Circuit for Sensing
Extremely Low Electric Field

Andy Kho, Visarath In, Patrick Longhini, Daniel Leung, Norman Liu,
Antonio Palacios, Joseph Neff and Adi Bulsara

Abstract Bistable systems are prevalently found in many sensor systems. Recently,
we have explored unidirectionally coupled overdamped bistable systems that admit
self-sustained oscillations when the coupling parameter is swept through the critical
points of bifurcations. Complex behaviors emerge, in addition, from these relatively
simple coupled systems when an external signal ac or dc is applied uniformly to all
the elements in the array. In particular, we have demonstrated this emergent behav-
ior for a coupled system comprised of mean-field hysteretic elements describing a
single-domain ferromagnetic sample. The results are being used to develop extremely
sensitive magnetic sensors capable of resolving field changes as low as 150 pT by
observing the changes in the oscillation characteristics of the coupled sensors. In
this paper, we explore the underlying dynamics of a coupled bistable system realized
by coupling microelectronic circuits, which belong to the same class of dynamics
as the aforementioned ferromagnetic system, with the nonlinear features and cou-
pling terms modeled by hyperbolic tangent nonlinearities; these nonlinearities stem
from the operational transconductance amplifiers used in constructing the micro-
circuits. The emergent behavior is being applied to develop an extremely sensitive
electric-field sensor.
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1 Introduction

In our previous work we have shown that an overdamped bistable system can self
oscillate with a carefully chosen coupling topology [1–3]. The number of elements
has to be odd with three or more elements, and they should be unidirectionally
coupled with cyclic boundary conditions. When the coupling strength is set beyond
the critical coupling, the system will spontaneously generate self oscillations.

This technique has already been employed with the coupled-core fluxgate magne-
tometer where three ferromagnetic cores were coupled together. Typically, a periodic
signal is used to drive the ferromagnetic cores between its stable states; however, with
the coupling technique, the drive signal was not necessary due to the system self oscil-
lating. With this technique and the residence time detection (RTD) readout, a room
temperature magnetometer with a resolution as low as 150 pT was realized.

A similar approach is what was used to develop an electric field sensor which is the
subject of this paper. Instead of coupling ferromagnetic cores, however, an electronic
chip was developed which uses the coupling technique to sense small currents. This
chip, along with a conductive plate and the same RTD readout was used to build an
extremely sensitive electric field sensor (see Fig. 1). The current system was designed
to detect low frequency electric fields less than a few hundred hertz.

2 Dynamical Equations

The dynamical equations for the electric field sensor that were designed in hardware
are given in Eq. (1) [4]. Each of the equations represents an element in the system.
The number of elements must be odd and greater than two in order to generate self
oscillations. Because three elements is the smallest and simplest to implement, this
is the number that will be used for the rest of the paper.

Fig. 1 The electric field sensor consists of a a conductive plate, b coupled bistable nonlinear chip,
and c residence time difference (RTD) readout circuitry
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Fig. 2 Bifurcation diagram showing the system’s voltage output in response to changes in coupling
parameter Ic. The filled-in circles represent globally, asymptotically, stable limitcycle oscillations
created at the onset, LP, of a heteroclinic bifurcation. The solid lines depict the local branches
of stable steady-state solutions. The empty circles correspond to unstable branches of periodic
oscillations that emerge via Hopf bifurcations. The parameters are CL = 1, g = 1, c = 1, Is = 2
and Ic = 1

CL V̇1 = −gV1 + Is tanh(cs V1) − Ictanh(ccV2) − ε

CL V̇2 = −gV2 + Is tanh(cs V2) − Ictanh(ccV3) − ε (1)

CL V̇3 = −gV3 + Is tanh(cs V3) − Ictanh(ccV1) − ε

In this system the coupling is unidirectional with cyclic boundary conditions. V1
receives a coupling term from V2. V2 receives a coupling term from V3, and finally V3
receives a coupling term from V1. The coupling strength is set by adjusting Ic which
is identical for all three elements. Is , which is also identical for all three elements,
controls the bistability of the system. It can be tuned so that the system is monostable
when Is < g/cs or bistable when Is ≥ g/cs . In this paper, the bistable case is used.
CL sets the time constant for the system and ε is the signal being detected.

Figure 2 shows the bifurcation diagram of the dynamical system in Eq. (1) [4].
Part of the diagram shows the steady state (solid lines) and unstable regions (open
circles), but the region being used for the electric field sensor is the stable limit-
cycle created at the onset of a heteroclinic bifurcation (solid circles). The bifurcation
diagram for N odd larger than 3 has more bifurcation points, however, they are all
unstable and the same limit-cycle is still responsible for the oscillations. In the case
where N is even, the limit cycle is replaced with a steady state, and it is not possible
to generate oscillations with this topology. In order for the system to spontaneously
generate oscillations, the coupling term, Ic, needs to be tuned past its critical value.
If the system is tuned below this point, it will remain in steady state. The equation
for the critical point has been worked out and is shown in Eq. (2) [4].
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Fig. 3 Time series simulations of the coupled electric field system. e is set to 0, 0.025, 0.4, and
0.46 from top to bottom

Ic,cri tical = ε − g

c
sech−1

(√
g

Isc

)
+ Is tanh

[
sech−1

(√
g

Isc

)]
(2)

Figure 3 shows the time series of the electric field system when the coupling
strength is set beyond the critical coupling so that the system oscillates a priori. The
top figure shows what the signal looks like when there is no target signal present.
The elements oscillate in a traveling wave pattern phase shifted by 360◦/N , where
N is the number of elements. Moving down in the series of plots in Fig. 3, the target
signal ε is set to 0, 0.25, 0.4, and 0.46. As ε is increased, the oscillation frequency (see
Fig. 4) decreases and the duty cycle shifts. This duty cycle shift is what is measured
to quantify the target signal.

3 Readout Strategy

The readout for the electric field sensor is the residence time difference (RTD) [5].
T+ is the time when it crosses the upper threshold until it reaches the lower threshold
as shown in Fig. 5. T− is the time when it crosses the lower threshold until it reaches
the upper threshold. The RTD is calculated by subtracting T− from T+. When there
is no target signal present, T+ and T− are the same so the RTD equals zero (see
Fig. 5a). When a target signal is present, the RTD is a non-zero number and can be
related back to the input target signal (see Fig.5b). In practice, the threshold crossings
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Fig. 4 Frequency response to
an input target signal ε

are accumulated and kept track of at the input capture port of a PIC microcontroller.
The PIC calculates T+, T−, and the RTD. It can also average the RTD as well as do
some signal processing. The RTD is transmitted to the computer via the serial port.

The response to a DC input signal is shown in Fig. 6. When the signal is
small, the response is linear. As the input signal approaches the bifurcation point,
there is a sharp rise in the response. This allows the user to tune the circuit to
operate in different regions of the response curve depending on the target signal
characteristics.

Fig. 5 Residence time detection readout is done by counting times spent in the upper and lower
residence times. The difference in the upper and lower residence times can be related back to the
input target signal. a No target signal. b Target signal present
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Fig. 6 RTD response curve
of the electric field sensor. The
responsivity greatly increases
as the signal approaches the
bifurcation point

4 Circuit

The basic circuit design based on the nonlinear equations was built out of operational
transconductance amplifiers (OTAs). An OTA was used for both the Is and Ic term
(see Fig. 7). CL , which sets the time constant of the system, was set by the load
capacitance including any parasitics. g is the linear conductance, and cc and cs are
intrinsic transistor parameters. Figure 7 shows the basic building block for each of
the elements in the system. The actual transistor layout is shown in Fig. 8. Putting all
of these things together builds the entire system shown in Fig. 9. The input current
mirror is there to copy the same input current into each element of the electric field
sensor.

SPICE simulations were done to verify that the design would behave similarly
to the numeric simulations. Careful consideration had to be given on choosing the
circuit parameters. Is was set so that the oscillator was operating in the bistable
region. Ic was adjusted accordingly so that the system would self oscillate. CL was
also chosen so that it would operate in the desired frequency range of 1–2 kHz. The
values used for this particular simulation were CL = 66 nF, Ic = 200µA, and
Is = 300µA. The resultant time series, RTD response, and frequency response were
shown in Fig. 10.

Fig. 7 The basic building block for each of the elements in the electric field sensor. g—linear
conductance. cc and cs intrinsic transistor parameters. CL output capacitance
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Fig. 8 The transistor layout for each of the elements in the electric field sensor. The OTAs are built
with differential pair transistors

Fig. 9 The basic topology of the electric field sensor after putting all of the parts together
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Fig. 10 a Time series SPICE simulation with increasing input signal. b RTD and Frequency
response of the SPICE simulation. Ic = 200µA, Is = 300µA, CL = 66 nF

After the chip was designed and the layout of the chip was done, it was sent out
to be fabricated. A printed circuit board was also designed and fabricated so that
the chip could be mounted and tested. Operational amplifier buffers had to be used
at the output of the chip so that CL could be set independent of the load. Ic and Is

were set with potentiometers so that these values could be carefully tuned. The time
series and response curves were similar to the SPICE simulations. Taking noise into
consideration, this chip was able to resolve current changes of 500 pA which resulted
in an electric field resolution of about 56 Vm/(As) where A is the area of the plate
and s is time in seconds.
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Fig. 11 The experimental
time series of the electric field
sensor chip that has one of its
inputs reversed. a No input
signal. b 30 nA input signal

A further enhancement that was done to the system was to alternate the inputs into
the chip. In this case, the current mirror was replaced with a differential input so that
every other element would get a reversed input signal. In the case where elements
one and two got the straight input signal and element three got the reversed input
signal, element one would have a much greater RTD response than the other two. In
Fig. 11a where there was no input signal, the waveform looks symmetrical just like
the non-alternating input case. When a 30 nA input signal was input into the system,
however, it is clearly seen that channel one has a much greater RTD response than
channels two and three as seen in Fig. 11b. This alternating input technique can also
be employed on systems with more elements. In fact, simulations have shown that
using this technique with more elements increases the RTD response even further.

5 Conclusion

A microelectronic realization of the coupled bistable system to detect small DC
currents has been presented in this paper. With the proper coupling topology and
coupling strength, the system will self oscillate. When a small signal enters the
nonlinear chip, the duty cycle of the signal changes and the readout can be taken via
the RTD method. Even though the presentation in this paper was to build an electric
field sensor, the same chip can be interfaced with other transducers that produce a
current output as well. In fact, the small size of the circuit affords the ability to place
many of these circuits onto a single chip whereby a single chip (or small PCB) could
host a series of different types of sensors.
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Asynchronous Cellular Automaton Based
Modeling of Nonlinear Dynamics of Neuron

Hiroyuki Torikai and Takashi Matsubara

Abstract A modeling approach of nonlinear dynamics of neurons by an
asynchronous cellular automaton is introduced. It is shown that an asynchronous
cellular automaton neuron model can realize not only typical nonlinear response
characteristics of neurons but also their underlying occurrence mechanisms (i.e.,
bifurcation scenarios). The model can be implemented as an asynchronous sequential
logic circuit, whose control parameter is the pattern of wires that can be dynamically
updated in a dynamic reconfigurable FPGA. An on-FPGA learning algorithm (i.e.,
on-FPGA rewiring algorithm) is presented and is used to tune the model so that it
reproduces nonlinear response characteristics of a neuron.

1 Introduction

The neuron is one of the most sophisticated nonlinear dynamical systems and its
mathematical and hardware modelings have been investigated intensively [1–10].
Motivations for the hardware neuron include development of a neural prosthesis chip
for clinical applications [9, 10] and development of an artificial neural network chip
for engineering applications [1, 5–7]. Major classical approaches of hardware spik-
ing neurons include: (i) implementation of a nonlinear ordinary differential equation
(ab. ODE) by an analog circuit [1–4] and (ii) implementation of a numerical integra-
tion by a digital processor [5–8]. Recently, an alternative neuron modeling approach
has been proposed, where the nonlinear dynamics of a neuron is modeled by an asyn-
chronous cellular automaton that is implemented by an asynchronous sequential logic
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circuit [11–15]. The asynchronous sequential logic spiking neuron model (ab. ASN)
consists of registers, logic gates, and reconfigurable wires, where the pattern of the
wires among the registers and the gates is a control parameter that determines its
nonlinear dynamics. Some types of ASNs (e.g., integrate-and-fire type and rotate-
and-fire type) have been presented so far and their neuron-like properties have been
analyzed intensively [11–15]. In this paper, it is shown that the ASN can realize
typical nonlinear responses of neurons [11]. Also, some of our recent new results on
learnings of the ASN are presented. Significances of the ASN include the following
points. (a) The analog circuit neuron has a continuous time and a continuous state,
and the digital processor neuron has a discrete time and a discrete state. On the other
hand, the ASN has a discrete state and a continuous (state transition) time. Hence
the ASN belongs to a different class of nonlinear dynamical systems from the major
classical hardware spiking neuron models. We emphasize that investigation of such
a new neuron modeling approach is an important fundamental nonlinear problem.
(b) An important control parameter of the analog circuit neuron is a nonlinearity of
a circuit element. Hence, its dynamic parameter adjustment is often troublesome.
An important control parameter of the digital processor neuron is a coefficient of a
nonlinear function. Hence, its dynamic parameter adjustment is possible but needs a
numeric data processor. On the other hand, the control parameter of the ASN is the
wiring pattern that can be dynamically adjusted based on a dynamic reconfigurable
FPGA technology. (c) The ASN can be implemented with less hardware resources
(i.e., smaller number of configuration logic blocks) than the digital processor neuron
for some reasonable parameter cases. Such a low hardware cost property and the
dynamic reconfiguration ability will be significantly useful to develop future appli-
cations of the ASN, e.g., a neural prosthesis chip whose area is small and whose
parameters can be dynamically updated after implantation and an artificial neural
network chip with an on-chip learning capability.

2 Asynchronous Sequential Logic Neuron Model

In this section, an asynchronous sequential logic spiking neuron model (ab. ASN),
whose diagram is depicted in Fig. 1, is introduced [11–15]. The ASN has the following
four registers whose bit lengths are denoted by positive integers N , M , K , and J ,
respectively.

(1) The membrane register is an N -bit bi-directional shift register having an integer
state V ≥ ZN √ {0, . . . , N − 1} encoded by the one-hot coding manner, where
“√” denotes “is defined by” hereafter. From a neuron model viewpoint, the state
V can be regarded as a membrane potential.

(2) The recovery register is an M-bit bi-directional shift register having an integer
state U ≥ ZM √ {0, . . . , M − 1} encoded by the one-hot coding manner. From
a neuron model viewpoint, the state U can be regarded as a recovery variable.
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Fig. 1 Asynchronous sequential logic spiking neuron model (ab. ASN)

(3) The membrane velocity counter is a K -bit register having an integer state P ≥
ZK √ {0, . . . , K − 1} encoded by the thermometer coding manner. The state P
controls a velocity of the membrane potential V .

(4) The recovery velocity counter is a J -bit register having an integer state Q ≥
ZJ √ {0, . . . , J − 1} encoded by the thermometer coding manner.

The state Q controls a velocity of the recovery variable U . The states V , U , P ,
and Q are clamped to the ranges [0, N − 1], [0, M − 1], [0, K − 1], and [0, J − 1],
respectively. As shown in Fig. 1, the registers and the velocity counters are connected
to each other via the following two memoryless units. (i) The vector field unit consists
of logic gates and reconfigurable wires. This unit determines the characteristics of a
vector field of the states (V, U ) as its name implies. (ii) The reset value unit consists
of logic gates and reconfigurable wires. From a neuron model viewpoint, this unit
determines values to which the states (V, U ) are reset when the ASN fires, as its
name implies. The ASN accepts a periodic internal clock Clk(t) described by

Clk(t) =
{

1 if t (mod 1) = 0,

0 otherwise,

where t ≥ [0,≡) is a continuous time. In the next subsection, autonomous behaviors
of the ASN (i.e., behaviors when no stimulation input spike-train Stm(t) is applied)
are investigated. After that, in the next subsection, non-autonomous behaviors of
the ASN (i.e., behaviors when a stimulation input spike-train Stm(t) is applied) are
investigated.
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Fig. 2 A phase plane and state transitions. V-nullcline (U-nullcline) is a border between DV ≥
{−1, 0} and DV = 1 (DU ≥ {−1, 0} and DU = 1). The bit lengths of the ASN are N = M = K =
J = 16. The parameters are Γ = (7, 0.3, 0.2, 3, 0.1, 16, 0.5, 0.3, 0) defined in (10). A periodic
stimulation input spike-train Stm(t) with a frequency 0.312 via the synaptic weight W = 1 is
applied to the ASN

2.1 Autonomous Behaviors

Let us begin with defining the following subset L in the state space ZN × ZM (see
also Fig. 2).

L √ {(V, U )|V = N − 1, U ≥ ZM } ◦ ZN × ZM . (1)

From a neuron model viewpoint, L can be regarded as a firing threshold. First, let
us consider the case of (V, U ) ≈≥ L. In this case, the vector field unit in Fig. 1 triggers
the transition of the states (P, Q) of the velocity counters and the states (V, U ) of the
registers through signals (sV , sU ) ≥ {0, 1}2 and (δV , δU ) ≥ {−1, 0, 1}2 as follows.
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P(t+) =






P(t) + 1 if sV (t) = 0, Clk(t) = 1,

0 if sV (t) = 1, Clk(t) = 1,

P(t) otherwise,

Q(t+) =






Q(t) + 1 if sU (t) = 0, Clk(t) = 1,

0 if sU (t) = 1, Clk(t) = 1,

Q(t) otherwise,

V (t+) =
{

V (t) + δV if Clk(t) = 1,

V (t) otherwise,

U (t+) =
{

V (t) + δV if Clk(t) = 1,

V (t) otherwise,

(2)

where t+ = limε∈+0 t + ε, the velocity counters accept the internal clock Clk(t)
and the signals (sV , sU ), and the registers accept the signals (δV , δU ) from the vector
field unit. The signals (sV , sU ) and (δV , δU ) are generated as follows.

sV =
{

1 if P ∞ Ph(V, U ),

0 if otherwise,

sU =
{

1 if Q ∞ Qh(V, U ),

0 if otherwise,

δV =
{

DV (V, U ) if P ∞ Ph(V, U ),

0 otherwise,

δU =
{

DU (V, U ) if Q ∞ Qh(V, U ),

0 otherwise,

Ph :ZN × ZM ∈ ZK , Qh :ZN × ZM ∈ ZJ ,

DV :ZN × ZM ∈ {−1, 0, 1}, DU :ZN × ZM ∈ {−1, 0, 1},

(3)

where the functions Ph(V, U ), Qh(V, U ), DV (V, U ), and DU (V, U ) are discrete
functions that are designed by the following rule.

F (V, U )= N (γ1 (V/N − γ2)
2 + γ3 − U/M)/λ,

G (V, U )=μM(γ4 (V/N − γ2) + (γ3 + γ5) − U/M)/λ,

Ph(V, U )=∇|F−1(V, U )|→−1, Qh(V, U )=∇|G−1(V, U )|→−1,

DV (V, U )=sgn(F (V, U )), DU (V, U )=sgn(G (V, U )),

(4)

where (γ1, γ2, γ3, γ4, γ5) are parameters that characterize nullclines, (λ, μ) are para-
meters that work as time constants, the function ∇x→ gives the integer part of a
real number x , Ph(V, U ) and Qh(V, U ) are clamped to the ranges [0, K − 1] and
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Table 1 Summary of the implementation and execution methods of Eqs. (1)–(9), and their orders
of hardware costs

Equation Implement or not Hardware cost

Eq. (2) O(1)

Eq. (3) Implemented as O(N × M)

Eqs. (1) and (5) logic gates and O(N + M)

Eq. (6) reconfigurable wires O(N + M)

Eq. (8) O(1)

Eq. (9) O(1)

Eq. (4) Wiring pattern setting rules
Eq. (7) (not implemented as a part of ASN)

[0, J − 1], and the signum function sgn(x) gives the sign of a real number x , respec-
tively.

Second, let us consider the case of (V, U ) ≥ L. In this case, the reset value unit
in Fig. 1 triggers the reset of the states (P, Q) of the velocity counters and the states
(V, U ) of the registers through integer signals (A, B) ≥ ZN × ZM encoded by the
one-hot coding manners as follows.

(P(t+), Q(t+), V (t+), U (t+)) ={
(0, 0, A, B) if (V, U ) ≥ L, Clk(t) = 1,

(P(t), Q(t), V (t), U (t)) otherwise,
(5)

where the signals (A, B) are generated as follows.

(A, B) = (A ,B(U ))

A ≥ ZN , B(U ) : ZM ∈ ZM ,
(6)

where A is an integer and B(U ) is a discrete function that are designed by the
following rule.

A = ∇ρ1 N→, B(U ) = U + ∇ρ2 M→, (7)

where (ρ1, ρ2) are parameters, andA andB(U ) are clamped to the ranges [0, N −1]
and [0, M − 1], respectively. Repeating the resets, the ASN generates the following
firing spike-train Y (t).

Y (t) =
{

1 if (V (t), U (t)) ≥ L, Clk(t) = 1,

0 otherwise .
(8)

Note that Eqs. (2) and (5) represent the discrete state transitions triggered by the
discrete signals, and Eqs. (3) and (6) represent the discrete functions. Also, Eq. (8)
with Eq. (1) is the discrete function. Hence, they can be implemented by logic gates
and reconfigurable wires, where the functional relations are determined by the wiring
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patterns in the vector field unit and the reset value unit (see Table 1). On the other
hand, Eqs. (4) and (7) represent the parameter (i.e., wiring pattern) setting rules and
are not implemented as a part of the ASN (see Table 1).

2.2 Non-autonomous Behaviors

Let us now apply the following stimulation input spike-train Stm(t) to the ASN.

Stm(t) =
{

1 if t = t1, t2, . . . ,

0 otherwise,

where t = t1, t2, . . . are input spike positions. From a neuron model viewpoint,
the stimulation input spike-train Stm(t) can be regarded as a stimulation input. A
stimulation input spike Stm = 1 induces the transition of the membrane potential V
as follows.

V (t+) = V (t) + W · Stm(t), (9)

where W ≥ {1,−1} is a parameter that can be regarded as a synaptic weight and
W = 1 (W = −1) implies that the stimulation weight is excitatory (inhibitory).
Note that the membrane register of the previous model [14] accepts the single signal
Stm(t)only and the model has the excitatory synaptic weight W = 1 only. In contrast,
the membrane register of the ASN accepts the two signals W and Stm(t) and the
ASN has both the excitatory and the inhibitory synaptic weights W ≥ {1,−1}. Note
also that Eq. (9) represents the discrete state transitions and thus is implemented
by logic gates and reconfigurable wires (see Table 1). Figure 2 shows basic non-
autonomous behaviors of the ASN, where the V-nullcline (U-nullcline) is a border
between DV ≥ {−1, 0} and DV = 1 (DU ≥ {−1, 0} and DU = 1). As a result,
the dynamics of the ASN is described by Eqs. (2)–(9), and is characterized by the
following parameters.

N , M, K , J, Γ = (γ1, γ2, γ3, γ4, γ5, λ, μ, ρ1, ρ2). (10)

3 Reproduction of Inhibitory Dynamic Response Behaviors

For simplicity, we focus on the following periodic stimulation input spike-train
Stm(t).

Stm(t) =
{

1 if (t + θ0) (mod f −1
S ) = 0,

0 otherwise,

where fS is an input frequency, θ0 ≥ [0, f −1
S ) is an initial input phase, and a post-

synaptic stimulation input I to the ASN is defined as
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(a)

(b)

(c)

(d)

(e)

Fig. 3 Numerical simulation results of inhibitory dynamic response behaviors of the
ASN (each left figure) and those of the Izhikevich simple model [16] (each right figure),
where v denotes the membrane potential and i denotes the current input. a–e corre-
spond to (a)–(e) in Table 2, respectively. The bit lengths of the ASN are N = M =
K = J = 64. The parameters Γ of the ASN and the heights of the post-synaptic
stimulation I are as the followings. a Γ = (7, 0.3, 0.2, 3,−0.1, 64, 0.5, 0.3, 0), I =
−0.8. b Γ = (7, 0.3, 0.2, 3,−0.1, 64, 0.5, 0.48,−0.4), I = −0.8.
c Γ = (7, 0.3, 0.2, 3, 0.1, 64, 0.5, 0.3, 0), I = 0.2,−0.5. d
Γ = (7, 0.3, 0.5,−5, 0, 64,−0.2, 0.3, 0.1), I = −0.2. e Γ =
(7, 0.3, 0.5,−5, 0, 64,−0.1, 0.55,−0.1), I = −0.3. The parameter values of the Izhikevich
simple model can be found in [16]
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I = fS · W.

According to [16, 17], biological and model neurons typically exhibit dynamic
response behaviors (i.e., waveforms of the membrane potential in response to the
stimulation input) that can be classified into fifteen excitatory types and five inhibitory
types as shown in Table 2. It has been shown the ASN can reproduce all the twenty
types of dynamic response behaviors. In this paper, we focus on the following
inhibitory ones (a)–(e), which are shown in Table 2 [11]. (a) A rebound spike is
a spike induced by an inhibitory stimulation input. (b) A rebound burst is a burst
induced by an inhibitory stimulation input. (c) Threshold variability is a phenom-
enon that whether the stimulation input of the same strength induces a spike depends
on the preceding inhibitory stimulation input. (d) Inhibition-induced spiking is per-
sistent spike-train generation while an inhibitory stimulation input is applied. (e)
Inhibition-induced bursting is persistent burst-train generation while an inhibitory
stimulation input is applied. Numerical simulation results corresponding to the above
behaviors (a)–(e) are shown in Fig. 3a–e, respectively.

4 Learning and Neural Responses

This section shows that the ASN can reproduce desired responses characteristics
(i.e., relationships between the stimulation strength and the average firing frequency)
obtained from a biological or model neuron, which is called a teacher neuron. As the
teacher neuron, Izhikevich’s resonator model [17] is used, whose stimulation strength
is denoted by I . The control parameter, i.e., the wiring pattern, of the ASN is dynam-
ically updated to reproduce the response characteristics of the teacher, where the
distance between the responses of them is defined by using the metric-space analy-
sis [18]. This procedure is called a learning hereafter. Figure 4 shows the responses
characteristics of the teacher, the ASN before the learning, and the ASN after the
learning. The response characteristics of the ASN before the learning is different
from that of the teacher. The response characteristics of the ASN after the learning
is similar to that of the teacher. This indicates that the learning enables the ASN to
reproduce the responses characteristics of the teacher. More detailed investigations
on the learning will be presented in our future works.

The ASN is implemented on Xilinx’s FPGA Veitex-5 XUPV5-LX110T mounted
on Digilent’s OpenSPARC evaluation platform. The FPGA-implemented ASNN
occupies 123 slices (each slice includes four 6-input LUTs and four FFs) of the
FPGA device. For comparison, the teacher is also implemented on the same FPGA
device using a forward Euler numerical integration with a time step 3 kHz. The
implemented teacher occupies 532 slices, where the resolutions of the states are
16-bit binary fixed point numbers. These facts indicate that the ASN requires less
hardware resources then a digital processor neuron. More detailed investigations on
the hardware will be presented in our future works.
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Table 2 The table summarizes reproduction abilities of dynamic response behaviors by typical
neuron models and our models, where “+” denotes “reproducible”, “−” denotes “not reproducible”,
and “·” denotes “partially reproducible”. Each empty square denotes that sufficient parameter and
initial value conditions are unknown but the model satisfies necessary conditions in principle [16].
Each dynamic response behavior is as follows. a Rebound spike. b Rebound bursting. c Threshold
variability. d Inhibition-induced spiking. e Inhibition-induced bursting. f Tonic spiking. g Phasic
spiking. h Tonic bursting. i Phasic bursting. j Mixed mode. k Spike frequency adaptation. l Class 1
excitable. m Class 2 excitable. n Spike latency. o Subthreshold oscillation. p Resonator. q Integrator.
r Bistability. s Depolarizing after-potential. t Accommodation

Inhibitory Excitatory dynamic response behaviors
dynamic response
behaviors

Neuron model (a) (b) (c) (d) (e) (f) (g) (h) (i) (j) (k) (l) (m) (n) (o) (p) (q) (r) (s) (t)

Izhikevich [17] + + + + + + + + + + + + + + + + + + + +
Hodgkin Huxley [19] + + + + + + + + + + + + + + + + +
ASN [11–13, 15] + + + + + + + + + + + + + + + + + + + +

Fig. 4 Learning. a Teacher
neuron = Izhikevich’s res-
onator model. b1 The ASN
before learning. The sizes
of registers are 32 and the
internal clock frequency is
fC = 3 kHz. b2 The ASN
after learning

(a)

(b1)

(b2)

5 Conclusions

The asynchronous sequential logic spiking neuron model (ab. ASN) was introduced.
It was shown that the ASN can reproduce the typical twenty types of the dynamic
response behaviors of neurons. Especially, in this paper, it was demonstrated that
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the ASN can reproduce the five inhibitory dynamic response behaviors. Further-
more, it was shown that the learning algorithm enables the ASN to automatically
reproduce the nonlinear response characteristics of an ODE-based neuron model.
It was also confirmed that the ASN can be implemented with less hardware resources
than a digital processor neuron for a reasonable parameter case. These reproduction
abilities of neural dynamics and the low hardware cost property will be the keys
to developing future applications of the ASN. Future problems include: (a) bifur-
cation analyses of the ASN, (b) clarification of relationships between the parame-
ters of the ASN and experimentally measurable parameters of biological neurons,
(c) development of a multi-compartment neuron model based on the ASN, including
register-dynamics models of synaptic connections, and (d) development of a network
of multi-compartment ASNs and its bio-inspired learning mechanisms such as the
spike-timing dependent plasticity.

The authors would like to thank Professor Toshimitsu Ushio of Osaka University
for valuable discussions. This work is partially supported by Toyota Riken Scholar
and KAKENHI (24700225).
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Nonlinear Behaviour of Vital
Physiological Systems

Eugenijus Kaniusas

Abstract Nonlinearity is an intrinsic property of biological and physiological
systems. Strictly speaking, almost all physiological processes are nonlinear. The
linear behaviour seems to be rather an exception which is applicable only for small
changes in physiological processes. Vital physiological systems such as heartbeat,
respiration, blood circulation, oxygenation, and body temperature exhibit strong non-
linearities in order to fulfil their respective functions in time and space domains, and,
on the other hand, to account for limiting environmental conditions. Nonlinearities
ensure an effective use of body resources such as limited energy, available biological
space for reactions, and finite time to provide a substantive output.

1 Introduction

Linearity describes the property of a system with, for instance, two quantities, namely,
an input x and an output f (x) which are directly proportional to each other. To be
more precise, two properties of additivity (i.e., f (x1 + x2) = f (x1) + f (x2)) and
homogeneity (i.e., f (c · x) = c · f (x) with c as a scalar constant) are fulfilled
by a linear system. From a physiological point of view, an increase of a stimulus,
e.g., blood pressure, would yield a proportional increase in the response, e.g., vessel
diameter, provided that the blood vessel can be approximated as a linear system.
However, the distention of the vessel satiates for higher blood pressure, thereby
indicating nonlinear behaviour of the vessel.

The linear behaviour seems to be rather an exception which is applicable only for
small changes in physiological processes. The lack of this proportionality between
input and output denotes a nonlinear system. In fact, nonlinearity is an intrin-
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sic property of biological and physiological systems and almost all physiological
processes are nonlinear. Nonlinearity manifests not only as the aforementioned lack
of the proportionality but also as a binary triggering (switching) of diverse electro-
chemical processes or even the blood flow, e.g., after a certain activation threshold has
been reached or a specific substance is present in the vicinity of a molecular switch.
Nonlinearity is necessary for these systems to comply with their (basic) function in
the living body. Moreover, limited time (in terms of reaction time), limited space
(compact structure of the body) and limited energy resources (efficient energy use)
can be seen as ambient boundary conditions of biological systems. In fact, these
conditions can be fulfilled only by nonlinear systems.

The present paper addresses structural nonlinearity in physiological systems,
which is a prerequisite for functional nonlinearity. A few structural and functional
nonlinearities are discussed from physiological and strategic perspective without
nonlinear mathematics to facilitate their understanding. The justification of nonlin-
earities is presented in the performance of vital physiological systems, such as the
biological information system, cardiorespiratory system, and hemodynamic system.

2 Structural Nonlinearity

Heterogenous structure of body tissues can be interpreted as structural nonlinearity
which is needed to fulfil the corresponding nonlinear physiological function. Struc-
tures of different size will be exemplarily discussed from the molecular level to tissue
structure up, and to organs.

2.1 Information System

Figure 1 illustrates special membrane proteins (with the size of about 10 nm) devoted
to transport ions across the cell membrane and to maintain the resting membrane
potential, namely, the membrane voltage u, across the cell membrane. Chemical
energy is necessary to activate this pump. Such membrane proteins as well as gated
channel proteins, e.g., voltage-gated channels for the inflow of Na+ into the cell,
act as nonlinear gate keepers (or switches) and selectively regulate the flow of ions
through the membrane. This flow of ions, in turn, determines the temporal behav-
iour of u and releases action membrane potentials, the basic information carriers in
biological systems.

Another important and highly-nonlinear structure on the molecular level is given
by bonding of molecules in terms of the Lock and Key concept [1]. Here charge
and shape complementarity, e.g., between an ion and a channel protein, determines
if there is a binary match favourable from an energetic point of view. Provided this
match, structural and functional changes can be initiated, e.g., favouring the ions
passage through the channel.
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Fig. 1 Special membrane proteins for active and nonlinear transport of Na+ and K + ions across
the cell membrane, the so-called sodium-potassium pump. The ions are transported against their
diffusion gradients, requiring hydrolysis of adenosine triphosphate (ATP) to provide the necessary
energy. a Binding of three Na+ ions and release of two K + ions inside the cell. b Subsequent
release of the three Na+ ions and binding of two new K + ions outside the cell. Image data partly
taken from [1]

2.2 Cardiorespiratory System

Diverse nonlinear structures (with the size in the range of µm to mm) dominate in
bodily tissues. One of the most important structures is given by the wall of arterial
vessels (Fig. 2) in the cardiovascular system. The wall is composed of three lay-
ers (Fig. 2a) being responsible for passive and active changes in the vessels radius in
response to the blood pressure. In particular, elastic fibers provide elasticity of the ves-
sel, collagen fibers stabilize the vessel and prevent its overstretching with increasing
blood pressure, whereas smooth muscles actively control the vessels radius. Interest-
ingly, the relative amount of the latter three components varies strongly from central
arteries (predominantly elastic) to peripheral arteries (predominantly muscular).

In consequence, there is a highly nonlinear relationship between the vessels radius
and blood pressure inside the vessel (Fig. 2b). It can be observed that with increasing
(absolute) pressure, the magnitude of the slope decreases nonlinearly, indicating
that the artery wall becomes stiffer. For lower pressure values, (low) stiffness is
maintained by elastic fibers, whereas for higher pressure the (stiffer) collagen fibers
begin to be recruited and the artery stiffness increases.

In the respiratory system, numerous nonlinearities also dominate. For instance,
the lung stiffness, i.e., the change in the transpulmonary pressure per change in lung
volume, increases with increasing intrapulmonary (or intraalveolar) pressure. Other
large structures subjected to mechanical stress, such as the skin or chest wall, exhibit
nonlinear viscoelastic properties, which especially become dominant for relatively
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Fig. 2 a Qualitative structure of arterial vessel and its wall. b Nonlinear relationship of the inner
vessel diameter 2 · r and blood pressure p of the carotid artery with the experimental and modeled
data taken from [1]. Relations of the module κ of volume elasticity (proportional to Δp/Δr ) and
the velocity ν (proportional to

√
κ ) of propagating blood pressure waves are given for the regions

dominated by elastin or collagen. The hysteretic behavior of r over the cardiac cycle is schematically
indicated

high stress levels. Here the dynamic, nonlinear, and anisotropic behaviours are tightly
interrelated with each other. For instance, the skin tissue requires a finite time to
reach the state of deformation appropriate to the stress and a similar time to regain
its unstressed shape [1].

Another prominent example of the structural nonlinearity is given by the heart,
as illustrated in Fig. 3. The heart is a double pump with four chambers: right and
left atria, right and left ventricles. The right and left sides of the heart are kept
separate and comprise two pumps working in unison. The atria and ventricles are
interconnected by one-way valves, the so-called atrioventricular valves. These valves
ensure a unidirectional flow of blood from atria to ventricles on both sides of the
heart. The blood flow out of the ventricles, i.e., out of the heart, is also governed by
one-way valves, the so-called semilunar valves. The temporary activation of the heart
muscles and the presence of valves yield highly pulsatile (nonlinear) blood flow and
blood pressure in vessels.

3 Functional Nonlinearity

The discussed nonlinear structures yield nonlinear functionality over time. Examples
of such functionalities will be discussed, which stem from the human information
and hemodynamic systems.
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Fig. 3 The heart during blood ejection acting as a nonlinear pump. a Representation of the heart
as four separate chambers with interconnecting valves. b A section through the heart, showing its
basic structure. Image data partly taken from [1]

3.1 Information System

Even the basic information carrier in the body, i.e., the action membrane potential
capable of fast propagation along nerves, has its origin in the nonlinear behaviour of
the cell membrane. In fact, action potentials are the signals through which physio-
logical information is conveyed within the body and processed in the central nervous
system.

The nonlinear behaviour of the cell membrane in terms of its voltage u (Fig. 1)
and its ionic conductance is depicted in Fig. 4. That is, the voltage u rapidly rises
from its resting level to more positive values and then slowly recovers back to the
resting level (Fig. 4a). The arising action impulse is known as the action membrane
potential. The nonlinear conductivity changes of the membrane are responsible for
this action impulse (Fig. 4b). The voltage-gated Na+ channels, in principle similar
to those depicted in Fig. 1, abruptly open for a short time period, after the membrane
stimulation has reached a certain threshold. The ongoing change in u opens the
voltage-gated K + channels, in the course of which u begins to recover. In short,
gated (nonlinear) switching of ion channels is a fundamental mechanism behind the
information system of the body.

3.2 Hemodynamic System

The discussed nonlinear relationship between the vessels radius and blood pressure
(Fig. 2) causes not only the stiffness of the vessel but also its flow resistance to
depend on the (absolute) blood pressure [2]. This nonlinear stress-strain relationship
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Fig. 4 Action membrane potential. a Voltage u across the cell membrane as an action impulse.
b The corresponding highly nonlinear behavior of the area related membrane conductance G”K and
G”Na for K + and Na+ ions, respectively. Image data partly taken from [1]

is required for a stable vessel diameter under varying pressure conditions. On the
other hand, the pulsatile action of the heart determines the pulsatile input into the
arterial network. It means that the nonlinear input in combination with the nonlinear
transmission properties of vessels governs important hemodynamic characteristics
such as blood pressure and blood flow.

As illustrated in Fig. 5b, the resulting waveform of the blood pressure at the output
of the heart is usually composed of two prominent peaks, compared to Fig. 6b. The
first peak corresponds to the maximum ejection pressure of blood by the heart (ven-
tricle) during systole. The second one appears after the dicrotic notch—the closure
of semilunar valves—and corresponds mostly to the elastic recoil of central arteries
during diastole.

In addition, any mechanical discontinuities along the vessel (i.e., nonlinearities
along the blood flow), such as varying stiffness, tapering or branching of arteries,
yield reflected waves of the blood pressure and blood flow. Fig. 5 shows the typical
impact of the delayed reflected wave of the blood pressure, which superimposes the
forward (incident) wave. In other words, mechanical discontinuities strongly affect
diverse hemodynamic characteristics.

Another nonlinear phenomenon is shown in Fig. 2, namely, a hysteretic behaviour
of the vessels radius over the cardiac cycle. Although almost linear range of this
nonlinear relationship is occupied from systole to diastole (at rest), it is obvious that
changes of the radius follow changes of the pressure with some delay. The width
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Fig. 5 a Narrowing of the arterial tree—a structural nonlinearity - represents the site of pulse wave
reflections with A as the cross sectional area and fC as heart rate. b Sketched positive reflection of
blood pressure p waves with Δt as round-trip travel time from the aorta to the major reflecting site
and back

of the hysteresis was observed to increase with increasing dominance of nonlinear
viscoelastic properties of the vessels wall [3].

3.3 Biorhythms

Rhythmic behaviour in the information and hemodynamic systems arises in the
course of nonlinear processes. It ensures an effective use of body resources, available
biological space, and limited time to provide a substantive output [4].

These rhythms are ways to integrate and coordinate body functions and to antici-
pate environmental rhythms around the body. Tuning and synchronisation of rhythms
reduce energy needs, especially during rest or sleep, or, in analogy, provide a special
performance, especially during physical or mental stress. Provided limited biological
space and limited time, a temporal compartmentalisation is needed to allow different
environments to occur in the same space but at different times [5]. For instance,
inspiration and expiration, systole and diastole, wakefulness and sleep cannot arise
efficiently at the same time. A rhythmic stratification is needed, which is evident as
biorhythm.
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Fig. 6 Comparison of ultradian and circadian rhythms with respect to their nonlinear waveforms
and origin. a Spiky action impulses of membrane voltage u. b Periodic variation of blood pressure
p over cardiac cycles with heart rate fC . c Sinusoidal changes of respiratory rate fR over 24 h. Data
given in accordance with [1, 4]

As illustrated in Fig. 6, these cyclic biological rhythms incorporate short-term
cellular activity, the organs operation, mid-term distribution systems in the body,
and long-term metabolic processes. Biological rhythms can be directly controlled
(entrained) by the environment around the body (e.g., sleep-awake cycle) or can
be driven by internal biological clocks (e.g., train of action impulses). In the time
scale, rhythms extend from ultradian rhythms with the duration of less than 24 h
(e.g., breathing cycle), to 24 h circadian rhythms (e.g., body temperature cycle), up
to infradian rhythms with the duration of more than 24 h (e.g., menstruation cycle).

A continuous interplay occurs between vital physiological rhythms in terms of
their phase and frequency. This interplay is intensified in resting states, whereas
during stress the couplings seem to disappear.

4 Conclusions

Vital physiological systems related to heartbeat, respiration, blood circulation, oxy-
genation, and body temperature exhibit strong nonlinearities in order to fulfil their
major functions in time and space domains. Intrinsic nonlinearities account for
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limiting environmental conditions and insure an effective use of body resources,
available biological space for reactions, and limited time to provide a substantial
output. Consequently, numerous physiological parameters—such as heart rate vari-
ability registered by biomedical sensors—demonstrate nonlinear behaviour, which
was only recently appreciated by the scientific community and started to be used for
medical diagnosis.
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Fabrication of Bistable MEMS Systems
for Energy Harvesting

Teresa Emery

Abstract Non-linear devices are showing promise for responding to low frequency
vibrations for energy harvesting applications [1–3]. Most MEMS scale energy har-
vesters take the form of cantilevers operating in their resonant frequency, but such
operation is usually confined to the higher frequencies due to their small size [4–7].
Nonlinear energy harvesters do not operate at their resonant frequency and can harvest
lower frequency vibration while still being MEMS scale [3]. One way to introduce
non-linearity into a MEMS scale device is to make it bistable [8]. This bi-stability
can be created in several ways including shape, magnet repulsion and attraction, and
material stress. Each methods benefits and drawbacks will be discussed as it applies
to energy harvesting and ease of fabrication.

1 Introduction

Powering micro-scale electronic devices through energy harvesting has been an active
area of research for many years [8–11]. Vibration energy harvesting has been a
main focus of much of this research due to the constant presence of mechanical
vibrations from ambient sound and thermal noise. Ambient vibrations come from a
variety of sources and are therefore have a wide spectrum of frequencies. Most of
the energy from these vibrations is in low frequency components. Traditional energy
harvesters are use linear resonant oscillators and convert the vibration into electricity
using piezoelectric methods [8–11]. Resonant harvesters have very narrow bandwidth
working only at or very near resonant frequency. Due to geometric constraints, the
smaller the oscillator is the higher its resonant frequency creating a problem collecting
energy from the lower frequency.
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Nonlinear energy harvesting looks to overcome these problems by using stochastic
nonlinear oscillators [1–5]. In the interest of looking at systems that can be fabricated
at the MEMS scale, we are looking at bistable nonlinear oscillators. Oscillators with
a bistable potential function do not operate at a particular frequency. The potential
energy function of a bistable devices has a double well and energy harvested is
collected from the device moving from one stable state to the other. This allows the
device to collect energy from the lower frequency while still being small.

A macroscale device has been fabricated and tested by Gammaitonis group at the
University of Perugia [1, 2]. In this case, the devices was an inverted pendulum with
two magnets repelling each one on the tip of the cantilever and the other a distance Δ.
From these experiments, the nonlinear oscillator out performs the linear oscillator at
lower frequencies.

2 Methods

The first step to creating a nonlinear energy harvester on the MEMS scale is to recreate
the bi-stability. The bi-stability in Gammaitonis macroscale device is the repelling
magnets and the elastic restoring force of the brass lever. The magnets were glued
to the end of the brass lever and the other to a moveable piece. The piezoelectric
material used to transfer the vibration to electrical power was also adhere to the
lever with adhesive like the magnets. At the macroscale, creating this device can be
done with glue and a steady hand. At the MEMS scale, the whole process needs to
be done with thin film processing and chemistry.

Standard microfabrication techniques are referred to as top down. Material is
added or etched away from a carrier wafer vertically. The standard procedure for
making a cantilever with silicon on insulator wafer is shown in Fig. 1. This standard
procedure is important to remember for the placement of the piezoelectric material.
To get the maximum voltage for each jump from one stable position to the other, the
piezoelectric material needs to be placed at the position of highest stress. One would
also like to deposit a thick layer of piezoelectric because the thicker the layer the
more voltage that will be produced. These facts hinder bi-stable MEMS designs with
motion in the plane of the wafer since the areas of highest stress are in the horizontal
direction and the vertical surface is too narrow for a thick deposit.

The piezoelectric material creates challenges to the design as well. Most piezo-
electric materials are ceramics that on a large scale are made in platinum crucibles
from powered components and sintered at high temperatures. For thin film deposits,
temperatures are still need to create the correct crystal for the piezoelectric effect [12].
The high temperature process complicate the fabrication process because it eliminates
the use of plastics in the process. Thin plastic cantilevers would be very response to
thermal vibrations but would burn at the high temperature needed for the piezoelectric
layer.

