
APQL: A Process-Model Query Language

Arthur H.M. ter Hofstede1,2, Chun Ouyang1, Marcello La Rosa1,3,
Liang Song4, Jianmin Wang4, and Artem Polyvyanyy1

1 Queensland University of Technology, Brisbane, Australia
{a.terhofstede,c.ouyang,m.larosa,artem.polyvyanyy}@qut.edu.au

2 Eindhoven University of Technology, Eindhoven, The Netherlands
3 NICTA Queensland Lab, Brisbane, Australia

4 School of Software, Tsinghua University, Beijing, China
songliang08@mails.thu.edu.cn, jimwang@tsinghua.edu.cn

Abstract. As business process management technology matures, organ-
isations acquire more and more business process models. The manage-
ment of the resulting collections of process models poses real challenges.
One of these challenges concerns model retrieval where support should be
provided for the formulation and efficient execution of business process
model queries. As queries based on only structural information cannot
deal with all querying requirements in practice, there should be support
for queries that require knowledge of process model semantics. In this
paper we formally define a process model query language that is based
on semantic relationships between tasks in process models and is inde-
pendent of any particular process modelling notation.

Keywords: business process model, process model collection, business
process model query, query language.

1 Introduction

With the increasing maturity of business process management, more and more
organisations need to manage large numbers of business process models, and
among these may be models of high complexity. Processes may be defined along
the entire value chain and over time a business may gather hundreds and even
thousands of business process models. As an example consider Suncorp, one
of the largest Australian insurers. Over the years, Suncorp have gone through
a number of organizational mergers and acquisitions, as a result of which the
company has accumulated over 3, 000 process models for the various lines of
insurance. In this context, support for business process retrieval, e.g. for the
purposes of process reuse or process standardization, is a challenging proposition.

Several query languages exist that can be used to retrieve process models
from a repository, e.g. BPMN-Q [1] or BP-QL [2,3]. These languages are based
on syntactic relationships between tasks and not on their semantic relationships.
However, to deal with all querying requirements in practice, it is not enough to
rely on only structural information of the process models but often requires
knowledge of process model semantics. Consider for example the two process

M. Song, M.T. Wynn, and J. Liu (Eds.): AP-BPM 2013, LNBIP 159, pp. 23–38, 2013.

The original version of this chapter was revised: The copyright line was incorrect. This has been
corrected. The Erratum to this chapter is available at DOI: 10.1007/978-3-319-02922-1 10

© Springer-Verlag Berlin Heidelberg 2013

http://dx.doi.org/10.1007/978-3-319-02922-1_10

24 A.H.M. ter Hofstede et al.

models in Fig. 1. They describe two variants of a business process for opening
bank accounts using the BPMN notation [4]. These two variants could capture
the way an account is opened in two different states where a bank operates, and
could be part of a collection of various process models in all states where the
bank operates. Assume that a business analyst needs to find out which branches
always require an assessment of the customer’s credit history when opening an
account. In this case, only using the structural relationships between tasks, we
cannot discern between the two variants, i.e. we would retrieve them both, since
in both models there is a path from task “Receive customer request” to task
“Analyse customer credit history”. However, based on semantic relationships
between tasks, we can observe that task “Analyse customer credit history” fol-
lows task “Receive customer request” in all instances of the first process variant,
but this is not the case for one instance of the second variant (the one with task
“Open VIP account”). Thus we can correctly exclude the second process variant
from the results of the query, and return the first variant only.

Fig. 1. Two variants of a business process for opening bank accounts

In light of the above, we aim to address the development of a business process
model query language based on semantic relationships between tasks in process
models. We do so by proposing a new query language, namely A Process-model
Query Language (APQL), for retrieving required process models from model
collections, e.g. process model repositories. This language relies on a number
of basic temporal relationships between tasks which can be composed to obtain
complex relationships between them. These predicates allow us to express queries
that can discriminate over single process instances or task instances.

In this paper, we define both the syntax (Sect. 2) and semantics (Sect. 3) of
APQL, provide examples to assist in understanding of the language definition
(Sect. 4), discuss related work (Sect. 5), and finally conclude the paper (Sect. 6).

2 The Syntax of APQL

APQL is designed as a process model query language that is independent of the
actual process modelling language used. This is important as in practice a variety
of modelling languages are used (e.g. BPMN, EPCs) and the language should
be generally applicable. Another important fact is that process models have a
semantics and it should be possible to exploit this semantics when querying.

