
 123

LN
BI

P
15

9

First Asia Pacific Conference, AP-BPM 2013
Beijing, China, August 2013
Selected Papers

Asia Pacific
Business Process
Management

Minseok Song
Moe Thandar Wynn
Jianxun Liu (Eds.)

Lecture Notes
in Business Information Processing 159

Series Editors

Wil van der Aalst
Eindhoven Technical University, The Netherlands

John Mylopoulos
University of Trento, Italy

Michael Rosemann
Queensland University of Technology, Brisbane, Qld, Australia

Michael J. Shaw
University of Illinois, Urbana-Champaign, IL, USA

Clemens Szyperski
Microsoft Research, Redmond, WA, USA

Minseok Song
Moe Thandar Wynn
Jianxun Liu (Eds.)

Asia Pacific
Business Process
Management
First Asia Pacific Conference, AP-BPM 2013
Beijing, China, August 29-30, 2013
Selected Papers

13

Volume Editors

Minseok Song
Ulsan National Institute of Science and Technology
School of Technolgy Management
Ulsan, South Korea
E-mail: msong@unist.ac.kr

Moe Thandar Wynn
Queensland University of Technology
Information Systems School
Brisbane, OLD, Australia
E-mail: m.wynn@qut.edu.au

Jianxun Liu
Hunan University of Science and Technology
School of Computer Science and Engineering
Xiangtan, China
E-mail: ljx529@gmail.com

ISSN 1865-1348 e-ISSN 1865-1356
ISBN 978-3-319-02921-4 e-ISBN 978-3-319-02922-1
DOI 10.1007/978-3-319-02922-1
Springer Cham Heidelberg NewYork Dordrecht London

Library of Congress Control Number: 2013951177

This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of
the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology
now known or hereafter developed. Exempted from this legal reservation are brief excerpts in connection
with reviews or scholarly analysis or material supplied specifically for the purpose of being entered and
executed on a computer system, for exclusive use by the purchaser of the work. Duplication of this publication
or parts thereof is permitted only under the provisions of the Copyright Law of the Publisher’s location,
in ist current version, and permission for use must always be obtained from Springer. Permissions for use
may be obtained through RightsLink at the Copyright Clearance Center. Violations are liable to prosecution
under the respective Copyright Law.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication
does not imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.
While the advice and information in this book are believed to be true and accurate at the date of publication,
neither the authors nor the editors nor the publisher can accept any legal responsibility for any errors or
omissions that may be made. The publisher makes no warranty, express or implied, with respect to the
material contained herein.

Typesetting: Camera-ready by author, data conversion by Scientific Publishing Services, Chennai, India

Printed on acid-free paper

Springer is part of Springer Science+Business Media (www.springer.com)

Springer-Verlag Berlin Heidelberg 2013©

The original version of the book was revised:
The copyright line was incorrect. The Erratum
to the book is available at
DOI: 10.1007/978-3-319-02922-1_10

http://dx.doi.org/10.1007/978-3-319-02922-1_10

Preface

These proceedings contain the final versions of papers for the inaugural Asia-
Pacific Conference on Business Process Management (AP-BPM) 2013 that took
place in Beijing, China. AP-BPM 2013 was the first edition of the conference for
researchers and practitioners in the field of business process management (BPM)
in the region. Its purpose is to provide a high-quality forum for researchers
and practitioners to exchange research findings and ideas on BPM technologies
and practices that are highly relevant to the Asia-Pacific region. Through this
conference, we aim to set up a bridge between actual industrial requirements and
leading-edge research outcomes for the growth of the economic rising powers of
the Asia-Pacific region. More information on AP-BPM conference can be found
on the website: http://www.ap-bpm.org

This year we had 19 submissions from seven countries (Australia, China,
Guatemala, Indonesia, Italy, South Korea, Taiwan). Following an extensive re-
view process by an international Program Committee, eight papers (seven full
papers and one short paper) were accepted for publication in these proceedings
and presentation at the conference. In addition to the regular presentations, a
keynote speech was delivered by Prof. Wil van der Aalst and the keynote paper
is also included in the proceedings.

We would like to thank the authors for their submissions to the conference
and Prof. Wil van der Aalst for his excellent keynote. We also would like to
express our gratitude to Program Committee members and paper reviewers,
and acknowledge the support of the Steering Committee. Finally, we would like
to thank Lijie Wen for chairing the Organizing Committee.

August 2013 Minseok Song
Moe Thandar Wynn

Jianxun Liu

Conference Organization

Honorary Chair

Jiaguang Sun Tsinghua University, China

General Chair

Jianmin Wang Tsinghua University, China

International Advisory Committee

Arthur ter Hofstede Queensland University of Technology, Australia
Hyerim Bae Pusan National University, Korea
Jianmin Wang Tsinghua University, China
Pingyu Hsu National Central University, Taiwan
Budi Santosa ITS, Indonesia

Steering Committee

Honorary Chair

Arthur ter Hofstede Queensland University of Technology, Australia

Executive Chair

Hyerim Bae Pusan National University, Korea
Jianmin Wang Tsinghua University, China

Program Chairs

Minseok Song Ulsan National Institute of Science and
Technology, Korea

Moe Thandar Wynn Queensland University of Technology, Australia
Jianxun Liu Hunan University of Science and Technology,

China

Organization Chair

Lijie Wen Tsinghua University, China

Publicity Chair

Yahui Lu Shenzhen University, China

Program Committee

Saiful Akbar ITB, Indonesia
Yudistira Dwi Wardhana

Asnar ITB, Indonesia
Joonsoo Bae Chonbuk National University, Korea
Jian Cao Shanghai Jiao Tong University, China
Namwook Cho Seoul National Univ. of Technology, Korea
Lizhen Cui Shandong University, China
ZaiwenFeng Wuhan University, China
Yingbo Liu Tsinghua University, China
Yahui Lu Shenzhen University, China
Xiangpei Hu Dalian University of Technology, China
Pingyu Hsu National Central University, Taiwan
Jae-yoon Jung Kyunghee University, Korea
Dongsoo Kim Soongsil University, Korea
Kwanghoon Kim Kyonggi University, Korea
Minsoo Kim Pukyung National University, Korea
Michiharu Kudo IBM Research, Japan
Anto Satriyo Nugroho Center for Information & Communication

Technology, Indonesia
Chao Ou-Yang National Taiwan University of Science and

Technology, Taiwan
Chun Ouyang Queensland University of Technology, Australia
Punnamee Sachakamol Kasetsart University, Thailand
Shazia Sadiq University of Queensland, Australia
Budi Santosa ITS, Indonesia
Riyanarto Sarno ITS, Indonesia
Ricardo Seguel BPM LATAM, Chile
Markus Stumptner University of South Australia, Australia
Pablo David Villarreal National Technological University, Argentina
Xuefeng Wang Harbin Institute of Technology, China
Zhaoxia Wang Logistical Engineering University, China
Lijie Wen Tsinghua University, China
Yiping Wen Central South University, China
Raymond Wong The University of New South Wales, Australia
Jei-Zheng Wu Soochow University, Taiwan
Bernardo N. Yahya UNIST, Korea
Yang Yu Sun Yat-sen University, China
Chongyi Yuan Peking University, China
Haiping Zha Naval Armament Research Institute of PLA,

China
Li Zhang Tsinghua University, China
Liang Zhang Fudan University, China

X Conference Organization

Conference Organization XI

Yang Zhang Beijing University of Posts and
Telecommunications, China

Lindu Zhao Southeast University, China
Wen Zhao Peking University, China

Table of Contents

Process Cubes: Slicing, Dicing, Rolling Up and Drilling Down Event
Data for Process Mining . 1

Wil M.P. van der Aalst

APQL: A Process-Model Query Language . 23
Arthur H.M. ter Hofstede, Chun Ouyang, Marcello La Rosa,
Liang Song, Jianmin Wang, and Artem Polyvyanyy

BPEL Similarity — A Metric Based on Activity Constraint Graphs 39
Jianchun Xing, Xuewei Zhang, Wei Song, Qiliang Yang,
Jidong Ge, and Hongda Wang

Process Model Storage Solutions: Proposition and Evaluation 56
Jie Li, Lijie Wen, Jianmin Wang, and Zhiqiang Yan

Clustering and Operation Analysis for Assembly Blocks Using Process
Mining in Shipbuilding Industry . 67

Dongha Lee, Jaehun Park, Iq Reviessay Pulshashi, and Hyerim Bae

DTMiner: A Tool for Decision Making Based on Historical Process
Data . 81

Josue Obregon, Aekyung Kim, and Jae-Yoon Jung

Process Discovery by Synthesizing Activity Proximity and User’s
Domain Knowledge . 92

Bernardo Nugroho Yahya, Hyerim Bae, Sung-ook Sul, and
Jei-Zheng Wu

A Methodological Evaluation of Business Process Compliance
Management Frameworks . 106

Mustafa Hashmi and Guido Governatori

Improvement of Patient Safety in u-Hospital: A Pattern-Based
Approach for Handling Patients’ Abnormal Situations 116

Junho Moon and Dongsoo Kim

Author Index . 121

Erratum to: Asia Pacific Business Process Management 1

Minseok Song, Moe ThandarWynn, and Jianxun Liu

E

Process Cubes: Slicing, Dicing, Rolling Up

and Drilling Down Event Data for Process Mining

Wil M.P. van der Aalst

Department of Mathematics and Computer Science, Eindhoven University of
Technology, Eindhoven, The Netherlands

Business Process Management Discipline, Queensland University of Technology,
Brisbane, Australia and

International Laboratory of Process-Aware Information Systems, National Research
University Higher School of Economics, Moscow, Russia

w.m.p.v.d.aalst@tue.nl

Abstract. Recent breakthroughs in process mining research make it
possible to discover, analyze, and improve business processes based on
event data. The growth of event data provides many opportunities but
also imposes new challenges. Process mining is typically done for an iso-
lated well-defined process in steady-state. However, the boundaries of a
process may be fluid and there is a need to continuously view event data
from different angles. This paper proposes the notion of process cubes
where events and process models are organized using different dimen-
sions. Each cell in the process cube corresponds to a set of events and can
be used to discover a process model, to check conformance with respect
to some process model, or to discover bottlenecks. The idea is related
to the well-known OLAP (Online Analytical Processing) data cubes and
associated operations such as slice, dice, roll-up, and drill-down. How-
ever, there are also significant differences because of the process-related
nature of event data. For example, process discovery based on events is
incomparable to computing the average or sum over a set of numerical
values. Moreover, dimensions related to process instances (e.g. cases are
split into gold and silver customers), subprocesses (e.g. acquisition versus
delivery), organizational entities (e.g. backoffice versus frontoffice), and
time (e.g., 2010, 2011, 2012, and 2013) are semantically different and it
is challenging to slice, dice, roll-up, and drill-down process mining results
efficiently.

Keywords: OLAP, Process Mining, Big Data, Process Discovery, Con-
formance Checking.

1 Introduction

Like most IT-related phenomena, also the growth of event data complies with
Moore’s Law. Similar to the number of transistors on chips, the capacity of hard
disks, and the computing power of computers, the digital universe is growing
exponentially and roughly doubling every 2 years [35, 40]. Although this is not a

M. Song, M.T. Wynn, and J. Liu (Eds.): AP-BPM 2013, LNBIP 159, pp. 1–22, 2013.

The original version of this chapter was revised: The copyright line was incorrect. This has been
corrected. The Erratum to this chapter is available at DOI: 10.1007/978-3-319-02922-1 10

© Springer-Verlag Berlin Heidelberg 2013

http://dx.doi.org/10.1007/978-3-319-02922-1_10

2 W.M.P. van der Aalst

new phenomenon, suddenly many organizations realize that increasing amounts
of “Big Data” (in the broadest sense of the word) need to be used intelligently
in order to compete with other organizations in terms of efficiency, speed and
service. However, the goal is not to collect as much data as possible. The real
challenge is to turn event data into valuable insights. Only process mining tech-
niques directly relate event data to end-to-end business processes [1]. Existing
business process modeling approaches generating piles of process models are
typically disconnected from the real processes and information systems. Data-
oriented analysis techniques (e.g., data mining and machines learning) typically
focus on simple classification, clustering, regression, or rule-learning problems.

process
mining

data-oriented analysis
(data mining, machine learning, business intelligence)

process model analysis
(simulation, verification, optimization, gaming, etc.)

performance-
oriented

questions,
problems and

solutions

compliance-
oriented

questions,
problems and

solutions

Fig. 1. Process mining provides the missing link between on the one hand process
model analysis and data-oriented analysis and on the other hand performance and
conformance

Process mining aims to discover, monitor and improve real processes by ex-
tracting knowledge from event logs readily available in today’s information sys-
tems [1]. Starting point for any process mining task is an event log. Each event
in such a log refers to an activity (i.e., a well-defined step in some process) and
is related to a particular case (i.e., a process instance). The events belonging to
a case are ordered and can be seen as one “run” of the process, i.e., an event log
can be viewed as a collection of traces. It is important to note that an event log
contains only example behavior, i.e., we cannot assume that all possible traces
have been observed [1].

The growing interest in process mining is illustrated by the Process Mining
Manifesto [36] recently released by the IEEE Task Force on Process Mining.
This manifesto is supported by 53 organizations and 77 process mining experts
contributed to it.

The process mining spectrum is quite broad and includes techniques for pro-
cess discovery, conformance checking, model repair, role discovery, bottleneck

Process Cubes 3

analysis, predicting the remaining flow time, and recommending next steps. Over
the last decade hundreds of process mining techniques have been proposed. A
process discovery technique uses as input an event log consisting of a collection
of traces (i.e., sequences of events) and constructs a process model (Petri net,
BPMN model, or similar) that “adequately” describes the observed behavior.
A conformance checking technique uses as input an event log and a process
model, and subsequently diagnoses differences between the observed behavior
(i.e., traces in the event log) and the modeled behavior (i.e., possible runs of
the model). Different process model notations can be used, e.g., BPMN models,
BPEL specifications, UML activity diagrams, Statecharts, C-nets, or heuristic
nets. MXML or XES (www.xes-standard.org) are two typical formats for stor-
ing event logs ready for process mining.

The incredible growth of event data poses new challenges [53]. As event logs
grow, process mining techniques need to become more efficient and highly scal-
able. Dozens of process discovery [1, 11, 12, 16, 30, 18, 24, 25, 28, 31, 41, 54,
60, 61] and conformance checking [6, 13, 14, 15, 22, 29, 31, 42, 43, 51, 59] ap-
proaches have been proposed in literature. Despite the growing maturity of these
approaches, the quality and efficiency of existing techniques leave much to be
desired. State-of-the-art techniques still have problems dealing with large and/or
complex event logs and process models.

Whereas traditional process mining techniques focus on the offline analysis
of solitary processes in steady-state, this paper focuses on multiple inter-related
processes that may change over time. Processes may change due to seasonal
influences, working patterns, new laws, weather, and economic development.
Moreover, there may be multiple variants of the same process or the process is
composed of subprocesses. Existing techniques also cannot handle multiple pro-
cess variants and/or heterogeneous collections of cases. However, in reality the
same process may be used to handle very different cases, e.g., in a care process
there may be characteristic groups of patients that need to be distinguished from
one another. Moreover, there may be different variants of the same process, e.g.,
different hospitals execute similar care processes, and it is interesting to com-
pare them. Obviously, it is very challenging to discover and compare processes
for different hospitals and patient groups. Unfortunately, traditional techniques
tend to focus on a single well-defined process. Cases can be clustered in groups
and process models can be compared, however, there are no process discovery
techniques that produce overarching models able to relate and analyze different
groups and process variants. For example, we have applied process discovery in
over 25 municipalities executing similar processes. However, there are no discov-
ery approaches relating these process variants.

In this paper, we propose the new notion of process cubes where events and
process models are organized using different dimensions (e.g., case types, event
classes, and time windows). A process cube may have any number of dimensions
used to distribute process models and event logs over multiple cells. The first
process cube shown in Figure 2(left) has three dimensions: case type, event class
and time window. In this simple example, there is only one case type and only

www.xes-standard.org

4 W.M.P. van der Aalst

tim
e w

in
do

w

event class
ca

se
 ty

pe

A

G

B

C

D

E

F

1: ACDEG
2: BCFG
3: BCFG
4: ACEDG
5: ACFG
6: ACEDG
7: BCEDG
8: BCDEG

1: AC
4: AC
5: AC
6: AC

1: CDEG
4: CEDG
5: CFG
6: CEDG

2: BC
3: BC
7: BC
8: BC

2: CFG
3: CFG
7: CEDG
8: CDEG

A

C

B

C

GC

D

E

F

GC

D

E

F

tim
e w

in
do

w

event class

ca
se

ty
pe

drill down

go
ld

 c
us

to
m

er
sil

ve
r c

us
to

m
er

20
12

20
13

20
12

20
13

sales delivery

roll up

Fig. 2. Two process cubes illustrating the splitting (drilling down) and merging (rolling
up) of process cells using the case type and event class dimensions

one event class. The cube covers multiple time windows, but only one is shown
(all cases completed in 2012). In this toy example there are only eight cases
(i.e., process instances) and seven distinct activities. The process may be split
by identifying multiple case types and/or multiple event classes. The second
process cube shown on the right-hand side of Figure 2 has two case types (gold
customer and silver customer) and two event classes (sales and delivery).

The case type dimension is based on properties of the case the event belongs
to. In Figure 2(right), cases 1, 4, 5, and 6 refer to a “gold customer”. Hence, the
cells in the “gold customer” row include events related to these four cases. The
event class dimension is based on properties of individual events, e.g., the event’s
activity name, its associated resource, or the geographic location associated with
the event. In Figure 2(right), the event class dimension is based on the activity
of each event. The event class “sales” includes activities A, B, and C. The
event class “delivery” refers to activities C, D, E, F , and G. The time window
dimension uses the timestamps found in the event log. A time window may refer
to a particular day, week, month, or any other period.

Each cell in a process cube refers to a collection of events and possibly also
process mining results (e.g., a discovered process model) or other artifacts (e.g.,
a set of business rules). Events may be included in multiple cells, e.g., sales
and delivery cells share C events. Each of the three dimensions may have an
associated hierarchy, e.g., years composed of months and months composed of
days.

Process Cubes 5

Municipality 1 unicipality 2Municipality 2

Municipality 3Municipality 3

Municipality 4Municipality 4

Fig. 3. Process models showing how complaints regarding the taxation of real estate
are handled within four Dutch municipalities

Figure 3 illustrates the relevance of process cubes using four variants of the
same municipal complaints handling process. The process models in Figure 3
show that four of the ten municipalities involved in our CoSeloG project1 are
handling complaints related to the taxation of houses very differently [20]. For
each of the four processes we have event data and normative process models.
The average throughput times of the four process variants are very different,
e.g., Municipality 1 handles complaints in 22 days whereas Municipality 3 uses
227 days. We aim at organizing such event data and process models in a process
cube that allows for easy comparison of processes between municipalities, over
time, and for different groups of citizens.

Process cubes are related to the well-known OLAP (Online Analytical Pro-
cessing) cubes [27] and large process model repositories [49]. In an OLAP cube,
one can drill-down or roll-up data, zoom into a selected slice of the overall data,
or reorder the dimensions. However, OLAP cubes cannot be used for process-
related data since events are ordered and belong to cases. Moreover, cells are
associated to process models and not just event data. Conversely, process model
repositories do not store event data. In process cubes, models and event data
are directly related. Observed and modeled behavior can be compared, models
can be discovered from event data, and event data can be used the breathe life
into otherwise static process models.

This paper defines OLAP notions such as “slicing”, “dicing”, “rolling up” and
“drilling down” for event data. These can be used to compare, merge, and split
process cells at both the log and model level. The process cube notion is closely
related to divide-and-conquer approaches in process mining where huge event
logs are partitioned into smaller sublogs to improve performance and scalability.
In principle, process cubes can also be used to decompose challenging process
mining problems into smaller problems using the techniques described in [3, 5, 4].
These techniques may be used to speed-up OLAP operations.

1 See the CoSeLoG (Configurable Services for Local Governments) project home page,
www.win.tue.nl/coselog

www.win.tue.nl/coselog

6 W.M.P. van der Aalst

The remainder of this paper is organized as follows. Section 2 introduces the
process cube notion and further motivates its relevance. Section 3 formalizes the
event base used to create process cubes, i.e., the source information describing
“raw” events and their properties. The so-called process cube structure is defined
in Section 4. This structure defines the dimensions of the cube. Event base and
process cube structure are linked through the so-called process cube view defined
in Section 5. Section 6 defines the slice and dice operations on process cubes.
Roll-up and drill-down are formalized in Section 7. Section 8 concludes the paper
by discussing innovations and challenges.

2 Process Cubes

As illustrated by Figure 4, event data can be used to construct a process cube.
Each cell in the process cube corresponds to a set of events selected based on
the corresponding dimension values. In Figure 4 there are three dimensions.
However, a process cube can have any number of dimensions n ∈ N. Moreover,
dimensions can be based on any event property. In Figure 4 events are grouped
in cells based on case type, a particular event class, and a particular time window,
i.e., one cell refers to the set of all events belonging to case type ct , event class
ec, and time window tw . The case type dimension is based on properties of the
case as a whole and not on the characteristics of individual events. Hence, if
event e is of type ct , then all events of the case to which e belongs, also have
type ct . Case type ct may be based on the type of customer (gold of silver)
or on the total amount (e.g., < 1000 or ≥ 1000). The event class dimension
is based on properties of the individual events, e.g., the event’s activity name,
associated resources, or geographic location. Event type (et) may depend on
the activity name, e.g., there could be three event classes based on overlapping
sets of activity names: {A,B}, {C,D}, and {E}. The time window dimension
uses the timestamps found in the event log. A time window (tw) may refer to
a particular day, week, month, or any other period, e.g., to all events that took
place in December 2012.

An event may belong to multiple process cells because case types, event
classes, and time windows may be overlapping. Process cells may be merged
into larger cells, i.e., event data can be grouped at different levels of granularity.
Semantically, the merging of cells corresponds to the merging of the correspond-
ing event sets. One may refine or coarsen a dimension.

A process cube is composed of a set of process cells as shown in Figure 4. Per
cell one may have a predefined or discovered process model. The process model
may have been discovered from the cell’s event data or given upfront. Moreover,
other artifacts, e.g., organizational models [56], may be associated to individual
cells.

Process cubes will be used to relate different processes, e.g., we may be
interested in understanding the differences between gold and silver customers,
large orders and small orders, December and January, John and Ann, etc.

Process Cubes 7

tim
e w

ind
ow

event class

ca
se

 ty
pe

process cell

event

New behavior

process cube

cell model

cell sublog

ca
se

s

time

ct

ec
tw

dimension

Fig. 4. A process cube relates events to different dimensions. Each cell in the cube
corresponds to a sublog containing events and may have an associated set of models
or other artifacts (derived or given as input).

Moreover, we may want to chop a larger cell into many smaller cells for efficiency
reasons (e.g., distributing a time-consuming discovery task).

The three dimensions shown in Figure 4 only serve as examples and may be
refined further, e.g., there may be multiple dimensions based on various classifi-
cations of cases (e.g., customer type, region, size, etc.). Moreover, each dimension
may have a natural hierarchical structure (e.g., a year is composed of months
and a country is composed of regions) that can be exploited for the aggregation,
refinement, and selection of event data.

Process cells (and the associated sublogs and models) can be split and merged
in two ways as is illustrated in Figure 5. The horizontal dimension of a cell
refers to model elements (typically activities) rather than cases. The vertical
dimension of a cell refers to cases rather than model elements. Consider for

8 W.M.P. van der Aalst

A

start complete

G

B

C

D

E

F

1: ACDEG
2: BCFG
3: BCFG
4: ACEDG
5: ACFG
6: ACEDG
7: BCEDG
8: BCDEG

1: AC
2: BC
3: BC
4: AC
5: AC
6: AC
7: BC
8: BC

A

G

B

C

D

E

FC

1: CDEG
2: CFG
3: CFG
4: CEDG
5: CFG
6: CEDG
7: CEDG
8: CDEG

split
horizontally

A C F G

B C F G

B C

D

G

E

A C

D

G

E

1: ACDEG
4: ACEDG
6: ACEDG

7: BCEDG
8: BCDEG

5: ACFG

2: BCFG
3: BCFG

merge
horizontally

split
vertically

merge
vertically

Fig. 5. Illustration of the two types of merging and splitting process cells

example the event log depicted in the middle of Figure 5. The event log consists of
8 cases and 37 events. If the log is split horizontally based on the two overlapping
event classes {A,B,C} and {C,D,E, F,G}, then we obtain two sublogs each
consisting of all 8 cases. The top-left part of Figure 5 shows the new process
cell corresponding to event class {A,B,C}. Model and event log abstract from
activities {D,E, F,G}. The top-right part of Figure 5 shows the process cell
corresponding to event class {C,D,E, F,G}. Note that the cell’s sublog and
model abstract from activities A and B. If the log is split vertically, we could
obtain the four sublogs depicted in the lower half of Figure 5. Each cell contains
a subset of cases selected according to some criterion, e.g., the type of customer
or the set of activities executed. Unlike the horizontal split, no individual events
are removed, i.e., all events belonging to a case are included in the cell (or no
events of the case are included).

The seven process models shown in Figure 5 may correspond to discovered or
modeled behaviors. The models in the horizontally split cells are in a “part of”
relationship, i.e., they are fragments of the larger model and cover only subsets
of activities. The models in the vertically split cells are in an “is a” relationship,
i.e., they can be viewed as specializations of original model covering only subsets

Process Cubes 9

of cases. The case type and time window dimensions in Figure 4 are often used to
merge or split a log vertically. The event class dimension is often used to merge
or split a log horizontally.

Obviously, there are some similarities between a process cube and an OLAP
(Online Analytical Processing) cube [27]. In an OLAP cube, one can drill-down
or roll-up data, zoom into a selected slice of the overall data, or reorder the
dimensions. As shown in [46], these ideas can be applied to event data. Any
selection of cells in the process cube can be used to materialize an event log and
discover the corresponding process model. However, unlike [46] which focuses
on a multi-dimensional variant of the well-know heuristic miner [60], we aim at
a much more general approach. On the one hand, we allow for any number of
dimensions and any process mining technique (not just discovery). On the other
hand, we take into account the essential properties of event data and processes.
For example, the two types of merging and splitting process cells illustrated by
Figure 5 are process-specific and do not correspond to existing OLAP notions.
Techniques for merging and splitting process cells are related to divide-and-
conquer approaches for process mining (e.g., to distribute process discovery or
conformance checking) [3].

Based on the ideas shown in Figure 4, we have developed an initial prototype
(called ProCube) using the process mining framework ProM and the Palo OLAP
toolset (JPalo client and Palo MOLAP server) [39]. ProCube application runs as
a plugin in ProM. Palo is employed for its OLAP capabilities. The ProCube plug-
in creates sublogs per cell on-the-fly and visualizes process models discovered
using the fuzzy [34] and heuristics [60] miner, social networks derived using
ProM’s social network miner [10], and dotted charts [55] computed per cell.

Process Cube View (PCV)

Event Base (EB)

case
activity
resource
type
total
time

Process Cube
Dimensions

Process Cube Structure (PCS)

materialize
(make sublog)

apply process
mining technique

Fig. 6. Overview of the different ingredients needed to define and use process cubes

In the remainder, we do not focus on specific process mining techniques or
a specific implementation of the process cube notion. Instead, we conceptual-
ize the essential ideas. Figure 6 lists the different ingredients described next.
The Event Base (EB) contains information about actually recorded events (Sec-
tion 3). These events may have different properties, some of which are used
as dimensions in the Process Cube Structure (PCS) described in Section 4.

10 W.M.P. van der Aalst

Table 1. A fragment of some event log: each line corresponds to an event

case id properties event id properties
type total timestamp activity resource cost

35654423 30-12-2012:11.02 A John 300
1 gold 1600 35654424 30-12-2012:11.06 C Ann 400

35654425 30-12-2012:11.12 D Pete 100
35654426 30-12-2012:11.18 E Pete 400
35654427 30-12-2012:11.19 G Pete 400

35655526 30-12-2012:16.10 B John 200
2 silver 900 35655527 30-12-2012:16.14 C Ann 450

35655528 30-12-2012:16.26 F Sue 150
35655529 30-12-2012:16.36 G Sue 100

. .

A Process Cube View (PCV) uses both EB and PCS to create a concrete view.
The view may be modified using typical OLAP operations such as slice and dice
(Section 6) and roll-up and drill-down (Section 7). Any process mining technique
can be applied to a cell in the selected view. To do this, the cell’s event data need
to be materialized to create a sublog that is used as input by conventional pro-
cess mining techniques. These techniques may produce (process) models, charts,
etc. The results are be stored per cell and the different cells can be compared
systematically.

3 Event Base

Normally, event logs serve as the starting point for process mining. These logs
are created having a particular process and a set of questions in mind. An event
log can be viewed as a multiset of traces. Each trace describes the life-cycle of
a particular case (i.e., a process instance) in terms of the activities executed.
Often event logs store additional information about events. For example, many
process mining techniques use extra information such as the resource (i.e., person
or device) executing or initiating the activity, the timestamp of the event, or
data elements recorded with the event (e.g., the size of an order). Table 1 shows
a small fragment of some larger event log. Only two traces are shown. Each
event has a unique id and several properties. For example, event 35654423 is an
instance of activity A that occurred on December 30th at 11.02, was executed by
John, and costs 300 euros. The second trace starts with event 35655526 and also
refers to an instance of activity A. Note that each trace corresponds to a case,
i.e., a completed process instance. Also cases may have properties as is shown
in Table 1 where cases have a customer type (gold or silver) and total amount,
e.g., case 1 was executed for a gold customer and had a total amount of 1600
euro. Implicitly, an event inherits the properties of the corresponding case.

For process cubes we consider an event base, i.e., a large collection of events
not tailored towards a particular process or predefined set of questions. An event

Process Cubes 11

base can be seen as an all-encompassing event log or the union of a collection of
related event logs.

Properties of events have values and the dimensions of a process cube structure
sets of possible property values. Throughout the paper we assume the following
universes.

Definition 1 (Universes). UV is the universe of possible attribute values (e.g.,
strings, numbers, etc.). US = P(UV) is the universe of value sets. UH = P(US)
is the universe of value set collections (set of sets).

Note that v ∈ UV is a single value (e.g., v = 300), V ∈ US is a set of values
(e.g., V = {gold , silver}), and H ∈ UH is a collection of sets. For example,
H = {{a, b, c}, {c, d}, {d, e, f}} or H = {{x ∈ N | x < 50}, {x ∈ N | 50 ≤ x <
60}, {x ∈ N | x ≥ 60}}.

Definition 2 (Event Base). An event base EB = (E,P, π) defines a set of
events E, a set of event properties P , and a function π ∈ P → (E �→ UV). For
any property p ∈ P , π(p) (denoted πp) is a partial function mapping events onto
values. If πp(e) = v, then event e ∈ E has a property p ∈ P and the value of this
property is v ∈ UV . If e �∈ dom(πp), then event e does not have property p and
we write πp(e) = ⊥ to indicate this.

The set E refers to the individual events. For example event e = 35654423
in Table 1 may be such an event. Note that an event identifier e ∈ E may be
generated implicitly (it has no meaning). P is the set of properties that events
may or may not have. For example, P = {case, activity , time, resource, cost , type ,
total} corresponds to the columns in Table 1. πcase(35654423) = 1,
πactivity (35654423) = A, and πresource(35654423) = John are some of the prop-
erties of the first event in Table 1. In the remainder we assume the standard
properties case, activity , and time to be defined for all events, i.e., dom(πcase) =
dom(πactivity) = dom(πtime) = E. For example, we do not allow for events not
related to a case. An attribute like resource is optional. Note that π defines a
partial function per property p and missing values are represented as πp(e) = ⊥.
For example, if πresource(e) = ⊥, then e �∈ dom(πresource) implying that e does
not have an associated resource.

Assume that UA is the set of activities appearing in EB = (E,P, π). Given
a set of events E′ ⊆ E, we can compute a multiset of traces L ∈ (UA)

∗ → N

where each trace σ ∈ L corresponds to a case. For example, case 1 in Table 1
can be presented as 〈A,C,D,E,G〉 and case 2 as 〈B,C, F,G〉. Most control-flow
discovery techniques [1, 11, 12, 16, 30, 18, 24, 25, 28, 31, 41, 54, 60, 61] use such a
simple representation as input. This representation ignores concrete timestamps
(only the order matters) and abstracts from properties such as resource, cost ,
type, and total .

Note that given an event base, one can derive additional properties. For exam-
ple, we can take different event properties together, e.g., πar (e) = (πactivity (e),
πresource(e)). Such derived properties may also be based on other events. For ex-
ample, πst (e) = min{πtime(e

′) | e′ ∈ E ∧ πcase(e) = πcase(e
′)} is the start time

12 W.M.P. van der Aalst

of the case e belongs to, and πsum(e) = sum{πcosts(e
′) | e′ ∈ E ∧ πcase(e) =

πcase(e
′)} are the total costs of the case e belongs to. Many useful event at-

tributes can be derived from information inside or outside the initial event base
[9]. For example, one can estimate the “stress level” of a resource working on
event e by computing the number of queueing activities. In the remainder we
assume an event base EB = (E,P, π) that includes all properties that may serve
as dimensions of the process cube (including derived ones).

4 Process Cube Structure

Independent of the event base EB we define the structure of the process cube.
The structure is fully characterized by the dimensions of the cube.

Definition 3 (Process Cube Structure). A process cube structure is a
triplet PCS = (D, type, hier) where:

– D is a set of dimensions,
– type ∈ D → US is a function defining the possible set of values for each

dimension, e.g., type(age) = {0, 1, 2, . . . , 120} for age ∈ D, and
– hier ∈ D → UH defines a hierarchy for each dimension such that for any

d ∈ D: type(d) =
⋃
hier (d). Note that a hierarchy is merely a collection of

sets of values.

A dimension d ∈ D has a type type(d) and a hierarchy hier (d). type(d) is the
set of possible values and typically only a fraction of these values are present in
a concrete instance of the process cube. For example, type(cost) = N allows for
infinitely many possible values.

A hierarchy hier (d) is a set of sets. For example hier (time) contains sets such
as T2011, T2012, and T2013 each representing all possible timestamps in a partic-
ular year.2 These sets do not need to be disjoint. For example, hier (time) may
also contain sets such as TDec−2012 (all possible timestamps in December 2012),
TTue−2012 (all Tuesdays in 2012), and T30−12−2012 (December 30th 2012). These
sets may form a hierarchy based on set inclusion, for example T2012 dominates
TDec−2012 because TDec−2012 ⊆ T2012. Sets may also be partially overlapping,
e.g., TTue−2012 ∩ TDec−2012 �= ∅.

In order to relate an event base and a process cube structure both need to be
compatible, i.e., dimensions should correspond to properties and concrete event
property values need to be of the right type.

Definition 4 (Compatible). A process cube structure PCS = (D, type , hier)
and an event base EB = (E,P, π) are compatible if

– D ⊆ P , i.e., dimensions correspond to properties, and
– for any d ∈ D and e ∈ E: πd(e) ∈ type(d).

There are different ways of dealing with missing values. The above definition
allows for missing values if ⊥ ∈ type(d). If ⊥ �∈ type(d), then compatibility
implies dom(πd) = E.

2 Note that the notation TX always refers to a set of timestamps meeting constraint
X, e.g., T30−12−2012 are all timestamps on the specified day.

Process Cubes 13

5 Process Cube View

While applying typical OLAP operations such as slice, dice, roll-up and drill-
down the event base EB = (E,P, π) and process cube structure PCS = (D, type ,
hier) do not change. It is merely a change of the way event data is viewed. A
process cube view defines which dimensions are visible and which events are
selected.

