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Abstract— Head injury, being one of the main causes of 
death or permanent disability, continues to remain as a major 
health problem with significant socioeconomic costs. There-
fore, there is a need for biomechanical studies of head injury. 
To assess the biomechanics of head injury mechanism, many 
finite element head models (FEHMs) had been built. However, 
in order to reduce the computation efforts, most of these 
FEHMs were simplified and details of complex head anatomi-
cal features are often ignored in modeling. The main purpose 
of the present work is to build and validate a detailed finite 
element model of human head in order to better predict the 
mechanical responses of the human head during head injury. 
Geometrical information of a human head is obtained from 
medical images of computed tomography (CT) and magnetic 
resonance imaging (MRI) with the use of image-processing 
software, for segmentation and reconstruction of a compre-
hensive FEHM. The head model is then validated against both 
intracranial pressure (ICP) data of the two experimental ca-
daver tests. General shape trends, magnitudes and duration of 
the pressure pulses in the simulation agree well with the exper-
imental pressure pulse. Overall, there is a good correlation 
between the simulations and the experiments. Once being 
validated, this representative FEHM can be used in the as-
sessment of the injurious effects of different loading conditions 
and enable the development of enhanced head injury and 
protection equipments through the reconstruction of the avail-
able real-world accidents information. 
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I. INTRODUCTION  

Head injury, being one of the main causes of death or 
permanent disability, continues to remain as a major health 
problem with significant socioeconomic costs. Therefore, 
there is a need for biomechanical studies of head injury. To 
assess the biomechanics of head injury mechanism, many 
finite element head models (FEHMs) had been built, how-
ever, some of them had not been validated. Experimental 
validation of a numerical model is necessary in determining 
the degrees to which the model accurately predicts the real-
world phenomena well. Only when this is achieved, the 
model does represent a powerful tool with which to corre-

late the biomechanical parameters involved in the head 
injury with the clinical observations. Most of the FEHMs 
[1-8] had been validated against the intracranial pressure 
(ICP) data of Nahum et al. [9]’s cadaver experiments, with 
some [3-5, 10] having been validated against another ICP 
data of Trosseille et al. [11]’s longer duration impact. How-
ever, some of these earlier idealized FEHMs, which were 
developed mainly for automobile related head injuries, are 
generally unrealistic with simplifications in the facial de-
tails. The objective of this study is to build a detailed and 
realistic model of subject-specific head using computed 
tomography (CT) and magnetic resonance imaging (MRI), 
and to validate it against both ICP data of the experimental 
cadaver tests under different impact conditions. 

II. METHODS AND MATERIALS 

A. Model Description 

Geometrical information of the human skull was ob-
tained from 460 computed tomography (CT) axial images of 
a middle-aged male with in-plane resolution of 512 by 512 
pixels with a pixel size of 0.488 mm and slice thickness of 
1.0 mm. As for the intracranial contents, the magnetic reso-
nance imaging (MRI) data of the brain, with in-plane reso-
lution of 1659 by 962 pixels with a pixel size of 0.500 mm 
and slice thickness of 4.0 mm, was employed for the seg-
mentation of the brain (Fig. 1). These medical images were 
imported into Mimics v13.0-v14.0 (Materialise, Leuven, 
Belgium) for segmentation and reconstruction of the FEHM 
(Fig. 1). A semi-automatic meshing technique was em-
ployed in HyperMesh v10.0 (Altair HyperWorks, Troy, MI, 
USA) to optimize between computational efficiency and 
element quality, with the average element size of 1.57 mm, 
as well as aspect ratio of 1.61 for the model. 

The FEHM consisted of a cranial skull with detailed fa-
cial bone features, teeth, cervical vertebrae, nasal septal 
cartilage, nasal lateral cartilages; brain components such as 
cerebral white matter and gray matter, cerebellum and 
brainstem, the cerebral peduncle (midbrain), and the entire 
ventricular system, as well as the cerebrospinal fluid (CSF) 
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separating the skull and the brain; lastly soft tissue overlay-
ing the skull. The entire model is approximately 4.73 kg and 
consisted of 327536 nodes and 1337903 linear hexahedral 
elements (Fig.1).  

 
Fig. 1: The subject-specific finite element model of human head. 

B. Material Properties 

Like most previous FEHMs, all the skeletal tissues such 
as cartilages, teeth and cervical vertebrae are modeled as 
linear elastic, isotropic materials it has been considered to 
have homogeneous and isotropic behavior [12-14] (Table 
1). As for the brain tissues, it has adopted a linear viscoelas-
tic material behavior combined with the large-deformation 
theory [15-17] (Table 1). 