APQL: A Process-Model Query Language 25

Based on the above design rationale, we define a set of 20 basic predicates
to capture, in business process models, the occurrences of tasks as well as the
semantic relationships between tasks. Below, the first two predicates capture the
occurrence of a task t in some or every execution of a given process model r.

1. posoccur(t, r): some execution of r exists where at least one instance of t occurs.
2. alwoccur(t, r): in every execution of r, at least one instance of t occurs.

The next two predicates capture the exclusive and concurrent relationships be-
tween task occurrences. Note that these two predicates do not assume that an
instance of t1 or t2 should eventually occur in a given process model r.

3. exclusive(t1, t2, r): in every execution of r, it is never possible that an instance of
t1 and an instance of t2 both occur.

4. concur(t1, t2, r): t1 and t2 are not causally related, and in every execution of r, if
an instance of t1 occurs then an instance of t2 occurs and vice versa.

Then we consider various forms of causal relationship between task occurrences.
The relationship can be precedence (pred) or succession (succ), where one task
may occur immediately or eventually preceding or succeeding another task. It
may hold for any or every occurrence of the tasks in some or every process
execution. Combining all these considerations results in 16 forms of causal rela-
tionships which are captured by the remaining 16 basic predicates as follows.

Let Φ be one of the following intermediate predicates,

1. succany(t1, t2, i): in process execution i, at least one instance of t1 occurs and is
eventually succeeded by an instance of t2 (e.g. ...t1...t2...).

2. succevery(t1, t2, i): in process execution i, at least one instance of t1 occurs and
every instance of t1 is eventually succeeded by an instance of t2 (e.g. t1...t1...t2).

3. predany(t1, t2, i): in process execution i, at least one instance of t1 occurs and is
eventually preceded by an instance of t2 (e.g. ...t2...t1...).

4. predevery(t1, t2, i): in process execution i, at least one instance of t1 occurs and
every instance of t1 is eventually preceded by an instance of t2 (e.g. t2...t1...t1).

5. isuccany(t1, t2, i): in process execution i, at least one instance of t1 occurs and is
immediately succeeded by an instance of t2 (e.g. ...t1t2...).

6. isuccevery(t1, t2, i): in process execution i, at least one instance of t1 occurs and
every instance of t1 is immediately succeeded by an instance of t2 (e.g. t1t2...t1t2).

7. ipredany(t1, t2, i): in process execution i, at least one instance of t1 occurs and is
immediately preceded by an instance of t2 (e.g. ...t2t1...).

8. ipredevery(t1, t2, i): in process execution i, at least one instance of t1 occurs and
every instance of t1 is immediately preceded by an instance of t2 (e.g. t2t1...t2t1).

Then

– Φ∀(t1, t2, r): Φ(t1, t2, i) holds for every process execution i of process model r, i.e.
Φ(t1, t2, i) always holds in process r, and

– Φ∃(t1, t2, r): there exists some process execution i of process model r where
Φ(t1, t2, i) holds, i.e. it is possible that Φ(t1, t2, i) holds in process r.

Next, the syntax of APQL is defined in the form of an abstract syntax, the
advantages of which over a concrete syntax have been espoused by Meyer [5].

26 A.H.M. ter Hofstede et al.

In essence, in an abstract syntax we can avoid committing ourselves prematurely
to specific choices for keywords or to the order of various statements.

In APQL a query is a sequence of Assignments combined with a Predicate.

Query � s : Assignments ; p : Predicate

Assignments � Assignment∗

The result is those process models that satisfy the Predicate. An Assignment
assigns a TaskSet to a variable and when evaluating the Predicate every variable
is replaced by the corresponding TaskSet (via the identifier of such task set).

Assignment � v : Varname ; ts : TaskSet

Varname � identifier

A TaskSet can be an enumeration of tasks or defined over other TaskSets by Con-
struction or Application. It can also be defined through a variable, a TaskSetVar.

TaskSet � SetofTasks | Construction | Application | TaskSetVar
A Task can be defined as a combination of a TaskLabel (a string) and a SimDegree
(a real number). The idea is that one may be interested in Tasks of which the
task label bears a certain degree of similarity to a given activity name. There
are a number of definitions in the literature concerning label similarity and for
a concrete implementation of the language one has to commit to one of these.