Definition 5 (Process Cube View). Let PCS = (D, type , hier) be a process
cube structure. A process cube view is a pair PCV = (Dsel, sel) such that:

– Dsel ⊆ D are the selected dimensions,
– sel ∈ D → UH is a function selecting the part of the hierarchy considered

per dimension. Function sel is such that for any d ∈ D:
• sel(d) ⊆ hier (d), and
• for any V1, V2 ∈ sel(d): V1 ⊆ V2 implies V1 = V2.

A process cube view defines a cube with k = |Dsel| dimensions. The maximal
number of dimensions is set by D, i.e., all dimensions defined in the process cube
structure (Dsel ⊆ D). Function sel selects sets of values per dimension (including
dimensions not selected inDsel). For example, when slicing a cube one decision is
removed, but the removed dimension is still used for filtering. Given a dimension
d ∈ D, sel(d) defines the elements on the d axis. For example, sel(time) =
{T2011, T2012, T2013} states that the time dimension has three elements. This
implies that events before 2011 are filtered out. Moreover, we do not distinguish
events based on the month, day or time; only the year matters. sel(time) =
{T2011, TJan−2012, TFeb−2012, . . . , TDec−2012, T2013} is an alternative view for the
time dimension. Now the different months of 2012 are distinguished. sel(d) ⊆
hier (d) ensures that the elements of the d dimension are consistent with the
process cube structure. The last requirement (V1 ⊆ V2 implies V1 = V2) implies
that the elements of sel(d) are non-dominating. For example, it would not make
sense to have sel(time) = {T2012, TJan−2012} because TJan−2012 ⊆ T2012.

As shown in Figure 6, the process cube view can be used to create a sublog
per cell in the process cube view based on the event base. These sublogs can
be viewed as conventional event logs and any process mining technique can be
applied to them.

Definition 6 (Materialized Process Cube View). Let process cube struc-
ture PCS = (D, type, hier) and event base EB = (E,P, π) be compatible. The
materialized process cube for some view PCV = (Dsel, sel) of PCS is
MEB,PCV = {(c, events(c)) | c ∈ cells} with cells = {c ∈ Dsel → US |
∀d∈Dsel

c(d) ∈ sel(d)} being the cells of the cube and events(c) = {e ∈ E |
∀d∈Dsel

πd(e) ∈ c(d) ∧ ∀d∈D πd(e) ∈
⋃
sel(d)} the set of events per cell.

cells is the collection of cells of the cube. A c ∈ cells is an assignment of each
visible dimension to precisely one element of that dimension, e.g., c(time) =
TJan−2012, c(resource) = {John,Pete}, and c(type) = {gold}. events(c) are all

14 W.M.P. van der Aalst

events corresponding to cell c (first requirement: ∀d∈Dsel
πd(e) ∈ c(d)) and not

filtered out (second requirement: ∀d∈D πd(e) ∈
⋃
sel(d)).

Definition 6 provides the interface to existing process discovery [1, 11, 12, 16,
30, 18, 24, 25, 28, 31, 41, 54, 60, 61] and conformance checking [6, 13, 14, 15, 22,
29, 31, 42, 43, 51, 59] techniques. MEB,PCV defines how to compute an event
log (called sublog) per cell. As shown in Figure 6, these sublogs can be used to
compute results per cell.

Note that the materialized process cube view MEB,PCV may be constructed
on-the-fly or pre-computed. Existing OLAP tools often materialize views in or-
der to enable interactive analysis. However, for process mining techniques it is
typically not known how to do this efficiently.

6 Slice and Dice

Next we consider the classical OLAP operations in the context of our process
cubes.

The slice operation produces a sliced OLAP cube by allowing the analyst to
pick specific value for one of the dimensions. For example, for sales data one can
slice the cube for location “Eindhoven”, i.e., the location dimension is removed
from the cube and only sales of the stores in Eindhoven are considered. Slicing
the cube for the year “2012” implies removing the time dimension and only
considering sales in 2012. The dice operation produces a subcube by allowing
the analyst to pick specific values for multiple dimensions. For example, one
could dice the sales OLAP cube for years “2012” and “2013” and locations
“Eindhoven” and “Amsterdam”. No dimensions are removed, but only sales in
2012 and 2013 in stores in Eindhoven and Amsterdam are considered.

Given the earlier formalizations, we can easily define the slice operation for
process cubes.

Definition 7 (Slice). Let PCS = (D, type, hier) be a process cube structure
and PCV = (Dsel, sel) a view of PCS . For any d ∈ Dsel and V ∈ sel(d):
sliced,V (PCV) = (D′

sel, sel
′) with D′

sel = Dsel\{d}, sel ′(d) = {V }, and sel ′(d′) =
sel(d′) for d′ ∈ D \ {d}.

sliced,V (PCV) produces a new process cube view. Note that d is no longer
a visible dimension: d �∈ D′

sel. At the same time d is used to filter events: only
events e with πd(e) ∈ V are considered in the new view.

Definition 8 (Dice). Let PCS = (D, type, hier) be a process cube structure
and PCV = (Dsel, sel) a view of PCS. Let res ∈ Dsel �→ UH be a restriction
such for any d ∈ dom(res): res(d) ⊆ sel(d). diceres(PCV) = (Dsel, sel

′) with
sel ′(d) = res(d) for d ∈ dom(res) and sel ′(d) = sel(d) for d ∈ D \ dom(res).

diceres(PCV) produces a process cube view having the original dimensions.
res ∈ Dsel �→ UH restricts selected dimensions. For example, if res(time) =
{TJan−2012, TJan−2013}, res(resource) = {{John}, {Pete}}, and res(type) =

Process Cubes 15

{{gold , silver}}, then diceres(PCV) restricts the time dimension to two elements
(2012 and 2013), the resource dimension to two elements (John and Pete), and
the customer type dimension to one element (both gold and silver customers).

7 Roll-Up and Drill-Down

Roll-up and drill-down operations do not remove any events but change the
level of granularity of a particular dimension. For example, before drilling down
sel(time) = {T2011, T2012, T2013} and after drilling down sel ′(time) = {T2011,
TJan−2012, TFeb−2012, . . . , TDec−2012, T2013}. Rolling up (sometimes referred to as
drilling up) is the reverse. For example, sel(type) = {{gold}, {silver}} is rolled
up into sel ′(type) = {{gold , silver}}.
Definition 9 (Change Granularity). Let PCS = (D, type , hier) be a process
cube structure and PCV = (Dsel, sel) a view of PCS . Let d ∈ Dsel and H ∈ UH

such that:

– H ⊆ hier (d),
–

⋃
H =

⋃
sel(d), and

– for any V1, V2 ∈ H: V1 ⊆ V2 implies V1 = V2.

chgrd,H(PCV) = (Dsel, sel
′) with sel ′(d) = H, and sel ′(d′) = sel(d′) for d′ ∈

D \ {d}.
chgrd,H(PCV) yields a process cube view with the original dimensions Dsel.

However, dimension d is reorganized in such a way that the result is indeed a
view (e.g., elements are not dominating and consistent with the process cube
structure) and the set of possible values is unchanged

⋃
sel ′(d) =

⋃
sel(d).

8 Conclusion

In this paper, we formalized the notion of process cubes. It gives end users
the opportunity to analyze and explore processes interactively on the basis of
a multidimensional view on event data. There is no need to extract event logs
beforehand like in traditional process mining approaches. Although an initial
prototype implementation supporting the main ideas in this paper has been
realized [39], many challenges remain. In the remainder, we discuss some of
these challenges.

8.1 Comparing and Visualizing Different Cells

First of all, there is the challenge of comparing and visualizing different cells.
How to visualize this in an effective manner? Unlike the numerical values shown
in traditional OLAP cubes, we need to visualize models that cannot be reduced
to simple numbers. Two models many be similar, but their visualizations may
be unrelated. This is not just a matter of lay-out. Two process models that are

16 W.M.P. van der Aalst

similar from a representational point of view may have very different behav-
iors and two process models that are different from a representational point of
view may have very similar behaviors [1]. Here, we can benefit from research on
configurable process models. A configurable process model represents a family of
process models, that is, a model that through configuration can be customized
for a particular setting [32, 47, 50, 52]. Process models belonging to such a family
need to be related, just like cells in a process cube need to be related to allow
for comparison.

Given a process cube, we suggest to visualize the different models with re-
spect to a cornerstone model. The different cell models are visualized as edit
operations on the cornerstone model. Typical edit operations are: add/remove
activity, add/remove edge, hide/insert activity, swap activities, and sequential-
ize/parallelize activities. These edit operations have costs and are minimized
to find the shortest path from the cornerstone model to a particular cell model.
Moreover, the edit operations for the different cells are aligned to make the over-
all understanding of the process cube as simple as possible. One may consider
a restricted set of edit operations for block-structured process models [57] to
simplify comparison.

There are different approaches to obtain the cornerstone model. The corner-
stone model may be selected by the user or may be the first or last model in
an array of cells. Moreover, the model may be the Greatest Common Divisor
(GCD) or the Least Common Multiple (LCM) of the collection of process mod-
els considered [7]. The GCD captures the common parts of the cell models, i.e.,
all cell models are extensions of the GCD. The LCM embeds all cell models, i.e.,
all models are restrictions of the LCM. These notions are based on the observa-
tion that “hiding” and “blocking” are the essential operators needed for defining
inheritance with respect to behavior [8]. The cornerstone model may also be the
model closest to all cell models (minimal average edit distance) [38].

8.2 Computing Sublogs and Models Per Cell

Second, there is the problem of performance. The OLAP operations need to be
instantaneous to allow for direct user interaction. To realize this, cell results may
be pre-computed (materialization of event data and process mining results, e.g.,
models). However, this may be infeasible in case of many sparse dimensions.
Hence, it may be better to do this on-the-fly.

Figure 5 already illustrated the notion of splitting/merging cells horizon-
tally/vertically. We want to do this efficiently for both logs and models.

When merging cells one can discover the process model from scratch using
the merged event log. As this can be time-consuming, it may be better to merge
the process models. Various approaches for merging process models have been
proposed in literature [33, 48]. However, these approaches only merge vertically
(cf. Figure 5), whereas we also need to support the horizontal merge. Moreover,
existing approaches for model merging are not taking into account the event
log. Therefore, we would like to develop hybrid approaches that exploit both the

Process Cubes 17

existing models and the log to create a merged model that is as close as possible
to the original models and the merged event log.

When splitting cells one can discover a process model for each of the smaller
event logs. Again this may be time-consuming. Moreover, after splitting, the
resulting event logs may be too small to create reliable models. Therefore, we
would like to develop hybrid approaches that exploit both the original model
and the smaller event logs to create a model for each new cell. For example, the
original model may be projected using information from the sublog.

When splitting and merging process cells, one may need to preserve existing
relationships between model and event log, e.g., so-called alignments [6, 13] need
to be split and merged without losing any connections.

8.3 Concept Drift

The time dimension of a process cube has specific properties that can be ex-
ploited. For example, the hierarchy of the time dimension can be shared among
different applications. Moreover, time introduces particular challenges. For ex-
ample, processes often change while being analyzed. Therefore, concept drift is
mentioned as one of the main challenges in the Process Mining Manifesto [36].
Concept drift was been investigated in the context of various data mining prob-
lems [62, 37]. In [19] the problem was first investigated in the context of process
mining. However, many challenges remain [19, 26], e.g., dealing with incremental
drifts and mixtures of periodic drifts.

drift point corresponding to a
high frequent periodic change

drift point revealing a
low frequent change

Fig. 7. A periodically changing processes with two types of drift at different time scales

Note that the time window dimension in Figure 4 is different from the case
type and event class dimensions. In case of short-running cases, we can associate
whole cases to time windows. In case of long-running cases, we need to associate
individual events to time windows as the process may change while the instance
is running. Using carefully selected feature vectors we can analyze drifts using
sliding time windows: statistical hypothesis testing will reveal drifts if there are
significant differences between two successive windows. A complication is that
different types of drifts may be intertwined as illustrated by Figure 7. The drift
points are depicted by the bars splitting the double headed arrows: the split
arrows represent two consecutive time windows having significant differences.
We would also like to relate process changes to contextual elements captured
by the cube’s dimensions. For example, the time of the day, the weather, the

18 W.M.P. van der Aalst

workload, or the type of customer may influence the way cases are handled.
As an additional complication, classical conformance notions such as fitness,
generalization, and precision [1, 6] cannot be applied to processes that change as
one needs to judge the result with respect to a particular time window. Concept
drift is also related to on-the-fly process discovery [21] where event streams are
not stored.

8.4 Distributed Process Mining

Today, there are many types of distributed systems, i.e., systems composed of
multiple autonomous computational entities communicating through a network.
The terms grid computing, multicore CPU systems, manycore GPU systems,
cluster computing, and cloud computing all refer to technologies where different
resources are used concurrently to improve performance and scalability. Most
data mining techniques can be distributed [23], e.g., there are various techniques
for distributed classification, distributed clustering, and distributed association
rule mining [17]. These techniques cannot be applied to process mining because
events belong to cases and the ordering of events matters. Yet, there is an obvious
need for distributed process mining using more efficient and effective discovery
techniques. Process mining tasks become challenging when there are hundreds
or even thousands of different activities and millions of cases. Typically, process
mining algorithms are linear in the number of cases and exponential in the
number of different activities.

Process cubes partition event data and therefore may enable divide-and-
conquer approaches that decompose the event log based on splitting/merging
cells horizontally/vertically [3]. Thus was already illustrated using Figure 5.
We are particularly interested in splitting logs horizontally. Thus far we have
developed horizontal divide-and-conquer approaches based on SESEs [45, 44],
passages [2, 58], and maximal decompositions [5] as a decomposition strategy.
As demonstrated in [4, 5] these are merely examples of the broad spectrum of
possible techniques to decompose process mining problems. Given the incredible
growth of event data, there is an urgent need to explore and investigate the en-
tire spectrum in more detail. Hopefully, such techniques can be used to speed-up
OLAP-like operations on process cubes.

Acknowledgements. This work was supported by the Basic Research Program
of the National Research University Higher School of Economics (HSE). The
author would also like to thank Tatiana Mamaliga for her work on realizing
ProCube, a prototype process cube implementation based on ProM and Palo
(supervised by the author and Joos Buijs).

References

1. van der Aalst, W.M.P.: Process Mining: Discovery, Conformance and Enhancement
of Business Processes. Springer, Berlin (2011)

Process Cubes 19

2. van der Aalst, W.M.P.: Decomposing Process Mining Problems Using Passages. In:
Haddad, S., Pomello, L. (eds.) PETRI NETS 2012. LNCS, vol. 7347, pp. 72–91.
Springer, Heidelberg (2012)

3. van der Aalst, W.M.P.: Distributed Process Discovery and Conformance Checking.
In: de Lara, J., Zisman, A. (eds.) FASE 2012. LNCS, vol. 7212, pp. 1–25. Springer,
Heidelberg (2012)

4. van der Aalst, W.M.P.: A General Divide and Conquer Approach for Process Min-
ing. In: Ganzha, M., Maciaszek, L., Paprzycki, M. (eds.) Federated Conference
on Computer Science and Information Systems (FedCSIS 2013), pp. 1–10. IEEE
Computer Society (2013)

5. van der Aalst, W.M.P.: Decomposing Petri Nets for Process Mining: A Generic
Approach. Distributed and Parallel Databases 31(4), 471–507 (2013)

6. van der Aalst, W.M.P., Adriansyah, A., van Dongen, B.: Replaying History on Pro-
cess Models for Conformance Checking and Performance Analysis. WIREs Data
Mining and Knowledge Discovery 2(2), 182–192 (2012)

7. van der Aalst, W.M.P., Basten, T.: Identifying Commonalities and Differences in
Object Life Cycles using Behavioral Inheritance. In: Colom, J.-M., Koutny, M.
(eds.) ICATPN 2001. LNCS, vol. 2075, pp. 32–52. Springer, Heidelberg (2001)

8. van der Aalst, W.M.P., Basten, T.: Inheritance of Workflows: An Approach to
Tackling Problems Related to Change. Theoretical Computer Science 270(1-2),
125–203 (2002)

9. van der Aalst, W.M.P., Dustdar, S.: Process Mining Put into Context. IEEE In-
ternet Computing 16(1), 82–86 (2012)

10. van der Aalst, W.M.P., Reijers, H.A., Song, M.: Discovering Social Networks from
Event Logs. Computer Supported Cooperative Work 14(6), 549–593 (2005)

11. van der Aalst, W.M.P., Rubin, V., Verbeek, H.M.W., van Dongen, B.F., Kindler,
E., Günther, C.W.: Process Mining: A Two-Step Approach to Balance Between
Underfitting and Overfitting. Software and Systems Modeling 9(1), 87–111 (2010)

12. van der Aalst, W.M.P., Weijters, A.J.M.M., Maruster, L.: Workflow Mining: Dis-
covering Process Models from Event Logs. IEEE Transactions on Knowledge and
Data Engineering 16(9), 1128–1142 (2004)

13. Adriansyah, A., van Dongen, B., van der Aalst, W.M.P.: Conformance Checking
using Cost-Based Fitness Analysis. In: Chi, C.H., Johnson, P. (eds.) IEEE Interna-
tional Enterprise Computing Conference (EDOC 2011), pp. 55–64. IEEE Computer
Society (2011)

14. Adriansyah, A., van Dongen, B.F., van der Aalst, W.M.P.: Towards Robust Confor-
mance Checking. In: zur Muehlen, M., Su, J. (eds.) BPM 2010 Workshops. LNBIP,
vol. 66, pp. 122–133. Springer, Heidelberg (2011)

15. Adriansyah, A., Sidorova, N., van Dongen, B.F.: Cost-based Fitness in Confor-
mance Checking. In: International Conference on Application of Concurrency to
System Design (ACSD 2011), pp. 57–66. IEEE Computer Society (2011)

16. Agrawal, R., Gunopulos, D., Leymann, F.: Mining Process Models from Workflow
Logs. In: Schek, H.-J., Saltor, F., Ramos, I., Alonso, G. (eds.) EDBT 1998. LNCS,
vol. 1377, pp. 469–483. Springer, Heidelberg (1998)

17. Agrawal, R., Shafer, J.C.: Parallel Mining of Association Rules. IEEE Transactions
on Knowledge and Data Engineering 8(6), 962–969 (1996)

18. Bergenthum, R., Desel, J., Lorenz, R., Mauser, S.: Process Mining Based on Re-
gions of Languages. In: Alonso, G., Dadam, P., Rosemann, M. (eds.) BPM 2007.
LNCS, vol. 4714, pp. 375–383. Springer, Heidelberg (2007)

20 W.M.P. van der Aalst

19. Bose, R.P.J.C., van der Aalst, W.M.P., Žliobaitė, I., Pechenizkiy, M.: Handling
Concept Drift in Process Mining. In: Mouratidis, H., Rolland, C. (eds.) CAiSE
2011. LNCS, vol. 6741, pp. 391–405. Springer, Heidelberg (2011)

20. Buijs, J.C.A.M., van Dongen, B.F., van der Aalst, W.M.P.: Towards cross-
organizational process mining in collections of process models and their execu-
tions. In: Daniel, F., Barkaoui, K., Dustdar, S. (eds.) BPM Workshops 2011, Part
II. LNBIP, vol. 100, pp. 2–13. Springer, Heidelberg (2012)

21. Burattin, A., Sperduti, A., van der Aalst, W.M.P.: Heuristics Miners for Streaming
Event Data. CoRR, abs/1212.6383 (2012)

22. Calders, T., Guenther, C., Pechenizkiy, M., Rozinat, A.: Using Minimum Descrip-
tion Length for Process Mining. In: ACM Symposium on Applied Computing (SAC
2009), pp. 1451–1455. ACM Press (2009)

23. Cannataro, M., Congiusta, A., Pugliese, A., Talia, D., Trunfio, P.: Distributed
Data Mining on Grids: Services, Tools, and Applications. IEEE Transactions on
Systems, Man, and Cybernetics, Part B 34(6), 2451–2465 (2004)

24. Carmona, J., Cortadella, J.: Process Mining Meets Abstract Interpretation. In:
Balcázar, J.L., Bonchi, F., Gionis, A., Sebag, M. (eds.) ECML PKDD 2010, Part
I. LNCS, vol. 6321, pp. 184–199. Springer, Heidelberg (2010)

25. Carmona, J., Cortadella, J., Kishinevsky, M.: A Region-Based Algorithm for Dis-
covering Petri Nets from Event Logs. In: Dumas, M., Reichert, M., Shan, M.-C.
(eds.) BPM 2008. LNCS, vol. 5240, pp. 358–373. Springer, Heidelberg (2008)

26. Carmona, J., Gavaldà, R.: Online techniques for dealing with concept drift in
process mining. In: Hollmén, J., Klawonn, F., Tucker, A. (eds.) IDA 2012. LNCS,
vol. 7619, pp. 90–102. Springer, Heidelberg (2012)

27. Chaudhuri, S., Dayal, U.: An Overview of Data Warehousing and OLAP Technol-
ogy. ACM Sigmod Record 26(1), 65–74 (1997)

28. Cook, J.E., Wolf, A.L.: Discovering Models of Software Processes from Event-Based
Data. ACM Transactions on Software Engineering and Methodology 7(3), 215–249
(1998)

29. Cook, J.E., Wolf, A.L.: Software Process Validation: Quantitatively Measuring the
Correspondence of a Process to a Model. ACM Transactions on Software Engi-
neering and Methodology 8(2), 147–176 (1999)

30. Gaaloul, W., Gaaloul, K., Bhiri, S., Haller, A., Hauswirth, M.: Log-Based Transac-
tional Workflow Mining. Distributed and Parallel Databases 25(3), 193–240 (2009)

31. Goedertier, S., Martens, D., Vanthienen, J., Baesens, B.: Robust Process Discovery
with Artificial Negative Events. Journal of Machine Learning Research 10, 1305–
1340 (2009)

32. Gottschalk, F., van der Aalst, W.M.P., Jansen-Vullers, M.H., La Rosa, M.: Con-
figurable Workflow Models. International Journal of Cooperative Information Sys-
tems 17(2), 177–221 (2008)

33. Gottschalk, F., Wagemakers, T.A.C., Jansen-Vullers, M.H., van der Aalst, W.M.P.,
La Rosa, M.: Configurable Process Models: Experiences From a Municipality Case
Study. In: van Eck, P., Gordijn, J., Wieringa, R. (eds.) CAiSE 2009. LNCS,
vol. 5565, pp. 486–500. Springer, Heidelberg (2009)

34. Günther, C.W., van der Aalst, W.M.P.: Fuzzy Mining: Adaptive Process Simplifi-
cation Based on Multi-perspective Metrics. In: Alonso, G., Dadam, P., Rosemann,
M. (eds.) BPM 2007. LNCS, vol. 4714, pp. 328–343. Springer, Heidelberg (2007)

35. Hilbert, M., Lopez, P.: TheWorld’s Technological Capacity to Store, Communicate,
and Compute Information. Science 332(6025), 60–65 (2011)

Process Cubes 21

36. IEEE Task Force on Process Mining. Process Mining Manifesto. In: Daniel, F.,
Barkaoui, K., Dustdar, S. (eds.) Business Process Management Workshops. LNBIP,
vol. 99, pp. 169–194. Springer, Berlin (2012)

37. van Leeuwen, M., Siebes, A.: StreamKrimp: Detecting Change in Data Streams.
In: Daelemans, W., Goethals, B., Morik, K. (eds.) ECML PKDD 2008, Part I.
LNCS (LNAI), vol. 5211, pp. 672–687. Springer, Heidelberg (2008)

38. Li, C., Reichert, M., Wombacher, A.: The MINADEPT Clustering Approach for
Discovering Reference Process Models Out of Process Variants. International Jour-
nal of Cooperative Information Systems 19(3-4), 159–203 (2010)

39. Mamaliga, T.: Realizing a Process Cube Allowing for the Comparison of Event
Data. Master’s thesis, Eindhoven University of Technology, Eindhoven (2013)

40. Manyika, J., Chui, M., Brown, B., Bughin, J., Dobbs, R., Roxburgh, C., Byers,
A.: Big Data: The Next Frontier for Innovation, Competition, and Productivity.
McKinsey Global Institute (2011)

41. Alves de Medeiros, A.K., Weijters, A.J.M.M., van der Aalst, W.M.P.: Genetic
Process Mining: An Experimental Evaluation. Data Mining and Knowledge Dis-
covery 14(2), 245–304 (2007)

42. Muñoz-Gama, J., Carmona, J.: A Fresh Look at Precision in Process Conformance.
In: Hull, R., Mendling, J., Tai, S. (eds.) BPM 2010. LNCS, vol. 6336, pp. 211–226.
Springer, Heidelberg (2010)

43. Munoz-Gama, J., Carmona, J.: Enhancing Precision in Process Conformance: Sta-
bility, Confidence and Severity. In: Chawla, N., King, I., Sperduti, A. (eds.) IEEE
Symposium on Computational Intelligence and Data Mining (CIDM 2011), Paris,
France, pp. 184–191. IEEE (April 2011)

44. Munoz-Gama, J., Carmona, J., van der Aalst, W.M.P.: Conformance Checking in
the Large: Partitioning and Topology. In: Daniel, F., Wang, J., Weber, B. (eds.)
BPM 2013. LNCS, vol. 8094, pp. 130–145. Springer, Heidelberg (2013)

45. Munoz-Gama, J., Carmona, J., van der Aalst, W.M.P.: Hierarchical Conformance
Checking of Process Models Based on Event Logs. In: Colom, J.-M., Desel, J. (eds.)
PETRI NETS 2013. LNCS, vol. 7927, pp. 291–310. Springer, Heidelberg (2013)

46. Ribeiro, J.T.S., Weijters, A.J.M.M.: Event Cube: Another Perspective on Business
Processes. In: Meersman, R., Dillon, T., Herrero, P., Kumar, A., Reichert, M., Qing,
L., Ooi, B.-C., Damiani, E., Schmidt, D.C., White, J., Hauswirth, M., Hitzler, P.,
Mohania, M. (eds.) OTM 2011, Part I. LNCS, vol. 7044, pp. 274–283. Springer,
Heidelberg (2011)

47. La Rosa, M., Dumas, M., ter Hofstede, A., Mendling, J.: Configurable Multi-
Perspective Business Process Models. Information Systems 36(2), 313–340 (2011)

48. La Rosa, M., Dumas, M., Uba, R., Dijkman, R.M.: Business Process Model Merg-
ing: An Approach to Business Process Consolidation. ACM Transactions on Soft-
ware Engineering and Methodology 22(2) (2012)

49. La Rosa, M., Reijers, H.A., van der Aalst, W.M.P., Dijkman, R.M., Mendling,
J., Dumas, M., Garcia-Banuelos, L.: APROMORE: An Advanced Process Model
Repository. Expert Systems With Applications 38(6), 7029–7040 (2011)

50. Rosemann, M., van der Aalst, W.M.P.: A Configurable Reference Modelling Lan-
guage. Information Systems 32(1), 1–23 (2007)

51. Rozinat, A., van der Aalst, W.M.P.: Conformance Checking of Processes Based on
Monitoring Real Behavior. Information Systems 33(1), 64–95 (2008)

52. Schnieders, A., Puhlmann, F.: Variability Mechanisms in E-Business Process Fam-
ilies. In: Abramowicz, W., Mayr, H.C. (eds.) Proceedings of the 9th International
Conference on Business Information Systems (BIS 2006). LNI, vol. 85, pp. 583–601.
GI (2006)

22 W.M.P. van der Aalst

53. Sheth, A.: A New Landscape for Distributed and Parallel Data Management. Dis-
tributed and Parallel Databases 30(2), 101–103 (2012)

54. Solé, M., Carmona, J.: Process Mining from a Basis of Regions. In: Lilius, J.,
Penczek, W. (eds.) PETRI NETS 2010. LNCS, vol. 6128, pp. 226–245. Springer,
Heidelberg (2010)

55. Song, M., van der Aalst, W.M.P.: Supporting Process Mining by Showing Events at
a Glance. In: Chari, K., Kumar, A. (eds.) Proceedings of 17th Annual Workshop
on Information Technologies and Systems (WITS 2007), Montreal, Canada, pp.
139–145 (December 2007)

56. Song, M., van der Aalst, W.M.P.: Towards Comprehensive Support for Organiza-
tional Mining. Decision Support Systems 46(1), 300–317 (2008)

57. Vanhatalo, J., Völzer, H., Koehler, J.: The Refined Process Structure Tree. Data
and Knowledge Engineering 68(9), 793–818 (2009)

58. Verbeek, H.M.W., van der Aalst, W.M.P.: Decomposing Replay Problems: A Case
Study. BPM Center Report BPM-13-09, BPMcenter.org (2013)

59. Weerdt, J.D., Backer, M.D., Vanthienen, J., Baesens, B.: A Robust F-measure for
Evaluating Discovered Process Models. In: Chawla, N., King, I., Sperduti, A. (eds.)
IEEE Symposium on Computational Intelligence and Data Mining (CIDM 2011),
Paris, France, pp. 148–155. IEEE (April 2011)

60. Weijters, A.J.M.M., van der Aalst, W.M.P.: Rediscovering Workflow Models from
Event-Based Data using Little Thumb. Integrated Computer-Aided Engineer-
ing 10(2), 151–162 (2003)

61. van der Werf, J.M.E.M., van Dongen, B.F., Hurkens, C.A.J., Serebrenik, A.: Pro-
cess Discovery using Integer Linear Programming. Fundamenta Informaticae 94,
387–412 (2010)

62. Widmer, G., Kubat, M.: Learning in the Presence of Concept Drift and Hidden
Contexts. Machine Learning 23, 69–101 (1996)

APQL: A Process-Model Query Language

Arthur H.M. ter Hofstede1,2, Chun Ouyang1, Marcello La Rosa1,3,
Liang Song4, Jianmin Wang4, and Artem Polyvyanyy1

1 Queensland University of Technology, Brisbane, Australia
{a.terhofstede,c.ouyang,m.larosa,artem.polyvyanyy}@qut.edu.au

2 Eindhoven University of Technology, Eindhoven, The Netherlands
3 NICTA Queensland Lab, Brisbane, Australia

4 School of Software, Tsinghua University, Beijing, China
songliang08@mails.thu.edu.cn, jimwang@tsinghua.edu.cn

Abstract. As business process management technology matures, organ-
isations acquire more and more business process models. The manage-
ment of the resulting collections of process models poses real challenges.
One of these challenges concerns model retrieval where support should be
provided for the formulation and efficient execution of business process
model queries. As queries based on only structural information cannot
deal with all querying requirements in practice, there should be support
for queries that require knowledge of process model semantics. In this
paper we formally define a process model query language that is based
on semantic relationships between tasks in process models and is inde-
pendent of any particular process modelling notation.

Keywords: business process model, process model collection, business
process model query, query language.

1 Introduction

With the increasing maturity of business process management, more and more
organisations need to manage large numbers of business process models, and
among these may be models of high complexity. Processes may be defined along
the entire value chain and over time a business may gather hundreds and even
thousands of business process models. As an example consider Suncorp, one
of the largest Australian insurers. Over the years, Suncorp have gone through
a number of organizational mergers and acquisitions, as a result of which the
company has accumulated over 3, 000 process models for the various lines of
insurance. In this context, support for business process retrieval, e.g. for the
purposes of process reuse or process standardization, is a challenging proposition.

Several query languages exist that can be used to retrieve process models
from a repository, e.g. BPMN-Q [1] or BP-QL [2,3]. These languages are based
on syntactic relationships between tasks and not on their semantic relationships.
However, to deal with all querying requirements in practice, it is not enough to
rely on only structural information of the process models but often requires
knowledge of process model semantics. Consider for example the two process

M. Song, M.T. Wynn, and J. Liu (Eds.): AP-BPM 2013, LNBIP 159, pp. 23–38, 2013.

The original version of this chapter was revised: The copyright line was incorrect. This has been
corrected. The Erratum to this chapter is available at DOI: 10.1007/978-3-319-02922-1 10

© Springer-Verlag Berlin Heidelberg 2013

http://dx.doi.org/10.1007/978-3-319-02922-1_10

24 A.H.M. ter Hofstede et al.

models in Fig. 1. They describe two variants of a business process for opening
bank accounts using the BPMN notation [4]. These two variants could capture
the way an account is opened in two different states where a bank operates, and
could be part of a collection of various process models in all states where the
bank operates. Assume that a business analyst needs to find out which branches
always require an assessment of the customer’s credit history when opening an
account. In this case, only using the structural relationships between tasks, we
cannot discern between the two variants, i.e. we would retrieve them both, since
in both models there is a path from task “Receive customer request” to task
“Analyse customer credit history”. However, based on semantic relationships
between tasks, we can observe that task “Analyse customer credit history” fol-
lows task “Receive customer request” in all instances of the first process variant,
but this is not the case for one instance of the second variant (the one with task
“Open VIP account”). Thus we can correctly exclude the second process variant
from the results of the query, and return the first variant only.

Fig. 1. Two variants of a business process for opening bank accounts

In light of the above, we aim to address the development of a business process
model query language based on semantic relationships between tasks in process
models. We do so by proposing a new query language, namely A Process-model
Query Language (APQL), for retrieving required process models from model
collections, e.g. process model repositories. This language relies on a number
of basic temporal relationships between tasks which can be composed to obtain
complex relationships between them. These predicates allow us to express queries
that can discriminate over single process instances or task instances.

In this paper, we define both the syntax (Sect. 2) and semantics (Sect. 3) of
APQL, provide examples to assist in understanding of the language definition
(Sect. 4), discuss related work (Sect. 5), and finally conclude the paper (Sect. 6).

2 The Syntax of APQL

APQL is designed as a process model query language that is independent of the
actual process modelling language used. This is important as in practice a variety
of modelling languages are used (e.g. BPMN, EPCs) and the language should
be generally applicable. Another important fact is that process models have a
semantics and it should be possible to exploit this semantics when querying.

APQL: A Process-Model Query Language 25

Based on the above design rationale, we define a set of 20 basic predicates
to capture, in business process models, the occurrences of tasks as well as the
semantic relationships between tasks. Below, the first two predicates capture the
occurrence of a task t in some or every execution of a given process model r.

1. posoccur(t, r): some execution of r exists where at least one instance of t occurs.
2. alwoccur(t, r): in every execution of r, at least one instance of t occurs.

The next two predicates capture the exclusive and concurrent relationships be-
tween task occurrences. Note that these two predicates do not assume that an
instance of t1 or t2 should eventually occur in a given process model r.

3. exclusive(t1, t2, r): in every execution of r, it is never possible that an instance of
t1 and an instance of t2 both occur.

4. concur(t1, t2, r): t1 and t2 are not causally related, and in every execution of r, if
an instance of t1 occurs then an instance of t2 occurs and vice versa.

Then we consider various forms of causal relationship between task occurrences.
The relationship can be precedence (pred) or succession (succ), where one task
may occur immediately or eventually preceding or succeeding another task. It
may hold for any or every occurrence of the tasks in some or every process
execution. Combining all these considerations results in 16 forms of causal rela-
tionships which are captured by the remaining 16 basic predicates as follows.

Let Φ be one of the following intermediate predicates,

1. succany(t1, t2, i): in process execution i, at least one instance of t1 occurs and is
eventually succeeded by an instance of t2 (e.g. ...t1...t2...).

2. succevery(t1, t2, i): in process execution i, at least one instance of t1 occurs and
every instance of t1 is eventually succeeded by an instance of t2 (e.g. t1...t1...t2).

3. predany(t1, t2, i): in process execution i, at least one instance of t1 occurs and is
eventually preceded by an instance of t2 (e.g. ...t2...t1...).

4. predevery(t1, t2, i): in process execution i, at least one instance of t1 occurs and
every instance of t1 is eventually preceded by an instance of t2 (e.g. t2...t1...t1).

5. isuccany(t1, t2, i): in process execution i, at least one instance of t1 occurs and is
immediately succeeded by an instance of t2 (e.g. ...t1t2...).