Table 1: Material properties of the various parts in the head model. 

Parts Young's Modulus, E 
(MPa) 

Poisson's 
ratio, � 

Density, 
�  

(kg/mm3) 
Sources 

Brainstem 
 = 0.0225 MPa, 

 ∞ = 0.0045 MPa, 
������� s-1 

0.4996 1.06E-06 [10] 

Cerebral 
Peduncle 

 = 0.0225 MPa,  
∞ = 0.0045 MPa, 

�������s-1 
0.4996 1.06E-06 [10] 

Cerebellum 
 = 0.528 MPa, 

 ∞ = 0.168 MPa,  
����	
 s-1 

0.48 1.14E-06 [3, 17-
20] 

CSF E = 1.314 0.4999 1.04E-06 [21, 22] 

Gray Matter 
 = 0.034 MPa, 

∞ = 0.0064 MPa, 
������� s-1 

0.4996 1.04E-06 [21, 22] 

Lateral 
Cartilage E = 30 0.45 1.50E-06 [23] 

Septum 
Cartilage E = 9 0.32 1.50E-06 [24] 

Bone E = 8000 0.22 1.21E-06  [22] 

Soft Tissues E = 16.7 0.46 1.04E-06 [22, 25] 

Ventricles  = 0.101 MPa, 
∞ = 0.00101 MPa, 0.49 1.08E-06 [22] 

��������s-1 

White 
Matter 

 = 0.041 MPa, 
∞ = 0.0078 MPa, 
��������s1 

0.4996 1.04E-06 [21] 

C. Boundary Conditions 

Both the skull-CSF and brain-CSF interfaces are mod-
eled as contact pairs with a tangential sliding boundary 
condition with the coefficient of friction of 0.2 [5, 25, 26] 
and a normal hard contact pressure-overclosure condition. 
All the interfaces between other intracranial contents and 
those between skull, cartilages and soft tissues are imple-
mented with tie-constraints. The interaction between the 
head and the foreign impactor is defined by a contact algo-
rithm, which has hard contact pressure-overclosure with 
default constrain enforcement method [27]. 

III. RESULTS AND DISCUSSIONS 

The FEHM is first validated against the ICP-time histo-
ries of Nahum et al. [9]’s cadaver experiment 37, in which 
the FEHM is impacted by a cylindrical mass of 5.59 kg at 
frontal bone region and the impact velocity is 9.94 m·s-1.  

 
In comparison with Nahum et al. [9]’s experimental 

pressures, the simulate results have generally agree well 
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with the experimental pressures, in terms of magnitudes and 
duration of the pulses, except for the great variation in bilat-
eral occipital pressures. This could probably be due to the 
uneven distribution of white and gray matters in the model. 
Additionally, there are small oscillations in the simulated 
frontal and parietal pressures. 

Then, the FEHM is impacted by a 23.4 kg impactor, 
travelling at 7 m·s-1 and hit at the nasal region, similar to the 
Trosseille [11]’s cadaveric experiment MS 428-2. The ICP 
history plots for the frontal, occipital and temporal regions, 
are shown in Fig. 3. 

 
The simulated pressure at the frontal lobe agrees well 

with the experimental pressure. However, this is not true for 
the occipital pressure and temporal pressure, in particular, 
the occipital pressure in which its peak was overestimated 
by three-folds. Overall, the general trend of predicted pres-
sure pulses matched reasonably well with the Trosseille 
[11]’s cadaveric experiment. 

Up to date, to the authors’ knowledge, there is no report-
ed subject-specific FEHM, with such detailed features in-
cluding soft tissues, being validated against these cadaveric 
tests. In the present study, a realistic FEHM, with detailed 
anatomical features, have been developed and validated 
against the ICP data of the two cadaver experimental tests. 
The comparisons of the simulated results are largely con-
sistent and are in good agreement with the experimental 

measured ICP and relative displacements. Despite the fun-
damental differences in the numerical formulation in this 
FEHM as compared to others FEHMs [1-8], there exist little 
evident differences in the predicted ICP when comparing 
with the experimental ICP. This may indicate that the ad-
vancements on the details of the extracranial features and 
overlying soft tissue would not improve the model’s pre-
dicting capabilities in brain injury as it seems that the pre-
diction replies more on skull’s mass properties and kinemat-
ics rather than its geometrical details. As a corollary, a 
model with the attributes of simplified extracranial features 
may be sufficient for modeling traumatic brain injury (TBI). 
Nevertheless, this newly developed FEHM, with detailed 
realistic anatomical features, can be used in the evaluation 
of either facial or brain injury. 
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