SetofTasks � Task∗

Task � l : TaskLabel ; d : SimDegree

TaskLabel � string

SimDegree � real [0..1]

A TaskSetVar is simply a variable that carries the identifier of the set of the
tasks. Such a task set may be used in assignments.

TaskSetVar � identifier

A TaskSet can be composed from other TaskSets through the application of the
well-known set operators such as union, difference, and intersection. Another way
to construct a TaskSet is by the application of a TaskCompOp (i.e. one of the
basic predicates introduced earlier, but now interpreted as a function) on another
TaskSet. In that case we have to specify whether we are interested in the tasks
that have that particular relation with all or with any of the tasks in the TaskSet.
For example, an application with TaskSet S, TaskCompOp PosSuccAny (i.e.
succany

∃) and AnyAll (indicator) All, is to yield those tasks that any instance
of such a task succeeds an instance of each task in S in some process execution.

Construction � ts1, ts2 : TaskSet ; o : Set Op

Set Op � Union | Difference | Intersection
Application � ts : TaskSet ; o : TaskCompOp; a : AnyAll

APQL: A Process-Model Query Language 27

TaskCompOp � Exclusive | Concur |
AlwSuccAny | AlwSuccEvery | AlwPredAny | AlwPredEvery |
PosSuccAny | PosSuccEvery | PosPredAny | PosPredEvery |
AlwISuccAny | AlwISuccEvery | PosISuccAny | PosISuccEvery |
AlwIPredAny | AlwIPredEvery | PosIPredAny | PosIPredEvery

AnyAll � Any | All
A Predicate can consist of a simple TaskPos, with the intended semantics what
the basic predicate posoccur specifies; a TaskAlw, with the intended seman-
tics what the basic predicate alwoccur specifies; a TaskRel, with the intended
semantics that all process models satisfying that particular relation should be
retreived; or, it can be recursively defined as a binary or unary Predicate through
the application of logical operators.

Predicate � TaskPos | TaskAlw | TaskRel | Bin Predicate | Un Predicate

Bin Predicate � o : BinLogOp; p1, p2 : Predicate

Un Predicate � o : UnLogOp; p : Predicate

BinLogOp � And | Or

UnLogOp � Not

TaskPos � l : TaskLabel ; d : SimDegree

TaskAlw � l : TaskLabel ; d : SimDegree

A TaskRel can be 1) a relationship between a Task and a TaskSet to check
whether the Task occurs in the TaskSet (TaskInTaskSet), 2) a relationship be-
tween a Task and a TaskSet and involving a TaskCompOp and an AnyAll in-
dicator to determine whether the Task has the TaskCompOp relationship with
any/allTasks in the TaskSet (Task TaskSet), 3) a relationship between two Tasks
involving a TaskCompOp predicate determining whether for the two Tasks that
predicate holds (Task Task), 4) a relationship between two TaskSets involving a
TaskCompOp and an AnyAll indicator to determine whether the Tasks in those
TaskSets all have the TaskCompOp relationship to each other or whether for each
Task in the first TaskSet there is a corresponding Task in the second TaskSet for
which the relationship holds (Elt TaskSet TaskSet), or 5) a relationship between
two TaskSets determined by a set comparison operator (Set TaskSet TaskSet).

TaskRel � TaskInTaskSet | Task TaskSet |
Task Task | Elt TaskSet TaskSet |
Set TaskSet TaskSet

TaskInTaskSet � t : Task ; ts : TaskSet

Task TaskSet � t : Task ; ts : TaskSet ;

o : TaskCompOp; a : AnyAll

Task Task � t1, t2 : Task ; o : TaskCompOp

28 A.H.M. ter Hofstede et al.

Elt TaskSet TaskSet � ts1, ts2 : TaskSet ; o : TaskCompOp;

a : AnyAll

Set TaskSet TaskSet � ts1, ts2 : TaskSet ; o : SetCompOp

SetCompOp � Identical | Subsetof | Overlap

3 The Semantics of APQL

We use denotational semantics to formally describe the semantics of APQL and
adopt the notation in [5]. For each nonterminal T we introduce a semantic func-
tion MT which defines the meaning of the nonterminal in terms of its parts.

First, we introduce some auxiliary notation in order to facilitate the subse-
quent definition of the semantics.