Each process step has small amounts of error that could lead to a failed device.
Standard MUMPS run give an error for each layer as 2 /mum. This error need to
be taken into consideration when designing the device. With more steps to create
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Fig. 1 Process for creating a silicon on insulator cantilever. Silicon oxide is the sacrificial layer
releasing the cantilever for free motion

the device the more likely it will fail due to alignment errors. The final step to each
device is the release. Most devices are released by dissolving a sacrificial layer.
Because of the piezoelectric layer, this layer cannot be a plastic like photoresist.
Silicon dioxide and silicon are the two most popular sacrificial layers. The reason
is chemical. Silicon dioxide is usually etch in a strong acid hydrogen fluoride (HF).
Silicon on the other hand is etched in a strong base potassium hydroxide (KOH).
HF does not etch silicon and KOH does not etch silicon dioxide. This nice chemical
compatibility is one of the main reasons that silicon remains the semiconductor of
choice for the MEMS fabrication. The material system for the MEMS device can be
reduce to the whether the piezoelectric material of choice is effected by acid or base.
Once the device released, it cannot survive another deposition process.

Permanent magnets created the bi-stability in the initial macroscale device. For
most applications, the magnetic field created by the magnets will not affect the sensor
it is powering. Magnets have the benefit of creating the bistability without power and
large number of magnetic materials to choose from. To recreate the macroscale device
into the MEMS scale requires to deposition step be added to the standard cantilever
fabrication. Most cantilevers are fabricated by starting with a silicon on insulator
substrate (SOI). A SOI wafer has a carrier wafer of silicon with a buried silicon
dioxed layer and single crystal silicon on top. The top layer of silicon is covered
with photoresist and patterned to define the cantilever. The process of depositing and
exposure are repeated twice to define the area for the piezoelectric material and its
contacts.
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To make the cantilever bi-stable, another mask layer is add to define the magnet
at the tip of the cantilever. The magnet at the end of the cantilever and its opposing
magnet need to be made of two different magnetic materials. If the two magnets were
made of the same material and deposited at the same time it would be impossible
two make them pole in opposite directions. To make the magnets repel each other,
the first magnetic is deposited on the tip of the unreleased cantilever. The second
magnetic material needs to have a higher coercivity. Coercivity is the needed applied
magnetic field to flip a magnetic material. The two different materials are poled
one direction to align all the domain and then poled in the opposite direction at a
lower applied magnetic field. The lower field will flip only the magnet with the lower
coercivity. After the magnets are defined and poled, a layer of polymide is deposited
on the contacts and magnets to protect them from the HF for the cantilever release.
The polymide layer is remove by an oxygen plasma.

For some sensors, an constantly moving magnetic field would be problematic for
operation. For sensors like this, we were interested in developing other ways to create
bi-stability. Materials deposited by thin film techniques are frequently stressed due
to crystal lattice mismatch. When films are too stressed, they can delaminate and
curl. Silicon nitride is a popular insulator that when deposited on silicon creates a
stressed layer. By changing the ratio of silicon to nitrogen, the stress can be reduce.
By using the same process, a film could be deposited with enough stress to create
two stable states, concave and convex. Silicon nitride like silicon dioxide is not etch
by KOH. A silicon carrier wafer would be deposited with the slightly stressed silicon
nitride layer. The wafer would be pattern using photolithography and etch using dry
etching in SF6. The piezoelectric material and contact would be deposited using the
same photolithography steps. After the top side is protected by polyimide layer, the
backside of the wafer would be patterned and etch to open backside holes. The wafer
would then go into a KOH bath for release. Other materials deposit stressed as well.
Chrome is a known to deform wafers during thick deposits. Material like chrome
could be added to the process to “correct” the level of stress.

The third method of creating bi-stability is structural. In macroscale devices, bi-
stability has been produced by moving the supports of a double clamped beam closer
together causing the beam to buckle. The beam has two stable positions: concave and
convex. At the MEMS scale, we cannot nudge the supports to buckle the beam but
deposit a curved beam. The deposition process for low stress nitride is low pressure
chemical vapor deposition (LPCVD) and is done at 1000 ◦C. The depositing tem-
perature makes using gray-scale lithography difficult due to the photoresist burning
at these temperature. Gray-scale lithography combined with dry etching would cre-
ate a curved hole for deposit but we want avoid gray-scale in an effort to keep the
fabrication simple. Wet etching is not always anisotropic. KOH etches silicons close
packed plane slower causing a 54.74◦ angle in the etch. Using a shallow etch, we
can fabricate a curved hole to deposit the silicon nitride.

The process starts with a silicon wafer with either a silicon dioxide or silicon
nitride layer. This process is showed in Fig. 2. The top-side surface is patterned with
a holes for the size of the double clamped beam and the bottom-side is patterned with
holes for the later release of the structure. Patterning the bottom surface at this stage
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Fig. 2 Process for structural stressed bridge

prevents the topside from being scratch or damaged after the beams are etched. Both
patterns are defined with photolithography and dry etch with SF6. Then the wafer is
etched in KOH to create the curved holes and start the backside etch. LPCVD nitride
is deposited over the shallow holes. LPCVD nitride process isconformal deposit on
the whole surface for shallow etches on the 20/mum of less. The top-side is patterned
and etch into beams followed by two more rounds of patterning to deposit and define
the piezoelectric material and its contacts. The final beam can then be released using
another KOH etch.

3 Conclusion

All designs presented here create a bistable MEMS device. These device need to be
tested for failure modes and stress in order to determine the best design for energy
harvesting. Since the response is not determined by the resonant frequency, the size
of the device need to be look at for responding to the lower frequency and being
MEMS scale. The best design might be determined by other factors including the
supporting electronics. Although all devices are made using techniques developed for
the semiconductor industry, some heat treatments will not work well with transistors.
Each design might serve as an energy harvester for different device based on the
fabrication parameters of the sensor they are designed to power. The next step in this
research is to test these devices for power production and failure.
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Symbolic Toolkit for Chaos Explorations

Tingli Xing, Jeremy Wojcik, Roberto Barrio and Andrey Shilnikov

Abstract Computational technique based on the symbolic description utilizing
kneading invariants is proposed for explorations of parametric chaos in a two exem-
plary systems with the Lorenz attractor: a normal model from mathematics, and a
laser model from nonlinear optics. The technique allows for uncovering the stunning
complexity and universality of the patterns discovered in the bi-parametric scans of
the given models and detects their organizing centers—codimension-two T-points
and separating saddles.

1 Introduction

Several analytic and experimental studies, including modeling simulations, have
focused on the identification of key signatures to serve as structural invariants. Invari-
ants would allow dynamically similar nonlinear systems with chaotic dynamics from
diverse origins to be united into a single class [1–3]. Among these key structures are
various homoclinic and heteroclinic bifurcations of low codimensions that are the
heart of the understanding of complex behaviors because of their roles as organizing
centers of dynamics in parameterized dynamical systems.

One computationally justified approach for studying complex dynamics capital-
izes on the sensitivity of deterministic chaos. Sensitivity of chaotic trajectories can
be quantified in terms of the divergence rate evaluated through the largest Lyapunov
characteristic exponent. In several low-order dissipative systems, like the Rössler
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model, the computational technique based on the largest Lyapunov characteristic
exponent reveals that they possess common, easily recognizable patterns involving
spiral structures in bi-parametric planes [4, 5]. Such patterns have turned out to be
ubiquitously in various discrete and continuous-time systems [6–9], and they are eas-
ily located, as spiral patterns have regular and chaotic spiral “arms” in the systems
with the Shilnikov saddle-focus [10–14].

Application of the Lyapunov exponents technique fails, in general, to reveal fine
structures embedded in the bi-parametric scans of Lorenz-like systems. This failure
implies that the instability of the Lorenz attractors does not vary noticeably as control
parameters of the system are varied. This holds true when one attempts to find
the presence of characteristic spiral structures that are known to exist theoretically
in Lorenz-like systems [4, 15], identified using accurate bifurcation continuation
approaches [16, 17]. Such spirals in a bi-parametric parameter plane of a Lorenz-like
system are organized around the T[erminal]-points; corresponding to codimension-
two, closed heteroclinic connections involving two saddle-foci and a saddle at the
origin, see Fig. 1. Such T-points have been located in various models of diverse
origins including electronic oscillators [18, 19] and nonlinear optics [20].

Despite the overwhelming number of studies reporting the occurrence of various
spiral structures, there is yet little known about construction details and generality of
underlying bifurcation scenarios which gives rise to such spiral patterns. Addition-
ally, little is known about how such patterns are embedded in the parameter space
of the models with the Lorenz attractors. Here we present a computational toolkit
capitalizing on the symbolic representation for the dynamics of Lorenz-like systems
that employ kneading invariants [21]. We will then show how the toolkit detects
various fractal structures in bi-parametric scans of two exemplary systems: a normal
model from mathematics, and a laser model from nonlinear optics. For the further
details we refer the reader to the original paper [22].

2 Kneading Invariants for a Lorenz Like System

Chaos can be quantified by several means. One customary way is through the eval-
uation of topological entropy. The greater the value of topological entropy, the
more developed and unpredictable the chaotic dynamics become. Another prac-
tical approach for measuring chaos in simulations capitalizes on evaluations of the
largest (positive) Lyapunov exponent of a long yet finite-time transient on the chaotic
attractor.

A trademark of any Lorenz-like system is the strange attractor of the iconic butter-
fly shape, such as shown in Fig. 1 [23]. The “wings” of the butterfly are marked with
two symmetric “eyes” containing equilibrium states, stable or not, isolated from the
trajectories of the Lorenz attractor. This attractor is structurally unstable [24, 25] as it
bifurcates constantly as the parameters are varied. The primary cause of structural and
dynamic instability of chaos in the Lorenz equations and similar models is the singu-
larity at the origin—a saddle with two one-dimensional outgoing separatrices. Both
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Fig. 1 (a) Heteroclinic connection (in dark color) between the saddle at the origin and two saddle-
foci (blue spheres) being overlaid with the strange attractor (green light color) on the background
at the primary T-point (r = 30.38, σ = 10.2) in the Lorenz model. Orange spheres on the butterfly
wings indicating the turning points around the right and left saddle-foci define the kneading sequence
entries, {±1}, respectively. (b) A typical time evolution of either symmetric coordinate of the right
separatrix of the saddle

separatrices densely fill the two spatially symmetric wings of the Lorenz attractor in
the phase space [26]. The Lorenz attractor undergoes a homoclinic bifurcation when
the separatrices of the saddle change the alternating pattern of switching between the
butterfly wings centered around the saddle-foci. At such a change, the separatrices
comes back to the saddle thereby causing a homoclinic explosions in phase space
[27–30].

The time progression of the “right” (or symmetrical “left”) separatrix of the
origin can be described geometrically and categorized in terms of the number
of alternations around the nonzero equilibrium states in the phase space of the
Lorenz-like system (Fig. 1). Alternatively, the description can be reduced to the time-
evolution of a coordinate of the separatrix, as shown in panel B of Fig. 1. The sign-
alternation of the x-coordinate suggests the introduction of a {±1}-based alphabet
for the symbolic description of the separatrix. Namely, whenever the right separa-
trix turns around O1 or O2, we record +1 or 1, respectively. For example, the time
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series shown in panel B generates the following kneading sequence starting with
{+1, 1, 1, 1,+1, 1, 1,+1, 1, . . .}.

We introduce and demonstrate a new computational toolkit for the analysis of
chaos in the Lorenz-like models. The toolkit is inspired by the idea of kneading
invariants introduced in [21]. A kneading invariant is a quantity that is intended
to uniquely describe the complex dynamics of the system that admits a symbolic
description using two symbols, here +1 and 1.

The kneading invariant for either separatrix of the saddle equilibrium state of the
Lorenz attractor can be defined in the form of a formal power series:

P(q) =
∞∑

n=0

κnqn . (1)

Letting q ∈ (0, 1) guarantees the series is convergent. The smallest zero, q, if any,
of the graph of (1) in the interval q ∈ (0, 1) yields the topological entropy, h(T ) =
ln(1/q).

The kneading sequence {κn} composed of only +1s corresponds to the “right”
separatrix of the saddle converging to an ω-limit set with x(t) > 0, such as a stable
focus or stable periodic orbit. The corresponding kneading invariant is maximized
at {Pmax(q)} = 1/(1 − q). When the right separatrix converges to an attractor
with x(t) < 0, then the kneading invariant is given by {Pmin(q)} = 1/(1 − q)

because the first entry +1 in the kneading sequence is followed by infinite −1s.
Thus, [{Pmin(q)}, {Pmax (q)}] yield the range of the kneading invariant values; for
instance [{Pmin(1/2)} = 0, {Pmax (1/2)} = 2].

Two samples of the separatrix pathways shown in Fig. 2 generating the following
kneading invariants illustrate the idea.

PA(1/2) = +1 − 1/2 − 1/4 + 1/8 + 1/16 + 1/32 + 1/64 . . . + 1/2n . . . = 1/2,

PB(1/2) = +1 − 1/2 − 1/4 − 1/8 − 1/16 − 1/32 − 1/64 . . . 1/2n . . . = 0,

Fig. 2 Truncated kneading sequences generated by the right outgoing separatrix of the saddle at
the origin in a typical Lorenz-like equation at two distinct values of the parameters
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In computational studies of the models below, we will consider a partial kneading
power series truncated to the first 20 entries: P20(q) = ∑20

n=0 κn qn . The choice of
the number of entries is not motivated by numerical precision, but by simplicity,
as well as by resolution of the bitmap mappings for the bi-parametric scans of the
models. One has also to determine the proper value of q: setting it too small makes
the convergence fast so that the tail of the series has a little significance and hence
does not differentiate the fine dynamics of the Lorenz equation for longer kneading
sequences.

At the first stage of the routine, we perform a bi-parametric scan of the model
within a specific range in the parameter plane. The resolution of scans is set by using
mesh grids of [1000 × 1000] equally distanced points. Next by integrating the same
separatrix of the saddle point we identify and record the sequences {κn}20

0 for each
point of the grid in the parameter plane. Then we define the bi-parametric mapping:
for the Shimizu-Morioka model below it is (α, λ) → P20(q) for some chosen q,
the value of which determines the depth of the scan. The mapping is then colorized
in Matlab by using various built-in functions ranging between to Pmin

20 and Pmax
20 ,

respectively. In the mapping, a particular color in the spectrum is associated with a
persistent value of the kneading invariant on a level curve. Such level curves densely
foliate the bi-parametric scans.

3 Kneading Scans of the Shimizu-Morioka Model

Here we will examine the kneading-based bi-parametric scanning of the Shimizu-
Morioka model [16, 31]:

ẋ = y, ẏ = x − λy − xz, ż = αz + x2; (2)

with α and β being positive bifurcation parameters. The Z2-symmetric model has
three equilibrium states: a simple saddle, with one-dimensional separatrices, at the
origin, and two symmetric stable-foci which can become saddle-foci through a super-
critical Andronov-Hopf bifurcation.

This model was originally introduced to examine a pitch-fork bifurcation of the
stable figure-8 periodic orbit that gives rise to multiple cascades of period dou-
bling bifurcations in the Lorenz equation at large values of the Reynolds number.
It was proved in [5] that the Eq. (2) would be a universal normal form for several
codimension-three bifurcations of equilibria and periodic orbits on Z2-central mani-
folds. The model turned out to be very rich dynamically: it exhibits various interesting
global bifurcations [17] including T-points for heteroclinic connections.

In the case study of the Shimizu-Morioka model, we compare the proposed knead-
ing scanning apparatus with the customary bi-parametric sweeping based on the
evaluation of the Lyapunov exponent spectrum computed over a finite time interval.
The latter is shown in Fig. 3 [32].

http://dx.doi.org/10.1007/978-3-319-02925-2_8
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Fig. 3 (a) Existence regions of attractors of the Shimizu-Morioka model in (α, λ)-parameter plane
being differentiated by the sign of the largest Lyapunov exponent, Lmax . Color legend for the attrac-
tors of the model: green–stable equilibrium states, Lmax < 0; blue–stable periodic orbits with a
nodal normal behavior, Lmax = 0; magenta - a periodic orbit with a focal normal behavior; red
attractors with Lmax > 0, with identified lacunae. Courtesy of [32]. (b) Detailed (α, λ)-parameter
plane of the Shimizu-Morioka model obtained by the parameter continuation method (courtesy of
[5]). Legend: AH stands for a supercritical Andronov-Hopf bifurcation, H1 stands for the homo-
clinic butterfly made of two separatrix loops; the codimension-two points corresponding to the
resonant saddle σ = 0 on H1 organizes the bifurcation unfolding of the model; cod-2 point A = 0
stands for an orbit-flip bifurcation for the double-loop homoclinics on H2. The thick line demar-
cates, with good precision, the existence region of the Lorenz attractor bounded by L A1 and L A2

The regions of the solid colors are associated with the sign of the largest Lyapunov
exponent, Lmax : Lmax < 0 values correspond to steady state attractors in the green
region; Lmax = 0 corresponds to periodic attractors in the blue region; and Lmax > 0
is associated with chaotic dynamics in the model in the region. Note the blue islands
in the red-colored region that correspond to stability windows in chaos-land. Such
windows in the Lorenz attractor have an emergent lacuna containing one more three
periodic orbit. Other than lacunas, the diagram shows no sign of any structure in the
red region corresponding to the chaotic dynamics.

Indeed, the structure of the bifurcation set of the Shimizu-Morioka model is
very complex. The detailed bifurcation diagram is shown in the top panel of Fig. 4.
It reveals several T-points, and multiples curves corresponding to an Andronov-
Hopf (AH), pitch-fork (PF), period doubling (PD) and homoclinic (H) bifurcations
that shape the existence region of the Lorenz attractor in the model. The detailed
description of the bifurcation structure of the Shimizu-Morioka model is out of the
scope of this paper. The reader can find a wealth of information on bifurcations of
the Lorenz attractor in the original papers [5, 17]. We point out that those bifurcation
curves were continued in the (α, λ)-parameter plane by following various bifurcating
solutions, as periodic, homo- and heteroclinic orbits, in the phase space of the model.
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Fig. 4 (left) The scan revealing multiple T-points and saddles that globally organize complex
chaotic dynamics of the Shimizu-Morioka model. Solid-color regions associated with constant
values of the kneading invariant correspond to simple dynamics dominated by stable equilibria
(brown) or stable periodic orbits (blue). The border between the brown and blue regions corresponds
to the bifurcation curve of the homoclinic butterfly. The codimension-two point, σ = 0, gives rise
to loci of bifurcation curves including L A1 below which the Lorenz attractor exists. Bifurcation
loci of the other codimension-two point, A = 0 (yellow zone) giving rise to subsidiary orbit-flip
bifurcations on turns of spirals around T-points, are separated by saddles (two large scale ones) in
the parameter plane.(right) Two zoom of distinct scanning depths of the (α, λ)-parametric mapping
near the secondary T-point, T1, revealing fine fractal structures embedding smaller-scale spirals
around several visible descendant T-points

The panel A of Fig. 4 is a de-facto proof of the new kneading invariant mapping
technique. The panel represents the color bi-parametric scan of the dynamics of the
Shimizu-Morioka model that is based on the evaluation of the first 20 kneadings of
the separatrix of the saddle on the grid of 1000×1000 points in the (α, λ)-parameter
region. Getting the mapping took a few hours on a high-end workstation without any
parallelization efforts. The color scan reveals a plethora of primary, large, and small
scale T-points as well as the saddles separating spiral structures.

The solid-color zones in the mapping correspond to simple dynamics in the model.
Such dynamics are due to either the separatrix converging to the stable equilibria or
periodic orbits with the same kneading invariant (blue region), or to the symmet-
ric and asymmetric stable figure-8 periodic orbits (brown region). The borderlines
between the simple and complex dynamics in the Shimizu-Morioka model are clearly
demarcated. On the top is the curve, L A1, (see the top panel of Fig. 4). The tran-
sition from the stable 8-shaped periodic orbits to the Lorenz attractor (through the
boundary, L A2) is similar though more complicated as it involves a pitch-fork bifur-
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cation and bifurcations of double-pulsed homoclinics, see [5, 17] for details. One
can clearly see the evident resemblance between both diagrams found by using the
bifurcationaly exact numerical methods and by scanning the dynamics of the model
using the proposed kneading invariant technique. The latter reveals a richer structure
providing finer details. The structure can be enhanced further by examining longer
tails of the kneading sequences. This allows for the detection of smaller-scale spiral
structures within scrolls of the primary T-vortices, as predicted by the theory.

4 6D Optically Pumped Laser Model

The coexistence of multiple T-points and accompanying fractal structures in the para-
meter plane is a signature for systems with the Lorenz attractor. The question remains
whether the new computational technique will work for systems of dimensions higher
than three. In fact, to apply the technique to a generic Lorenz-like system, only wave
forms of a symmetric variable progressing in time, that consistently starts from the
same initial condition near the saddle is required. Next is an example from nonlinear
optics - a 6D model of the optically pumped, infrared red three-level molecular laser
[33] Moloney, Forysiak, Uppal Harrison, [20] given by

β̇ = −σβ + gp23,

ṗ21 = p21 − βp31 + αD21,

ṗ23 = −p23 + βD23 − αp31,

ṗ31 = −p31 + βp21 + αp23, (3)

Ḋ21 = −b(D21 − D0
21) − 4αp21 − 2βp23,

Ḋ23 = −b(D23 − D0
23) − 2αp21 − 4βp23.

Here, α and b are the Rabi flopping quantities representing the electric field
amplitudes at pump and emission frequencies. The parameter α is a natural bifur-
cation parameter as it is easily varied experimentally. The second bifurcation
parameter, b, can be varied to some degree at the laboratory by the addition
of a buffer gas. This system presents, like the Lorenz equations, a symmetry
(β, p21, p23, p31, D21, D23) ↔ (β, p21, p23, p31, D21, D23). The laser model has
either a single central equilibrium state, O (with β = 0), or through a pitch-fork
bifurcation, a pair of symmetric equilibrium states, O1,2 (with β ≥ 0); the stability
of the equilibria depends on the parameter values.

Optically pumped, infrared lasers are known to demonstrate a variety of nonlinear
dynamic behaviors, including Lorenz-like chaos [34]. An acclaimed example of the
modeling studies of chaos in nonlinear optics is the two level laser Haken model
[35] to which the Lorenz equation can be reduced. A validity that three level laser
models would have the Lorenz dynamics was widely questioned at the time. It was
comprehensively demonstrated [20] in 1991 that this plausible laser model possesses
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Fig. 5 (a) Lorenz attractor with a lacuna in the laser model at a = 1.14, b = 0.2, q = 50 and
σ = 10. (b) (α, b)-bifurcation diagram of the model for g = 52 and σ = 1.5. B P and H B
here denote the pitch-fork and Andronov-Hopf bifurcations, respectively. H O and H E denote the
branches of the primary homoclinic (of the saddle) and heteroclinic orbits (of the saddle-foci). C2 is
the codimension-two Khorozov-Taken point for the equilibrium state with double zero eigenvalues,
and T is the primary terminal point. The spiraling curve connects the T-point with the homoclinic
resonant saddle on H O , near which separatrix loops are double pulsed ones. Courtesy of [20]

a wealth of dynamical and structural features of Lorenz-like systems, including the
Lorenz attractor per se (including lacunae), similar Andronov-Hopf, Z2 pitchfork,
and various homoclinic and heteroclinic bifurcations including codimension-two
T-points, see Fig. 5. Similar structures were also discovered in another nonlinear
optics model for a laser with a saturable absorber which can be reduced to the
Shimizu-Morioka model near a steady state solution with triple zero exponents [36]

Likewise the Shimizu-Morioka model, the laser model (3) is rich in bifurcations.
The list includes Andronov-Hopf bifurcations of equilibria, a pitch-fork bifurcation
of periodic orbits, and various curious two homoclinic bifurcations of the saddle, as
well as heteroclinic connections between the saddle and saddle-foci. Many of these
bifurcations curves originate from a codimension-two Khorozov-Takens bifurcation
of an equilibrium state with two zero Lyapunov exponents.

The panel in Fig. 6a represents the kneading scans of the dynamics of the laser
model which is mapped onto the (α, b)-parameter plane with g = 50 and σ = 1.5.
The scan is done using the same 50 kneading entries. It has regions of chaotic
dynamics clearly demarcated from the solid color windows of persistent kneadings
corresponding to trivial attractors such as stable equilibria and periodic orbits. The
region of chaos has a vivid fractal spiral structure featuring a chain of T-points.
Observe also a thin chaotic layer bounded away from the curve Hom by a curve of
double-pulsed homoclinics with the kneading {1, 1, 0} connecting the codimension-
two points: the resonant saddle and the orbit-flip both on Hom. One feature of these
points is the occurrence of the Lorenz attractor with one or more lacunae [17, 25].
A strange attractor with a single lacuna containing a figure-8 periodic orbit in the
phase space of the given laser model is shown in panel A of Fig. 5.

http://dx.doi.org/10.1007/978-3-319-02925-2_8
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Fig. 6 (a) Bi-parametric scan of the laser model featuring the T-points and saddles typical for the
Lorenz-like systems, mapping the dynamics of the 6D optically pumped infrared-red laser model
onto the (electric-field-amplitude, omission-frequency)-diagram at g = 50 and σ = 1.5. Solid-
color windows and fractal regions correspond to trivial and chaotic dynamics generated by the laser
model. (b) Partial bifurcation diagram though the parameter continuation showing the curves for
pitch-fork (P F) and Andronov-Hopf (AH0) bifurcations for the equilibrium state, O , and another
similar supercritical one for O1,2. The homoclinic curve, Hom begins from the codimension-two
point, BT for the Khorozov-Takens bifurcation and ends up at the resonant saddle point. (c) Elevating
σ = 2 makes the Hom turned by a saddle point in the parameter plane and terminate at the primary
T-point

5 Conclusions

We have demonstrated a new computational toolkit for thorough explorations of
chaotic dynamics in three exemplary models with the Lorenz attractor. The algorith-
mically simple yet powerful toolkit is based on the scanning technique that maps the
dynamics of the system onto the bi-parametric plane. The core of the approach is
the evaluation of the kneading invariants for regularly or chaotically varying alter-
nating patterns of a single trajectory - the separatrix of the saddle singularity in the
system. In the theory, the approach allows two systems with structurally unstable
Lorenz attractors to be conjugated with a single number - the kneading invariant.
The kneading scans unambiguously reveal the key features in Lorenz-like systems
such as a plethora of underlying spiral structures around T-points, separating saddles
in intrinsically fractal regions corresponding to complex chaotic dynamics. We point
out that no other techniques, including approaches based on the Lyapunov exponents,
can reveal the discovered parametric chaos with such stunning clarity and beauty.

The kneading based methods shall be beneficial for detailed studies of other
systems admitting reasonable symbolic descriptions, including symmetric and
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asymmetric [16] systems of differential and difference equations that require two
and more kneading invariants for the comprehensive symbolic description.
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Enhancing Signal Resolution in a Noisy
Nonlinear Sensor

Alexander P. Nikitin, Nigel G. Stocks and Adi R. Bulsara

Abstract It is well known that the resolution (defined as the smallest change in the
signal being detected or quantified) of a sensor can be improved by increasing the
observation time T of the measurement; typically, the resolution scales as 1/T a .
Typically a = 0.5, or a < 0.5 if low frequency noise is present. We show that a
neuronal system can display an enhanced scaling in the resolution, with the parameter
a = 1; this occurs when the “inter spike intervals” are negatively correlated. We also
show that, by introducing negative correlations into the time domain response of
a nonlinear dynamical sensor, it is possible to replicate this enhanced scaling. This
affords us the possibility of designing a novel class of biomimetic sensors that results
in improved signal resolution by functionally utilizing negative correlations.

1 Introduction

In any measurement, one aspires to the highest possible accuracy. If the accuracy
of a single measurement is not acceptable, usually due to unacceptable measure-
ment errors e.g. stemming from a noise-floor, than the measurements are repeated N
times and a statistical average (usually just the arithmetic mean) of the measurable
is computed. For statistically independent errors, the total error of the measure-
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ment is reduced as 1/
≥

N , i.e. the accuracy of the measurement improves slowly
in comparison to the rate of accumulation of the (statistical) data that are a part
of the averaging operation. An improved scaling (improved rate of the reduction for
measurement error with accumulating statistical data) is possible if the measurements
are negatively correlated. This has been predicted to be a possibility in physiology
[1]. Such living systems could, thus, improve their response to a weak target signal
thereby benefitting from neagative correlations.

It is, of course, a very attractive undertaking to design engineering systems (or
sensors) as analogs of a biological system which has (qualitative) matching dynam-
ics. This is the aim of this paper. We show how the configuration and operation of
a candidate nonlinear sensor having a temporal (in this case, event-based) readout,
can be adapted to mimic the dynamics of an integrate-fire neuron with negatively
correlated inter-spike intervals; these ideas were formulated by us in recent work [2].
We show that the sensor in this “biomimetic” mode yields a greatly reduced mea-
surement error with the improved scaling 1/N , when certain constraints (that will
be quantified) are met.

In what follows, we start with the simplest neural dynamical model (perfect
integrate-fire) and use it to explain the concept of “negative correlations”; we also
introduce a definition of the neuron’s resolution. The rest of the paper is concerned
with a simple nonlinear dynamic sensor, a single-core fluxgate magnetometer, that
operates in the time domain and whose dynamics can be mapped to the (integrate-
fire) neural dynamics. Operating the magnetometer in this “biomimetic mode” is
shown to lead to improved magnetic signal detection.

2 Perfect Integrate-Fire (PIF) Neuron Model

It has been shown [1] that electrosensory afferents of weakly electric fish have
non-renewal statistics characterized by the fourth (or higher) Markov order. This
means that a minimally correct model of neuronal spike trains for the electrosensory
afferents should comprise four stochastic equations. It was also shown [1], that the
observed significant improvement in the detectability of a weak signal by the elec-
trosensory afferents, can be accounted for by a model of Markov order one. Such first
Markov order models as the Perfect Integrate Fire (PIF) model with noisy thresh-
old [3] are, in fact, known to describe a noise canceling mechanism that might, in
fact, be realized in real neurons. We will see, later in this work, that the simple PIF
model affords a prototype of the biomimetic magnetic field sensor. First, however,
we discuss the effects of negative correlations in a simple PIF model.

The PIF model with noisy threshold can be described by the following equation,

v̇ = β + s, (1)

where s is the (constant) signal to be estimated, β a constant bias current, and v
the voltage across the nerve membrane. The threshold θ is a uniformly distributed
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Fig. 1 The PIF model:
dynamics of the membrane
voltage v and the threshold θ

random variable, θ √ [θa − Du, θa + Du], that is independently defined for every
inter-spike interval. Du is the noise intensity, and θa the mean threshold, θa = ≡θ◦.
The mode of operation is as follows: when the voltage v reaches the threshold θ ,
a spike is fired, a new threshold is chosen, and the voltage is reset to a new level
η = θ − θa ; this is schematized in Fig. 1. The ISIs generated by the model (1), with
the above configuration of the threshold following each firing event, are strongly
negatively correlated.

Denoting the times at which the level crossings occur as t0, t1, . . . , tk , the values
of the threshold at crossing as θ0, θ1, . . . , θk , and the reset levels as η0 = θ0 −
θa, . . . , ηk = θk − θa it is straightforward to show from (1) that the kth interspike
interval (ISI) is given by,

Tk = (tk − tk−1) = θk − θk−1 + θa

β + s
. (2)

We decompose the inter-spike interval Tk into three quantities so that

Tk = δk + Δ − δk−1,

where we introduce the “jitters” δk−1 and δk as

δk = θk/(β + s), δk−1 = θk−1/(β + s),

and the mean inter-spike interval,

Δ = ≡Tk◦ = θa/(β + s). (3)

If the threshold is noiseless, and the signal s = const , then the process is exactly
periodic because the spikes occur, precisely, at times tk = kΔ + t0.

The serial correlation coefficient of the stochastic process can be calculated as,

ρ(m) = ≡(Tk − ≡Tk◦)(Tk+m − ≡Tk+m◦)◦
σTk σTk+m

=
⎧
⎨

⎩

1 : m = 0,

− 1
2 : m = 1,

0 : m > 1.

(4)
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It is easy to see the ISIs generated by the model (1) are strongly negatively correlated
with ρ(1) = −0.5.

We now introduce the sum of N inter-spike intervals,

τob,N =
N∑

k = 1

Tk = δN − δ0 + NΔ, (5)

which is equivalent to an observation time in the measurement. The average of this
sum is the mean observation time

Tob = ≡τob,N ◦ = NΔ, (6)

and the variance,
σ 2

τob,N
= 2σ 2

δ , (7)

is independent of N . This means that the noise in our measurement does not accu-
mulate with an increasing number (N ) of measurements. This is a direct result of
the noise canceling mechanism that makes it attractive for practical applications to
engineered systems .

To characterize the accuracy of the signal s estimation from the ISIs, we introduce
the resolution R defined in [2, 4] as,

R =
∣∣∣∣
∂Tob,N

∂s

∣∣∣∣
−1

στob,N , (8)

R is the smallest resolvable value of the measured quantity. The resolution is readily
derived via a Taylor expansion of Tob about s = 0: Tob(δs) = Tob(0)+dTob/ds×δs.
Noting that, physically, the resolution represents the signal value that results in στob,N

being equal to the difference in Tob with and without signal, we see that the resolution
is given by dTob/ds × δs where the differential is evaluated at s = 0. Finally we set
δs = R when στob,N = Tob(0) − Tob(s). One can readily obtain the resolution R for
the PIF model in the limit of very small target signal as:

R =
∣∣∣∣

∂

∂s

Nθa

β + s

∣∣∣∣
−1

s = 0

≥
2σδ =

≥
2σδβ

2

θa

1

N
, (9)

which is seen to be proportional to 1/N , an improvement over the 1/
≥

N dependence
for typical renewal processes (without negative correlations). We remind the reader
that a smaller value for R implies better signal detection/quantification performance.
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3 A Magnetic Field Sensor in the Biomimetic Mode

The PIF model, introduced above, can be characterized by (i) the dependence (i.e.
rise) of the membrane voltage with external signal, and (ii) a comparator which
imposes the threshold which, in turn, triggers (iii) the resetting mechanism. To operate
in the “biomimetic mode”, a sensor should mimic the oscillatory dynamics of the
PIF model with negative correlations in its inter-spike intervals to exploit the noise
canceling mechanism. We now consider the dynamics of a fluxgate magnetometer
[4] that is operated in the temporal domain.

It is well known that the relaxation time of the magnetization variable in a fer-
romagnetic core depends on an applied external magnetic field. By altering the
directions of the applied magnetic field, we can generate conditions for the fer-
romagnet under which its magnetization will periodically increase and decrease, i.e.
it will oscillate (the oscillations are non-sinusoidal, of course). We can map the fer-
romagnetic core dynamics onto a PIF neuronal model by associating the increasing
magnetization with the increasing membrane voltage of the cell membrane, and the
decreasing magnetization with the reset in the membrane voltage.

As might be imagined, some engineering problems must be solved for a practical
realization of the biomimetic mechanism. First, the magnetization is an internal
parameter of the ferromagnet, and it is not easy to measure it directly. Therefore
we replace, in our measurements, the magnetization with the B-field that is a linear
combination of an unknown field B0 (the target field that is to be measured), the known
field B+ that is used to induce the relaxation dynamics, and the magnetization M :

B = B0 + B+ + μ0 M, (10)

where μ0 is the magnetic constant. Since B0 and B+ are assumed to be constants
during the relaxation process, the B field relaxes like the magnetization with rate

θ

M
0B

B

J

J

1

2

−

(b)
θ τ τ

M
0B

+B

J

J

1

2

(a)

Fig. 2 The magnetic field sensor. a The magnetization M increases in the presence of the magnetic
fields B+ and B0. The field B+ is assumed to be B+ ≈ |B0| and corresponds to the current J1 in
the coil. b The resetting of the core magnetization occurs when the it reaches a threshold value θ in
the magnetic comparator. At this point, the current J1, in the coil, is replaced by the current J2 for
a time interval τ ; this corresponds to a magnetic field switch from B+ to B− with an attendant coil
current J2
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d B/dt = μ0d M/dt . Having made the change in variables, we can use any B field
sensor, with a very sharp sigmoidal characteristic, as a comparator of the B field with a
threshold θ that will trigger the reset mechanism (see Fig. 2). The second engineering
problem stems from the impossibility of, instantly, resetting the magnetization M in
the ferromagnet. To reset the magnetization, we need to replace the magnetic field
B+ with B− and this field is applied for a duration τ , to allow the magnetization
to reach an acceptable level (this level is a ‘design parameter’ that is controlled via
τ – careful selection is required for optimal performance); this is schematized in
Fig. 2b.

The dynamics of the magnetization M of a single–domain ferromagnetic core
in the one dimensional case can be described by the following differential Eq. (5)
(see [4]),

τa
d M

dt
= −M + Ms tanh

(
C B

μ0

)
, (11)

where Ms is the saturation level of the magnetization, and τa its characteristic
relaxation time. In Eq. (11), C is a non-linearity parameter that is proportional
to the Curie temperature-to-temperature ratio. The parameter C characterizes the
‘ferromagnet–paramagnet’ phase transition: if C > 1 the core remains in its ferro-
magnetic phase; if C < 1 the core is in the paramagnetic phase. We now consider
the magnetization in two operating scenarios.

3.1 The Noiseless Case

In the noiseless case, the magnetic sensor mimics a periodic oscillator. The phase
plane of this oscillator is plotted in Fig. 3 wherein we show a working region of
the parameters M and B bounded by the sections (branches) EF and GH. All the
nonlinear dynamics occur on these branches. Switches between the branches occur

Fig. 3 The phase plane of the
ferromagnetic oscillator in the
variables M and B. The “limit
cycle” E’F’G’H’ is shown in
red with the arrows indicating
the direction of motion on
the phase plane. Dashed
lines show the saturation
levels −Ms and Ms of the
ferromagnet, and the threshold
level θ
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in two cases: when the B field crosses the threshold level θ ; and when the system is
forced to the branch GH for a duration τ .

The points in Fig. 3 have the following coordinates:

E = [
B0 + B+ + μ0 MH , MH

]
,

F = [
B0 + B+ + μ0 MF , MF

]
,

G = [
B0 + B− + μ0 MF , MF

]
, (12)

H = [
B0 + B− + μ0 MH , MH

]
,

where the parameters MH and MF can be found from the equation d M/dt = 0. This
condition leads to the transcendental equations:

MH = Ms tanh

(
C

B0 + B−
μ0

+ C MH

)
,

MF = Ms tanh

(
C

B0 + B+
μ0

+ C MF

)
,

whose solutions MH and MF can be found numerically (here we assume that −Ms <

MH < MF < Ms). We observe that the working region is less than the physically
permitted states [B, M] of the oscillator. The true region of acceptable values for the
magnetization would, normally, be bounded by the saturation values −Ms and Ms

instead of MH and MF . However, we are concerned with the working region of the
phase plane that is acceptable for the periodic oscillations, i.e. the region where an
attractor can be located.

The role of a limit cycle (attractor) is played by the quadrilateral E’F’G’H’.
Suppose a trajectory of the dynamical system starts at E’ where, according to the
equation B = B0 + B+ + μ0 M , the magnetization M is linearly dependent on
the B field. Both M and B are non-linearly growing quantities due to Eq. (11). As
the B field crosses the threshold θ (point F’), the trajectory is instantly switched to the
point G’. Now the trajectory, according to Eq. (11), relaxes during the time interval τ

to the point H’. Then, the trajectory instantly switches onto the branch EF (the point
E’). It is easy to see from Fig. 3 that, for the existence of periodic oscillations, the
threshold θ should satisfy the condition,

B0 + B+ + μ0 MH < θ < B0 + B+ + μ0 MF .

If θ > B0 + B+ + μ0 MF (the vertical dashed line does not cross the branch EF),
then F is a stable point. We note that we are using a discrete two-state dynamical
characterization i.e. for simplicity, we are using the instantaneous switches and the
resetting time τ instead of a system of differential equations and their solutions. This
means that a bifurcation (likely of saddle-node type) occurs at θ = B0 + B++μ0 MF

but cannot be correctly characterized unless we use the full differential equations to
characterize the dynamical behavior (i.e. switching events and the resetting mecha-
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nism). The above treatment (assuming the device to behave like a static nonlinearity)
is valid as long as the characteristic time constant τa is the smallest time-scale in the
system.

3.2 The Threshold Noise Case

Analogous with [3] we introduce noise in the threshold θ as a uniformly distributed
variable in the interval [θa −Du : θa +Du]. According to our analysis of the magnetic
sensor model in Sect. 3.1, the sensor output will retain its oscillatory properties if the
parameters of the threshold noise satisfy the following inequalities, θa − Du > MH

and θa + Du < MF . It is important to note that, for modeling purposes, all noise
sources are assumed to be internal to the sensor (the resolution is an intrinsic property
of the sensor and cannot be defined in the presence of external noise); these are

Fig. 4 a The correlation coefficient ρ(n). b and c The magnetization M as a function of time t for
the model described via (11). The time series corresponds to non-correlated intervals in b (τ = 3.0)
and negatively correlated intervals in c (τ = 0.5). The parameters are θa = 2.5, Du = 0.05, μ0 =
1, B+ = −B− = 2, C = 3, and B0 = 0
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“consolidated” into an effective threshold noise. In our experiments (see e.g. [4] and
references therein) we find that this is, in fact, a good assumption; the switching
events are relatively clean with sensor noise appearing as a flucuating threshold.

Numerical simulations of Eq. (11) show that the level that the magnetization
is reset to is strongly dependent on τ . For large τ (see Fig. 4b for τ = 3)
the magnetization approaches the saturation value and this reduces the negative
correlation, as observed in the behavior of ρ(1) (see Fig. 4a for τ = 3.0). The reduc-
tion in negative correlation occurs because saturation of the magnetization results in
a loss of memory in the magnetization variable when the threshold is crossed; for
very strong saturation the magnetization is, effectively, reset to the same value every
time with all memory effects being removed. In the opposite case, when τ is small,
the level that the magnetization is reset to strongly depends on the value of the mag-
netization when the threshold was crossed and, hence, strong negative correlation is
observed (see Fig. 4c for τ = 0.5). The negative correlations can be characterized
by the parameter ε, introduced as the half distance to −1/2 (see Fig. 4a),

ρ(1) = −1

2
+ ε

2
.

The target magnetic field B0 can be estimated from N time intervals, Ti , i =
1, 2, ..., N as the total observation time τob = ∑N

i = 1 Ti . The resolution, R, of the
magnetic sensor is, then, defined via Eq. (8) with the replacement

στob,N = στob =
√

≡[τob − Tob]2◦,

with the mean observation time identified as Tob = ≡τob◦, and s = B0 the target
signal.

The (monotonic) dependence of the observation time Tob on the external magnetic
field B0 is shown in Fig. 5a. This dependence can be used to estimate the target field.
Fig. 5b shows that the resolution, R, has the scaling T −0.5

ob for the non-correlated
intervals (e.g. for parameter value τ = 3.0). However, when strong negative correla-
tions exist (e.g. τ = 0.1) the scaling is more complex. The scalings T −1

ob and T −0.5
ob

are shown as the black and red straight lines and these are seen to asymptote to the
τ = 0.1 data at small and large observation times respectively. This provides clear
evidence that, at short observation times, the enhanced scaling T −1

ob is observed; this
scaling crosses over to T −0.5

ob at large observation time.
We have obtained theoretical results [6] that show that this dual scaling behavior

appears to be a universal property in the sense that it occurs for linear and nonlinear
reset mechanisms and in models of sensors and neural models. Moreover, our theory
predicts the number of periods N∈ at which the scaling crosses over from T −1

ob to
T −0.5

ob ; the result is N∈ ∞ 1/ε (see Fig. 5b) (note that the parameter ε can be estimated
directly from the numerical results presented in Fig. 4a).
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Fig. 5 a The observation time Tob as a function of the external magnetic field B0. b The resolution,
R, versus the observation time, Tob. The parameters are θa = 2.5, Du = 0.05, μ0 = 1, B+ =
−B− = 2, C = 3

4 PIF Model with Deterministic Errors in the Reset

To explain the double scaling in the magnetometer model (see previous section), we
introduce here the following solvable model with “deterministic errors” in the reset.
The model is a modified PIF model (MPIF); it differs from the standard PIF model
only through the different reset mechanism. In the PIF model, the resetting levels are
ηk = θk − θa , i.e. the resetting level ηk is the result of a precisely shifted threshold
θk . In the MPIF model, the shift of the threshold θk occurs with a “distortion” due to
the transformation,

ηk = (θk − θa)(1 − c).

In Fig. 6, it is easy to see that the function η(t) reproduces the dynamics of θ(t) with
a compression on the v-axis. Thus, the parameter c is called the “compression”. If
c = 0, the MPIF model coincides with the PIF model; for c = 1, the resetting occurs
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Fig. 6 Modified PIF (MPIF)
model: typical dynamics of
the membrane voltage v, the
threshold θ and the resetting
level η

tt4t1 t t32 5 t
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η
η η η η η1 2 3 4 5

at the constant level, ηk = 0. In this case, it should produce renewal oscillations.
Hence, the compression c plays a role similar to the parameter τ in the magnetometer
model.

Since the kth inter-spike interval produced by the MPIF model is

Tk = (tk − tk−1) = θk − θk−1 + (1 − c)θa + cθk

β + s
, (13)

we can decompose it into three random variables so that

Tk = δk + Δk − δk−1,

where we introduce the “jitter” terms δk = θk/(β + s), δk−1 = θk−1/(β + s), and
the noisy component of the ISI

Δk = θa

β + s
+ c

θk−1 − θa

β + s
. (14)

The variable Δk in Eq. (14) differs from Δ in Eq. (3) through a noisy component that
is proportional to the parameter c. Therefore, the sum of N time intervals

τob,N =
N∑

k = 1

Tk = δN − δ0 + N
θa

β + s
+ c

β + s

N−1∑

k = 0

(θk − θa) (15)

includes the noisy term that is proportional to c and increasing with N .
The serial correlation coefficient differs from the one calculated for the PIF model;

it has the additional term,

ρ(1) = −1

2
+ ε

2
, (16)

where the parameter ε is introduced as

ε = c2

2(1 − c) + c2 . (17)

For very weak compression, c ∇ 1, the last equation reduces to
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ε ∞ c2

2
. (18)

It is easy to show that the average observation times for both the PIF and the MPIF
models are identical, Tob = ≡τob,N ◦ = Nθa/(β + s), but the variances are different.
Moreover, in contrast to Eq. (7), the variance for the MPIF model,

σ 2
τob,N

= 2σ 2
δ

(
1 + c + N

c2

2

)
, (19)

increases with N . This dependence on N influences the resolution R. The resolution
R for the MPIF model in the limit of an infinitesmially small target signal is

R =
≥

2σδβ
2

θa

1

N

√

1 + c + N
c2

2
, (20)

which, for a very weak compression c ∇ 1, and using the approximation Eq. (18)
becomes

R =
≥

2σδβ
2

θa

1

N

≥
1 + εN . (21)

Now, it is easy to see that the resolution R has different scaling for different ranges
of N . If N ∇ 1/ε, the resolution is

R ∞
≥

2σδβ
2

θa

1

N
;

If N ≈ 1/ε, the resolution is

R ∞ cσδβ
2

θa

1≥
N

.

