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São José dos Campos, Brazil
{thales,castejon,leila}@dpi.inpe.br

Abstract. Remote sensing images with large spatial dimensions are
usual. Besides, they also include a diversity of spectral channels, in-
creasing the volume of information. To obtain valuable information from
remote sensing data, computers need higher amounts of memory and
more efficient processing techniques. The first process in image analysis
is segmentation, which identifies regions in images. Therefore, segmenta-
tion algorithms must deal with large amounts of data. Even with current
computational power, certain image sizes may exceed the memory limits,
which ask for different solutions. An alternative to overcome such limits
is to employ the well-known divide and conquer strategy, by splitting
the image into chunks, and segmenting each one individually. However,
it arises the problem of merging neighboring chunks and keeping the
homogeneity in such regions. In this work, we propose an alternative
to divide the image into chunks by defining noncrisp borders between
them. The noncrisp borders are computed based on Dijkstra algorithm,
which is employed to find the shortest path between detected edges in
the images. By applying our method, we avoid the postprocessing of
neighboring regions, and therefore speed up the final segmentation.

1 Introduction

Remote sensing images are the only source capable of providing a continuous and
consistent set of information about the Earth’s land and oceans [8]. Combined
with ecosystem models, remotely sensed data offers an unprecedented oppor-
tunity for predicting and understanding the behavior of the Earth’s ecosystem
[26]. Since the 1970s, the Landsat series of satellites have provided optical im-
ages of the land’s surface of the Earth every 16 days at a resolution of 30 meters.
The Landsat archive at the United States Geological Survey contains about 1
petabyte and is fully accessible worldwide [9]. From 2013 onwards, a new gen-
eration of optical remote sensing satellites from USA, China, Brazil, India and
Europe will produce in one year as much data as 10 years of the Landsat-7
satellite.

However, our methods to analyze and understand massive datasets lag far
behind our ability to produce and store this data [10,13,28]. And besides, it is
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still far from easy to search across large collections of satellite images for pictures
containing a golf course, or a hurricane [14]. Therefore image analysis over large
databases needs to be in the research agenda of the remote sensing community.

During the 1980s and 1990s, most remote sensing image analysis techniques
were based on per-pixel statistical algorithms [7]. These techniques aimed at
representing the knowledge about land cover patterns by a limited set of pa-
rameters, such as average and standard deviation values of groups of individ-
ual pixels. Recently, Object-Based Image Analysis (OBIA) has shown to be a
good alternative to traditional per-pixel and region based approaches. Differ-
ently, OBIA approaches first identify regions in the image using segmentation,
extract neighborhood, spectral and spatial descriptive features and afterwards
combine regions and features for object classification. Although segmentation
has a large tradition in image processing [16] and remote sensing [9], OBIA took
a long time to reach mainstream users. This approach became popular when it
combined image segmentation with good labeling methods that match the fea-
tures to those of user-defined classes. However, remote sensing image analysis
using OBIA can be lengthy and complex because of the difficulties related to
image segmentation, the large number of features to be resolved [21] and the
many different methods needed to model the semantic networks [17].

Segmentation of remote sensing images is a challenging field. Their results are
expected to describe the regions found in images, allowing a deeper interpretation
by experts or classification algorithms. The work of [16] defined segmentation
as a way to separate the image into simple regions with homogeneous behavior.
To partition automatically one image into regions, algorithms must consider the
context, scale, neighborhood, meaning, and computational resources. In accord
to [28], good quality results often come at the price of high computational cost.
For example, the collection rate for IKONOS satellite is about 890 megapixels
each minute [10]; for CBERS-2B is about 120 megapixels each minute. Consid-
ering current technology, even a tuned sequential segmentation algorithm is far
slower than these rates.

Remote sensing images often present large sizes. A typical Landsat scene con-
tains at least 7800 × 7100 pixels, and 6 spectral channels with 30m resolution
(bands 1 to 5, and 7), that results in more than 300 million individual pixels. The
variety of spectral channels, that in one side adds rich information about the land
targets, in the other side increases the volume of information. Even with cur-
rent computational power, certain sizes may exceed the memory limits, claiming
new solutions. Research in segmentation techniques for large images points out
the division of the image into blocks of predefined sizes, hereby called chunks.
These chunks are segmented independently, and a postprocessing step is needed
to merge the segmentation results into a single one. The problem of this ap-
proach is to merge the neighboring chunks without prejudicing the homogeneity
in bordering regions. Figure 1 shows one example of this problem. The image was
divided into crisp chunks and afterwards each one was segmented independently.
The postprocessing in this case would not merge the regions highlighted in red
(note the object of the type roof ), because they present different attributes, like
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Fig. 1. Example of the traditional parallel segmentation. Regions highlighted in red
will not be merged properly.

average pixel value or standard deviation of pixels. The piece of the roof in the
top region was too small to create an individual region, and therefore was merged
in the region containing trees. Due to this problem, the bottom region with the
rest of the roof will not be merged, because the spectral difference between these
two regions is too high.