6. isuccevery(t1, t2, i): in process execution i, at least one instance of t1 occurs and
every instance of t1 is immediately succeeded by an instance of t2 (e.g. t1t2...t1t2).

7. ipredany(t1, t2, i): in process execution i, at least one instance of t1 occurs and is
immediately preceded by an instance of t2 (e.g. ...t2t1...).

8. ipredevery(t1, t2, i): in process execution i, at least one instance of t1 occurs and
every instance of t1 is immediately preceded by an instance of t2 (e.g. t2t1...t2t1).

Then

– Φ∀(t1, t2, r): Φ(t1, t2, i) holds for every process execution i of process model r, i.e.
Φ(t1, t2, i) always holds in process r, and

– Φ∃(t1, t2, r): there exists some process execution i of process model r where
Φ(t1, t2, i) holds, i.e. it is possible that Φ(t1, t2, i) holds in process r.

Next, the syntax of APQL is defined in the form of an abstract syntax, the
advantages of which over a concrete syntax have been espoused by Meyer [5].

26 A.H.M. ter Hofstede et al.

In essence, in an abstract syntax we can avoid committing ourselves prematurely
to specific choices for keywords or to the order of various statements.

In APQL a query is a sequence of Assignments combined with a Predicate.

Query � s : Assignments ; p : Predicate

Assignments � Assignment∗

The result is those process models that satisfy the Predicate. An Assignment
assigns a TaskSet to a variable and when evaluating the Predicate every variable
is replaced by the corresponding TaskSet (via the identifier of such task set).

Assignment � v : Varname ; ts : TaskSet

Varname � identifier

A TaskSet can be an enumeration of tasks or defined over other TaskSets by Con-
struction or Application. It can also be defined through a variable, a TaskSetVar.

TaskSet � SetofTasks | Construction | Application | TaskSetVar
A Task can be defined as a combination of a TaskLabel (a string) and a SimDegree
(a real number). The idea is that one may be interested in Tasks of which the
task label bears a certain degree of similarity to a given activity name. There
are a number of definitions in the literature concerning label similarity and for
a concrete implementation of the language one has to commit to one of these.

SetofTasks � Task∗

Task � l : TaskLabel ; d : SimDegree

TaskLabel � string

SimDegree � real [0..1]

A TaskSetVar is simply a variable that carries the identifier of the set of the
tasks. Such a task set may be used in assignments.

TaskSetVar � identifier

A TaskSet can be composed from other TaskSets through the application of the
well-known set operators such as union, difference, and intersection. Another way
to construct a TaskSet is by the application of a TaskCompOp (i.e. one of the
basic predicates introduced earlier, but now interpreted as a function) on another
TaskSet. In that case we have to specify whether we are interested in the tasks
that have that particular relation with all or with any of the tasks in the TaskSet.
For example, an application with TaskSet S, TaskCompOp PosSuccAny (i.e.
succany

∃) and AnyAll (indicator) All, is to yield those tasks that any instance
of such a task succeeds an instance of each task in S in some process execution.

Construction � ts1, ts2 : TaskSet ; o : Set Op

Set Op � Union | Difference | Intersection
Application � ts : TaskSet ; o : TaskCompOp; a : AnyAll

APQL: A Process-Model Query Language 27

TaskCompOp � Exclusive | Concur |
AlwSuccAny | AlwSuccEvery | AlwPredAny | AlwPredEvery |
PosSuccAny | PosSuccEvery | PosPredAny | PosPredEvery |
AlwISuccAny | AlwISuccEvery | PosISuccAny | PosISuccEvery |
AlwIPredAny | AlwIPredEvery | PosIPredAny | PosIPredEvery

AnyAll � Any | All
A Predicate can consist of a simple TaskPos, with the intended semantics what
the basic predicate posoccur specifies; a TaskAlw, with the intended seman-
tics what the basic predicate alwoccur specifies; a TaskRel, with the intended
semantics that all process models satisfying that particular relation should be
retreived; or, it can be recursively defined as a binary or unary Predicate through
the application of logical operators.

Predicate � TaskPos | TaskAlw | TaskRel | Bin Predicate | Un Predicate

Bin Predicate � o : BinLogOp; p1, p2 : Predicate

Un Predicate � o : UnLogOp; p : Predicate

BinLogOp � And | Or

UnLogOp � Not

TaskPos � l : TaskLabel ; d : SimDegree

TaskAlw � l : TaskLabel ; d : SimDegree

A TaskRel can be 1) a relationship between a Task and a TaskSet to check
whether the Task occurs in the TaskSet (TaskInTaskSet), 2) a relationship be-
tween a Task and a TaskSet and involving a TaskCompOp and an AnyAll in-
dicator to determine whether the Task has the TaskCompOp relationship with
any/allTasks in the TaskSet (Task TaskSet), 3) a relationship between two Tasks
involving a TaskCompOp predicate determining whether for the two Tasks that
predicate holds (Task Task), 4) a relationship between two TaskSets involving a
TaskCompOp and an AnyAll indicator to determine whether the Tasks in those
TaskSets all have the TaskCompOp relationship to each other or whether for each
Task in the first TaskSet there is a corresponding Task in the second TaskSet for
which the relationship holds (Elt TaskSet TaskSet), or 5) a relationship between
two TaskSets determined by a set comparison operator (Set TaskSet TaskSet).

TaskRel � TaskInTaskSet | Task TaskSet |
Task Task | Elt TaskSet TaskSet |
Set TaskSet TaskSet

TaskInTaskSet � t : Task ; ts : TaskSet

Task TaskSet � t : Task ; ts : TaskSet ;

o : TaskCompOp; a : AnyAll

Task Task � t1, t2 : Task ; o : TaskCompOp

28 A.H.M. ter Hofstede et al.

Elt TaskSet TaskSet � ts1, ts2 : TaskSet ; o : TaskCompOp;

a : AnyAll

Set TaskSet TaskSet � ts1, ts2 : TaskSet ; o : SetCompOp

SetCompOp � Identical | Subsetof | Overlap

3 The Semantics of APQL

We use denotational semantics to formally describe the semantics of APQL and
adopt the notation in [5]. For each nonterminal T we introduce a semantic func-
tion MT which defines the meaning of the nonterminal in terms of its parts.

First, we introduce some auxiliary notation in order to facilitate the subse-
quent definition of the semantics.

Definition 1 (overriding union). The overriding union of f : X → Y by g :
X → Y , denoted as f ⊕g, is defined by g∪f\{(x, f(x)) | x ∈ dom(f)∩dom(g)}.
With the set of 20 basic predicates defined in the previous section, we use BPu to
denote the set of two unary predicates {posoccur, alwoccur} which specify unary
task relations, and similarly we use BPb to denote the set of 18 binary predicates
which specify binary task relations. The following two definitions introduce a
higher order predicate that takes as input a unary or binary predicate, respec-
tively. Note that the semantics of each predicate (φ/ψ) is language independent.
For a task t in process model N , LN (t) specifies the label of t. A process model
may have silent tasks which do not capture any task or activity in the process
but are used for modelling purposes, e.g. a silent task used to capture an internal
action that cannot observed by external uses. For a silent task t, we let L(t) = τ .

Definition 2. Let N be a process model and T the set of tasks in N , for
t1, t2 ∈ T and φ ∈ BPb

refφ(t1, t2, N) =

{
φ(t1, t2, N) if LN(t1) �= τ ∧ LN(t2) �= τ
FALSE otherwise

i.e. the relation φ should hold between t1 and t2 in N if both are non-silent tasks.

Definition 3. Let N be a process model and T the set of tasks in N , for t ∈ T
and ψ ∈ BPu

refψ(t, N) =

{
ψ(t, N) if LN (t) �= τ
FALSE otherwise

i.e. the relation ψ should hold for t in N if t is a non-silent task.

As queries may use variables, we must know their values during query evaluation.
A Binding is an assignment of task sets to variables:

Binding � ProcessModel × Varname � 2Task

APQL: A Process-Model Query Language 29

Queries are applied to a repository of process models, i.e.

Repository � 2ProcessModel

A process model r consists of a collection of tasks Tr. For each task t in process
model r we can retrieve its label as Lr(t). Label similarity can be determined
through the function Sim, where Sim(l1, l2) determines the degree of similarity
between labels l1 and l2 (which yields a value in the range [0,1]). Note that Sim is
a parameter of the approach in which case one can choose his/her own similarity
notion and the corresponding function Sim returns the similarity evaluation
result to this parameter.

The query evaluation function MQuery takes a query and a repository as input
and yields those process models in that repository that satisfy the query:

MQuery : Query × Repository → 2ProcessModel

This function is defined as follows:

MQuery [q : Query, R : Repository] � MPredicate(q.p, R,MAssignments(q.s, R,∅))

The evaluation of the query evaluation function depends on the evaluation of the
predicate involved and the assignments involved. When evaluating a sequence
of assignments we have to remember the values that have been assigned to the
variables involved. Inititally this set of assignments is empty.

MAssignments : Assignments × Repository × Binding → Binding

The result of a sequence of assignments is a binding where the variables used in
the assignments are bound to sets of tasks. If a variable was already assigned a
set of tasks in an earlier assignment in the sequence the latest assignment takes
precedence over the earlier assignment.

MAssignments [s : Assignments , R : Repository , B : Binding] �
if ¬(s.TAIL).EMPTY then

MAssignments(s.TAIL, R,B ⊕MAssignment (s.FIRST , R,B))
else B

The result of an individual assignment is also a binding where the variable is
linked to the set of tasks involved.

MAssignment : Assignment × Repository × Binding → Binding

MAssignment [a : Assignment , R : Repository , B : Binding)] �
{((r, a.v),MTaskSet (a.ts,R,B)(r)) | r ∈ R}

A predicate can be evaluated in the context of a repository and a binding and
the result is a set of process models from that repository.

MPredicate : Predicate × Repository × Binding → 2ProcessModel

A predicate may yield all process models in the repository that contain a task
sufficiently similar to that task (with respect to the task label and similarity

30 A.H.M. ter Hofstede et al.

degree). A predicate may also specify relationship between tasks (i.e. a TaskRel)
in which case it yields all the process models that satisfy this relationship. A
conjunction yields the intersection of the process models of the predicates in-
volved, while a disjunction yields the union. The negation of a predicate yields
the process models in the repository that do not satisfy the predicate.

MPredicate(p : Predicate , R : Repository , B : Binding) �
case p of

TaskPos ⇒ {r ∈ R | ∃t ∈ Tr[Sim(p.l, Lr(t)) ≥ p.d ∧ posoccur(t, r)]}
TaskAlw ⇒ {r ∈ R | ∃t ∈ Tr[Sim(p.l, Lr(t)) ≥ p.d ∧ alwoccur(t, r)]
TaskRel ⇒ MTaskRel(p,R,B)
Bin Predicate ⇒

case p.o of
And ⇒ MPredicate(p.p1, R,B) ∩MPredicate(p.p2, R,B)
Or ⇒ MPredicate(p.p1, R,B) ∪MPredicate(p.p2, R,B)

end
Un Predicate ⇒ R\MPredicate(p,R,B)

end

A TaskRel in the context of a repository and a binding yields a set of process
models in that repository.

MTaskRel : TaskRel × Repository × Binding → 2ProcessModel

A TaskRel can be used to determine whether a task in a process model occurs in
a given task set, whether a given basic predicate holds between a task in a process
model and one or all tasks in a given task set, whether a given basic predicate
holds between tasks in a process model, whether a given basic predicate holds
between two or between all tasks in two given task sets, or whether a given set
comparison relation holds between two given task sets.

MTaskRel (tr : TaskRel , R : Repository , B : Binding) �
case tr of

TaskInTaskSet ⇒
{r ∈ R | ∃v ∈ MTaskSet(tr.ts,R,B)(r)[Sim(tr.t.l, Lr(v)) ≥ tr.t.d]}

Task TaskSet ⇒
case tr.a of

Any ⇒ {r ∈ R | ∃t1 ∈ Tr ∃t2 ∈ MTaskSet (tr.ts,R,B)(r)
[Sim(tr.t.l, Lr(t1)) ≥ tr.t.d ∧ reltr.o(t1, t2, r)]}

All ⇒ {r ∈ R | ∃t1 ∈ Tr ∀t2 ∈ MTaskSet (tr.ts,R,B)(r)
[Sim(tr.t.l, Lr(t1)) ≥ tr.t.d ∧ reltr.o(t1, t2, r)]}

end
Task Task ⇒ {r ∈ R | ∃v1, v2 ∈ Tr[Sim(tr.t1.l, Lr(v1)) ≥ tr.t1.d∧

Sim(tr.t2.l, Lr(v2)) ≥ tr.t2.d ∧ reltr.o(v1, v2, r)]}
Elt TaskSet TaskSet ⇒

case tr.a of
Any ⇒ {r ∈ R | ∃t1 ∈ MTaskSet (tr.ts1, R,B)(r)

∃t2 ∈ MTaskSet (tr.ts2, R,B)(r)[reltr.o(t1, t2, r)]}
All ⇒ {r ∈ R | ∀t1 ∈ MTaskSet (tr.ts1, R,B)(r)

∀t2 ∈ MTaskSet (tr.ts2, R,B)(r)[reltr.o(t1, t2, r)]}
end

APQL: A Process-Model Query Language 31

Set TaskSet TaskSet ⇒
case tr.o of

Identical ⇒
{r ∈ R | MTaskSet (tr.ts1, R,B)(r) = MTaskSet (tr.ts2, R,B)(r)}

Subsetof ⇒
{r ∈ R | MTaskSet (tr.ts1, R,B)(r) ⊆ MTaskSet (tr.ts2, R,B)(r)}

Overlap ⇒
{r ∈ R | MTaskSet (tr.ts1, R,B)(r) ∩MTaskSet (tr.ts2, R,B)(r)
= ∅}

end
end

A TaskSet within the context of a repository and a binding yields a mapping
which assigns to each process model in the repository the collection of tasks
within that model that satisfy the restriction imposed by the TaskSet.

MTaskSet : TaskSet × Repository × Binding → (ProcessModel → 2Task)

When a TaskSet is a set of tasks, then for each process model the result is
the set of tasks within that process model that are sufficiently similar to at
least one of the tasks in that TaskSet. When the TaskSet is a variable, then the
evaluation is similar except that the task set used is the task set currently bound
to that variable. TaskSets can also be formed through Construction (where the
set operators union, difference, and intersection are used) or Application (where
task sets are formed through set comprehension, i.e. they are defined through
properties that they have - these properties relate to the basic predicates).

MTaskSet(tks : TaskSet , R : Repository , B : Binding) �
case tks of

SetofTasks ⇒
{(r, {t ∈ Tr | ∃1≤i≤tks.LENGTH [Sim(tks(i).l, Lr(t)) ≥ tks(i).d]}) | r ∈ R}

TaskSetVar ⇒
{(r,X) | r ∈ R} where

X =

{
B(r, tks) if (r, tks) ∈ dom(B)
∅ otherwise

Construction ⇒
case tks.o of

Union ⇒
{(r,MTaskSet(tks.ts1, R,B)(r) ∪MTaskSet(tks.ts2, R,B)(r)) | r ∈ R}

Difference ⇒
{(r,MTaskSet(tks.ts1, R,B)(r)\MTaskSet(tks.ts2, R,B)(r)) | r ∈ R}

Intersection ⇒
{(r,MTaskSet(tks.ts1, R,B)(r) ∩MTaskSet(tks.ts2, R,B)(r)) | r ∈ R}

end
Application ⇒
case tks.a of

Any ⇒
{(r, {t ∈ Tr | ∃v ∈ MTaskSet (tks.ts,R,B)(r)[reltks.o(t, v, r)]}) | r ∈ R}

All ⇒
{(r, {t ∈ Tr | ∀v ∈ MTaskSet (tks.ts,R,B)(r)[reltks.o(t, v, r)]}) | r ∈ R}

end
end

32 A.H.M. ter Hofstede et al.

4 Examples of APQL Queries

In this section we present some sample queries and show how they can be cap-
tured in APQL in order to further illustrate the language. The sample queries,
specified in natural language, are listed below (which are numbered Q1 to Q10).
In these queries, by default the value for the AnyAll identifier, when applicable,
is all, and by default the value for the SimDegree is 1. According to the abstract
syntax of APQL in Sect. 2, Fig. 2 shows the grammar trees for queries Q1 to
Q6, and Fig. 3 shows the grammar trees for queries Q7 to Q10. Note that in the
following A to L are task labels (i.e. activity names).

Q1. Select all process models where task A occurs in some process execution
and task B occurs in every process execution.

Q2. Select all process models where in every process execution it is possible that
task A occurs before task D.

Q3. Select all process models where in every process execution task A always
occurs before task D.

Q4. Select all process models where in some process execution it is possible that
task A occurs before task B and task B occurs before task K.

Q5. Select all process models where in some process execution task A always
occurs before task B.

Q6. Select all process models where task B occurs in parallel with task C.
Q7. Select all process models where task B occurs in parallel with task C and

where task A occurs in parallel with task H.
Q8. Select all process models where in every process execution task B and task

C never occur together.
Q9. Select all process models where in some process execution the immediate

predecessors of task H are among the immediate successors of task B.
Q10. Select all process models where in some process execution the immediate

predecessors of task H may occur after the common immediate successors of
task B and task C.

In order to illustrate the formal semantics of APQL, a number of process
models, represented in BPMN, are presented in Fig. 4. For each sample query
above and for each model it is indicated whether the model is part of the answer
to the query (in that case the box corresponding to the query is ticked otherwise
the box is not ticked). Note that in some models tasks with the same label occur
(e.g. there are two tasks labeled A in model (5) in Fig. 4), in which case, APQL
will treat these tasks as same tasks during query evaluation1.

5 Related Work

Mindful of the importance of query languages for business process models, the
Business Process Management Initiative (BPMI) proposed to define a standard

1 Note that APQL is query language rather than a process modelling language.

APQL: A Process-Model Query Language 33

Fig. 2. The APQL grammar trees of sample queries Q1 −Q6

business process model query language in 20042. While such a standard has
never been published, two major research efforts have been dedicated to the de-
velopment of query languages for process models. One is known as BP-QL [3],
a visual query language based on an abstract representation of BPEL and sup-
ported by a formal model of graph grammars for processing of queries. BP-QL
can be used to query process specifications written in BPEL rather than possi-
ble executions, and ignores the run-time semantics of certain BPEL constructs
such as conditional execution and parallel execution. The other effort, namely
BPMN-Q [1,6], is also a visual query language which extends a subset of the
BPMNmodelling notation and supports graph-based query processing. Similarly
to BP-QL, BPMN-Q only captures the structural (i.e., syntactical) relations be-
tween tasks, and not their behavioral relationships. In [7], the authors explore
the use of an information retrieval technique to derive similarities of activity
names, and develop an ontological expansion of BPMN-Q to tackle the problem
of querying business processes that are developed with different terminologies. A
framework of tool support for querying process model repositories using BPMN-
Q and its extensions is presented in [8]. Recently, in [9], an approach that applies

2 http://www.bpmi.org/downloads/BPMI_Phase_2.pdf

http://www.bpmi.org/downloads/BPMI_Phase_2.pdf

34 A.H.M. ter Hofstede et al.

Fig. 3. The APQL grammar trees of sample queries Q7 −Q10

APQL: A Process-Model Query Language 35

Fig. 4. A list of BPMN business process models and evaluation of sample queries
Q1 −Q10 over these process models

36 A.H.M. ter Hofstede et al.

an indexing method based on the (graph-based) flow relation between tasks in
BPMN process diagrams is proposed for efficient processing of BPMN-Q queries.

APQL presents three distinguishing features compared to the above lan-
guages. First, its abstract syntax and semantics have been purposefully defined
to be independent of a specific process modelling language (such as BPEL or
BPMN). This will allow APQL and its query evaluation technique to be imple-
mented for a variety of process modelling languages. Second, APQL can express
all possible temporal-ordering relations (precedence/succession, concurrence and
exclusivity) between individual tasks, between an individual task and a set of
tasks as well as between different sets of tasks. Third, APQL querying constructs
need to be evaluated over the execution semantics of process models, rather than
their structural relations. In fact, structural characteristics alone are not able to
capture all possible order relations among tasks which can occur during execu-
tion, in particular with respect to cycles and task occurrences.

In addition to the development of process model query languages, other tech-
niques are available in the literature which can be useful for querying process
model repositories. In [10,11], the authors focus on querying the content of busi-
ness process models based on metadata search. The VisTrails system [12] allows
users to query scientific workflows by example and to refine workflows by analo-
gies. WISE [13] is a workflow information search engine which supports keyword
search on workflow hierarchies. In [14], the authors use graph reduction tech-
niques to find a match to the query graph in the process graph for querying
process variants, and the approach only works on acyclic graphs. In [15,16,17],
a group of similarity-based techniques have been proposed which can be used to
support process querying. In [18], a technique to query process model repositories
is proposed based on an input Petri net. Finally, in [19], the notion of behavioural
profile of a process model is defined, which captures dedicated behavioural re-
lations like exclusiveness or potential occurrence of activities. However, these
behavioural relations are derived from the structure of a process model. Thus,
for the reasons mentioned above, behavioral profiles only provide an approxi-
mation of a process model’s behavior, whereas APQL can precisely determine
whether or not a process model satisfies a given query.

6 Conclusions

This paper contributes an innovative language, namely APQL, for querying pro-
cess model repositories. APQL provides three main advantages over the state
of the art. First, the language is expressive since it allows users to specify all
possible order relationships among tasks or sets thereof. Second, the language
is precise, since APQL queries are defined for evaluation over process model
behavior, while existing query languages only support structural process charac-
teristics. Third, the language’s syntax and semantics are defined independently
of any specific process modeling language.

The next stage is to operationalise APQL and the main task is to develop
a technique for evaluation of APQL queries. This evaluation technique could
be designed on top of a well established mathematical technique for describing

APQL: A Process-Model Query Language 37

behavioural semantics, e.g. Petri nets. One challenge though, when it comes to
determining semantic relationships between tasks, is how to determine these
relationships in a feasible manner (i.e. without suffering from the well-known
state space explosion problem).

Currently APQL only focuses on the control flow perspective of business pro-
cess models. In the future, we will extend the language definition in order to
include other process perspectives such as data and participating resources.
Moreover, we plan to run structured interviews with domain experts to assess
the overall ease of use and usefulness of APQL.

Acknowledgements. Song and Wang are supported by the National Basic
Research Program of China (2009CB320700), the National High-Tech Devel-
opment Program of China (2008AA042301), the Project of National Natural
Science Foundation of China (90718010), and the Program for New Century Ex-
cellent Talents in University of China. ter Hofstede, La Rosa and Polyvyanyy
are partly supported by the ARC Linkage Grant “Facilitating Business Process
Standardization and Reuse” (LP110100252). In 2010 and 2011, ter Hofstede was
a senior visiting scholar of Tsinghua University. NICTA is funded by the Aus-
tralian Government as represented by the Department of Broadband, Communi-
cations and the Digital Economy and the Australian Research Council through
the ICT Centre of Excellence program.

References

1. Awad, A.: BPMN-Q: A language to query business processes. In: Proceedings of
the 2nd International Workshop on Enterprise Modelling and Information Systems
Architectures (EMISA 2007). LNI, vol. P-119, pp. 115–128. GI (2007)

2. Beeri, C., Eyal, A., Kamenkovich, S., Milo, T.: Querying business processes. In:
Proceedings of the 32nd International Conference on Very Large Data Bases,
pp. 343–354. ACM (2006)

3. Beeri, C., Eyal, A., Kamenkovich, S., Milo, T.: Querying business processes with
BP-QL. Inf. Syst. 33(6), 477–507 (2008)

4. OMG: Business Process Model and Notation (BPMN) version 2.0 (January 2011),
http://www.omg.org/spec/BPMN/2.0

5. Meyer, B.: Introduction to the Theory of Programming Languages. Prentice-Hall
(1990)

6. Awad, A., Decker, G., Weske, M.: Efficient compliance checking using BPMN-Q
and temporal logic. In: Dumas, M., Reichert, M., Shan, M.-C. (eds.) BPM 2008.
LNCS, vol. 5240, pp. 326–341. Springer, Heidelberg (2008)

7. Awad, A., Polyvyanyy, A., Weske, M.: Semantic querying of business process mod-
els. In: Proceedings of the 12th International IEEE Enterprise Distributed Object
Computing Conference, pp. 85–94. IEEE Computer Society (2008)

8. Sakr, S., Awad, A.: A framework for querying graph-based business process mod-
els. In: Proceedings of the 19th International Conference on World Wide Web,
pp. 1297–1300. ACM (2010)

9. Awad, A., Sakrb, S.: On efficient processing of BPMN-Q queries. Computers in
Industry 63(9), 867–881 (2012)

http://www.omg.org/spec/BPMN/2.0

38 A.H.M. ter Hofstede et al.

10. Vanhatalo, J., Koehler, J., Leymann, F.: Repository for business processes and ar-
bitrary associated metadata. In: BPM 2006. LNCS, vol. 4102, pp. 426–431. Springer
(2006)

11. Wasser, A., Lincoln, M., Karni, R.: ProcessGene Query – a tool for querying the
content layer of business process models. In: BPM 2006. LNCS, vol. 4102, pp. 1–8.
Springer (2006)

12. Scheidegger, C.E., Vo, H.T., Koop, D., Freire, J., Silva, C.T.: Querying and re-
using workflows with VisTrails. In: Proceedings of the ACM SIGMOD International
Conference on Management of Data, pp. 1251–1254. ACM (2008)

13. Shao, Q., Sun, P., Chen, Y.: WISE: A workflow information search engine.
In: Proceedings of the 25th International Conference on Data Engineering,
pp. 1491–1494. IEEE Computer Society (2009)

14. Lu, R., Sadiq, S.W.: Managing process variants as an information resource. In:
Dustdar, S., Fiadeiro, J.L., Sheth, A.P. (eds.) BPM 2006. LNCS, vol. 4102,
pp. 426–431. Springer, Heidelberg (2006)

15. van der Aalst, W.M.P., de Medeiros, A.K.A., Weijters, A.J.M.M.: Process equiv-
alence: Comparing two process models based on observed behavior. In: Dustdar,
S., Fiadeiro, J.L., Sheth, A.P. (eds.) BPM 2006. LNCS, vol. 4102, pp. 129–144.
Springer, Heidelberg (2006)

16. Ehrig, M., Koschmider, A., Oberweis, A.: Measuring similarity between semantic
business process models. In: Proceedings of the 4th Asia-Pacific Conference on
Conceptual Modelling. CRPIT, ACS, vol. 67, pp. 71–80 (2007)

17. van Dongen, B.F., Dijkman, R., Mendling, J.: Measuring similarity between busi-
ness process models. In: Bellahsène, Z., Léonard, M. (eds.) CAiSE 2008. LNCS,
vol. 5074, pp. 450–464. Springer, Heidelberg (2008)

18. Jin, T., Wang, J., Wu, N., La Rosa, M., ter Hofstede, A.H.M.: Efficient and accurate
retrieval of business process models through indexing (short paper). In: Meersman,
R., Dillon, T.S., Herrero, P. (eds.) OTM 2010. LNCS, vol. 6426, pp. 402–409.
Springer, Heidelberg (2010)

19. Weidlich, M., Mendling, J., Weske, M.: Efficient consistency measurement based
on behavioral profiles of process models. IEEE Transactions on Software Engineer-
ing 37(3), 410–429 (2011)

M. Song, M.T. Wynn, and J. Liu (Eds.): AP-BPM 2013, LNBIP 159, pp. 39–55, 2013.

BPEL Similarity — A Metric Based on Activity
Constraint Graphs

Jianchun Xing1, Xuewei Zhang1, Wei Song2, Qiliang Yang1,
Jidong Ge3, and Hongda Wang1

1 PLA University of Science and Technology, Nanjing, China
2 Nanjing University of Science and Technology, Nanjing, China

3 Nanjing University, Nanjing, China
xueweizhang8877@gmail.com

Abstract. As the increasing popularity of Web Service Business Process Ex-
ecution Language (WS-BPEL), it is urgent to meet the demand of retrieving the
related BPEL processes in BPEL process repository quickly for business per-
sonnel. BPEL similarity retrieval technology is one of research focuses in the
field of BPEL repository management system. As existing approaches tend to
lack metric features and use structural aspects of BPEL processes rather than
their behaviors, they are often not applicable for effective similarity search. In
this paper, we propose a metric based on BPEL activity constraint graphs
(BACGs) to calculate the similarity degree of BPEL processes. It is grounded
on the Jaccard coefficient and leverages behavioral relations between BPEL ac-
tivities. The metric is successfully evaluated towards its approximation of hu-
man similarity assessment.

Keywords: BPEL Process, Similarity, BPEL Activity Constraint Graph, Beha-
vioral Metric.

1 Introduction

With the growth of Web services market share, as a Web service orchestration
language, BPEL [1] is gradually becoming the mainstream. BPEL is formulated as a
specification of Web services composition to address the heterogeneity of language,
platform, protocol and data. More and more enterprises and scientific research teams
have built the large-scale BPEL process repositories. Such repositories may contain
hundreds or even thousands of business processes, e.g., we have accessed to a repository
of the Oracle Company containing nearly 300 BPEL processes. An important issue
arising from BPEL process applications is how to retrieve BPEL processes from the
expanding BPEL repositories conveniently, accurately and effectively. Actually, the
capability to easily retrieve useful BPEL processes becomes increasingly critical in
several situations, e.g., when adding a new BPEL process into a BPEL repository, it is
necessary to search the repository whether there are similar BPEL processes; in the
context of company mergers, in order to analyze the overlap of BPEL processes and
identify areas for consolidation, the process analysts need to identify common or similar
processes between the merged companies; in some system that could not tolerate any

The original version of this chapter was revised: The copyright line was incorrect. This has been
corrected. The Erratum to this chapter is available at DOI: 10.1007/978-3-319-02922-1 10

© Springer-Verlag Berlin Heidelberg 2013

http://dx.doi.org/10.1007/978-3-319-02922-1_10

40 J. Xing et al.

failure BPEL processes, we must find a similar one to replace the failure one; given the
as-is and to-be BPEL processes, we would like to know how much they differ from each
other and how we can efficiently transform the as-is to the to-be process. Unfortunately,
there is no available and effective BPEL retrieval technology to meet the user’s de-
mands. Traditional database retrieval technology is not suitable, because it cannot fitly
sort and obtain the useful hash for BPEL processes. Text-based search and folder navi-
gation technologies are too rough to efficiently find the desirable BPEL processes [2].
The heterogeneity of BPEL processes leads exact pattern matches to being useless.
Therefore, studying the similarity between BPEL processes has been imminent.

At present, the majority of existing works focuses on textual similarity and structural
similarity. Various notions of edit distance are used to this end [3-5]. However, those
approaches may not adequately take the behavior of an executable BPEL process into
account, as it is pointed out in [6] that two processes may look quite similar, considering
the activity labels and the process structure, but may behave quite differently. Then,
many behavioral similarity measures have been proposed [7-9]. Although these meas-
ures may work well in some aspects, there are some drawbacks for determining the
similarity of BPEL processes. First, much detailed information arises for an executable
BPEL process, e.g. data information, partnerLinks. They are not applicable to accurately
measure the similarity degree between BPEL processes for those approaches from the
field of process model, because the important information has been abstracted away in
process models. Second, the majority of those measures [5, 10] cannot satisfy the trian-
gle inequality principle [11, 12]. This means that every search must carry on the exhaus-
tive search. It leads to very low search efficiency for the management, maintenance and
retrieval of the large-scale BPEL repositories.

In order to address these problems, we propose a behavioral metric that quantifies
the similarity between BPEL processes. It enables effective similarity search since it
satisfies metric properties, in particular the triangle inequality. The metric builds on
BPEL Activity Constraint Graph (BACG), an abstraction of the behavior of a BPEL
process. These BACGs capture behavioral constraints between every activity pair,
e.g., partial order relation, mutual-exclusion relation. Using this abstraction, we pro-
pose five elementary similarity measures. Based on these measures, we construct a
behavioral metric that quantifies the similarity of BPEL processes. As an evaluation,
we conducted experiments using the examples from Oracle BPEL Process Manager
Samples. Compared with manual similarity judgments by the BPEL process experts,
our metric shows a good approximation of human similarity assessment.

The key contribution of our work is threefold: first, a novel quantitative approach
is proposed to quantify the similarity of BPEL processes by leveraging activity con-
straints. Second, our approach is less sensitive to some observable behavioral rela-
tions, e.g., strict order relation, flow relation, but it can capture the slight alterations of
some essential activity constraints between two activities from a BPEL process, e.g.,
partial order relation. Third, in the field of BPEL process, we apply our approach by
analyzing the similarity between some real-life executable BPEL processes.

The remainder of the paper is structured as follows. Section 2 gives the basic con-
cepts used throughout this paper. Our metric to quantify the similarity between BPEL
processes is introduced in Section 3. Section 4 is concerned with its evaluation. We
discuss the limitations of our approach in Section 5. Finally, Section 6 and Section 7
present related works and the conclusion.

 BPEL Similarity — A Metric Based on Activity Constraint Graphs 41

2 Preliminaries

Search involves the query in comparing with objects from a repository. The complexi-
ty of every comparison algorithm and the size of repository determine the efficiency
of the search. We realize that the complexity is equal to the complexity of every com-
parison algorithm multiplied by the number of comparison operations. If we can re-
duce the number of comparison operations, it will be overall. Those methods based on
tree or hash index are not applicable in a BPEL repository, because BPEL process
cannot be mapped to the data structure effectively and the result of mapping also is
unordered and ataxonomic. Therefore, industry and academy solve the problems by
using the properties of distance function [13].

Definition 1 (Metric) [9]. A metric is a distance function d: X×X → R between
objects of domain X with the following properties:

 Symmetry: ∀pm, pn ∈ X, then d(pm, pn) = d(pn, pm)
 Nonnegativity: ∀pm, pn ∈ X, pm ≠ pn, then d(pm, pn) > 0
 Identity: ∀pm, pn ∈ X, then d(pm, pn) = 0 ⇔ pm = pn
 Triangle inequality: ∀pm, pn, pl ∈ X, then d(pm, pl) < d(pm, pn) + d(pn, pl)

A metric space is a pair S = (X, d).

The triangle inequality enables to determine minimum and maximum distances of the
two objects pm, pn without calculating it, given their pairwise distances to a third ob-
ject pl. In order to search efficiently in a large-scale BPEL repository, i.e., avoid com-
parison with every process object, the repository is split into partitions which some
can be pruned during search. In metric spaces, a partition which is established by a
pivot o ∈ X and a covering radius r(o) ∈ R, spans a sphere around o. All BPEL
process objects that their distances with the pivot o are less than the radius r(o) belong
to the sphere U(o). Then, similarity search requires a query process q ∈ X from the
same domain of the process objects in a repository, and a tolerance, i.e., a query ra-
dius r(q) ∈ R, expresses how similar the process objects may be to q. Those process

q o
r2(q)

r 3(
q)

r1(q) r(o)

Fig. 1. Metric space partition U(o) (solid circle) with pivot o and similarity query (dotted
concentric circle) with a query process q

42 J. Xing et al.

objects that the similarity degrees are greater than the r(q) of the query process can be
returned in the sphere U(q) of the query process. For the sphere U(o) of the query
process o and the sphere U(q) of the process object q, there are three following situa-
tions on the metric space — exclusion, inclusion and intersection [9][14], cf. Fig.1:

 Exclusion — r(o) + r1(q) < d(o, q): All objects in U (o) are further away from q
than r1(q), i.e., they cannot be returned by the retrieval. The distance from q to
any other object in U (o) does not have to be calculated.

 Intersection — r(o) + r2(q) ≥ d(o, q): This means the identification of the objects
in the intersection to require exhaustive search of U (o).