Definition 1 (overriding union). The overriding union of f : X → Y by g :
X → Y , denoted as f ⊕g, is defined by g∪f\{(x, f(x)) | x ∈ dom(f)∩dom(g)}.
With the set of 20 basic predicates defined in the previous section, we use BPu to
denote the set of two unary predicates {posoccur, alwoccur} which specify unary
task relations, and similarly we use BPb to denote the set of 18 binary predicates
which specify binary task relations. The following two definitions introduce a
higher order predicate that takes as input a unary or binary predicate, respec-
tively. Note that the semantics of each predicate (φ/ψ) is language independent.
For a task t in process model N , LN (t) specifies the label of t. A process model
may have silent tasks which do not capture any task or activity in the process
but are used for modelling purposes, e.g. a silent task used to capture an internal
action that cannot observed by external uses. For a silent task t, we let L(t) = τ .

Definition 2. Let N be a process model and T the set of tasks in N , for
t1, t2 ∈ T and φ ∈ BPb

refφ(t1, t2, N) =

{
φ(t1, t2, N) if LN(t1) �= τ ∧ LN(t2) �= τ
FALSE otherwise

i.e. the relation φ should hold between t1 and t2 in N if both are non-silent tasks.

Definition 3. Let N be a process model and T the set of tasks in N , for t ∈ T
and ψ ∈ BPu

refψ(t, N) =

{
ψ(t, N) if LN (t) �= τ
FALSE otherwise

i.e. the relation ψ should hold for t in N if t is a non-silent task.

As queries may use variables, we must know their values during query evaluation.
A Binding is an assignment of task sets to variables:

Binding � ProcessModel × Varname � 2Task

APQL: A Process-Model Query Language 29

Queries are applied to a repository of process models, i.e.

Repository � 2ProcessModel

A process model r consists of a collection of tasks Tr. For each task t in process
model r we can retrieve its label as Lr(t). Label similarity can be determined
through the function Sim, where Sim(l1, l2) determines the degree of similarity
between labels l1 and l2 (which yields a value in the range [0,1]). Note that Sim is
a parameter of the approach in which case one can choose his/her own similarity
notion and the corresponding function Sim returns the similarity evaluation
result to this parameter.

The query evaluation function MQuery takes a query and a repository as input
and yields those process models in that repository that satisfy the query:

MQuery : Query × Repository → 2ProcessModel

This function is defined as follows:

MQuery [q : Query, R : Repository] � MPredicate(q.p, R,MAssignments(q.s, R,∅))

The evaluation of the query evaluation function depends on the evaluation of the
predicate involved and the assignments involved. When evaluating a sequence
of assignments we have to remember the values that have been assigned to the
variables involved. Inititally this set of assignments is empty.

MAssignments : Assignments × Repository × Binding → Binding

The result of a sequence of assignments is a binding where the variables used in
the assignments are bound to sets of tasks. If a variable was already assigned a
set of tasks in an earlier assignment in the sequence the latest assignment takes
precedence over the earlier assignment.

MAssignments [s : Assignments , R : Repository , B : Binding] �
if ¬(s.TAIL).EMPTY then

MAssignments(s.TAIL, R,B ⊕MAssignment (s.FIRST , R,B))
else B

The result of an individual assignment is also a binding where the variable is
linked to the set of tasks involved.

MAssignment : Assignment × Repository × Binding → Binding

MAssignment [a : Assignment , R : Repository , B : Binding)] �
{((r, a.v),MTaskSet (a.ts,R,B)(r)) | r ∈ R}

A predicate can be evaluated in the context of a repository and a binding and
the result is a set of process models from that repository.

MPredicate : Predicate × Repository × Binding → 2ProcessModel

A predicate may yield all process models in the repository that contain a task
sufficiently similar to that task (with respect to the task label and similarity

30 A.H.M. ter Hofstede et al.

degree). A predicate may also specify relationship between tasks (i.e. a TaskRel)
in which case it yields all the process models that satisfy this relationship. A
conjunction yields the intersection of the process models of the predicates in-
volved, while a disjunction yields the union. The negation of a predicate yields
the process models in the repository that do not satisfy the predicate.

MPredicate(p : Predicate , R : Repository , B : Binding) �
case p of

TaskPos ⇒ {r ∈ R | ∃t ∈ Tr[Sim(p.l, Lr(t)) ≥ p.d ∧ posoccur(t, r)]}
TaskAlw ⇒ {r ∈ R | ∃t ∈ Tr[Sim(p.l, Lr(t)) ≥ p.d ∧ alwoccur(t, r)]
TaskRel ⇒ MTaskRel(p,R,B)
Bin Predicate ⇒

case p.o of
And ⇒ MPredicate(p.p1, R,B) ∩MPredicate(p.p2, R,B)
Or ⇒ MPredicate(p.p1, R,B) ∪MPredicate(p.p2, R,B)

end
Un Predicate ⇒ R\MPredicate(p,R,B)

end

A TaskRel in the context of a repository and a binding yields a set of process
models in that repository.