Since the observation time Tob is proportional to N , the resolution also has the double
scaling in the terms of the observation times, 1/Tob and 1/

≥
Tob.

5 Conclusion

We conclude that operating a nonlinear sensor in the biomimetic mode can improve
its performance, as quantified via the resolution. In particular, the analysis indicates
that, absent the luxury of a long observation time, the above mode of operation might
be particularly helpful. We reiterate that there is nothing special about the single core
fluxgate magnetometer (used, here, as a test device); operating a generic nonlinear
sensor in the correct working range should allow the benefits of negative correlations
to be realized.
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Distributed Bandpass Filtering and Signal
Demodulation in Cortical Network Models

Mark D. McDonnell

Abstract Experimental recordings of cortical activity often exhibit narrowband
oscillations, at various center frequencies ranging in the order of 1–200 Hz. Many
neuronal mechanisms are known to give rise to oscillations, but here we focus on a
population effect known as sparsely synchronised oscillations. In this effect, individ-
ual neurons in a cortical network fire irregularly at slow average spike rates (1–10 Hz),
but the population spike rate oscillates at gamma frequencies (greater than 40 Hz)
in response to spike bombardment from the thalamus. These cortical networks form
recurrent (feedback) synapses. Here we describe a model of sparsely synchronized
population oscillations using the language of feedback control engineering, where
we treat spiking as noisy feedback. We show, using a biologically realistic model
of synaptic current that includes a delayed response to inputs, that the collective
behavior of the neurons in the network is like a distributed bandpass filter acting on
the network inputs. Consequently, the population response has the character of nar-
rowband random noise, and therefore has an envelope and instantaneous frequency
with lowpass characteristics. Given that there exist biologically plausible neuronal
mechanisms for demodulating the envelope and instantaneous frequency, we sug-
gest there is potential for similar effects to be exploited in nanoscale electronics
implementations of engineered communications receivers.

1 Introduction and Background

Neuronal information processing relies on the dynamical electrical properties of
a neuron’s membrane, such as its conductance, capacitance, and the various ionic
currents that flow across it through ion channels, and which give rise to a time
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varying membrane potential. These currents are constantly changing over time, due
to external input into a neuron at synaptic junctions. This external input occurs when
an adjacent neuron ‘spikes,’ i.e. when its membrane potential reaches a large enough
size to cause a short duration but large amplitude pulse, called an action potential, to
propagate along cable-like structures called axons. When the action potential reaches
the end of an axon it can cause chemical neurotransmitters to be released and then
diffuse across a gap between neurons called a synapse. These neurotransmitters cause
a change in conductance in the membrane of the neuron on the far side of the synapse,
thus resulting in an ionic current flow across it [1].

Given that a neuron’s membrane can be modelled in terms of currents,
conductances and capacitance, it is no surprise that equivalent electrical circuits for
them can be studied using frequency domain methods favoured in electronic engineer-
ing [2] or in the analysis of stochastic noise [3]. In particular, neuronal membranes
can be studied as if they were electrical filters, and models of neuronal low, high and
bandpass filters, have been discussed in terms of neuronal ‘resonance’ [4]. There are
several biophysical mechanisms for achieving this, as reviewed by [5]. Examples
of single cell mechanisms include slow potassium ion currents [6], synaptic short-
term plasticity [7], and subthreshold membrane oscillations [1]. Mechanisms due to
interactions between cells also can cause band-pass filtering [8], while the basilar
membrane in the inner ear provides mechanical bandpass filtering of sounds prior to
transduction by inner hair cells [9].

In this paper we focus on neurons in a population that each achieve a bandpass
filtering characteristic solely through delayed distributed feedback, rather than their
intrinsic properties. Such a network has previously been studied and understood using
approaches favoured in nonlinear physics [10] in order to explain the phenomenon
of ‘sparsely synchronised population oscillations’ [11, 12]. These oscillations are
often observed in recordings of the overall electrical field produced in small volumes
of cortical region V1 when an experimental animal is awake and has their visual
field stimulated [13, 14]. The label ‘sparse synchronisation’ describes the fact that
individual neurons in the region spike in an irregular fashion with an average rate
much slower than the frequency of the population oscillation.

The novelty in the approach presented here is to recast the problem as one where
it is assumed that the network’s function is to act like a multivariate feedback system
operating close to instability, thus producing a bandpass filter like response. This
perspective leads us to posit that neuronal population spike rates, in the context of
our assumption, can be treated as both a noisy version of a feedback control signal,
as well as a compressed representation of the synaptic conductance or current.

Surprisingly, we find that the central assumption employed in electronic
engineering design, namely that electrical dynamics is governed by linear differ-
ential equations, can also be employed for studying filtering in such a population
of neurons, despite the obviously highly nonlinear behaviour that gives rise to the
crucial aspect of ‘spiking.’

The remainder of this paper articulates these ideas as follows.
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• Section 2 describes how a single neuron with specified linear synaptic dynamics
would ideally implement negative feedback, with gain, in order to produce a band-
pass response.

• Section 3 introduces the concept of distributed feedback within a population of
redundant neurons, as a means of implementing feedback gain without requiring
active amplifiers. This Section also shows how distributed feedback can have the
additional benefit of reducing additive noise on feedback signals via the averaging
effects inherent in redundancy. The Section next extends the analysis of feedback
noise by assuming that feedback is only possible via quantized signals. We study
this, as quantization is highly analogous to spiking in the real cortical network.
It is shown that performance close to the ideal bandpass filter response is readily
achievable by a population of neurons with distributed quantized feedback, par-
ticularly in the presence of stochastic noise.

• Section 4 discusses the potential for exploiting effects like those discussed here in
bio-inspired engineering, such as in frequency demodulation.

Unlike the model of [10], here we do not consider sparsely connected networks
where neurons only rarely and asynchronously contribute feedback. This is an exten-
sion left for future work, as sparse connectivity has a significant impact on stability
analysis. However, the work discussed here is expected to be readily extendible to
the sparse connectivity scenario, as well as to randomly distributed delays.

2 Cortical Synapses as Filters: Open-Loop
and Feedback Responses

2.1 Low Pass Filtering Due to Synaptic Current Dynamics

Our starting point is the so-called ‘difference of two exponentials’ model that
describes how current flow across a neuron’s membrane changes over time in
response to a single synaptic event (i.e. a spike arrival). This model has been used
many times in computational neuroscience. However, we study a variation of the
model that includes a biophysically realistic delayed response, as in [10, 13], i.e. the
neuron responds to the arrival of a presynaptic spike only after a delay of τl > 0 ms.

The model for the change in current in response to a single incoming spike at time
t = 0 is parameterised by two constants, the rise time τr and the fall time τd , where
τr < τd , and is expressed as

i(t) = 1

τd − τr

(
exp

(
− (t − τl)

τd

)
− exp

(
− (t − τl)

τr

))
u(t − τl), (1)

where u(·) is the Heaviside unit step function. It can easily be verified that Eq. (1)
is the solution to a pair of first order differential equations, which can be rewritten
compactly in state-space form as
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ż = Az + u, (2)

where u = [0, δ(t − τl)/τr ]T is the input vector, z = [z1(t), z2(t)]T is the state
vector, and A = [−1/τd , 1/τd ; 0,−1/τr ], and the synaptic current is i(t) = z1(t).
We write the input as δ(t − τl), which means we model the single input spike as a
Dirac delta function, i.e. a single event (the spike arrival) occurs at time t = 0, buts
its influence is seen only after delay t = τl .

Equation (1) is also the solution to the following second order differential equation

τrτd
d2i(t)

dt2 + (τr + τd)
di(t)

dt
+ i(t) = x(t), (3)

where x(t) = δ(t − τl). Given that there is no feedback in this system, we can for
the time being ignore τl in our analysis of the system itself, as it can be incorporated
into the signal itself, by letting x(t) = δ(t − τl). We thus can consider the response
of the system to arbitrary inputs x(t) into the dynamic of the systems. The fact that
0 < τr < τd ensures that the system only has damped solutions in response to
bounded inputs, as expressed in Eq. (1).

Inspection of Eq. (3) when x(t) = δ(t − τl) suggests that the current i(t) can be
interpreted as the impulse response of a linear time invariant filter, after a delay of τl .
In the language of analog filtering or feedback control system design, the transfer
function [15] of the system, G(s), is given by the ratio of the Laplace transform of
i(t) to the Laplace transform of x(t). For an arbitrary bounded input signal, x(t),
with Laplace transform X (s), the Laplace transform of the response of the system
can be written as Y (s) = G(s)X (s), and in the time domain, the response y(t) is the
inverse Laplace transform of Y (s).

For the system described by Eq. (3), the transfer function is

G(s) = I (s)

X (s)
= 1

τrτds2 + (τr + τd)s + 1
= 1

τd − τr

(
1

1
τd

+ s
− 1

1
τr

+ s

)

, (4)

which has the form of a typical ‘two pole’ analog low pass filter.
If x(t) is a stationary stochastic process with a power spectral density Sxx (ω), the

transfer function can also be expressed in terms of Fourier transforms by substitution
of s = iω, and it can be shown that the power spectral density of the response is
related to the power spectral density of x(t) as Syy(ω) = |G(iω)|2Sxx (ω). From
Eq. (4), we obtain

|G(iω)|2 = 1

(1 + τ 2
r ω2)(1 + τ 2

d ω2)
, (5)

and note that if x(t) is white noise (i.e. its power spectral density is constant for all
frequencies) then low frequencies ω ≥ 1

τd
will be reproduced at the output without

attenuation, but frequencies ω √ 1
τd

will be heavily attenuated, i.e. filtered.
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Inhibitory neurons in the cortex tend to have short rise times, τr ≡ 0.5 ms, and
decay times τd ≡ 5 ms [10], and thus the model expressed by Eq. (1) will, if isolated
from feedback, enable the membrane current to encode unattenuated the frequency
content of the input only up to about f = 1/(2πτd) ◦ 30 Hz.

2.2 The Impact of Negative Feedback due to Inhibition,
With Delays

Introducing negative feedback into a system with a low pass filtering characteristic
is well known to enable the possibility of inducing either a resonant response, or
unstable oscillations. When a delay is included in the feedback path, such a negative
feedback system is a simple model of an inhibitory neuron that connects to itself via an
autapse. Inhibitory neurons provide negative feedback because the neurotransmitters
they release after spiking have an inhibitory response on the neurons they synapse
with. If a neuron forms a synapse with itself, then the synaptic connection is known
as an autapse [16].

Consider for example, a system with an open loop transfer function given by G(s)
and negative feedback with gain K . When considering the model of Eq. (1), we must
also explicitly take into account that the synaptic response to the feedback will be
delayed relative to the response due to x(t). The feedback system is shown in Fig. 1,
and its closed loop transfer function is given by

H(s) = G(s)

1 + K exp (−τl s)G(s)
= 1

τrτds2 + (τr + τd)s + 1 + K exp (−τl s)
. (6)

Studying the transfer function with s = iω enables analysis of the steady-state
frequency response of the system when the input is either sinusoidal (or the sum of
sinusoids) or random noise. For an input x(t) = A cos (ωx t + φ(t)), the steady state
response of any linear time invariant system with transfer function H(s) is given by
i(t) = A|H(iω)| cos (ωx t + φ(t) − arg H(iω)) [15].

Fig. 1 Closed loop feedback system consisting of an external drive with Laplace transform X (s),
that is operated on by system G(s), along with negative feedback. The output response has Laplace
transform I (s), and the feedback signal has Laplace transform F(s). The feedback path consists of
a delay relative to X (s), a proportional gain K , and a subtraction from the input, X (s). The overall
closed loop transfer function, H(s) is defined such that I (s) = H(s)X (s)
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Moreover, the power spectral density (PSD) of the response, Syy(ω) can be
obtained for an input with arbitrary PSD, Sxx (ω) via the relationship Syy(ω) =
|H(iω)|2Sxx (ω). From Eq. (6) we obtain

|H(iω)| = 1
√

(1 + K cos (τlω) − τrτdω2)2 + [(τr + τd)ω + K sin (τlω)]2
. (7)

Note that |H(0)|2 = 1/(K + 1)2, and thus the DC value of the output is yDC(t) =
xDC/(K + 1), so the feedback signal will have a DC component of K xDC/(K + 1).

The frequency response, |H(iω)2| is shown in Fig. 2a for both τl = 0 ms and
τl = 1 ms with τr = 0.5 ms, τd = 5 ms and various value of K . Clearly, for τl = 1 ms,
as K increases the closed loop system begins to show a bandpass filter characteristic,
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Fig. 2 a Frequency response of the closed loop negative feedback system, H(s), for τl = 0 ms
(left panel) and τl = 1 ms (right panel). b Illustration of resonant bandpass-filter like response, and
stability, for the closed loop negative feedback system with delay. The maximum value of K that
provides closed loop stability is shown with a circle for each value of τl . The time constants are
τr = 0.5 ms, and τd = 5 ms.
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with a resonant frequency near 200 Hz. The maximum response and the frequency
of maximum response increase with K . However, there is a limit to how much K can
be increased, because if it is too large, then the closed loop system becomes unstable.
On the other hand, in the absence of a delay, although the system exhibits a bandpass
characteristic for sufficiently large K , the resonant frequency is much higher than
with the delay present. Moreover, the input is highly attenuated at all frequencies
with respect to the open loop system (K = 0), which is not the case when τl = 1 ms.

The closed loop system H(s) has an unstable oscillatory mode if any root of its
denominator has positive real part (it may also may have transient damped oscillatory
modes even though G(s) does not). Given that stability depends on the roots of the
denominator, whether an unstable solution exists depends on the values of both K
and τl . There is no closed form solution for the roots, but they can be obtained
numerically as a function of K and τl .

Note that due to the physical constraint that the time constants τr and τd are both
positive, the open loop system, G(s) cannot have a bandpass characteristic. For the
closed loop system without a delay (i.e. τl = 0), the system will resonate and have
a bandpass filtering characteristic if K is sufficiently large, and also be stable for
all K . However, as suggested by Fig. 2a (left panel), the resonant frequency will be
much larger than that of oscillations encountered in recordings of cortical activity,
and moreover, the damping ratio, and therefore the peak response, grows very slowly
with feedback gain.

These model deficiencies with respect to known biophysics are readily overcome
by the inclusion of non-zero time delays. When these are included, as suggested by
Fig. 2a (right panel), the closed loop transfer function can exhibit a bandpass filter
characteristic with a resonant frequency at much lower (and therefore biophysically
plausible) frequencies, and with a higher damping ratio.

However, non-zero delays make the closed loop system unstable when K is suf-
ficiently large. Therefore, we will seek an appropriately small value of K , such that
there is a large resonant (and therefore bandpass filter like) response, but a stable
system.

To illustrate the resonant or bandpass filter-like behaviour of the closed loop
system, Fig. 2b shows the maximum response of |H(iω)|2, and the frequency of the
maximum response (in hertz) as a function of K , up to the maximum stable K , for
four values of delay, τl . The other time constants are τr = 0.5 ms, and τd = 5 ms.
The figure shows that although the system is always stable for τl = 0, it only shows a
bandpass response at high frequencies, and with very large attenuation with respect
to K = 0. As τl increases, however, the frequency of the maximum response also
decreases, while still enabling a gain in amplitude response with respect to the system
without delay or with respect to K = 0 with delay.

2.3 Example Simulations

We consider τr = 0.5 ms, τd = 5 ms and τl = 1 ms. With these values, it can easily
be shown numerically that the closed loop system is unstable for k � 7, as illustrated
in Fig. 2b. As shown in Fig. 2a, the system has a bandpass filter characteristic with a
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Fig. 3 a Simulated response of the closed loop system with feedback gain K = 6 and delay
τl = 1 ms, in response to a chirp input, for three values of K . b Simulated response of the closed
loop system with feedback gain K = 6 and delay τl = 1 ms, in response to white noise, for three
values of K .

frequency of maximum response approaching 180 Hz as K approaches its maximum
stable value, near K = 7. To illustrate the bandpass response for a non-random signal
we use a swept chirp input of the form x(t) = sin (πkt2), which is a signal with
instantaneous frequency fi = kt Hz that linearly increases with time.

Fig. 3a shows the input chirp when turned on after allowing transient response
to a step DC input to die away. The figure also shows the results of simulations of
system response, i(t), for K = 0, K = 2 and K = 6. For K = 6, the closed loop
gain exceeds unity in the neighbourhood of the resonant frequency, and therefore the
feedback can be interpreted as amplifying frequencies within the passband. We also
illustrate the bandpass response using white noise. Simulated closed loop responses
are shown in Fig. 3b for three values of K . When the input is white noise, the power
in the system response is many times smaller than that of the input, and its peak
amplitude is much smaller than transient damped oscillations, and therefore we
have not shown the input noise, or the transient responses. This example shows that
narrowband oscillations are clearly observable in the case of K = 6.

A source of energy is required for the feedback amplification factor K , and in the
biophysical system it is not clear how this amplification factor may be realised. In the
following section we consider one biophysically plausible mechanism for enabling
proportional gain, K . We then study the impact of feedback noise.

3 Feedback Amplification and Noise Reduction Via Redundancy

We now compare the ‘autapse’ model—a single neuron with ideal noiseless negative
feedback (with gain)—with several scenarios where the feedback is noisy: (i)
distributed feedback with stochastic additive noise; (ii) distributed feedback with
quantization noise; (iii) distributed feedback with quantization and stochastic noise.
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We find that when distributed feedback is quantized, stochastic noise significantly
enhances overall performance compared with the absence of stochastic noise.

3.1 Ideal Distributed Feedback Equivalent to Feedback Gain of K

We consider now the case where feedback amplification is due to redundancy. The
ideal scenario is that K parallel and identical systems receive the same input, but as
well as self-feedback, each system receives feedback from all the other systems. To
enable more general analysis below, we write the feedback signal from system i to
system j as Fi j (s) = fi j [Ii (s)], where fi j (·) is an arbitrary function, and also write
the overall feedback to system j as Fj (s)—see Fig. 4.

Without any noise, we have fi j [Ii (s)] = Ii (s)≈ j . Therefore if we set N = K ,
then Fj (s) = ∑K

i=1 Ii (s)≈ j . Given that each system receives the same input, it will
also produce the same output and feedback signal, I (s), and therefore all feedback
signals are identical with Fj (s) = K I (s) exp (−τl s). This illustrates that redundancy
achieves feedback gain K in the overall system.

3.2 Distributed Feedback with Additive White Noise

Now we consider the same scenario but suppose each output signal, Ii (s) acquires
independent additive Gaussian white noise, ηi (t) with mean zero, and variance σ 2,
prior to being fed back. We write the Laplace transform of the noise as Ni (s), and
thus Fi j (s) = fi j [Ii (s)] = Ii (s) + Ni (s)≈ j . Due to the independence of the noise
from x(t), and the linearity of the system, each feedback noise is equivalent to input
noise that subtracts from x(t). The subtraction is equivalent to an addition, due to the
symmetry of Gaussian noise about its mean. Therefore, since there are K feedback
signals, the total equivalent input noise for system j is ξ j (t), where ξ(t) is white
noise with zero mean and variance Kσ 2. However, this compares very favourably

Fig. 4 Parallel redundant network of systems receiving the same input (left panel). The feedback
signal paths to each system are shown in the right panel: system j receives feedback from all
systems including itself, and as in the original stand-alone system, the feedback path is delayed
with respect to the output of the system
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with the situation in the ideal non redundant ‘autapse’ model. If there were feedback
noise in that system, the feedback noise would be amplified, resulting in variance
K 2σ 2. Therefore, the distributed feedback model will have a signal-to-noise ratio
K times larger than the noisy autapse model, and is equivalent to the autapse model
with additive input noise with variance Kσ 2. We can write the feedback signal into
each system j as Fj (s) = K I (s)+∑K

i=1 Ni (s), and thus the noise signal is identical
in each output as well as the input.

Increasing redundancy (more parallel systems) whilst retaining only K feedback
signals would potentially enable the noise at the output to be non-identical for each
system, and thus allow noise reduction by averaging the outputs. However as soon as
the feedback signals become sparse rather than dense, this introduces the possibility
of instability, since some systems will impact on other systems after longer delays.
Even in the case of K +1 systems with only autapses forbidden, this leads to positive
feedback loops, and quite complex equivalent transfer functions. Therefore, we leave
study of this for future work.

3.3 Distributed Quantized Feedback

In many engineered systems, feedback is only available in a digitized form. This
means the feedback signal has been quantized in amplitude, and this quantization
can be considered as a form of noise. Often quantization noise is modelled as additive
white noise, but this is only an approximation that is more inaccurate as the number
of quantization levels becomes small. We now consider a scenario similar to that of
the previous subsection, except that instead of additive white feedback noise, each
feedback signal is quantized. Like the additive white noise case, we can expect that
each system j will have identical outputs, due to the redundancy. The overall output
noise should decease as the number of quantization levels increases. However, unlike
the additive stochastic noise case, the overall output variance will be of the order of
K 2 rather than K , since the noise signals will not be independent, and redundancy
does not provide a benefit in terms of noise reduction compared with the noisy autapse
model.

3.4 Distributed Quantized Feedback with Independent
Stochastic White Noise Prior to Quantisation

If the feedback signal is corrupted by white noise prior to quantization, then this
can make the quantization noise largely independent for each feedback signal. This
again enables the possibility of noise reduction due to averaging where the feedback
signals enter each system. See [17, 18] for discussion.
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Fig. 5 Comparison of output signal-to-noise ratios for five different levels of feedback noise. For
each model except the quantization feedback noise model, the feedback is corrupted by stochastic
additive white Gaussian noise with variances 0.02, 0.04, 0.06, 0.08, 0.1, corresponding to Noise
level ID 1 − 5. For the two quantization models, the feedback is quantized to 8, 7, 6, 5, 4 bits,
corresponding to Noise level ID 1 − 5. Error bars indicated the standard deviation from 20 repeats,
and the lines are the mean signal-to-noise ratio. No error bars are shown for the quantization feedback
noise case, since in this case there is no stochastic noise, and therefore no variance

3.5 Example Results

Figure 5 shows how well the models described above perform in comparison with
the ideal autapse model described in Sect. 2. In each case we simulate the system
for a variety of noise levels, and then calculate the output signal-to-noise ratio in
comparison with the ideal response.

These results show that the distributed feedback model with stochastic noise
provides much improved performance than the autapse model with feedback noise,
as expected. They also show that when the feedback is quantized, that stochastic
noise significantly enhances performance over quantization alone. This is in line
with theoretical work presented in [17], and implies that the stochastic and quantized
feedback noise model can be described as a stochastic pooling network [18].

4 Possibilities for Bio-Inspired Engineering

We have discussed a model that plausibly explains why narrowband oscillations
are often observed in recordings of cortical activity [10]. Models of this type
have received much attention in neuroscience and computational neuroscience
[10, 13, 14]. What is not known, however, is how cortical networks may utlize such
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bandpass filter-like characteristics, if at all. From an engineering perspective, how-
ever, is it possible that a designed system may benefit from mimicking some aspect
of how the cortical network achieves a resonant characteristic?

One common use for bandpass filters is in modulated communication. Their use
enables frequency multiplexing, and they are also useful in demodulation of FM
signals. Given that in the first case an ideal filter has a flat passband, its seems
unlikely that one would wish to design a filter like the cortical network. However,
there is more potential for demodulation of FM signals, since a filter with a linear
increase in gain with frequency is required in a frequency discriminator.

We therefore propose in future work to compare performance achieved by each
model described in Sect. 3, when the input is a linearly swept chirp, or other FM
signal, and the output of the system is used to estimate instantaneous frequency as a
function of time. We also propose that the distributed noisy feedback model may be
adapted in designs of distributed communication systems consisting of small, cheap
and redundant nodes, similar to models discussed in [18].
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Majority Rule in Nonlinear Opinion Dynamics

Michael Gabbay and Arindam K. Das

Abstract Using a nonlinear model of opinion dynamics on networks, we show the
existence of asymmetric majority rule solutions for symmetric initial opinion distri-
butions and symmetric network structure. We show that this occurs in triads as the
result of a pitchfork bifurcation and arises in both chain and complete topologies with
symmetric as well as asymmetric coupling. Analytical approximations for bifurca-
tion boundaries are derived which closely match numerically-obtained boundaries.
Bifurcation-induced symmetry breaking represents a novel mechanism for gener-
ating majority rule outcomes without built-in structural or dynamical asymmetries;
however, the policy outcome is fundamentally unpredictable.

1 Introduction

Small group opinion change has long been a subject of intense study in social science
with implications for decision making by a range of groups such as political lead-
ers, judicial panels, corporate committees, and juries [4, 8]. Mathematical models
of small group decision making have been proposed in social science disciplines
such as psychology, sociology, political science, economics, and law [2, 5, 9]. In this
paper, we put forth a novel mechanism for the generation of majority rule outcomes in
small groups via a symmetry-breaking pitchfork bifurcation. This mechanism allows
for asymmetric outcomes to appear for symmetric initial opinion distributions even
when group members are symmetrically coupled. It occurs in the nonlinear opinion
dynamics model of Refs. [6, 7] under conditions of high disagreement between the
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ends of the distribution along a continuous opinion axis. For example, in a triad net-
work consisting of a centrist bracketed by two opposed extremists, the centrist will
form a majority pair with one of the extremists. This runs counter to intuition rooted
in basic psychological mechanisms of attitude change which emphasize a conver-
gence process of group member attitudes, and so would anticipate either deadlock
or various degrees of compromise around the centrist’s position, but not majority
rule. In particular, it is not predicted by the most prominent network-based model
of small group opinion dynamics, the Friedkin-Johnsen model, which is linear in
the disagreement between group members [5]. The Friedkin-Johnsen and nonlinear
opinion dynamics models are described in the next section. The majority rule out-
come for a triad is demonstrated in simulation (Sect. 3) and via bifurcation analysis
(Sect. 4). Majority rule in five-node networks is presented in Sect. 5.

2 Opinion Dynamics Models

Most recent work on opinion network dynamics in the physics community has
focused on large networks motivated by an interest in population scale dynamics
[1]. Consensus in small networks has been studied in the literature on distributed
network control with sensor networks as a primary motivation [10, 11]. However,
our nonlinear model is most closely related to that of Friedkin and Johnsen, which
was explicitly developed for the social influence context and has been subjected to
empirical investigation [5].

2.1 Friedkin-Johnsen Model

The Friedkin-Johnsen model describes the temporal evolution of a linear discrete
time influence process in a group of N people (nodes) as a weighted average of their
previous opinions and their initial opinions [5]:

xi (k + 1) = ai

N∑

j=1

wi j x j (k) + (1 − ai )xi (0); i = 1, 2, . . . N , k ≥ 0, (1)

where xi (k) is the opinion of node i at time k; xi (0) is the initial opinion; ai is
the susceptibility of node i ; and wi j is the coupling weight scaling node j’s influ-
ence upon i . The wi j are non-negative and satisfy

∑N
j=1 wi j = 1. In addition, the

susceptibility is given by ai = 1 − wi i .
Equation (1) can be cast as a difference equation by subtracting xi (k) = (1 +

ai − ai )xi (k) from both sides and rearranging to yield
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xi (k + 1) − xi (k) = ai

N∑

j=1

wi j (x j (k) − xi (k)) − (1 − ai )(xi (k) − xi (0)). (2)

If ai = 1√i in Eq. (2), then the node opinions will all converge to exactly the
same value for a (bidirectionally) connected network. The presence of xi (0) in the
dynamics of the Friedkin-Johnsen model prevents such a collapse onto an exact
consensus which would signify the unintuitive complete extinction of disagreement.
However, because of the linear coupling in the Friedkin-Johnsen model, equilibria
in which the member opinions are asymmetrically distributed around the mean must
arise from pre-existing asymmetries; either skewed initial opinion distributions or
lopsided coupling weights in favor of one extreme. This is not the case for the
nonlinear model which we turn to next.

2.2 Nonlinear Model

We use the following model for the evolution of the opinion xi [7]:

dxi

dt
= −γi (xi − μi ) +

N∑

j=1

κi j h(x j − xi ). (3)

The first term on the right is a linear “self-bias force” which expresses the psycho-
logical tension that a person feels if her opinion is displaced from her natural bias μi

and is proportional to her commitment γi . The second term is the “group influence
force” on i where κi j is the coupling strength and h(x j − xi ) is the coupling function.
The coupling strength, which we take to be non-negative, represents the components
of influence of j upon i arising from their relationship; it depends on factors such as
how often j communicates with i and the regard with which i holds j . The coupling
function represents how the influence of j upon i depends on the difference between
their opinions. We use a dependence motivated by social judgment theory [4] in
which the force grows for |x j − xi | < λi , where λi is is latitude of acceptance, but
wanes for differences in excess of λi :

h(x j − xi ) = (x j − xi )exp

[

−1

2

(x j − xi )
2

λ2
i

]

. (4)

For situations in which a group first starts discussing an issue it is appropriate to use
natural bias initial conditions, xi (0) = μi .

In the linear limit, λi ≡ ◦, it can readily be seen that the (discretized) nonlinear
model reduces to the form (2) of the Friedkin-Johnsen model, apart from parameter
constraints. The natural bias μi plays the same role in preventing the collapse onto
exact agreement in (3) as the initial opinion does in (1). When applied to group
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decision-making, we assume that a common decision can be reached between group
members if their final opinions xi (t f ) are sufficiently close. This is in accord with
the intuition that people need not precisely agree in order to reach a compromise
decision on a common course of action.

3 Triad Simulations

We simulate a triad network in which the natural biases are symmetrically distributed
around zero: μ1 = −Δμ/2, μ2 = 0, and μ3 = Δμ/2. We use a chain topology
whose ends, nodes 1 and 3, are not connected so that the symmetric, binary adjacency
matrix elements are A12 = A21 = A23 = A32 = 1 and A13 = A31 = 0 (and also
Aii = 0). However, the complete network in which all members are connected,
Ai j = 1 − δi j where δi j is Kroneckers delta, has similar behavior as will be seen in
Sect. 4. We use the parameter v to allow for the possibility of asymmetric coupling
between the center node 2 and the end nodes so that κ12 = κ32 = κ + v and
κ21 = κ23 = κ −v where |v| < κ . A positive value of v signifies that the center node
has greater influence on each of the end nodes than vice versa whereas negative v

signifies that the ends have more influence. The equations of motion for the triad are
then:

dx1

dt
= −

(
x1 + Δμ

2

)
+ (κ + v)h(x2 − x1) + κ A31h(x3 − x1),

dx2

dt
= −x2 + (κ − v)(h(x1 − x2) + h(x3 − x2)), (5)

dx3

dt
= −

(
x3 − Δμ

2

)
+ (κ + v)h(x2 − x3) + κ A31h(x1 − x3).

It will be useful to define the following pair of variables: the discord r = x3 − x1 ,
the opinion difference between the outer nodes and the asymmetry s = (x3 − x2) −
(x2 − x1), the difference in distances from the outer nodes to the middle node.

Figure 1 shows simulations of the chain network for three values of the coupling
strength κ and with symmetric coupling between all nodes. The difference in the
natural biases of the end nodes is Δμ = 5 and the initial opinions are set equal to the
natural biases (except for a tiny displacement to the center node as an initial pertur-
bation which always moves x2 in the same direction for the asymmetric solutions).
Three qualitatively distinct equilibria are observed. At low coupling, Fig. 1a shows
a state of Symmetric High Discord (SHD) in which the end nodes barely move from
their natural biases and the center node remains at zero. At intermediate coupling,
Fig. 1b shows the Majority Rule (MR) state in which the center node moves toward
one of the end nodes to form a majority rule pair. At high coupling, the outer nodes
move considerably toward the center to form a Symmetric Low Discord (SLD) state
as shown in Fig. 1c. The SHD state corresponds to a deadlock situation in which
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Fig. 1 Equilibrium outcomes in symmetrically-coupled (v = 0) triad chain network with high
initial disagreement, Δμ = 5, at different coupling strengths: a κ = 1, symmetric high discord;
b κ = 1.5, majority rule; c κ = 3, symmetric low discord. Initial conditions: x1(0) = −2.5,
x2(0) = 10−6, x3(0) = 2.5

Fig. 2 Simulation of a symmetrically-coupled triad chain network over Δμ − κ parameter space
showing final: a discord and b asymmetry (absolute value). Simulation duration is t f = 200

all group members are far apart and no acceptable mutual decision can be made. In
the MR state, the majority pair can likely agree on a common policy which will be
the policy of the group if majority rule is sufficient for reaching a decision. In the
SLD state, the distance between the outer nodes is much reduced and the basis for a
compromise around the centrists position could be set. Simulations in which μ1, μ2,
and μ3 are randomly shifted by a small amount still display all three outcome types.

Figure 2 plots the asymmetry and discord of the symmetrically-coupled chain
network with natural bias initial conditions. The emergence of the MR state only
occurs past a critical value of the natural bias difference Δμc = 3.8 which we call the
critical divergence. Also, note the sharp discontinuities at the boundaries between the
various outcome states. Below the critical divergence, asymmetric solutions do not
exist and the discord is smoothly and symmetrically reduced as the coupling strength
is raised as would occur in the equivalent case for the Friedkin-Johnsen model, for
which the transition from deadlock to compromise to consensus is gradual with no
possibility of an MR state.
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4 Bifurcation Analysis for Triad

In this section, we show that the majority rule state is the result of spontaneous
symmetry-breaking induced by a pitchfork bifurcation and we calculate bifurcation
boundaries. We do this for the chain topology in which A31 = 0. We transform
the system (5) into the discord and asymmetry variables, r and s, as well as the
mean node opinion, x̄ = 1

3

∑3
i=1 xi . Using the fact that the coupling function is odd,

h(−x) = −h(x), results in the system:

dr

dt
= −(r − Δμ) − (κ + v)

(
h

(
r + s

2

)
+ h

(
r − s

2

))
(6)

ds

dt
= −s − (3κ − v)

(
h

(
r + s

2

)
− h

(
r − s

2

))
(7)

dx̄

dt
= −x̄ − 2

3
v

(
h

(
r + s

2

)
− h

(
r − s

2

))
(8)

For symmetric coupling, Eq. (8) implies that the mean equilibrium opinion is zero,
the mean of the natural biases; this will not be the case for v ≈= 0 in the MR state in
which s ≈= 0.

For the equilibrium SHD state, denoted by (r, s), the asymmetry is by defini-
tion s = 0. For large Δμ we take the discord to be r ∈ Δμ + θ where θ ∞ 1.
Before showing the existence of the pitchfork bifurcation, it will be useful below to
calculate θ . When s = 0, Eq. (6) becomes

dr

dt
= −(r − Δμ) − 2(κ + v)h

( r

2

)
, (9)

which upon substituting the above form for r yields

0 = θ + 2(κ + v)h

(
Δμ + θ

2

)
. (10)

Expanding the coupling function as h(
Δμ+θ

2 ) ∈ h(
Δμ
2 ) + h∇(Δμ

2 ) θ
2 and substituting

into (10) enables us to solve for θ

θ = −
2(κ + v)h

(
Δμ
2

)

1 + (κ + v)h∇
(

Δμ
2

) (11)

where h
(

Δμ
2

)
= Δμ

2 e− Δμ2

8 and h∇
(

Δμ
2

)
=

(
1 − Δμ2

4

)
e− Δμ2

8 .

To show the bifurcation, we consider small perturbations s around s = 0 in Eq. (7).
This results in the Taylor expansion,
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ds

dt
∈ −

(
1 + (3κ − v)h∇ ( r

2

))
s − 1

24
(3κ − v)h∇∇∇ ( r

2

)
s3, (12)

where only the odd power terms survive. When the coefficient of the linear term is
positive, the symmetric state will be unstable. When h∇∇∇ (r/2) > 0, we can rescale
as follows:

τ =
[

1

24
(3κ − v)h∇∇∇ ( r

2

)]
t (13)

R = −1 + (3κ − v)h∇ ( r
2

)

1
24 (3κ − v)h∇∇∇ ( r

2

) (14)

which transforms (12) into the normal form of a supercritical pitchfork bifurcation,
ds/dτ = Rs − s3, where the bifurcation occurs for R = 0, beyond which the
symmetric s = 0 equilibrium is absolutely unstable and two stable asymmetric
branches emerge [12].

When h∇∇∇ (r/2) < 0, the pitchfork bifurcation is subcritical, exhibiting a hard
loss of stability, multistability, and hysteresis. The relevant zero crossing of h∇∇∇(x) =
(−x4 +6x2 −3)e− 1

2 x2
in marking the boundary between supercritical and subcritical

bifurcations occurs at x = (3 + →
6)1/2 corresponding to a discord of r = 4.66.

4.1 SHD Upper Boundary: κ1

We now calculate the boundary in Δμ−κ parameter space given by the critical value
of the coupling strength κ1 at which the SHD state becomes absolutely unstable.
Setting the coefficient of the first term on the righthand side of (12) equal to zero
yields

κ = − 1

3h∇( r
2 )

+ v

3
. (15)

Substituting r ∈ Δμ + θ , and expanding (15) to first order in θ gives

κ1 ∈ 1

3

{
1

h∇(Δμ
2 )

− h∇∇(Δμ
2 )

h∇2(Δμ
2 )

θ

2

}

+ v

3
(16)

The expression (11) for θ can be inserted into the above which, after rearranging,
yields the characteristic equation

0 = 3h∇(Δμ

2
)κ2

1 +
(

4 + M + 2vh∇(Δμ

2
)

)
κ1 + 1

h∇(Δμ
2 )

+ Mv−v2h∇(Δμ

2
), (17)
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where M = Δμ4−12Δμ2

(Δμ2−4)2 . This can be solved to give the following approximation
for κ1:

κ1 ∈2

3

e
Δμ2

8

(Δμ2 − 4)

{
4 + M + 2vh∇

(
Δμ

2

)
−

[
4 + 8M + M2

+8vh∇
(

Δμ

2

)(
2 − M + 2vh∇(Δμ

2
)

)] 1
2
}

. (18)

This increases rapidly as Δμ becomes very large. The appearance of v as a product
with the very small h∇(Δμ) implies that κ1 will be nearly identical to the v = 0 case
as Δμ gets large.

4.2 MR Lower Boundary in Subcritical Zone: κ2

Turning now to the disappearance of the asymmetric solutions in the subcritical
bifurcation regime, this corresponds to the transition between the multistable zone
where the MR and SHD states coexist to the zone in which only the SHD state
exists as the coupling strength is lowered. This transition occurs via a saddle-node
bifurcation in which stable and unstable asymmetric equilibria collide. The associ-
ated bifurcation boundary κ2 can be calculated by analyzing Eq. (7) around the MR
equilibrium in which the minority node x1 stays near its natural bias while the major-
ity pair (x2, x3) is very nearly symmetrically positioned around the midpoint between
their natural biases, Δμ/4. Asymmetric coupling, v ≈= 0, will shift the equilibrium
mean of the majority rule pair by an amount given by ε = (x2 + x3)/2 − Δμ/4.
For large Δμ , x2 − x1 = (r − s)/2 is large and we can neglect the term h((r − s)/2)

in Eq. (7). Accordingly, we make the approximations for the outer opinion coor-
dinates: x1 ∈ −Δμ/2 and x3 ∈ Δμ/2 + 2ε − x2. The asymmetry is then
s = x3 − 2x2 + x3 = −3x2 + 2ε. Rearranging yields x2 = −s/3 + 2ε/3 and
then x3 = s/3 + Δμ/2 + 4ε/3 so that the discord can now be written in terms of s
as r = x3 − x1 = s/3 + Δμ + 4ε/3. The argument of the coupling function term
retained from Eq. (7) is (r + s)/2 = 2/3(s + 3/4Δμ + ε). Finally, we transform to
the variable s̃ = s + 3Δμ/4 + ε and Eq. (7) becomes

ds̃

dt
= −(s̃ − 3

4
Δμ − ε) − (3κ − v)h

(
2

3
s̃

)
. (19)

Equation (8) can be used to calculate the shift ε in the mean of x2 and x3 (neglecting
the h((r −s)/2) term and using x1 = −Δμ/2) yielding ε = −vh( r+s

2 ) = −vh( 2
3 s̃).

Taking v ∞ κ , the first order contribution of v resulting from the last term in Eq. (19)
is given by vh( 2

3 s̃) which cancels out the ε term. Thus, we get
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ds̃

dt
= −(s̃ − 3

4
Δμ) − 3κh(

2

3
s̃), (20)

and we see that the effect of asymmetric coupling between the center and the extremes
disappears for small v and so will not impact the bifurcation boundary.

The equilibrium value for which the saddle-node bifurcation occurs is marked by
the vanishing of the right-hand side of the above equation as well as its derivative,
yielding upon rearrangement the conditions:

s̃ − 3

4
Δμ = −2κ2s̃e− 2

9 s̃2
(21)

1 = −2κ2(1 − 4

9
s̃)e− 2

9 s̃2
, (22)

where κ2 denotes the coupling strength at which the bifurcation occurs. Taking the
ratio of (21) to (22) and rearranging yields the cubic equation

0 = s̃3 − 3

4
Δμs̃2 + 27

16
Δμ. (23)

For large Δμ, it can be readily verified that to O( 1
Δμ

), the solution to this equation

is given by s̃ = 2(1 + 1
Δμ

). Employing (21) to solve for κ2 and then substituting in
this approximation for s̃ yields

κ2 =
3
4Δμ − s̃

2s̃

2
9 s̃2

∈ 1

4

Δμ2 − 2Δμ − 2

Δμ + 1
e

1
2 (1+ 1

Δμ
)2

, (24)

which increases linearly to leading order in Δμ. While the rapidly increasing κ1
marks when the MR state will ensue from natural bias initial conditions, the linear
dependence of κ2 shows that the coupling strength for which a stable MR state is
available does keep pace with Δμ . This is significant because if a stochastic forcing
is added to Eq. (3) to simulate random incoming external information for instance
then transitions between states can occur in which the SHD state jumps to the MR
state (and vice versa) as we have observed in simulations.

4.3 SLD Lower Boundary: κ3

We now calculate the boundary κ3 below which the SLD state given by (r, s = 0)
becomes absolutely unstable. The boundary can be calculated by using Eq. (9) and the
coefficient of s in Eq. (12) to solve for r for which the system undergoes a pitchfork
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bifurcation from the SLD equilibrium to the MR state. We obtain the conditions:

r − Δμ = −(κ3 + v)re−r2/8 (25)

1 = −(3κ3 − v)

(
1 − r2

4

)
e−r2/8. (26)

Neglecting small v, then taking the ratio of the above pair and rearranging gives

0 = r3 − Δμr2 − 8

3
r + 4Δμ. (27)

Near the bifurcation, the equilibrium discord for the SLD state is r ∈ 2 and the
solution to (27) to O(1/Δμ) is r ∈ 2 + 2/(3Δμ). Using this in (25) enables us to
calculate κ3

κ3 + v = −r − Δμ

r
er2/8 (28)

κ3 ∈ Δμ2 − 2Δμ + 2
3

2Δμ + 2
3

e
1
8

(
2+ 2

3
1

Δμ

)2

− v. (29)

κ3 shows a linear dependence for large Δμ as did κ2 but, significantly, it also has a
linear dependence upon small v.

4.4 Chain and Complete Stability Diagrams

Figure 3a displays the stability diagram of the chain network showing the regimes
in Δμ − κ parameter space where the different outcomes are stable and the bound-
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Fig. 3 Stability diagram of triad with symmetric coupling for: a chain network and b complete
network. Open markers are numerically obtained boundaries. Solid lines are chain analytical approx-
imations (18), (24), and (29) for κ1, κ2, and κ3 respectively
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aries between them. The open markers represent numerically-obtained bifurcation
boundaries as found using the MATCONT software package for prediction-correction
continuation [3]. The numerical curves agree very well with the analytical approxi-
mations (18), (24), and (29) for κ1, κ2, and κ3 respectively, except in the immediate
vicinity of the critical divergence. Also shown is the boundary κ4 beyond which the
MR state is no longer present. Note the presence of a substantial zone where only the
MR state is stable. There are also multistable zones in which two or all three states
are stable.

The stability diagram for the complete network is shown in Fig. 3b. For κ1 and κ2
the approximations derived for the chain network, (18) and (24), agree very well with
the numerically-determined boundaries. This indicates that the coupling between the
two outer nodes can be safely neglected due to their extremely disparate opinions in
the SHD and MR states. However, the chain approximation for κ3 is substantially
higher than the complete network’s κ3. This is due to the significantly lower discord
of the SLD state in the complete network, thereby making that state more robust.
This reduces the size of the MR-only zone as compared with the chain. In addition,
κ4 shifts to the right in the complete network which has the effect of expanding the
SLD-only zone.

For the asymmetric coupling case of v < 0, i.e., when the end nodes are more
influential than the center node, κ3 shifts upward as evident from (29) whereas κ1
and κ2 are nearly unchanged for large Δμ . This decreases the size of the zone where
the SLD state is stable and increases the size of the MR-only and MR-SHD zones
as observed in simulations; in addition, the critical divergence shifts to lower values
of Δμ . For v > 0, κ3 shifts downward and the critical divergence shifts to the right
so that the MR-only and MR-SHD zones decrease in size. However, it is significant
that skewed majority rule outcomes can arise even when the center node has greater
influence than the end nodes.

5 Five-Node Networks

We have also observed majority rule outcomes in five node topologies as shown in
Fig. 4. In the simulations, the natural biases are distributed uniformly over the range
Δμ = 6 and ordered so that (μ1, . . . , μ5) = (−3,−1.5, 0, 1.5, 3). Three different

Fig. 4 Final node opinion versus coupling scale for five-node networks: a chain; b complete; c
star. Simulation duration, t f = 200
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topologies are used: (1) the chain in which each node is connected only to its nearest
neighbor along the opinion axis, Ai j = δi, j±1; (2) the complete network where all
nodes are connected to each other; and (3) the star in which the off-center nodes are
only connected to the center node having μ3 = 0 so that Ai3 = A3i = 1 for i ∗
1, 2, 4, 5 else Ai j = 0. The coupling strengths are identical for all ties, κi j = κ Ai j .
But comparing the topologies for the same κ would allow topologies with more ties
to have greater total coupling, thereby affording them a greater communication rate,
for instance. Consequently, to compare topologies on a common basis, we relate the
coupling strengths to the coupling scale α via the relationship κi j = αAi j/d̄ where
d̄ is the mean degree, d̄ = ∑

i, j Ai j/N . From this form we see that α is equal to
the average coupling strength, α = ∑

i, j κi j/N . It is observed that in the MR state,
the majority is 3-2 in the chain and complete networks whereas it is 4-1 in the star
in which the intermediate negative node, x2, is drawn upward into the positive x
majority. We also note that the discontinuous transitions along the α axis occur first
for the chain then the complete network and last for the star. The earlier transition to
the SLD state for the chain network as compared with the star is striking since they
both have the same number of directed edges, 12, and can be attributed to the fact
that the couplings between the center and the outermost nodes present in the star are
weaker compared with the only nearest-neighbor couplings in the chain; however,
once achieved, the SLD state is much tighter in the star.