 Inclusion — r(o) – r3(q) ≤ d(o, q): U (o) is completely included in the sphere
around q. Thus, all objects satisfy the similarity constraint and need not be
compared with the query unless a ranking of the search result is desired.

3 Behavioral Similarity Metrics

In this section, we present our approach which measures the similarity between BPEL
processes based on activity constraints and Jaccard coefficient. We first give the defini-
tion of BACG in Section 3.1 and analyze the similarity measurement of BPEL
processes based on BACGs in Section 3.2. Then, five elementary similarity metrics are
shown in Section 3.3. Finally, we define aggregated metric for BACGs in Section 3.4.

3.1 BPEL Activity Constraint Graph

In order to precisely capture the behavioral relations between an activity pair from a
BPEL process, we propose the notion of BACG which provides the foundation to
reason about similarity of a pair. The following definition of BACG is shown.

Definition 2 (BPEL Activity Constraint Graph, BACG). A BPEL activity
constraint graph is a graph <N, E>, where

 N is a set of activities that contains one Entry activity, basic activities and struc-
tured activities.

 E = E1 ∪ E2 ⊆ N × N is a set of edges. A directed edge <x1, y1> ∈ E1 denotes a
partial order relation and an undirected edge (x2, y2) ∈ E2 denotes a mutual-
exclusion relation.
— Partial orders refer to control dependence, data dependence and

asyn-invocation dependence.
— Mutual-exclusion refers to the requirement of ensuring that only one activity

in the activity pair can be performed at a time.

A control dependence [15] indicates that an activity determines whether or not anoth-
er activity can be executed. A data dependence [15] indicates that an activity uses a
variable that is defined by another activity. Data dependences can be classified into
three categories in BPEL process: true-data dependence, anti-data dependence and
output-data dependence. The anti-data and output-data dependences can be avoided
through the variables renaming, so only the true-data dependence is considered in the

 BPEL Similarity — A Metric Based on Activity Constraint Graphs 43

paper. An asyn-invocation dependence [16, 17] indicates that a <receive> activity is
responsible for receiving the response of a one-way <invoke> activity. This depen-
dence is caused by the asynchronous communicating mechanism between BPEL
processes. In a BPEL process, when there are some choice activities, i.e., <if>,
<switch>, <while>, since only a branch might be performed for this kind of structured
activities at the same time, there is a mutual-exclusion relation between any activity
pair from two different branches.

Fig. 2. The similarity degree is low based on behavioral profiles, but the two processes are very
similar based on BACGs

In order to accurately quantify the similarity of the executable BPEL processes, the
activity constraints of all activity pairs from each process should be considered. How-
ever, in BACG, there is no partial order relation or mutual-exclusion relation for the
majority of the activity pairs. In this situation, we assume that there is an indepen-
dence relation for those pairs. Actually, an independence relation can help to
determine the differences between two BPEL processes, e.g., in a BPEL process the
absence of an activity or introducing a new activity. To conveniently define the simi-
larity measures later, for a BPEL process P(A) (A is a set of activities that contains
basic activities and structure activities), we use the notations to denote activity con-
straints of the activity pairs, i.e., {→P (control dependence), >P (data dependence),
↓P (asyn-invocation), +P (mutual-exclusion), ○P (independence relation)}. We real-
ize that mutual-exclusion relation and independence relation belong to a total order

44 J. Xing et al.

relation. As a universal set of the activity pairs from a BPEL process is considered, an
inverse partial order relation is introduced in the inverse pair (y, x) when there is a
partial order relation between a pair (x, y). However, an exceptional case is that we
cannot consider the inverse data dependence — an activity x is data dependent on an
activity y and y is also data dependent on x. In addition, there is an independence
relation between an activity and itself, if the activity is not data dependent on itself.

The authors of [18] proposed the notion of behavioral profile that defines three beha-
vioral constraints between activities in process models, i.e. strict order relation, inter-
leaving relation and exclusiveness relation. The approach that is applied in the field of
process models is very excellent [9]. As we know, BPEL process is executable and it
contains much specific information, e.g., partnerLink, the input and output of activity.
Unfortunately, the important information has been abstracted away in process models,
thus, behavioral profiles are not suitable to quantify the similarity of BPEL processes.
Compared with behavioral profile, our approach can capture the more essential beha-
vioral constraints between activities from a BPEL process e.g., in Fig.2 (A) and (B),
they are changed for the execution orders of those corresponding activities without par-
tial order relations in BPEL processes (A) and (B). Based on behavioral profiles [9], this
may heavily weaken the similarity degree of the two BPEL processes. However, as the
corresponding BACGs (a) and (b) of BPEL processes (A) and (B) are consistent, this
may not affect the similarity in our approach.

3.2 Analysis of Similarity Based on BACGs

Similarity measurement based on BACGs requires matching activities. Given two
BPEL processes, the correspondences between activities have to be determined.
These correspondences are used to measure the overlap of behavior in the two
processes. In the paper, we consider that the name label of each activity is unique, and
a corresponding is built only if some attributes between activities are the same. These
attributes contain name, type, partnerLink and portType. Our work does not focus on
this aspect of similarity, but rather on behavioral properties. Therefore, we assume
these correspondences to be given, hereafter. To keep the formalization of our metrics
concise, we abstract from such correspondences and assume corresponding activities
to be identical. In other words, given two BPEL processes X and Y with their sets of
activities AX and AY, a correspondence between an activity from X and an activity
from Y is manifested as the existence of an activity x ∈ (AX ∩ AY). In this paper, in
order to avoid the rapid increase of activity constraints and the time complexity, we
assume that there is only 1 : 1 correspondence between activities.

In order to measure the similarity of BPEL processes, we first transformed two
BPEL processes into BPEL Control Flow Graphs (BCFGs) [19] in which each activi-
ty is associated with the input and output of a corresponding BPEL activity and its
necessary attributes. Then, BACGs of the two BPEL processes are derived by analyz-
ing the partial order relations and mutual-exclusion relations based on BCFGs. Note
that in this paper we introduce an independence relation between an activity pair
where the partial order relation and mutual-exclusion relation do not exist. Finally, we
can calculate the similarity degree of the two BPEL processes based on Jaccard
coefficient and the obtained BACGs (cf. Fig.3).

 BPEL Similarity — A Metric Based on Activity Constraint Graphs 45

Fig. 3. The framework of our similarity analysis approach

3.3 Elementary Similarity Measurement

A BPEL process X resembles another BPEL process Y in certain behavioral aspects if
they overlap in their BACGs BX and BY, respectively. The larger this overlap is, the
more similar we assume two processes to be. We quantify the similarity by the well-
known Jaccard coefficient. It is a static statistical formula used to measure the similar-
ity and the degree of differences of two collections: sim(A, B) = |A∩B| / |A∪B|. First,
since each kind of activity constraints is essentially a set in a BACG, this measure can
easily be applied to BACGs. Second, it can be translated into a metric d(A, B) =
1 − sim(A, B) [11] to enable effective similarity search.

According to the travel agency process in [17, 20], we make some adjustments and
obtain two BPEL processes to clearly illustrate our problems (cf. Fig.4). The case is
universal, since there are the characteristics of general BPEL processes for them. It
shows two order handling processes (M, N), in which we should select a befitting
hotel to book. The case has the characteristics of the general BPEL process as it is
applied to many publications [16, 17]. The correspondences between activities are
showed by equal labels in two processes, and are represented through the indices a to
h. Based on BCFGs and data information, their BACGs BM and BN are also obtained
and activity constraints are depicted as matrices over the activities (cf. Fig.5).

As described previously, the partial order relation contains three types of depen-
dences in a BACG. Since each type of dependences may arouse an important influence
for measuring the similarity degree between two BPEL processes, each one should be
defined as a similarity measurement which the inverse partial order relation should be
introduced as depicted in Section 3.1. This can make sure that we quantify the similarity
of BPEL processes more comprehensively and accurately from the perspective of the
universal set of activity pairs. The corresponding similarity quantifies how many com-
mon pairs exist in two BPEL processes that feature the same activity constraints. Then,
the five similarity measures of activity constraints are following:

Definition 3 (Control Dependence Similarity — CDS). Let X, Y be BPEL processes
and →X, →Y the control dependences, →X-1, →Y-1 the inverse control dependences
of their respective BACGs (BX, BY). Control Dependence Similarity is defined as:

1 1

1 1

() ()
(,) .

() ()
X Y

X X Y Y
sim B B

X X Y Y

− −

→ − −

→ ∪→ ∩ → ∪→
=

→ ∪→ ∪ → ∪→

46 J. Xing et al.

We can find that there are the control dependences between the pairs (b, c), (b, e) in
BPEL processes of Fig.5. The only difference between M and N with regard to the
control dependence is that d and f are out of the structured activity b of N. It leads to
the control dependences of two activity pairs (b, d) and (b, f), as well the inverse con-
trol dependences of their inverse pairs in M being absent in N. This yields a similarity
sim→(BM, BN) = 4/8 = 0.5.

Definition 4 (Data Dependence Similarity — DDS). Let X, Y be BPEL processes
and >X, >Y the data dependences, >X-1, >Y-1 the inverse data dependences of their
respective BACGs (BX, BY). Data Dependence Similarity is defined as:

1 1

1 1

() ()
(,) .

() ()
X Y

X X Y Y
sim B B

X X Y Y

− −

> − −

> ∪ > ∩ > ∪ >
=

> ∪ > ∪ > ∪ >

Fig. 4. The two variations of BPEL process of the travel agency

The exemplary BPEL processes M and N show a significant difference in their data
dependences, because h is missing in N, the outputs of d and f are both the input of g,
whereas the outputs of d and f are respectively the inputs of g and h in M. This leads
to the following data dependence similarity: sim>(BM, BN) = 8/12 ≈ 0.667.

Definition 5 (Asyn-invocation Dependence Similarity — ADS). Let X, Y be BPEL
processes and ↓X, ↓Y the asyn-invocation dependences, ↓X-1, ↓Y-1 the inverse asyn-
invocation dependences of their respective BACGs (BX, BY). Asyn-invocation
Dependence Similarity is defined as:

 BPEL Similarity — A Metric Based on Activity Constraint Graphs 47

1 1

1 1

() ()
(,) .

() ()
X Y

X X Y Y
sim B B

X X Y Y

− −

↓ − −

↓ ∪ ↓ ∩ ↓ ∪ ↓
=

↓ ∪ ↓ ∪ ↓ ∪ ↓

In Fig.5, we see that there are the asyn-invocation dependences between the pairs
(c, d), (e, f). The BPEL processes M and N share the same asyn-invocation depen-
dence relations for (c, d) and (e, f). This yields sim↓(BM, BN) = 4/4 = 1.

The mutual-exclusion is the strictest relation of a BACG, because it enforces the
absence of a co-occurrence of two activities within one BPEL process instance. There
is a mutual-exclusion relation between any two activities that also contains their in-
verse pairs from different branches in some structured activities, e.g., <if>, <while>.

Definition 6 (Mutual-Exclusion Similarity — MS). Let X, Y be BPEL processes and
+X, +Y the mutual-exclusion relations of their respective BACGs (BX, BY). Mutual-
Exclusion Similarity is defined as:

(,) .X Y

X Y
sim B B

X Y+

+ ∩ +
=

+ ∪ +

Fig. 5. The BACGs and matrixes of behavioral relations between two activities for M and N

48 J. Xing et al.

From the Fig.5, we realize that there are the mutual-exclusion relations between the
pairs (c, e), (c, f), (d, e), and (d, f), as well their inverse pairs respectively in M, but
only (c, e) and (e, c) are mutual-exclusive in N. This yields sim+(BM, BN) = 2/8 = 0.25.

In most cases, the behaviors between activities are reflected by the independence
relations of those activities in a BPEL process. The independence similarity strives to
reward a large overlap of two independence relations.

Definition 7 (Independence Similarity — IS). Let X, Y be BPEL processes and ○X,
○Y the independence relations of their respective BACGs (BX, BY). Independence
Similarity is defined as:

(,) .X Y

X Y
sim B B

X Y

∩
=

∪

 

 

In the BPEL processes M and N, there are the independence relations for the other
pairs, except that those pairs with the partial order relations or mutual-exclusion
relations. This yields sim○(BM, BN) = 19/44 ≈ 0.432.

3.4 Aggregated Metric for BPEL Activity Constraint Graphs

Based on the elementary similarity measures defined above, we construct an aggre-
gated similarity metric as follows. Each elementary similarity translates into an
elementary metric, dB(BP , BQ) = 1 – simB(BP , BQ) for all B ∈ {→, >, ↓, +, ○}, as ex-
plained in Section 3.3. Then, we sum up these values and assign a weight that ac-
counts for the respective metric’s impact on the overall metric. We postulate B as the
universe of all possible BACGs. In practice this matches the BACGs of all processes
within a repository.

Definition 8 (BPEL Activity Constraint Graph Metric). L = (B, dB) is a metric
space of BACGs B, where the BACG metric dB : B×B → R is a metric, with h ∈{→, >,
↓, +, ○} and weighting factors wh ∈ R, 0 < wh < 1 such that ∑hwh = 1.

(,) 1 (,).B X Y h h X Yh
d B B w sim B B= − 

In order to apply to this aggregate metric for similarity search, it has to be proven that
it is indeed a metric as established in Definition 1. The process of proof is following:

Theorem 1. The weighted sum D(pm, pn) = ∑wh · dh(pm, pn) of elementary metrics dh is
a metric if ∀h ∈[1...n] : wh ∈R ∧ 0 < wh < 1, ∀pm, pn, pl ∈X, and dh(pm, pn) ∈R.

Proof. D(pm, pn) holds the properties symmetry, nonnegativity, identity, and triangle
inequality.

 Symmetry: dh(pm, pn) = dh(pn, pm) ∧∑hwh = 1 ∑wh · dh(pm, pn) = ∑wh · dh(pn,
pm)  D(pm, pn) = D(pn, pm).

 Nonnegativity: dh(pm, pn) ≥ 0 ∧ wh > 0  wh · dh(pm, pn) ≥ 0  ∑wh · dh(pm, pn)
≥ 0  D(pm, pn) ≥ 0.

 Identity: dh(pm, pm) = 0 ⇔ D(pm, pm) = 0; D(pm, pn) = 0 ⇔ ∑wh · dh(pm, pn) = 0 ∧ wh > 0 ⇔ ∑dh(pm, pn) = 0 ⇔ pm = pn.

 BPEL Similarity — A Metric Based on Activity Constraint Graphs 49

 Triangle Inequality: dh(pm, pn) ≤ dh(pm, pl) + dh(pn, pl) ∧ wh > 0  wh · dh(pm, pn)
≤ wh · dh(pm, pl) + wh · dh(pn, pl)  ∑wh · dh(pm, pn) ≤ ∑wh · dh(pm, pl) + ∑wh ·
dh(pn, pl)  D(pm, pn) ≤ D(pm, pl) + D(pn, pl).

4 Experiments

In this part, we present the experimental evaluation of our similarity measures and the
aggregated metric. We describe the setup of our experiments in Section 4.1 and
present the results of the experiments in Section 4.2. Finally, the threats of our
experiment are analyzed in Section 4.3.

4.1 Setup

In order to evaluate the appropriateness of the proposed similarity measures based on
BACGs and Jaccard coefficient in practice, our experiments relied on a collection of
BPEL processes. The collection comprised 80 processes borrowed and adapted from
the Oracle BPEL Process Manager Samples and they were tagged as the “document
processes”. We then randomly extracted 8 processes from this collection as the “query
processes” that have been undergone the modifications. The reason for modifying the
query processes was to study the effect of different types of variations in activity
constraints on the precision and recall of the proposed metrics.

We performed the experiments by applying the five elementary metrics to perform
a similarity search for each of the 8 query processes, i.e., each query process was
compared with each of the 80 document processes and the results were ranked from
highest to lowest similarity score. Then, we manually determined the relevance for
each of the 640 possible pairs. The similarity of each pairs was rated on a 1–7 Likert
scale [2, 21]. If a pair received a score of 5 or higher (“somewhat similar” to “very
similar”), we considered this pair to be relevant, which means that a query containing
the “query process” should return the “document process”. Then, the document
processes with meeting a score of 5 or higher were considered to be the relevant
processes. We had to establish that there was no bias in our relevance judgments,
since this rating is only done by ourselves. To this end, we presented a randomly ex-
tracted subset of 80 pairs to several BPEL experts from the Asian-Pacific region, and
requested them to rate the similarity of each pair on the same Likert scale. Finally, we
calculated the inter-rater dependency between our own judgment and those from the
experts using the Pearson correlation coefficient. The correlation which was very
strong (0.97 Pearson correlation coefficient), showed that our judgement was consis-
tent with the results from those experts. In addition, the similarity of activity labels is
quantified based on the string edit distance (SED) [4]. If this similarity degree ex-
ceeds a threshold, i.e., 0.8, we assume that two labels are a matching pair.

4.2 Evaluation

In this paper, we apply to the relation between recall and precision to evaluate the
accuracy and effectiveness of our approach. In the field of information retrieval,

50 J. Xing et al.

precision measures the ability that the non-relevant information is refused in retrieval
system. It is the fraction of retrieved documents that are relevant to the search [22]:

{ } { }
{ }

relevant documents retrieved documents
precision= .

retrieved documents

∩

Precision takes all retrieved documents into account, but it can also be evaluated at a
given cut-off rank, considering only the topmost results returned by a system, e.g., for
a query on a set of BPEL processes, precision is the number of correct results divided
by the number of all returned results. Recall measures the ability that the relevant
information is retrieved in a retrieval system. It is in the fraction of the documents that
are relevant to the query that are successfully retrieved [22]:

{ } { }
{ }

relevant documents retrieved documents
recall= .

relevant documents

∩

An example is that for a query on a set of BPEL processes, recall is the number of
correct results divided by the number of results that should have been returned. It is
trivial to achieve recall of 100% by returning all documents in response to any query.
Therefore, recall alone is not enough but one needs to measure the number of non-
relevant documents also by computing the precision. Actually, there is an
antidependence relation between recall and precision, i.e., if we increase the recall
value, the precision value will be reduced accordingly, and vice verse.

In the first experiment, we investigated the relation between precision and recall
for all metrics. Given one of six recall values in the interval between zero and one,
i.e., 0, 0.2, 0.4, 0.6, 0.8, 1.0, we can calculate the corresponding precision of each of
five elementary similarities based on a ranked list of the similarity degrees of all pairs
above. For each metric, we can obtain 8 corresponding precision values in a recall
value since there are 8 query processes in our experiment. Aggregating the results for
all queries using the arithmetic mean yields an average precision values for each re-
call value. Fig.6 (a) describes the precision-recall curve obtained with different me-
trics. We can find that the independence similarity and data dependence similarity do
not achieve the best precision values for all recall levels even though it yields good
overall results. This suggests that an aggregated similarity should be applied that
combines five elementary metrics in a weighted fashion as introduced in Section 3.4.

In the second experiment, the aggregated metrics based on BACGs is evaluated.
Fig.6 (b) shows the result as a precision-recall curve for two metrics. As the baseline
metric, behavioral profiles [18] from the field of process models are very similar to
our measures and work well. The authors assumed that the weights of all metrics are
equal as introduced in [9]. In order to better compare with them, we also applied an
aggregated metric that combined all elementary similarities with equal weight based
on the results obtained in the first experiment. We can realize that our metrics perform
better than the similarity assessment based on behavioral profiles from Fig.6 (b).
In particular, the similarity metric based on behavioral profiles declines more
obviously than the similarity metric based on BACGs in the interval (0.6, 0.8).

 BPEL Similarity — A Metric Based on Activity Constraint Graphs 51

The precision-recall curves also suggest that the differences between both aggregated
metrics are rather small for this collection. The relation between precision and recall is
an important index to evaluate the performance of the similarity retrieval, and it also can
intuitively reflect whether our approach can retrieve the relevant BPEL processes.
Based on the relation, we can obtain a compromise value for precision and recall.

As our similarity measures meet the triangle inequality, it is unnecessary to com-
pare each of the query processes with each of all document process in the search.
Before retrieving a BPEL repository, we should first do the analysis of cluster for it.
Our experiments used the clustering algorithm based on kernel methods [23] to obtain
the pivot and a covering radius. According to the clustering information, we can se-
lectively quantify the similarity between each of the query processes and those docu-
ment processes. This can greatly improve the retrieval efficiency of our approach.

4.3 Threats to Validity

As many instances of the BPEL process repository are obtained through manual ad-
justments, and this repository is somewhat simple in the dimension and structure in
our experiments, they tend to be favorable to our metrics. Furthermore, we construct
our experiments only containing 80 processes and 8 query processes. The sample is
little small. These may lead to the results of our experiments being biased. Then, one
major concern is the external validity of our approach, i.e., whether or not our ap-
proach is applicable to more other BPEL processes. With this consideration in mind,
our approach will be applied to more large-scale BPEL repository in the future.

A limitation of our experiments is that BPEL processes from the collection only
cover some basic structures and elements of WS-BPEL 2.0. However, some advanced
structures are not fully supported yet, e.g., <for each>, <link>, etc. Thus, our ap-
proach is now only applicable to a subset of BPEL processes. This implies a certain
threat to the representativeness.

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0

P
re

ci
si

on

Recall

 CDS
 DDS
 ADS
 MS

 IS

(a)

0.0 0.2 0.4 0.6 0.8 1.0

0.0

0.2

0.4

0.6

0.8

1.0

P
re

ci
si

on

Recall

 Behaviroal Profiles

 BACGs

(b)

Fig. 6. (a) Precision-recall curve for metrics based on five elementary similarities, (b) preci-
sion-recall curve for two aggregated metrics based on behavioral profiles and BACGs
respectively

52 J. Xing et al.

5 Discussion

In BACGs, only the partial order relations and mutual-exclusion relations can be
obtained based on the edges and their labels. In order to quantify the similarity
between two BPEL processes from the perspective of the universal set, we introduce
an independence relation in BACGs. Actually, it is disputable whether we must
introduce the relation. Furthermore, the rigorous definition of the independence
relation is missing. This needs future effort of our research group.

Our similarity measure is grounded on the activity constraints (partial order rela-
tion, mutual-exclusion relation and independence relation) between in BPEL
processes. Actually, these activity constraints have different influence for the similari-
ty between BPEL processes, e.g., if we change control dependence of the correspond-
ing activity of a BPEL process, all corresponding activity pairs with containing this
activity may be inconsistent for the two BPEL processes. However, data dependence
may only affect the corresponding activity pair. In the situation, we should consider
the appropriate weights of different kinds of activity constraints in the definition of
five elementary similarity measures. Nevertheless, this is not easy as the weights are
somewhat subjective and some domain knowledge also may be considered. Due to
calculate the similarity degrees between BPEL processes, this is a boring and heavy
job which may manually introduce some unnecessary errors. Thus, we need to im-
plement a proof-of-concept tool that can automatically calculate the similarity degree
between BPEL processes in the future work.

The similarity measure is a first attempt to define the similarity of BPEL processes
based on BACGs. However, we do not realized how the experts of business processes
valuate the similarity of BPEL processes and which kind of similarity measures they
perceive to be more appropriate. In the future, through the form of questionnaire, we
will present the appropriateness and effectiveness of our approach used an empirical
study based on statistical hypothesis testing.

6 Related Work

Existing work in the context of determining similarity of BPEL processes can be as-
signed to three categories: textual similarity, structural similarity, and behavioral
similarity (in particular of behavior described in process models) [2, 24].

Text similarity is based on a comparison of the labels that appear in BPEL
processes (activity labels etc.), using either syntactic or semantic similarity metrics, or
a combination of both. Many approaches have been proposed on determining the
similarity degree of labels [4, 25-28], e.g., signature matching [27] and specification
matching [28] compare two software components based on descriptions of compo-
nent, and the string edit distance (SED) [4] is a very appropriate measure in the syn-
tactic level. For the executable business process, the authors proposed that a published
process is matched with a required process when the inputs and outputs of the re-
quired process match the inputs and outputs of the published process in [29]. In this
paper, we adapt some concepts from this aspect for matching activity labels, and we
combine these approaches with the calculation of behavioral similarity.

 BPEL Similarity — A Metric Based on Activity Constraint Graphs 53

Structural similarity is based on the topology of the processes seen as graphs, pos-
sibly taking into account text similarity as well. The graph isomorphism [30, 31] and
the graph edit distance (GED) [24, 32] can be commonly used to measure the struc-
tural similarity. Unfortunately, these measures usually only examine edges and nodes
and cannot catch their syntactical issues. Then, Li et al. use high-level change opera-
tions to measure the distance between process models [33]. In [10], the problem of
measuring distance between process models is transformed into a graph matching
problem. However, two processes may be quite similar in terms of their structure and
the labels used, but their behavior may be quite different [6]. Those methods may lead
to being low accurate in a certain extent on determining similarity of those processes.

Therefore, the need to take into account the behavior of a process was underlined
by some researchers [2, 7-10, 34, 35]. Zha et al. presented a similarity measure based
on transition adjacency relations for workflow nets, but the computation of all transi-
tion adjacency relations may also be affected by state space explosion [34]. In order to
approximate the behavior of process models to assess their similarity, causal foot-
prints have been proposed that capture causal dependencies for activities by sets of
causal predecessors and successors for each activity [8]. The proposed similarity
measure was based on the notion of so-called “principal transition sequences”, which
aimed to provide an approximation of the essence of a process model in [7]. The pub-
lication [9] introduced a proper metric to quantify process model similarity based on
behavioral profiles. Whereas, at present, most of the behavioral similarity does not
meet the characteristics of a distance function or time complexity is too high, result-
ing in a low performance of the behavioral metrics. Furthermore, these measures from
the field of process model are not very appropriate in the level of executable BPEL
process, since they only regard their control flow but ignore the data information.

Based on activity constraints, we also studied consistency issues between business
processes [36-37]. There are three main different from BPEL similarity. First, they
do not quantify the scale of the overlap in terms of shared activities of two BPEL
processes. Second, in order to compare the set of possible activity pairs of both BPEL
processes, all parts that have been subject to projection (in either direction) have to be
discarded. Third, the existing measures are no metrics.

7 Conclusion and Future Work

In this paper, we introduced a proper metric to quantify behavioral similarity of BPEL
processes. This metric is built from five elementary similarity measures that are based
on BACGs and the Jaccard coefficient. To show the applicability of our approach in
practice, we apply our approach to analyze the similarity between the real-life BPEL
processes. Experiments, both with artificial and real-life BPEL processes, were
conducted to explore characteristics of the proposed similarity measure.

Our current work still has some limitations. In the future, we will try to address
these limitations to improve the applicability and effectiveness of our approach and
implement our approach in a prototype tool.

54 J. Xing et al.

Acknowledgements. This work is supported by the National Natural Science Founda-
tion of China (No. 61202003), the Specialized Research Fund for the Doctoral Pro-
gram of Higher Education (No. 20113219120021), the Major Research Project of
Jiangsu Province (No. BK2011022), and the State Key Laboratory of Software
Engineering (No. SKLSE2012-09-05).

References

1. WS-BPEL 2.0 Specification (2007),
http://docs.oasis-open.org/wsbpel/2.0/wsbpel-v2.0.pdf

2. Dijkman, R., Dumas, M., van Dongen, B., Käärik, R., Mendling, J.: Similarity of business
process models: Metrics and evaluation. Inf. Syst. 36(2), 498–516 (2011)

3. Becker, M., Laue, R.: A comparative survey of business process similarity measures.
Computer in Industry 63, 148–167 (2012)

4. Levenshtein, V.I.: Binary codes capable of correcting deletions, insertions, and reversals.
Soviet Physics Doklady 10(8), 707–710 (1966)

5. Grigori, D., Corrales, J.C., Bouzeghoub, M.: Ranking BPEL processes for service discov-
ery. IEEE Transactions on Computing Service 3(3), 178–192 (2010)

6. van der Aalst, W., de Medeiros, A.A., Weijters, A.: Process Equivalence: Comparing Two
Process Models Based on Observed Behavior. In: Dustdar, S., Fiadeiro, J.L., Sheth, A.P.
(eds.) BPM 2006. LNCS, vol. 4102, pp. 129–144. Springer, Heidelberg (2006)

7. Wang, J.M., He, T.F., Wen, L.J., Wu, N.H., ter Hofstede, A.H.M., Su, J.W.: A Behavioral
Similarity Measure between Labeled Petri Nets Based on Principal Transition Sequences.
In: Meersman, R., Dillon, T.S., Herrero, P. (eds.) OTM 2010. LNCS, vol. 6426, pp. 394–
401. Springer, Heidelberg (2010)

8. van Dongen, B., Dijkman, R., Mendling, J.: Measuring Similarity between Business
Process Models. In: Bellahsène, Z., Léonard, M. (eds.) CAiSE 2008. LNCS, vol. 5074, pp.
450–464. Springer, Heidelberg (2008)

9. Kunze, M., Weidlich, M., Weske, M.: Behavioral Similarity — A Proper Metric. In: Rin-
derle-Ma, S., Toumani, F., Wolf, K. (eds.) BPM 2011. LNCS, vol. 6896, pp. 166–181.
Springer, Heidelberg (2011)

10. Corrales, J.C., Grigori, D., Bouzeghoub, M.: BPEL Processes Matchmaking for Service
Discovery. In: Meersman, R., Tari, Z. (eds.) OTM 2006. LNCS, vol. 4275, pp. 237–254.
Springer, Heidelberg (2006)

11. Lipkus, A.: A Proof of the Triangle Inequality for the Tanimoto Distance. Journal of Ma-
thematical Chemistry 26, 263–265 (1999)

12. Wu, Y.P., Bao, W.D., Zhang, W.M.: Data Matching Method Based on Triangle Inequality
Theore. Journal of South China University of Technology 38(7), 33–38 (2010)

13. Chávez, E., Navarro, G., Baeza-Yates, R., Marroquín, J.L.: Searching in Metric Spaces.
ACM Comput. Surv. 33(3), 273–321 (2001)

14. Hjaltason, G.R., Samet, H.: Index-driven similarity search in metric spaces (Survey Ar-
ticle). ACM Trans. Database Syst. 28(4), 517–580 (2003)

15. Ferrante, J., Ottenstein, K.J., Warren, J.D.: The program dependence graph and its use in
optimization. TOPLAS 9(3), 319–349 (1987)

16. Song, W., Ma, X.X., Cheung, S.C., Hu, H., Yang, Q.L., Lü, J.: Refactoring and publishing
WS-BPEL processes to obtain more partners. In: ICWS 2011, pp. 129–136 (2011)

17. Song, W., Tang, J.H., Zhang, G.X., Ma, X.X.: Substitutability analysis of WS-BPEL se-
vices. China Science: Information Science 42(3), 264–279 (2012) (in Chinese)

 BPEL Similarity — A Metric Based on Activity Constraint Graphs 55

18. Weidlich, M., Mendling, J., Weske, M.: Efficient Consistency Measurement based on Be-
havioural Profiles of Process Models. IEEE Trans. Softw. Eng. (2011)

19. Nanda, M.G., Chandra, S., Sarkar, V.: Decentralizing execution of composite Web servic-
es. In: OOPSLA 2004, vol. 39(10), pp. 170–187 (2004)

20. Kǒnig, D., Lohmsnn, N., Moser, S.: Extending the compatibility notion for abstract WS-
BPEL processes. In: WWW 2008, pp. 785–794 (2008)

21. Likert scale, https://en.wikipedia.org/wiki/Likert_scale
22. Precision and Recall,

http://en.wikipedia.org/wiki/Precision_and_recall
23. Cooper, K.D., Harvey, T.J., Kennedy, K.: Iterative Data-flow Analysis. ACM (2002) (re-

visited)
24. Dijkman, R., Dumas, M., García-Bañuelos, L.: Graph Matching Algorithms for Business

Process Model Similarity Search. In: Dayal, U., Eder, J., Koehler, J., Reijers, H.A. (eds.)
BPM 2009. LNCS, vol. 5701, pp. 48–63. Springer, Heidelberg (2009)

25. Euzenat, J., Shvaiko, P.: Ontology matching. Springer, Heidelberg (2007)
26. Rahm, E., Bernstein, P.A.: A survey of approaches to automatic schema matching. VLDB

J. 10(4), 334–350 (2001)
27. Zaremski, A.M., Wing, J.M.: Signature matching: a tool for using software libraries. ACM

TOSEM 4(2), 146–170 (1995)
28. Zaremski, A.M., Wing, J.M.: Specification matching of software components. ACM

TOSEM 6(4), 333–369 (1997)
29. Paolucci, M., Kawamura, T., Payne, T.R., Sycara, K.: Semantic matching of Web services

capabilities. In: Horrocks, I., Hendler, J. (eds.) ISWC 2002. LNCS, vol. 2342, pp. 333–
347. Springer, Heidelberg (2002)

30. Babai, L., Erdoŝ, P., Selkow, S.M.: Random graph isomorphism. SIAM J. Comput. 9(3),
628–635 (1980)

31. Krissinel, E.B., Henrick, K.: Common subgraph isomorphism detection by back-tracking
search. Softw. Pract. Exper. 34(6), 591–607 (2004)

32. Bunke, H.: On a relation between graph edit distance and maximum common subgraph.
Pattern Recognition Letters 18(8), 689–694 (1997)

33. Li, C., Reichert, M., Wombacher, A.: On Measuring Process Model Similarity Based on
High-Level Change Operations. In: Li, Q., Spaccapietra, S., Yu, E., Olivé, A. (eds.) ER
2008. LNCS, vol. 5231, pp. 248–264. Springer, Heidelberg (2008)

34. Zha, H., Wang, J., Wen, L., Wang, C., Sun, J.: A workflow net similarity measure based
on transition adjacency relations. Computers in Industry 61, 463–471 (2010)

35. Huang, Z.C., Huai, J.P., Liu, X.D., Li, X., Zhu, J.J.: Automatic Service Discovery Frame-
work Based on Business Process Similarity. J. of Sof. 23(3), 489–503 (2012)

36. Zhang, X.W., Song, W., Xing, J.C., Yang, Q.L., Wang, H.D., Zhang, W.J.: Behavioral
Consistency Measurement and Analysis of WS-BPEL Processes. In: Wang, J., Xiong, H.,
Ishikawa, Y., Xu, J., Zhou, J. (eds.) WAIM 2013. LNCS, vol. 7923, pp. 619–630. Sprin-
ger, Heidelberg (2013)

37. Song, W., Zhang, W.J., Zhang, G.X., Ding, J.H., Zhang, X.W.: Quantifying Consistency
between Conceptual and Executable Business Processes. In: SCC 2013, pp. 9–16 (2013)

M. Song, M.T. Wynn, and J. Liu (Eds.): AP-BPM 2013, LNBIP 159, pp. 56–66, 2013.

Process Model Storage Solutions: Proposition
and Evaluation

Jie Li1, Lijie Wen1, Jianmin Wang1, and Zhiqiang Yan1,2

1 School of Software, Tsinghua University, Beijing 100084, P.R. China
2 School of Information, Capital University of Economics and Business, 100070, P.R. China

nju_carol@hotmail.com, wenlj00@mails.thu.edu.cn,
jimwang@tsinghua.edu.cn, zhiqiang.yan.1983@gmail.com

Abstract. With the development of Business Process Management (BPM)
technology, more and more organizations use process models to describe their
business processes. These process models are modified frequently for higher
management efficiency and effectiveness. This causes each process models
have multiple versions. Since those models focus on the same business beha-
vior, they are similar in structure. Based on process model similarity, model sto-
rage can be improved. To store these models efficiently, five process model
storage solutions are presented. Experiments are designed to compare those
solutions from time and space aspects.

Keywords: Petri Nets, process model, similarity measure, model storage.

1 Introduction

With fast development of BPM technology, it is common for large enterprises to
maintain thousands of process models. To handle variable needs of clients and im-
prove the quality of business processes continuously, these process models change
frequently. Therefore, different versions of the same process model appear. Those
model versions help decision makers analyze the change rules of business process,
which provide a guideline for future change and improvement. They are important
treasures of the organizations.