MTaskRel : TaskRel × Repository × Binding → 2ProcessModel

A TaskRel can be used to determine whether a task in a process model occurs in
a given task set, whether a given basic predicate holds between a task in a process
model and one or all tasks in a given task set, whether a given basic predicate
holds between tasks in a process model, whether a given basic predicate holds
between two or between all tasks in two given task sets, or whether a given set
comparison relation holds between two given task sets.

MTaskRel (tr : TaskRel , R : Repository , B : Binding) �
case tr of

TaskInTaskSet ⇒
{r ∈ R | ∃v ∈ MTaskSet(tr.ts,R,B)(r)[Sim(tr.t.l, Lr(v)) ≥ tr.t.d]}

Task TaskSet ⇒
case tr.a of

Any ⇒ {r ∈ R | ∃t1 ∈ Tr ∃t2 ∈ MTaskSet (tr.ts,R,B)(r)
[Sim(tr.t.l, Lr(t1)) ≥ tr.t.d ∧ reltr.o(t1, t2, r)]}

All ⇒ {r ∈ R | ∃t1 ∈ Tr ∀t2 ∈ MTaskSet (tr.ts,R,B)(r)
[Sim(tr.t.l, Lr(t1)) ≥ tr.t.d ∧ reltr.o(t1, t2, r)]}

end
Task Task ⇒ {r ∈ R | ∃v1, v2 ∈ Tr[Sim(tr.t1.l, Lr(v1)) ≥ tr.t1.d∧

Sim(tr.t2.l, Lr(v2)) ≥ tr.t2.d ∧ reltr.o(v1, v2, r)]}
Elt TaskSet TaskSet ⇒

case tr.a of
Any ⇒ {r ∈ R | ∃t1 ∈ MTaskSet (tr.ts1, R,B)(r)

∃t2 ∈ MTaskSet (tr.ts2, R,B)(r)[reltr.o(t1, t2, r)]}
All ⇒ {r ∈ R | ∀t1 ∈ MTaskSet (tr.ts1, R,B)(r)

∀t2 ∈ MTaskSet (tr.ts2, R,B)(r)[reltr.o(t1, t2, r)]}
end

APQL: A Process-Model Query Language 31

Set TaskSet TaskSet ⇒
case tr.o of

Identical ⇒
{r ∈ R | MTaskSet (tr.ts1, R,B)(r) = MTaskSet (tr.ts2, R,B)(r)}

Subsetof ⇒
{r ∈ R | MTaskSet (tr.ts1, R,B)(r) ⊆ MTaskSet (tr.ts2, R,B)(r)}

Overlap ⇒
{r ∈ R | MTaskSet (tr.ts1, R,B)(r) ∩MTaskSet (tr.ts2, R,B)(r) = ∅}

end
end

A TaskSet within the context of a repository and a binding yields a mapping
which assigns to each process model in the repository the collection of tasks
within that model that satisfy the restriction imposed by the TaskSet.

MTaskSet : TaskSet × Repository × Binding → (ProcessModel → 2Task)

When a TaskSet is a set of tasks, then for each process model the result is
the set of tasks within that process model that are sufficiently similar to at
least one of the tasks in that TaskSet. When the TaskSet is a variable, then the
evaluation is similar except that the task set used is the task set currently bound
to that variable. TaskSets can also be formed through Construction (where the
set operators union, difference, and intersection are used) or Application (where
task sets are formed through set comprehension, i.e. they are defined through
properties that they have - these properties relate to the basic predicates).