6 Conclusion

We have shown that an asymmetric outcome of majority rule arises from a symmetry-
breaking pitchfork bifurcation using a model that is a nonlinear variant of the influen-
tial Friedkin-Johnsen model of opinion network dynamics. This symmetry-breaking
route to majority rule only occurs for initial disagreements above the critical diver-
gence. For lower disagreement, the more intuitive process of convergence toward the
center applies as would be expected from the Friedkin-Johnsen model. This qual-
itative difference at low and high disagreement suggests that bifurcation-induced
majority rule may be observable in laboratory experiments involving group dis-
cussion. Finally, we note that although there is a regime in which majority rule is
predicted, the actual policy outcome in this regime is fundamentally unpredictable
and may depend on relatively minor or random variables such as who speaks first.
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Recent Advances on Information Transmission
and Storage Assisted by Noise

P. I. Fierens, G. A. Patterson, A. A. García and D. F. Grosz

Abstract The interplay between nonlinear dynamic systems and noise has proved
to be of great relevance in several application areas. In this presentation, we focus
on the areas of information transmission and storage. We review some recent results
on information transmission through nonlinear channels assisted by noise. We also
present recent proposals of memory devices in which noise plays an essential role.
Finally, we discuss new results on the influence of noise in memristors.

1 Introduction

In communication systems noise is usually regarded as a nuisance to cope with.
However, it has been shown that in certain nonlinear channels information transmis-
sion is actually sustained by noise (see, e.g., [1–5]). In particular, dynamic systems
comprised of a chain of bistable double-well potentials driven by a periodic signal
have been extensively studied and were shown to be able to sustain noise-assisted
fault-tolerant transmission [6, 7]. In Sect. 2 we review some recent progress on this
topic.

In the last few years there has been an increased effort in the search of alternative
technologies for computer memory devices. This effort is motivated by the perceived
near future end of the ability of current technologies to provide support for the
exponential increase of memory capacities as predicted by Moore’s law. In this
context, logic gates that work with the help of noise have been suggested (see, e.g.,
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[8–16]). In a similar vein, it is possible to think of memories which can benefit from,
and indeed work only in, the presence of noise. In Sect. 3, we review some recent
advances in this area.

Resistive memories represent one of the most promising candidates for next
generation computer memories, and are usually associated with a type of two-
terminal passive circuit element known as a memristor [17, 18]. Recently, Stotland
and Di Ventra [19] showed that noise may help increase the contrast ratio between
low and high memory states. In Sect. 4, we present some new experimental results
on the role played by noise in this type of system, extending those in Ref. [19].

2 Information Transmission

System performance in transmission lines can be characterized by means of several
metrics commonly encountered in the area of communications, e.g., output Bit Error
Rate (BER) and Signal-to-Noise Ratio (SNR) (see, e.g., [20, 21]). The BER of a
communication system is a measure of the probability of receiving erroneous bits
and represents one of the most important performance metrics used in digital commu-
nications. The SNR is also an important metric in analogue communications and its
relevance in digital systems stems from the usual monotonic relation between BER
and SNR. Specifically, for an additive Gaussian noise (AWGN) channel, increasing
the SNR decreases the minimum allowable bit error rate [22]. However, this conclu-
sion is not necessarily valid for a nonlinear communication channel. Several authors
have studied bit error rate metrics for the case of a single double-well potential such
as the one described in [6, 7, 23]. Barbay et al. [24, 25] developed theoretical expres-
sions for the BER performance of a VCSEL which were experimentally validated.
Duan et al. [26] also presented a theoretical calculation of the BER for a supra-
threshold signal strength. Moreover, Godivier and Chapeau-Blondeau [27] studied
the capacity of a channel comprised of a single double-well potential.

Ibáñez et al. [28] studied a double-well forward-coupled information transmission
line. In this type of nonlinear channel, two different transmission regimes were
identified, namely noise-supported and coupling-supported, corresponding to sub-
critical and super-critical coupling strengths, respectively. While addition of noise to
each potential well is required in order to sustain transmission in the sub-critical case,
a super-critical coupling is strong enough to guarantee operation of the transmission
line even in the absence of noise. In Ref. [28], it was shown that output BERs remain
flat for a broad range of added noise, especially for a super-critical coupling strength.

Schmitt triggers (STs) are commonly used as ‘discrete’ models of double-well
potentials (see, e.g., [23]). They also can be used as simple models of lasers with
saturable absorbers, which are known to exhibit a stochastic resonant behavior [29].
As some schemes for optical pulse amplification and shaping (known as “2R regen-
eration”) mimic fast saturable-absorbers [30], STs may serve as experimental toy
models for the analysis of some forms of optical regeneration in communication
systems. A similar approach was followed, e.g., by Korman et al. [31] who mod-
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Fig. 1 Bit error rate as a function of noise intensity in a chain of five Schmitt triggers. BER is
minimized for an optimal noise intensity. Figure taken from Ref. [32]

eled a mid-span repeater with a hysteresis-type nonlinearity of the same kind found
in a Schmitt trigger. Patterson et al. [32] performed an experimental investigation
of the transmission properties of a line comprised of five in-series Schmitt triggers
from the point of view of a communication system, where each ST was fed with
white Gaussian noise, and the first ST was driven by a pseudo-random sequence of
bits. As shown in Fig. 1, an optimal noise intensity was found for which the BER

Fig. 2 Performance of a transmission line comprised of five in-line Schmitt triggers. The perfor-
mance expected from an additive white Gaussian noise channel is also shown as a reference. Figure
taken from Ref. [32]
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is minimized. The rate of system performance degradation with distance (number
of STs traversed by the information-carrying signal) was found to be similar to that
observed in a linear AWGN communication channel (see Fig. 2).

A transmission line has an associated delay which depends on its physical char-
acteristics. The time-delay properties of a double-well forward-coupled information
transmission line were investigated in Ref. [33], showing that it can be regarded as
a noise-tunable delay line for a broad range of noise and coupling-strength parame-
ters. Such a tunable delay line may find applications, e.g., in the phase modulation
of information-carrying signals.

3 Information Storage

Carusela et al. [34, 35] showed that a double-well forward-coupled transmission
line, such as that described in Sect. 2, can work as a memory element when closed
onto itself forming a loop. In particular, they showed that such a ring was able to
sustain a traveling wave with the aid of noise long after the harmonic drive signal
had been switched off. Building on the work in Refs. [34, 35], Ibáñez et al. [36, 37]
showed that a ring of two bistable oscillators is capable of storing a single bit of
information in the presence of noise. Figure 3 shows the probability of erroneous
retrieval from the second oscillator. It can be observed that, for each retrieval time,
there is an optimal noise intensity for which the probability of error is minimized.
In Ref. [36] memory persistence time (Tm) was defined as the time elapsed until
the first oscillator reaches a probability of error equal to that of the noiseless case.
Figure 4 shows that there is an optimal noise intensity which maximizes memory

Fig. 3 Probability of erroneous information retrieval from the second oscillator as function of
noise intensity for different observation times (T = TP squares, 10TP circles, 20TP triangles,
40TP stars). TP is an arbitrary time scale. Figure taken from Ref. [36]
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Fig. 4 Memory persistence as a function noise intensity. There is a noise intensity that maximizes
persistence. Figure taken from Ref. [36]

persistence. Foreseeing a practical implementation of this type of memory device,
its performance under varying physical parameters, such as noise bandwidth and
time response of the bistable elements, was investigated in Ref. [38]. In particular, it
was found that the device is more resilient to the action of noise when the noise and
the bistable element bandwidths are of the same magnitude.

Bellomo et al. [39] proposed a multibit storage device consisting on a single
Schmitt trigger (ST) and an element that introduces a finite delay in a loop configu-
ration. The proposed device can be considered as a toy model of a long transmission
link with in-line nonlinear elements such as saturable absorbers [29, 30]. Nonlinear
delayed loops have been extensively studied (see, e.g., [40–46]). This type of systems
usually presents a complex nonlinear behavior, including self-sustained oscillations
and chaotic operation regimes. Memory devices that make use of regimes that show
multistable behavior of delayed feedback loops have been proposed. Reference [40]
presented a memory device that stores bits coded as particular oscillation modes of
a delay feedback loop with an electro-optical modulator. Similarly, in Ref. [42] was
shown that binary messages can be stored using controlled unstable periodic orbits
of a particular class of delay-loop differential equations. However, memory devices
proposed in Refs. [40, 42] were not assisted by noise. References [43, 45] studied
the behavior of a delayed loop with a single threshold device and a bistable device,
respectively, but focusing on the response of the system to a harmonic driving signal.

Experimental studies in Ref. [39] showed that the performance of the proposed
multibit memory device is optimal for an intermediate value of noise intensity (see
Fig. 5). It is interesting to note that, although performance was shown to deteriorate
with time and with the number of stored bits, it also was found that the probability
of error is independent of the number of bits when the elapsed time is normalized
to the bit duration (see Fig. 6), a fact of relevance when considering practical imple-
mentations of the device.
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Fig. 5 Probability of erroneous retrieval as a function of noise intensity when 4 bits are stored.
Different curves correspond to varying elapsed times. A turn corresponds to the mean time it takes
the signal to travel through the loop elements. Figure taken from Ref. [39]

Fig. 6 Minimum probability of error as a function of elapsed time normalized to the bit duration.
nb: number of stored bits. Figure taken from Ref. [39]

4 Noise in Memristors

One of the proposed alternatives for succeeding current nonvolatile memory tech-
nologies is the so-called family of Resistive Random-Access Memories (ReRAMs)
(see, e.g., [47]). ReRAMs are based in the resistive switching phenomenon observed
in several materials, that is, the change of electrical resistance by the application
of electrical pulses. Indeed, a high resistance may represent, say, a ‘0’, and a low
resistance may represent a ‘1’ logic state.
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Often, resistive switching devices are associated with a type of two-terminal pas-
sive circuit element known as a memristor [17, 18] which was originally proposed
by Chua in Ref. [48]. There are different proposed mechanisms which try to explain
the observed behavior of resistive switching materials (see, e.g., [17, 47, 49–53] and
references therein). From a macroscopic point of view, one of the simplest models
is that proposed in Ref. [17], described by

v(t) = R(s)i(t), (1)

ds

dt
= αF(s, i)i(t), (2)

where v(t) is the applied voltage, i(t) is the current, R is the device’s resistance,
s ∈ [0, 1] is an internal state variable, α is a constant and F(s, i) is a nonlinear
function. Among the several suggested alternatives for F(s, i) (see, e.g., [54]), one
commonly used is

F(s, i) = 4s(1 − s). (3)

Based on these equations, Stotland and Di Ventra [19] showed that noise may help
increase the contrast ratio between low and high resistance values. This conclusion
has important practical consequences as the contrast in resistance values can be
associated with the probability of error in ReRAMs. Stotland and Di Ventra modified
Eq. 2 by adding an internal noise term,

ds

dt
= αF(s, i)i(t) + η(t), (4)

where η(t) is white Gaussian noise. Patterson et al. [55] extend the results of Stotland
and Di Ventra [19]. In particular, they show that external noise, that is, noise added
to the externally applied voltage, does not help increase the contrast between low
and high resistance states if Eqs. 1–3 are valid.

In order to explore the behavior of memristors under externally applied noise,
we experimentally studied a sample of a manganite, La0.35Pr0.300Ca0.375MnO3. The
behavior of this material has already been studied in, e.g., [52, 53, 56, 57]. Two
silver contacts were placed on the sample and an externally controlled current was
applied through them. The resistance between contacts was calculated by measuring
the voltage drop across them when a small (±1 mA) noiseless current was applied.
Current pulses of 1 ms of duration were applied with varying amplitudes. Each current
pulse was followed by 1 s of ‘silent’ (no current applied) ‘setting’ time and preceded
by 20 ms of the small current used for resistance measurement (−1 mA applied during
10 ms and +1 mA during other 10 ms). Samples of zero mean white Gaussian current
noise with 100 mA standard deviation were generated by software and added to the
externally applied current. The actual noise bandwidth and detailed characteristics
depend on several elements of the experimental setup such as, e.g., the bandwidth
and the linearity of the digital-to-analog converter.
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Fig. 7 Experimental results on the effect of noise on a memristor. a Measured mean pulse current
as a function of time. b Measured memristor’s resistance. Intervals where noise was added are
indicated by (blue) arrows in (a)

Figure 7 shows the results of a typical experiment. For the first 200 s, noiseless
high-current pulses (up to 800 mA) were applied and the memristor’s resistance
varied between ∼30 and ∼270κ. During the following 200 s, the current amplitude
was lowered (down to ∼200 mA) and no noticeable change on the resistance was
observed. The low amplitude pulses were repeated for other 200 s, but now noise
was added. Interestingly, the memristor responded to the added noise by varying its
resistance in almost the same magnitude as it did when high-current pulses were
applied. When noise is turned off, the memristor’s resistance varies, but the change
is not of the same magnitude as when noise is applied.

In summary, experimental data confirms that externally applied noise increases
the contrast between low and high resistance states in a memristor, a fact of relevance
in applications. Considering that Eqs. 1–3 disallow such an effect of noise (see [55]),
our experimental results also point toward the need for more complex models.
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5 Conclusions and Future Work

We have reviewed some recent advances on the field of information transmission
and storage assisted by noise. Schemes of in-series hysteretic nonlinear elements,
modeled by Schmitt triggers, were shown to enable transmission of subthreshold
signals with low probability of errors for optimal noise intensities. Closed loops of
such elements were also shown to sustain information storage only in the presence of
moderate amounts of noise. Future work in these areas should address the influence
of different types of noise. For example, 1/f-noise is found in several applications
(see, e.g., [58]) and its eventual beneficial role in nonlinear systems as those described
in this work has not been deeply investigated yet. It also remains to be explored the
possibility of practical applications of noise-tunable delay lines as those described
in Sect. 2.

We have also presented results on the effect of noise in memristors, where external
noise helps commute resistive states in the presence of a small amplitude driving
field. We believe these results are of significance since memristors are expected to
operate in electronic circuits with a large scale of integration, and as such the effects
of thermal noise will have to be coped with. Since simple models (see [55]) cannot
account for the presented results, future work should focus on more complete models
of memristors behavior.
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36. S.A. Ibáñez, P.I. Fierens, R.P.J. Perazzo, G.A. Patterson, D.F. Grosz, Eur. Phys. J. B 76, 49

(2010)
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Transmission of Packets on a Hierarchical
Network: Avalanches, Statistics and Explosive
Percolation

Neelima Gupte and Ajay Deep Kachhvah

Abstract We discuss transport on load bearing branching hierarchical networks
which can model diverse systems which can serve as models of river networks,
computer networks, respiratory networks and granular media. We study avalanche
transmissions and directed percolation on these networks, and on the V lattice, i.e.,
the strongest realization of the lattice. We find that typical realizations of the lattice
show multimodal distributions for the avalanche transmissions, and a second order
transition for directed percolation. On the other hand, the V lattice shows power-
law behavior for avalanche transmissions, and a first order (explosive) transition
to percolation. The V lattice is thus the critical case of hierarchical networks. We
note that small perturbations to the V lattice destroy the power-law behavior of the
distributions, and the first order nature of the percolation. We discuss the implications
of our results.

1 Introduction

The study of transport processes on networks of varying types has attracted much
recent interest [1, 2], and is important from the point of view of applications. Earlier
studies of transport processes on networks has been carried out for important classes
like scale free and random networks [3–5]. However, an important class of networks,
viz., that of branching hierarchical networks [6, 7], has not yet been extensively
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explored. Networks of the branching, hierarchical type are common in both real
and engineering contexts. Examples of such networks include river networks [8],
models of granular media [9], and voter models [10, 11], the Domany Kinzel cellular-
automata model [12] and the branching hierarchical model of the lung inflation
process [13, 14]. In this chapter, we explore transport processes such as avalanche
dynamics, and percolation on typical branching hierarchical lattices, and on the V
lattice, a special realization of such lattices. We show that the behavior of transport
on the V lattice is very distinct from that on typical realizations, and the V lattice is
thus the critical realization of the branching hierarchical lattices. We also show that
this special behavior is soon lost when the lattice is perturbed, indicating its critical
nature. We also discuss the implications of our results.

2 The Model

The base model for the load bearing hierarchical network [6, 15] discussed here is a
regular 2D lattice of sites, where each site is connected at random to exactly one of
its two neighbors in the layer below. The choice of the connection between the left
and right neighbors to a given site i D at any Dth layer is made with some probability
p, where (0 < p < 1), for a connection to the left neighbor iD−1

l , and probability
(1 − p) to the right neighbor iD−1

r . Each site has the capacity to bear unit weight if
it is not connected to either of its neighbors in the layer above, and can bear weight
w + 1 if it is connected to site(s) whose capacities add up to w, in the layer above.
Thus, the capacity w(i D) of the i th site in the Dth layer is given by the equation

w(i D) = l(i D−1
l , i D)w(i D−1

l ) + l(i D−1
r , i D)w(i D−1

r ) + 1 (1)

The quantity l(i D−1
l , i D) = 1 if a connection exists between iD−1

l and iD, and 0 if
otherwise. The network consists of clusters, where a cluster is a set of sites connected
with each other. The trunk is defined as the set of connected sites in the largest cluster
with the highest weight bearing capacity in each layer. The sum of the weight bearing
capacities of the sites along the trunk is defined as the trunk capacity WT of the given
realization of the network. This model has similarity with the critical case q(0, 1) of
model of granular media [9], models of river networks [8], and the Takayasu model
of the aggregation process with injection [16]. Other models analogous to our model
are voter models [10, 11], the Domany-Kinzel cellular-automata model [12], and the
branching hierarchical model of the lung inflation process [13, 14].

The base model has a very specific and unique realization which incorporates
the largest possible V shaped cluster that the base model could have. The V-cluster
includes all the sites in the topmost layer, and (M − D+1) sites in the Dth layer. One
of the arms of the V constitutes the trunk, and all other connections run parallel to the
arm of the V that is opposite to the trunk. The V-cluster is the largest possible cluster
the base model could have. The trunk of this V-cluster bears the largest possible trunk
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Fig. 1 The V lattice network of D = 8 layers with 8 sites per layers. The number in bracket beside
each site denotes its weight bearing capacity. Solid lines show connection between the sites. The
beaded line is the trunk of the V-cluster C2

capacity of the base model. We call this special lattice the V lattice. Figure 1 shows
the V lattice configuration. Structures similar to the V lattice can be seen in riverine
deltas [17], in Martian gullies [18], and in granular flows [19], if the channels of
maximal flow capacity are considered.1

3 The V lattice: The Critical Case for Transport

In this section we will discuss the critical nature of the V lattice, a special realization of
the base lattice. The V lattice exhibits critical behavior for avalanche phenomena [20],
site percolation phenomena [7], and capacity distribution and failure rate [6] quite
distinct from the behavior seen for the base lattice model, manifesting its criticality.
Here, we focus only on the avalanche and percolation properties of the V lattice.

3.1 Avalanche Times Distribution of the V Lattice

The behavior of avalanche processes for a given network topology provides an
interesting example of the interplay between the nature of a transport process and
the topology of the substrate. Here we aim to study the avalanche process of weight

1 In the natural structures, the channels of high capacity can have some channels of lower capacity
joining them, leading to an overall symmetry between left and right connections, however one
direction is favored by the channels of high capacity, due to some feature like the nature of the
geographic terrain, leading to variants of the V structure for the high capacity channels alone.



196 N. Gupte and A. D. Kachhvah

transmission on the V lattice. The avalanche is defined here in terms of weight trans-
mission on the network.

To initiate the avalanche process on the network, some test weight Wtest is
deposited on a randomly chosen site in the first layer of the network. Since our
base network is a directed network, the flow of weight transmission takes place in
the downward direction. The site in the first layer absorbs weight equal to its ca-
pacity and transmits the excess weight to its neighboring site it is connected to in
the layer below. This process of weight transmission continues till there is no excess
weight left, and the transmission is successful. If the Wtest is sufficiently large that
it reaches the last layer without being fully absorbed, which completes one cycle of
weight transmission, the excess weight is then deposited randomly on a site in the
first layer and the second cycle of weight transmission starts here. If in the next cycle,
the receiving site happens to be the one which has already saturated its capacity in
the previous cycle, and now it does not have spare capacity to absorb any weight, the
transmission is then said to be failed at that site. Otherwise the weight transmission
continues till all excess weight is absorbed, and the transmission is said to be success-
ful in this case. This process of the cycling of weight transmission through the lattice
network is defined as an avalanche. The duration of an avalanche, or avalanche time,
is defined to be the total number of layers traversed during all cycles of successful
weight transmission by the test weight in the network.

We discuss the distribution of avalanche times of the V lattice. The avalanche
times distribution P(t) is, in fact, the distribution of the number of layers traversed
during all cycles of successful avalanche transmissions by a test weight placed at a
random site in the first layer for any lattice.

The avalanche times distribution P(t) of the V lattice has been studied by
Kachhvah and Gupte [20] for test weights which are fractions of the trunk capac-
ity of the V lattice. It has been observed that for this lattice, the avalanche times
distribution P(t) displays a power law regime, i.e., P(t) ∼ t−κ , which gradually
starts disappearing as the test weight starts approaching the trunk capacity of the
V lattice. Figures 2, and 3 display the avalanche times distributions, corresponding
to 1000 realizations, for the V lattice. The power law distribution is seen in the V
lattice as weight transmissions on the V lattice can achieve success at any one of the
layers. This behavior of the existence and subsequent disappearance of the power
law regime in the distribution has been one of the indications that the V lattice is a
critical case of the base lattice. It is to be noted that the avalanche times distribution
averaged over many realizations of the base lattice shows Gaussian behavior Fig. 4
[20], and is quite distinct from the power-law behavior seen here.

3.2 Explosive Percolation on the V Lattice

The problem of site percolation has frequently been studied on networks due to its
relevance for the problem of information transfer on the network. Therefore, it is
important to study site percolation on the hierarchical networks. The site percolation



Transmission of Packets on a Hierarchical Network 197

50 100 150 200
0.0

0.1

0.2

0.3

0.4

t

P
(
t
)

102
10–3

10–2

10–1

40 60 80

0.10

0.15

0.20

t

P
(
t
)

0.05WT

10–1

(a) (b)

Fig. 2 The avalanche time distribution P(t) corresponding to 1000 realizations for the V lattice
network of side M = 100 when tested for weights equal to a 0.05WT , and b 0.2WT . Small regimes
for 0.05WT (as shown in inset of a) and 0.2WT (as shown in inset of b) display power law i.e.
P(t) ∼ t−κ behavior with exponent κ = 1.18 and Δ2 = 0.0009, and κ = 2.96 and Δ2 = 52.197
respectively
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Fig. 3 The avalanche times distribution P(t), corresponding to 1000 realizations, for the V lattice
network of side M = 100 when tested for weights equal to a 0.5WT , and b 0.9WT . No power law
regime is seen in the distributions corresponding to 0.5WT , and 0.9WT

problem is set up as follows: Typically, the transmission of information is modeled by
packets of information hopping on the sites of the substrate networks. These packets
could be the data packets of information in the Internet, which links computers of
heterogeneous and high capacities capable of transmitting packets at high rates. For
our hierarchical networks, the packets are deposited at a randomly chosen site on the
topmost layer of the network. Each site retains the number of packets which saturates
its capacity and the remaining packets are transmitted further. A packet at a given
site sees the nearest neighbor sites linked to itself. If the targeted neighboring site
is not fully occupied (i.e., it has not saturated its capacity), the packet moves there
and looks for the next site that has spare capacity. If the target site is fully occupied,
then the packet stops on the site which it occupies, and the transmission of the packet
ends at that site. In this fashion, all packets hop from one site to another according
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Fig. 4 The avalanche times distributions P(t) for the base lattice, corresponding to 1000 realizations
of networks of side M = 100, exhibits Gaussian behavior when tested for weights equal to 0.1WT
and 0.2WT , where WT is the trunk capacity of base lattice

to the vacancy available on the neighboring sites, and this process continues till all
the packets come to rest at some site. When the packet transmission has come to
rest, at that time some of the sites would be occupied while the other would remain
unoccupied or free. In this scenario, the network is composed of two sub-networks
one of the unoccupied or free one and other of the occupied one, with the size of
each network being a measure of the saturated or available capacity on the network.
Hence, we study the transition to percolation in the occupied or unoccupied sub-
networks. For the free sub-network, one anticipate a transition from the percolating
to the non-percolating state when the packet density μ increases, where the packet
density is the ratio of total number of packets to total number of sites in the network.
In order to analyze the transition, we simulate the stochastic dynamics of packet
transmission in the V lattice for different values of the packet density μ [7].

To study the percolation transition, the order parameter is defined to be the per-
colation strength S = Sm/L , where Sm indicates the number of sites belonging to
the largest connected cluster of the unoccupied sub-network and L denotes the total
number of sites in the network. The complement of the percolation strength S is
defined as S1 = (1 − S), which is a measure of the fraction of occupied sites or
of the size of the occupied sub-network. We note that S, the size of the connected
cluster of unoccupied sites is a measure of the capacity available for transport for
a given packet density. This goes to zero at the jamming transition where no more
capacity is available, and its complement S1 goes to the size of the lattice. Here S1 is
compared with the size of the percolating cluster which spans the size of the lattice
at the percolation transition.

The numerical study by [7] shows that the percolation transition in the V lattice
is a discontinuous or explosive one, which can be observed from the Fig. 5, and
laws of the finite size scaling for continuous percolation transition does not hold for
the V lattice. The percolation transition in the V lattice is contrary to second order
continuous transition seen in the base lattice Fig. 6 [7], with associated second order
percolation exponents. Here, again the V lattice shows critical behavior.
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Fig. 5 a The order parameter S and b its complement S1 as a function of packet density μ, averaged
over 500 realizations, for the V lattice networks of (100 × 100) sites

0 5 10 15 20
0.04

0.06

0.08

0.10

µ

S

base

Fig. 6 The order parameter S as a function of packet density μ, averaged over 500 realizations,
for the free sub-network in the base lattice network of (100 × 100) sites

4 Perturbed V Lattices: Annihilation of Criticality

We have seen that the V lattice is the critical case of the base model as it displays
behaviors for the avalanche times distribution and site percolation quite distinct from
those seen for the base lattice. Here we are interested in exploring whether a slight
perturbation introduced in the structure of the V lattice destroys the critical nature
of the V lattice for avalanche and site percolation phenomena. For this, perturbed V
lattices are generated by switching the direction of the connections running parallel
to arm opposite to the trunk in the V-cluster, with some probability 0 < p < 0.5,
but leaving the trunk or backbone untouched.
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by switching connections with probability p = 0.1, . . . 0.4, corresponding to 1000 realizations of
a network of side M = 100 when tested for weights equal to 0.05WT

4.1 Avalanche Time Distributions for the Perturbed V Lattice

To demonstrate that the V lattice is the only realization of the base lattice which
displays power law behavior for the avalanche time distribution, we studied these
distributions for the perturbed V lattices, for 1000 realizations and test weights equal
to 0.05WT as shown in Fig. 7. It is observed that even a small perturbation (p = 0.1)
in the topology of the V-cluster of the V lattice, destroys the power law behavior seen
for the V lattice. Thus, the V lattice is found to be the only case of the base lattice
which displays power law behavior.

4.2 The Percolation Transition for the Perturbed V Lattice

Again, in order to demonstrate that the V lattice is the only realization of the base
lattice which displays explosive percolation transition, we explore the percolation
transition on the perturbed V lattices. The order parameter S1 is computed as a
function of the packet density μ (see Fig. 8a) for the V lattice perturbed by different
values of p, i.e., 0 < p < 0.5. From Fig. 8a, one can notice that as the perturbation in
the V lattice is increased (i.e., as p increases), the size of the jump ϕS1 also reduces,
where ϕS1 is the difference between the values of S1 before and after the transition.
In Fig. 8b, the size of the largest jump ϕS1 is plotted, corresponding to different p,
for different lattice sizes L . It is apparent from Fig. 8b that the largest jump size ϕS1,
scales as a power law with system size L , defined as:

ϕS1 ∼ L−Ξ. (2)
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Fig. 8 Plot of a the order parameter S1 of the occupied sub-lattice as a function of critical packet
density μ for different values of 0 < p < 0.5. b The largest jump size ϕS1 of the V lattice, scales
as a power law as function of the lattice size L i.e., ϕS1 ∼ L−Ξ , where Ξ is 0.0019, 0.0023, 0.0029,
0.0059, 0.0079 and 0.011 for p equal to 0.05, 0.15, 0.25, 0.35, 0.45, 0.50, respectively

The above relation is similar to the relation between the largest jump size and the
system size in [21] to show the discontinuity of the percolation transition. We find
that Ξ > 0 for all processes of the V lattice corresponding to different p. However,
the values of Ξ are quite small. If, in the thermodynamic limit of infinite system size,
we have

limL→∞ϕS1 = 0. (3)

i.e. if, in the limit of infinite system size, the size of the largest jump ϕS1 for the
giant cluster goes to zero, then transitions are said to be weakly discontinuous.
The percolation transitions in the perturbed V lattices are weakly discontinuous. We
conclude that even a slight perturbation introduced in the V lattice destroys the nature
of the percolation transition in the V lattice.

We thus conclude that the V lattice is indeed a critical case of the base lattice, as
even a slight distortion in the structure of the V lattice destroys its critical nature.

5 Conclusions

To summarize, we have observed that in the case of branching hierarchical struc-
ture, the lattice with V-shaped clusters shows special behavior for transport processes
which use this lattice as the substrate. Avalanche processes on this lattice show power
law behavior, and percolation behavior on this lattice belongs to the explosive per-
colation class. This behavior sharply contrasts with the behavior seen for transport
on typical realizations of the hierarchical networks, where avalanche transmissions
are Gaussian, and the transition to percolation is of the usual second order type.
Small perturbations to the V-cluster, rapidly destroy the special behavior, indicat-
ing the critical nature of the lattice. We note that this is one of the few examples
where the nature of the substrate topology has led to the identification of a transition
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of the explosive percolation class. We hope our results go some way towards the
identification of special topologies where critical behavior is observed for transport
properties. Such an identification maybe of utility in practical systems like power
grids and computer and communication networks.
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A Chaos MIMO-OFDM Scheme for Mobile
Communication with Physical-Layer Security

Eiji Okamoto

Abstract Chaos communications enable a physical-layer security, which can
enhance the transmission security in combining with upper-layer encryption tech-
niques, or can omit the upper-layer secure protocol and enlarges the transmission
efficiency. However, the chaos communication usually degrades the error rate perfor-
mance compared to unencrypted digital modulations. To achieve both physical-layer
security and channel coding gain, we have proposed a chaos multiple-input multiple-
output (MIMO) scheme in which a rate-one chaos convolution is applied to MIMO
multiplexing. However, in the conventional study only flat fading is considered. To
apply this scheme to practical mobile environments, i.e., multipath fading channels,
we propose a chaos MIMO-orthogonal frequency division multi-plexing (OFDM)
scheme and show its effectiveness through computer simulations.

1 Introduction

In wireless communications, it is always needed to provide high-capacity transmis-
sion with a limited bandwidth, which is achieved by effective use of finite frequency
resources. As one of the effective schemes, multiple-input multiple output (MIMO)
transmission, in which the transmitter and the receiver use multiple antennas and
simultaneously communicate each other [1], is drawing much attention. MIMO can
increase the capacity in proportion to the minimum number of transmit and receive
antennas with the same bandwidth.

On the other hand, wireless multihop and relay transmission has been widely
used recently, in which the data are transmitted through a third person (terminal),
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and the security for the authorized transmission pair is becoming important. The
data should not be decoded by unauthorized users. For those security enhancements,
the upper-layer techniques such as public key encryption [2] or IPSec [3] scram-
bling are usually used and a physical-layer security is not considered. However,
ensuring security is never exclusive at each transmission layer and adopting multiple
secure protocols enhances the security. Or the physical-layer security can omit the
upper-layer security and can simplify the system complexity. Chaos communica-
tions have been proposed in [4, 5] which achieve the physical-layer security. The
chaotic deterministic and irregular properties can be utilized by applying the chaos
into modulation and the transmit signals are scrambled. However, the objective of
the conventional schemes in [4, 5] is focusing on the security enhancement and the
bit error rate (BER) performance is degraded due to an extra power requirement of
chaos signals. There are few studies on chaos transmission including channel coding
function. In [6], the chaotic channel coding scheme is proposed with limiting the
chaos states in decoding [7] for the practical decoding complexity, resulting in a
lower security.

In MIMO multiplexing transmission, the multiplexed signals from each transmit
antennas are received at each receive antenna and that signal becomes Gaussian.
Also, various precoding schemes at the transmitter are proposed to improve the
capacity or transmission quality. In this case the transmission signals also become
Gaussian. Paying attention to these characteristics, we have proposed the chaos-
MIMO transmission scheme in [8] as a precoding scheme, in which the rate-one
chaotic random signal is used as second modulation at each MIMO transmit symbol
for physical-layer encryption. The channel coding gain without lowering security is
also obtained by correlating that random signal with the transmit bits. This coding
gain is obtained in tradeoff with the decoding complexity increase. Similar MIMO
transmission schemes using chaos stream have been proposed in [9, 10] and com-
pared with those schemes, our scheme in [8] has an advantage of channel coding
gain effect. However, the flat fading is assumed in [8] and it is needed to deal with
multipath fading environments which occur in fast wireless transmission.

Therefore, in this chapter we apply orthogonal frequency division multiplexing
(OFDM) [11] into chaos-MIMO scheme to enable a linear equalization of multi-path
fading interference in the frequency domain, and propose a chaos-MIMO-OFDM
scheme for mobile communications. We will show that the physical-layer security
and improved transmission performance are obtained by the proposed scheme with a
maximum likelihood sequence estimation (MLSE) in multipath fading environments
compared with the conventional MIMO-OFDM scheme. In addition, it is shown that
the error rate performance is improved by the subcarrier allocation adjustment of
OFDM. In the following, the structure of chaos-MIMO-OFDM is introduced in
Sect. 2, some numerical results are shown in Sect. 3, and the conclusion is drawn
in Sect. 4.
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Fig. 1 Block diagram of chaos-MIMO-OFDM system

2 Chaos MIMO-OFDM System

The block diagram of the proposed chaos-MIMO-OFDM scheme is illustrated in
Fig. 1. The MIMO-OFDM part is completely the same as the conventional schemes
and in addition to that, the chaos signal correlated to the transmit bits is multiplied at
the transmitter as the second modulation. By this chaos multiplication, the channel
coding gain is obtained in addition to the encryption effect. In the following, MIMO-
OFDM transmission, chaos-MIMO block, its allocation into OFDM subcarriers, and
chaos symbol generation are introduced.

2.1 MIMO-OFDM Transmission

It is assumed that the numbers of MIMO transmit and receive antennas are Nt and Nr ,
respectively, and N is the number of OFDM subcarriers. Let FN be (N, N) discrete
Fourier transform matrix whose nth row and kth column is given by

Wnk
N = 1≥

N
exp

(
− j2πnk

N

)

The transmit n-th OFDM subcarrier from j-th antenna is denoted as Sj(n) at 1 √ j √
Nt and 0 √ n √ N − 1 (introduced in detail in Sect. 2.4). When they are denoted as
Sj = {Sj(0), . . . , Sj(N − 1)}, the transmit time-domain sequence from jth antenna sj

is obtained by the inverse discrete Fourier transform as

sj = {sj(0), . . . , sj(N − 1)}, sj = FH
N Sj
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Here, H means the conjugate transpose of matrix. In practice, a part of sj is duplicated
at the top of the OFDM frame as a guard interval (GI). However, it is assumed that
the signal processing of GI is perfectly done and is omitted in this study. When the
received symbols at i-th receive antenna are denoted as ri = {ri(0), . . . , ri(N −1)},1 √
i √ Nr , N-symbol impulse responseof L-path fading between jth transmit and ith
receive antennas is hij = {h0,ij, h1,ij, . . . , hL−1,ij, 0, . . . , 0}, and the noise symbols
at the receiver are ni = {ni(0), . . . , ni(N −1)}, then, the receive symbol can be given
by

rj(k) =
Nt∑

j=1

L−1∑

l=0

hl, ijsj(k) + n(k), 0 √ k √ N − 1

Similarly in the frequency domain, when the channel coefficients of OFDM sub-
carriers are denoted as Hij = {Hij(0), . . . , Hij(N−1)}, this is derived by Hij = FN hij.
After rj reception, the received OFDM subcarriers are obtained by the discrete Fourier
transform as

Ri = {Ri(0), . . . , Ri(N − 1)}, Ri = FN ri

2.2 Subcarrier Allocation of Chaos-MIMO Block to OFDM Frame

Let B(≡N) be the number of MIMO symbols per chaos-MIMO block. Then, NB
chaos-MIMO blocks are transmitted in one OFDM frame of N subcarriers. One
chaos-MIMO block consists of B subcarriers and NtB symbols. When b is the number
of chaos-MIMO blocks in OFDM frame at 0 √ b √ N/B − 1 and the corresponding
numbers of subcarriers are {nbB, . . . , n(b+1)B−1}, the block subcarrier allocation can
be denoted as

nbB+n = bB + n, 0 √ n √ B − 1 (1)

which is called as localized allocation in this study. Another distributed allocation
can also be considered as

nbB+n = nN/B + b (2)

which is called as interleaved allocation. These two types are evaluated. The fre-
quency allocation images are illustrated in Fig. 2.

n Hz
OFDM symbol (N subcarriers)

0 N/B
1 2

0
Localized allocation

interleaved allocation

N-1
b

b

0 1 20

0 1 1 2 2 N/B
- 1

N/B
-1

N/B
-1

N/B
-1

Fig. 2 Frequency allocation of chaos-MIMO into OFDM subcarriers (B = 2)
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2.3 Maximum Likelihood Sequence Estimation of Chaos-MIMO
Decoder

Let j-th transmit antenna B-column vector of b-th chaos-MIMO block be denoted
as Sj,b = {Sj(nbB), . . . , Sj(n(b+1)B−1)} and similarly i-th receive B-column vector of
that block is denoted as . Then, the corresponding frequency-domain channel matrix
is given by Hij,b = diag[Hij(nbB), . . . , Hij(n(b+1)B−1)] and MLSE decoding can be
conducted by

ŝC = arg min
sC

Nt∑

j=1

Nr∑

i=1

||Ri,b − Hij,bSj,b||2 (3)

where the chaos decoding and MIMO detection are simultaneously done on every
chaos MIMO block. Here, sC is the information vector described in the next sub-
section and ŝC is the decoded information vector.

2.4 Chaos-MIMO Transmit Symbols in One Block

Let NtB transmit information symbol sequence be denoted as

sC = {sC,1(0), . . . , sC,1(B − 1), sC,2(0), . . . , sC,Nt (B − 1)} (4)

= {sC,1, sC,2, . . . , sC,Nt }

where sC,j(k) means jth antenna and kth information symbol. MLSE in decod- ing
is conducted on this sequence unit. In this study BPSK modulation is assumed as
the first modulation (the second modulation is chaos multiplication) and one bit is
assigned to each sC,j(k). Hence,the number of MLSE decoding search is 2NtB. At
this MLSE of B-symbol block, the chaos coded modulation has been applied for a
longer sequence and the coding gain is obtained in addition to the physical-layer
encryption compared with the conventional MIMO-maximum likelihood de-coding
(MLD). However, as the tradeoff of the error rate improvement, the exponential
increase of decoding search for the B-length block is needed in the MLSE decoding.

Let the chaos symbols for encryption and encoding be denoted as

cC = {c(0), . . . , c(NtB − 1)} (5)

whose generation rule is described in Sect. 2.5. The chaos modulation is conducted
as second modulation for sC by the element multiplication (scalar product) of cC as

tC = sC ◦ cC = {sC,1(0)c(0), sC,1(1)c(1), . . . , sC,Nt (B − 1)c(NtB − 1)}
= {tC,1(0), . . . , tC,1(B − 1), tC,2(0), . . . , tC,Nt (B − 1)} (6)

= {tC,1, tC,2, . . . , tC,Nt }
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by this modulation the transmit symbol is scrambled. Then, tC is allocated into OFDM
subcarriers by

Sj,b = tC,j (7)

as bth block as described in Sect. 2.3.

2.5 Generation of Chaos Sequence

In (6), the channel coding gain is obtained when the chaos symbol cC correlated
by the transmit bits is multiplied to sC . Although the generation of cC is arbitrary
whenever it is correlated to source information, a chaos is used for simplicity in this
study because the signal can be easily generated by nonlinear equation. Furthermore,
cC is made as a random unit vector not to change the transmit power. In particular,
Bernoulli shift map [12] is used. Each chaos symbol c(k) of cC generated by

c(k) = exp{j2tan−1≈([sk]/∈[sk])}

where sk is the pseudo Gaussian noise symbol of

sk = 1/M
M−1∑

i=0

{(∈[cki] + ≈[cki]) exp(j8π [∈[cki] − ≈[cki]])}

here, k is 0 √ k √ NtB − 1 and cki is a chaos element signal of M independent
chaos. To make sk Gaussian noise, the number of chaos multiplexing M is set to
relatively large number such as 10. Since c(k) is a unit symbol, the encryption of
c(k) is conducted as a random phase shift and the transmission power is not changed.
Let M-column chaos element vector be denoted as

cM(k) = [ck0 . . . ck(M−1)], cki ∞ C, 0 < ∈[cki],≈[cki] < 1

the transmitter and receiver pair shares the initial chaos vector of

cM(0) = [c00 . . . c0(M−1)] (8)

thus, this vector cM(0) is the key signal of encryption and the proposed scheme is
categorized as the common key encryption. Here, cM(0) can be quantized to save the
system memory. cM(k) is iteratively modulated and processed in real and imaginary
parts, respectively, as follows.



A Chaos MIMO-OFDM Scheme for Mobile Communication 209

x0 =


⎧

⎪

∈[ck−1i] (bk = 0)

1 − ∈[ck−1i] (bk = 1,∈[ck−1i]) > 1/2)

∈[ck−1i] + 1/2 (bk = 1,∈[ck−1i]) √ 1/2)

(9)

y = ≈[c(k−1)i]

xl+1 = 2xlmod1, yl+1 = 2ylmod1 (10)

∈[cki] = xIte+bk ,≈[cki] = yIte+bk (11)

where bk is the {(k + NtB − 1)modNtB}-th bit of corresponding transmit symbol of
sC . By this cyclic shift modulation, the effect of convolutional coding is obtained
even in rate-one coding. (9) is the chaos modulation and (10) is the chaos shift map
equation. As (11), the chaos is processed Ite times to make a random signal and in
this study Ite is set to 19 by heuristic search. The configuration of c(k) may be widely
changed and the configuration itself can also be a secret key component.

3 Numerical Results

The BER performances are evaluated through computer simulations using the
simulation conditions listed in Table 1. It is assumed that the initial key is identi-
cal among the transmitter and the receiver, and the chaos synchronization is perfect.
The channel is assumed as i.i.d. equivalent power 8-path quasi-static Rayleigh fad-
ing on every antenna and OFDM frame, which is perfectly known to the receiver. To
obtain the average performance, the initial key vector of (8) is randomly changed at
every OFDM frame in this simulation. Figure 3 shows the BER performance com-
parison with original MIMO-OFDM transmission where the subcarrier allocation is

Table 1 Block diagram of chaos-MIMO-OFDM system

Modulation BPSK-OFDM

Num. of subcarriers N = 64
Num. of antennas Nt = Nr = 2
MIMO block length B = 2
Chaos Bernoulli shift map
Num. of chaos multiplexing M = 10
Num. of chaos processing Ite = 19
Initial chaos synchronization Perfect
Channel i.i.d. equivalent power 8-path quasi-static Rayleigh fading
Receive channel state inf. (CSI) Perfect
Transmit CSI N/A
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Fig. 3 Bit error rate performances in multipath fading channel

interleaved as (2) and B = 2 of one chaos-MIMO block consisting of two MIMO
vectors. Here, the power degradation due to GI insertion is taken into account in
the horizontal axis. It can be seen that the proposed scheme improved about 2 dB at
BER = 10−5 compared with the conventional unencrypted MIMO-MLD. It means
that both the physical-layer security and channel coding gain can be obtained in
the proposed scheme. The numbers of MLSE decoding search in the proposed and
conventional schemes are 2NtBN/B = 512 and 2Nt N = 256, respectively, and this
calculation increase is the tradeoff of the proposed scheme. Figure 3 also shows that
the BER of the proposed scheme with slightly different initial key, 10−3 different
in the real part, becomes almost 0.5, which means the secrecy is achieved and the
normal decoding cannot be done when the initial key of (8) is not shared.

Figure 4 shows the BER comparison for the different subcarrier allocations of
Fig. 2. Both of the localized and interleaved allocations have the gain for the conven-
tional MIMO transmission and a slight improvement is obtained in the distributed
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allocation. This is because the frequency-domain correlation of the channel coeffi-
cients is lower and more frequency-diversity effect can be obtained in the inter-leaved
allocation. Hence, the interleaved allocation has better performance when the fre-
quency selectivity of the channel is strong.

4 Conclusions

In this paper, we proposed a chaos-MIMO-OFDM transmission scheme and showed
that the physical-layer security and channel coding gain were obtained in the mul-
tipath fading environments. Compared with the conventional MIMO-OFDM trans-
mission, the coding gain is obtained in tradeoff with the increase of decoding calcula-
tion complexity. Furthermore, it was shown that the improved BER performance was
obtained by the interleaved subcarrier allocation. The proposed scheme will be more
effective in such as mobile multihop transmission where the upper-layer security
protocols can be omitted and the simple and secure transmission can be achieved.

For future study, the complexity reduction of MLSE and the application to mul-
tihop cooperative communication scheme will be considered.
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Acoustic Detection and Ranging Using
Solvable Chaos

Ned J. Corron, Mark T. Stahl, Jonathan N. Blakely and Shawn D. Pethel

Abstract Acoustic experiments demonstrate a novel approach to ranging and
detection that exploits the properties of a solvable chaotic oscillator. This nonlin-
ear oscillator includes an ordinary differential equation and a discrete switching
condition. The chaotic waveform generated by this hybrid system is used as the
transmitted waveform. The oscillator admits an exact analytic solution that can be
written as the linear convolution of binary symbols and a single basis function.
This linear representation enables coherent reception using a simple analog matched
filter and without need for digital sampling or signal processing. An audio frequency
implementation of the transmitter and receiver is described. Successful acoustic rang-
ing measurements are presented to demonstrate the viability of the approach.