Generally, different versions of the same model describe the same business beha-
vior, which makes them similar in structure. A process model may be changed by
different stakeholders. By saving the edit operations happened during the change
process, users can easily trace the change history. Meanwhile, it can also reduce the
storage space taken by process models. This is useful in some situations. For example,
when the cloud workflow engine is working, thousands of process models are stored
in its memory. Compress the model storage space can reduce memory usage and help
the engine serve more clients at the same time. This idea is similar with SVN, which
shows a great performance in the version control of source codes. In process reposito-
ries, version management needs to be specialized in order to meet process specific
requirements [1]. However, as far as we know, no mature solution of this idea is
presented to manage the storage of process models so far.

The original version of this chapter was revised: The copyright line was incorrect. This has been
corrected. The Erratum to this chapter is available at DOI: 10.1007/978-3-319-02922-1 10

© Springer-Verlag Berlin Heidelberg 2013

http://dx.doi.org/10.1007/978-3-319-02922-1_10

 Process Model Storage Solutions: Proposition and Evaluation 57

Based on above requirements, we come up with five process model storage solu-
tions. Experiments are run with both industrial and artificial process model collections
to evaluate these storage solutions.

The remainder of this paper is organized as follows. Section 2 proposes five model
storage solutions. After that, experiment results and analysis are presented in
Section 3. Section 4 summarizes related work. We conclude with a summary and
outlook in Section 5.

2 Storage Solutions of Process Model

Nowadays, the amount of business process models rapidly grows and process models
of the same business behavior are similar in structure. Based on this reality, five
different process model storage solutions are proposed in this section.

The first storage solution, named Direct Storage Solution (DSS) simply keeps
every model version on the disk, while the Log Storage Solution (LSS) only saves the
initial model and change logs, which records all edit operations happened in
the changing process. Interval Storage Solution (ISS) makes a compromise between
the former two solutions. It stores model version ki where i represents the specified
interval and k is zero or a positive integer. Based on the concept of reference model in
model variants management, the Nearest Model Storage Solution (NMSS) saves the
nearest model version, which has the highest similarity with all other versions.
Finally, the fifth solution-Interval Nearest Model Storage Solution (INMSS) is the
combination of ISS and NMSS.

Suppose the initial model version is 0 and the newest model version is n .
Five process model storage solutions are presented in details below.

2.1 Direct Storage Solution (DSS)

The easiest way to save process models is keeping every version of the model. That
is, directly storing all model version files (0, 1, 2, …, n) on the disk. The biggest ad-
vantage of DSS is the shortest response time. When a user asks for one model version,
the model file can be directly returned, without any additional computing time. How-
ever, with continuous change of the model, storing all versions of model will take
more and more disk space, which is a big challenge for model management.

2.2 Log Storage Solution (LSS)

Similar storage problem occurred in the storage of programming source code. Version
control system perfectly solved this problem. The core idea of version control system
is change management, which can be brought to process model storage. If all the edit
operations happened in the changing process are known beforehand, we can easily
derive any model version from the initial model and that is the LSS: storing the initial
model version file and a change log. Every change of the model can be recorded
in the change log. When a user request comes, change log will be loaded and the

58 J. Li et al.

recorded edit operations will be performed on the initial model until we get the target
version. Compared with DSS, LSS only keeps one model file and one log file on the
disk, which takes little disk space and makes it easy for long-term backup. While LSS
shows a great performance on space, it may meet with some problems with response
time. When the version number grows up, it will take more edit operations to get the
newest model version, which means more additional computing time and longer
response time. That may lead to bad user experience in the end.

2.3 Interval Storage Solution (ISS)

From the above, we know that DSS needs large disk spaces and LSS costs much re-
sponse time. ISS makes a compromise between those two solutions: storing several
model versions and a change log. Specifically, let the version interval be i, then mod-
el version ki, k ൌ 0,1,2,3, … will be kept on the disk. Meanwhile, the change log
records the edit operations needed for transforming model ki to model ki ൅ 1, ki ൅2, … , kሺi ൅ 1ሻ െ 1. Suppose the user needs to get model version x, if x ൌ ki, directly
return the model file, otherwise find the maximum value of k which satisfies ki ൏ ,ݔ
read the change log and perform edit operations on model ki until we get model x. In
this way, it takes at most i െ 1 times of changes to get model x, which provides an
acceptable response time. Value of interval i is important for ISS, we can get a good
balance between time and space by adjusting the value of i. If i ൌ 1, ISS is the same
with DSS; if i ൐ ݊, ISS is the same with LSS. In real world applications, we should
confirm the cost of time and space at first, and then find the best value of i, which
makes the total cost minimal.

2.4 Nearest Model Storage Solution (NMSS)

In process-aware information system, there are a large number of process model va-
riants which are derived from the same process model, but slightly differ in structure.
As a response to this situation, Li et al. come up with a solution. That is, discovering a
reference model out of which the variants can be configured with minimum efforts
[2]. This idea can be used to improve LSS. Now not only the initial model and change
log are saved on the disk, but also a nearest model. Here nearest model is the model
version which has the minimum distance to all other model versions. The distance can
be measured by the process model similarity metric introduced in [3], which applies
graph edit distance to process model and gives a clear description of the difficulty for
transforming one model to another. Every time when the version grows to a threshold,
the nearest model will be recomputed and saved on the disk. Suppose the nearest
model version is r and the user wants to get model x. If x ൌ r, directly return model r. If x ൐ then read the change log, perform x ,ݎ െ r times of changes on model r
until we get model x. Otherwise if x ൏ .perform x times of change on model 0 ,ݎ
The NMSS performs at most max ሼx െ r, xሽ times of change. Therefore it takes less
additional computing time than LSS. Meanwhile, it only takes a little more spaces to
store the nearest model.

 Process Model Storage Solutions: Proposition and Evaluation 59

2.5 Interval Nearest Model Storage Solution (INMSS)

In NMSS, the response time can be reduced only when the model version is bigger
than nearest model version. To solve this problem, we bring forward INMSS by com-
bining ISS and NMSS. That is, let the interval be i, compute a nearest model for
every i model versions and save them on the disk together with the change log. To
make it clearer, suppose in model set ሼki, ki ൅ 1, ki ൅ 2, … , ሺk ൅ 1ሻi െ 1ሽ and k ൌ 0,1,2,3, ,଴ݎ ௞ is the nearest model to other models, then modelݎ ,… ,ଵݎ ,ଶݎ … will
be stored on the disk. By adding background computation work, INMSS takes nearly
the same disk space with ISS, but it can further reduce the response time. Compared
with NMSS, INMSS cuts down the maximum times of change in every user request to i െ 1 by taking more disk space. Moreover, consider the background computation,
when the model version number increase to some degree, NMSS has to compute the
nearest model for all model versions again, which costs a lot of time. However,
INMSS only needs to get the nearest model for i new models.

Above all, we introduce five different process model storage solutions. Every solu-
tion has its advantages and disadvantages. In real world applications, both time and
space requirements have to be carefully considered before we determine which solution
to be used. In fact, it’s also a good idea to use two or more solutions together. For ex-
ample, when we start to save the process models, use DSS to store all model versions on
disk. After the amount of models increases to a threshold, we transform to ISS. What we
need to do is to compute the edit operations between models using process model simi-
larity metrics [3], write the edit operations into change log and then delete models ki ൅ 1, ki ൅ 2, … , kሺi ൅ 1ሻ െ 1, k ൌ 0,1,2,3, … from the disk to save spaces. In next
section, we will analyze and evaluate the five storage solutions by experiments.

3 Experiments

In this section, we use experiments to analyze and compare the five storage solutions
on both industrial and artificial model collections. Experiment results are evaluated
from the viewpoint of response time and disk spaces. Specifically, for every model
data set, we use each storage solution to obtain all models in the set. Meanwhile, the
total response time and disk space taken by the storage solution are recorded.

During the experiment process, we used Greedy Algorithm [3] to measure the simi-
larity between process models. The process models are all represented by Petri net.
We experimented with different values of the parameters and found the optimal set-
ting among those we tested is: wskipn=1, wskipe=1, wsubn=3 and ledcutoff=0.5
(these parameters are presented in [3], where wskipn represents the weight for
skipped nodes; wskipe represents the weight for skipped edges; wsubn represents the
weight of substituted nodes). Every experiment process is repeated 5 times and
average values are presented.

All experiments are completed on one notebook computer. This computer uses
Intel(R) Core(TM) i3 CPU M350 @ 2.27GHz and 2.00GB memory. The experiment
program is implemented in JAVA. We run it on 64-bit Windows 7 system with JDK
1.6.0, and the memory configuration of JVM is 512MB.

60 J. Li et al.

3.1 Industrial Data Set

First we make an evaluation of the storage solutions on industrial data sets. The data
sets consist of 102 process models from Dongfang Boiler Group Corporation. Those
process models belong to five business modules: cost, finance, material, production
and sale. Process models from the same business module are similar in structure. Ac-
cording to their business module, we divided them into five data sets, as shown in
Table 1.

Table 1. Basic information of industrial data sets

Business module Model number Avg. transitions Avg. places Avg. arcs
cost (C) 18 8.78 8.94 18.72

finance (F) 29 8.38 7.76 16.66
material (M) 37 11.08 10.30 21.51

production (P) 12 9.42 8.83 19.08
sale (S) 6 7.83 6.83 14.33

We apply five storage solutions to the industrial data sets. In ISS and INMSS, the
interval value is set to 3. The experiment results are shown in Fig. 1.

Fig. 1. Comparison of storage solutions on industrial data sets from time and space aspects

The left graph of Fig. 1 compares the storage solutions from the time aspect. The
horizontal axis represents five business modules, while the vertical axis represents the
average response time of the storage solution on each business module and the unit is
millisecond. The average response time for one version is obtained by dividing the
total response time by the number of model versions. From the graph, we can see that
LSS takes the highest response time on every data set, while DSS takes the lowest.
ISS, NMSS and INMSS are in the middle.

The right graph of Fig. 1 compares the storage solutions from the space aspect. The
horizontal axis represents five business modules and the vertical axis represents the
disk space taken by the storage solution. The unit of disk spaces is kilobyte. As we
can see, DSS takes the largest disk space on every data set. Disk space taken by ISS
and INMSS is much smaller, while LSS and NMSS take the smallest spaces.

 Process Model Storage Solutions: Proposition and Evaluation 61

3.2 Artificial Data Set

We also run the experiment on artificial data sets. In order to simulate real storage
situation of process models, we use the model generation function of BeehiveZ plat-
form [4] to generate 3 initial Petri net models, which are different in size. Their basic
information is given in Table 2.

Table 2. Basic information of initial models

Model
number

Transition
number

Place
number

Arc
number

Model size
(byte)

1 46 14 92 66,819
2 65 32 142 101,908
3 104 46 216 157,634

When the size of model is small, the model loading time will be tiny. This may
bring some deviations to the experiment statistics. Therefore we select 3 relatively
large process models, as the initial models.

In order to get different model versions based on the initial models, we develop a
randomly model editing program, which accepts a model as input and randomly per-
forms edit operations on the model. In order to keep every model sound, we follow
the reduction rules [5] to define the random edit operations. The new model version
generated by the program will be stored and the edit operation will be written into the
change log. Note that in the experiment, only the total number of edit operations is
specified, more detailed settings are all randomly determined, for example, the num-
ber of each edit operation type and the exact edited object (transition, place or arc).
After running randomly editing program on each initial model, 5 different datasets are
generated, as shown in Table 3.

Table 3. Model storage datasets

Dataset
number

Initial model
number

Transition
edit operations

Place edit
operations

Model
number

1 1 7 3 10
2 1 21 29 50
3 1 60 40 100
4 2 278 222 500
5 3 565 435 1000

In Table 3, the transition/place edit operation column shows the total number of
transition/place insertion, transition/place deletion and transition/place substitution
operations happened in the editing process. About the random edit process, there are
two things need to be noted. First, when a transition/place is added or deleted, the arcs
directly connecting to it are added or deleted as well. Therefore we do not define arc
insertion/deletion operation separately in the random editing process, but arc edit

62 J. Li et al.

operations actually happen together with the transition/place edit operations. Second,
every transition/place label is unique before and after the substitution operation.

Table 4, Table 5 and Fig. 2 show the experiment results.

Table 4. Average response time for one model on model storage data sets (unit: ms)

 Dataset number
Storage solution

1 2 3 4 5

DSS 12 10 13 32 107
LSS 14 13 17 79 293
ISS 14 11 15 43 120

NMSS 14 12 16 60 210
INMSS 14 11 15 42 119

Table 5. Disk space taken by storage solutions on model storage data sets (unit: byte)

 Dataset number

Storage solution

1 2 3 4 5

DSS 671,923 3,344,437 8,966,260 86,453,660 353,334,297
LSS 68,521 77,437 89,244 211,168 391,280
ISS 249,450 726,457 1,880,262 8,929,807 35,898,405

NMSS 123,965 143,827 191,019 416,234 815,046
INMSS 307,156 793,108 1,970,492 9,138,662 36,335,215

Fig. 2 Comparison of storage solutions on artificial data sets from time and space aspects

Let’s first look at result of DSS, which stores the full process model versions. From
the viewpoint of response time, since dataset 1, 2 and 3 are based on the same initial
model, after random editing, their model versions are similar in size. Meanwhile,
response time of DSS is mainly determined by the model loading time. Therefore we
can see from Table 4 that the average response time is nearly the same for dataset 1, 2
and 3. Compared with dataset 1, 2 and 3, the initial model of dataset 4 and 5 are larg-
er, which makes the average response time longer. Combine Table 2 and Table 5, we
can find that the disk space taken by DSS nearly shows a linear growth with the
number of model versions.

 Process Model Storage Solutions: Proposition and Evaluation 63

LSS only stores the initial model and change log. For every model version, the
change log records the basic edit operations needed for changing this version to the
next version.

Observe Table 2 and Table 5, we can see that disk space of LSS is mainly deter-
mined by the size of initial model. Space taken by the change log is small and grows
slowly. However, average response time grows very fast with the increase of model
versions. One reason is that the growth of change log leads to more log loading time.
Another reason is the longer additional computing time. In order to get a higher model
version, more edit operations need to be performed. When there are a huge number of
model versions or multiple user requests in parallel, the response time may become
unacceptable.

In Table 5, for dataset 1, LSS takes one tenth disk space of DSS. Also for dataset 5,
DSS takes 900 times more space than LSS. Meanwhile, for dataset 5, the average
response time of LSS is less than three times of DSS. This means LSS saves the disk
space effectively when the model version grows. If the number of model versions is
not huge or the requirement of response time is not high, LSS is a good choice.

In ISS, the model version ki, k ൌ 0,1,2,3, … and change log are stored. Here the
change log is a little different with the change log in LSS. Now the change log has no
need to record the edit operations for growing from model version ki െ 1 to ki. In
Table 4 and Table 5, the interval value is 3 for data set 1, 5 for data set 2 and 3, 10 for
data set 4 and 5.

From Table 5, we can see that the disk space taken by DSS takes is i times as
much as ISS. At the same time, the response time of ISS doesn’t get much longer. ISS
obtains fast response at the expense of some disk space. It shows a good balance
between time and space.

The nearest model has to be computed before we run NMSS. We get the nearest
model of every dataset using the similarity measure algorithm stated in Section 2.
NMSS stores the initial model, nearest model and change log. The size of initial mod-
el and nearest model determines the total disk space. Therefore it doesn’t take much
more space than LSS. However, compared with LSS, we can see that NMSS signifi-
cantly reduce the average response time using the nearest model on dataset 4 and 5.

INMSS keeps the nearest models for every i model versions and change log on
disk. Like NMSS, the nearest models need to be computed by similarity measure
algorithm. Value of i is the same with the settings in ISS. From Table 5, we can see
that ISS and INMSS take nearly the same disk space. INMSS slightly reduces the
response time, but not much.

Above all, we introduce the experiments of all storage solutions. From the time as-
pect, as shown in the left graph of Fig. 2, LSS has the fastest growth of response time,
NMSS is in the middle, DSS, ISS and INMSS are similar and they are all slow in
growth. We all know that the response time taken by DSS is mainly determined by
the model size. Therefore from the viewpoint of time, DSS, ISS and INMSS are the
best choices. The result is similar with former experiment on artificial data sets.

From the space aspect, as we can see in the right graph of Fig. 2 (Note that we
make a logarithm based on 10 for the vertical axis in order to make it clearer), with
the increase of model version number, disk space taken by DSS shows the fastest

64 J. Li et al.

growth. Growth rates of ISS and INMSS are nearly the same but slower than DSS.
We find LSS and NMSS are the slowest in disk space growth. Therefore from the
viewpoint of space, LSS and NMSS are the best choices. The result is also similar
with former experiment on artificial data sets.

To summarize the experiment results, take time and space together into considera-
tion, among five storage solutions, ISS and INMSS show better performance. Since
INMSS needs additional computation for nearest models, ISS should be the best one.
In real world application, we should carefully choose the storage solution by
computing the cost of time and space.

4 Related Work

To the best of our knowledge, two groups of researchers worked on version manage-
ment of process models [6,7]. Ekanayake et al. propose a version control method in
the process repository based on fragment [6]. Since process models in repository have
duplicate fragments, by saving the process fragments instead of full process model
versions, the repository size can be reduced. Our work is also based on the structural
similarity between process models, but we store the change operations, which makes
the space usage even smaller and makes it easier to check the change history. Zhao et
al. propose a version preserving directed graph (VPG) [8], which is rather complex,
since a VPG maintains information of all versions for a process models. It does not
mention the storage problem also does not provide an evaluation with process model
collections.

Other than that, Li et al. propose that a reference model can be found by mining al-
gorithm [2]. Based on the reference model, user can get all model variations with
minimum efforts. NMSS and INMSS also need to find the nearest model. However,
Li et al. use the minimum number of edit operations to measure the distance between
process models while we compute the similarity for different edit operations separate-
ly. Also, Li et al. focus on process model mining, while we pay attention to the
storage of process model.

Another related topic is process similarity search. Many activities in business
process management need to compute the similarity between two process models, for
example process retrieval [9,10], process mining, process discovery and process inte-
gration [11]. Currently, the similarity of process models can be measured on the basis
of three aspects: label [12], structure [7,12,13] and behavior [14,15]. The edit distance
algorithm stated in this paper is one of the similarity measures based on structure. As
an important method for measuring graph similarity, graph edit distance is widely
applied in pattern recognition and computer vision field. There are many related re-
search on this problem [16]. Dijkman applies graph edit distance to the similarity
search of business process model and comes up with four heuristic algorithms [3].

In this paper, we use one of the algorithms: greedy algorithm to measure the structural
similarity between Petri nets.

 Process Model Storage Solutions: Proposition and Evaluation 65

5 Summary and Outlook

Nowadays, business process models are continually evolving. Based on this reality,
this paper comes up with five model storage solutions and uses experiments to make
comparisons. Advantages and disadvantages of those storage solutions are given,
which is valuable for related research in business process model management.

In this paper, we use greedy algorithm to compute the edit distance, which means
we may not get the minimum distance between models. The balance between preci-
sion and time complexity should be further explored in the future work. At the same
time, we are considering to integrate ISS to current open-source code version control
system and extend it to real applications.

Acknowledgements. This work is supported by the National Natural Science Founda-
tion of China (No. 61003099), the National High-Tech. R&D Program of China (No.
2012AA040904), and the Ministry of Education and China Mobile Research
Foundation (No. MCM20123011).

References

1. Yan, Z., Dijkman, R., Grefen, P.: Business process model repositories–Framework and
survey. Information and Software Technology 54(4), 380–395 (2012)

2. Li, C., Reichert, M., Wombacher, A.: Mining Business Process Variants: Challenges, Sce-
narios, Algorithms. Data & Knowledge Engineering 70(5), 409–434 (2011)

3. Dijkman, R.M., Dumas, M., García-bañuelos, L.: Graph Matching Algorithms for Busi-
ness Process Model Similarity Search. In: Dayal, U., Eder, J., Koehler, J., Reijers, H.A.
(eds.) BPM 2009. LNCS, vol. 5701, pp. 48–63. Springer, Heidelberg (2009)

4. Wu, N.H., Jin, T., Zha, H.P., He, T.F., Wen, L.J., Wang, J.M.: BeehiveZ: An Open
Framework for Business Process Model Management. Journal of Computer Research and
Development 47(z1) (2010)

5. Murata, T.: Petri nets: Properties, analysis and applications. Proceedings of the
IEEE 77(4), 541–580 (1989)

6. Ekanayake, C.C., La Rosa, M., Ter Hofstede, A.H., Fauvet, M.C.: Fragment-based version
management for repositories of business process models. In: Meersman, R., Dillon, T.,
Herrero, P., Kumar, A., Reichert, M., Qing, L., Ooi, B.-C., Damiani, E., Schmidt, D.C.,
White, J., Hauswirth, M., Hitzler, P., Mohania, M. (eds.) OTM 2011, Part I. LNCS,
vol. 7044, pp. 20–37. Springer, Heidelberg (2011)

7. Yan, Z., Dijkman, R., Grefen, P.: Fast Business Process Similarity Search. Distributed and
Parallel Databases 30(2), 105–144 (2012)

8. Zhao, X., Liu, C.: Version management in the business process change context. In: Alon-
so, G., Dadam, P., Rosemann, M. (eds.) BPM 2007. LNCS, vol. 4714, pp. 198–213. Sprin-
ger, Heidelberg (2007)

9. Jin, T., Wang, J., Wen, L.: Efficient retrieval of similar workflow models based on struc-
ture. In: Meersman, R., Dillon, T., Herrero, P., Kumar, A., Reichert, M., Qing, L., Ooi, B.-
C., Damiani, E., Schmidt, D.C., White, J., Hauswirth, M., Hitzler, P., Mohania, M. (eds.)
OTM 2011, Part I. LNCS, vol. 7044, pp. 56–63. Springer, Heidelberg (2011)

66 J. Li et al.

10. Jin, T., Wang, J., Wen, L.: Efficient retrieval of similar workflow models based on beha-
vior. In: Sheng, Q.Z., Wang, G., Jensen, C.S., Xu, G. (eds.) APWeb 2012. LNCS,
vol. 7235, pp. 677–684. Springer, Heidelberg (2012)

11. Bae, J., Liu, L., Caverlee, J., Zhang, L.J., Bae, H.: Development of distance measures for
process mining, discovery and integration. Int. J. Web Service Res. 4(4), 1–17 (2007)

12. Dijkman, R., Dumas, M., García-Banñuelos, L., Käärik, R.: Aligning business process
models. In: Proc. of EDOC 2009, Auckland, New Zealand (September 2009)

13. Messmer, B.: Efficient Graph Matching Algorithms for Preprocessed Model Graphs. PhD
thesis, University of Bern, Switzerland (1995)

14. Zha, H., Wang, J.M., Wen, L.J., Wang, C.K., Sun, J.G.: A workflow net similarity meas-
ure based on transition adjacency relations. Computers in Industry 61(5) (2010)

15. Wang, J.M., He, T.F., Wen, L.J., Wu, N.H., Ter Hofstede, A.H., Su, J.: A behavioral simi-
larity measure between labeled petri nets based on principal transition sequences. In:
Meersman, R., Dillon, T.S., Herrero, P. (eds.) OTM 2010. LNCS, vol. 6426, pp. 394–401.
Springer, Heidelberg (2010)

16. Gao, X.B., Xiao, B., Tao, D.C., Li, X.L.: A survey of graph edit distance. Pattern Anal.
Appl. (PAA) 13(1), 113–129 (2010)

M. Song, M.T. Wynn, and J. Liu (Eds.): AP-BPM 2013, LNBIP 159, pp. 67–80, 2013.

Clustering and Operation Analysis for Assembly Blocks
Using Process Mining in Shipbuilding Industry

Dongha Lee1, Jaehun Park2, Iq Reviessay Pulshashi2, and Hyerim Bae2,*

1 Central R&D Institute,
Daewoo Shipbuilding & Marine Engineering Co., Ltd.,

1, Aju-dong, Geoje-si, Gyeongsangnam-do 656-714, Korea
dongha@dsme.co.kr

2 Department of Industrial Engineering,
Pusan National University,

Busandaehak-ro 63 Beon-gil, Geumjeong, Busan 609-735, Korea
{pjh3479,pulshashi,hrbae}@pusan.ac.kr

Abstract. A block assembly process in the shipbuilding industry consists of
many work stages. Block assembly involves many workers in many shops.
Each assembly block, which is a part of a ship, has a different structure
requiring specific work processes. Therefore, in order to better understand such
real processes, an information system for monitoring of block position has been
developed. Recently, the necessity of using data accumulated in information
systems has become greater. This paper proposes a new, clustering and
operation analysis method for assembly blocks based on process mining
techniques suitable for the shipbuilding industry. The approach consists of four
steps: 1) trace clustering from the task perspective, 2) trace clustering from the
work shop perspective, 3) definition of new clusters considering task and work
shop simultaneously, and 4) comparison of new clusters with other clusters
from the process perspective. The output of clustering and operation analysis
can be used for production planning purposes such as resource allocation and
operation scheduling for assembly blocks. The effectiveness of the proposed
method was verified in a case study using real event logs generated from the
Block Assembly Monitoring System (BAMS), an information system.

Keywords: Shipbuilding, block assembly, process mining, trace clustering,
process model.

1 Introduction

Generally, a shipbuilding process consists of many operations including block
division, cutting/bending, block assembly, outfitting, painting, and erection. Block
division, the initial operation in the shipbuilding process, entails division of the
planned ship into hundreds of properly sized blocks. Each block is assembled in an
assembly shop, after which it undergoes outfitting and painting operations. In the final

* Corresponding author.

The original version of this chapter was revised: The copyright line was incorrect. This has been
corrected. The Erratum to this chapter is available at DOI: 10.1007/978-3-319-02922-1 10

Springer-Verlag Berlin Heidelberg 2013©

http://dx.doi.org/10.1007/978-3-319-02922-1_10

68 D. Lee et al.

operation, the structure is erected as a ship in a pre-erection area or on the main dock.
Each assembly block, having a unique structure and requiring different work
processes, consists of many work stages and involves many workers. Not
surprisingly, understanding and managing all of the particular aspects of real shipyard
processes is a great challenge. In fact, the production scheduler’s resource allocation
and operation scheduling are the top priorities of the shipbuilding industry.

This paper focuses on understanding the actual operations of block assembly using
log data generated by a monitoring system. By clustering blocks based on the
characteristics of the operations those blocks undergo, we can better understand block
assembly operations and, on that basis, formulate better production planning
guidelines. Per cluster, a production scheduler can more easily and effectively make
plans for resource allocation and scheduling. This paper proposes a new, clustering
and operation analysis method for assembly blocks using process mining techniques.
This paper is organized as follows. Section 2 provides a brief overview of process
mining and the related research. Section 3 introduces the new approach for clustering
and operation analysis of assembly blocks. Section 4 discusses a case study according
to which all of the important principles of the new method are effectively explained.
Section 5 summarizes our work and draws conclusions.

2 Process Mining and Related Research

Process mining is a technique for extracting process models from execution logs. It
aims at improving business processes by providing techniques and tools for
discovering processes and managing data as well as organizational and social
structures from event logs; the basic idea of process mining, in other words, is to
diagnose business processes by mining event logs for knowledge.

Process mining has three different perspectives: (1) the process perspective, (2) the
organizational perspective, and (3) the case perspective. The process perspective
focuses on the control-flow, that is, the precedence relations of activities. The goal of
mining from this perspective is to find a good characterization of all possible paths.
The organizational perspective focuses on the originator field, or in other words, on
which performers are involved and how they are related. The goal is to either
structure the organization by classifying people in terms of roles and organizational
units or to show the relations between individual performers. The case perspective
focuses on the properties of cases. A case can be characterized by its path in the
process or by the originators working on it. A case also can be characterized by the
values of the corresponding data elements [1]. In this paper, these three different
perspectives are considered in our step-by-step analysis of the characteristics of block
assembly operations.

The main emphasis of process mining research has been the extraction of process
models only from event logs, which approach has been applied mainly in the

 Clustering and Operation Analysis for Assembly Blocks 69

healthcare and service fields. Recently, the application has been extended to other
fields [2,6]. In the shipbuilding industry, several attempts have been made to find the
processes of block movement. Lee et al.[3] used a data mining technique to cluster
blocks, and then analyzed process models independently by group. Lee and Bae[4]
derived an analysis framework that begins with the understanding of the entire
process and ends with the detection of exceptional processes, both of which methods
are based on process mining techniques. However, as far as we know, there has been
no study on finding the processes of block assembly operations. This paper deals with
clustering and operation analysis of assembly blocks, the issues of which differ from
those of block movement. Assembly blocks, which represent parts of a ship, all have
unique structures and operations, and so production schedulers, in consideration of
resource constraints, have to plan separately for each block. This is to say that in order
to maximize resource utilization, schedulers allocate resources and determine working
times according to the specific characteristics of respective assembly blocks.
Production schedulers keep the groups of assembly blocks to give same processing
time and to allocate work shop. In this paper, we mention the group as plan cluster in
following sections. Plan clusters have been determined, case by case, from
experience. This paper focuses on the clustering of assembly blocks and the analysis
of those operations based on the actual data from a monitoring system.

3 Proposed Approach

The clustering and operation analysis method proposed in this paper consists of the
four steps shown in Fig. 1. The first step is trace clustering from the task perspective.
Here, the task is the characteristics of work types to be assembled, and the output is a
cluster of assembly blocks that share similar work types. This is called the Task
Cluster (TC). The second step is trace clustering from the work shop perspective.
Here, a cluster of assembly blocks sharing similar work shops, the Shop Cluster (SC),
is obtained. The third step is the definition of new clusters using TC/SC matrix. As
the clusters are determined for the same analysis dataset two times respectively, all
assembly blocks are located in the TC/SC matrix. Cells intersected by TC and SC are
defined by new clusters (NC) when there are blocks in the intersected cell. The fourth
step is the comparison of new clusters with other clusters from the process
perspective. Here, a process model is discovered for each cluster, and additional
characteristics are compared among the clusters. Through the proposed approach, we
can obtain clusters of assembly blocks in consideration of the task and work shop, and
can analyze the operation characteristics per cluster. Each step is analyzed in greater
detail in the following case study report.

70 D. Lee et al.

Fig. 1. Proposed analysis flow

4 Case Study

In this case study, we used two projects’ event logs exported from a Block Assembly
Monitoring System (BAMS). The data included 135 blocks (i.e., process instances)
excepting outsourced blocks. In the data pre-processing step, block data that were not
manufactured until final assembly step were removed, and meaningless work stages
also were removed at the domain expert’s discretion.

4.1 Determination of Analysis Data

In the analysis of block assembly operations, three work stages are considered: sub
assembly, unit assembly, and grand assembly. Unit assembly is further classified into tree
types: small, curved, and large. Thus, five types are considered and expressed in the
process model: Sub Assembly (Sub_Assy.), Unit Assembly of Small Type
(Unit_Assy.(S)), Unit Assembly of Curved Type (Unit_Assy.(C)), Unit Assembly of

 Clustering and Operation Analysis for Assembly Blocks 71

Large Type (Unit_Assy.(L)), and Grand Assembly (Grand_Assy.). However, we also use
the work stage codes, because they provide more accurate information. For example,
although M1 and M9 both are unit assemblies of the small type, the work level and
characteristics are different. Table 1 shows the event log of an assembly block, and Fig. 2
illustrates the assembly structure of the block. In the figure, the five main work stages are
indicated by the shaded nodes, and the other work stages are represented uniformly as
“Part.” It is apparent that many parts are assembled in five main work stages.

In order to perform process mining, attributes have to be mapped into the following
process objects among the data fields of an event log: case, activity, time stamp, and
originator. The case (also named the process instance) is the ‘‘thing’’ that is being
handled; for the present case study, “Project” and “Block” were selected as the case.
The activity (also named the task, operation, action, or work-item) is an operation
performed on the case; in step 1, “Work Stage” and “Work Type” are defined as the
activity, and in step 2, “Work Stage” and “Work Shop.” For the purposes of our case
study, activity was defined differently, in order to obtain clusters from the task and
work shop perspectives, respectively. The time stamp, indicating the time of
occurrence, is used only at the “Finish Time” for process model analysis. Finally,
“Work Organization” is able to be selected as the originator, but it was not considered
in this case study because there are so many work organizations. We just inferred the
originator through the activity of step 2.

Table 1. Event log of assembly block

Project Block Work Stage Work Type Work Shop Finish Time
1000 101 C1 Component Comp. Shop 26 May 09:00
1000 101 SC Plate Plate Shop 30 May 09:00
1000 101 E1 Sub Assy. Assy. Shop 3 17 May 17:49
1000 101 SC Plate Plate Shop 03 June 09:00
1000 101 P1 Panel Plate Plate Shop 03 June 09:00
1000 101 M1 Unit Assy.(S) Assy. Shop 3 13 June 13:00
1000 101 C1 Component Comp. Shop 08 June 09:00
1000 101 C5 Component Comp. Shop 15 June 09:00
1000 101 SC Plate Plate Shop 10 June 09:00
1000 101 C1 Component Comp. Shop 08 June 09:00
1000 101 SC Plate Plate Shop 13 June 09:00
1000 101 P3 Panel Plate Plate Shop 13 June 09:00
1000 101 P2 Panel Plate Plate Shop 10 June 09:00
1000 101 H2 Unit Assy.(L) Assy. Shop 3 21 June 06:42
1000 101 SC Plate Plate Shop 16 June 09:00
1000 101 M9 Unit Assy.(S) Assy. Shop 3 21 June 13:00
1000 101 S6 Sub Assy. Assy. Shop 3 26 June 06:47
1000 101 C5 Component Comp. Shop 25 June 09:00
1000 101 C1 Component Comp. Shop 20 June 09:00
1000 101 G9 Grand Assy. Assy. Shop 3 01 July 02:11

72 D. Lee et al.

Fig. 2. Structure of assembly block

4.2 Trace Clustering from Two Perspectives (Step 1 and Step 2)

In step 1 and step 2, trace clustering is performed to cluster assembly blocks having
similar operation characteristics. Every clustering algorithm attempts to group sets of
similar points, whereas for trace clustering specifically, the points to be clustered are
log traces. Traces are characterized by profiles, where a profile is a set of related
items that describe the trace from a specific perspective [5].

In this case study, we used activity, activity pattern, and transition profiles. The
activity profile defines one item per type of activity (i.e., event name) found in the
log. Measuring an activity item is performed simply by counting all of a trace’s events
that have that activity's name. The activity pattern profile defines items as activity
patterns, and calculates the ratio of each activity pattern existing in a trace. The
transition profile defines items as directly following the relations of the trace. For any
combination of two activity names <A, B>, this profile contains an item measuring
how often an event with name A is directly followed by another event name B. This
profile is useful for comparing the behaviors of traces.

We applied agglomerative hierarchical clustering with the three profile types. This
algorithm gradually generates clusters by merging nearest traces, which is to say, by
merging smaller clusters into large ones. The result is illustrated as a dendrogram
showing the cluster hierarchy. Our case study used Euclidean distance as the distance
measure, and complete linkage for the clustering distance.

Fig. 3 shows the output of agglomerative hierarchical clustering in step 1. We
obtained the seven clusters of task perspectives by setting the cut point to 0.75. In step
2, with the cut point of 0.70, we obtained eight clusters. Overall, for the 135 assembly
blocks, we obtained each cluster from the task perspective and work shop perspective.

 Clustering and Operation Analysis for Assembly Blocks 73

Fig. 3. Output of agglomerative hierarchical clustering (clustering from task perspective)

Fig. 4. Output of agglomerative hierarchical clustering (clustering from shop perspective)

74 D. Lee et al.

Each cluster was confirmed using a process model such as sequence diagram or heuristic
mining. The characteristics of the clusters are summarized in Table 2 and Table 3,
respectively according to perspective. Table 2 displays the output of step 1 (operation
characteristics from the task perspective), and Table 3 shows the output of step 2,
(operation characteristics from the work shop perspective with respect to block assembly
operations). Consequently, each block of the analysis dataset has “TC” and “SC” cluster
names through step 1 and step 2. This is used in step 3 to define the new clusters.