MTaskSet(tks : TaskSet , R : Repository , B : Binding) �
case tks of

SetofTasks ⇒
{(r, {t ∈ Tr | ∃1≤i≤tks.LENGTH [Sim(tks(i).l, Lr(t)) ≥ tks(i).d]}) | r ∈ R}

TaskSetVar ⇒
{(r,X) | r ∈ R} where

X =

{
B(r, tks) if (r, tks) ∈ dom(B)
∅ otherwise

Construction ⇒
case tks.o of

Union ⇒
{(r,MTaskSet(tks.ts1, R,B)(r) ∪MTaskSet(tks.ts2, R,B)(r)) | r ∈ R}

Difference ⇒
{(r,MTaskSet(tks.ts1, R,B)(r)\MTaskSet(tks.ts2, R,B)(r)) | r ∈ R}

Intersection ⇒
{(r,MTaskSet(tks.ts1, R,B)(r) ∩MTaskSet(tks.ts2, R,B)(r)) | r ∈ R}

end
Application ⇒
case tks.a of

Any ⇒
{(r, {t ∈ Tr | ∃v ∈ MTaskSet (tks.ts,R,B)(r)[reltks.o(t, v, r)]}) | r ∈ R}

All ⇒
{(r, {t ∈ Tr | ∀v ∈ MTaskSet (tks.ts,R,B)(r)[reltks.o(t, v, r)]}) | r ∈ R}

end
end

32 A.H.M. ter Hofstede et al.

4 Examples of APQL Queries

In this section we present some sample queries and show how they can be cap-
tured in APQL in order to further illustrate the language. The sample queries,
specified in natural language, are listed below (which are numbered Q1 to Q10).
In these queries, by default the value for the AnyAll identifier, when applicable,
is all, and by default the value for the SimDegree is 1. According to the abstract
syntax of APQL in Sect. 2, Fig. 2 shows the grammar trees for queries Q1 to
Q6, and Fig. 3 shows the grammar trees for queries Q7 to Q10. Note that in the
following A to L are task labels (i.e. activity names).

Q1. Select all process models where task A occurs in some process execution
and task B occurs in every process execution.

Q2. Select all process models where in every process execution it is possible that
task A occurs before task D.

Q3. Select all process models where in every process execution task A always
occurs before task D.

Q4. Select all process models where in some process execution it is possible that
task A occurs before task B and task B occurs before task K.

Q5. Select all process models where in some process execution task A always
occurs before task B.

Q6. Select all process models where task B occurs in parallel with task C.
Q7. Select all process models where task B occurs in parallel with task C and

where task A occurs in parallel with task H.
Q8. Select all process models where in every process execution task B and task

C never occur together.
Q9. Select all process models where in some process execution the immediate

predecessors of task H are among the immediate successors of task B.
Q10. Select all process models where in some process execution the immediate

predecessors of task H may occur after the common immediate successors of
task B and task C.

In order to illustrate the formal semantics of APQL, a number of process
models, represented in BPMN, are presented in Fig. 4. For each sample query
above and for each model it is indicated whether the model is part of the answer
to the query (in that case the box corresponding to the query is ticked otherwise
the box is not ticked). Note that in some models tasks with the same label occur
(e.g. there are two tasks labeled A in model (5) in Fig. 4), in which case, APQL
will treat these tasks as same tasks during query evaluation1.

5 Related Work

Mindful of the importance of query languages for business process models, the
Business Process Management Initiative (BPMI) proposed to define a standard

1 Note that APQL is query language rather than a process modelling language.

APQL: A Process-Model Query Language 33

Fig. 2. The APQL grammar trees of sample queries Q1 −Q6

business process model query language in 20042. While such a standard has
never been published, two major research efforts have been dedicated to the de-
velopment of query languages for process models. One is known as BP-QL [3],
a visual query language based on an abstract representation of BPEL and sup-
ported by a formal model of graph grammars for processing of queries. BP-QL
can be used to query process specifications written in BPEL rather than possi-
ble executions, and ignores the run-time semantics of certain BPEL constructs
such as conditional execution and parallel execution. The other effort, namely
BPMN-Q [1,6], is also a visual query language which extends a subset of the
BPMNmodelling notation and supports graph-based query processing. Similarly
to BP-QL, BPMN-Q only captures the structural (i.e., syntactical) relations be-
tween tasks, and not their behavioral relationships. In [7], the authors explore
the use of an information retrieval technique to derive similarities of activity
names, and develop an ontological expansion of BPMN-Q to tackle the problem
of querying business processes that are developed with different terminologies. A
framework of tool support for querying process model repositories using BPMN-
Q and its extensions is presented in [8]. Recently, in [9], an approach that applies

2 http://www.bpmi.org/downloads/BPMI_Phase_2.pdf

http://www.bpmi.org/downloads/BPMI_Phase_2.pdf

34 A.H.M. ter Hofstede et al.

Fig. 3. The APQL grammar trees of sample queries Q7 −Q10

APQL: A Process-Model Query Language 35

Fig. 4. A list of BPMN business process models and evaluation of sample queries
Q1 −Q10 over these process models

36 A.H.M. ter Hofstede et al.

an indexing method based on the (graph-based) flow relation between tasks in
BPMN process diagrams is proposed for efficient processing of BPMN-Q queries.