1 Introduction

The wide bandwidth and aperiodic properties of chaos naturally suggest benefits for
high-resolution, unambiguous ranging in radar, sonar, and ladar systems [1–14]. An
obvious, conventional approach is to substitute chaos for the noise source in random-
signal radar. In such a system, a segment of the transmitted waveform is sampled and
stored, using a resolution defined by the signal bandwidth and the Nyquist sampling
criterion. The stored signal is then used in a correlation receiver to detect a return
signal and determine time of flight. The crosscorrelations are usually done digitally,
using a digital signal processor (DSP) and fast-Fourier transforms (FFT). In this
approach, the distinguishing properties of a chaotic waveform are not used: chaos is
simply a replacement for a widebandwidth, random source. In contrast, we recently
developed an alternative approach to detectionand ranging that truly exploits the
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properties of a chaotic waveform to alleviate the most expensive parts of random-
signal radar—i.e., sampling, digital memory, and digital signal processor—while
still maintaining the performance of a correlation receiver [13, 14]

This new approach uses chaotic waveforms generated by an analytically solv-
able nonlinear oscillator comprising an ordinary differential equation and a discrete
switching state [15, 16]. This hybrid oscillator admits an exact solution, which can be
written as the linear convolution of binary symbols and a single, fixed basis function.
This analytic representation is significant since it enables coherent reception using a
simple analog matched filter and only a few stored binary symbols.

In this paper, we present recent acoustic experiments that demonstrate this new
approach to ranging and detection. For these experiments, an amplified speaker emits
an audio-frequency chaotic waveform generated by an electronic realization of the
hybrid oscillator. The broadband, non-repeating, continuously transmitted waveform
sounds like noise. A complementary receiver circuit incorporates a matched filter for
the chaotic waveform. At repeated intervals, a sequence of symbols are detected
and captured from the emitted waveform, thereby defining a transmitted reference
signal for ranging. The captured symbol sequence is provided to the receiver, where
it defines a matched filter for the reference waveform. Practically, the symbols define
weights applied to elements of a microphone array, the outputs of which are summed
and linearly filtered. The output of the matched filter is a continuous signal that
is proportional to the cross-correlation of the transmitted and received signal at an
evolving lag. In operation, a consistent peak in the output of the matched filter
indicates a detected source, and a range estimate is derived by the time of flight for
the consistent peak.

The entire experimental system is realized using simple analog and digital elec-
tronic circuit components. Importantly, the receiver does not require waveform sam-
pling or digital signal processing for detection. Real-time measurements using only
an oscilloscope provide visible evidence of detection and ranging with the system.

2 Solvable Chaotic Oscillator

The central element of the ranging demonstration system is the audio frequency
oscillator shown schematically in Fig. 1. This electronic oscillator is a physical real-
ization of a chaotic system previously considered by Saito and Fujita [15] and Corron
et al. [16]. This circuit is a hybrid system, containing both an analog harmonic os-
cillator and digital logic circuits. The dynamics of the oscillator are equivalent to a
dimensionless hybrid model including a continuous scalar state v(t) and a discrete
binary state νs(t). The continuous- time dynamics are described by the differential
equation

d2ν

dt2 − 2βu
dν

dt
+ (ω2 + β2) · (ν − νs) = 0 (1)
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Fig. 1 Schematic representation of solvable chaotic oscillator used in the acoustic ranging experi-
mental system

where ω = 2π and 0 < β ≤ ln 2. Transitions in the discrete state are defined by the
guard condition

dν

dt
(t) = 0 ⇒ νs(t) =

{+1, ν ≥ 0
−1, ν < 0

(2)

meaning νs(t) is set to the sign of ν(t) whenever its time derivative vanishes, and
νs(t) maintains this value until the next critical point. In the circuit, s(t) is the logic
signal that determines νs(t). In this model, time is scaled by the natural frequency
of the damped oscillator such that linear oscillations have unit period.

It is easily verified that this oscillator admits an exact, analytic solution

ν(t) =
∞∑

m=−∞
sm · P(t − m) (3)

νs(t) =
∞∑

m=−∞
sm · φ(t − m) (4)

where each sm = ±1 and P(t) and φ(t) are fixed basis functions. In the solution,
each symbol sm modulates the fixed basis functions P(t) and φ(t) centered at time
t = m. Thus, it is correct to think of the symbol sm as the information emitted by the
oscillator at time t = m, and that the oscillator emits one symbol with each unit of
time. The fixed basis functions are

P(t) =




⎧

(1 − e−β)e−β
⎪

cos ωt − β
ω

sin ωt
⎨

, t < 0

1 − eβ(t−1)
⎪

cos ωt − β
ω

sin ωt
⎨

, 0 ≤ t < 1

0, 1 ≥ t

(5)

and
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Fig. 2 Analytic basis functions P(t) (black) and φ(t) (gray) for the solvable chaotic oscillator
model with β = ln 2

φ(t) =



⎧

0, t < 0
1, 0 ≤ t < 1
0, 1 ≥ t

(6)

which are shown in Fig. 2 for β = ln 2.
For the acoustic system, we implemented the oscillator in an electronic circuit

operating at roughly 10 kHz. The circuit is constructed using discrete analog and
digital components on a solderless breadboard. The negative resistor and the inductor
are realized using active circuits with operational amplifiers [17].

3 Acoustic Transmitter

The first advantage of using an exactly solvable chaotic oscillator is the availability
of a compact symbolic representation for efficiently sampling the transmitted signal
and storing a reference waveform. Here we show a transmitter design that achieves
this important functionality.

The complete transmitter is shown in Fig. 3. At the center of the transmitter is
the chaotic oscillator. The transmitted signal is the continuous state ν(t) of the free-
running chaotic oscillator, which is amplified and emitted by a conventional speaker.
The additional circuitry at the bottom of the transmitter schematic derives a clock
signal from the regular return times of the oscillator. The clock signal drives a binary
shift register, which uses the logic signal s(t) for the data input. A divide-by-N
counter circuit provides a signal to alternately enable and disable the shift register.
For our experimental system, we typically use N = 1024.

In operation, the free-running oscillator generates a chaotic waveform that is con-
tinuously emitted from the speaker. While the shift register is enabled, the symbolic
logic state s(t) is sampled for each return and stored in the shift register. At any time,
a fixed number M of the most recent values of the logic state s(t) are stored, which
correspond to a sequence of amplitudes sm generated by the freerunning oscillator.
Although the figure only shows an 8 bit shift register, for the acoustic system we use
an 11 bit register.
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Fig. 3 Transmitter for acoustic ranging system incorporating the solvable chaotic oscillator and a
shift register for storing symbols that define the reference waveform

After shifting N successive returns through the register, the shift register is dis-
abled by the signal from the divide-by-N circuit. When disabled, the contents of the
shift register are locked, thereby storing symbols that identify the signal transmit-
ted just prior to the disabling transition. These stored symbols effectively define a
reference waveform

νre f (t) =
0∑

m=1−M

sm · P(t − m) (7)

which can be used for detection and ranging in a correlation receiver. The number of
stored symbols is M , which defines the length of the reference waveform. Compared
to the usual Nyquist sampling criteria, this symbolic representation provides at least
an order of magnitude reduction in the sampling and storage requirements for the
reference waveform. The M symbols are provided to the receiver, along with the
disable signal (TRIG) to mark an initial time for determining range for a reference
waveform detected in the received signal.

A simulated oscillator waveform and shift register content is shown in Fig. 4. The
top plot shows the oscillator waveforms ν(t) and νs(t). The continuous waveform
ν(t) is the transmitted waveform emitted by the speaker. The middle plot shows the
clock signal that is extracted from the oscillator waveforms and defines the symbol
timing. The bottom waveform shows the trigger signal derived by the divide-by-N
operation from the clock signal. The shift register is disabled by the low-to-high
transition of the trigger signal. The arrows point to dots in the top plot that show the
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Fig. 4 Simulated transmitter waveforms, including the derived clock and trigger signals. Arrows
point to dots on the switching waveform to indicate the most recent eight symbols stored in the shift
register when disabled

most recent symbols captured and stored by the shift register when it is disabled.
These symbols define the reference waveform for the correlation receiver.

4 Correlation Receiver

The second advantage of using an exactly solvable chaotic oscillator is the avail-
ability of a simple matched filter for the basis function [16]. This filter enables the
construction of a simple correlation receiver for a chaotic waveform segment defined
by truncated symbol sequence [13, 14]. For the acoustic system, we implement a
receiver using discrete circuit components and without requirement for a DSP.

In the presence of additive white-Gaussian noise (AWGN) noise, a matched filter
is the optimal linear receiver for detecting a given signal [18]. The matched filter for
the reference waveform is mathematically equivalent to the correlation
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ξ(t) =
⎩ ∞

−∞
ν̃(τ ) · νre f (τ − t)dτ (8)

where ν̃(τ ) is the filter input. A peak in the output of the matched filter indicates a
strong correlation with the reference signal, indicating the strong likelihood that the
reference signal was present in the input.

Using the analytic form of the reference waveform (7), the matched filter (8) can
be written

ξ(t) =
⎩ ∞

−∞
ν̃M (τ ) · P(τ − t)dτ (9)

where

ν̃M (t) =
0∑

m=1−M

sm · ν̃(τ + m) (10)

is the weighted sum of the filter input at M equally spaced delays. Equation (9)
is a correlation of the summed signal νM (t) with the basis pulse P(t). Hence, this
equation can be implemented using a matched filter for the single basis pulse, which
was previously shown to be

dηp

dt
= ν̃P (t + 1) − ν̃P (t) (11)

dξ2
p

dt2 + 2β
dξp

dt
+

⎪
ω2 + β2

⎨
(ξP − ηP ) = 0 (12)

where ν̃P (t) is the filter input, η̃P (t) is an intermediate state, and ξ̃P (t) is the matched
filter output [16]. Consequently, a matched filter for the reference waveform is

dη

dt
=

0∑

m=1−M

sm · {ν̃(t + m + 1) − ν̃(t + m)} (13)

dξ2

dt2 + 2β
dξ

dt
+

⎪
ω2 + β2

⎨
(ξ − η) = 0 (14)

where η(t) is an intermediate state. Thus, the filter provided by Eqs. (13) and (14)
is an exact matched filter for the reference waveform (7) defined by the M stored
symbols, sm .

Significantly, the matched filter for the reference waveform is sufficiently simple
to enable analog implementation. That is, a DSP is not required to implement the
matched filter receiver. Practical considerations require an additional signal delay on
the filter input to make the matched filter causal.

Figure 5 shows a schematic analog implementation of the matched filter for the
acoustic ranging system. The received waveform impinges on a microphone array,
shown at top. The spacing of the microphones in the array is chosen to realize the
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Fig. 5 Acoustic correlation receiver that realizes a matched filter for the solvable oscillator. The
spacing of the microphones in the array is set to obtain the unit time delay specified in the matched
filter equations

evenly spaced time delays required of the filter input in Eq. (13). Differential am-
plifiers between adjacent microphones provide the difference signal of successively
lagged signals, which are multiplied by ±1 according to the symbols defining the
reference waveform. As a result, M + 1 microphones are required by the receiver.
The summed differences are integrated and drive the harmonic filter to generate the
matched filter output signal.

Fig. 6 Acoustic ranging system using solvable chaotic oscillator demonstrated in an anechoic test
chamber
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Fig. 7 Experimental acoustic detection and ranging observed in the receiver output using 64 av-
eraged matched filter output signals for the source speaker positioned at three different ranges in
front of the microphone array

5 Acoustic Detection and Ranging System

The transmitter and receiver were constructed and installed in an acoustically ane-
choic chamber for demonstration and test. The speaker was positioned at different
ranges in front of the microphone array, as shown in Fig. 6. The microphone array
contained twelve condenser microphones, so that the reference waveform was de-
scribed using M = 11 bits. A handheld digital oscilloscope, triggered on the disable
signal to the shift register, was used to monitor the receiver output.

Various transmitter and matched filter states were also connected to a computer
for data acquisition purposes.

In operation, a consistent peak in the matched filter output was evident at a delay
corresponding to the distance from speaker to microphone array. However, multiple
received waveforms are required to unambiguously identify the peak corresponding
to the signal path. From the matched filter output for a typical individual waveform,
a return peak is comparable to and indistinguishable from background noise, inter-
symbol interference, or waveform sidelobes. In particular, using a relatively short
reference waveform, the oscillator will naturally and randomly revisit each 11-bit
symbol sequence fairly often. However, a consistent, unambiguous peak emerges
when multiple receiver outputs are averaged, since the physical return provides the
only consistent peak. In the experimental system, waveform averaging is easily and
conveniently provided by the handheld oscilloscope. Typical outputs for 64 averaged
matched filter output signals are shown in Fig. 7, which shows the detection and cor-
rectly estimated range for three different speaker positions (using the TRIG signal
to define t = 0).
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6 Conclusions

Using an acoustic system, we experimentally demonstrated a novel approach to rang-
ing and detection that truly exploits the properties of chaos to simplify hardware and
signal processing requirements. This approach uses waveforms generated by a solv-
able chaotic oscillator that includes both continuous and switching dynamics. This
hybrid oscillator admits an exact analytic solution that offers two significant ad-
vantages. The first is a compact symbolic representation for efficiently sampling and
storing a reference waveform. The second is the availability of a simple matched-filter
receiver that can be constructed using low-cost, analog hardware. By exploiting these
properties, we built and demonstrated an experimental acoustic ranging system that
achieves comparable performance to the conventional random-signal approach while
avoiding the costly digital sampling, storage and signal processor requirements. This
successful demonstration proves the viability of this approach for ranging and detec-
tion, thereby enabling the development of new, low-cost sonar and radar technologies
using chaotic waveforms.
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Using Phase Space Methods for Target
Identification

Thomas L. Carroll and Frederic J. Rachford

Abstract The response of a radar or sonar target to a signal may be described by
an impulse response function, which means that the target may be considered as a
filter acting on a signal. It is known that filters are not exactly invertible, and this lack
of invertibility may be used to identify the particular target that reflected a signal.
We apply techniques from nonlinear dynamics to determine the probability that a
function exists between 2 signals. If 2 identical signals are filtered by the same filter,
then our statistic will indicate a high probability that a function exists between the 2
signals; if the 2 signals were filtered by different filters, then the statistic will show
a low probability that the 2 signals are related by a function. We demonstrate target
identification with both numerical simulations and acoustic experiments.

1 Introduction

Considering a radar (or sonar) target as more than a simple point scatterer brings up
the possibility of identifying the target based on the reflected signal [1]. The response
of a target to an incoming signal can be described by an impulse response function [2]

h(t, p) =
L∑

l=1

al (p)δ
[
t − Tl (p)

] +
M∑

m=1

bm (p) exp {sm [t − Tm (p)]} Θ [t − Tm (p)] (1)

where p indicates that the quantity is dependent on the aspect angle. The index l
is used for the specular reflections, while m is used for resonances. The coefficients
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bm and sm are complex, and Θ is the step function. The T ’s are the delay times for
each of the scatterers and resonances.

Based on Eq. (1), a target may be identified based on either the specular terms
or on the resonant terms. To use the specular terms, a range-cross range profile is
generated by matched filtering the signal reflected from the target and creating a
pattern of points from the large peaks in the output of the matched filter [1]. Pattern
recognition tools are then used to associate a particular pattern with a target. The
patterns are highly dependent on aspect angle, so it may be necessary to compare
many patterns for a particular target.

The resonant terms from Eq. 1 may also be used as identifiers [2–4]. The target
is illuminated with a pulse of length Tg . After a time t > Tg + Tm and t > Tg + Tl ,
only the complex exponentials remain in Eq. (1). These exponential terms are not
aspect angle dependent, so measuring the decaying exponential response of the target
allows one to identify the target for any aspect angle. The problem with identifying
the target using this transient information is that the transient soon decays to a level
below the noise background, so it’s difficult to measure a long enough portion of the
transient signal to identify the target. Other approaches to target identification use
adaptive waveform design [5–8].

2 Filter ID Method

Because the target response may be described by an impulse response function (1),
one may describe the target as a filter acting on a signal. Exact inversion of a filter
is not possible, meaning that there is no function that can input a filtered signal and
output the unfiltered signal. We are able to use this lack of invertibility as a means to
identify a particular filter, and therefore a particular target. If a signal s is reflected
from target A to give a reflected signal s(A), and s is also reflected from target B to
get s(B), then the fact that there is no function from s(A) to s, and no function from
s(B) to s implies that there is no function from s(B) to s(A) unless A and B are the
same target (and the same signal s is used).

The impulse response function (Eq. 1) has both angle dependent and angle inde-
pendent terms. The identification method described in this paper may be trained
using target responses collected over a window of aspect angles, so that the angle
dependent terms are averaged out, and identification is dominated by angle inde-
pendent terms. Target ID methods that depend on resonances also use these angle
independent terms [2–4], but unlike those methods that are based on short pulses, the
method described in this paper uses a long modulated pulse, allowing us to signal
average over a long pulse to improve the signal to noise ratio.

If the signals of interest are generated by deterministic dynamical systems, which
is always the case for radar or sonar signals, then the signals may be analyzed using
methods from the field of dynamical systems. There are algorithms from this field
for determining the probability that 2 signals are related by a function [9]. These
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algorithms depend on the concept of predictability ; if there is a function that inputs
A and outputs f (A), then one should be able to predict f (A) if A is known.

A deterministic dynamical system has a finite number of variables and a set of rules
that describes how these variables evolve over time. We may analyze the behavior
of the dynamical system by plotting the trajectory of the system in a phase space (or
state space), in which each axis corresponds to one of the variables from the system.
If the dynamical system is dissipative, this trajectory forms a pattern in phase space
called an attractor. Radar or sonar transmitters are examples of finite dimensional
deterministic dynamical systems, so radar or sonar signals may be analyzed using
dynamical systems methods.

Knowledge of the attractor for a system can be used to determine if one signal
is predictable from another signal. A typical dynamical system based on ordinary
differential equations , with a set of variables x = (x1, x2, . . . xd) may be described
by

dx
dt

= h [x] (2)

We also have the set of variables y = (y1, y2, . . . yd), where

y = f (x) (3)

Consider a set of variables near x, xa = (x1 + δ1, x2 + δ2, . . . xd + δd). If f is
continuous and differentiable, then as

δ ≥ 0, f (xa) ≥ f (x) = y. (4)

If we have the signals x and y, and would like to determine if y = f (x), we apply
the definition of Eqs. (2–4) by searching in the phase space of y for points that are
within some distance ε of y. We then locate the points with the corresponding time
indices on x, and measure the average distance δ between this set of points and x.
The size of this phase space radius δ is a measure of the probability that a function
exists from x to y. The smaller δ, the higher the probability there is a function. How
to define “small” is a statistical question that we won’t consider here, because we are
only interested in relative measurements, i.e. given signals y and z, which of these
signals is more likely to be a function of x.

2.1 Embedding

There is usually only one available signal from a radar or sonar, the signal that is
transmitted and reflected, but an object that is equivalent in many ways to the signal
vector x may be reconstructed from only one of the variables. It has been proven that
it is possible to reconstruct an object that is topologically equivalent to the attractor
for the dynamical system by using the method of delays [10, 11]. Using a digitized
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version s(i) of a continuous time signal s(t). a a series of delay vectors is created
from s(i):

s (i) = [
s (i) , s (i + τ1) , . . . s (i + τd−1)

]
(5)

where the dimension d and delay times τ j may be chosen by known methods [12, 13].
The set of these vectors over time form a reconstruction (also called an embedding)
of the signal s(i) in a phase space.

2.2 Function Statistic

When looking to see if a function exists between two signals embedded in phase
space, we estimate the probability that there is a continuous function between the
two signals by considering small neighborhoods in the phase space. If we want to
know if there is a function that transforms signal Y into signal X , we locate a group of
points on signal X that all fall within some small radius in phase space, and ask if the
corresponding points on signal Y also fall within some small region. It is necessary
to define what is meant by “small”, but the general idea is that the smaller the region
on signal Y , the more likely signal X is to be a function of Y . If signals Y and X are
both produced by applying the same filter to signal Z , then the small region in Y will
be at a minimum which is determined by the nearest neighbor distances on Y .

Our target ID algorithm treats a reflection from a radar target as a filter acting on
signal Z . The first time we see the target, we transmit signal Z and record signal
X . Later, we again transmit signal Z and receive signal Y . We then want to know if
signals X and Y are reflections from the same target.

In order to detect a difference between signals, we first embed a digitized reflected
signal x in a d dimensional phase space (or state space) by creating a series of delay
vectors x (i) = [

x (i) , x (i + τ1) , . . . x (i + τd−1)
]
. We then randomly pick some

index i1, 1 √ i1 √ P − τd−1, where P is the number of points on the time series.
The embedded delay vector corresponding to this index is x(i1).

We then look for points that are nearby neighbors to x(i1) in phase space. By
neighbors, we mean the set of points for which the distance

dnni =
√√
√
√

d−1∑

j=0

[
x

(
i1 + τ j

) − x
(
inni + τ j

)]2 (6)

is smallest. We find a group of M nearby phase space neighbors {x(inn1), x(inn2), . . .

x(innM )} and record the indices of all points: R(i1) = {i1, inn1, inn2 . . . innM }. We
then choose a new index point and find a new set of M neighbors, continuing until
we have examined some number N of index points. The recorded sets of indices
{R (i1) . . . R (iN )} form a reference which may later be used to identify this particular
target.
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To apply this reference, we then take a signal y which has been reflected from an
unknown target and embed it in a d dimensional phase space. To make sure that the
signal y is properly aligned in time with the reference x , we find the cross correlation
between x and y to find out τy , the amount by which y leads or lags x . We then
translate y by this amount so that it is aligned in time with x .

Next, from our previously recorded reference {R (i1) . . . R (iN )}, we retrieve
the indices of an index point and a set of neighbors. We examine the points
{y (i1) , y (inn1) , y (inn2) , . . . y (innM )} on the unknown signal corresponding to
these indices. If the unknown target is the same as the target used to create the
reference, these points will be neighbors, and will be close together in phase space.
If the unknown target is different from the reference target, the points on the unknown
signal will not be neighbors, and they will be far apart in phase space. We define the
phase space radius as

ε = 1

M

M∑

j=1

∣
∣y

(
innj

) − y (i1)
∣
∣ (7)

where the differences are Euclidean distances. The average of the phase space radius
over the entire signal as ≡ε◦ .

2.3 Aspect Angle Dependence

As described in Eq. (1), part of the signal reflected from a target may be independent
of the aspect angle Θ . It is possible to create a composite reference for a target that
combines data from a window of angles to produce a reference that works for any
angle within that window.

To produce a composite reference for a target, we follow roughly the same
set of steps as above, but we use reflected signals x(Θ j , t) from Nang different
angles Θ j . We choose an index point i1 and find the embedded points x

(
θ j , i1

)
,

j = 1, 2 . . . Nang on each of the signals corresponding to this index. We then
search for a group of indices {inn1, inn2 . . . innM } whose corresponding points
{x (

θ j , inn1
)
, x

(
θ j , inn2

)
, . . . x

(
θ j , innM

)}, j = 1, 2 . . . Nang fall within some min-
imum radius of the center point for all the signals, or for every angle,

max
k

(∣∣x
(
θ j , innk

) − x
(
θ j , i1

)∣∣) √ δ j = 1, 2 . . . Nang (8)

where k is the index of a nearest phase space neighbor. These points may have
different locations on different signals The distance δ is then the smallest distance
for which we can find M points that satisfy Eq. (8) for every angle (every value of j).
For an individual signal, this set of indices probably does not give the closest M
points to the center point.
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As previously, these point indices are recorded and then a new index is chosen for a
new set of center points. The set of recorded indices then forms a composite reference
for the particular shape. When an unknown signal y is received, this composite
reference is used to calculate ≡ε◦ .

2.4 Phase Space Strands for Noise Mitigation

The effect of noise on the phase space distance ≡ε◦ was discussed in [14]. In [15],
instead of searching for nearby points in phase space, a search was made for con-
tinuous portions of phase space trajectories called phase space strands. Phase space
strands may also be used with the target identification algorithm to aid in distin-
guishing targets in noisy situations. The strand method is essentially the same as
our phase space target identification algorithm, except that we compare distances
between continuous sets of points in phase space, rather than just single points.

Phase space strands were first used for dimension estimation [16]. A strand is a
group of consecutive points on a trajectory in phase space, rather than just one point.
In order to create a reference from the reflected signal x , we first choose an index
point on x . The strand of length ns starting with x(i0) is defined as

s [x (i0)] = [x (i0) , x (i0 + 1) , . . . x (i0 + ns − 1)] (9)

We then search for a number of strands s [x ( j)] on the signal x which have the
smallest Euclidean distance from s [x (i0)]. For a reference, we store the indices of
the starting points on these strands. When we want to compare to an unknown signal
y, we construct the strands y(i0) and y( j) and find the radius

ε = 1

Ns

Ns∑

j=1

√√
√
√

d∑

k=1

[y ( j + τd) − y (i0 + τd)]2 (10)

which is then averaged over all the indices in the reference to get ≡ε◦. As with the
single point method, a composite reference for multiple angles may be produced by
finding the set of strands that minimize the distance for the signals from all the angles
used to produce the reference (Eq. 8).

3 Finite Difference Time Domain Simulations

We tested the target ID algorithm with finite difference time domain (FDTD) [17]
simulations of several simple radar targets. In the FDTD code, we defined a target
shape, including types of materials used (all conductors for these simulations), and
an incident RF signal. The FDTD code then simulated the electromagnetic scattering
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Fig. 1 (Color online) Shell (top), cylinder (bottom), double ogive (top) and cone ogive (bottom)
models used in the FDTD simulations. All objects are 13 cm in diameter and 67 cm long

problem for the target and output a reflected signal. We began with two similar shapes,
a shape that approximated a 130 mm artillery shell, and a cylinder of the same size.
These two shapes are shown in Fig. 1 Both objects were 13 cm in diameter and 67 cm
long . We created a frequency modulated signal based on the chaotic map

z (n + 1) = 2.1z (n) mod 1 (11)

The frequency modulated signal was created from a series of concatenated sinusoids,
with the frequency of the n≈th sinusoid determined by ζ (n) = 1.0+β (z (n) + 0.5),
where β was used to vary the modulation bandwidth. The sinusoids were matched
in phase when one sinusoid ended and the other began. Mathematically, the nth
sinusoid of s was given by

s (i) = sin (2πt/ [20ζ (n)]) [i = 0, 1, 2 . . . , i < 20ζ (n)] (12)

If ζ(n) = 1, then the period of the sinusoid was 20 points.
The signal used with the FDTD simulations had a center frequency of 2 GHz and a

bandwidth of approximately 400 MHz. The length of one pulse was 5.97 ×10−7 s, or
1200 sinusoids (just over 63,000 points). The range resolution of the pulse, estimated
from its autocorrelation, was about 37.5 cm. We are not actually imaging the target,
but matching it to a reference, which is why we can use a low resolution signal. The
FDTD code transmitted each pulse as linearly polarized electromagnetic wave with
the electric field polarization in the plane of the target. The wave was transmitted
at 0∈ elevation and azimuthal angles from 0 to 20∈. The mono-static back scattered
pulse was collected in each instance and employed in this analysis. The grid size
used to model the missiles was 5 mm.
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Fig. 2 (Color online) Fraction of errors in determining which of 4 shapes is present, as a function
of added noise level. References for each shape were fitted for one angle or an angular window

3.1 Identification

We attempted to identify the different shapes when noise was present. For identifica-
tion in the presence of noise, we used four different shapes, a cylinder, a shell, a shape
consisting of two ogives back to back (the double ogive), and a shape containing a
cone and an ogive back to back (the cone ogive).

For the noise studies, bandpass filtered noise was added to all signals. The noise
was filtered to have the same bandwidth as the signals. We fitted composite references
to signals covering angular windows of widths from 1 to 8∈. We then compared
unknown signals recorded for individual angles within the same windows to these
composite references. For a given reference, if an unknown signal other than the
correct unknown signal (the signal reflected from the same shape used to create the
reference) gave a smaller phase space distance ≡ε◦, we counted the result as an error.
We then divide the number of errors by the number of comparisons; there are four
targets, and each is compared to the other three possible targets, so there are 12
chances to make an error. We also use 100 different realizations of the noise for each
angle comparison. The results are shown in Fig. 2.

In Fig. 2, the largest error fraction sometimes occurs when a reference is generated
from only a single angle. The errors are smaller for larger windows because when a
reference is fit over a range of angles, the noise for each individual angle is averaged
out, leading to a better reference. We confirmed this observation by repeating the
noise simulations when no noise was added to the signals used to create the references,
in which case the single angle reference gave the smallest error.

For all of these signals, the fraction of errors is only about 4 % for windows up
to 8∈ wide, even when the noise level is larger than the signal. The 4 shapes used
are very similar to each other, so distinguishing them is difficult, but the phase space
radius method is able to tell the difference even in the presence of noise.
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Fig. 3 The 2 glass vases (1 and 2) and the 2 bottles (1 and 2) that were used as targets. The ruler
at the top of the picture was 30 cm long. The dark objects under the vases are mounting posts used
to mount the vases.

4 Experiments

We used acoustic experiments as an inexpensive substitute for radar experiments.
The target ID method was tested in acoustic experiments using objects with similar
shapes and sizes. The targets were 2 glass vases and 2 bottles, shown in Fig. 3.

A speaker was driven with a frequency modulated signal based on a chaotic map.
The map was described by

z (n + 1) = 2.1z (n) mod 1 (13)

The frequency modulated signal was created from a series of concatenated sinusoids,
with the frequency of the n≈th sinusoid determined by ζ (n) = 1.0+β (z (n) + 0.5),
where β was used to vary the modulation bandwidth. The sinusoids were matched
in phase when one sinusoid ended and the other began. Mathematically, the n−th
sinusoid of s was given by

s (i) = sin (2πt/ [40ζ (n)]) [i = 0, 1, 2 . . . , i < 40ζ (n)] (14)

If ζ(n) = 1, then the period of the sinusoid was 40 points.
The center frequency of the signal driving the speaker was 10 KHz, and the band-

width was 2 KHz. The targets were mounted on a rotator that was approximately
2 m from the speaker. The reflected signal was recorded by a microphone placed just
below the speaker. Because of the short distance from speaker to target, the trans-
mitted signal was divided into 15 different pulses of 4 ms each. Each reflected pulse
was digitized at a rate of 500 KHz. The pulses were combined after digitization by
embedding all of them in the same phase space. Because of the large background
noise, each set of 15 pulses was transmitted 10 times, and the reflections were coher-
ently averaged in time to reduce noise. We used sound absorbing materials to lessen
the acoustic clutter in the experiment, but we did not use an anechoic chamber, so
clutter and noise were still present.
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For each target, a set of references was created by reflecting signals from the target
for each target rotation angle from 0 to 360 ∈. Each target was then dismounted from
the rotator. Unknown signals were then created by once again mounting each target
on the rotator and again reflecting signals from the target for angles from 0 to 360 ∈.
Creating separate reference and unknown signals allowed us to test if the target ID
method was robust to errors in target alignment and the different noise signals present
at different times. The signal to noise plus clutter ratio for the reflected signals varied
from +3 to −10 d B, depending on the target rotation angle.

As described in above, additive noise increases the phase space distances between
points or strands for an embedded signal. The changing signal to noise ratio for
different aspect angles of the targets will therefore affect the measurements of phase
space radius, altering the results of target identification. In order to minimize this
effect, filtered noise was added to the signals to equalize the signal to noise ratios.
The distance between closest strands in an embedded signal is proportional to the
noise level [15], so the distances to nearest neighbor strands for all signals were
used as an indicator of the signal to noise ratio; the smaller the distance, the smaller
the signal to noise ratio. A Gaussian random noise signal was filtered to match the
bandwidth of the reflected signals, and was added to each signal with an amplitude
proportional to the difference between the nearest strand distance for that signal and
the largest value of the nearest strand distance for all signals.

We reflected signals from each of the four targets as before, creating separate ref-
erence and unknown signals. For a given unknown signal, we calculated the average
phase space radius for each of the four references. For each comparison, we com-
pared a target return signal from one angle to references from every angular window
for every target. If a reference from the correct target gave the smallest phase space
radius, we recorded a correct identification; otherwise, we recorded an error. We
repeated the identification process for composite references that spanned windows
from 1 to 90∈. The references did not overlap, so the total number of references
ranged from 180 to 2.

Figure 4 shows the probability of making an error when deciding which of the
four targets is present from the acoustic experimental data. The probability of error
drops as the window width increases because using composite references for a large
range of angles averages out noise and target alignment errors. The fact that the error
probability drops as the window width increases also indicated that this target ID
method is most sensitive to resonances in the target, because these resonances are
independent of the aspect angle.

5 Conclusions

We were able to identify different targets based on the properties of their impulse
response functions. The results show that this target ID method is similar to ID
methods that use target resonances, but the current method uses long modulated
pulses, allowing for time averaging to improve the signal to noise.
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Fig. 4 Probability of making an error (Pe)when determining which of four targets was present,
as reference window widths were increased from 1 to 90∈. Target retruns from each individual
angle were compared to composite references fitted over larger windows. The probability of error
decreases as window width increases because the larger reference windows result in averaging of
the reference which reduces noise and alignment errors.

Because of limits in our experimental system, the signals we used for training
our method (the reference signals) were contaminated by noise. If we had low noise
training data, this method should be able to yield a lower probability of error.

The theory behind this method depends on all signals coming from low dimen-
sional dynamical systems, although the method will also work with randomly modu-
lated signals, and random signals have an infinite number of dimensions. The random
signal must be modulated onto a carrier in some way however, and while the global
dimension of this carrier may be infinite, the local dimension is finite. so the target
ID algorithm still works.
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Effect of Voltage Oscillations on Response
Properties in a Model of Sensory Hair Cell

Rami M. Amro and Alexander B. Neiman

Abstract Sensory hair cells in auditory and vestibular organs rely on active
mechanisms to achieve high sensitivity and frequency selectivity. Recent experi-
mental studies have documented self-sustained oscillations in hair cells of lower
vertebrates on two distinct levels. First, the hair bundle can undergo spontaneous
mechanical oscillations. Second, somatic electric voltage oscillations across the baso-
lateral membrane of the hair cell have been observed. We develop a biophysical
model of the bullfrog’s saccular hair cell consisting of two compartments, mechani-
cal and electrical, to study how the mechanical and the voltage oscillations interact
to produce coherent self-sustained oscillations and how this interaction contributes
to the overall sensitivity and selectivity of the hair cell. The model incorporates
nonlinear mechanical stochastic hair bundle system coupled bi-directionally to a
Hodgkin-Huxley type system describing somatic ionic currents. We isolate regions
of coherent spontaneous oscillations in the parameter space of the model and then
study how coupling between compartments affects sensitivity of the hair cell to exter-
nal mechanical perturbations. We show that spontaneous electrical oscillations may
enhance significantly the sensitivity and selectivity of the hair cell.

1 Introduction

Hair cells are peripheral sensory receptors in the inner ear of vertebrates which trans-
duce mechanical vibrations to electrical signals [1, 2]. External mechanical perturba-
tions are translated to electrical signals through the mechano-electrical transduction
(MET) channels located in the stereocilia, apical projections of the cell immersed in
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potassium (K) rich endolymph. Stereocilia are arranged in the hair bundle in rows of
increasing heights and linked by the so-called tip links. External mechanical pertur-
bations deflect the hair bundle causing the tension in the tip links to change, which
may elicit opening or closing of MET channels, mediating the influx of potassium
and calcium ions to the cell and thus changing the cell’s potential. Experimentally
observed extreme sensitivity and frequency selectivity of hair cells suggested several
mechanisms of active amplifications [1–3]. One of these mechanisms relies on active
dynamics of the hair bundle which can be placed at the verge of dynamical insta-
bility, i.e. Andronov-Hopf bifurcation, providing the cell with high sensitivity, sharp
frequency tuning curve and a compressive nonlinearity [4–6]. MET channels open in
concert and exert forces on the hair bundle, the phenomenon known as gating com-
pliance [7], resulting in a nonlinear force-displacement relation. In some hair cells
the gating compliance may result in a differential negative stiffness of the hair bundle
leading to its instability [8]. Combined with myosin-mediated adaptation [9, 10] this
nonlinearity results in spontaneous mechanical hair bundle oscillatory motion. In
particular, spontaneous oscillations of the hair bundle have been observed in many
lower vertebrates such as amphibian sacculus, or turtle basilar paplia [11–15] and
presumably responsible for the phenomenon of otoacoustic emissions in nonmam-
mals [11, 12, 16]. Importantly, spontaneous hair bundle oscillations are essentially
stochastic due to several thermal noise sources [17]. This natural stochasticity can
be reduced in coupled hair bundles [18, 19].

Intriguingly, the same type of hair cells show spontaneous oscillations of the
membrane potential. For example, several experimental groups reported on sponta-
neous voltage oscillations in saccular hair cells [20–23]. The functional role of these
large-amplitude voltage oscillations is currently not known. One suggestion is that
voltage oscillations provide additional feedback to the hair bundle dynamics which
may help to reduce thermal fluctuations and thus to improve sensitivity of the hair
cell [24]. Indeed earlier studies reported on reverse electro-mechanical transduction,
providing evidence for bi-directional coupling between the hair bundle complex and
the potential of the cell body [25]. Furthermore, transepithelial electrical stimula-
tion of hair cells elicits the hair bundle motion [26]. Finally, a recent experimental
study showed that somatic ionic conductances affect significantly the mechanical
oscillations of hair bundles. [27].

In this paper we develop a model of sensory hair cell which includes mechan-
ical and electrical compartments coupled bidirectionally. Sensitivity, frequency
selectivity and compressive nonlinearity are three main features of the hair bun-
dle dynamics [6]. We use the model to study how the coupling affects these three
feature of the hair cell dynamics.

2 Two Compartmental Model of a Hair Cell

Our two compartmental system is based on previously developed models for the
hair bundle mechanics and for the dynamics of the cell potential of the bullfrog’s
saccular hair cells. The coupling between the two compartments is bidirectional. The
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Table 1 Parameters of the mechanical compartment

Symbol Definition value

λ Drag coefficient of the hair bundle 2.8 μNs/m
λa Effective friction coefficient of the molecular motors 10.0 μNs/m
KGS Gating spring stiffness 0.75 mN/m
KSP Stereocilia pivots stiffness 0.6 mN/m
D Gating swing of MET channel 60.9 nm
T Ambient temperature 300K
Fmax Maximal motors force 55 pN
S Dimensionless Ca feedback strength 1.13
Po Open probability of MET channels
N Number of MET channels 50
ΔG Energy change on MET channel opening 10kBT

coupling from the mechanical to electrical compartment is due to direct mechano-
electrical transduction, i.e. due to the MET current [28, 29]. The coupling from the
electrical to mechanical compartment is mediated by the reverse electro-mechanical
transduction whereby the cell voltage affects the calcium ions concentration near the
myosin molecular motors controlling the adaptation rate of the hair bundle.

Several simple models were proposed to account for the active hair bundle
motion including spontaneous mechanical oscillations in the bullforg’s sacculus
[14, 17, 30–33]. In this paper we use a model proposed in [17, 31]. The overdamped
dynamics of the hair bundle are described by two stochastic differential equations:
first for the position of the bundle tip, X and second for the displacement of the
myosin motors, Xa along the stereocilia:

λ
d X

dt
= −KGS(X − Xa − D Po) − KSP X + Fext(t) + √

2kBT λη(t),

λa
d Xa

dt
= KGS(X − Xa − D Po) − Fmax(1 − S Po) + √

2kBT λaηa(t), (1)

Po(X, Xa) = 1

1 + A e−(X−Xa)KGS D/(NkBT )
, A = e[ΔG+KGS D2/(2N )]/(kBT ).

In Eq. (1) η(t) and ηa(t) are uncorrelated Gaussian white noise sources modeling
thermal noise due to Brownian motion, MET channel cluttering and stochastic bind-
ing and unbinding of adaptation motors [17]. The external stimulus enters the model
via the external force term Fext(t). Definition of parameters and their values are given
in Table 1 and are essentially the same as used in [17, 18]. The control parameters of
the hair bundle model are S and Fmax which determine the strength of calcium (Ca)
influence on adaptation motors and maximal force generated by the motors at stall
when all MET channels are closed, respectively.

The dynamics of the cell’s potential can be described by a Hodgkin-Huxley type
system developed in [21–23]. We used a modified version of this model described in
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details in [34]. The model includes 6 basolateral ionic currents and the MET current.
The current balance equation is

Cm
dV

dt
= −IK1 − IBKS − IBKT − IDRK − Ih − ICa − IMET, (2)

where IK1 is the inwardly rectifier potassium (K) current, IBKS and IBKT are
Ca-activated steady and transient K currents, Ih is sodium / potassium h-type current,
IDRK is the delayed rectifier K current and ICa is the Ca current. The equation for the
potential (2) is accompanied by equations for kinetics of ionic currents listed and for
intracellular [Ca2+], totaling 12 differential equations. The detailed description of
this system and parameters is provided in [34]. The control parameters of the electri-
cal compartment are the maximal conductance of inwardly rectifier current, gK1, and
relative strength of Ca-activated currents, bK. Depending on these two parameters,
the electrical compartment shows rich variety of oscillatory patterns including quasi-
periodic, bursting and chaotic oscillations [34]. By setting the fast activation variable
for the inwardly rectifier current (IK1) and [Ca2+] to their steady states we reduced
the dimension of the electrical compartment by 2. We verified that this reduction did
not change the voltage dynamics quantitatively.

Forward coupling from the mechanical to the electrical compartment is due to the
MET current entering in Eq. (2),

IMET = gMET Po(X, Xa)(V (t) − EMET), (3)

where EMET = 0 mV is the reversal potential potential and gMET is the maximal
value of the MET conductance, i.e. when all MET channels are open. The MET con-
ductance gMET thus serves as a “forward” coupling parameter. The dynamics of the
hair bundle depend crucially on the concentration of Ca ions at the adaptation motors
cite [Ca2+]M, which is determined by the open probability of MET channels and by
the potential of the cell V via electrodiffusion [14, 31]. For example, a decrease of
the receptor potential V enhances the influx of Ca ions through MET channels result-
ing in increase of [Ca2+]M which in turn inhibits the motor activity. This backward
“voltage to mechanics” coupling can be introduced via voltage-dependent calcium
feedback parameter S(V ) in Eq.(1) [24],

S(V ) = S0
f (V )

f (V0)
, f (V ) = εV

1 − eεV
, ε = 2qe/(kBT ),

where S0 is a value of the feedback parameter S at a reference potential V = V0 =
−55 mV and qe is the elementary charge. Since the voltage deviations are in the
range −80 to −30 mV, S(V ) can be approximated by its first order Taylor expansion
around the reference potential,

S(V ) = S0 [1 + α(V/V0 − 1)] , (4)
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where we introduced the dimensionless parameter α controlling the strength of the
backward coupling, such that α = 0 corresponds to the hair bundle uncoupled from
the variations of the receptor potential.

Two compartmental stochastic model composed of the hair bundle model (1)
and of the Hodgkin-Huxley type model for the membrane potential (2) coupled via
Eqs. (3) and (4) was studied numerically using the Euler-Maruyama method with the
time step 0.1 ms. The control parameters of both compartments were chosen such that
in the absence of coupling, stimulus and noise (α = 0, gMET = 0, Fext = 0, η =
ηa = 0), the hair bundle and the voltage were at a stable equilibrium. In particular we
fixed the parameters of the mechanical compartment at (Fmax, S) = (55 pN, 1.13),
and the parameters of the electrical compartment at (bK, gK1) = (0.01, 1.0 nS). The
coupling strengths gMET and α were then used as control parameters. Bifurcation
analysis of equilibrium states of the deterministic model, i.e. stochastic terms η,
ηa = 0 in Eq. 1, was performed using CONTENT continuation software package
[35]. We then explored spontaneous stochastic dynamics of the model versus the
coupling strengths. In particular we calculated the power spectral density (PSD) of
spontaneous hair bundle motion and then measured the quality factor Q of the main
peak in the specrum and the mean amplitude of spontaneous oscillations as a function
of the coupling strengths gMET and α.

The sensitivity and frequency selectivity of the hair cell were estimated using
periodic external force,

Fext(t) = F0 cos(2π fst), (5)

applied to the mechanical compartment (1). We calculated the time dependent aver-
ages of the hair bundle position, ≥X (t)√ and of the membrane potential ≥V (t)√ by
averaging over 300 realizations of stochastic terms η and ηa during 500 periods of
the external sinusoidal force. We then estimated the mechanical and electrical sen-
sitivities as the ratios of the first Fourier harmonic of these averages, X̃( fs); Ṽ ( fs),
to the amplitude of the stimulus, F0,

χ f ( fs, F0) = |X̃( fs)|/F0, χV ( fs, F0) = |Ṽ ( fs)|/F0, (6)

in units of nm/pN for the mechanical sensitivity χ f , and mV/pN for the electrical
sensitivity, χV .

3 Results and Discussion

In absence of coupling and noise the deterministic model is at a stable equilibrium,
i.e. the mechanical compartment is at equilibrium with most of MET channels closed,
Po ≡ 0.19 and the electrical compartment is at V = −53.5 mV. With the increase
of coupling, the equilibrium bifurcates to a limit cycle via the Andronov-Hopf (AH)
bifurcation. On the parameter plane (gMET, α) the lines of the AH bifurcations isolate
a region of spontaneous oscillations, shown in Fig. 1. In the region below the lower
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Fig. 1 Spontaneous dynamics of the hair cell model versus coupling strengths between mechani-
cal and electrical compartments. Left: Amplidute of the hair bundle oscillationhs versus coupling
strengths; the color bar in the right is in nm. Right: Quality factor Q of the main peak in the
power spectral density of the hair bundle oscillation. On both panels the AH bifurcation lines of
the deterministic system are shown by white lines. Points a, b and c indicate three different regions
discussed in the text

AH bifurcation line, most of MET channels are closed, while in the region above the
upper AH bifurcation line most of MET channels are open and the cell is depolarized.
In the region between the AH bifurcation lines the deterministic model exhibits large-
amplitude synchronous oscillations in mechanical and electrical compartments.
Thermal noise induces stochastic hair bundle oscillations even outside the determin-
istic oscillatory region. Figure 1 (left panel) shows that a region of large amplitude
mechanical oscillations extends below the lower boundary of deterministic oscilla-
tory region. Noise-induced bundle motion leads to opening of MET channels and
since the Ca feedback is relatively weak below the lower AH bifurcation line, adap-
tation brings the bundle back to the equilibrium position allowing large-amplitude
oscillation. On the contrary, above the upper boundary of deterministic oscillatory
region large values of the backward coupling α lead to weak adaptation resulting
in small-amplitude fluctuations of the hair bundle around the equilibrium with open
MET channels. This is illustrated in Fig. 2 which shows the hair bundle displacement
and the voltage traces at three points corresponding to three distinct regions on the
parameter plane of the system (cf Fig. 1).