Table 2. Characteristics of clusters from task perspective

Cluster
Number of
Instances

Characteristics from Task Perspective

TC 1 33 - Unit Assy.(L)  Grand Assy.

TC 2 39 - Specific Sub Assy.  Unit Assy.(L)  Grand Assy.

TC 3 15 - Sub Assy.  Grand Assy.

TC 4 13
- Unit Assy.(S)  Grand Assy.
- Before Unit Assy.(S) is assembled, Sub Assy. is
assembled for some cases

TC 5 23
- Unit Assy.(C)  Grand Assy.
- Before Unit Assy.(C) is assembled, Sub Assy. is
assembled for some cases

TC 6 8
- Unit Assy.(S)  Unit Assy.(L)  Unit Assy.(C) 
Grand Assy.

TC 7 4
- Specific Sub Assy.  Specific Unit Assy.(S)  Unit
Assy.(C)  Grand Assy.

Table 3. Characteristics of clusters from work shop perspective

Cluster
Number of
Instances

Characteristics from Work Shop Perspective

SC 1 11 - Most work stages are performed in Shop 4

SC 2 3 - Most work stages are performed in Shop 2

SC 3 9

- Mainly Unit Assy.(C) & Grand Assy. are performed
in Shop 2
- Previous work stages are performed in other shops
for some blocks

 Clustering and Operation Analysis for Assembly Blocks 75

Table 3. (continued)

SC 4 2 - All work stages are performed in Shop 5

SC 5 10
- Most Unit & Grand Assy. are performed in Shop 5
- Some blocks are assembled in other shops for Unit
Assy.

SC 6 18

- Some blocks are finally assembled in Shop 5, after
previous work stages are performed in other shops
- Some blocks are finally assembled in Shop 3, after
previous operations are performed in other shops

SC 7 56 - Most work stages are performed in Shop 1

SC 8 26
- In each of Shop 2, Shop 3 and Shop 4, blocks are
assembled
- Each block has relatively few work stages

4.3 Definition of New Clusters (Step 3)

In step 3, new clusters are defined by the TC/SC matrix. We can assign assembly
blocks to the matrix, because the clusters of task perspective and work shop
perspective are determined, respectively, in step 1 and step 2. In Table 4’s 7 x 8
matrix, assembly blocks are assigned to 19 cells. Correspondingly, 19 new clusters
are defined, “NC 1” to “NC 19,” ordered sequentially by number of blocks. The most
numerous are assembly blocks, having the operation characteristics “TC 2” and “SC
7” simultaneously. That cluster is defined “NC 1”. The characteristics are explained
in Tables 2 and 3. “NC 1” has the characteristics according to which the operations of
unit assembly and grand assembly are performed in assembly shop 1, and the specific
sub assembly is assembled before the unit assembly is assembled. This matrix is
useful for explaining the relations of task and work shop. When a production plan is
formulated for new production not yet manufactured, we can use this matrix to
determine the work shop by the characteristics of tasks, or to confirm the tasks
assembled by that work shop.

Table 4. Definition of new clusters using TC/SC matrix

Cluster SC 1 SC 2 SC 3 SC 4 SC 5 SC 6 SC 7 SC 8 Sum

TC 1
2

(NC 11)
4

(NC 8)
2

(NC 12)
25

(NC 2)
 33

TC 2
2

(NC 13)

6
(NC 7)

31

(NC 1)
 39

TC 3
1

(NC 18)

14
(NC 3)

15

76 D. Lee et al.

Table 4. (continued)

TC 4
2

(NC 14)

12
(NC 4)

14

TC 5
8

(NC 6)
2

(NC 15)

12
(NC 5)

 22

TC 6
2

(NC 16)

4
(NC 9)

2

(NC 17)
 8

TC 7
1

(NC 19)
3

(NC 10)
 4

Sum 11 3 9 2 10 18 56 26 135

4.4 Comparison of New Clusters with Other Clusters (Step 4)

In step 4, the discovered new clusters are compared with other clusters, and additional
analysis is performed per cluster. Table 5 shows the relations of the new clusters (NC)
with the plan clusters (PC). The plan clusters are the group of assembly blocks
managed by production schedulers. They are used to assign the work shop and
production duration when a production plan is formulated. But plan clusters do not
cover all blocks, which are defined by the production scheduler case by case. So, we
need to determine assembly block clusters based on actual data exported from a
monitoring system. As shown in Table 5, the most assembly blocks are involved in
“PC 12” from the plan cluster viewpoint. In the discovered new cluster, the blocks of
“PC 12” are classified into “NC 1” and “NC 2,” and “NC 1” also involves the
assembly blocks of “PC 11”. Namely, 56 blocks is clustered differently by the plan
cluster or the new cluster perspective. So, we performed additional analysis for
“NC 1,” ”NC 2,” “PC 11,” and “PC 12” using the process model.

Fig. 5 and Fig. 6 show the process model after heuristic mining for new clusters
“NC 1” and “NC 2,” respectively. Fig. 7 and Fig. 8 are the process models of clusters
“PC 11” and “PC 12.” We can find the preferred process model and cluster with the
same analysis data. For example, with respect to the “NC 1,” “NC 2,” “PC 11” and
“PC 12” clusters, the new cluster (NC) is classified to 23 blocks and 25 blocks,
whereas the plan cluster (PC) is classified to 8 blocks and 48 blocks.

 As shown in Fig. 5, the process model for “NC 1” is better than “PC 11” and “PC
12” from the viewpoint of describing task characteristics that specific Sub Assembly
operation is needed before Grand Assembly operation. Also, the process model of
“PC 12” is more complicated than that of “NC 1” or “NC 2;” thus it is easier to
understand the process model of a new cluster.

 Clustering and Operation Analysis for Assembly Blocks 77

Table 5. Comparison of new clusters (NC) with scheduler-defined plan clusters (PC)

Cluster PC 1 PC 2 PC 3 PC 4 PC 5 PC 6 PC 7 PC 8 PC 9 PC 10 PC 11 PC 12 Sum

NC 1 8 23 31

NC 2 25 25

NC 3 12 2 14

NC 4 4 2 6 12

NC 5 2 2 4 4 12

NC 6 2 6 8

NC 7 6 6

NC 8 4 4

NC 9 4 4

NC 10 3 3

NC 11 2 2

NC 12 2 2

NC 13 2 2

NC 14 2 2

NC 15 2 2

NC 16 2 2

NC 17 2 2

NC 18 1 1

NC 19 1 1

Sum 4 8 4 16 4 6 2 12 8 15 8 48 135

78 D. Lee et al.

Fig. 5. Process model of cluster NC 1

Fig. 6. Process model of cluster NC 2

Fig. 7. Process model of cluster PC 11

Fig. 8. Process model of cluster PC 12

 Clustering and Operation Analysis for Assembly Blocks 79

In this step, we also calculate the fitness of the process model in order to confirm
the conformance. Table 6 shows the new cluster (NC) and plan cluster (PC) fitness
values. That is calculated after the output of heuristic mining transfers to Petri-net.

The fitness of a case with trace ߪ on network N is calculated as following equation (1).

(1)

(c: consumed tokens, m: missing tokens, p: produced tokens, r: remaining tokens)
The NC fitness is higher than the PC fitness in Table 6. So, we can say that the NC

process model explains the assembly operation characteristics well. So we can replace
old cluster with new. That also has the better characteristics in the relation between
task and work shop.

Table 6. Fitness values of new clusters (NC) and plan clusters (PC)

New
Cluster

No. of
Instances Fitness Plan

Cluster
No. of

Instances Fitness

NC1 31 0.975 PC11 8 0.977

NC2 25 0.946 PC12 48 0.939

 56 (Sum) 0.961(Avg.) 56 (Sum) 0.958(Avg.)

5 Conclusions

This paper proposes a new, clustering and operation analysis method for assembly
blocks based on process mining techniques suitable for the shipbuilding industry. The
new approach consists of four steps: 1) trace clustering from the task perspective, 2)
trace clustering from the work shop perspective, 3) definition of new clusters
considering task and work shop simultaneously, and 4) comparison of new clusters
with other clusters from the process perspective. Clustering and operation analysis
output can be used for production planning purposes such as resource allocation and
operation scheduling. The effectiveness of the proposed method was verified in a case
study using real event logs generated from the Block Assembly Monitoring System
(BAMS), an information system. A high priority for forthcoming research will be a
detailed comparison of actual and planned processes.

Acknowledgments. This study was supported by the National Research Foundation
of Korea (NRF) grant funded by the Korean government (MEST) (No.
2012R1A1A2008335).

80 D. Lee et al.

References

1. van der Aalst, W.M.P.: Business alignment: using process mining as a tool for Delta
analysis and conformance testing. Requirements Engineering 10, 198–211 (2005)

2. Goedertier, S., de Weerdt, J., Martens, D., Vanthienen, J., Baesens, B.: Process discovery in
event logs: An application in the telecom industry. Applied Soft Computing 11, 1697–1710
(2011)

3. Lee, S., Kim, B., Huh, M., Cho, S., Park, S., Lee, D.: Mining transportation logs for
understanding the after-assembly block manufacturing process in the shipbuilding industry.
Expert Systems with Applications 40(1), 83–95 (2013)

4. Lee, D., Bae, H.: Analysis framework using process mining for block movement process in
shipyards. ICIC Express Letters 7(6), 1913–1917 (2013)

5. Song, M., Günther, C.W., van der Aalst, W.M.P.: Trace clustering in process mining. In:
Ardagna, D., Mecella, M., Yang, J. (eds.) Business Process Management Workshops.
LNBIP, vol. 17, pp. 109–120. Springer, Heidelberg (2009)

6. de Weerdt, J., Schupp, A., Vanderloock, A., Baesens, B.: Process Mining for the multi-
faceted analysis of business processes - A case study in a financial services organization.
Computer in Industry 64, 57–67 (2013)

M. Song, M.T. Wynn, and J. Liu (Eds.): AP-BPM 2013, LNBIP 159, pp. 81–91, 2013.

DTMiner: A Tool for Decision Making
Based on Historical Process Data

Josue Obregon, Aekyung Kim, and Jae-Yoon Jung

Dept. of Industrial and Management Systems Engineering, Kyung Hee University,
1 Seochen-dong, Giheung-gu, Yongin, Gyeonggi, Republic of Korea

{jobregon,akim1007,jyjung}@khu.ac.kr

Abstract. Process mining is a discipline that uses techniques to extract
knowledge from event logs recorded by information systems in most companies
these days. Among main perspectives of process mining, organizational and
time perspectives focus on information about resources stored on the event logs
and timing and frequency of the events, respectively. In this paper we introduce
a method that combines organizational and time perspectives of process mining
with a decision support tool called decision trees. The method takes the
information of historical process data by means of an event log, generates a
decision tree, annotates the decision tree with processing times, and
recommends the best performer for a given running instance of the process. We
finally illustrate the method through several experiments using a developed
plug-in for the process mining framework ProM, first using synthetic data and
then using a real-life event log.

Keywords: process mining tool, decision tree, decision making, recommendation.

1 Introduction

Data recorded by information systems are increasing in today’s business environment
allowing business analysis tools, which use this data to work, gain more and more
value every day. One of these tools is process mining. The idea of process mining is
to extract knowledge from the so-called event logs and discover, monitor and improve
real processes. Process mining has three types of functions: discovery, conformance
and enhancement. Discovery techniques take an event log as input and generate a
process model as output using a plethora of notations like petri nets, causal networks,
heuristic networks, and so on. Conformance techniques take an existing process
model and compare with an event log in order to detect, locate, explain and measure
deviations between the model and the actual execution of the process. Enhancement
techniques extend or improve process models based on the information obtained the
event log. Among different perspectives of process mining, in this paper we focus on
two of them, the organizational perspective and the time perspective. Organizational
perspective deals with the resource attributes of the event log (e.g., performers of
activities), while time perspective considers timing and frequency of events
(e.g. processing time of an activity) [1]. On the other hand, decision trees is a

The original version of this chapter was revised: The copyright line was incorrect. This has been
corrected. The Erratum to this chapter is available at DOI: 10.1007/978-3-319-02922-1 10

Springer-Verlag Berlin Heidelberg 2013©

http://dx.doi.org/10.1007/978-3-319-02922-1_10

82 J. Obregon, A. Kim, and J.-Y. Jung

decision-making tool that helps to clarify for management the choices, risks, objectives,
monetary gains and information needs involved in an investment problem [2].

In this paper we take the method developed in [3] and verify its applicability by
means of experiments using two kinds of data. The first experiment is conducted with
synthetic data related with a repair process used in [4]. The second experiment is
conducted with real-life data. Each experiment is accompanied with performance
measures in order to evaluate its accuracy. The experiments are conducted using a
developed plugin for the process mining framework ProM called DTMiner.

The remainder of this paper is organized as follows. Related work is discussed in
Section 2. Section 3 introduces the technique for constructing decision trees based on
historical process data. Section 4 presents the implemented plug-in DTMiner. Section
5 presents the conducted experiments. Section 6 shows the results of the experiments
and Section 7 discusses limitations, recommendations and conclusions of the paper.

2 Related Work

Process mining has proved its applicability in real life cases. In [5] a case study
illustrating the practical application of process mining is presented. The authors
pointed out that the case study showed that it is worthwhile to combine different
mining perspectives to reach a richer understanding of the process. The method used
in this paper also combines two perspectives of process mining, organizational and
time perspectives.

Furthermore, in [6] a semi-automatic approach intended to reduce the number of
manual staff assignment is described. Their approach applies a supervised machine
learning algorithm to the process event log in order to learn the activities that each
performer undertakes. Experiments on three enterprises’ datasets were conducted and
good overall prediction accuracy was achieved, reaching over 75%. In the technique
used in this paper [3], process mining is not combined with machine learning
algorithms, instead of that a decision support tool called decision trees is utilized and
a simple algorithm for constructing the decision tree is used.

Another works [7, 8] also use machine learning approaches combined with process
mining to achieve their results related with staff assignment and decision mining,
respectively. In [7] they showed that the problem of deriving staff assignment rules
using information from historical process data and organizational information can be
interpreted as an inductive learning problem, therefore they used decision tree
learning to derive meaningful staff assignment rules. In [8], a plug-in called Decision
Miner that analyzes the choice constructs of a petri net process model in the context
of the ProM framework was presented. Their approach converts every decision point
within the process model into a classification problem, and then they solved that
problem using decision tree learning.

It is important to remark that decision tree learning in the machine learning area is
different from decision trees as a decision support tool. In [9] it is defined that
decision tree learning (i.e., machine learning perspective) provides a powerful
formalism for representing comprehensible and accurate classifiers, whereas in [2] it
is stated that decision tree (i.e., decision analysis perspective) is a decision-making

 DTMiner: A Tool for Decision Making Based on Historical Process Data 83

tool that helps to clarify for management the choices, risks, objectives, monetary
gains and information needs involved in an investment problem.

3 Performer Recommendation Using Process Mining

In this section we describe briefly the overall procedure used in [3]. The procedure of
the proposed method is represented as shown in Fig. 1. In the first stage, a process
model is discovered by process mining tools such as ProM, and a running case can
also be observed. Then a decision tree is constructed based on the discovered process
model and the event log. From the historical data, a key performance indicator (KPI)
can be predicted, and information of performance prediction is projected onto the
constructed decision trees. For example, the predicted completion time and cost of
each pending tasks are annotated for performers.

In the second stage, a running case is matched with the constructed decision tree.
To do that, the decision tree is simplified through filtering to reflect characteristics of
process, and an observed running case is then matched to the decision tree. Finally,
several subtrees can be extracted and merged by matching.

 In the last stage, we finally recommend proper performers of each task.
Performers are evaluated in terms of time and cost. We can recommend the best
performers of scheduled tasks to improve a target KPI.

Fig. 1. Overview of performance recommendation based on historical data

4 DTMiner Plug-in

The technique presented in [3] was implemented as a plug-in for the ProM
Framework. The ProM framework integrates the functionality of several existing
process mining tools and provides additional process mining plug-ins [10, 11].

Discover a process model and observe a running case

Construct a decision tree and predict KPI of pending tasks

Select a filter and match a running case to the decision tree

Extract and merge subtrees of the matched decision tree

Evaluate the performers for KPI

Recommend the best performer for KPI

Decision tree
Construction

Performer
recommendation

Decision tree
matching

84 J. Obregon, A. Kim, and J.-Y. Jung

Furthermore ProM version 6 offers a new redesigned standard development
environment, an enhanced architecture and the user interface that supports new
developments on the process mining research area in a relatively easy way. ProM has
five kinds of plug-ins, which implement different process mining related functions:
mining, export, import, analysis and conversion. We center our attention on mining
and analysis plug-ins. Mining plug-ins implement some mining algorithm,
e.g., α-miner that constructs a Petri net based on some event log whereas analysis
plug-ins implement some property analysis on some mining result[10].

The plug-in called DTMiner can be considered as a combination between mining
and analysis plug-ins. The DTMiner plug-in constructs a decision tree based on an
historical process data. In Fig. 2, a generated decision tree is depicted on the main
screen of the plug-in interface. Decision nodes are colored with blue and have square
shape meanwhile chance nodes are colored with green and have ellipse shape.
Decision nodes represent tasks and chance nodes represent performers extracted from
the event log. Node information is displayed when the mouse pointer is over the node
and it varies depending on the type of it. If it is a decision node, remaining time and
route are displayed and if it is a chance node, average time and frequency are
displayed. The edge connection between chance nodes and decision nodes displays
the average task time taken by the performer to finish the previous task. The
underlying decision tree model used for the construction of the decision model stores
all the information obtained from the event log. Each chance node is annotated with
start and finish task times for each case of the performer that it represents as well as
the case frequencies.

Fig. 2. Screenshot of DTMiner plug-in showing some results of test data

 DTMiner: A Tool for Decision Making Based on Historical Process Data 85

After loading the event log and generating the decision tree, one can analyze the
resultant graph using the analysis section of the plug-in. The analysis section can be
visualized at the bottom of the Fig. 3. It has three sections. In the first section,
completed activities of target running cases can be added or deleted. In the second
section, a filter to match the tree with the target running case can be selected. Finally
on the third option a recommendation is given depending the parameter selected.

Fig. 3. Screenshot of DTMiner plug-in showing possible routes from the last task of the running
instance and the recommended performers per route

Fig. 3 shows an example already filtered and analyzed. Using the filter non-filter
the initial decision tree was pruned. After this, a recommendation based on remaining
time is given. When the mouse pointer is over a task node, the possible routes from
that point until the end are displayed. The remaining time for each route is also
displayed beside the corresponding route. Recommended routes (i.e., nodes and arcs)
are colored with red color whereas the arcs of the routes that are not recommended
have two perpendicular lines indicating that are blocked.

In the next sections, the DTMiner plug-in is used as a proof-of-concept
implementation over several event logs.

5 Experiments

In this section, we demonstrate the applicability of our approach using one synthetic
event log obtained via ProM and a real-life log used in a case study. For the case
study we analyzed a process in Dutch Financial Institute.

86 J. Obregon, A. Kim, and J.-Y. Jung

5.1 Synthetic Example

For the first experiment we use an event log about a process of repairing telephones in
a company. In Fig. 4, we can see that the process starts by registering a telephone
device sent by a customer. After registration, the telephone is analyzed and its defect
is categorized. Once the problem is identified, the telephone is sent to the Repair
department. The Repair department can fix simple defects and complex defects. Once
a repair employee finishes working on a phone, this device is sent to the Quality
Assurance department. Then the phone is analyzed by an employee to check if the
defect was indeed fixed or not. If the defect is not repaired, the telephone is again sent
to the Repair department. If the telephone is repaired correctly, the case is archived
and the telephone is delivered to the customer.

Fig. 4. Telephone repair process discovered by the improved fuzzy miner in Disco

In Fig. 4, it can be noted that 1,104 cases exist in the event log and begin with
Register activity. Among those cases, just 1,000 cases have finished. We used cross-
validation in our experiment. Cross-validation is the statistical practice of partitioning
a sample data set into two subsets, training set and test set. Training set is used to
analyze the data while testing set is used for validation. Because of the nature of the
plug-in, in which every case should be tested by hand, our test set had a size of 10
cases and was selected randomly.

The experiment was conducted as follows. Take the real case from the test data,
record the actual completion time and the performer. Use the plug-in and enter the
first two activities as a running case and get the recommendation. After this, record
the new recommended time and check if performers are different from the performers
that actually executed the task on the test case. Repeat this for every case in the test
data.

 DTMiner: A Tool for Decision Making Based on Historical Process Data 87

The results are summarized in Table 1. It is clear that the method works and always
recommends the performer who has registered the shortest average time on the
training data. This has a limitation that will be discussed later, about the fact that the
recommended performer might be busy at the time when the running case is being
executed.

Table 1. Summary of experiment results for synthetic data

Case
Total remaining

time (min)
Recommended

time (min)
Difference (min)

Number of
performers changed

1 47 8.5 38.5 0
2 51 11.31 39.69 1
3 28 11.31 16.69 2
4 58 11.31 46.69 1
5 55 11.31 43.69 1
6 21 11.31 9.69 2
7 23 12.84 10.16 2
8 27 14.31 12.69 2
9 23 12.26 10.74 1
10 19 6.75 12.25 2

Fig. 5. Screenshot of DTMiner plug-in showing possible routes from the last task of a running
instance and the recommended performers per route

5.2 Case Study

We also evaluated the proposed approach using an event log from the Dutch Financial
Institute. This log contains 13,087 cases and 262,200 events over a six month period
from October 2011 to March 2012. The process represented in the event log is an

88 J. Obregon, A. Kim, and J.-Y. Jung

application process for a personal loan or overdraft within a global financing
organization.

An incomplete case means unexpected case appearing because of extracting data
from a particular period of time. Since information systems record events
continuously, the log contains some cases which have not finished yet. To get rid of
incomplete cases and provide some insight into the structure of the process, we used
Disco which draws process models using the improved fuzzy algorithm. It also shows
meaningful information such as variants, frequency, and duration and provides
powerful filtering features. We found that the whole process can be split into three
sub-processes by end events (i.e. A_DECLINED, A_CANCELLED, A_ACTIVATED).
In the next subsection, we use the three groups split from whole cases, which contain
7,635, 2,807 and 2,246 cases, respectively.

There are some events in the log where the resource information is missing. For
these reasons, before testing our approach the log needs to be preprocessed. We first
removed all the cases which have at least one event with NULL resource information
because they cannot be used for the performer recommendation method. Second, we
used only cases whose sequence of activities is shared by at least 10 cases using
variation filtering functionality of Disco. Moreover, we consolidated all the resources
performed in automatic activities which have zero duration into a resource called
‘Automatic’. Finally, we split the filtered log into three sub-processes. As a result the
group that ends with A_DECLINED has 5,280 cases. The A_CANCELLED group has
1,024 cases and A_ACTIVATED group has 534 cases after filtering. Fig. 6 shows the
process models of each group discovered by Disco.

Fig. 6. The process models discovered from Dutch Financial Institute’s log

(a) Whole Process (b) A_DECLINED (c) A_CANCELLED (d) A_ACTIVATED

 DTMiner: A Tool for Decision Making Based on Historical Process Data 89

We present an example scenario with the log of the Dutch Financial Institute to
describe how the proposed approach can be applied to performer allocation problems
with the DTMiner plug-in. Using DTMiner with the example scenario, the historical
process log of a business process was analyzed to construct the decision tree, which
was used to recommend the best performers for an ongoing instance of the process.

The Dutch Financial Institute would want to reduce the lead time of their services
to improve the quality of the customer loan service. They would also want to decrease
the cost of their processes. For this reason, the purpose of this experiment is to
recommend the best performer who allows the remaining time or the total labor cost
to reduce for each next task.

As depicted in Fig. 1 the overall procedure of the proposed approach consists of
three primary steps. Following these steps, we first constructed decision trees from
the log using the plug-in. In this step, we used three sub logs and constructed decision
trees separately.

In the second step, we assume that running case σ1 = < (A_SUBMITTED,
Automatic, 0, 0), (A_PARTLYSUBMITTED, Automatic, 0, 0), (W_Afhandelen lead,
10913, 3.9, 8), (A_PREACCEPTED, Automatic, 0, 0) > has been captured by the
information system. Also, we suppose that a manager does not want to filter with
previous performers, and he wants to obtain the recommendation of performers who
can reduce the remaining time. We then set up the running case and filter options as
shown in the bottom of Fig. 7.

Fig. 7. Performer evaluation and recommendation for the sub-process that ends with
‘A_CANCELLED’ with a running case σ1

Fig. 8. Performer evaluation and recommendation for the sub-process that ends with
‘A_CANCELLED’ with a running case σ2

90 J. Obregon, A. Kim, and J.-Y. Jung

In the last step, information about the running case was matched with the decision
tree and its subtrees were extracted and merged. Also, the predicted KPIs were
updated. Finally, we evaluated performance and recommended the best performer for
each next task by reducting inferior performers from leaf nodes. Fig. 7 shows the
pruned decision tree and the best performer of each task in sub-process that ends with
‘A_CANCELLED ’ for σ1. After executing the running case σ1, the pruned decision
tree showed two possible traces with different excution probabilities as shown in Fig.
7. The first trace c1 =< A_SUBMITTED, A_PARTLYSUBMITTED, W_Afhandelen
lead, A_PREACCEPTED, W_Completeren aanvraag, A_CANCELLED > had an
execution probability of 40% and the second trace c2 = < A_SUBMITTED,
A_PARTLYSUBMITTED, W_Afhandelen lead, A_PREACCEPTED, W_Completeren
aanvraag, W_Completeren aanvraag, A_CANCELLED > had an execution
probability of 60%. Based on this probabilities, we can recommend the best performer
for task ‘W_Completeren aanvraag’ is ‘10913’ in c1 of which the remaining time is
4.7 and is also the minimum remaining time. In the same way, the best performer for
task ‘W_Completeren aanvraag’ is ‘11181’ and the best performer for task
‘A_CANCELLED’ is ‘10932’ in c2. Also, Fig. 8 shows performer evaluation and
recommendation for the sub-process that ends with ‘A_CANCLLED’ when a running
case σ2 = < (A_SUBMITTED, Automatic, 0, 0), (A_PARTLYSUBMITTED, Automatic,
0, 0), (A_PREACCEPTED, Automatic, 0, 0), (W_Completeren aanvraag, 11181,10.8,
9) > is given and 3-recent filter is selected.

6 Discussion and Conclusion

In this paper we introduced a tool for decision making based on historical process
data. DTMiner is a combination between process mining principles and decision trees
as a support decision tool. A decision tree is constructed based on an event log, and
the decision tree is then annotated with activity processing times that later are used to
recommend best performers based on some criteria. Two experiments were conducted
with synthetic event log and real-life event log. Through the experiments we
illustrated how the method can be applied to recommend good performers.

Some potential limitations still remain in the proposed approach. One limitation
comes from the experimentation. Although the performance measures proved that the
recommended performer can reduce the final completion time of the process instance,
one cannot know if the recommender performer will be available at that moment. In
the case is not available, the method should take in consideration waiting time until
the performer is not busy anymore, or give an alternative recommended performer.

Another limitation is related with the notion of completeness in process mining [1].
One cannot assume to have seen all possibilities in the historical process data used to
construct decision trees. If a running case is being evaluated and the sequence of
activities was not recorded in the historical data, the method cannot give a
recommendation because the branch which refers to the running case does not exist in
the constructed decision tree. One way to overcome this limitation could be the use of
process models when the decision tree is being constructed, adding possible behavior
that actually does not occur but is still possible because of the process model.

 DTMiner: A Tool for Decision Making Based on Historical Process Data 91

Acknowledgments. This work was supported by the National Research Foundation
of Korea (NRF) grant funded by the Korea government (MSIP) (Nos.
2012R1A1B4003505 and 2013R1A2A2A03014718).

References

1. van der Aalst, W.M.P.: Process mining: Discovery, conformance and enhancement of
business processes. Springer, Heidelberg (2011)

2. Magee, J.F.: Decision trees for decision making. Harvard Bus. Rev. 42(4), 126–138 (1964)
3. Kim, A., Jung, J.-Y.: A process mining technique for performer recommendation using

decision tree. In: Korean Institute of Industrial Engineers Conference (2012)
4. De Medeiros, A.K.A., Weijters, A.J.M.M.: ProM Framework Tutorial.

TechnischeUniversiteit Eindhoven, The Netherlands (2009)
5. van der Aalst, W.M.P., Reijers, H.A., Weijters, A.J.M.M., van Dongen, B.F., Alves de

Medeiros, A.K., Song, M., Verbeek, H.M.W.: Business process mining: an industrial
application. Inform. Syst. 32(5), 713–732 (2007)

6. Liu, Y., Wang, J., Yang, Y., Sun, J.: A semi-automatic approach for workflow staff
assignment. Comput. Ind. 59(5), 463–476 (2008)

7. Ly, L.T., Rinderle, S., Dadam, P., Reichert, M.: Mining staff assignment rules from event-
based data. In: Bussler, C.J., Haller, A. (eds.) BPM 2005. LNCS, vol. 3812, pp. 177–190.
Springer, Heidelberg (2006)

8. Rozinat, A., van der Aalst, W.M.P.: Decision mining in ProM. In: Dustdar, S., Fiadeiro,
J.L., Sheth, A.P. (eds.) BPM 2006. LNCS, vol. 4102, pp. 420–425. Springer, Heidelberg
(2006)

9. Quinlan, J.R.: Decision trees and decision-making. IEEE T. Syst. Man Cyb. 20(2), 339–
346 (1990)

10. van Dongen, B.F., de Medeiros, A.K.A., Verbeek, H.M.W(E.), Weijters, A.J.M.M.T., van
der Aalst, W.M.P.: The ProM framework: Anew era in process mining tool support. In:
Ciardo, G., Darondeau, P. (eds.) ICATPN 2005. LNCS, vol. 3536, pp. 444–454. Springer,
Heidelberg (2005)

11. Verbeek, H.M.W., Buijs, J.C.A.M., van Dongen, B.F., van der Aalst, W.M.P.: ProM 6:
The process mining toolkit. In: BPM Demonstration Track, vol. 615, pp. 34–39 (2010)

M. Song, M.T. Wynn, and J. Liu (Eds.): AP-BPM 2013, LNBIP 159, pp. 92–105, 2013.

Process Discovery by Synthesizing Activity Proximity
and User's Domain Knowledge

Bernardo Nugroho Yahya1,*, Hyerim Bae2, Sung-ook Sul3, and Jei-Zheng Wu4

1 Ulsan National Institute of Science and Technology,
UNIST-gil 50, Eonyang-eup, Ulju-gun,

689-798 Ulsan, South Korea
2 Industrial Engineering Department, Pusan National University,

Busandaehak-ro 63 beongil, Geumjong-gu,
609-735 Busan, South Korea

3 Total Soft Bank, Ltd.
Hanjin Shipping Building, 79-9, Jungang-dong 4-Ga, Jung-gu,

600-014 Busan, South Korea
4 Soochow University

56 Kueiyang Street, Section 1,
Taipei 100, Taiwan, R.O.C.

bernardo@unist.ac.kr, hrbae@pusan.ac.kr,
sosul@tsb.co.kr, jzwu@scu.edu.tw

Abstract. Process mining techniques assist users to automatically infer process
models from event logs. However, the result of process model driven by
traditional process mining technique may conflict with the knowledge of users
due to some real conditions, i.e. alternative activity is selected due to equipment
breakdown. First, the use of heuristics may detect inconsistencies caused by bad
guess. Second, extraction of all possible ordering of events reflects historical
observation that sometimes hinders users to obtain an ideal process model since
the activity has some event types. Yet, the current process mining approach is
not totally compatible with some aspects such as extra logs behavior and
soundness of process model when the process model changes according to user
requirements. This paper presents a method for synthesizing activity proximity
from event logs in the area of process mining. The method derives a bounded
graph that covers the extra-behavior of an event log according to user’s domain
knowledge. Another important property is that it produces a graph with
considering the proximity among activities that still contains the original
behavior of the event log based on event types. The methods described in this
paper have been implemented in ProM framework and tested on a set of real
process examples.

Keywords: process mining, business process, proximity score, user's
knowledge, integer linear programming.

* Corresponding author.
The original version of this chapter was revised: The copyright line was incorrect. This has been
corrected. The Erratum to this chapter is available at DOI: 10.1007/978-3-319-02922-1 10

Springer-Verlag Berlin Heidelberg 2013©

http://dx.doi.org/10.1007/978-3-319-02922-1_10

 Process Discovery by Synthesizing Activity Proximity and User's Domain Knowledge 93

1 Introduction

In many business applications, the primary purpose of discovering a process model is
to act as a means of communication such that a process model facilitates the
understanding of complex business processes from stakeholders [1]. The stakeholders
are likely to employ traditional design approaches, where models are eventually built
by refining and formalizing a number of specifications based on their prior
knowledge. Although the stakesholders have their understanding about process
model, the sequence of tasks performed along several enactments of a transactional
system may be different from original process model. As a consequences, by applying
process mining as a tool used to discover a process model from event logs, the
discovered process model may not reflect the prior knowledge they possess about the
process execution since current process discovery techniques can automatically derive
a process model based on the statistics hidden in the event logs. As a result, mined
model may violate conceptual specifications and domain-constraints. Hence it is
required to further pre- or postprocessing for obtaining a better quality of mined
model.

Process mining is a tool used to discover a process model from event logs. The
existing techniques in process mining can discover process model based on the tasks
performed in an enterprise system. However, the mined model, as a result of proces
discovery, may show different outcome with user's prior knowledge based on the
technique that analyst used. Therefore, it is important to involve expert's knowledge
to discover the mined model. Although the traditional mining techniques allows user's
intervention to the result of mined models [4][9], their modification technique toward
the user requirement is not compatible and somehow unsound. For example,
modification of events that occur in sequence to be a parallel behavior can give result
to some activities that may not be connected, events that occur in sequence may not
represent as adjacent in the process model and it mislead to some activities that may
not reach finish properly. Other work, for example, artificial generated negative
events (AGNEs) [12], has detailed description of generating artificial negative events
rather generating constraint. The generated negated events, which also include log's
noise, may possibly lead to false conclusions. The work on process discovery via
precedence constraints seems more similar to this proposed approach [11]. However,
there is no discussion on soundness property, which is important in the domain of
process discovery i.e. expert give the desired constraints and lead to discover unsound
process. Moreover, some other issues such as additional constraints (i.e designated
start, designated end), which is very critical issue for process discovery, and interface
for the convenience of users are not discussed in detail.

This paper proposes a discovery technique, called as proximity miner, which has a
goal to discover a process model based on prior knowledge of experts and the
behavior of event logs. However, the strategy and contribution are different in two
ways. First, it introduces activity relations by synthezising activity proximity that
guarantee the inclusion of the observed behavior of the event logs in our integer linear
programming (ILP) model. Second, the graph produces a sound model with extra
behavior in the resulting graph based on user’s background knowledge. By applying

94 B.N. Yahya et al.

proximity score measurement on the mining technique, our proposed model tends to
extract extra behavior with additional constraints to ensure the soundness of the result
of process model although there is a change of log relations. The term of extra
behavior in this study considers the log behavior that is unable to be retrieved from
event logs. In addition, expert can point out the designated start and end activity when
a log contains several abstract processes.

This paper is organized as follows. Section 2 introduces the example of our study.
Section 3 explains the formal definition of this study by showing how the integer
linear programming (ILP) combined with the concept of proximity can extract extra
log behavior. Section 4 shows the main features of our approach, its implementation
in ProM framework and experiment result. Related works are discussed in section 5
and section 6 concludes the paper.