APQL presents three distinguishing features compared to the above lan-
guages. First, its abstract syntax and semantics have been purposefully defined
to be independent of a specific process modelling language (such as BPEL or
BPMN). This will allow APQL and its query evaluation technique to be imple-
mented for a variety of process modelling languages. Second, APQL can express
all possible temporal-ordering relations (precedence/succession, concurrence and
exclusivity) between individual tasks, between an individual task and a set of
tasks as well as between different sets of tasks. Third, APQL querying constructs
need to be evaluated over the execution semantics of process models, rather than
their structural relations. In fact, structural characteristics alone are not able to
capture all possible order relations among tasks which can occur during execu-
tion, in particular with respect to cycles and task occurrences.

In addition to the development of process model query languages, other tech-
niques are available in the literature which can be useful for querying process
model repositories. In [10,11], the authors focus on querying the content of busi-
ness process models based on metadata search. The VisTrails system [12] allows
users to query scientific workflows by example and to refine workflows by analo-
gies. WISE [13] is a workflow information search engine which supports keyword
search on workflow hierarchies. In [14], the authors use graph reduction tech-
niques to find a match to the query graph in the process graph for querying
process variants, and the approach only works on acyclic graphs. In [15,16,17],
a group of similarity-based techniques have been proposed which can be used to
support process querying. In [18], a technique to query process model repositories
is proposed based on an input Petri net. Finally, in [19], the notion of behavioural
profile of a process model is defined, which captures dedicated behavioural re-
lations like exclusiveness or potential occurrence of activities. However, these
behavioural relations are derived from the structure of a process model. Thus,
for the reasons mentioned above, behavioral profiles only provide an approxi-
mation of a process model’s behavior, whereas APQL can precisely determine
whether or not a process model satisfies a given query.

6 Conclusions

This paper contributes an innovative language, namely APQL, for querying pro-
cess model repositories. APQL provides three main advantages over the state
of the art. First, the language is expressive since it allows users to specify all
possible order relationships among tasks or sets thereof. Second, the language
is precise, since APQL queries are defined for evaluation over process model
behavior, while existing query languages only support structural process charac-
teristics. Third, the language’s syntax and semantics are defined independently
of any specific process modeling language.

The next stage is to operationalise APQL and the main task is to develop
a technique for evaluation of APQL queries. This evaluation technique could
be designed on top of a well established mathematical technique for describing

APQL: A Process-Model Query Language 37

behavioural semantics, e.g. Petri nets. One challenge though, when it comes to
determining semantic relationships between tasks, is how to determine these
relationships in a feasible manner (i.e. without suffering from the well-known
state space explosion problem).

Currently APQL only focuses on the control flow perspective of business pro-
cess models. In the future, we will extend the language definition in order to
include other process perspectives such as data and participating resources.
Moreover, we plan to run structured interviews with domain experts to assess
the overall ease of use and usefulness of APQL.

Acknowledgements. Song and Wang are supported by the National Basic
Research Program of China (2009CB320700), the National High-Tech Devel-
opment Program of China (2008AA042301), the Project of National Natural
Science Foundation of China (90718010), and the Program for New Century Ex-
cellent Talents in University of China. ter Hofstede, La Rosa and Polyvyanyy
are partly supported by the ARC Linkage Grant “Facilitating Business Process
Standardization and Reuse” (LP110100252). In 2010 and 2011, ter Hofstede was
a senior visiting scholar of Tsinghua University. NICTA is funded by the Aus-
tralian Government as represented by the Department of Broadband, Communi-
cations and the Digital Economy and the Australian Research Council through
the ICT Centre of Excellence program.