The coherence of spontaneous oscillations quantified with the quality factor, Q, of
the main peak in the PSD of the hair bundle position, shows non-monotonous behav-
ior being maximal at the center of the oscillatory region (point b in the right panel of
Fig. 1). In the region below the lower AH line (point a in Figs. 1 and 2) the dynamics
of the system is dominated by noise resulting in noisy oscillations around the equilib-
rium with broad peaks in PSDs at the natural frequency determined by the imaginary
parts of the equilibrium’s eigenvalues. In the deterministic oscillatory region (point
b in Figs. 1 and 2) both compartments show synchronous and coherent oscillations
with sharp peaks in PSDs. Finally, the region above the upper AH line (point c in
Figs. 1 and 2) is characterized by overdamped small amplitude fluctuations with a
low-frequency Lorentzian type PSD. The effect of the backward electro-mechanical
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Fig. 2 Time series (left) and PSDs (right) of spontaneous mechanical oscillations (red, [nm]), and
membrane potential (black, [mV]) for the points shown in Fig. 1. Units of PSDs are [nm2/Hz] for
the hair bundle displacement and [mV2/Hz] for the membrane potential

Fig. 3 Influence of the electrical compartment on the hair bundle oscillation. Left: Quality factor
of the mechanical oscillation versus the backward coupling strength α for the fixed value of the
MET conductance, gMET = 1 nS. Right: PSD of the hair bundle displacement for indicated values
of α

coupling on the hair bundle dynamics is further illustrated in Fig. 3 showing that the
coherence of spontaneous hair bundle oscillations is maximized by the backward
coupling α.
Frequency response of mechanical and electrical compartments is shown in Fig. 4 for
a weak mechanical sinusoidal stimulus (5). Sensitivity of mechanical and electrical
compartments peaks at the frequency of spontaneous oscillations. Furthermore, the
peak values of sensitivity is largest for the coupling strength corresponding to the
most coherent spontaneous oscillations (cf Fig. 3, left panel). The sensitivity as a
function of the stimulus strength shown in the lower panels of Fig. 4, demonstrates
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Fig. 4 Effect of the backward coupling on sensitivity of the hair cell model to external periodic
force. Left column shows the mechanical sensitivity, i.e. the hair bundle sensitivity, χ f . Right
column shows the electrical sensitivity, χV . Top panels shows sensitivity versus stimulus frequency,
fs, for the fixed value of the stimulus amplitude F0 = 2 pN and for indicated values of the backward
coupling strength α. Bottom panels show the sensitivity versus stimulus amplitude, F0. For indicated
value of α the stimulus frequency was chosen to match the frequency of spontaneous oscillation.
Direct mechano-electrical coupling strength was fixed at gMET = 1 nS

the phenomenon of compressive nonlinearity. Both compartments respond linearly to
weak stimuli, while the sensitivity to stronger stimuli is suppressed. The differences
in response properties appear for strong stimuli F0 > 100 pN where the hair bundle
starts to respond linearly again, while the sensitivity of the electrical compartment
continues to decline. We note that similar effect was reported in [34] for voltage
response where a linear model for the hair bundle was used. We also note that the
backward coupling strength does not affect significantly the scaling of sensitivity
with the stimulus amplitude.

The hair bundle sensitivity was studied for a wide range of forward and backward
coupling strengths (gMET ◦ [0, 3]nS), (α ◦ [0, 2]). For each values of gMET and α

we estimated the maximum sensitivity by varying the stimulus frequency fs and
then plotted this maximum value of sensitivity as a color-coded map. The resulting
maximal sensitivity map is shown in Fig. 5, left panel. This map clearly shows the
existence of optimal coupling strengths at which the hair cell is most sensitive to
periodic perturbations. For a fixed value of the forward coupling strength gMET =
1.0 nS the sensitivity of the hair bundle peaks near α = 1.5, shown on the right panel
of Fig. 5, and corresponding well to the most coherent spontaneous oscillation (see
Fig. 3).

4 Conclusions

The role of active processes in operational performance of sensory hair cells is a
topic of intense current interest in sensory neuroscience [1–3, 36, 37]. In particu-
lar, the role of active hair bundle dynamics is a matter of debate [3, 6]. However,
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Fig. 5 Maximal sensitivity of the hair cell model to weak sinusoidal force, F0 = 1 pN. Left panel
shows maximal sensitivity of the hair bundle versus both forward (gMET) and backward (α) coupling
strengths. Right panel shows sensitivities of the hair bundle and membrane potential versus α for
the fixed value gMET = 1 nS

hair cells in lower vertebrates demonstrate also spontaneous oscillations of somatic
potential which presumably may affect mechanics of the hair bundle, or may be a
result of bi-directional coupling of mechanical and electrical constituents of the hair
cell. Unlike many previous modeling works which studied mechanical and electrical
dynamics separately, we constructed a model incorporating nonlinear mechanical
and electrical compartments coupled bi-directionally. We showed that spontaneous
oscillations may arise due to bi-directional coupling even when uncoupled com-
partments are quiescent. The coherence of oscillations can be enhanced by tuning
the coupling strengths between compartments resulting in enhanced sensitivity and
sharper tuning to weak periodic mechanical stimulus. At the same time, the model
shows other distinctive behaviors, such as compressive nonlinearity.
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Low-Pass Filtering of Information in the Leaky
Integrate-and-Fire Neuron Driven by White
Noise

Benjamin Lindner

Abstract The question of how noisy spiking neurons respond to external
time-dependent stimuli is a central topic in computational neuroscience. An impor-
tant aspect of the neural information transmission is, whether neurons encode pref-
erentially information about slow or about fast components of the stimulus (signal).
A convenient way to quantify this is the spectral coherence function, that in some
experimental data shows a global maximum at low frequencies (low-pass information
filter), in some other cases has a maximum at higher frequencies (band-pass or high-
pass information filter); information-filtering defined in this way is related but not
identical to the usual filtering of spectral power. Here I demonstrate numerically that
the leaky integrate-and-fire neuron driven by white noise (a stimulus without tem-
poral correlations) acts as a low-pass information filter irrespective of the dynamical
regime (fluctuation-driven and irregular or mean-driven and regular firing).

1 Introduction

Nerve cells in our brain transduce information about time-dependent stimuli like
visual or auditory signals into sequences of stereotype action potentials called spike
trains. An important aspect of neural information transmission is what are the most
important features that are encoded in the neural sequence of action potentials. One
important feature is the preferred frequency band in which neurons transmit infor-
mation or, put differently, whether neurons encode preferentially slow or fast com-
ponents of a time-dependent stimulus (signal). Experimentally one has seen both
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kinds of low-pass and high-pass filtering of information (not to be confused with the
common filtering of signal power). This raises the question about the properties of
neural dynamics or network properties that may lead to specific forms of information
filtering.

Simple neuron models like the stochastic integrate-and-fire model are able to
reproduce spiking statistics of cells in response to noisy currents to an astonishing
degree of accuracy [1, 2]. Upon changing the mean and variance of the current injec-
tion, IF models display transitions between distinct firing regimes: pacemaker-like
regular firing, the near-Poisson irregular firing with low rate, and the burst-like firing
with a coefficient of variation (Cv) beyond unity [3–5]. In the so-called nonlinear IF
model different response behavior with respect to additional stimulation is possible:
from non-resonant purely noise-controlled response function of the perfect IF model
to the resonances of the leaky, quadratic or exponential IF models [6, 7].

Despite all these differences for different nonlinearities of the model and despite
the existence of distinct firing regimes, a previous study [7] suggested that IF models
seem to share one property: they transmit most information about slow signal com-
ponents. This can be seen by looking at the coherence as a function of frequency: it
attains its global maximum at zero frequency. For the leaky IF model with selected
parameters, this has been found numerically already in the early 1970’s [8].

Here in this chapter, I discuss the coherence for the leaky IF model as a func-
tion of mean and intensity of its input fluctuations. It is shown that this model is
a low-pass filter of information in the sense that the maximum of the coherence is
at zero frequency. I also discuss how the half-width of the coherence behaves and
how it compares to other characteristic frequencies of the system, namely, the inverse
membrane-time constant and the firing rate of the model neuron. These results estab-
lish that for a white-noise driven leaky IF model a high-pass filtering of information
is not possible. If the latter is observed in a real neuron, this tells us that most likely
a more complicated dynamics than a one-dimensional IF model is involved.

2 Model and Measures of Interest

I consider a leaky integrate-and-fire (LIF) model with a noisy current input

v̇ = −v + μ + √
2Dbgξbg(t) + √

2Dstξst(t), (1)

which is complemented by a fire-and-reset rule: whenever v(t) crosses the thresh-
old vT , a spike is registered and the voltage is reset to vR and, after an absolute
refractory period τabs has passed, released to evolve again according to the above
equation. To reduce the number of free parameters, voltage is here defined as
the deviation from the reset (implying vR = 0) and is measured in multiples of
the reset-threshold distance (implying vT = 1); time is measured in multiples of the
membrane-time constant (see [5] for details of the transformation from the model with
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physical dimensions to the non-dimensional model considered here). Input parame-
ters are the constant base current μ, the intensity Dbg of the background noise ξbg(t)
(representing synaptic background fluctuations or channel noise), and the intensity
Dst of the stimulus ξst(t). Both background noise and stimulus signal are assumed
as Gaussian white noise with ≥ξi (t)ξ j (t √)≡ = δi, jδ(t − t √) (where i, j ◦ {bg, st}).

The information transmission of this spiking model can be quantified by means
of the spectral coherence function. To this end, one considers the Fourier transform
in a time window [0, T ]

x̃T (ω) =
T∫

0

dteiωt x(t) (2)

of the spike train
x(t) =

∑
δ(t − ti ) (3)

where the ti are the time instants of threshold crossings. The cross-spectrum of spike
train and stimulus and the spike train power spectrum are defined as follows

Sx,s(ω) = lim
T ≈∈

≥x̃(ω)s̃∞(ω)≡
T

, Sx,x (ω) = lim
T ≈∈

≥x̃(ω)x̃∞(ω)≡
T

. (4)

The coherence function for the input signal and the output spike train is the squared
correlation coefficient between input and output

Cx,s = |Sx,s(ω)|2
Sx,x (ω)Ss,s(ω)

(5)

and yields at each frequency a number between 0 and 1. Low or high information
transmission in a certain frequency band is indicated by a coherence close to zero or
one, respectively.

Generally, a system that shows under white-noise stimulation a coherence which
decreases (increases) with frequency can be regarded as a low-pass (high-pass) filter
of information. This kind of information filter is related but not identical with the
commonly considered power filter. A linear bandpass-filter, for instance, driven by
white background noise and a white noise stimulus would not act as an information
filter—its coherence is simply flat. One formal reason for this is that the frequency
dependences of cross-spectrum and power spectrum in Eq. (5) cancel out for a linear
system. When both signal and noise pass through the same power filter, the filter
cannot change the signal-to-noise ratio, which is what is essentially quantified by the
coherence.

Despite the linearity of Eq. (1), the spiking LIF neuron model is not linear; it
possesses the strong nonlinearity of the reset rule and thus we can expect that the LIF
model performs one or the other kind of information filtering and that this information
filter potentially depends on the firing regime that is set by the input parameters μ and
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D. For the LIF driven by white Gaussian current noise, we fortunately know all the
spectral functions of interest analytically. The cross-spectrum between input signal
and output spike train is given by the product of input spectrum (just the constant
2Dst) and the complex rate-modulation factor, the so-called susceptibility [9, 10]

Sx,s(ω) = 2Dst∇
D

r0iω

iω − 1

Diω−1

(
μ−vT∇

D

)
− eΔDiω−1

(
μ−vR∇

D

)

Diω

(
μ−vT∇

D

)
− eΔeiωτabsDiω

(
μ−vR∇

D

) (6)

where

Δ = v2
R − v2

T + 2μ(vT − vR)

4D

and Da(x) is the parabolic cylinder function [11]. The firing rate r0 is given by

r0 =
⎧

⎪
⎨τabs + ∇

π

(μ−vR)/
∇

2D∫

(μ−vT )/
∇

2D

dz ez2
erfc(z)

⎩

⎥
⎦

−1

. (7)

Alternative expressions for the susceptibility with vanishing refractory period have
been derived by Brunel et al. (see [12] and References there in).

The power spectrum of the spike train is given by [3]

Sx,x (ω) = r0

∣
∣
∣Diω

(
μ−vT∇

D

)∣
∣
∣
2 − e2Δ

∣
∣
∣Diω

(
μ−vR∇

D

)∣
∣
∣
2

∣
∣
∣Diω

(
μ−vT∇

D

)
− eΔeiωτabsDiω

(
μ−vR∇

D

)∣
∣
∣
2 (8)

In both these expressions, D = Dbg + Dst denotes the total noise intensity.
Combining Eqs. (6) and (8), the coherence of the LIF model reads:

Cx,s = 2Dst

D

r0ω
2

1 + ω2

∣
∣
∣Diω−1

(
μ−vT∇

D

)
− eΔDiω−1

(
μ−vR∇

D

)∣
∣
∣
2

∣
∣
∣Diω

(
μ−vT∇

D

)∣
∣
∣
2 − e2Δ

∣
∣
∣Diω

(
μ−vR∇

D

)∣
∣
∣
2 (9)

It can be seen that the absolute refractory period does enter this expression only
via the firing rate and, hence, has no effect on the frequency dependence of the
coherence. Increasing τabs leads only to an overall reduction of the coherence. For
this reason, we consider in the following the special case of a vanishing refractory
period τabs = 0.

If we want to graphically illustrate the above results, this requires the numerical
evaluation of the parabolic cylinder function at complex-valued index, a nontrivial
task that can be achieved using software like MapleTM or MathematicaTM. An alter-
native way to determine cross- and power spectra is the threshold-integration method
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by Richardson [13], which can be easily implemented in common programming lan-
guages like C and can be readily extended to nonlinear IF models. In this work, I
have mainly used the latter method but verified for selected parameter sets that this
provides the same results as the explicit result evaluated in Maple16TM.

Note that for fixed total noise intensity D the stimulus intensity Dst only scales
the coherence function by a factor Dst/D . For this reason we set in the following
D = Dst implying Dbg = 0. With the same total noise intensity D, the coherence
function with finite Dbg is obviously smaller than without intrinsic noise [8]. This is
not in contradiction to the fact that the LIF displays stochastic resonance [9] because
to see the latter phenomenon, we should keep the signal amplitude constant and vary
the background noise intensity Dbg; in this case the total noise intensity is not fixed.
Indeed, if μ < vT , the coherence at any frequency (proportional to the signal-to-
noise ratio for periodic stimulation at this frequency) passes through a maximum as
a function of Dbg [10].

3 Results

In Fig. 1 we show examples of power spectra, cross-spectra, and coherence functions
for an LIF in the fluctuation-driven firing regime of high irregularity (a) and the
mean-driven firing regime of rather regular firing pattern (b). For the setting in the
fluctuation-driven regime, the steady state firing rate is r0 → 0.16 and a coefficient
of variation of the interspike interval is about Cv → 0.835 while for the parameters
in Fig. 1b we have a higher firing rate r0 → 0.924 and a considerably lower Cv →
0.166. Despite pronounced differences in the cross—and power spectra, that reflect
differences in the spiking statistics and in the response to time-dependent signals, the
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Fig. 1 Power spectrum (top panel), cross-spectrum (mid panel) and coherence as functions of
frequency in the mean-driven regime (a) and the fluctuation driven regime (b) with mean input μ

and total noise intensity as indicated in the figure.
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coherence function in both cases attains its maximum at zero frequency and decays
quite rapidly with increasing frequency.

The only qualitative difference occurs around the frequency comparable to the
firing rate: the LIF in the regular (mean-driven) firing regime possesses a local
minimum at this frequency, whereas the coherence of the LIF in the irregular
(noise-induced or fluctuation-dominated) firing regime decays monotonically with
frequency. Given that coherence has a global maximum around zero in both cases
and given that the main share of information is transmitted in this low-frequency
range, these difference appear as rather unimportant.

How can we quantify whether this low-pass behavior of the coherence is present
for all combinations of base currents and noise intensities? To this end, we can
consider a number of characteristics of the coherence function that are illustrated in
Fig. 2.

We can first of all find the global maximum of the coherence curve as a function
of frequency for various combinations of base current μ and noise (signal) intensity
D. In the broad range of values considered, this yields always ω = 0 as the frequency
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Fig. 2 Coherence function for μ = 1.2 and D = 0.1. Indicated are the maximum, Cmax, the
half value of the maximum (dotted line), and the frequency ωc at which this half value is attained
(vertical line)
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Fig. 3 The maximum (a) and the half-width (b) of the coherence between the driving noise and
the output spike train as a function of the base current μ and the noise intensity D.
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of this global maximum. In Fig. 3a, we show this maximum value of the coherence
Cmax = Cxs(ω = 0) as a function of the base current μ and the noise intensity D.
This value increases both with the noise intensity (here also the signal amplitude)
and the base current. In the limit of large base current, the coherence approaches one
which agrees with the limit for a perfect IF model, in which a leak term is absent. The
main reason for this increase in the maximum value of the coherence is the increase
in firing rate with growing base current - with an increasing number of spikes per
unit time it becomes possible to encode an arbitrary slow stimulus (corresponding
to the coherence at ω = 0, i.e. its maximum) arbitrarily reliable. In the opposite
limit of negative base current, the firing rate becomes exponentially small and thus
the coherence is essentially zero unless a large noise intensity compensates for the
decrease in base current.

As a measure of the bandwidth over which the LIF transmits the stimulus, I con-
sider the (minimal) frequency ωc at which the coherence attains half of its maximal
value (cf. Fig. 2); ωc is in the following referred to as the half-width. Also of interest
is the ratio of this (cyclic) frequency to the frequency associated with the inverse
membrane time constant (which we set to one):

α = ωc

2π
. (10)

The parameter α will tell us whether the half-width is constrained by the inverse
membrane time constant or not. In Fig. 3b α is plotted as a function of μ and D
illustrating that for low firing rate (for μ < 1 and small noise intensity D), the
coherence halfwidth is smaller than the inverse membrane time constant, while at
higher firing rate (in the mean-driven firing regime with μ > 1) the information
bandwidth is not limited by the membrane-time constant. In particular in this latter
regime it is also instructive to compare ωc to another typical frequency in the system,
namely the firing rate:

β = ωc

2πr0
. (11)

Because r0 is also measured in multiples of the membrane time constant, the latter
drops out of the ratio β.
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In Fig. 4 it becomes apparent that at high firing rate (large μ, small D), the
halfwidth is determined mainly by the firing rate - the inverse membrane time constant
does not play a role in this limit. There seems to be a saturation at about half of the
width of the firing rate, i.e. frequencies sufficiently below the firing rate (smaller by a
factor of two or three) are transmitted reliably (C(ω) > 0.5). Expressed in multiples
of the firing rate, the information bandwidth diverges in the opposite limit of vanish-
ing firing rate. Here, however, one should keep in mind that in terms of the inverse
membrane-time constant the halfwidth is still very small in this limit (cf. Fig. 3b).

4 Summary and Conclusions

In this chapter I have inspected the coherence function of a leaky integrate-and-
fire neuron driven by white Gaussian noise. In accordance with previous findings
at selected parameter sets [7] I have found that the LIF neuron acts as a low-pass
filter on information about a time-dependent uncorrelated Gaussian stimulus for a
broad range of input parameters. I have studied the magnitude and halfwidth of the
coherence function. At low firing rate (subthresholdμ and small noise intensity D) the
coherence is generally low and its half-width is constrained by the inverse membrane
time constant (which was one in our units). At high firing rate (for suprathreshold
μ > 1), information transmission is high up to frequencies that are well below the
firing rate; for large μ, the halfwidth seems to be given by ωc → πr0.

Results from Ref. [7] indicate that low-pass information filtering is also prevailing
in other integrate-and-fire models, as for instance, the perfect and the quadratic IF
neurons. The bandwidth inspected here, however, may certainly differ. It is, for
instance, known that the coherence of the perfect IF model at zero frequency is
always one irrespective of the parameter values (similar to what seems to be the limit
of the LIF model for μ ≈ ∈). Furthermore, the halfwidth is solely controlled by the
noise intensity [7]. The numerical methods by Richardson [13], which were applied
here to the LIF can be also applied to the perfect and quadratic IF models as well as
to the so-called exponential IF model [2, 6].

Desirable would be also to analytically study the coherence of a general nonlinear
IF model at low frequencies: the conjecture of low-pass information filtering entails
a negative curvature of the coherence at low frequencies that may be provable by
perturbation methods. Unfortunately, this is already highly nontrivial for the LIF
model for which we know the exact result for the coherence, namely, Eq. (9) but lack
a simple small-frequency expansion that would permit to determine the sign of the
curvature at ω = 0.

The results achieved in this paper indicate that the LIF model is unable to repro-
duce cases of information highpass-filtering that have been observed in experiments.
At the population level the coding by synchronous spikes provides a coherence func-
tion that is suppressed at low frequencies [14], an experimental observation that has
been modeled and theoretically analyzed with populations of LIF neurons [15]. At the
single-cell level possible candidates for information filtering are short-term synaptic
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plasticity (however, see [16] but also [17]), spike-frequency adaptation [18], or sub-
threshold oscillations [19, 20]. Also the effect of temporally correlated background
spiking [21] or synaptic filtering of uncorrelated input [22] will result in colored
instead of white background noise and may thus lead to a decrease or increase of
the coherence at low frequencies compared to the case of white noise. Filtering of
information, regarded as a simple form of information processing, could thus assign
(an additional) functional role to certain biophysical features of the neural dynamics.
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Application of High Performance Computing
for Simulating the Unstable Dynamics
of Dilute Spark-Ignited Combustion

Charles E. A. Finney, Miroslav K. Stoyanov, Sreekanth Pannala,
C. Stuart Daw, Robert M. Wagner, K. Dean Edwards, Clayton G. Webster
and Johney B. Green

Abstract In collaboration with a major automotive manufacturer, we are using
computational simulations of in-cylinder combustion to understand the multi-scale
nonlinear physics of the dilute stability limit. Because some key features of dilute
combustion can take thousands of successive cycles to develop, the computation
time involved in using complex models to simulate these effects has limited indus-
trys ability to exploit simulations in optimizing advanced engines. We describe a
novel approach for utilizing parallel computations to reveal long-timescale features
of dilute combustion without the need to simulate many successive engine cycles
in series. Our approach relies on carefully guided, concurrent, single-cycle simu-
lations to create metamodels that preserve the long-timescale features of interest.
We use a simplified combustion model to develop and demonstrate our strategy for
adaptively guiding the concurrent simulations to generate metamodels. We next will
implement this strategy with higher-fidelity, multi-scale combustion models on large
computing facilities to generate more refined metamodels. The refined metamodels
can then be used to accelerate engine development because of their efficiency. Similar
approaches might also be used for rapidly exploring the dynamics of other complex
multi-scale systems that evolve with serial dependency on time.

1 Introduction

Gasoline-fueled internal combustion engines are by far the most widely used
passenger car engine type in the U.S. Because of their performance, low cost and
fuel flexibility, it is very likely that these engines will continue to play a dominant
role for several decades [1, 2]. With anticipated changes in Corporate Average Fuel
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Economy (CAFE) standards, automotive manufacturers are examining engine
innovations such as dilute combustion, boosting and downsizing, and advanced
fuel-injection concepts. The implementation of these technologies could help increase
the energy efficiency of passenger vehicles and reduce U.S. dependence on petroleum.

Gasoline-fueled engines initiate combustion with an electric spark after air and
fuel have been introduced and compressed in the cylinder. Combustion begins at the
spark plug as a complex mixture of hot ionized gases and molecular free radicals
and then propagates in a 3-dimensional flame front through the remaining unreacted
gas mixture. The quality of the combustion (i.e., how much of the released energy is
available to generate piston work and how many unwanted reaction byproducts are
produced) depends on how fast and far the reaction front propagates in the highpres-
sure and temperature environment before it extinguishes or the exhaust valve opens.

Recently, manufacturers have utilized charge dilution to increase fuel efficiency
and reduce emissions. Charge dilution is accomplished by adding excess air or
recirculated exhaust gas to the fuel-air mixture in the combustion chamber prior
to ignition. The extra gas slows combustion and lowers peak temperature, result-
ing in less heat loss, higher piston work, and less nitrogen oxide formation. Up to
a point, dilution can be beneficial, but when sufficiently high, flame initiation and
propagation become unstable. As the stability limit is approached, complex com-
bustion oscillations begin to grow rapidly. These oscillations are frequently referred
to in the engine literature as cyclic dispersion, since they result in large combustion
variations from one engine cycle (intake, compression, power, and exhaust piston
strokes) to the next. The precise location of the stability limit depends on many dif-
ferent design and operating factors, so it is not usually possible to predict a priori
where the limit will be for a given engine at any instance. This has forced engine
manufacturers to adopt wide safety margins, thereby denying them the full benefit
of charge dilution.

Engine manufacturers are now heavily investing in computational simulations to
understand combustion instability. A major challenge is that many of the associated
dynamical features are very subtle, span the entire 4D spatiotemporal space, and/or
are infrequent. Some of the complexity is due to nonlinear feedback from prior
engine cycles, so it is often necessary to simulate hundreds or thousands of sequential
engine cycles in order to observe the important events. For experimental engine
studies, recording thousands of consecutive cycles is a standard capability, but it
is still not possible to get the 3D space distribution of all the relevant quantities.
For detailed computational simulations that simultaneously account for multiple
physical processes at different scales of space and time, the computational overhead
and clock time required represent high costs. In addition, given the serial nature
of cyclic dispersion, one cannot easily exploit the current generation of massively
parallel computers. In this paper we describe efforts to develop a methodology for
exploring the dilution stability limit that exploits the capabilities of detailed multi-
scale, multi-physics models and high-performance parallel computing. We expect
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this methodology and the insights it generates will provide opportunities to accelerate
development of more efficient gasoline engines.

Computer simulation of internal combustion engines has been studied for decades.
The models used have ranged from very simple, zero- or first-order approximations
with low accuracy but fast computational speed to very detailed, complex codes
with high computational overhead. Typically, in models utilizing computational fluid
dynamics (CFD), the primary objective has been to account for the interactions
between the turbulent flow field and detailed chemical reactions and heat transport.
Because of the computational cost and limited concurrency, such simulations have
not been very useful for studying dynamics over many sequential cycles, (e.g., to
view extreme, rare events).

Recently, some CFD models have incorporated large-eddy simulation (LES)
to more accurately represent the links between turbulent mixing and combustion
instability over a limited number (25–100) of successive engine cycles [3–5]. Such
studies provide important insights into some aspects of dilute combustion instability,
but they are not sufficient to understand the longer-timescale combustion oscillations.
Also, they can only address limited parameter spaces, because very long run times
(e.g., 30–40 h) are required to compute a single engine cycle on typical workstations
(e.g., 32-core machines), translating to several months of computations for ∼ 102

successive cycles. Direct scale-up of LES simulations to large numbers of processors
(104) is not practical because of the small number of in-cylinder computational grid
points (e.g., ∼ 106 − 107), and the inter-processor communication time becomes
overwhelmingly high as these problems are decomposed onto a large number of
processors.

As described below, utilization of surrogate models or metamodels is an important
part of our approach. Such models have been the subject of recent research, partic-
ularly in systems and controls settings [6–8]. Typically, these models are used to
develop control strategies or to better understand the mechanisms behind important
dynamic transitions [9]. We plan to use these models to construct sampling techniques
so that we can perform several independent engine-cycle simulations to reconstruct
the dynamics exhibited by many sequential cycle-to-cycle variations. These devel-
opments are an important basis in our efforts to understand and conceptualize the
complex nature of engine combustion.

2 Technical Approach

2.1 Parallel Computation Methodology

We address the computational challenges of engine combustion simulation via a
two-phase approach: (1) replacing simulations of many engine cycles with multiple
concurrent single-cycle simulations to generate metamodels; and (2) utilizing the
resulting metamodels for further studies of combustion instability in both serial and
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Fig. 1 The concurrent modeling strategy replaces serial combustion simulations over many engine
cycles with multiple single-cycle simulations

massively parallel computations. The primary focus of this paper is to summarize
recent progress toward the first phase, in which we have studied how to implement
concurrent engine simulations in an adaptive manner to generate metamodels that
accurately reflect the important dynamics. In the second phase, we will utilize the
metamodels to rapidly explore much larger parameter spaces by utilizing the structure
of the input-output response and concurrent single-cycle simulations than what would
be possible with the current detailed combustion models used to simulate cycle-
to- cycle variations in series.

Figure 1 compares our adaptive concurrent simulation strategy with traditional
serial simulation. The key difference is that we substitute single-cycle engine simu-
lations for long multi-cycle simulations. For each of the single-cycle simulations, we
start with different values (chosen according to a sampling scheme) of model para-
meters and/or initial conditions. The resulting responses are then analyzed to find the
parameters and initial conditions having the most significant impact on combustion
stability. These parameters and conditions are then further explored adaptively to
refine knowledge of their impact on combustion. In order to improve our adaptive
metamodel-building algorithm and demonstrate the feasibility of this approach for
engines, we initially employ a simplified engine combustion model (outlined in the
next subsection) that is computationally inexpensive but still has the correct global
dynamics. By using the simplified model to establish our basic methodology, we
expect to reduce costs and maximize the efficient use computing resources. Further,
we expect it to be more straightforward to demonstrate the accuracy of the initial
metamodels compared with the simple model. Once our adaptive concurrent simu-
lation strategy has been fully demonstrated with the simple combustion model, we
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Fig. 2 The initial metamodels will be refined using simulations with more highly detailed physical
models. Exploration of the detailed physical model response surface will be guided by the initial
metamodels and make further use of concurrent adaptive simulation

plan to repeat the metamodel-building procedure with highly detailed CFD combus-
tion models (see Fig. 2 for a conceptual schematic of implementation). These more
detailed simulations will be carried out on massively parallel computers, using the
advantages of parallel computation as much as possible. In the end, the ultimate
objective is to create and use refined metamodels, which can better exploit paral-
lel computational scaling, to more intensively explore the combustion instability
hyperspace.

2.2 Simple Physical Combustion Model

The simple combustion model that we employ for developing our initial adap-
tive metamodel-generation scheme uses a lumped-physics approach to approxi-
mate propagating-flame combustion in a single-cylinder, four-stroke, spark-ignited
internal combustion engine. We provide a brief description here to illustrate the
major components of this model. Similar models have been widely studied and
apply equally to EGR dilution.

We assume that a gaseous propane (C3H8) fuel is mixed with a set ratio of air,
defined as the equivalence ratio (denoted ϕ, which here is defined as the actual fuel-
air ratio divided by fuel-air ratio needed to exactly oxidize all the fuel; ϕ < 1 is
fuel-lean), as the incoming charge. The assumed combustion stoichiometry is:
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C3H8 + 5(O2 + 3.76N2) → 3CO2 + 4H2O + 18.8N2. (1)

The cool intake charge is introduced into the engine cylinder and mixes with any hot
exhaust gases from the previous cycle which did not get expelled from the cylinder
during the exhaust stroke. The amount of the exhaust gas feeding forward to the
next cycle is referred to as the residual fraction and typically ranges from 5 to 20 %
in different operating modes. Residual gases are important because they change the
initial conditions of the succeeding cycle and are one of the main drivers for cyclic
dispersion; residual gas with unburned fuel changes the cylinder effective equivalence
ratio away from the nominal value and thus affects combustion.

Once the intake valve closes, the mixture is compressed as the cylinder volume
decreases as the piston travels toward its farthest range of motion (termed ‘Top dead
center’), and pressure and temperature rise. At a certain defined point near top dead
center, combustion is initiated with energy input by a spark. In a simple model, the
cumulative mass fraction of fuel which burns (MFB) follows a Wiebe exponential
form [10]:

MFB(θ) = 1 − exp
[
−a · θm+1

]
, (2)

where a and m are shape factors, and θ is a normalized time term to complete
combustion. In engines, it is useful to demark time by the angular crankshaft position,
which rotates 720◦ in a four-stroke engine cycle. Figure 3 shows a representative form
of the Wiebe function relating the mass fraction burned to the normalized combustion
duration (on a crank-angle basis).

We also include a global energy balance over the cylinder that accounts for heat
loss, friction, and piston work. During the power stroke, the charge continues to burn
as prescribed by the Wiebe function. When the piston reaches a preset expansion
angle, the exhaust valve opens and most of the hot cylinder contents leave the cylin-
der, except for the residual gases, whose composition and temperature depend on
conditions at valve opening. The work delivered by the piston depends on combus-
tion phasing, that is, the crank angle at which combustion initiates. If combustion is

Fig. 3 Form of the Wiebe
function at nominal values
of a = 5 and m = 2
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Fig. 4 Functional form of
combustion efficiency with
respect to equivalence ratio

too early (while the piston is still compressing the charge), very large pressures are
produced, but work output is low. If combustion is initiated too late, both pressure
and work are low. For this reason, phasing is treated as a model input parameter, and
it is subject to some natural variations due to the cylinder conditions (e.g., chemistry,
turbulence, etc.).

As noted in the Introduction, combustion becomes unstable as the fuel charge is
diluted by excess air or recirculated exhaust gases. The net fraction of fuel consumed
in each cycle is referred to as the combustion efficiency, and this drops off sharply
when dilution reaches a certain critical level (see Fig. 4). The physics behind this
behavior relates to the details of flame propagation and has been described in sev-
eral ways, including percolation theory [10–12]. The sharpness of the transition is a
strong contributor to combustion instability, and can lead to bifurcated cycle-to-cycle
oscillations as dilution increases. For our simple model, we employ a simple func-
tional form of the combustion efficiency with effective equivalence ratio that mimics
the behavior seen in percolation models and also matches experimental observations.

Although the above model is relatively simple compared to detailed in-cylinder
CFD models, it generates many key global combustion variables, including crank-
angle-resolved fuel and oxygen concentrations, cylinder pressure, and temperature
and integrated cycle-resolved variables including residual gas fraction and temper-
ature, net piston work, and net fuel conversion. For this initial study, we chose net
fuel conversion (expressed in terms of heat release) as a key indicator of combustion
quality; this we term the quantity of interest. Depending on the particular needs,
however, other relevant quantities of interest or a metric based on combinations of
variables may be defined.

2.3 Adaptive Sampling Methodology

While direct Monte Carlo (MC) simulation lends itself to parallel computation, it is
not an efficient way to explore the multi-dimensional response surface of complex
models because it probes the hyperspace randomly. Furthermore, the MC approach
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does not offer the ability to construct a surrogate approximation of the system with
respect to the desired parameters. On the other hand, exhaustive combinatorial explo-
ration of the surface (i.e., tensor product combinations of parameters) is also inef-
ficient since the number of required simulations grows exponentially as dimension
(number of parameters) increases. In this work, we efficiently explore the parame-
ter space with use of adaptive sparse grid sampling, which chooses new simulation
conditions as knowledge of the dynamics increases. Our initial goal is to identify the
most efficient implementation using a simple model representation and then apply
it to simulations with more detailed physical combustion systems to create refined
metamodels.

Briefly, sparse grid sampling originated as an alternative quadrature technique
used to approximate high-dimensional integrals [13], where linear combinations of
only a few tensor product abscissas are chosen to maintain the asymptotic accu-
racy of the corresponding full tensor product approximation. Later, it was trivially
extended to multi-dimensional interpolation, where hierarchical global Lagrange-
type polynomials or local piecewise nodal polynomials are utilized [14, 15].
Moreover, adaptive refinement is achieved by setting a tolerance for the hierarchical
surplus of the polynomial basis, which allows high-dimensional approximations in
regions of interest [16–19].

For our purposes, we adaptively approximate the multidimensional model
response surface by a sparse linear combination of simpler interpolating functions.
However, due to the possible steep gradients and/or sharp transitions, we utilize a
linear piecewise (local) polynomial basis rather than a global polynomial approach;
extending the one-dimensional basis to a multi-dimensional sparse approximation is
not trivial. In what follows, we use our implementation of the sparse grid adaptive
algorithm 847 [20]. In the future, we intend to extend this approach to the even more
efficient sparse grid adaptive wavelet method [19].

3 Discussion of Preliminary Results

For this first phase, we studied the simple physical model response at two nominal
equivalence ratios, ϕ = 0.8 and 0.7. The behavior at ϕ = 0.8 is relatively simple,
which unperturbed is a period-1 condition; for ϕ = 0.7, a period-2 condition is
observed, as the critical transition point is approached with certain parametric varia-
tions. The parameter space is described by 8 variables relevant to the physical model:
(1) the start of combustion (phasing); (2) a perturbation to the nominal fueling equiva-
lence ratio; (3) a perturbation to the combustion rate parameter (m); (4, 5) coefficients
(α and β) of the POD modes of the combustion chemistry; (6) the residual fraction;
(7) the residual temperature; and (8) cylinder molar charge at intake valve closing.
(Feedback variables include parameters 4–8.) Reasonable ranges of each parameter
are defined, and a sampling grid is defined within a normalized range of each para-
meter according to the adaptive sparse-grid sampling scheme. The simple physical
model exhibits very sharp changes in combustion with small parametric changes, and
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Fig. 5 2D projection of sparse grid using full (left) and adaptive (right) approach

hence we use a piecewise linear adaptive approximation of the response surface. For
a two-dimensional projection of the problem, adaptive iteration allows us to achieve
the same accuracy with only 210 adaptive points as opposed to 1537 full sparse grid
points. In eight dimensions, the computational savings of using an adaptive approach
is more than 10 times. For example, Fig. 5 depicts a map of sampling points over the
normalized range of parameter variations. The adaptive sparse grid samples where
most needed, while still maintaining accuracy, resulting in a significant reduction in
the number of required sample points.

Using the adaptive sparse grid method with concurrent simulation of the simple
physical model, we produced a metamodel which faithfully captures even the sharp
nonlinear transitions of the simple model dynamics. Such faithful approximation is
seen in Fig. 6, which displays the output of parameter β based on a 2D projection of
the input parameters (as described above). The response surface matches that of the
original model very well, with a few small wrinkles which are due to the piecewise
linear nature of the basis functions.

The metamodel also approximates the dynamical behavior of the simple physical
model faithfully. This is revealed in the different dynamical features visible at the
two equivalence ratios of interest. These features are highlighted in Fig. 7, which
compares symbol-sequence histograms generated by the simple physical and meta-
models for consistent values of the input parameters at the nominal equivalence
ratios of 0.8 and 0.7. The specific symbolization scheme used in this figure is based
on partitioning the global combustion heat release into eight equiprobable regions
(symbols), with each value on the horizontal axis representing a unique sequence of
two successive symbols (with the sequence converted from octal to a decimal index);
the vertical axis reflects the relative frequency of occurrence for each sequence. Such
symbol statistics have proved to be useful for describing the noisy behavior of engine
cyclic combustion variability [21].

In Fig. 7, the relatively flat histogram on the left (for ϕ0 = 0.8) represents expected
random variations about the equiprobable value of 1/64, which is consistent with
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Fig. 6 Response of parameter β based on a 2D projection of parameters β and the other seven
parameters, for the simple physical model (top) and the metamodel (bottom). The metamodel
captures the sharpness of the surface, but because of the approximation scheme, the surface has
very small wrinkles missing in the original model surface

noisy combustion variations around a fixed point. At increased dilution (ϕ0 = 0.7
on the right), the sharp peaks at certain sequences reflect the deterministic feedback
effects from residual gas in the simple physical model, which lead to large combustion
oscillations.

4 Summary and Next Steps

We have described a methodology to explore the long-time-scale dynamics of a
computationally expensive engine combustion model by using concurrent single-
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Fig. 7 Symbol-sequence histograms comparing simple and metamodel dynamics for equivalence
ratio of 0.8 (left), dominated by stochastic variations, and 0.7 (right), dominated by deterministic
effects

cycle simulations guided by adaptive sparse-grid sampling of the parameter
hyperspace. We believe this methodology is especially suited for implementation
on massively parallel computing architectures and will prove to be a significant
advance over direct serial (in cycles) simulations with detailed multi-scale physical
combustion models for studying rare and complex combustion instabilities.

Using a simple physical model which captures the global dynamical trends in
observed engine behavior, we have applied the methodology to generate a combustion
metamodel that appears to accurately mimic the nonlinear features of the simple
physical model. With this metamodel, it is possible to very rapidly explore the long-
timescale dynamics for a very large range of parametric variations. In addition, the
metamodel structure is readily amenable to efficient scaling on massively parallel
computing architectures (such as Titan at Oak Ridge National Laboratory, which has
more than 300,000 CPU cores and over 18,000 GPUs).

In this next phase of this research, we will be implementing a limited number
of high-fidelity LES simulations, with detailed combustion chemistry, on high per-
formance computing facilities at the National Center for Computational Sciences.
We will utilize the concurrent adaptive simulation methodology and the initially
generated metamodels to guide the high-fidelity simulations to maximize the infor-
mation produced. This information will, in turn, be used to construct more refined
metamodels. With the latter, we will explore detailed questions posed by our industry
collaborators regarding the fundamental nature of dilute combustion instability and
how it can be controlled to meet fuel efficiency and emissions targets.
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Investigating the Use of Manifold Embedding
for Attractor Reconstruction from Time Series

Lucas A. Overbey and Colin C. Olson

Abstract Spatio-temporal analysis of a time series from a complex dynamical
system often requires reconstruction of the state-space attractor from observations
of a single state variable. The standard approach takes advantage of the Takens delay
embedding theorem to obtain the reconstruction. We investigate here a modification
which makes use of nonlinear spectral graph techniques for learning the underlying
manifold from high-dimensional data. Specifically, we examine how well diffusion
maps and locally-linear embedding recover system dynamics and their sensitivity
to parameters. Analysis is conducted using individual observations of the chaotic
Lorenz and Hénon attractors. We show that manifold embeddings, given selected
parameter choices, can improve forecasting capability for chaotic time series.

1 Introduction

Many biological, environmental, and mechanical systems exhibit chaotic behavior
[1–3]. Given limited observations of the system it is often useful to reconstruct
the state space in order to better analyze its dynamics. Takens’ seminal embed-
ding theorem [4] provides a mechanism for unfolding the attractor from a single
observed time series. Suppose we wish to characterize a system, represented by the
multidimensional phase space that evolves such that x(n + 1) = F(x(n)), where
x(n) = [x1(n), x2(n), . . . , xd(n)].
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Given an observation which is assumed to be a scalar projection of a system’s
dynamics, s(n) = S(x(n)), Takens’s theorem guarantees that we can construct a
dE -dimensional space that inherits many of the dynamical properties of the original
d-dimensional system X. The reconstruction unfolds the dynamics by taking time-
delayed copies of the observation:

y(n) = [s(n), s(n − T ), . . . , s(n − (dE − 1)T )], (1)

where T is an integer multiple of the sampling time chosen such that the dynamics
are optimally unfolded in a minimum number of allowable dimensions dE .

Much work has focused on finding the delay T and dimension dE that properly
unfold the attractor without the complexity associated with unnecessarily large
dimension [5–7]. However, construction of this state space does not necessarily
provide enough information for a full dynamic analysis. For example, one may
wish to forecast a chaotic system’s future state given current observations. While the
delay-reconstructed attractor provides the capability to produce other measures of the
system dynamics, predictions are still inherently difficult because of the sensitivity
to initial conditions exhibited by chaotic systems.

It may be constructive to investigate reconstructions that orient trajectories in
phase space such that one can improve certain analyses. Broomhead and King [8]
employed a singular-value decomposition (SVD) to map the time-delay embedding
into a set of empirical orthogonal functions (EOFs) in Y, weighted and ranked by
their corresponding principal components (PCs). The PCs are found by projecting
onto the principal axes of the dE -dimensional ellipsoid that best fits the covariance of
the data in Y in the least-squares sense. This idea has spawned the burgeoning field
of singular spectrum analysis (SSA) [9, 10], which has proven useful for obtaining
meaningful information about the spatial and temporal characteristics of the under-
lying system. The SSA construction is optimal when the underlying dynamics are
linear. However, nonlinear processes will generally produce data lying on a curved
manifold (representative of the state-space attractor), with non-Gaussian distribu-
tions unrepresentative of the ellipsoid used for identifying the PCs.

An alternative approach can be derived from static high-dimensional data ana-
lytics, where alternatives to PC analysis have been introduced to account for data
lying on highly nonlinear manifolds. Many of these manifold learning approaches
attempt to preserve local distance-based structures through spectral graph techniques,
and have wide applicability in dimensionality reduction [11] and semi-supervised
learning [12]. Recently, these techniques have begun to manifest in nonlinear time
series analysis [13, 14], but their applicability is not fully understood. Giannakis
and Majda [13] evaluated Laplacian eigenmaps as a technique for decomposing the
state space analogous to SSA, but did not look at whether such techniques pre-
serve system dynamics. Suetani and Akaho [14] attempt to employ ISOMAP as a
dimensionality-reduction mechanism for a one-dimensional model embedded using
a higher-dimensional delay-embedded observation.

Here, we use two manifold learning techniques, diffusion maps [15] and locally
linear embedding (LLE) [16], to perform a nonlinear mapping of the reconstructed
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state space that takes advantage of the actual nonlinear structure of attractor man-
ifolds. We demonstrate that given the right manifold learning parameters, one can
preserve the global invariant properties of the attractor. However, we find that for the
purposes of time series forecasting, it may be advantageous to manipulate the man-
ifold such that the global properties are not preserved; by, for example, embedding
such that normally close but divergent trajectories are instead separated from each
other such that selected near neighbors traverse similar paths through the state space.
Results are shown for the chaotic Hénon map [17] and Lorenz system [2].

2 Manifold Embedding

Given the time-delayed embedding constructed as in Eq. (1), SSA involves an SVD
decomposition,

Y =
dE∑

i=1

uiκi v≥
i , κi √ 0, (2)

where κi are the singular values and ui and vi are the left and right singular vectors,
respectively. The weighted and ranked set of EOFs are:

E =
dE∑

i=1

viκi . (3)

This type of projection can yield poor representations if the underlying manifold is
not linear [12, 15]. We utilize alternative decompositions based on manifold learning
to account for nonlinear geometric structure in attractor manifolds. Given the context
of nonlinear time series analysis based on a reconstructed phase space, we refer to
these new approaches as manifold embeddings.

2.1 Locally Linear Embedding

LLE [16] is an unsupervised learning algorithm that computes neighborhood-
preserving embeddings of high-dimensional or nonlinear inputs. By preserving linear
reconstructions of local neighborhoods, LLE is able to learn the global structure of
nonlinear manifolds. It has been applied to many machine learning problems includ-
ing image and text classification. Typically, the LLE procedure involves a mapping of
statically-generated high-dimensional data. Introducing this concept for a dynamics
application, we describe the analogous procedure implemented on a time-delayed
reconstruction of the state space Y (Eq. (1)). For each point on the reconstructed
attractor, the Δ nearest neighbors to that point are found based on geodesic distances.
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LLE then computes weights Wi j by minimizing the cost function:

ϕ (W ) =
N∑

i=1

|Yi −
Δ∑

j=1

Wi j Y j |2,
Δ∑

j=1

Wi j = 1, (4)

where N is the number of points on the attractor.
Next, the original attractor is mapped onto a new vector Z such that most of the

data is represented in the first few dimensions. This mapping is done by minimizing
the new cost function:

Ξ(Z) =
N∑

i=1

|Zi −
Δ∑

j=1

Wi j Z j |2, (5)

where the weights Wi j are now fixed and the coordinates Z are optimized. Equation (5)
is minimized by solving a sparse N × N eigenvalue problem, whose eigenvectors
provide an ordered set of orthogonal coordinates centered at the origin.