2 Running Example

The starting point of our work was a case study concerned with the behavior of
containers in the domain of port logistics. Users roughly understand the behavior of
the container which has several types (reefer container, general container and empty
container) [8]. Using process discovery, we tried to answer the questions "How do the
containers actually flow?", "Do the containers flow correctly?", i.e. based on the event
logs, we automatically constructed process model showing the ordering and frequency
of container flows. Since the event logs contain outliers of containers' flow, user
wanted to put their knowledge to improve the process model quality. Finally, we used
process mining to answer the question "How do we get an ideal process model based
on the user's knowledge?"

To briefly explain the port logistics process, we described 3 main activities used in
landside transport as shown in the left part of Fig. 1. Example of event logs is shown
in the right part of Fig. 1. Discharging by yard crane activity (A) and (B) describe the
process discharging in the yard after an incoming container from the vessel into the
port. If the container type is reefer, the port officer needs to ensure that the container
can be powered into certain locations to maintain the temperature. Thus, reefer
container should go to the activity Reefer container Plugging (C) and (D). If a
scheduled truck is coming into the port, then the container is ready for the delivery.
The reefer container will be plugged off from the power and picked up from the yard
for delivery by truck (Yard crane task for Gate Out (E) and (F)). If it is a general type
of container, it stays in the yard and waits for Yard crane task for Gate Out without
managing Reefer container Plugging activity. This is a typical example of the landside
discharging process.

The common meta model (called as event type) for process mining data usually
begins with schedule, followed by start and ends with complete [16]. However,
current event data recording technology in port depends on human on which
sometimes fail to represent the real time, i.e. operators only record completion of
activity without recording the start event caused by high workload. Thus, port's expert
decides to analyze event logs using schedule and complete event, which may have
difference meta model with the original meta model derived from existing mining

 Process Discovery by Synthesizing Activity Proximity and User's Domain Knowledge 95

techniques. In this event log, the event type schedule means that a user receives an
inquiry on that activity and schedule the task on the system. The latter example shows
the rationale of our approach.

The log's representation in left part of Fig. 1 shows that when the operation time
between event A and B is too long, event C, that is possible to be executed after event
A and before event B, can occur in between of event A and B. Thus, the log trace
does not represent the process model of the port manager's mind. Fig 2(a), 2(b) and
2(c) are the mined model as a result of process mining techniques based on frequency,
semantic behavior and noise reduction using frequency abstraction miner, heuristic
miner and fuzzy miner, respectively. Commonly, the mining techniques considered
the adjacent relationship of events and it results a bad guess of model which is not
properly expected by the experts. Process model shown in Fig. 2 (d) is one that is in a
port manager’s mind. When the analyst shows the mined model result to the port's
expert (Fig 2(a)), they pointed out two problems. First, some of the cases do not
represent the expert's mind, i.e. A->C, C->B, E->D, D->F. Second, some of the
moves in the model does not occur during execution, i.e. C-D. As well as frequency
abstraction miner, both heuristic miner and fuzzy miner (by using default parameters)
have not represented expert's mind about process mined model. Thus, the
participation of experts on mining a process model from logs is necessary. This study
will discuss how the experts' participation improve the mined model.

Event name (event type) Index
Discharging by yard crane (schedule) A
Discharging by yard crane (complete) B
Reefer container Plugging (schedule) C
Reefer container Plugging (complete) D
Yard crane task for Gate Out (schedule) E
Yard crane task for Gate Out (complete) F

CaseID Log Trace
1 ACBDEF
2 ACBEDF
3 ACBDEF
4 ABCDEF

Fig. 1. Event logs example (left) and process model using graph (right)

A B

C D

E F

(a) Graph 1 (observed all behavior)

A B

C D

E F

(b) Graph 2 (finding semantic behavior)

A BC

D

E F

(c) Graph 3 (finding semantic with noise reduction)

A B

C D

E F

(d) User’s prior knowledge

Fig. 2. Mined model from event logs with (a) observed all behavior, (b) finding semantic
behavior and (c) finding semantic with noise reduction. Figure (d) represents the user's prior
knowledge about related process.

96 B.N. Yahya et al.

3 Formal Definition

Commonly, real world application is stored in an event log. An event log, denoted as
L, consists of a set of process instances or cases, and each case is described by a
sequence of events. The sequence of events contains behaviors of activities to indicate
the flow of activities from beginning until the end. This section explains the formal
definition of example log in section 2.

Definition 1. Event Log
An event log is a tuple of <E, C, S, R, ES, EE> which is defined as follows:

• Event. E = A × {0,1}× T is a set of events, where A is a set of activities, T is a
set of timestamp and 0 means that the underlying event is schedule type of
activity, and 1 means complete type of an activity. To represent activity, type
and timestamp of each event, we denote notation as follows: e.act refers to the
activity name, e.type refers to the event type and e.time refers to the event
timestamp. If e=(yardJobLoad, 0, 2012-06-12 01:54:32), then e.act =
yardJobLoad, e.type = SCHEDULE and e.time = 2012-06-12 01:54:32. E(L)
represents event set in a log L.

• Case. A case is a set of event for its one instance, i.e. C = {ck | k=1,..., K}. A
case ck corresponds to the trace <ek

1, e
k
2, ..., e

k
n> where each ek

i denotes the i-th
event in case k. ek

i ∈E is an event in a single instance of workflow for 1< i < Ik

and Ik is the total event in k-th case and
K k

k
I is the total events in a log.

• Direct Event. Let L be the log of workflow. Direct event set (S) is denoted as
sij ⊆ (ek

i , e
k
j)| e

k
i ≻ ek

j , ∀ek
i, e

k
 j ∈E(L) where ek

j is direct post-event of ek
i (or

ek
i is the pre-event of ek

j) in k-th case. The element ek
i ≻ ek

j represents the fact
that ek

i precedes ek
j with no any activity ek

k ∈E(L) such that ek
i ≻ ek

m and ek
m ≻

ek
j. To measure the frequency of direct event set, we denote Fij = | sij | where Fij

is the number of event ek
j as the direct post-event of ek

i for all k in L.
• Traceable Event. Let L be the log of workflow. Traceable event set (R) is

denoted as rij ⊆ (ek
i , e

k
j)| ek

i ≫ ek
j , ∀ek

i, e
k
j ∈E(L) where ek

j is reachable
from ek

i (or ek
i is able to reach ek

j). The element (ek
i ≫ ek

j) represents the fact
that ek

i precedes ek
j with certain distances (dij ≥ 1). Althought two events has

certain distances, we can say that both events has proximity. The concept of
proximity will be explained later.

• Start and End Event. Let L be the log of workflow.
1. ES(L) ⊆ {ek

i | sji =∅, ek
i ∈E(L) } is named as the start event set of the

workflow from the log L.
2. EE(L) ⊆ {ek

i | sij =∅, ek
i ∈E(L) } is named as the end event set of the

workflow from the log L.

Definition 2. Distance
Distance (dij

k) is defined as an integer value to represent that two events ei
k and ej

k is
either direct event (=1) or in between some other events (>1) [19]. Suppose paij is
denoted as a path from an event ei

k to another event ej
k
 in a case C.

 Process Discovery by Synthesizing Activity Proximity and User's Domain Knowledge 97

• paij
k={ei

k, el
k, el+1

k, …,el+m
k,…,el+M

 k, ej
k}, (ei

k, el
k)∈S, (el+M

k, ej
k) ∈S, (el+m

k, el+m+1
k)

∈S, ∀m
When there is a path paij from ei to ej, the distance between the two events is

1k k
ij ijd pa= −

(1)

Definition 3. Proximity
Proximity is defined as the closeness of two activities. First, we need to calculate the
distance between two traceable events. The proximity value, which is denoted by qij

k,
is defined as in equation (2). Second, we need to get an average proximity score from
all cases. Notation hij

k equals to 1 if ej
k is the post-event of ei

k
 in k-th case, otherwise 0.

To gain the average proximity score (PSij) of event ei
k and ej

k considering all K cases,
we should sum all qij

k

and divide it by K. It is measured by the equation (3).

k
ij

k
ijk

ij d

h
q =

 (2)

K

q
PS

K

k

k
ij

ij


== 1

 (3)

Definition 4. Process Model with Graph (Graph-net)
Process model with graph representation (Graph-net) is denoted as tuple (V, ED)
where V is a vertex and ED is an edge to connect V (ED⊆ V × V).

1. V = A × {0,1} represents the event set of activity name and event type. For each
event ei

k with specific event type i.e. schedule, there is a vertex vi ∈V.
2. ED represents the edge set. Basically, for each event ei

k which has direct event
ej

k, there is an edge edij = (vi, vj) | vi, vj ∈V, to represent ei
k
 ≻ ej

k.
3. If there is exist vi ∈V such that edji =∅, then vi is a start activity. A set of start

activity (AS) is the same with a set of start event (ES)
4. If there is exist vi ∈V such that edij =∅, then vi is an end activity. A set of end

activity (AE) is the same with a set of end event (EE).

Definition 5. Soundness. Soundness is considered as a correctness criterion of a
process model [6]. Soundness can be verified using standard Petri-net-based analysis
techniques. The following are well-known correctness criterion.

1. safeness: in the use of Petri net, we can say that a place cannot hold multiple
tokens at the same time.

2. proper completion: there should be no in-progress activity when the final
activity is completed.

3. option to complete: there should always possible to reach final activity.
4. absence of dead tasks: all activities of the model are potentially reachable.

Since we use graph to represent the result of our approach, it is an obvious that
safeness criterion is not matched. Note that the option to complete implies proper

98 B.N. Yahya et al.

completion. Thus, we proceed other two criterions as the basis of soundness in our
study.

Definition 6. Domain Knowledge
There are five definitions of domain knowledge. They are causal dependency, not-
related, parallel, designated start and designated end. Domain knowledge are
interpreted over graphs as follows.

• Causal dependency. Causal dependency is denoted as CL where CL ⊆{clij =
(vi,vj) | vi, vj ∈V } is the set of two vertices where clij is the existence that two
vertices vi and vj have causality relationship. (xij=1).

• Not-related. Not-related relationship is denoted as NR where NR ⊆{nrij =
(vi,vj) | vi, vj ∈V } is the set of two vertices where nrij represent that two
vertices vi and vj have no relationship. (xij=0).

• Parallel. Parallel relationship is denoted as PL where PL ⊆ {plij = (vi,vj) | vi,
vj ∈ V} is the set of two vertices where plij is the existence that two vertices vi

and vj are parallel. The element (vi,vj) ∈ PL represents the fact that vi parallels
with vj. Thus, there is no relation between two vertices vi and vj such as xij=0
and xji=0.

• Designated Start. Designated start is denoted as desStart ⊆{dsti = vi |vi ∈V }
is the set of vertices that is possible for being a start activity in a process model
(xji=0)

• Designated End. Designated end is denoted as desEnd ⊆{dsei = vi | vi ∈V }
is the set of vertices that is possible for being an end activity in a process
model (xij=0)

Since the concept of proximity includes both traceable and direct events, then it is
necessary to measure the benefit and cost of including the relations of two events to
find all relevant behaviors. Here, we introduce benefit and penalty as a trade-off score
to get the required process model.

Definition 7. Benefit and Penalty
In this approach, we introduce benefit (Bij) and penalty (Pij) score to represent priority
selection when such extra behavior of event i and j is required. The score between
event i and j for best adjacent selection is necessary for two aspects. First, the measure
applies high benefit for selecting a direct succession event as adjacent task in process
model. Second, it is required not to choose irrelevant behavior based on event logs by
giving high value of penalty. Since the user can arbitrarily choose the parallel,
causality and not-related relationship according to their knowledge, it needs measures
to carefully modify current log relations and select the best relations to result a
process model. If there exists a link between event i and j in the event log, then we put
value the maximum of qij

k in the benefit and 0 in penalty (since it is our intention to
create the process model). On the other hand, we put the value 0 in the benefit and the
maximum of PSij in penalty to restrict the selection of those event relations which
does not exist in the link. The formula to generate the value of benefit and penalty for
all relationships is shown in equation (4) and (5).

 Process Discovery by Synthesizing Activity Proximity and User's Domain Knowledge 99

,
max() , 0

0 , 0

ij i j ij
i j

ij

i j ij

PS v v F
B

v v F

 ∀ ∧ >= 
∀ ∧ =

(4)

,
max() , 0

0 , 0

ij i j ij
i j

ij

i j ij

PS v v F
P

v v F

 ∀ ∧ == 
∀ ∧ >

(5)

The integer linear programming (ILP) is first proposed to determine a graph model
from log. Previous works used constraint satisfaction problem as a tool to extract
graph model [11]. Others use inductive logic programming as an approach to make
negative events [12]. In this study, integer linear programming (ILP) is chosen for a
reason to reduce the polynomial time [18], as one problem of complexity in previous
approach based on constraint satisfaction problem [11].

max () *ij ij ij ij ijW F PS B P x= + + −

(6)

s.t.

PLvvx jiij ∈∀=),(0 (7)

PLvvx ijji ∈∀=),(0 (8)

NRvvx jiij ∈∀=),(0 (9)

CLvvx jiij ∈∀=),(1 (10)

0ij i
j

x v desEnd= ∀ ∈ (11)

0ji i
j

x v desStart= ∀ ∈ (12)

1 ,ij i E i
j

x v E v desEnd≥ ∀ ∉ ∀ ∉ (13)

1 ,ji i S i
j

x v E v desStart≥ ∀ ∉ ∀ ∉ (14)

EDvvx jiij ∈∀∈),(},1,0{ (15)

In this study, the objective function attempts to find the maximum value of

proximity to mine a graph net from a log (Equation 6). If there is an adjacent relation
between event i and j, then obvious that the value is greater than 0 (Fij > 0, Bij > 0,
Pij=0). If there is no adjacent relation between event i and j, there may be two options.

100 B.N. Yahya et al.

 First, no adjacent relation but exist traceable relation. the proximity score
may have greater value than 0 (PSij >0, Bij =0, Pij >0) since two activities are
reachable in the event logs.

 Second, no adjacent relation and no traceable relation. There is no proximity
score (PSij =0, Bij =0, Pij >0), which is no two traceable events in the logs.
Thus, it will return the best adjacent relation according to the given PS value
(existing traceable events).

In order to maximize W, the value of Pij should be minimized. To discover a
process model with minimum penalty (Pij=0), a process model should contain only
direct event (Fij >0). The value of the penalty will be equal to maxk (qij

k) when user’s
domain knowledge contradict with the existing log behavior, i.e. there is no direct
event between two vertices such that Fij=0. In the case that Pij is equal to maxk (qij

k),
then Bij is equal to 0 and it has extra log behavior.

Constraint (7) and (8) show the relations between vertex vi and vj should equal to 0
if two events are considered having parallel relation. Constraint (9) presents the
relations between vertex vi and vj should equal to 0 if two events are considered
having not related relation. Constraint (10) describes the relations between vertex vi
and vj should equal to 1 if two events are considered having causal relation.

Constraint (11) and (12) denote designated start and end activity. Constraint (11)
indicates that the relations between vertex vi and vj should equal to 0 for all vertices vi
that is a designated end activity (vi ∊ desEnd). Constraint (12) expresses that the
relations between vertex vi and vj should equal to 0 for all vertices vi that is a
designated start activity (ei ∊ desStart)

To obtain a sound process model, it is necessary to build constraints that satisfy the
soundness property, as defined in definition 11. For verifying the soundness of
process model (option to complete and absence of dead tasks), there should be a
constraint to enforce a connection between vertex which neither start nor end event.
Constraint (13) shows that the relations between vertex vi and vj should be greater or
equal to 1 for all vertex vi that is not an end activity (vi ∉ AE) and a designated end
activity (vi ∉ desEnd). Meanwhile, constraint (14) defines that the relations between
vertex vi and vj should be greater or equal to 1 for all vertex vi that is not a start
activity (vi ∉ AS) and a designated start activity (vi ∉ desStart). To conform to the
requirement of constraints in finding the required objective function, it is necessary to
make a decision variable (15). A decision variable, xij, equals to 1 if vertex vi
immediately precedes vertex vj, where (vi ,vj) ∈ ED; 0, otherwise.

4 Implementation

The proximity miner is implemented in ProM process mining framework and
demonstrated using port logistics data. Since the workflow model element consists of
two types, schedule and complete, each event should be identified by a concatenated
key of workflow model element and event type. The mathematical model was
implemented using a commercial software LINGO 11.0 and an open source of linear
programming tool, LpSolve 5.5.0. It runs on a desktop computer with Core i7 860
2.80 GHz, 8 GB RAM. Fig. 3 shows the main page of proximity miner in the Process
Mining Framework, called ProM. Fig. 4 shows the result of proximity miner by using
a case study on port logistics process.

 Process Discovery by Synthesizing Activity Proximity and User's Domain Knowledge 101

Fig. 3. Main page of proximity miner

Fig. 4. Result of Proximity Miner

Some data experiments (as shown in Table 1) were used to analyze the
performance of proximity miner. It shows that proximity miner runs slower when data
includes a lot of loop behavior. In the process mining setting, running times for
solution approaches do not usually represent a major issue (as algorithms are applied
offline, i.e. during the (re)-design phase). Since the main focus of this study is about
generating a better quality of the mining result, we put the performance problem as
our future work. Container data are used for the experiment with the conformance
checking tool. The proposed algorithm is converted into Petri Net and evaluated using
existing conformance checker tool. For a comparison with other mining techniques,
the experiment is also conducted using container data in alpha miner and heuristic
miner (see Table 3).

Table 1. Analysis of Port Logistics Process

Data Cases Events Performance Note
Container 14,481 65,307 9 sec 302 ms -
Vessel 22 15,787 1 min 50 sec High frequency of loops
Truck 18 21,270 1 min 23 sec High frequency of loops
Block 7624 25580 2 sec 267 ms -
QuayCrane 8 16211 1 min 47 sec High frequency of loops
YardCrane 24 56975 8 min 30 sec High frequency of loops

102 B.N. Yahya et al.

In this study, we apply the measures from Rozinat and van der Aalst (2008), fitness
and behavioral appropriateness. Fitness (f) is a metric that is obtained by trying
whether each (grouped) sequence in the event log can be reproduced by the generative
model. It is often called as sequence replay. By using a generative model of Petri Net,
the initial value of f at the start of sequence replay is a value of one. Behavioral
Appropriateness (ABA) is a metric that obtained by an exploration of the state space
of a Petri Net and by comparing the different type of follows and precedes
relationships that occur in the state space with the different types of follows and
precedes relationships that occur in the event log. It defined as the proportion of
number of follows and precedes relationships that the Petri Net has in common with
the event log vis-a-vis the number of relationships allowed by the Petri Net. Degree
Model Flexibility (DMF), as a part of ABA, is a metric that allow the flexibility in the
model according to the activity relations derived from the log. It equals to 0 for a
model that only allows for on particular sequence of steps, 1 for the "flower" model
allowing for arbitrary execution of the contained steps.

Experiment result using real log with data information of container (in Table 1) is
shown in Table 2. By applying constraints from 0-30, it shows the result of f-measure
(fitness measure), ABA and DMF value. The result of f-measure and DMF are
slightly decreasing when the constraints are larger. Since f-measure is a sequence
replay of mined model from event log, it is certain that it goes lower when the
constraint is larger. In the perspective of DMF, it shows that larger constraints draw a
slight increment on the measure with constraint equals to 10 and 15. Afterward, it
shows a better model to represent the flexibility of sequences. ABA measure shows
that the behavior of the mined model is gradually increasing when the constraint is
larger. It means that the process model has high proportion of precedence and follows
relatioship with event log.

Table 2. Experiment Result from real log (full log) for proximity miner

Number of
constraints

0 5 10 15 20 25 30

f-measure 1 0.99 0.99 0.99 0.99 0.99 0.99
ABA 0.61 0.63 0.63 0.64 0.68 0.69 0.69
DMF 0.62 0.57 0.7 0.71 0.67 0.69 0.56
Time (sec) 16.615 16.442 14.533 14.583 15.584 15.367 16.175

Table 3. Comparison of experiment result from real logs (Container Data, as mentioned in
Table 2) with other mining techniques (AM = alpha miner, HM = heuristic miner,
PM = proximity miner)

f ABA DMF Time (sec)
AM HM PM AM HM PM AM HM PM AM HM PM
0.71 0.98 0.99 0.72 0.82 0.69 0.32 0.47 0.56 2.961 4.792 16.175

 Process Discovery by Synthesizing Activity Proximity and User's Domain Knowledge 103

5 Related Work

Over the last decade, there are various techniques and algorithm to mine process
model from logs [2][3][4][5][9]. Those methods demonstrate the construction of
process models from logs (i.e. process discovery), or the identification of
discrepancies between logs and a given predefined process model (i.e., conformance
testing). A process model can be compared with the process knowledge of experts by
utilizing the conformance checking algorithm, which is available as one of a kind of
process mining function [6]. Overall, both process discovery and conformance
checking, as important components of process mining, help a process manager to
enhance the productivity of business process from the point of view of process models
extracted from logs.

In the domain of process mining, there are a few prior works which include prior
knowledge setting. Using the traditional techniques in process mining, several
approaches, i.e. alpha mining [4], region-based mining [9], allow user's intervention
to the result of mined models to improve the quality of the process model. Since they
use manual post processing, their modification technique toward the user requirement
is not compatible and somehow unsound, e.g. modification of events that occur in
sequence to be a parallel behavior (some activities may not be connected), events that
occur in sequence may not represent as adjacent in the process model (some activities
may not reach finish properly) etc. can result connectedness problem. Current
approaches, artificial generated negative events (AGNEs) [12] and process discovery
via precedence constraints [11] have an attempt to cover the limitation on traditional
techniques. AGNEs has detailed description of generating artificial negative events
rather generating constraint. In addition, the generated negated events, which also
include log's noise, may possibly lead to false conclusions. The work on precedence
constraints seems more similar to this proposed approach. However, there is no
discussion on soundness property, which is important in the domain of process
discovery i.e. expert give the desired constraints and lead to discover unsound
process. Moreover, some other issues such as additional constraints (i.e designated
start, designated end), which is very critical issue for process discovery, and interface
for the convenience of users are not discussed in detail. This study attempt to cover
the limitation of previous works by including user's knowledge on mining the model.

ILP Miner [3] had already been proposed to discover the process model based on
the optimization problem using linear programming technique. However, it focused
on the extraction of process models where all possible orderings of events must be
satisfied under certain constraints. Proximity miner with user's domain knowledge
aims at representing process models with additional logs behavior which only experts
who can acknowledge it. Proximity miner also uses ILP and shows a method of
reflecting user’s knowledge. This method is expected to reduce the time taken to
discover a model compared with that of using constraints satisfaction problem [18].

104 B.N. Yahya et al.

6 Conclusion

This study proposed a new mining algorithm, called as proximity miner. It has
advantages on some aspects. First, it can resolve soundness problems when it
acknowledges extra behavior, which is not extracted using the current mining
techniques. The extra behavior, which is invoked by users, may cause soundness
problem if those behaviors do not exist in the logs i.e. the existing of parallel activities
which result either clustered process model or not-connected activity. Second, it is
able to detect traceable event to be a potential direct succession (adjacent) by using
the proximity score. It was demonstrated that it is a useful mining tool when user
intend to apply their subjective knowledge for retrieving process model.

There are open issues for further work. Semantic detection based on certain event
type may show formalize model that useful for users, i.e. a schedule event which is
not directly followed by complete event can be considered as a parallel activity. In
addition, the existing of loop behavior may cause a clustered process model which is
regarded as unsound. Finally, it also requires a method to reduce the computational
time. Those remaining issues are considered as our future work.

Acknowledgment. This work was partly supported by the SW R&D program of
MKE/KEIT [10045047].

References

1. Kawalek, P., Kueng, P.: The Usefulness of Process Models: A lifecycle Description of
how Process Models are used in Modern Organisations. In: Proceedings of the Second
CAiSE/IFIPS. 1 International Workshop on Evaluation of Modelling Methods in Systems
Analysis and Design, pp. 1–12 (1997)

2. Weijters, A.J.M.M., van der Aalst, W.M.P., de Medeiros, A.K.A.: Process mining with
heuristics miner algorithm. Eindhoven University of Technology, Eindhoven (2006)

3. van der Werf, J.M.E.M., van Dongen, B.F., Hurkens, C.A.J., Serebrenik, A.: Process
Discovery Using Integer Linear Programming. In: van Hee, K.M., Valk, R. (eds.) PETRI
NETS 2008. LNCS, vol. 5062, pp. 368–387. Springer, Heidelberg (2008)

4. van der Aalst, W.M.P., Weijters, A.J.M.M., Maruster, L.: Workflow Mining: Discovering
Process Models from Event Logs. IEEE Transactions on Knowledge and Data
Engineering 16(9), 1128–1142 (2004)

5. van der Aalst, W.M.P.: Process Mining: Discovery, Conformance and Enhancement of
Business Processes. Springer, Berlin (2011)

6. Rozinat, A., de Medeiros, A.K.A., Gunther, C.W., Weijters, A.J.M.M., van der Aalst,
W.M.P.: Towards an evaluation framework for process mining algorithm. Eindhoven
University of Technology, Eindhoven (2007)

7. Koren, Y., North, S.C., Volinsky, C.: Measuring and Extracting Proximity Graphs in
Networks. Journal ACM Transactions on Knowledge Discovery from Data (TKDD) 1(3)
(2007)

8. Gunther, H.O., Kim, K.H.: Container Terminals and Automated Transport Systems:
Logistics Control Issues and Quantitative Decision Support. Springer, Berlin (2005)

 Process Discovery by Synthesizing Activity Proximity and User's Domain Knowledge 105

9. Bergenthum, R., Desel, J., Lorenz, R., Mauser, S.: Process Mining based on regions of
languages. In: Alonso, G., Dadam, P., Rosemann, M. (eds.) BPM 2007. LNCS, vol. 4714,
pp. 375–383. Springer, Heidelberg (2007)

10. van Dongen, B.F., van der Aalst, W.M.P.: A Meta Model for Process Mining Data. In:
Casto, J., Teniente, E. (eds.) Proceedings of the CAiSE 2005 Workshops (EMOI-
INTEROP Workshop), Porto, Portugal, pp. 309–320 (2005)

11. Greco, G., Guzzo, A., Pontieri, L.: Process Discovery via Precedence Constraints. In:
ECAI (2011)

12. Goedertier, S., Martens, D., Vanthienen, J., Baesens, B.: Robust Process Discovery with
Artificial Negative Events. Journal of Machine Learning Research 10, 1305–1340 (2009)

13. de Amo, S., Furtado, D.A.: First-order temporal pattern mining with regular expression
constraints. Data & Knowledge Engineering 62, 401–420 (2007)

14. Guns, T., Nijssen, S., De Raedt, L.: Itemset mining: A constraint programming
perspective. Artificial Intelligence 175, 1951–1983 (2001)

15. Barba, I., Weber, B., Valle, C.D., Jimenez-Ramirez, A.: User recommendations for the
optimized execution of business processes. Data & Knowledge Engineering 86, 61–84
(2013)

16. Rashidi, H., Tsang, E.P.K.: Novel Constraints satisfaction models for optimization
problems in container terminals. Applied Mathematical Modelling 37, 3601–3634 (2013)

17. Džeroski, S.: Inductive Databases and Constraint-Based Data Mining. In: Jäschke, R. (ed.)
ICFCA 2011. LNCS, vol. 6628, pp. 1–17. Springer, Heidelberg (2011)

18. Salvagnin, D.: Constraint Programming Techniques for Mixed Integer Linear
Programming, Padova (2008)

19. Yahya, B.N., Bae, H., Bae, J., Liu, L.: Tool Support for Process Modeling using Proximity
Score Measurement. International Journal of Innovative Computing, Information and
Control 8(7B), 5381–5399 (2012)

20. van der Aalst, W.M.P., Schonenberg, M.H., Song, M.: Time Based Prediction on Process
Mining. Information Systems 36(2), 450–475 (2011)

A Methodological Evaluation of Business
Process Compliance Management Frameworks

Mustafa Hashmi1,2 and Guido Governatori1,2

1 NICTA� Queensland Research Laboratory, 2 George St. Brisbane Australia
{mustafa.hashmi,guido.governatori}@nicta.com.au

2 Queensland University of Technology (QUT) Brisbane, Australia

Abstract. Existing compliance management frameworks (CMFs) offer a mul-
titude of compliance management functionalities for the modeling of specific
norms for specific domain and compliance checking of normative requirements.
This makes difficult for enterprises to decide on a framework suitable for their
compliance requirements. Making a decision on the suitability requires a deep
understanding of the functionalities of a framework. Gaining such an understand-
ing is a difficult task which, in turn, requires specialised tools and methodologies
for evaluation. Current compliance research lacks such tools and methodologies
for evaluating CMFs. This paper reports a methodological evaluation of existing
CMFs based on pre-defined evaluation criteria. Our evaluation highlights what
existing CMFs can offer, and what they cannot. Also, it underpins various open
questions and discusses the challenges in this direction.

Keywords: Business Processes, Compliance management, Compliance manage-
ment frameworks.

1 Introduction

The demand for reporting compliance puts pressure on enterprises to streamline their
processes within the defined limits for better transparency and effective control over
their operations. Essentially, compliance is an enterprise’s ability to meet all the gov-
erning regulations enforced on its business operations. This demand has become even
stronger after the fall of big corporate names like Enron, American International Group
(AIG) which resulted in, due to non-adherence to regulations, the emergence of regu-
latory acts e.g., Sarbanex-Oxley Act, BASEL-III etc. These acts place restrictions and
provide guidelines for enterprises on how to perform their business operations to stay
compliant, and impose severe financial and criminal penalties otherwise.

Business processes provide enterprises an abstract view of the state of the affairs on
how they are achieving business objectives, and implement regulatory policies govern-
ing their business operations. That is why enterprises use business processes to verify
the effectiveness of regulatory laws and policy controls. Currently, enterprises employ
a number of business process compliance checking strategies: modeling-time where the

� NICTA is funded by the Australian Government as represented by the Department of Broad-
band, Communication and the Digital Economy and the Australian Research Council through
the ICT Centre of Excellence program.

M. Song, M.T. Wynn, and J. Liu (Eds.): AP-BPM 2013, LNBIP 159, pp. 106–115, 2013.

The original version of this chapter was revised: The copyright line was incorrect. This has been
corrected. The Erratum to this chapter is available at DOI: 10.1007/978-3-319-02922-1 10

Springer-Verlag Berlin Heidelberg 2013©

http://dx.doi.org/10.1007/978-3-319-02922-1_10

Compliance Frameworks Evaluation 107

analysts verify the non-compliant behavior before a process can be implemented, while
processes are continuously monitored at execution-time, and logs are audited after-
execution for any non-compliant patterns, see [13] for more details.

To support these strategies, a large body of compliance management frameworks
(CMFs) has emerged, see [3] for a list of existing approaches. Each of these frameworks
bears specific functional and operational capabilities, supports specific compliance re-
quirements and domains, and claims to be a complete compliance solution. Such a
multitude creates confusion for enterprises to decide on the suitability, and accordingly
generate their compliance requirements. Deciding on the suitability requires a very care-
ful and deep understanding on various features of a CMF which, in turns, is a difficult
task and requires specific tools and methodologies. So far no accepted methodologies
and tools exist that can be used to evaluate various features of CMFs. We address this
issue and report a methodological evaluation of the selected CMFs on how they achieve
compliance. The specific questions of this paper are: how compliance is secured, and
whether all types of norms are supported. Addressing these questions will provide bet-
ter understanding on the various functionalities of CMFs, also it identifies issues related
to the normative requirements modeling and shortcoming of existing CMFs. Therefore,
a diverse community may be benefited from this evaluation to obviate the deficiencies
this evaluation may highlight.

The rest of the paper is structured as follows: Section 2 describes our research ap-
proach and a detailed discussion on the normative requirements followed by a com-
prehensive evaluation of the selected CMFs in Section 3. A short discussion on the
conducted evaluations is presented in Section 4. Section 5 discusses the related work in
the problem domain and gives some pointers on the future work to conclude the paper.

2 Research Approach

In this section, we present our research approach to conduct this evaluation. We adopted
a systematic case study based shallow evaluation strategy which allowed us to start the
evaluation with minimal information available on the CMFs. We followed a three steps
structured approach where, we first defined the evaluation objectives and criteria, and
then selected frameworks based on pre-defined criteria:

Evaluation Objectives: Our objective is to examine the conceptual foundations of ex-
isting CMFs. We specifically look at the conceptual approach a framework proposes
to secure compliance, and the support for the normative requirements: more specif-
ically what constructs are provided for modeling the norms. In addition, how the
norms are linked to business processes for compliance checking.

Evaluation Criteria: We determined a three steps selection criteria to identify repre-
sentative frameworks for this evaluation (1) level of compliance management: this
criterion describes the level of support a framework provides. We only selected
CMFs which provide full compliance management support and did not consider
those merely provides a compliance checking algorithm or a modeling language,
(2) requirements modeling: this criterion allows examining how frameworks model
different types of compliance requirements, and using which formal logic. Es-
sentially, this criterion is used to identify the modeling constructs for a specific

108 M. Hashmi and G. Governatori

obligation type proposed in a framework. For this purpose, we provide a classi-
fication of normative requirements which has been obtained in a systematic and
exhaustive way by considering the aspect of validity of obligations or prohibitions
and what it means to violate them and what happens after they have been violated.
(3) requirements linking: this criterion allows identifying how different frameworks
link the compliance requirements with business process models for compliance
checking.

Sample Frameworks Collection: Although we reviewed and analysed several CMFs,
we abstained from doing a systematic literature survey as in [6] rather we selected
frameworks based on expert discussions, and mostly cited in literature. In addition,
we also considered the evaluation criteria while selecting the evaluated frameworks.
We believe the selected frameworks are best suited for our evaluation according to
the aforementioned criteria.

2.1 Normative Requirements

In the legal context, norms are meant to control the behaviour of their subjects and
define whether something is legal or not. Typically norms describe their application
conditions and the legal effects they produce when applied. [9] provides a comprehen-
sive list of normative effects. From a compliance perspective the normative effects of
interest are the deontic effects (a.k.a normative positions). The basic deontic effects are:
obligation, prohibition, and permission1. Consider the definitions of the basic deontic
effects as defined by the OASIS LegalRuleML working group2.

Obligation: A situation, an act, or actions to which a bearer is legally bound, and if it
is not achieved or performed results in a violation.

Prohibition: A situation, an act, or actions which a bearer should avoid, and if it is
achieved or performed results in a violation.

Permission: Something is permitted if the obligations or prohibitions to the contrary
do not hold.

Obligations and prohibitions act as constraints restricting the operations of business
processes. What makes them different from other types of constraints is that they can
be violated, but a violation does not mean inconsistency within the process with the
consequent termination of or impossibility to continue the process. Also, it is common
that violations can be compensated for, and processes with compensated violations are
still compliant [13]. For example, usually contracts contain compensatory clauses spec-
ifying penalties and other sanctions to counter the violation of an obligatory clause [10].
However, not all violations are compensable, and uncompensated violations mean that
a process is not compliant. Permissions are a special case of deontic effects and cannot
be violated. Hence, they have no explicit role in compliance; rather they can be used
to define that there are no obligations or prohibitions to the contrary, or to derive other

1 There are other deontic effects, but these can be derived from the basic ones, see [19].
2 The OASIS LegalRuleML glossary is available at:
http://www.oasis-open.org/apps/org/workgroup/
legalruleml/download.php/48435/Glossary.doc

http://www.oasis-open.org/apps/org/workgroup/legalruleml/download.php/48435/Glossary.doc
http://www.oasis-open.org/apps/org/workgroup/legalruleml/download.php/48435/Glossary.doc

Compliance Frameworks Evaluation 109

deontic effects. Legal reasoning and legal theory typically assume a strong relationship
between obligations and prohibitions as they are dual of each other: the prohibition of
A is the obligation of ¬A, or if A is obligatory then ¬A is prohibited [19].