References

1. Awad, A.: BPMN-Q: A language to query business processes. In: Proceedings of
the 2nd International Workshop on Enterprise Modelling and Information Systems
Architectures (EMISA 2007). LNI, vol. P-119, pp. 115–128. GI (2007)

2. Beeri, C., Eyal, A., Kamenkovich, S., Milo, T.: Querying business processes. In:
Proceedings of the 32nd International Conference on Very Large Data Bases,
pp. 343–354. ACM (2006)

3. Beeri, C., Eyal, A., Kamenkovich, S., Milo, T.: Querying business processes with
BP-QL. Inf. Syst. 33(6), 477–507 (2008)

4. OMG: Business Process Model and Notation (BPMN) version 2.0 (January 2011),
http://www.omg.org/spec/BPMN/2.0

5. Meyer, B.: Introduction to the Theory of Programming Languages. Prentice-Hall
(1990)

6. Awad, A., Decker, G., Weske, M.: Efficient compliance checking using BPMN-Q
and temporal logic. In: Dumas, M., Reichert, M., Shan, M.-C. (eds.) BPM 2008.
LNCS, vol. 5240, pp. 326–341. Springer, Heidelberg (2008)

7. Awad, A., Polyvyanyy, A., Weske, M.: Semantic querying of business process mod-
els. In: Proceedings of the 12th International IEEE Enterprise Distributed Object
Computing Conference, pp. 85–94. IEEE Computer Society (2008)

8. Sakr, S., Awad, A.: A framework for querying graph-based business process mod-
els. In: Proceedings of the 19th International Conference on World Wide Web,
pp. 1297–1300. ACM (2010)

9. Awad, A., Sakrb, S.: On efficient processing of BPMN-Q queries. Computers in
Industry 63(9), 867–881 (2012)

http://www.omg.org/spec/BPMN/2.0

38 A.H.M. ter Hofstede et al.

10. Vanhatalo, J., Koehler, J., Leymann, F.: Repository for business processes and ar-
bitrary associated metadata. In: BPM 2006. LNCS, vol. 4102, pp. 426–431. Springer
(2006)

11. Wasser, A., Lincoln, M., Karni, R.: ProcessGene Query – a tool for querying the
content layer of business process models. In: BPM 2006. LNCS, vol. 4102, pp. 1–8.
Springer (2006)

12. Scheidegger, C.E., Vo, H.T., Koop, D., Freire, J., Silva, C.T.: Querying and re-
using workflows with VisTrails. In: Proceedings of the ACM SIGMOD International
Conference on Management of Data, pp. 1251–1254. ACM (2008)

13. Shao, Q., Sun, P., Chen, Y.: WISE: A workflow information search engine.
In: Proceedings of the 25th International Conference on Data Engineering,
pp. 1491–1494. IEEE Computer Society (2009)

14. Lu, R., Sadiq, S.W.: Managing process variants as an information resource. In:
Dustdar, S., Fiadeiro, J.L., Sheth, A.P. (eds.) BPM 2006. LNCS, vol. 4102,
pp. 426–431. Springer, Heidelberg (2006)

15. van der Aalst, W.M.P., de Medeiros, A.K.A., Weijters, A.J.M.M.: Process equiv-
alence: Comparing two process models based on observed behavior. In: Dustdar,
S., Fiadeiro, J.L., Sheth, A.P. (eds.) BPM 2006. LNCS, vol. 4102, pp. 129–144.
Springer, Heidelberg (2006)

16. Ehrig, M., Koschmider, A., Oberweis, A.: Measuring similarity between semantic
business process models. In: Proceedings of the 4th Asia-Pacific Conference on
Conceptual Modelling. CRPIT, ACS, vol. 67, pp. 71–80 (2007)

17. van Dongen, B.F., Dijkman, R., Mendling, J.: Measuring similarity between busi-
ness process models. In: Bellahsène, Z., Léonard, M. (eds.) CAiSE 2008. LNCS,
vol. 5074, pp. 450–464. Springer, Heidelberg (2008)

18. Jin, T., Wang, J., Wu, N., La Rosa, M., ter Hofstede, A.H.M.: Efficient and accurate
retrieval of business process models through indexing (short paper). In: Meersman,
R., Dillon, T.S., Herrero, P. (eds.) OTM 2010. LNCS, vol. 6426, pp. 402–409.
Springer, Heidelberg (2010)

19. Weidlich, M., Mendling, J., Weske, M.: Efficient consistency measurement based
on behavioral profiles of process models. IEEE Transactions on Software Engineer-
ing 37(3), 410–429 (2011)

	APQL: A Process-Model Query Language
	1 Introduction
	2 The Syntax of APQL
	3 The Semantics of APQL
	4 Examples of APQL Queries
	5 Related Work
	6 Conclusions
	References