Thus, a manifold embedding using LLE will produce a ranked mapping of the
reconstructed attractor that preserve local neighbor distances. Note that this is not
guaranteed to preserve global invariants in the dynamics as the temporal relationship
of points is not taken into account. Therefore, depending on the choice of neigh-
borhood size Δ , the manifold embedding based on LLE may result in dynamically
different attractors.

2.2 Diffusion Maps

An alternative approach similarly seeks to reorganize data based on its underlying
geometry such that local relationships between nearby points are preserved. However,
diffusion maps [15] achieve this through a local similarity measure that represents
a time-dependent diffusion process. Given a reconstructed attractor Y, the connec-
tivity of nearby points on the manifold can be expressed by a normalized likelihood
function, k(Yi , Y j ), known as the diffusion kernel. The diffusion kernel is symmet-
ric (k(Yi , Y j ) = k(Y j , Yi )) and positivity preserving (k(Yi , Y j ) √ 0). A common
choice is the Gaussian kernel,

k(Yi , Y j ) = exp (−|Yi − Y j |2
κ

). (6)

Given the positivity preserving property, the connectivity can be related to the kernel
function by

connectivi t y(Yi , Y j ) = p(Yi , Y j ) = 1

vY
k(Yi , Y j ), (7)
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where p can be viewed as the transition kernel of a Markov chain on Y, and
Pi j = p(Yi , Y j ) is the row-normalized diffusion matrix. vY here is a normalization
constant. In terms of a random walk, Pi j represents the probability for a single step
taken from i to j , and Pt

i j is the same probability over time t (or analogously, path
length in a graph).

Next, we define the diffusion metric based on this structure, which measures the
similarity between two points i and j in the observation space based on the probability
of reaching point j from point i in t steps. The diffusion distance is

Dt (Yi , Y j )
2 =

∑

n

|Pt
ik − Pt

nj |2. (8)

Dt (Yi , Y j ) is more robust to noise perturbation than several other mapping tech-
niques, for example, those that involve geodesic distances, because it involves a
summation over all paths of length t connecting Yi to Y j . The diffusion distance in
the state space Y becomes the Euclidean distance in the new diffusion space Z. We
can perform this mapping using an eigendecomposition of the diffusion matrix Pi j :

P = V−1K,

Z =
dE∑

m

φt
mθm, (9)

where V is the a diagonal matrix consisting of the row-sums of K, φm are the eigen-
values, and θm are the eigenvectors.

Like LLE, the scale parameter (in this case κ for a Gaussian kernel) is critical
to the character of the mapping. We are preserving diffusion distances which are
based on random walks across not-necessarily temporally-correlated points. Again,
global invariants of the dynamics are not guaranteed to be preserved. In the following
sections, we investigate what embedding parameters will better preserve invariants
and what parameter choices will produce the best results for a forecasting application.

2.3 Chaotic Attractor Embeddings

We illustrate these new embedding approaches by employing them on simulations of
two well-known models capable of exhibiting chaos: the Hénon map and the Lorenz
system. The Hénon map [17] is described by:

xn+1 = yn + 1 − ax2
n ,

yn+1 = bxn . (10)
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(a) (b)

(c) (d)

Fig. 1 Reconstructed canonical (chaotic) Hénon map attractor, using a delay embedding, b SVD
embedding, c manifold embedding with LLE (Δ = 60), and d manifold embedding with a diffusion
map κ = 200

We utilize parameters a = 1.4 and b = 0.3 which yield chaotic dynamics. After
removing transients, the time-delayed attractor is reconstructed using xn as the obser-
vation. dE is selected using the popular false nearest neighbors approach [6], and
the delay T is chosen based on the average mutual information [5]. Note that while
Broomhead and King [8] utilized a delay T = 1 to construct the embedding prior to
performing SVD, we found that the “proper” delay as found by the mutual informa-
tion performed better in our subsequent analyses in the remaining sections.

The reconstructions are shown in Fig. 1. SVD provides a linear transformation of
the delay embedding, scaled by covariance ranks. LLE and diffusion map embeddings
produce results somewhat akin to the SVD embedding in these examples. Here we
chose large bandwidth parameters for both LLE (Δ) and diffusion map (κ ), such that
global distances are better preserved in the mappings. LLE provides the least similar
embedding.

We utilize a similar approach to embed and map the chaotic Lorenz ODE:

ẋ = κ(y − x),

ẏ = x(ε − z) − y,

ż = xy − ωz, (11)
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(a) (b)

(c) (d)

Fig. 2 Reconstructed chaotic Lorenz attractor, using a delay embedding, b SVD embedding,
c manifold embedding with LLE (Δ = 60), and d manifold embedding with a diffusion map
κ = 200

where κ = 10, ω = 8/3, and ε = 28 for a chaotic regime as originally described
by Lorenz [2]. We simulate the Lorenz using a step size νt = 0.1. Removing
transients and embedding x using a similar procedure to the Hénon map, the first
three coordinates of the embeddings are shown in Fig. 2. Here, the SVD and diffusion
map approaches produce visually similar results. The main difference between the
two lies in the saddle point region of the Lorenz, where the diffusion map tends
to squeeze the trajectories together in the first two coordinates resulting in a spiral
trajectory in the third coordinate. The LLE projection is again the least similar and
produces an asymmetric embedding between the two “butterfly wings” of the Lorenz.
We conjecture that the large bandwidth of the diffusion map embedding leads to a
fully populated adjacency matrix which better represents global dynamics in contrast
to the banded (local) structure of the LLE adjacency matrix.

3 Global Dynamic Invariants

The goal of Takens’ theorem [4] is to reconstruct the dynamics of the state space using
only a single observed time series. This reconstruction conserves global invariant
properties of the dynamics as long as a reliable embedding dimension dE and time
delay T are chosen. To test whether a selection of these properties are conserved
through manifold embedding, we look at estimations of the Lyapunov spectrum [18]
and correlation dimension [19].
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3.1 Lyapunov Exponents and the Kaplan-Yorke Dimension

Lyapunov exponents (LEs) of a dynamical system describe the rate of separation
of infinitesimally close trajectories in phase space. A chaotic system is typically
characterized by at least one positive LE, with the sum of the exponents less than
zero, thus conserving the dissipative nature of the system. A useful extension to the
Lyapunov spectrum is the Kaplan-Yorke dimension [20], which provides an upper
bound for the information dimension of the system. This measure is defined as:

DK Y = j +
j∑

i=1

φi

|φ j+1| , (12)

where φi are the LEs in descending order and j is the maximum integer such that
the sum of the j largest exponents is non-negative.

To estimate the LEs and DK Y from a reconstructed phase space, we employ the
method described by Sano and Sawada [21]. The process involves estimation of the
flow operator An for a fiducial point Xn by comparing the t forward trajectories of
its nearest neighbors, with a renormalization at each step n using the Gram-Schmidt
procedure.

We compare the first φ1 and DK Y for several different embedding approaches
and parameter choices (Table 1). One can see that, given large enough bandwidth
parameter choices for the manifold embedding methods, one can adequately maintain
the properties of the Lyapunov spectra. Although not shown, it is also imperative to
make proper dE and T choices to preserve these properties for all listed approaches.

Table 1 φ1, DK Y , and λ results for different embedding approaches

System Embedding method dE κ K φ1 DK Y λ

Hénon System 2 – – 0.418 1.26 1.21
Hénon Delay emb 2 – – 0.418 1.26 1.19
Hénon SVD 2 – – 0.420 1.27 1.20
Hénon LLE 2 – 60 0.420 1.27 1.18
Hénon Diff map 2 200 – 0.432 1.21 1.25
Lorenz System 3 – – 8.77E-3 2.07 2.04
Lorenz Delay emb 4 – – 9.07E-3 2.35 2.04
Lorenz SVD 3 – – 1.11E-2 2.16 2.12
Lorenz LLE 3 – 60 1.12E-2 2.17 2.00
Lorenz Diff map 3 200 – 1.11E-2 2.16 2.12
Lorenz Diff map 3 1.0 – 9.86E-2 2.28 1.26
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3.2 Correlation Dimension
Correlation dimension is an alternative measure of (fractal) dimensionality of strange
attractors. For a phase space X, the correlation integral can be calculated by [19]:

C(σ) = lim
n≡◦

g

N 2 , (13)

where g is the number of pairs of points whose distance is less than σ . For sufficiently
large and evenly distributed points, the correlation integral (for small values of σ )
will take the form:

C(σ) ≈ σλ, (14)

where λ is the correlation dimension. The results for correlation dimension in Table 1
are comparable to LE results, showing that one can maintain global invariants in the
dynamics through manifold embedding, but again, care must be taken to ensure
proper parameter choices.

4 Forecasting

Given the above results, one can make the case that manifold embeddings are capable
of preserving the global dynamics given proper choices of embedding and manifold
learning parameters. However, if one wished to calculate such global dynamic invari-
ants, one could just as easily use the previous delay-embedding or SVD approaches
and get comparable results. An interesting question is whether manifold embedding
approaches can provide any analytic gains for forecasting where the state of the
system will be at some future time.

A key problem with chaotic systems is their inherent unpredictability. We wish
to see if we can achieve any gains in predictability through the use of a mapping
that is structured based on the manifold itself. Here we will focus on manifold
embedding with diffusion maps as they largely outperform LLE embeddings. Our
forecasting evaluation involves a form of “self” prediction error. We ask, given an
initial condition on a potentially noisy chaotic system, how well and how far ahead
can we forecast where the system will be some time (prediction horizon) into the
future. We begin by selecting a uniform subset of initial conditions (chosen as 0.1 % of
the data [22]).We then time-evolve the nearest geometrical neighbors and the nearest
point to the centroid of these neighbors some time νt in the future. The centroid
of the time-evolved neighbors represents a “prediction” of the time-evolved point.
Therefore, we can assess how closely we correctly predicted this evolution by the
Euclidean distance π between the centroid and this point at time t + νt . To account
for the different sizes and potential dimensions of the attractors, we normalize the
prediction errors by the size of the median distance on each attractor.

It may be the case that a manifold embedding that does not preserve the global
invariant properties of the attractor may still yield better abilities for forecasting. In
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(a) (b) (c)

Fig. 3 First three coordinates of the Lorenz attractor using manifold embedding, diffusion map,
with dE = 8 and a κ = 1, b κ = 8, and c κ = 200. The threads of common trajectories on “spider
webs” of the attractor in (a) typically provide better ability to forecast over short time scales, while
global properties are better preserved in (c)

general, lower bandwidths will result in preservation of only local distances in the
structure and allow more freedom in global distances to produce a transformation
such that more of the manifold is unfolded in the first few coordinates. We visualize
an example of this in Fig. 3. For smaller κ , the global structure of the attractor is not
conserved but local trajectories are; thus, a “spider-web” or “cabling” effect occurs,
where like trajectories are mapped very near each other in space and unlike trajecto-
ries are pushed away from each other. Unfortunately, similar yet divergent trajectories
are also mapped near each other at positions corresponding with high sensitivities to
initial conditions, e.g. saddle points. Depending on the balance between these com-
peting effects, the trajectories of near neighbors may help improve predictability for
this choice of κ .

Thus we consider a variety of different embedding dimension dE and bandwidth
κ choices for the diffusion map approach. We evaluated the chaotic Lorenz attractor
described above, using 3 ∈ dE ∈ 10 and 1 ∈ κ ∈ 200. A selection of these π results
are plotted as a function of prediction horizon νt below (Fig. 4a). We compared a
variety of nearest neighbor sizes in the prediction error calculation, and found the
results to be fairly consistent. The results use 12 nearest neighbors.

A few observations are immediately apparent. First, the predictability tends to be
better for a bandwidth of κ = 1 than for κ = 200. Although the higher bandwidth
better preserves global dynamical properties, the local approach better separates the
data into “threads” of common trajectories (Fig. 3a). Therefore, one can provide
better forecasts using the lower bandwidth, especially at low prediction horizons.
Note that as the prediction horizon increases, the high bandwidth case begins to
outperform lower bandwidth cases. Interestingly, higher embedding dimension also
tends to lead to better predictability. This is perhaps a result of the fact that manifold
learning algorithms can preserve longer time scales in the dynamics when more time-
delayed coordinates are present in the reconstructed attractor prior to the manifold
mapping. However, as the dimension is increased, the choice of κ that leads to the best
predictability may also change, as the size of the attractor will change with changes
in dimension. Therefore, it may become difficult to determine what the ideal κ is for
large dE .
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(b)(a)

Fig. 4 Median prediction error π as function of prediction horizon νt for the Lorenz, using a
manifold embedding with diffusion maps, varying dE and κ and b proper delay-embedding and
optimally-chosen SVD and diffusion map embeddings

To understand how manifold embedding performs compared to other embedding
approaches, we show the prediction error for the typical delay embedding and for the
best SVD embedding over the same range of dE choices (Fig. 4b). For the Lorenz,
a dE = 3 produced the lowest π for the SVD embedding, contrary to the manifold
embedding approach, which yields better results at higher dE .

Finally, we evaluate whether manifold embedding can still produce good forecasts
in the presence of noise. To simulate noise, we apply additive Gaussian noise at a
signal-to-noise ratio (SNR) of 20 and 10 dB to the time series, and perform the same
embedding and prediction error approach as above (Fig. 5). The manifold embedding
approach using diffusion maps performs comparatively even better relative to the
other approaches than with no noise. These results are indicative of the diffusion
mapping algorithm’s robustness to noise perturbations [15].

5 Discussion

We have introduced the novel manifold embedding approach to attractor reconstruc-
tion from time series. The process involves a similar approach to embedding and
mapping that SSA utilizes, but replacing SVD with manifold learning based algo-
rithms. These approaches do not have the disadvantages in the presence of nonlinear
attractor manifolds that SVD is vulnerable to. We have shown that these techniques,
given proper parameter choices for embedding, can preserve the global dynamic
properties of chaotic attractors. These global dynamic properties tend to be preserved
using higher bandwidths in the manifold embedding algorithm, which is contrary to
most applications of manifold learning [15] such as dimensionality reduction or
semi-supervised learning. The need for these higher bandwidths is likely related to
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(a) (b)

Fig. 5 Median prediction error π as function of prediction horizon νt for the Lorenz time series
with additive noise, where a 20 dB SNR and b 10 dB SNR

the non-guaranteed preservation of global dynamics unless distances are preserved
over a large enough range of data.

However, depending on the application, one may be more interested in short-
time dynamics. In these scenarios, lower bandwidths can be advantageous. Because
manifold embedding approaches rely on preservation of local distance structures in
phase space, these dynamics can be better mapped to an underlying manifold in a
new state space even when the global dynamics are not preserved. Thus, one can
take advantage of these mappings to achieve better forecasts at short time scales
than using either the traditional time-delay or SVD-based embeddings. A particu-
lar advantage of diffusion maps for manifold embedding is its robustness to noise.
We show that diffusion map-based manifold embedding maintains high forecasting
capability despite additive noise on a chaotic Lorenz time series.
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The Dynamics of Coupled Spin-Torque Nano
Oscillators: An Initial Exploration

J. Turtle, A. Palacios, V. In and P. Longhini

Abstract In this work we explore the use of Spin Torque Nano Oscillators (STNOs)
to produce a spintronics voltage oscillator in the microwave range. STNOs are quite
small—on the order of 10 nm—and frequency agile. However, experimental results
to date have produced power outputs that are too small to be viable. We attempt
to increase power output by investigating the dynamics of a system of electrically-
coupled STNOs. To set the foundation for further analysis, we consider both Spherical
and Complex Stereographic coordinates for the Landau-Lifshitz-Gilbert Equation
with spin torque term. Both coordinate systems effectively reduce the equation of
a single STNO from three dimensions to two. Further, the Complex Stereographic
representation transforms the equation into a nearly polynomial form that may prove
useful for advanced dynamics analysis. Qualitative bifurcation diagrams show a rich
set of behaviors in the parallel and series coupled systems and serve to develop
intuition in system dynamics.

1 Introduction

Spin Torque Nano Oscillators (STNO) are a ferromagnet-based electronics compo-
nent. In certain steady-states, the magnetic moment precesses causing component re-
sistance to oscillate [1]. Based on this oscillating resistance, an STNO can be utilized
as a microwave-range voltage oscillator (see Fig. 1). STNOs offer many potential
advantages over existing semi-conductor voltage oscillators including small physi-
cal size (≥10 nm), a large tunable frequency range, and small output linewidths [2].
However, STNOs tested to date have yet to produce adequate power. STNOs need
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to output at least 1 mW to be applicable [3]. The microwave power generated by an
STNO was first measured in 2009 on the order of 100 nW [4]. STNOs cannot be made
larger, so an obvious solution to increasing power is to couple multiple oscillators.
However, in experiments it has proven difficult to synchronize even two STNOs [5].
Thus we have begun to study the dynamics of coupled STNOs to determine condi-
tions for synchronization. In this article we report our initial findings starting with the
model itself. We first explore alternate coordinate systems to reduce the dimension
of the model and find a form that is more amenable to later analysis. Both spheri-
cal and complex stereographic coordinates are investigated. Next we vary the input
current and numerically integrate until steady-state to create qualitative bifurcation
diagrams. Bifurcation diagrams are generated for both parallel and series connected
STNOs.

2 The Model

Magnetization in the free ferromagnetic layer is described by the Landau-Lifshitz
equation with Gilbert damping and Slonczewski-Berger spin-torque term (LLGS)
[6–10]

dm
dt

=
precession

︷ ︸︸ ︷
−γ m × Heff +

damping
︷ ︸︸ ︷

λm × dm
dt

−
spin transfer torque

︷ ︸︸ ︷
γ a g

(
P, m · Sp

⎧
m × (

m × Sp
⎧
, (1)

where m represents the magnetization of the free ferromagnetic layer in Cartesian
coordinates, γ is the gyromagnetic ratio and Heff is the effective field. λ serves as
the magnitude of the damping term. In the spin torque term, a has units Oe and
is proportional to the electrical current density [11]. g is a function of the polar-
ization factor P , m, and the fixed-layer magnetization direction Sp. To determine
the change of field direction with respect to time, we must consider three different
classes of torques acting on the field direction m: effective external magnetic field
Heff, damping λ, and spin transfer torque. Heff is the sum of several factors that can be
effectively represented as external fields. The factors that we consider in this fashion
are exchange, anisotropy and demagnetization. The actual external, or applied, field
rounds out the sum

Heff = Hexchange + Hanisotropy + Hdemagnetization + Happlied.

We model the free layer as a single particle who’s magnetization m represents the
average of the layer. Thus there is no exchange with adjacent magnetic moments
Hexchange = 0.
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Spherical Coordinates

In Eq. (1), m has constant magnitude. We confine m to the surface of a unit sphere
by choosing √m√2 = 1. Thus, spherical coordinates are a natural choice for m with
the radius ρ = 1. In [12], Sun showed that Eq. (1) can be converted to

dθ

dτ
= − α sin θ cos θ

− h p [(sin ϕ + α cos ϕ) sin θ cos ϕ]

− h [cos ϕ sin ψ + α (sin θ cos ψ − cos θ sin ϕ sin ψ)]

+ hs [α cos ϕ sin φ + sin ϕ sin φ cos θ − cos φ sin θ ] , (2)

dϕ

dτ
= − cos θ

− h p [(cos ϕ cos θ − α sin ϕ) cos ϕ]

− h

⎪
sin θ cos ψ − cos θ sin ϕ sin ψ − α cos ϕ sin ψ

sin θ

⎨

+ hs

⎪
cos ϕ sin φ − α sin ϕ sin φ cos θ

sin θ
+ α cos φ

⎨
,

where θ is the angle of inclination and ϕ is the azimuthal angle. These equations have
been time-scaled by γ hk

1+λ2 (hk is the magnitude of anisotropy) and parameters consol-
idated to: demagnetization magnitude h p (yz-easy-plane), applied field magnitude h,
applied field angle from z-axis ψ (confined to yz-plane), spin torque magnitude hs ,
and spin torque angle from z-axis φ (also confined to yz-plane). Ultimately reducing
the representation of the system from three dimensions to two.

Complex Stereographic Projection

A spherical surface can be projected onto a plane by using the complex variable ω

and the following relationships:

ω = mx + imy

1 + mz
≡ m =

⎩

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

ω + ω̄

1 + |ω|2

−i
(ω − ω̄)

1 + |ω|2
1 − |ω|2
1 + |ω|2












. (3)

Building on [11, 13], we reduce Eq. (1) to the form
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ω̇ = γ

1 − iλ

(
− aω + iha3ω + ha2

2
(1 + ω2)

+ im√κ
⎪

cos θ√ω − 1

2
sin θ√

(
eiφ√ − ω2e−iφ√

)⎨

− i4π So

(1 + |ω|2)
⎪

N3(1 − |ω|2)ω − N1

2
(1 − ω2 − |ω|2)ω (4)

− N2

2
(1 + ω2 − |ω|2)ω − (N1 − N2)

2
ω̄

⎨)
,

where ha2 is the magnitude of the applied field in the y-direction and ha3 is the
magnitudes of the applied field in the z-direction. κ is the anisotropy magnitude
who’s direction is determined by θ√ and φ√. The anisotropy is scaled by m√ = m · e√
where

e√ =
⎩

⎥
⎦

sin θ√ cos φ√
sin θ√ sin φ√

cos θ√




 .

S0 is the saturation magnetization. Finally, N1 + N2 + N3 = 1 and determine the
effective demagnetization field resulting from the shape of the free layer. Now we
have a two dimensional expression for the STNO that is close to polynomial form.

Coupling

Coupling is achieved by modeling a simple electrical circuit with STNOs arrayed in
series or parallel. Figure 1 depicts the series configuration. The resistance of each
STNO Ri is a function of the angle θi between M (fixed layer-green) and m (free
layer-red):

MM M

I0

R
C

Ij

R
1

R
N

R
2

Fig. 1 Series arrayed STNOs with input current I0 and output resistance Rc
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Fig. 2 Qualitative bifurcation diagram for 3 STNOs arranged in series and varying parameter I
over the interval [0:3]

Ri = R0i − ΔRi cos θi .

Here, R0 is the median resistance of an STNO and ΔR is the maximum variance in
resistance.

3 Numerical Exploration

Numeric simulations have revealed a rich variety of behaviors in a series-array
of three STNOs. Figure 2 depicts a few example behaviors found by varying the
current I . A high or low current simply causes all of the oscillators to converge
to an equilibrium point. However, in the intermediate range there are multiple
distinct regimes of oscillatory behavior. All numeric integrations in this diagram
use the parameters: λ = 0.1, h = 1, hs = −1, h p = 5, φ = 0, ψ = π/4,

R0 = 2, ΔR = 0.6, Rc = 50.
Performing similar integrations for 3 STNOs coupled in parallel generates the

qualitative bifurcation diagram in Fig. 3. As is seen, we find a region of oscilla-
tions in I bound on both sides by fixed points. Within the oscillatory region we
discovered six distinct sub-regions. Three sub regions tend to synchronization, two
show quasi-periodic motion, and one forms frequency synchronized orbits. All nu-
meric integrations in this diagram use the parameters: λ = 0.1, h = 1, hs = −1,

h p = 5, φ = 0, ψ = π/4, R0 = 0.1, ΔR = 0.03, Rc = 50.

4 Remarks

The LLGS Eq. (1) is a nonlinear first-order ordinary differential equation confined
to the unit sphere √m√2 = 1. We are able to reduce the dimension of a system of
coupled STNOs by one-third using spherical or complex-stereographic coordinates.
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Fig. 3 Qualitative bifurcation diagram for 3 STNOs arranged in parallel and varying parameter I
over the interval [0:7]

Not only does this increase the efficiency of numerics, but will also help in the future
with a center manifold reduction. Furthermore, the form of the equations in complex
stereographic coordinates is polynomial-like which may be helpful in future analysis.

In the series and parallel electric coupling scenarios, the system experiences all-
to-all coupling or SN symmetry. Most of the non-synchronous oscillating behaviors
observed in Figs. 2 and 3 are consistent with SN × S1 symmetry-breaking Hopf
bifurcations. This leads us to believe that we can leverage the work of [14] to deter-
mine the existence and stability of non-synchronous oscillations.
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Elaboration of a Multispecies Model of Solid
Tumor Growth with Tumor-Host Interactions

A. Konstorum, S. A. Sprowl, A. D. Lander, M. L. Waterman
and J. S. Lowengrub

Abstract There has been increasing evidence of the critical effects of
microenvironmental influence on tumor growth and metastasis. In this report, we
extend a multispecies continuum model of solid tumor growth to include interac-
tion of the tumor with its microenvironment. This new model, which incorporates
reported interactions between tumor- and stroma-derived chemical signals, predicts
a nonlinear response to host factors: increased growth and asymmetry of the tumor at
low levels of stromal fibroblast-produced Hepatocyte Growth Factor / Scatter Factor
(HGF/SF), and reduced growth at high levels.We test the model predictions using
colon cancer initiating cell (CCIC) spheroids grown in media in varying concen-
trations of HGF. The experiments show qualitatively similar behavior to the model
predictions. We plan to use the experimental studies to calibrate the mathematical
model, and to use the mathematical model to make predictions regarding tumor
behavior in order to guide future experimental studies.
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1 Introduction

The importance of the microenvironment in tumor growth and metastasis has been
established with a large body of research [1–6]. Nevertheless, the molecular interac-
tions between tumor and stroma-resident cells, and the changes in both tissues that
these interactions facilitate, are still under intense study, especially as it has become
evident that pharmaceutical targeting of the tumor alone may not account for cancer
promoting factors that are produced in the tumor microenvironment [7].

The purpose of this study is to extend a recently developed stem-cell based mul-
tispecies model of a solid tumor to include stromal interactions that are well corrob-
orated by experimental data. Numerical analysis of the mathematical model allows
us to examine, in silico, various scenarios of tumor-host interactions, and to compare
our results against the experimental literature. Ultimately, we hope to use the model
to make predictions about potential avenues for future research in malignancy, as
well as pharmaceutical applications.

2 Background: A Mathematical Model of a Solid Tumor with
Multiple Cell Types

A multispecies continuum model based on lineage dynamics of different tumor cell
types has recently been developed by Youssefpour et al. [8]. As this model is extended
here to incorporate tumor-host interactions, an overview of the model is necessary
to understand the additions. Figure 1 summarizes the biological foundation of the
model, while Fig. 2 summarizes the relevant equations.

3 Incorporating Host Effects

It has been shown in numerous studies that HGF production by cancer-associated
fibroblasts in the stroma causes increased κ-catenin localization in the nucleus of
tumor cells near the tumor-host boundary, and additionally causes these cells to
display properties of cancer stem cells such as increased migratory capacity and
clonogenic potential [9, 10]. The effects of HGF can be attributed to binding of
HGF to the c-Met receptor, which is expressed on tumor cells, and can result in a
signaling cascade that ultimately leads to dissociation of κ-catenin from its cytosolic
partners and translocation into the nucleus where it can potentiate the canonical
Wnt signal activity [11]. Based on these studies, we modify the equation for Wnt
signaling, which represents the combined effects that promote Wnt signaling, such
that concentration of HGF has a positive linear effect on Wnt signal production:

Elaboration of a multispecies model of solid tumor growth with tumor-host inter-
actions.
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Fig. 1 A multispecies model of tumor signaling: Tumor tissue is composed of three cell types:
cancer stem cells (CSCs), terminally differentiated cells (TCs), and dead cells (DCs). Stem cells
have a probability of self renewal P0, differentiate into TCs with probability 1 − P0, and divide at a
rate ΔM SC . P0 is promoted by Wnt (and other autocrine) signals produced by the stem cells, which
are in turn inhibited by Dkk (and other) proteins, also produced by CSCs. TCs secrete proteins from
the TGFκ superfamily that lower P0 and ΔM SC . CSCs and TCs can become DCs by apoptosis or
necrosis. Adapted from [8]

ϕCW nt

ϕt
= ∇ · (DW nt∇CW nt ) + f (CW nt , CDkk) (1)

f (CW nt , CDkk) = ΞPW nt
ΔH G F CH G F + C2

W nt

CDkk
C0φC SC

− ΞDW nt CW nt + μ0C0 (φT − φDC ) , (2)

where the HGF-induced production of Wnt signaling is modeled in the first term of
the right-hand side of Eq. (2). Creating a model for HGF concentration is a more dif-
ficult matter, as there have been far fewer studies on the molecular basis for changes
in HGF production by cancer-associated stromal cells. There have been many studies
that have shown a direct effect of cancer cells on HGF production via their secretion
of growth factors and cytokines such as TNFθ, bFGF, and PDGF that bind to the EGF
receptor on stromal cells and cause upregulation of HGF production [2, 12]. Thus, we
cannot currently specify whether the stem cells preferentially release these growth
factors and if increased κ-catenin localization (via HGF signaling) results in an
increased release of these factors from neighboring tumor cells, which would indicate
a positive feedback mechanism. With the data available, we model a positive
effect of growth factors from viable tumor tissue on HGF production in the stroma.
Additionally, there is substantial evidence that TGFb is a negative regulator of
HGF production in stromal cells, and thus we include its inhibitory effect in the
model (2):
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Fig. 2 Modeling the multispecies tumor: A brief outline of the model is given here. For a more
detailed description, see [8]. The functions φSC , φT C (shown) and φDC , φW , φH (not shown)
represent the local fractions of CSC, TC, and DC populations in lineage and the water and host
cells, respectively. The sum of the volume fractions equals 1. a For each cell type, the conservation
equation is posed, where J = −Mφ∇μ is a generalized flux (or cellular diffusion), Src is the
mass-exchange term, and us is the mass-averaged velocity of the solid components, assumed to
satisfy Darcys law and is given by ∇ · us = SrcSC + SrcT C + SrcDC . Cells are assumed to
move with the mass-averaged velocity. ForJ = −Mφ∇μ, M is the mobility and μ is the chemical
potential, which is proportional to the variational derivative of the adhesion energy. The flux is
derived from an adhesion energy that accounts for interactions among the cells. b We account for
a self-renewal promoter, such as Wnt, which increases the self-renewal fraction of CSCs, and an
inhibitor of the self-renewal promoter, such as Dkk, using a generalized Geierer-Meinhardt-Turing
system of reaction-diffusion equations. Both are only produced by CSCs, and Wnt diffusion range
is assumed to be shorter than that of Dkk. c CSC self-renewal fraction, P0 is positively regulated
by Wnt and negatively regulated by TGFκ with ε and ω the feedback response of the CSCs to the
respective proteins. d Source term for CSCs. Proportion of CSCs are increased by mitosis rate of
CSCs, ΔM SC , that are self-renewing, and is dependent on C0, the local concentration of oxygen and
nutrients. Hvn(x) denotes the Heaviside function, which is equal to 1 when x > 0 and 0 otherwise.
C̄0 denotes the minimum level of oxygen and nutrients required for cell viability. SrcT C and SrcDC
are modeled analogously
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ϕCH G F

ϕt
= ΞP H G F

CG F

ε + ΔT G FκCT G Fκ

C0φH +
HGF background production rate HGF decay/ binding rate

︷ ︸︸ ︷
ν0C0φ0 −

︷ ︸︸ ︷
ΞDH G F CC H G F +∇ · (DH G F∇CH G F ) , (3)

where the inhibition by TGFb and promotion by tumor-produced growth factors is
modeled in the first term of the right-hand side of Eq. (3).

As discussed above, HGF-promoting growth factors are released by tumor cells,
but it is not known whether the production of these growth factors is different in stem
and differentiated cells. Thus, we allow for the production rate of growth factors to
be different for each of the cell types:

ϕCH G F

ϕt
= ∇ · (DG F∇CG F ) +

Growth Factor production rate Growth Factor decay / binding rate
︷ ︸︸ ︷
C0 (ΞG F SφC SC + ΞG FT φT F ) −

︷ ︸︸ ︷
ΞDFGCG F (4)

We refer the reader to Table 1 for description of the variable and parameter sym-
bols.

4 Numerical and Experimental Methods

For the nondimensionalization and numerical implementation, we followed a
previously published numerical method, which we briefly describe here [8]. An
adaptive finite difference-nonlinear multi grid method [13, 14] was used to solve
the governing equations efficiently. For reasons described in [8, 13], we solved for
φT = φC SC + φT C + φDC . To remove a high-order time step constraint incurred
by an explicit method, we used an implicit 2nd order accurate time discretization of
Crank-Nicholson type, and spatial derivatives were discretized using 2nd order accu-
rate central difference approximations. In regions of large gradients, block structured
Cartesian refinement was used to provide enhanced local resolution.

In the experiments, colon cancer initiating cells (CCICs) were cultured as spher-
oids in ultra-low attachment flasks (Corning) using DMEM/F12 50:50 supplemented
with N2, B12, EGF, bFGF, heparin, sodium pyruvate, and penicillin/ streptomycin
[15]. Unlike typical cell lines, CCICs are multipotent and capable of regenerating het-
erogeneous tumors with characteristics analogous to those found in primary tumors,
from which they are derived [15, 16]. CCICs were trypsinized using a no-serum
trypsin inhibitor. Single cells were counted and plated in 96 well ultra-low attach-
ment plates (Corning) using the previously mentioned media with or without HGF
at various concentrations. CCICs were imaged at 10x resolution once each day. Cell
clusters were observed for sphere morphology and size. Sphere size was determined
by outlining the major sphere boundary (excluding scattered or shed cells) using
ImageJ. Average volume increase over day 3 from three experimental trials was
calculated in order to allow the spheroids 72 hours to adapt to new media.
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Variable or Description Value Reference and / or
parameter rationale (if not in text)

φH stromal fraction (=1-φT )
CH G F concentration of HGF
CG F concentration of

HGF- promoting factors
DG F diffusion coefficient for GF 1.0 [17, 18]
DH G F diffusion coefficient for HGF 0.1 Set to a value lower than

for GF due to higher molecular
weight of HGF and necessity
for HGF to be processed by
molecules in ECM before it
can bind to c-MET [19].

ΔH G F strength of Wnt 1.0 Optimal reference data not
induction by HGF available, plan to calibratein

future experiments.
ΔT G Fκ inhibitory effect 1.0 [20]

of TGFb on HGF production
ν0 background HGF 0.0001 Set to a value significantly

production rate by non-cancer lower than GF-induced
associated stromal cells production levels [21].

ΞP H G F,DH G F induction, decay rates of HGF 0.1, 1.0 [12, 19]
ΞG F S,G FT production rates of GF 0.1, 0.1; 10,10 Varies widely by cell type

modeled by stem and [22]. Here, at low and high
differentiated cells, respectively levels. Levels set to be equal

in both conditions since
differential production rate
information not available.

5 Results

Numerical results from incorporation of low HGF signal, created by a lower pro-
duction rate of growth factors (ΞG F S,G FT = 0.1) resulted in increased tumor asym-
metry, instability, and volume when compared to the no host simulation (Fig. 3a, b;
No host and Host: low HGF categories). By increasing growth factor production rate
(ΞG F S,G FT = 10), maximal HGF levels at the tumor-host boundary were increased
approximately 100-fold (Fig. 3c), and resulted in a nonlinear growth response to HGF,
namely at higher HGF levels, the tumor had greater symmetry and lower growth rate
than at low HGF (Fig. 3, Host: high HGF category).

Experiments were performed to corroborate results of the model with primary
colon cancer initiating cell (CCIC) spheroids grown in increasing concentration of
HGF. Spheroids are a relevant model for tumor growth since they can be used to
examine 3-dimensional properties of growing tissues, which more closely resemble
in vivo tumors than 2-dimensional culture models (23). The experimental results
show increasing spheroid growth rate with increasing concentration of HGF up to
100 ng/ml, but decreased growth and asymmetry at 250 ng/ml as compared to lower
levels of HGF (Fig. 4), which is qualitatively consistent with the model predictions.
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Fig. 3 Simulation results of tumor-host model: Visualization of numerical results of the mathemat-
ical formulation for incorporation of host factors (HGF) at low and high levels into a multispecies
model for a total tumor, b stem cell fraction, and c HGF concentration (note difference in scale).
d Tumor volume is increased in low HGF environment, but decreases in increased concentration of
HGF

6 Discussion

We have created a mathematical model for tumor-host interactions by incorporating
chemical interactions between host and tumor tissues into a multispecies continuum
model of tumor growth. Our theoretical results at low HGF indicate a good match to
the literature, namely that inclusion of host interactions increased tumor growth rate
and dispersion, as well as stem cell concentration at the tumor-host boundary, over
the no host model. The non-monotonic response is due to decrease in heterogeneity
of cell species at the tumor-host boundary resulting from an increased concentration
of stem cells in that region. This leads to more uniform growth, ie. less branching
over time than what is found in the low HGF model. Indeed, it has recently been
shown that at high concentrations of HGF, myogenic stem cells become quiescent,
while at lower concentrations, they proliferate and differentiate [23].

While our model matches experimental observations qualitatively, our ultimate
goal is to create an experimentallycalibrated mathematical model that can be used, in
conjunction with experimental verification, to make testable predictions about tumor
behavior in various conditions, including presence of stroma and subsequent ther-
apy. To this end, we have begun an experimental collaboration using tumor spheroids
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Fig. 4 Tumor spheroid culture with increasing [HGF]: CCIC tumor spheroids were grown in media
with increasing concentration of HGF. a Average volume increase (from day 3) of three experimental
trials / day. b Sample images from spheroids grown in control (left column), +50 ng/ml HGF media
(center column), and +250 ng/ml HGF media (right column)

developed with the CCIC cell line [15, 16]. While the current experiments did not
include feedback from tumor onto stroma, but only addition of HGF at increasing
concentrations in the media, there is still strong resemblance of the model to the
experiment as the interactions in the model serve to increase the effective HGF at
the tumor-host boundary, which is mimicked by higher concentrations in the exper-
imental media. The experimental observations show both an increase in tumor area
and increased asymmetry and dispersiveness of the tumor at lower concentrations of
HGF, and a slower growth rate and higher tumor symmetry at high levels of HGF
(Fig. 4), indicating similarity of outcomes between the model and experiment.

Work is currently in progress to calibrate our numerical model to the experimental
system by matching the growth parameters and timescale of the experimental system,
removing feedback to stroma, and incorporating the nonlinear effect of HGF at higher
concentrations on tumor growth. The framework of the calibrated model remains the
same as to what is presented in this paper.

In parallel, the experimental system is also being developed to include a
co-culture with stroma and staining for stem and other cell types in order to better
match our current model, which is more closely aligned with the in vivo dynamics
of HGF action on tumor growth. Furthermore, we plan to incorporate, into both the
numerical and experimental system, the following: quantification and modeling of
cell spread, tumor angiogenesis, and macrophage involvement in tumor growth. Our
long-term goal is to build a predictive model that can be efficiently used to better
understand tumor physiology and response to treatment.
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Resistive Switching Assisted by Noise

G. A. Patterson, P. I. Fierens and D. F. Grosz

Abstract We extend results by Stotland and Di Ventra [1] on the phenomenon of
resistive switching aided by noise. We further the analysis of the mechanism under-
lying the beneficial role of noise and study the Electrical Pulse Induced Resistance
(EPIR) ratio dependence with noise power. In the case of internal noise we find
an optimal range where the EPIR ratio is both maximized and independent of the
preceding resistive state. However, when external noise is considered, no beneficial
effect is observed.

1 Introduction

In this work, we study a passive device called memristor which was proposed by
Chua [2] and has been modeled and extensively studied by, e.g., Strukov et al. [3].
A memristor is a two-terminal device with the property that its resistance changes
according with the electric charge that has flowed across it. The model in Ref. [3]
reproduces, in a qualitative way, the resistive switching behavior of compounds such
as TiO2. It consists of two resistors in series whose equivalent resistance depends on
the dopant concentration, and it is described by a simple nonlinear dynamic equation.

The effect of resistive switching has been experimentally studied in many materi-
als, such as simple oxides, and in more complex compounds such as manganites and
cuprates, among others [4, 5]. Results are usually reported as current-voltage hys-
teretic curves, or as the resulting resistance versus the externally applied field. One
possible application of this phenomenon is in the design of non-volatile memories.
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Over the past decade extensive research was conducted in this direction by studying
different properties, such as, retention times, temperature dependence, pulsing pro-
tocols, etc. In order to quantify the switching performance, the EPIR ratio is defined
as (Rh − Rl)/Rl , where Rh and Rl are the high and low non-volatile resistive states
after input pulsing, respectively. A higher EPIR ratio is desirable in order to attain a
larger contrast between resistive states.

In this work we extend results by Stotland and Di Ventra [1] where the addition
of white Gaussian noise to Strukov’s equations was studied, showing that there is an
optimal noise intensity that maximizes the contrast between high and low resistive
states. They considered internal noise, inherent to the sample dynamics, and also
suggested that the same results could be obtained if external noise was taken into
account.

The paper is organized as follows: In Sect. 2 we review the model proposed by
Strukov et al. and introduce the stochastic model. In Sect. 3 we show results of the
stochastic model, and in Sect. 4 we present our conclusions.

2 Resistive Switching Model and Dynamics

Strukov et al. [3] introduced a model of a memristor consisting of a sample of length
L divided into two doped/undoped regions with oxygen vacancies. Figure 1 shows a
schematic of the sample model, where z marks the boundary between both regions.
The memristive system is described by

V (t) = R(z)I (t) , (1)

dz

dt
= f (z, I ) ,

where V (t) is the potential difference across the sample, I (t) is the current, and R is
the sample resistance. Each region has a resistance that depends on the doping level.
The net sample resistance is thus modeled as the resulting in-series resistance, and

Fig. 1 The memristor model consists of a sample divided into two doped/undoped regions with
oxygen vacancies. The position z of the boundary between both regions determines the net resistance
of the sample
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is given by
R(z) = Rof f − (Rof f − Ron)z/L , (2)

where Rof f > Ron are the extreme possible values of resistance. The motion of the
boundary is determined by the drift of vacancies produced by an external field and
is given by (see, e.g., [3, 6])

dz

dt
= μRon

L
F(z)I (t) , (3)

where μ is the average dopant mobility. The window function F(z) = 1 −
(2z/L − 1)2 is introduced to account for experimentally observed nonlinearities
and also enforces that z remains within the interval (0, L) [3, 7].

Linearization of Eq. (2) around the two fixed points at z = 0 and z = L leads to
first order differential equations [8]

dz

dt
≥ 4μRon V (t)

L2 Rof f
z ,

dz

dt
≥ −4μV (t)

L2 (z − L) . (4)

Note that, since Ron/Rof f < 1, the boundary moves faster when it is close to the
fixed point at z = L than at z = 0.

For convenience, we rewrite Eq. (3) in a dimensionless form as

dx

dτ
= F(x)

1 − ΔRx
v(τ ) , (5)

where ΔR = (Rof f − Ron)/Rof f , x = z/L , τ = μA(1 − ΔR)t/L2, v(τ ) =
V (t)/A, and A is the amplitude of the external applied field in volts.

We considered the influence of both internal and external white Gaussian noise,
the internal noise affects the velocity of the internal state variable x , while external
noise is added to the input signal v.

3 Results and Discussion

The externally applied field consisted of a sequence of pulses +1 √ 0 √ −1 √ 0
repeated 5 times. The pulsewidth was 2, ΔR = 0.75 and the resistance was computed
during the last repetition. We solved Eq. (5) for the time evolution of the resistance
for each noise realization and intensity. In Fig. 2 the EPIR ratio is shown as a function
of the noise intensity Γ . The initial conditions are x0 = 0.9 (circles) and x0 = 0.1
(squares). The same behavior is observed for both initial conditions, namely the
EPIR ratio increases with noise until it reaches a maximum at Γ ≥ 10−7. A second
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Fig. 2 EPIR ratio versus internal noise intensity averaged over 1000 realizations. Two maxima
at Γ ≥ 10−7, 10−3 are observed. Error bars are taken as one standard deviation. Note the erratic
behavior for Γ � 10−6

peak is observed at Γ ≥ 10−3 but with a large standard deviation caused by the
strong noise at that point. It is important to note that from Fig. 2 the EPIR ratio is
nearly independent of the initial condition and that standard deviations are small for
Γ ≡ [

10−15, 10−7
]
.

One of the effects of noise is to help the boundary between the doped/undoped
regions in the sample to escape from x = 0, 1. Eq. (4) suggest that the first maximum
is reached when noise helps the boundary to escape from the border at x = 1. Since
the boundary moves slower at x = 0, a stronger noise intensity is required to detach
it, thus leading to a second maximum.

When external noise was considered, we did not find a noise intensity that maxi-
mizes the EPIR ratio. In Fig. 3 results are shown for the same set of parameters and
initial conditions used before. In this case the window function effectively reduces
the contribution of noise close to the sample borders. However, when the noise inten-
sity is strong enough to counteract the window effect, the motion of the boundary is
erratic, leading to a large standard deviation, and the EPIR ratio depends strongly on
the initial condition.

In Fig. 4 the time evolution of the boundary is shown vs. noise intensity. In this
case, the applied sequence was +1 √ −1 √ +1 √ −1, the pulsewidth was
2, and the initial condition was x = 0.9. We found a relation between the position
reached by the boundary at the end of the first pulse, xn—marked with circles in
Fig. 4—and noise intensity: 1 − xn ◦ ≈

Γ .
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Phase space trajectories are shown in Fig. 5 for the noiseless and internal noise
(Γ = 10−10 and 10−2) cases. The applied signal is v(τ ) = sin (ωτ), the initial
position is x0 = 0.9, and the angular frequency ω = 1. In the noiseless case,1 the
trajectory is a small closed loop. The boundary starts the motion from x0 towards
x = 1. At time τ = π/ω, the velocity is zero and the applied field is reversed. Then it
increases and the boundary moves in the opposite direction until it reaches the initial
state at τ = 2π/ω. Larger loops are obtained when considering a moderately strong
internal noise in the system. In this case, at time τ = π/ω the velocity differs from
zero as can be seen in Fig. 4. In fact, if noise is turned off, for instance at (τof f , xof f =
0.9) as shown in Fig. 5, the motion will remain in the orbit determined by the new
initial conditions (τof f , xof f ) and deterministic Eq. (5). This way we see that noise
has an important effect only when the boundary is close to the sample borders. At
these points, in the case of internal noise, the velocity is strongly dependent on the
noise intensity and leads to different trajectories. In the case of external noise, the
window function reduces the influence of noise and no significant effect is observed.