Compliance aims at verifying whether a business process fulfills a set of obligations
or not. For such a verification the first step is to determine whether and when an obli-
gation is in force. Hence, an understanding on the lifetime of an obligation and related
implications on the activities in a process is particularly important. This raises the ques-
tion how long does an obligation hold for, and based on this which are the different
conditions to fulfill the obligation. A norm can specify that an obligation is in force at
a particular point of time, or more often indicates when it enters into force. An obliga-
tion remains active until it is terminated or removed. Accordingly, we will speak of a
punctual obligation in the first case, and persistent obligation in the second.

In case of persistent obligations we can ask if we have to obey the obligation condi-
tions for all instants in the interval in which it is in force, maintenance obligations, or
whether meeting those conditions at least once is enough, achievement obligations. Fur-
thermore, in case of an achievement obligation whether the obligation condition can be
met even before the obligation is actually in force. If this is the case, then the obligation
is preemptive, otherwise we have a non-preemptive obligation.

Termination of obligations is an important aspect of norms. Norms can specify the
interval in which an obligation is in force. As was previously discussed that the viola-
tion of obligation conditions is what differentiates obligations from other constraints.
The question is how the violation effects the obligation? Does the violation terminates
the obligation or we still need to meet the conditions of a violated obligation? If we
do –the obligation persists even after a violation –we speak of a perdurant obligation,
and if not –then we have a non-perdurant obligation.

From the discussion above it is clear that different types of obligations have different
compliance requirements. Hence, a ‘one size fits all’ approach is far from being satis-
factory from a conceptual point of view, and also a CMF not representing the various
nuances of obligation is not conceptually sound, and it might not be suitable to provide
any certification of compliance acceptable to accredited certifying organisations.

3 Evaluation of Frameworks

3.1 PENELOPE

PENELOPE (Process Entailment from Elicitation of Obligations and Permissions [8])
is a declarative language that captures obligation and permission constraints imposed
on business processes by business policies. Aiming at providing a design-time compli-
ance verification, the language uses an algorithm that progressively generates the state
space and control-flow of a business process. The state space in a PENELOPE gener-
ated process is the set of obligations and permissions that are active at a particular state.
The interaction between the generated process models flows from state to state, and all
the states are enumerated until no obligation or permission holds at a state or if there is
a violation which cannot be repaired. Once all the states are computed, the algorithm
draws the BPMN model for a role involved in the business interaction. The tasks of the
process are drawn whenever an obligation set contains all obligations fulfilled by a role

110 M. Hashmi and G. Governatori

in the activity. PENELOPE allows for the modeling of interaction between all involved
partners and any violations from a third partner are represented as time out events in the
generated BPMN model. In addition, errors and end events are drawn if there is a vio-
lation of an obligation or permission by a role in a state. With the designed compliant
process models various inconsistencies e.g. deontic conflicts can be identified.

The deontic assignments in the PENELOPE are modeled using event-calculus that
provides a rich semantics to reason about the normative requirements. However, cur-
rently PENELOPE can only support achievement obligations and permissions while no
other obligations types are explicitly supported as shown in Table 1. PENELOPE can
model achievement obligations because they permit to explicitly define deadlines in the
form of precedence rules. Prohibitions are not considered under close-world assump-
tion (CWA) to avoid the anomalies that might occur because of incomplete knowledge
about all the parties involved in the business interaction.

Violations in PENELOPE can only occur in the form of deadlock situations or tem-
poral conflicts. Deontic conflicts cannot occur in PENELOPE generated BPMN models
because the framework does not consider prohibitions or waived obligations. Moreover,
no support for compensation obligation is provided because PENELOPE does not offer
any mechanism to handle violations and this is left to the process modelers.

3.2 Process Compliance Language (PCL)

PCL (Process Compliance Language) [11] is a formal framework based on defeasible
and deontic logic. It provides a conceptually rich formal foundation to model norms,
and is able to efficiently capture the intuition of almost all types of normative require-
ments. Norms are modeled in the form of PCL rules for which the framework provides
rich semantics. The state variables and the tasks in a process are represented by a set
of propositional literals. ¬ negation, ⊗ non-boolean connective operator (for violations
chains), and deontic operators representing obligations and permissions are used to con-
struct the logic formulas called PCL specifications. The tasks in business processes are
annotated with PCL specifications that are either provided by the domain experts or
automatically extracted from the schemas of the databases or data sources linked to the
processes [14]. These annotations are used to analyse whether the behavior of an exe-
cution path is consistent with the annotated specifications. For this purpose, a three-step
algorithm is used in which first the process graph is traversed to find the set of effects
for all tasks. These effects are then used to determine the norms in force for the tasks.
The effects of the tasks and pertaining obligations are then compared in the last step to
find any divergent behavior. The compliance of the norms is reported as full, partial, or
not compliant by the algorithm.

The rich combination of defeasible and deontic logic allows PCL to model almost
all types of obligations as depicted in Table 1 and other aspects of normative reason-
ing. This is because the use of two logics where deontic logic provides the support to
model obligation’s violations and chains of reparation, while the issue of partial in-
formation and inconsistent prescription is handled by defeasible logic [12]. To model
the fundamental obligations PCL provides three modeling constructs: punctual (Op),
maintenance (Om), and achievement (Oa), and an operator to express the orthogonal
distinction between the classes of achievement obligations e.g., premeptive obligations.

Compliance Frameworks Evaluation 111

Violations and obligations arising from the violations are major concerns in CMFs;
PCL provides effective management of the violations and their compensations. For this
purpose PCL defines a special contrary-to-duty non-boolean ⊗ connective that is used
to create reparation chains for handling multiple violations of obligations. As discussed
in Section 2.1 some obligations may perdure and remain in force no matter how many
times they may have been violated, but currently PCL cannot handle such obligations.

3.3 DECLARE

Declare [5] is a prominent framework for run-time verification of constraint-based
declarative models. A declarative model describes what a model does by specifying
the business constraints as rules that should not be violated. The business knowledge in
Declare is defined in terms of constraints using ConDec (Constraint Declarative [18]3),
a language which provides graphical notations to model the flows of business interac-
tions. Declare models (also templates) are enacted by a workflow engine that is used
to verify the compliant interaction between the tasks in the model. The framework in-
cludes two types of constraints i.e., mandatory and optional constraints on the process
models. In a Declare model, a process instance can only be active when there is not
violation of the mandatory constraints and all the constraints are fully satisfied at the
end of the execution of the instance. The verification results of each constraint of an
active instance are expressed as satisfied, temporarily violated, and violated. In case all
the constraints are satisfied the activities are not executed any further, but if there is a
violation state no possible further execution would be allowed to satisfy the constraints.
Accordingly, in the temporarily violated state the constraints are not satisfied, but there
would be a possibility to satisfy the constraints.

Business constraints (norms) in the Declare framework are modeled by means of
Declare expressions which are grouped as existence, relations, choice and negative con-
straints. The majority of these constraints are used to express obligations while the neg-
ative constraints express prohibitions. These constraints correspond to LTL expressions
that provide the semantics to the Declare graphical notations. Currently, only achieve-
ment obligations and prohibitions can be modeled in the Declare Model, while no other
norms types can be explicitly modeled, see Table 1. Since achievement obligation de-
fines deadlines and the obligation condition must be true for at least once, the support
for such obligations is only available because the tasks in the Declare model with such
constraints will be performed in some future time. However, persistence and preemp-
tiveness of obligations cannot be expressed. Constraints expressing maintenance obliga-
tion, on the other hand, can be problematic in Declare because the obligation conditions
must hold in all instances throughout the execution of the process. There might be some
situations when the applicable maintenance obligation constraints might not be present
thus there will be deadlock in the course of interaction between the tasks. Declare is
able to identify conflicts among constraints in the model; it does not provide any sup-
port to handle violations because of the lack of the declarative nature of the LTL and
the non-deterministic behavior of the process models. Hence, in case of a violation the

3 From Nov 2012, the name of ConDec language has been changed to Declare see
http://www.win.tue.nl/declare/2011/11/declare-renaming/

http://www.win.tue.nl/declare/2011/11/declare-renaming/

112 M. Hashmi and G. Governatori

interaction between the tasks in the Declare model will be stopped and no further activ-
ity can be performed. Accordingly, it is not possible to express permissions and so are
compensations and perdurant obligations.

3.4 BPMN-Q

BPMN-Q (Business Process Modeling Notation-Query [1]) is a query based automated
compliance checking framework capable to answer YES/NO type answers to query
questions. The framework can model control-flow, data flow and conditional flow re-
lated compliance rules using visual patterns. These visual patterns are translated into
LTL formulas for checking the structural compliance of a processes model. The frame-
work adopts a systematic approach to generate the patterns of compliance rules in the
form of query templates. These templates are used to identify the set of process mod-
els subject to compliance checking in the process repository. Compliance checking is
carried out in several steps. First, BPMN-Q sub-graphs are extracted from the pro-
cess repository using temporal query templates. The query processor only extracts pro-
cesses that structurally match the query template. These sub-graphs are then reduced
by eliminating irrelevant activities and gateways, and translated into a Petri Net model
to generate the state space. Alongside the state space generation, BPMN-Q queries are
translated into LTL formulas which are then fed into a model checker together with the
generated state space. In turn, the model checker yields YES/NO to indicate whether
the extracted process models comply with the query templates.

The framework uses a visual language BPMN-Q to express various types of com-
pliance rules. The language provides visual notations similar to the standard BPMN
notations. These visual notations provide the constructs to model compliance rules.
Currently, the framework is able to handle almost the same types of obligations as the
Declare framework with the exception of maintenance obligations (cf. Table 1). Mainte-
nance obligations are expressed using the global space presence pattern which enables
the execution of an activity that is required in all process instances.

In BPMN-Q no conceptual or formal constructs have been provided that can ex-
pressively model permissions. Whereas prohibitions are represented by global space
absence to prevent the execution of some activities. Unlike the Declare framework,
BPMN-Q is able to handle violations for which a violation handling approach has been
discussed in [2]. Finally, compensations and perdurant obligations are not supported
because of the use of LTL as underlying formalism to model compliance rules.

3.5 SEAFLOWS

SeaFlows [17] is a CMF for the verification of semantics constraints. It incorporates
a graphical language providing primitives to capture process related complex busi-
ness rules. These compliance rules are modeled in the form of first-order logic pred-
icates equivalent and instantiable to compliance rules graphs (CRG). SeaFlow employs
a structural compliance checking strategy for the verification of compliance rules where
node relations are verified against the imposed constraints. The verification is done in
three steps: in the first step a set of structural templates based on the queries on the
relations of nodes in the process models is automatically derived. Then, the process

Compliance Frameworks Evaluation 113

model is checked against the derived templates to detect any non-compliant structural
templates. The queried templates are then aggregated and fed into the SeaFlows com-
pliance module for further compliance report in the last step. The compliance results
are based on the execution of traces of the process models where a process model is
fully compliant when all the activities in the trace comply with the instantiated rule.
Whereas a No is returned to indicate rule violations when no activity in the execution
trace satisfies the rules.

To model compliance rules, the SeaFlows framework adopts a compositional graph-
based modeling formalism allowing for the modeling of the typical antecedent-
consequencet structure of rules. These graphs serve as placeholder for the first order
logic representation of the relevant rules. Although SeaFlows is able to model achieve-
ment obligations which stipulate the occurrence of some event in future time by means
of occurrence pattern, the framework is not able to capture other modalities e.g., punc-
tual, maintenance, permissions, and compensation as depicted in Table 1. Moreover,
compensations and perdurant obligations arising from the violation of the primary obli-
gations cannot be modeled because first-order logic is not suitable to reason about the
normative requirements [16].

Table 1. Normative Requirements Support in Existing CMFs

Framework Obligations Permissions Prohibitions Violations
Punctual Achievement Maintenance Compensation Perdurant

PENELOPE – + – – – + – –
PCL + + + + – + + +
DECLARE – + – – – – + –
BPMN-Q – + + – – – + +
SEAFLOWS – + – – – – + +

4 Discussion

We have evaluated five CMFs using a set of pre-defined evaluation criteria. This method-
ological evaluation examined the salient features of CMFs, and what is lacking in terms
of technical support in compliance domain especially for the modeling of normative
requirements. The evaluation results are shown in Table 1, where the available support
for modeling norms is indicated with ‘+’, not supported with ‘−’.

It is clearly evident that only a fraction of normative requirements are supported as
none of the evaluated CMFs is capable of supporting all types of norms. For example,
PENELOPE is only able to support obligations and permissions. It is unable to model
other obligation modalities, and violations because Event Calculus is not suitable for
reasoning of legal constraints. Contrary to that, PCL supports almost all types of norms
because of the non-monotonic characteristics of the formal logic it uses. The combi-
nation of defeasible and deontic logic allows PCL to provide reasoning for deontic
modalities and violations especially for temporally varying obligations, e.g., achieve-
ment obligations and their persistence over time. As can be seen, PCL does not support
perdurance obligation. DECLARE and BPMN-Q are LTL based frameworks, and only
address ‘structural compliance’ where the tasks are defined by the constraint models.
These frameworks cannot capture the intuition of all types of obligations, violations,
and their compensations. DECLARE can only support achievement obligations and

114 M. Hashmi and G. Governatori

prohibitions while BPMN-Q can support achievement, maintenance, and prohibitions
only. Generally it is highly desirable that a formal language is expressive enough to
cover most of the properties and properties of the environment of the unit under verifi-
cation. In addition, it should also support the complex properties from simpler ones, but
temporal logic lacks such support because it has no conceptual relative correspondence
to the legal domain, thus cannot expressively model the properties of the norms. The
SeaFlows framework, on the other hand, can only support achievement, prohibitions
and violations while other obligations modalities cannot be modeled. Because first or-
der logic is not suitable to reasoning about the normative requirements as it does not
provide operators to represent the properties of norms.

5 Conclusions

We presented a methodological evaluation of some existing CMFs using a shallow, but
sound methodology where we examined the conceptual foundations under pre-defined
evaluation criteria. Specifically we looked at the conceptual approaches existing CMFs
use to deal with the normative requirements related to the regulatory compliance.

[3] offers a literature survey based on the generalisability and applicability of busi-
ness process compliance frameworks. Their evaluation is based on the reported im-
plementation results from the surveyed frameworks, while [6] compares the functional
and non-functional capabilities of regulatory compliance management (RCM) solutions
from a BPM perspective using a large set of evaluation criteria. Similarly, [4] studies
various frameworks using a four point criteria including the study of modeling lan-
guages that are used to model business processes and rules. [7] conducted a comparative
analysis of formal frameworks used to model the compliance rules, and [20] investigates
the practices of regulation analysis and the approaches aiming to achieve and maintain
regulatory compliance of given regulation from an Information Systems and services
perspective. Our evaluation is complementary and different from these studies because
we primarily evaluated existing CMFs to examine what they can do in terms of pro-
viding round-up compliance, and what constructs they provide to model different types
of normative requirements. In addition, we also examined whether existing CMFs can
provide reasoning support for all types of norms or not.

Our evaluation results portray somewhat a bleak picture when it comes to see how
existing frameworks represent the legal knowledge for compliance checking because
none is able to support all types of norms. Primarily this is because of the formal lan-
guage each framework uses to model the norms. This highlights an exigent need for new
compliance rules modeling languages with sound theoretical and formal foundations to
effectively model and faithfully represent the legal knowledge, thus would increase the
effectiveness of CMFs. We plan to conduct the formal semantics evaluation of these
frameworks where we will examine the modeling behavior and constructs provided,
and their correspondence to a specific modeling language. For this purpose, we have
designed a formal framework in which we have provided detailed ontology and for-
mal semantics for each of the normative requirements described in Section 2.1, [15].
The planned evaluation will allow us to examine the expressive power of the compli-
ance rules modeling languages, and to identify what is required in this direction?

Compliance Frameworks Evaluation 115

References

1. Awad, A., Decker, G., Weske, M.: Efficient Compliance Checking Using BPMN-Q and Tem-
poral Logic. In: Dumas, M., Reichert, M., Shan, M.-C. (eds.) BPM 2008. LNCS, vol. 5240,
pp. 326–341. Springer, Heidelberg (2008)

2. Awad, A., Weske, M.: Visualization of Compliance Violation in Business Process Models.
In: Rinderle-Ma, S., Sadiq, S., Leymann, F. (eds.) BPM 2009. LNBIP, vol. 43, pp. 182–193.
Springer, Heidelberg (2010)

3. Becker, J., Delfmann, P., Eggert, M., Schwittay, S.: Generalizability and Applicability of
Model-Based Business Process Compliance-Checking Approaches – A State-of-the-Art
Analysis and Research Roadmap. BuR - Business Research Journal 5(2), 221–247 (2012)

4. Cabanillas, C., Resinas, M., Ruiz-Cortes, A.: Hints on how to face business process compli-
ance. In: III Taller de Procesos de Negocio e Ingenieria de Servicios PNIS 2010 in JISBD
2010, vol. 4, pp. 26–32 (2010)

5. DECLARE. Declarative process models, http://www.win.tue.nl/declare/
6. El Kharbili, M.: Business process regulatory compliance management solution frameworks:

A comparative evaluation. In: APCCM 2012, CRPIT, vol. 130, pp. 23–32 (2012)
7. Elgammal, A., Turetken, O., van den Heuvel, W.-J., Papazoglou, M.: On the formal speci-

fication of regulatory compliance: a comparative analysis. In: Maximilien, E.M., Rossi, G.,
Yuan, S.-T., Ludwig, H., Fantinato, M. (eds.) ICSOC 2010. LNCS, vol. 6568, pp. 27–38.
Springer, Heidelberg (2011)

8. Goedertier, S., Vanthienen, J.: Designing Compliant Business Processes with Obligations
and Permissions. In: Eder, J., Dustdar, S. (eds.) BPM Workshops 2006. LNCS, vol. 4103, pp.
5–14. Springer, Heidelberg (2006)

9. Gordon, T.F., Governatori, G., Rotolo, A.: Rules and norms: Requirements for rule in-
terchange languages in the legal domain. In: Governatori, G., Hall, J., Paschke, A. (eds.)
RuleML 2009. LNCS, vol. 5858, pp. 282–296. Springer, Heidelberg (2009)

10. Governatori, G.: Representing Business Contracts in RuleML. International Journal of Co-
operative Information Systems 14(2-3), 181–216 (2005)

11. Governatori, G., Rotolo, A.: A Conceptually Rich Model of Business Process Compliance.
In: Proceedings of APCCM 2010, vol. 110, pp. 3–12. ACS, Inc., Australia (2010)

12. Governatori, G., Rotolo, A.: Norm compliance in business process modeling. In: Dean, M.,
Hall, J., Rotolo, A., Tabet, S. (eds.) RuleML 2010. LNCS, vol. 6403, pp. 194–209. Springer,
Heidelberg (2010)

13. Governatori, G., Sadiq, S.: The Journey to Business Process Compliance. In: Handbook of
Research on Business Process Management, pp. 426–454. IGI Global (2009)

14. Hashmi, M., Governatori, G., Wynn, M.T.: Business Process Data Compliance. In: Bikakis,
A., Giurca, A. (eds.) RuleML 2012. LNCS, vol. 7438, pp. 32–46. Springer, Heidelberg (2012)

15. Hashmi, M., Governatori, G., Wynn, M.T.: Normative Requirements for Buisness Process
Compliance. Technical report, Queensland University of Technology, Brisbane, Australia
(2013)

16. Herrestad, H.: Norms and formalization. In: ICAIL 1991, pp. 175–184. ACM (1991)
17. Ly, L.T., Rinderle-Ma, S., Dadam, P.: Design and verification of instantiable compliance

rule graphs in process-aware information systems. In: Pernici, B. (ed.) CAiSE 2010. LNCS,
vol. 6051, pp. 9–23. Springer, Heidelberg (2010)

18. Pesic, M., van der Aalst, W.: A declarative approach for flexible business processes manage-
ment. In: Eder, J., Dustdar, S. (eds.) BPM Workshops 2006. LNCS, vol. 4103, pp. 169–180.
Springer, Heidelberg (2006)

19. Sartor, G.: Legal Reasoning: A Cognitive Approach to the Law. Springer (2005)
20. Turki, S., Bjekovic-Obradovic, M.: Compliance in e-government service engineering: State-

of-the-art. In: Morin, J.-H., Ralyté, J., Snene, M. (eds.) IESS 2010. LNBIP, vol. 53, pp.
270–275. Springer, Heidelberg (2010)

http://www.win.tue.nl/declare/

M. Song, M.T. Wynn, and J. Liu (Eds.): AP-BPM 2013, LNBIP 159, pp. 116–120, 2013.

Improvement of Patient Safety in u-Hospital:
A Pattern-Based Approach for Handling Patients’

Abnormal Situations

Junho Moon and Dongsoo Kim*

Department of Industrial and Information Systems Engineering,
Soongsil University 369 Sangdo-Ro, Dongjak-Gu, Seoul, Korea

{jmoon,dskim}@ssu.ac.kr

Abstract. This paper presents a pattern-based approach for handling abnormal
situations of a patient appropriately. In order to identify and model patterns of
abnormal situations, we apply ontology technology. Several important patterns
have been identified and they can be managed by the proposed system. We
have designed a system architecture of integrating BPM and ontology, and
developed core part of the proposed system. The integrated system is called u-
PMS (ubiquitous Patient Management System). It can detect meaningful events
and abnormal situations which affect health status of a patient, and manage
healthcare processes to cope with the abnormal situations in process centric
way. By applying context awareness technology and ontology technology to
healthcare sector, patient safety can be improved significantly.

Keywords: Context Awareness, Patient Management System (PMS),
u-Hospital, Ontology, BPM.

1 Introduction

The information technology has been applied to the medical environment in order to
enhance patients’ safety and service quality. Recently, Researches on Patient
Management System (PMS) using context awareness technology have been studied.
Various and heterogeneous data are dispersed in a variety of different systems. This kind
of data plays only a trigger role in PMS [2], [3], [8]. However, it is necessary to organize
and to filter the dispersed data in order to build more efficient systems in hospital.

In this paper, we present an advanced patient safety management system by
applying context awareness, ontology, and BPM technologies. We have identified and
modeled several abnormal situation patterns based on ontology. The proposed system
can detect the occurrence of abnormal situations using various ubiquitous devices
such as RFID and smart sensors, and then manage healthcare business processes for
handling such abnormal situations precisely and promptly through the integrated
BPM system.

* Corresponding author.
The original version of this chapter was revised: The copyright line was incorrect. This has been
corrected. The Erratum to this chapter is available at DOI: 10.1007/978-3-319-02922-1 10

Springer-Verlag Berlin Heidelberg 2013©

http://dx.doi.org/10.1007/978-3-319-02922-1_10

 Improvement of Patient Safety in u-Hospital 117

2 Backgrounds

2.1 Necessity and Effectiveness of BPM in Medical Environment

The BPM system plays a role in facilitating healthcare business processes and
removing unnecessary work in medical environment. It can visualize administrative
and clinical processes and automate such processes. We can expect substantial
benefits when the BPM system is applied to the medical environment. It makes the
smart response to the environmental change and reduces the costs of IT projects.

The unnecessary medical work procedure can be eliminated in medical service by
separating and explicitly managing the business processes from hospital information
systems. The medical malpractices or errors can be reduced through the work process
visualization because it makes the process confusion lower. The process confusion
has been pointed out to be an important factor of the medical malpractices. It is
necessary to adopt the BPM system to the medical environment for the integrated
medical service management from the point of overall process [1], [4], [5].

2.2 Necessity of Data Management Based on Ontology

Ontology in medicine integrates the dispersed data and filters the meaningful things
among these. This makes the precise and prompt response to the patient’s abnormal
situations based on the data. Technological convergence is no longer new, and the
medical environment has already adopted various information technologies. As a
result, the amount of medical data is becoming huge and a solution to use this data
efficiently is in urgent. Ontology might be one solution for those needs in medicine
[6], [7], [9].

3 System Architecture

Fig. 1. System Architecture

118 J. Moon and D. Kim

Figure 1 indicates the ar
Management System). In t
using context awareness te
situations are recognized b
are reported to the BPM sy
offers how to handle abnorm

This system integrates t
extracts valid events imm
procedure is specified thro
the process as emphasized
business process perspectiv

4 Implementation

4.1 Detection of Abnor

Abnormal situation detecti
Firstly, it defines patients
shown in Figure 2. The de
using the OWL (Web Ont
recognized by the contex
abnormal situation can be
the defined abnormal situat
BPM system.

Fig. 2. Conceptual model for

4.2 Integration with BP

The BPM system processe
according to the defined b

m

rchitecture of the proposed u-PMS (ubiquitous Pati
this system, the data is collected in medical environm
echnology. It is stored in database and patients’ abnorm
ased on the ontology. The recognized abnormal situati
ystem and the business process, which is defined in BP
mal situations.
the heterogeneous data from context awareness tools
mediately to handle patients’ abnormal situations. T
ough the link with BPM system and prevents mistakes
 in the previous section. Continuous improvement of

ve is also the advantage of using BPM system.

n and Example Scenario

rmal Situations

on system in Figure 1 performs two important functio
’ abnormal situations as patterns based on ontology

efined abnormal situation is also defined as a schema t
tology Language). Secondly, the system changes the d
xt awareness tools into OWL schema type. Then,

identified by the comparison of OWL schema type w
tion patterns. Only meaningful events are transferred to

modeling patient's abnormal situation patterns based on ontolo

PM System

s the events from the abnormal situation detection syst
business process. We use an open source BPM solut

ient
ment

mal
ions
PM,

and
This
s in
the

ons.
y as
type
data
the

with
the

ogy

tem
tion

 Improvement of Patient Safety in u-Hospital 119

named uEngine in order to execute processes for handling detected abnormal
situations. In this stage, when an abnormal situation is detected, a corresponding
process can be started by the status of database or external signals using ‘conditional
start’ or ‘signal start’ in BPMN standard specification.

4.3 Process Flow of Example Scenario

This section describes a scenario of an abnormal situation and explains the process
flow of the scenario. Let’s consider a hospitalized patient. If the patient falls from the
bed, the vibration sensor attached to the patient can sense the occurrence of falling.
The sensor ID and measured value from the sensor are transferred to ‘Signals & Data
Matching Module’. This module generates ‘Event Data’ by referencing the basic
information and context awareness information from the ‘Data Repository’. Patient
name, disease, status, location, sensor ID and so on are stored in ‘Event Data’. ‘Event
Data’ is transferred from ‘Signals & Data Matching Module’ to ‘Event Data
Extraction & Conversion Module’.

‘Event Data Extraction & Conversion Module’ extracts a partial data for
comparison with defined abnormal situation patterns and converts it to the form of
ontology schema in Figure 3. ‘Extracted Data’ and ‘Event Data’ are transferred to
‘Significant Event Capturing Module’. This module checks whether the event is an
abnormal situation or not by comparing ‘Extracted Data’ with ‘Defined Abnormal
Pattern Data’. According to the result of the comparison, ‘Event Data’ is transferred
to the next module. If the situation is normal, ‘Event Data’ is sent to ‘Event Log Data
Conversion Module’. ‘Event Data’ is transformed into the form of ‘Event Log Data’
and stored in ‘Data Repository’. If the situation is abnormal, ‘Event Data’ is sent to
‘BPM Data Conversion Module’. ‘Event Data’ is transformed into the form of ‘BPM
Data’ in order to invoke the business process for handling the abnormal situation and
transferred to the ‘BPM System’.

Fig. 3. Ontology schema of extracted event data

120 J. Moon and D. Kim

5 Conclusions

We proposed ubiquitous Patient Management System (u-PMS) based on BPM and
ontology technologies. Some existing studies have also applied the context awareness
technology to the medical environment and used BPM or ontology. However, the
contribution of this paper is the integration of each information technology for
immediate and accurate management. The context awareness technology allows the
system procedure to be smart. The strengths of BPM system such as agility, visibility,
flexibility and efficiency, and even the advantages from ontology (integrity and
expendability) can be incorporated in this new system.

However, limitations of this paper can be summarized as follows. Since the process
in the medical environment is highly complex and changeable, the establishment of
BPM will be much demanding. And also there are so many synonyms in medical
terminology, therefore defining a comprehensive medical ontology is quite
challenging.

Acknowledgements. This research was supported by Basic Science Research
Program through the National Research Foundation of Korea (NRF) funded by the
Ministry of Education, Science and Technology (2010-0020943).

References

1. Basu, A., Kumar, A.: Research Commentary: Workflow Management System in e-
Business. Information System Research 13(1), 1–14 (2002)

2. Choi, J.S., Kim, D.: Design and implementation of Wireless Patient Monitoring System for
postoperative patients on general care floor. Informatics for Health and Social Care (Posted
online on May 9, 2012)

3. Fuhrer, P., Guinard, D.: Building a Smart Hospital using RFID technologies. In:
Proceedings of the 1st European Conference on e-Health, Fribourg (2006)

4. Hieb, B.R.: BPM/Workflow Boosts the Value of Computer-Based Patient Record System.
Gartner (2005)

5. Holingsworth, D.: Workflow Management Coalition: The Workflow Reference Model,
WfMC, No. TC00-1003 (1995)

6. Kataria, P., Juric, R., Paurobally, S., Madani, K.: Implementation of Ontology for Intelligent
Hospital Wards. In: Hawaii International Conference on System Sciences, p. 253 (2008)

7. Lasierra, N., Alesanco, A., García, J.: An ontology approach to manage individual patient
profiles in home-based telemonitoring scenarios. Information Technology and Applications
in Biomedicine (2010)

8. Aspden, P., Corrigan, J.M., Wolcott, J., Erickson, S.M.: Patient safety: achieving a new
standard for care (2004)

9. Kiong, Y.C., Palaniappan, S., Yahaya, N.A.: Health ontology system. In: Information
Technology in Asia, pp. 1–4 (2011)

Erratum to: Asia Pacific Business
Process Management

Minseok Song1, Moe Thandar Wynn2, and Jianxun Liu3

1 School of Technolgy Management,
Ulsan National Institute of Science and Technology, Ulsan, South Korea

msong@unist.ac.kr
2 Information Systems School, Queensland University of Technology,

Brisbane, OLD, Australia
m.wynn@qut.edu.au

3 School of Computer Science and Engineering,
Hunan University of Science and Technology, Xiangtan, China

ljx529@gmail.com

Erratum to:

M. Song, M.T. Wynn, and J. Liu (Eds.)

Asia Pacific Business Process Management

DOI: 10.1007/978-3-319-02922-1

The book was inadvertently published with an incorrect name of the copyright
holder. The name of the copyright holder for this book is: c© Springer-Verlag
Berlin Heidelberg. The book has been updated with the changes.

The updated original online version for this book can be found at
DOI: 10.1007/978-3-319-02922-1

M. Song, M.T. Wynn, and J. Liu (Eds.): AP-BPM 2013, LNBIP 159, p. E1, 2013.
c© Springer-Verlag Berlin Heidelberg 2017

http://dx.doi.org/10.1007/978-3-319-02922-1
http://dx.doi.org/10.1007/978-3-319-02922-1

Author Index

Bae, Hyerim 67, 92

Ge, Jidong 39
Governatori, Guido 106

Hashmi, Mustafa 106

Jung, Jae-Yoon 81

Kim, Aekyung 81
Kim, Dongsoo 116

La Rosa, Marcello 23
Lee, Dongha 67
Li, Jie 56

Moon, Junho 116

Obregon, Josue 81
Ouyang, Chun 23

Park, Jaehun 67
Polyvyanyy, Artem 23
Pulshashi, Iq Reviessay 67

Song, Liang 23
Song, Wei 39
Sul, Sung-ook 92

ter Hofstede, Arthur H.M. 23

van der Aalst, Wil M.P. 1

Wang, Hongda 39
Wang, Jianmin 23, 56
Wen, Lijie 56
Wu, Jei-Zheng 92

Xing, Jianchun 39

Yahya, Bernardo Nugroho 92
Yan, Zhiqiang 56
Yang, Qiliang 39

Zhang, Xuewei 39

	Preface
	Conference Organization
	Table of Contents
	Process Cubes: Slicing, Dicing, Rolling Up
and Drilling Down Event Data for Process Mining
	1 Introduction
	2 ProcessCubes
	3 EventBase
	4 Process Cube Structure
	5 ProcessCubeView
	6 Slice and Dice
	7 Roll-Up and Drill-Down
	8 Conclusion
	8.1 Comparing and Visualizing Different Cells
	8.2 Computing Sublogs and Models Per Cell
	8.3 Concept Drift
	8.4 Distributed Process Mining

	References

	APQL: A Process-Model Query Language
	1 Introduction
	2 The Syntax of APQL
	3 The Semantics of APQL
	4 Examples of APQL Queries
	5 Related Work
	6 Conclusions
	References

	BPEL Similarity — A Metric Based on Activity Constraint Graphs
	1 Introduction
	2 Preliminaries
	3 Behavioral Similarity Metrics
	3.1 BPEL Activity Constraint Graph
	3.2 Analysis of Similarity Based on BACGs
	3.3 Elementary Similarity Measurement
	3.4 Aggregated Metric for BPEL Activity Constraint Graphs

	4 Experiments
	4.1 Setup
	4.2 Evaluation
	4.3 Threats to Validity

	5 Discussion
	6 Related Work
	7 Conclusion and Future Work
	References

	Process Model Storage Solutions: Proposition and Evaluation
	1 Introduction
	2 Storage Solutions of Process Model
	2.1 Direct Storage Solution (DSS)
	2.2 Log Storage Solution (LSS)
	2.3 Interval Storage Solution (ISS)
	2.4 Nearest Model Storage Solution (NMSS)
	2.5 Interval Nearest Model Storage Solution (INMSS)

	3 Experiments
	3.1 Industrial Data Set
	3.2 Artificial Data Set

	4 Related Work
	5 Summary and Outlook
	References

	Clustering and Operation Analysis for Assembly Blocks Using Process Mining in Shipbuilding Industry
	1 Introduction
	2 Process Mining and Related Research
	3 Proposed Approach
	4 Case Study
	4.1 Determination of Analysis Data
	4.2 Trace Clustering from Two Perspectives (Step 1 and Step 2)
	4.3 Definition of New Clusters (Step 3)
	4.4 Comparison of New Clusters with Other Clusters (Step 4)

	5 Conclusions
	References

	DTMiner: A Tool for Decision Making
Based on Historical Process Data
	1 Introduction
	2 Related Work
	3 Performer Recommendation Using Process Mining
	4 DTMiner Plug-in
	5 Experiments
	5.1 Synthetic Example
	5.2 Case Study

	6 Discussion and Conclusion
	References

	Process Discovery by Synthesizing Activity Proximity
and User's Domain Knowledge
	1 Introduction
	2 Running Example
	3 Formal Definition
	4 Implementation
	5 Related Work
	6 Conclusion
	References

	A Methodological Evaluation of Business Process Compliance Management Frameworks
	1 Introduction
	2 Research Approach
	2.1 Normative Requirements

	3 Evaluation of Frameworks
	3.1 PENELOPE
	3.2 Process Compliance Language (PCL)
	3.3 DECLARE
	3.4 BPMN-Q
	3.5 SEAFLOWS

	4 Discussion
	5 Conclusions
	References

	Improvement of Patient Safety in u-Hospital: A Pattern-Based Approach for Handling Patients’Abnormal Situations
	1 Introduction
	2 Backgrounds
	2.1 Necessity and Effectiveness of BPM in Medical Environment
	2.2 Necessity of Data Management Based on Ontology

	3 System Architecture
	4 Implementation and Example Scenario

	4.1 Detection of Abnormal Situations

	4.2 Integration with BPM System

	4.3 Process Flow of Example Scenario

	5 Conclusions
	References

	Erratum to: Asia Pacific Business Process Management
	Author Index