Fig. 3 EPIR ratio versus external noise intensity averaged over 1,000 realizations. No maxima are
observed and the EPIR ratio degrades for noise intensities Γ ∈ � 10−5

1 The deterministic position of the boundary as a function of time can be obtained by direct inte-
gration of Eq. (5) and shown to be periodic with period 2/ω.
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Fig. 4 Average boundary
time evolution versus noise
intensity. Positions after the
first pulse (marked with
circles) are noise dependent,
leading to a new dynamic
condition

4 Conclusions

In summary, we presented results on the phenomenon of resistive switching under
the influence of noise. On the one hand, we found that, when internal noise is con-
sidered, there is a range of noise intensities where the EPIR ratio is maximized and
independent of the initial conditions. On the other hand, external noise only has the
effect of degrading the EPIR ratio since strong intensities are needed to counteract
the window-function effect. Moreover, we showed that, when the boundary is close
to the borders of the sample, its velocity is strongly influenced by noise. We believe

Fig. 5 Phase space trajectories for three different initial noise intensities. When the trajectories
cross x = 0.9 after the first voltage reversal the noise is turned off
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these results may be of relevance in systems where the large scale of electronic
integration renders the effect of noise unavoidable.
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Topology Independent SIS Process: Theory
and Application

Igor Tomovski, Igor Trpevski and Ljupčo Kocarev

Abstract Following the nonlinear dynamical system (NLDS) approach, we model
and analyze a SIS type of spreading process on complex networks. The model is
characterized by a special form of contact dynamics for which the term “acquisition
exclusivity” is being used. Assuming statistical independence of joint events in the
analysis, which is a valid approximation under several constrains, an analytic solu-
tion is obtained for the probabilities that network nodes are infected at an instance in
time. Furthermore this solution is topologically independent. It is argued that there
are two reasons why the studied setting should be considered valid from an engi-
neering viewpoint. First, the studied process (under certain constrains) may be used
as mechanism for controlled spreading of useful content in a network. Second, the
SIS spreading process is characterized by high epidemic threshold. Therefore “ac-
quisition exclusivity” should be considered as a mechanism for eradication of viral
infections from networks.

1 Introduction

In this paper spreading process of SIS type, taking place on networks characterized
by acquisition exclusivity, is being analyzed. We use the term acquisition exclusivity
to refer to a special form of network contact dynamics, where at each instance a
node contacts and acquires some form of material from exactly one of its neighbors,
chosen randomly. Similar settings may be found in the literature in the analysis of
certain social phenomena, for example the so called Voter model [1]. Our interest
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on the subject is primarily from an engineering view point. We show that, under the
circumstances analyzed in the paper, the studied setting can be used as a basis for
development of applications for controlled spreading of content.

On the other hand, analysis showed that this form of network contact dynamics
significantly increases the epidemic threshold for the SIS spreading process. Since
the SIS model is a good representative of re-occurring spreading processes, this
finding may be further generalized to other similar models as well. In that sense, we
suggest that acquisition exclusivity could be considered as tool for virus eradication
from complex networks and used as an alternative contact dynamics in engineering
networks, when an epidemics occurs.

In the analysis of the process, we adopt the nonlinear dynamical system approach
(NLDS) introduced by Wang et al. [2] and Chakrabarti et al. [3]. Statistical indepen-
dence of joint events (the point estimate approximation [3]) is taken into account.
This approach, as shown in the original papers [2, 3], as well as similar and follow-up
works [4–6] is valid in networks with regular node dynamics. Numerical simulations
indicated that in networks characterized by acquisition exclusivity, the assumption is
valid under several constraints. First, a large minimal node degree is required. This
prerequisite is usually met when the process is studied on social networks. One may
argue that in the near future this constraint will be fulfilled for a number of technical
networks, primarily wireless networks, as well as those where the cost per link is
relatively low. Good example are sensor networks, where already large minimal node
degree is recommended [7]. In addition, in practical applications, one may consider
taking relatively large values for the infection rate β ≥ 1. Under these assump-
tions, it is shown that the analyzed spreading process is analytically solvable, i.e.
an analytical solution for the nodes status probabilities may be found. Furthermore,
the obtained results indicate that, under the circumstances, the analyzed spreading
process is topology independent.

2 Description of the Analyzed Process

We consider a network described with the adjacency matrix A = [ai j ], that is
unweighed, connected and bidirectional, i.e. A is symmetric and irreducible. Let
p(i √ j), i ≡= j = 1, N represent the contact probabilities, i.e. the probability that
node i will contact and, possibly, acquire some form of spreading content from node j ,
at each instance . Contact probabilities satisfy the following relations: p(i √ j) > 0,
if ai j = 1, and p(i √ j) = 0 otherwise, and in general p(i √ j) ≡= p( j √ i).
Due to acquisition exclusivity

∑
j=1,N p(i √ j) = 1. We call matrix B = [bi j ],

such that bi j = p(i √ j)ai j , contact matrix. It is obvious that B is irreducible and
asymmetric, satisfying

∑
j=1,N bi j = 1.

Adopting the NLDS approach presented in [2, 3] and assuming that no instan-
taneous reinfection may occur within one time step, the SIS process taking place
on networks characterized by “acquisition exclusivity” may be described with the
following set of probability difference equations:
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pI
i (t + 1) = (1 − pI

i (t))
N∑

j=1

βbi j pI
j (t) + (1 − δ)pI

i (t), (1)

where pI
i (t), i = 1, N denotes the probability that node i is infected at time t .

Parameter β, usually referred to as the “infection rate”, is the probability that a
susceptible node connected to an infected one will become infected itself, while δ
the probability that an infected node will become susceptible again, both within one
time step.

Two fixed points of the system (1) are obvious: pI
1 = pI

2 = ... = pI
N = pI = 0

and pI
1 = pI

2 = ... = pI
N = pI = 1 − δ

β . The second has no meaning if δ
β > 1.

The obtained fixed points, so far, only indicate potential system (network-
spreading process) behavior. In what follows, we present two Theorems that state that
the obtained fixed points, under the given circumstances, are the only valid attractors
of the system (1), for different parametric regions.

Theorem 1 For δ > β the system described with the set of equations (1) is globally
(on [0, 1]N ) asymptotically stable (the origin is a globally asymptotically stable fixed
point).

Theorem 2 For β > δ, the point pI = (pI
1 , pI

2 , ..., pI
N ) ◦ [0, 1]N , such that

pI
1 = pI

2 = ... = pI
N = pI = 1 − δ

β , is globally asymptotically stable fixed point
for the system (1).

The proofs of both Theorems, especially Theorem 2, require thrall mathematical
analysis, as well as introduction of several Lemmas. Due to space restriction, they
are omitted in this text and will be presented elsewhere .

From the previous discussion, we may define the average number of infected nodes
in the network, NI = limt≥≈

∑
i=1,N pI

i (t), for different parametric regions:

NI =
{

0, δ
β > 1

(1 − δ
β )N , δ

β < 1
,

with N being the number of nodes in the graph. As one may notice, the obtained
result for the average number of nodes that are infected, does not depend on the
network topology, but only on the parameters that describe the infection process
(β and δ).

3 Numerical Simulations and Analyzes

In order to check the validity of the analytic results presented in the previous sec-
tion, as well as to investigate the regions in which they adequately mimic the reality,
stochastic simulations were performed and the results were compared with those an-
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Fig. 1 Fraction of infected nodes for the SIS type process occurring on the Barabási-Albert network
with m0 = 8 and m = 7: Left, as a function of β for δ = 0.1 (black full line-analytic result, gray full
line-simulation); δ = 0.4 (black dashed line-analytic result, gray dashed line-simulation); Right as
a function of δ for β = 1 (black line-analytic result, gray line-simulation)

alytically obtained. The simulations were performed on Barabási-Albert graphs [8],
where the minimal node degree was altered by changing the parameter m. In the sim-
ulations, connection probabilities p(i √ j) were chosen randomly for each existing
link.

The stochastic simulations were performed as follows: first the system network-
infection, starting from arbitrary initial conditions, was iterated for 2,000 time steps
in order to reach the stationary regime. Then, the system was further iterated for
another 8,000 time steps, after which the results were averaged. The simulations
were repeated several times for different values of the parameters β and δ. The
results of the analysis for one of the used networks are presented in Fig. 1.

Several conclusions were derived from the analysis. First, the validity of the
analytical results increases as the minimal node degree in the network increases.
Second, there is a good degree of accuracy for large β/δ ratios. Finally, the accuracy
is further increased when larger values of β are considered.

4 Application

The results from both the analysis and the numerical simulations indicate that un-
der several assumptions, an application for controlled spreading of content may be
developed, based on the principles described in this paper. The application will form
a virtual network that will function in acquisition exclusivity contact mode. A mini-
mal value of the node degree will be pre-determined for each node; however, users
(nodes) will be able to freely increase the number of personal contacts. The useful
content will spread through the network as a SIS type of process with β close to ‘1’.
Parameter δ will be a controlled variable which will determine the number of users
that will possess the information at an instance in time.

The SIS process taking place on networks that work in “acquisition exclusivity”
mode of contact dynamics is characterized with an epidemic threshold β = δ (as
well as the contact process [9, 10]). This is significantly higher threshold value, than
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the one for the SIS infection occurring on networks with regular contact dynamics
(β
δ = 1

λ1A
[2, 3, 6, 11]). In that sense, we suggest that acquisition exclusivity may

be used as an engineering solution for virus eradication from complex networks.
Following mechanism of action might be considered: when infection occurs, the
network is switched to acquisition exclusivity mode of work and once the infection
is eradicated, the network is switched back to normal regime.

For β > δ, acquisition exclusivity might be insufficient to complete infection
eradication by itself. In this case some form of additional measures as node immu-
nization or vaccination [12–16] should be considered as well; however, acquisition
exclusivity will severely reduce the costs of the additional protective measures.

5 Conclusion

We examine a SIS type of spreading processes that takes place on networks charac-
terized by acquisition exclusivity type of contact dynamics. It is suggested that the
process, under the imposed restrictions, is analytically solvable with respect to the
status probabilities of nodes, while the obtained results are topology independent.
This could be used as a basis for development of practical applications for con-
trolled spreading of certain useful content. With respect to the epidemic threshold
that characterizes the process on the observed networks, we suggest that acquisition
exclusivity, implemented as an alternative to regular contact dynamics, may be taken
into account as a practical and cost effective method for infection eradication in
complex networks.

Acknowledgments We thank ONR Global (grant N62909-10-1-7074) and Macedonian Ministry
of Education and Science (grant Annotated graphs in System Biology) for partial support [17].
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The Role of Duty Cycle in a Three Cell Central
Pattern Generator

Jeremy Wojcik, Robert Clewley and Andrey Shilnikov

Abstract We describe a novel computational approach to reduce detailed models
of central pattern generation to an equationless mapping that can be studied geo-
metrically. Changes in model parameters, coupling properties, or external inputs
produce qualitative changes in the mapping. These changes uncover possible bio-
physical mechanisms for control and modulation of rhythmic activity. Our analysis
does not require knowledge of the equations that model the system, and so provides
a powerful new approach to studying detailed models, applicable to a variety of
biological phenomena beyond motor control. We demonstrate our technique on a
motif of three reciprocally inhibitory cells that is able to produce multiple patterns
of bursting rhythms. In particular, we examine the qualitative geometric structure of
two-dimensional maps for phase lag between the cells.

1 Introduction

A central pattern generator (CPG) is a neural microcircuit comprised of cells whose
synergetic interactions, without a sensory input, can produce rhythmic bursting pat-
terns that determine motor behaviors of an animal, such as heart beat, respiration, and
locomotion [1, 2]. A multifunctional CPG can exhibit distinct rhythmic behaviors
depending on input conditions: for example, switching between trot and gallop gaits
in many mammals [3] or between swimming and crawling in leeches [4, 5]. Although
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such circuits are mostly hypothetical in the central nervous system of mammals, they
have been located in many fish and invertebrates and in the spinal cord or peripheral
nervous systems of mammals.

Switching between motor rhythms in a multifunctional CPG is attributed to
switching between corresponding oscillatory attractors [5]. A key scientific issue
is how modulation and control can switch the system between states, and how the
CPG achieves robustness to noise and heterogeneity. Theoretically, the problem is
therefore how to obtain parsimonious answers to the scientific questions through
mathematical analysis and simulation of these models. A common approach has
been to first reduce each neuron’s activity to a one- or two-dimensional return map
using, for example, phase resetting techniques, and then to compose these maps to
form an approximate representation of the cycle-to-cycle network activity [6, 7].
Instead, we directly analyze a single return map induced by the full dynamics of
a biophysical network CPG model. This map will be defined qualitatively through
numerical simulations and does not require knowledge of explicit phase equations for
the underlying network model. This makes our technique applicable to a wide range
of detailed (high-dimensional) models of rhythmic activity in biological networks,
especially those that are not easily reduced to low-dimensional systems of equations
by explicit means.

Elemental circuit configurations for CPG models are often reduced to three oscil-
lators but their components are typically anatomically and physiologically diverse
[8–11]. We consider a model of endogenously bursting neurons coupled in a ring [12]
using fast reciprocal synaptic inhibition modeled by fast threshold modulation [13].
The neurons are 3-dimensional reduced models of leech heart interneurons, as defined
in ref. [14]. We demonstrate that the duty cycle of bursting, the fraction of the burst
period in which the cell bursts, is a physiologically relevant order parameter that can
be used to control switching between outcomes.

2 Qualitative Analysis of Phase-Lag Maps

We examine polyrhythmic outcomes of the motif for short (∼20 %), medium
(∼50 %), and long (∼80 %) bursting duty cycles. For this we computationally derive
return maps for phase lags Δφ21 and Δφ31 between burst onsets in cell 2 (green)
and cell 3 (red) relative to the reference cell 1 (blue) (Fig. 1). As the period of
network oscillation changes through time, we define the phase between cells to be
relative to the time interval between which the voltage V1 of cell 1 increases through
a threshold of −40 mV. We define Δφ

(n)
i1 ∈ [0, 1) as the phase lag between the nth

consecutive burst onsets in cells 1 and i . As the network evolves from an initial
state, the relative phases of each oscillator on each subsequent cycle n generate a
sequence {Δφ

(n)
31 ,Δφ

(n)
21 }, which we plot within the unit square; for convenience the

iterates are joined with lines to preserve cycle ordering in the phase lag maps (Figs. 2,
3). Thus, the original, continuous-time 9D system is reduced to a 2D stroboscopic
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Fig. 1 Voltage traces: the phase (mod 1) of reference cell 1 (blue) is reset when V1 reaches Θth =
−40 mV. The time between burst onsets in cell 2 (green) and 3 (red) determine a sequence of phase
lags {Δφ

(n)
21 ,Δφ

(n)
31 } normalized to the varying recurrence times of cell 1

Δ φ

Δφ

Fig. 2 Phase-lag map for the homogeneous, medium bursting motif at V shift
K2 = −21.0 mV, showing

five phase-locked (fixed point) attractors: red at ∼ (
0, 1

2

)
, green

( 1
2 , 0

)
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, whose basins are separated by six saddles (brown dots)

return map for the phase lags defined on a torus [0, 1) × [0, 1), with Δφi1 mod 1.
The maps are not derived as explicit equations, but instead are tabulated on a 40×40
(or more) grid of initial points whose iterates comprehensively reveal the underlying
vector field. We then study the geometric properties of the maps. In particular, we
can locate equilibrium points of the maps, which we refer to as fixed points (FPs).
We evaluate the stability of these objects and characterize bifurcations by using the
methods of the qualitative theory of dynamical systems.
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Figure 2 shows the (Δφ31,Δφ21) phase-lag map for the homogeneous, medium
bursting motif when V shift

K2 = −21.0 mV. The map possesses five stable FPs (color-
coded dots) corresponding to the coexisting phase-locked bursting patterns: red at
(
(
Δφ21 ≈ 0,Δφ31 ≈ 1

2

)
, green

( 1
2 , 0

)
, blue

( 1
2 , 1

2

)
, black

( 2
3 , 1

3

)
and gray

( 1
3 , 2

3

)
. The

attraction basins of these points are divided by separatrices (incoming and outgoing
sets) of six saddle points (brown dots). The saddles separate the basins of attraction
of the 5 fixed points which correspond to phase locked states.

The outcome of the homogeneous motif depends on the initial phase distributions
of the cells. When the cells are about to burst together, their initial phases are near the
origin in the phase plane. In this case, any of the five rhythmic pattern outcomes has
a chance of occurring (Fig. 2). Each rhythm is robust, so well chosen perturbations
are needed to switch the motif between rhythms. An efficient and easy way to perturb
an inhibitory motif is to apply an appropriately-timed hyperpolarizing pulse to the
targeted cell [12, 15]. Figure 4 demonstrates the approach for the homogeneous
motif. The phase-lag maps create a guide for where and how long a hyperpolarizing
pulse is needed to switch between rhythms. For example, if we begin at the FP

( 1
2 , 1

2

)

and perturb cell 2 (green) we change the phase-lags Δφ21 and Δφ31. This changes
the position on the phase lag diagram and moves the phase point into the basin of
attraction of another rhythm, as in Fig. 1.

Δφ Δφ

Δφ Δφ

Fig. 3 Homogeneous phase-lag mapping for V shift
K2 = −18.95 mV motif at V shift

K2 = −18.95 mV,
showing three attractors (blue, red, and green dots). Each corresponds to an anti-phase rhythm
where one cell bursts solo followed by synchronized bursts in the other two cells. The fixed points
for counter-clockwise and clockwise traveling waves (black dots) are unstable. Right Phase-lag map
for the homogeneous, long bursting motif at V shift

K2 = −22.5 mV, revealing two equally dominant
rhythmic attractors: at

( 1
3 , 2

3

)
and at

( 2
3 , 1

3

)
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V1

V2
7 s

V3

(i) (ii) (iii) (iv) (v)

Fig. 4 Five types of robust bursting rhythms in the medium-length bursting motif, using gsyn =
5 · 10−3 (increased from its nominal value to illustrate stable states without long transients).
Appropriately-timed inhibitory pulses (horizontal bars) temporarily suppress the targeted cells and
switch between the rhythms. Episode (i) shows the

( 1
2 , 1

2

)
FP interrupted by a pulse to cell 2. On

release of cell 2 from suppression, the clockwise
( 1

3 , 2
3

)
FP is observed. After cell 1 is temporarily

suppressed, the counter-clockwise
( 2

3 , 1
3

)
FP is observed in episode (iii). A pulse releasing cell 3

from inhibition then makes cell 2 lead in the
(
0, 1

2

)
rhythm of episode (iv). After cells 1 and 2 have

been simultaneously hyperpolarized, cell 3 leads the motif in the
( 1

2 , 0
)

in the last episode (v) of
the voltage trace

3 Duty Cycle is an Order Parameter of the Network

The duty cycle (DC) of bursting oscillations is the fraction of the burst period in
which the cell is spiking (Fig. 1), and is a property known to affect the synchronization
properties of coupled bursters [15]. DC can be measured experimentally from voltage
traces in neural dynamics. In this study, we control DC through the intrinsic parameter
V shift

K2 , which measures the deviation from the experimentally identified voltage value
at which the slow K+ current is half-activated [14]. DC depends monotonically on
V shift

K2 . As the activation kinetics of this current are shifted to depolarized voltages, the
cells produce first short, then medium, and then long burst trains before transitioning
to continuous spiking. We consider weak inhibitory coupling determined by the
maximal conductance gsyn, which is set at 5 · 10−4 nS in the homogeneous case.

Comparison of the maps for the homogeneous motifs in cases of medium (Fig. 2),
short (Fig. 3, left) and long (Fig. 3, right) bursting demonstrates that the DC is
an order parameter for such configurations. As such, short bursting (DC ∼ 20%)
makes both traveling waves impossible because the corresponding FPs exist but are
unstable. In contrast, for long bursting (DC ∼ 80%), these patterns equally dominate
the dynamics by narrowing the attractor basin of the other FPs—shrinking the range
of phases that can lead to alternative patterns.

4 Summary

In this work we presented a simple network motif of three bursting cells recip-
rocally coupled by fast inhibitory synapses in a ring. We showed that the model
can generate multiple, coexisting rhythms, selected by the initial conditions of the
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cells. We characterized the essential temporal properties of the coupled system by
measuring just two differences (“lags”) in the phase between the three oscillators
along simulated orbits. By systematic variation of the initial conditions, the com-
putational exploration of the possible rhythmic outcomes led to a reduction of the
original 9D system of differential equations to a graphical and equationless repre-
sentation of the 2D mapping of cycle-to-cycle phase lags. Crucially, a feature of
this reduction is that explicit equations were replaced by a qualitative portrait of the
maps. Nonetheless, the geometric properties of the maps, and how they change as
model parameters are varied, can be understood through standard qualitative tech-
niques of dynamical systems theory. In particular, the rhythmic patterns of the motif
correspond to fixed and periodic attractors of the maps. The basins of attraction for
the rhythms are separated by phase thresholds known as saddles.

The power of our technique is that it avoids the need for equations, and as such
makes few assumptions about the nature of the models of the coupled oscillators
making up the motif or their detailed form of coupling. For instance, the models
may be high-dimensional and possess multiple time scales. In order to define the
phase lags, we only assume that the cells burst regularly. In principle, our technique
can be generalized to a larger number of cells. Problems of human visualization of
higher-dimensional phase-lag maps notwithstanding, the concepts of fixed points
and periodic orbits carry through to higher dimensions.

We discovered that the primary “order parameter” determining the pattern out-
comes is the duty cycle of bursting: short bursting promotes anti-phase rhythms,
while long bursts will self-arrange into one of two traveling wave patterns typical of
unidirectionally-coupled inhibitory rings. The dynamics of the motif with medium-
length duty cycle is richer due to the existence of five competing rhythmic outcomes.
We therefore hypothesize a possible biophysical control mechanism for switching
between CPG patterns: common inhibition or excitation to the circuit, which varies
the duty cycle of all cells simultaneously. For complete details see [16, 17] and
references therein.
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On the Approach of Ensemble of Interacting
Imperfect Models

Miroslav Mirchev and Ljupco Kocarev

Abstract Several approaches of ensemble of interacting imperfect models combined
based on observed data either by adaptive synchronization, optimized couplings or
weighted combining have been recently proposed. In this study we further exam-
ine the weighted combining method using the Hindmarsh-Rose (HR) neuron model
and the different outcomes that we can expect. We generate data with an HR model
usually referred as ‘truth’ and use the data to train an ensemble of HR models with
perturbed parameter values, so that together they mimic the truth. The results show
that the weights of the ensemble can be learned using data from a truth HR model
exhibiting bursting, in order to represent the same bursting behavior as well as other
behaviors such as spiking and random bursting.

1 Introduction

The idea of combining individual models in order to gain improved estimates and
predictions is widely present in many areas and has been explored for solving different
kinds of problems [1]. In the recent period several ensembles of imperfect models
which interactively communicate have been studied, particularly toward application
to climate predictions. In [2, 3] an ensemble of coupled models was proposed which
adaptively synchronizes with the observed data. Another approach was explored in
[4] where the coupling coefficients can be learned from observed data by cost function
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minimization. Both analyzes assume a ‘truth’ model generating data and imperfect
models obtained by perturbing the ‘true’ parameters. These analyzes show that the
interactive ensembles represent the truth better than the models individually or their
average. The approach from [4] has been further studied in [5] in respect to shorter
amount of observed data, larger differences between the individual models, negative
and larger values of the coupling coefficients and certain modifications to the learning
procedure. In [6] it was observed that large coupling coefficients actually lead to a
model with dynamics which is a convex combination of the individual models and
therefore this combination could be learned directly.

In this paper we further study the weighted combining method using the
Hindmarsh-Rose (HR) neuron model [7]. As truth we use a HR model exhibiting
bursting and we train a weighted ensemble of imperfect HR models with perturbed
parameter values. The ensemble can then be used to mimic any future behavior
of the truth. In Sect. 2 we briefly describe the weighted combining method and
the Hindmarsh-Rose model. Some numerical results are presented in Sect. 3, while
Sect. 4 concludes the paper.

2 Ensemble of Interacting Hindmarsh-Rose Models

The methods of interactive ensembles of models have been previously mostly applied
to systems with dimensions of similar time-scale. In this study we use the HR model
[7] which exhibits fast-slow dynamics, i.e. some state variables change at a slower
rate than the others. The model has been developed to be a simplified qualitative
representation of a neuron’s behavior and its equations of motion are

ẋ = y − a ∗ x3 + bx2 + I − z

ẏ = c − dx2 − y

ż = r(s(x − x1) − z), (1)

where x represents the membrane potential, y is a recovery variable, z is a slowly
varying adaptation current, I is an external current and a, b, c, d, r, s and x1 are
parameters. With the change of the external current and the parameters the model
can exhibit regular bursting, spiking and random bursting as well as individual spikes
and bursts.

We assume that as truth (T ) we have one Hindmarsh-Rose (HR) model and there
are M imperfect models obtained by perturbing at most P parameters in each equa-
tion. We use a weighted ensemble, as in [6], in which the i-th component of the
dynamics f i

m of each model m is included by weight wi
m , so the equation of motion

of each ensemble component is defined as

ẋe
i =

∑

m

wi
m f i

m(xe) (2)
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An error can be defined for each component i and each model m as the deference
between the true state change and the state change of model m initialized from the
truth state. The overall sum-squared-error per component is a quadratic function of
the weights which in turn can be minimized directly [6], or the derivatives of the
error with respect to the weights can be equalized to zero and then least squares can
be applied. Alternatively, a learning procedure similar to the one described in [4]
could be considered.

In our case the ensemble can be rewritten in the form of Eq. (1), so that for each
ensemble parameter pe, pe = ∑

m wi
m pm . If the weights are constrained to form

an affine combination per component (
∑

m wi
m = 1) the unperturbed parameters of

the ensemble will become equal to the truth, while to have a perturbed ensemble
parameter equal to a truth parameter pT , the constraint

∑
m wi

m pm = pT needs
to be satisfied. Thus, if P + 1 ≤ M the system of equations relating the weights
per component is not overdetermined and we could have an exact solution. If the
weights are further constrained to positive values, so they form a convex combination
(wi

m > 0 and
∑

m wi
m = 1), to have an exact solution the truth parameters should

be in the range between the perturbed parameters. Otherwise, if these conditions are
not satisfied or the models structurally differ from the truth, the optimization could
provide a set of weights as well as possible.

3 Numerical Analyzes

We assume that as truth we have a time series of 10,000 time units of data obtained
by integrating an HR model with time step 0.01. These data are generated by a model
exhibiting bursting (a = 1, b = 3, c = 1, d = 5, r = 0.001, s = 4 and I = 2), so
that the system visits diverse areas of the three dimensional (D = 3) phase space,
but alternatives could be explored and the applied external current I could be also
varied. We add a small amount of Gaussian noise to the observed data and as the
noise level becomes higher, longer series of observed data are required to accurately
capture the truth behavior.

The ensemble consists of three imperfect models (M = 3) differing from the truth
by up to 30 % in a, b, c, d, s and x1, so that there are two parameter perturbations
per equation (P = 2) and only r remains unchanged. It can be noticed on Fig. 1, as
expected [1, 6], that a uniformly weighted ensemble mimics the truth better than the
individual models. Therefore, the goal is to find a set of weights of the dynamics of
the individual models which would represent the truth as best as possible.

We search for an optimal set of weights by applying quadratic programming with
weights constrained to form a convex combination per component as in [6], but if
a good solution can not be found the constraints could be relaxed, however, in our
case a solution was found with the given constraints. As a next step we evaluate
the obtained ensemble by making N = 1000 test runs of both the truth and the
ensemble. At each run the ensemble is initialized from a different truth state with
excluded transient dynamics and added noise. Then both the ensemble and the truth
are integrated forward for 10,000 time units.



330 M. Mirchev and L. Kocarev

0 500 1000 1500 2000

−2

0

2
x

model1 model2 model3 truth

0 500 1000 1500 2000

−2

0

2

t

x

uniformly weighted truth

Fig. 1 The membrane potential (x) of a bursting HR model (truth) and three other models with
perturbed parameters

Besides examining the bursting behavior, we are also interested if the obtained
ensemble can mimic the truth if there is a change in I (I = 4) so the truth exhibits
spiking and furthermore if there is change in both r and I (I = 3.25, r = 0.005) so
the truth exhibits random bursting, i.e. the number of spikes in each burst is random.
In this way the ensemble is confronted to a behavior different than the one used to
learn the weights.

There are different ways to estimate the predictive power of the trained ensemble.
One way to compare pairs of neurons is to calculate the correlation between the
output signals, though, many other approaches exist [8]. To quantify the quality of
the predictions at each time step we calculate an average correlation coefficient (r )
as an average of the component-pairwise Pearson correlation coefficients between
the ensemble (xe) and the truth (T )

r = 1

D

D∑

i=1

∑N
j=1(x

i
e j

− xi
e)(T

i
j − T i )

√∑N
j=1(x

i
e j

− xi
e)

2
∑N

j=1(T
i
j − T i )2

(3)

The average correlation coefficient is shown on Fig. 2 for the three considered
behaviors, while Fig. 3 shows a single prediction of the x variable. It can be noticed
that in bursting the correlation decreases slowly during the period of examination
with small variations and the single prediction also shows that the ensemble follows
the truth behavior. In random bursting the correlation is relatively high (>0.6) during
the first 180 time units and drops to zero after 300 time units, though, the ensemble
still mimics the truth behavior.

On the other hand, in spiking the correlation drops bellow 0.6 after the first 20 time
units. Afterward, the correlation periodically rises to high values corresponding to
a periodic matching of the spikes and drops bellow zero when the spikes mismatch
is largest. It was observed that the largest mismatch is in the z variable and after
the initialization the ensemble goes through a short transient period after which the
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Fig. 2 The average correlation (r ) between the model and the truth for an HR model in bursting,
spiking and random bursting behavior based on 1,000 test runs of 10,000 time units
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Fig. 3 A single prediction run of x in bursting, spiking and random bursting behavior

Table 1 Means (μ), standard deviations (σ) and covariances of the truth and the ensemble based
on 1,000 test runs for bursting (burst.), spiking (spik.) and random bursting (r.burst.) behaviors

μx μy μz σx σy σz covxy covxz covyz

Truth burst. −1.120 −6.876 1.919 0.566 3.992 0.116 1.7649 0.0034 0.0268
Ensemble burst. −1.120 −6.858 1.921 0.564 3.983 0.117 1.7596 0.0034 0.0299
Truth spik. −0.595 −2.257 4.018 0.545 1.283 0.005 0.1998 0.0000 −0.0042
Ensemble spik. −0.591 −2.194 4.033 0.537 1.248 0.005 0.1911 0.0000 −0.0041
Truth r.burst. −0.800 −3.481 3.200 0.506 1.752 0.115 0.4809 0.0033 0.0343
Ensemble r.burst. −0.798 −3.453 3.207 0.503 1.803 0.124 0.4957 0.0039 0.0483

spiking rate becomes more similar to the true. Therefore, it can be argued that after
this transient period the ensemble misses or adds one spike per each correlation drop
bellow zero, which can be also noticed at Fig. 3. We should note that attempts to train
the ensemble with the truth exhibiting spiking resulted in less accurate predictions
than using bursting data.
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As previously studied in [4, 5], the characteristics of the long term behavior of
the observed process are also of interest. Therefore, in Table 1 the summary statistics
(mean values, standard deviations and covariances) based on the 1,000 test runs of the
truth and the ensemble are presented and it can be seen that the given characteristics
of the truth are well preserved by the ensemble.

4 Conclusions

We have studied the weighted ensemble of interacting models and its different
possible solutions using the Hindmarsh-Rose (HR) neuron model which have fast
and slow dynamics. It was shown that by observing an HR model exhibiting bursting
a weighted ensemble can be trained to capture the same behavior. Moreover, the same
ensemble is also capable to mimic future spiking and random bursting behaviors.

During the optimization the weights were strictly constrained to form a convex
combination per component, however, in other circumstances these constraints could
be relaxed if necessary. One possible alternative is regularizing the problem to make
small positive weights preferable while still allowing negative weights if required.
The analyzed method worked well with small amount of noise but for higher noise
levels data should be observed over a longer period or alternative learning strategies
could be considered.
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Synchronization in Coupled MEMS Resonators

Suketu Naik and Takashi Hikihara

Abstract In this paper, the experimental results of a MEMS resonator with
hard-spring response are shown. Under specific excitation conditions, the resonator
shows an extension of the hysteresis during upsweep and downsweep of the excitation
frequency. The extension of the hysteresis can be tuned by changing the excitation
voltage. Sensitivity in regards to change in excitation conditions including ac volt-
age, dc bias, and pressure is demonstrated. Furthermore a unidirectionally coupled
system consisting of the above nonlinear resonators is also characterized.

1 Introduction

Micromechanical devices provide ample opportunities to explore rich dynamical
behaviors including synchronization. MEMS devices can exhibit many nonlinear
behaviors including the hard-spring effect and the soft-spring effect. Along with
ac excitation voltage and bias, actuation mechanisms such as parallel plate comb-
drive or laterally driven comb-drive determine whether soft-spring or hard-spring
behavior is exhibited. Furthermore a closed-loop coupled nonlinear system can offer
additional advantages including self-excited oscillations and synchronization to an
excitation signal. In this paper the experimental results of synchronization in an elec-
tronically coupled system of Micro Electro Mechanical System (MEMS) resonators
with hysteresis in frequency-domain are entailed.
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Fig. 1 Comb-drive resonator fabricated in SOIMUMPs process: note the difference between the
lengths of the inner beam and outer beam within a pair of folded beams

2 Single Nonlinear Resonator

Figure 1 illustrates a laterally driven comb-drive resonator that was fabricated in
SOIMUMPs process [1]. The resonator consists of a perforated mass suspended by
folded springs. The springs are attached to the truss. The device is designed to be
symmetric in x and y axes to provide stable oscillations. Usually the device is biased
at a dc voltage. By applying ac voltage between the comb fingers attached to the
mass and the fixed electrode (either left or right electrode in Fig. 1), a time varying
electrostatic force is generated which makes the mass vibrate in the x-direction.
Typically the motional current, which is proportional to the change in the capacitance
between the comb fingers and the excitation voltage, is measured. The vibration in
this type of resonator will be only in the x-direction due to two design features:
folded flexure and thickness of the structure. These features reduce the axial stress
and restrict the out-of-plane movement thereby minimizing unstable and unwanted
vibrations in the other axes [2]. Also small dimples were placed to avoid the stiction
between the long comb-fingers with small gap.

2.1 Design and Fabrication

The devices were fabricated in a SOIMUMPs process. SOIMUMPs is a simple
Silicon-On-Insulator (SOI) patterning and etching process offered by Memscap, Inc.
The end result is a 25µm thick doped Silicon as the structural layer which is patterned
and etched on a 400µm thick Silicon substrate with 2µm thick Oxide as the insulating
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layer [1]. The substrate underneath the structure is completely removed in a back-
etch which reduces parasitic capacitances and damping. The Pad Metal layer is used
for the bond-pads for excitation and detection. The folded beam design reduces axial
stress components present in a single beam and extends the stroke in the intended
direction of motion. Each end of the folded beam pair (total of four pairs) is free to
expand and contract in all directions. The resonating mass is suspended by flexures
on four sides; the total stiffness of the entire structure in a given direction can be
verified by running a modal analysis in FEA software. The frequency associated with
the fundamental mode is 9681.43 Hz. The truss reduces motion in the y-axis in this
mode. The analysis of the other modes reveals that the frequencies corresponding
to the other two modes are farther away from the fundamental frequency. These
two frequencies are due to the torsional and lateral modes that can be present in the
suspension beams. Springs are made to be long and narrow and are terminated with
fillets to minimize breakage. The design presented in this chapter is comprised of the
folded beams with outer fold. The inner beams were designed to be slightly longer
than the outer beams as shown in Fig. 1. This creates a ratio between the inner beam
(IB) and outer beam (OB) and introduces an asymmetry. With LOB = 306µm and
LIB = 336µm, kOB/kIB = L3

IB/L3
OB = 1.32.

2.2 Nonlinearity

Nonlinearity in the MEMS devices can appear due to large vibrations, residual stress,
variation in the individual elements, contact with other elements, circuit elements,
and/or a combination of all of the above. Typically the nonlinearity in MEMS is
categorized as soft-spring effect and hard-spring effect. In the soft-spring effect the
springs soften, that is the restoring force decreases as the displacement increases. On
the other hand the hard-spring effect is characterized by an increase in the restoring
force with increasing displacement. The actuation mechanism plays a major role in
which type of behavior is exhibited. For example, parallel plate actuation generates
a strong dependence on the bias in the applied force value; it effects the linear spring
constant term by reducing it. At high dc bias the effective linear spring constant
term becomes negative and the device exhibits soft-spring effect. On the other hand,
hard-spring behavior can occur in a laterally driven comb-drive when it is driven by
large force. In either case, the primary cause of the nonlinearity is the deformation
of material. Usually linear displacement occurs in the first lateral mode when small
force is applied at the tip of the beam. In this mode, the springs go through large
deformation in the presence of a large force which can result in the nonlinear restoring
force.

3 Experimental Results

Measurements were performed on Agilent 4,294A impedance analyzer on resonators
fabricated on separate dies and single die. The left electrode was connected to the
high port, the anchor pad (resonating structure) was connected to the low port, and
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the right electrode was connected to the ground. From the equivalent circuit model
of a resonator, the impedance analyzer can display the real part containing a purely
mechanical term plus an offset attributed by a purely capacitive term and the imag-
inary part containing purely capacitive terms. In the linear operation, the quality
factor Q was measured as 4,640, 5,540, 4,026 for three different resonators on sep-
arate dies. For this measurement, the resonators were excited with a dc bias of 20 V,
an ac amplitude of 25 mV, and the pressure inside the vacuum chamber was set to
30 Pa.

3.1 Change in Excitation Conditions

In this section, the frequency responses of the resonator while changing excitation
conditions including ac voltage, bias, and pressure are briefly discussed.

AC Voltage

Figure 2 shows the upsweep frequency responses of the resonator. For the purpose
of clarity, the downsweep responses are not shown. However it was observed that
less than 5 Hz variation existed during the downsweep in all three resonators. As
shown in Fig. 2, the resonators show a typical hard-spring response up to a certain
value of the ac voltage after which the response extends to a higher value of fre-
quency. As shown in Fig. 2a, the approximate value of the ac excitation amplitude
at which the extension occurs is 170 mV. The frequency at which the extension in
a given resonator occurs at higher excitation amplitudes is nearly identical, as was
observed in all resonators. Another important observation is that during the upsweep,
the resonators show slight ringing in the middle of the curve as shown in Fig. 2a. The
resonator seems to have gone through more bifurcations which help continue the
upsweep response. The springs can maintain a stable vibration up to only a certain
frequency, after which it drops to a lower value such that the restoring force in the
springs can maintain an equilibrium with the excitation force. Also note that within
the extended hysteresis region the coexistence of two vibrational amplitudes indi-
cates a better control and predictability for switching the resonator between the two
states. However the mechanism for the extended hysteresis (see Sect. 3.2) depends
on the interplay between outer beam and inner beam which should be carefully con-
trolled. This feature is crucial in facilitating multiple bifurcations in the resonator
and thereby extending the response. It is worthy to note that by increasing ac voltage,
the folded beam pairs exhibit large displacement which leads to large deformation
as the beams harden. Hence the overall nonlinear spring constant increases when ac
voltage is increased and as a result the responses do not overlap before the extended
region for small values of ac voltage.
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(a) (b)

(c)

Fig. 2 Change in excitation conditions (note that downsweep responses are not shown for clarity
and only the real parts of the frequency responses are shown to illustrate the mechanical behavior):
a ac amplitude = [45, 105, 170, 205 mV], bias = 20 V, and pressure = 30 Pa, b bias = [10, 16.2,
20 V], ac amplitude = 205 mV, and pressure = 30 Pa, c pressure = [15, 30, 50 Pa] with ac excitation
amplitude = 205 mV and bias = 20 V

Bias

While changing the bias, the behavior is qualitatively similar as shown in Fig. 2b. Here
the electrostatic force increases significantly while incrementing the bias voltage.
This is due to an increase in the steady-state capacitance between the comb fingers.
The resonators display the nonlinear resonance at a low bias value. Also it is important
to note that the extension of the hysteresis depends more on the bias voltage than
the ac excitation amplitude. For example, a high ac excitation amplitude with a low
bias does not always induce the extended hysteresis. As mentioned in the previous
section, the frequency at which the extension occurs was observed to be identical
while increasing the bias value. The effect of increasing bias is that it changes the
equilibrium position of the resonator around which the folded beam pairsresonate in
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the presence of the ac voltage. Hence the change in dc does not significantly increase
the overall nonlinear spring constant which results in overlapping of the frequency
response in the lower frequency range.

Pressure

The effect of changing pressure is that it influences the molecular resonance in the
material and as a result the motional resistance exhibited by the device increases with
an increase in the pressure. For example, the experiments conducted on a device in
the air showed only the linear resonance due to high damping. Bias > 60 V and ac
amplitude = 1 V were required to produce any motion in the device. In air the device
was not tested at an excitation value higher than the above value lest it may break.
Hence a clear nonlinear resonance and extension of the hysteresis were not observed.
However in the vacuum starting at 100 Pa, the devices exhibited a distinct nonlinear
resonance similar to the one shown in previous sections due to the low damping. To
compare the influence of pressure and the damping, devices were tested at 50, 30
and 15 Pa. Figure 2c shows that at all pressure values, the nonlinear resonance occurs
at approximately the same frequency point. This type of ringing was observed more
or less in all resonators. Note that this behavior may have been induced by addi-
tional bifurcations. The mechanism behind these bifurcations can be attributed to
the interaction of the outer beams with the inner beams thereby sustaining the vibra-
tions. Finally it is important to note that while varying the pressure, the temperature
change inside the chamber was not monitored or considered. Temperature can affect
the molecular resistance and the damping such that some of the qualitative behavior
would change.

3.2 Mechanism for the Extended Nonlinear Resonance

The causes of the nonlinear behavior shown in the above sections are as follows. As
the structure resonates, the inner beams and outer beams shown in Fig. 1 expand and
compress together (vice versa in the other direction). Normally this helps extend the
linear range of the resonator. Also the compliance in the truss can partially relieve
the axial compression. However the long and narrow beams can be axially loaded
when they experience a large electrostatic force during the peak resonance [2]. As a
result the inner beams develop higher modes of vibration due to high tensile force
to maintain equilibrium. Additionally the outer beams are designed to be stiffer
than the inner beams with a ratio of 1.32; hence they tend to compress less. This
type of nonuniform stress distribution in the inner and outer beams can cause more
hardening. Also note the location of the four beams on the truss; the distance between
the inner and outer beam in a given pair and the distance between two given pairs are
not equal. Additionally the outer beams can also be axially loaded and can exhibit a
higher mode of vibration as a result of the nonuniform expansion and contraction.
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All these conditions can cause the mass to sustain the vibrations as the frequency is
swept past the resonance frequency and as a result the extension of hysteresis can
occur. The mechanism behind hysteresis and extended hysteresis has already been
discussed in detail in one of our papers [3].

4 Coupled Resonators

The coupled experiment was performed by using three resonators on a single die
(referred to as Res 1, Res 2, Res 3 from now on). The test die was attached by non-
conductive epoxy in the center of the device PCB and devices were wire-bonded to the
pcb traces using gold wires with diameter = 25µm. The motional current produced
by the device was read off the anchor pad. The substrate, the pcb, and the vacuum
chamber were also grounded to reduce parasitic capacitances. The experiments were
conducted on a motion resistant test-bench to dampen the ambient vibrations. The
three resonators on a single die were coupled together by discrete electronics such
that they form a closed-loop system, i.e. 1 → 2 → 3 → 1.

Fig. 3 The coupled system with a priori in-phase vibrations in the presence of ac excitation signal:
region of synchronization is shown where x-axis denotes the frequency of the excitation signal and
y-axis denotes the peak-to-peak voltage level of excitation signal. Outside of the sync region, the
oscillations are quasiperiodic as shown in the insets
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4.1 Self Excitations

In this experiment the devices were biased using a dc power supply. As mentioned
previously, the bias voltage plays a role of shifting the equilibrium position of the
resonator. If a resonator is in steady-state and the bias is applied suddenly, the res-
onator changes its steady-state or the equilibrium value (in the single well potential)
after some transient behavior induced by the noise in the circuit. Hence without the
bias the initial positions of the resonators are identical before applying an excitation
signal. 1 The output of a given resonator was fed to current-to-voltage (I-V) converter
which was connected to an amplifier with a variable gain which can tune the over-
all coupling strength between the resonators. The output of the coupling amplifier
was then connected to the next element in the ring. Next a bias of 20 V was applied
simultaneously on all the resonators. After that, the resonators were self-excited by
adjusting the gains of the coupling amplifiers. The inherent noise vibrations in the
circuit components act as the excitation signals to the resonators. The noise induced
vibrations are amplified by the coupling amplifiers. In this way the noise is fed from
the one element to the next element in the loop and thus each element drives the other
element with this noise. As the noise in the system traverses around the loop, the
resonators start to vibrate first arbitrarily and then by responding to the mechanism
of self-organized synchronization induced by the coupling strengths past the critical
values. Eventually at a sufficiently large vibration the resonators fully synchronize
with each other, as a result as the signal-to-noise ratio gets higher and stable sinu-
soidal vibrations emerge depending on the coupling strengths. The shared frequency
of oscillation is approximately 9 kHz and the amplitude levels are 2.12 V for Res 1,
0.68 for Res 2, and 1.86 V for Res 3. While tuning the coupling strengths, a narrow
range of frequencies was observed in which stable vibrations occur. The frequency
and the amplitude of the vibrations increase as the coupling strengths are carefully
matched and increased. Other combinations of the coupling produce unstable (qua-
siperiodic) vibrations.

4.2 Synchronization with the AC Excitation Signal

In this experiment, the ac excitation with dc bias was connected to the input ports
of the coupled system via a bias-tee network. The 1:1 region of synchronization is
shown in Fig. 3, inside which the frequency of the coupled system was observed to
be the same as the excitation frequency. Unstable (quasiperiodic) oscillations were
observed outside of the boundaries. It was observed that the region of synchronization
can shrink, widen, or shift by changing coupling strengths which impact the self-
excited frequencies and the amplitude levels. The influence of large nonlinearity is
also evident by the curved boundaries. For excitation amplitude less than 100 mV,

1 Here we assume that the fabrication process has no/very little effect on the initial positions of the
resonators.
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the vibrations were observed to be unstable with substantial quasiperiodicity. It is
possible for this region to be closed depending on damping and the noise in the
circuit. For example, at the pressure of 15 Pa the same coupled system shows a wider
area below 100 mV.

5 Summary

In this paper, the experimental results of nonlinear MEMS resonators were reported.
It was shown that the variation in the excitation voltage affects the frequency response
significantly. An extension of the hysteresis and thus an enlargement of usable ampli-
tude bandwidth were observed. The unidirectionally coupled system exhibited stable
self-excited oscillations depending on the coupling strengths and it also synchronized
to the excitation signal. The experimental study shown in this paper indicates that
the coupled system has a strong potential as a sensor depending on the applications.
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