Another problem of this approach is the time processing. For example, sup-
pose one image with 5000 × 5000 pixels, divided in two chunks of 2500 lines ×
5000 columns, and a segmentation which created regions with an average area of
100 × 100 pixels. The border between these chunks will have at least 50 regions
for each chunk, and the regions from one chunk will touch at least 2 regions
from the other chunk. In this case, the algorithm will have to perform 100 tests
between these regions to check whether they must be merged or not. Such com-
parisons include data access to evaluate average pixel values, vector differences,
check if candidate merged regions will comply the segmentation parameters and
so on. We argue that this step does not produce good results, and improve sig-
nificantly the processing time. Our proposal is to convert this postprocessing
into a preprocessing stage, cutting out the need to perform exhaustive tests in
resultant regions.

In this articlewe tackle the problemof creating chunks for parallel segmentation.
Instead of creating crisp chunks using the block strategy (which creates crisp bor-
ders),we analyze the image contours in the chunks’ neighborhood, and create adap-
tive chunks defined by these contours.We argue that by defining noncrisp borders
between the chunkswe avoid the postprocessing of neighboring regions, remove the
segmentation errors in the borders, and speed up the final segmentation.
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2 Related Work

Several image segmentation techniques arise from the well-known “region grow-
ing” strategy, relying on the similarity of near pixels. The method starts by
defining candidate pixels (called seeds) in random positions of the image. Such
seeds are compared to neighboring pixels, and according to their similarity, they
are merged into homogeneous regions, therefore the pixels grow into larger re-
gions. This process is repeated until all pixels are processed. [6] applied this
approach in remote sensing images. Their method is based on the likeness be-
tween neighboring pixels and the smallest area allowed for a region. [2] is another
example of region growing technique. In this approach, the algorithm minimizes
the average heterogeneity of the regions. The heterogeneity balances the ob-
ject’s smoothness and compactness, resulting in more regular objects. It deals
with the standard deviation of pixels for each band as well. We suggest the read-
ing of [20] for a comparison of these two algorithms and alternatives for remote
sensing segmentation.

To take advantage of the spatial similarity between neighboring pixels, the
graph-based techniques create region adjacency graphs considering pixels as
edges, and the differences between neighbor pixels as the edges. The work [12]
presented the image foresting transform (IFT), a generalization of Dijkstra’s
algorithm, which is a graph-based approach to the design of image processing
operators based on connectivity. This method considers one image as a directed
graph whose nodes are the image pixels and whose arcs are the neighboring pixel
pairs. It was applied to find homogeneous regions in 3D images and to perform
boundary tracking, whose goal is to estimate an optimal curve, constrained to a
given sequence of landmarks on the object’s boundary.

[24] proposed an approach that extracts the global impression of an image,
by treating image segmentation as a graph partitioning problem. The authors
proposed a novel global criterion, called the normalized cuts, that measures both
the total dissimilarity between the different groups of pixels as well as the total
similarity within the groups. The algorithm has been tested in static images
as well as motion sequences. The main idea is to create an adjacency matrix
connecting all pixels in the image, and after perform the bipartitioning of the
graph through normalized cuts, where the partitions will define the homogeneous
regions in the image.

In the area of merging for creating mosaics of remote sensing images, [4]
presented a blending technique, based on multi-resolution decomposition. The
authors defined a cut line, considering texture information from overlapping re-
gions of mosaicking images. The method found automatically the transition zone
size and the cutting line on satellite and aerial images based on the minimum
path using Dijkstra’s algorithm.

The work of [5] presented one algorithm based on the morphological image
compositing technique and applied to automatically generate a European wide
image mosaic based on over 800 Landsat ETM+ scenes. A quantitative measure
was also developed to estimate the quality of automatically delineated borders.
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According to [19], parallel architectures are becoming a standard for handling
complex operations that need significant computational power. Large size im-
ages include medical data sets of magnetic resonance imaging (MRI) [23], or
remote sensing hyperspectral and multitemporal images [27,22]. Therefore par-
allel algorithms arise as an alternative to overcome those limits. As previously
stated, such methods usually split the image into chunks, and segment each one
individually.

The chunks often present regular sizes to be assigned equally among the pro-
cessors [3]. However, according to [28] the results of coupling chunks are not
acceptable because border objects are not correctly handled. A common solu-
tion is to adopt overlapping chunks, which is also inadequate because there is
no upper bound on the size of objects of interest (e.g. rivers or roads). [25] pro-
posed a parallel method for the seeded region growing algorithm ([1]), based on
spreading seeds in different threads, each one growing in parallel. The authors
needed to deal with simultaneous access for the same pixels. To avoid this prob-
lem, images were divided in square windows, employing a postprocessing step to
join regions.

The technique proposed by [15] employed the traditional parallel segmenta-
tion. Each chunk was processed by a different thread, through a sequential algo-
rithm based on [2]. This method falls on the same problem of treating boundary
segments. The number of boundary objects, which depends on the image, can
be prohibitive in certain cases.

3 Method

This work extends our previous research in parallel segmentation [18]. In the
present approach, the algorithm finds automatically optimal cutting lines to
divide the image into noncrisp chunks. Traditional parallel schemes first divide
the image into crisp chunks, and after treat bordering regions in a postprocessing
step. Some methods create chunks with overlapping regions, but fall into the
same problem of postprocessing. Figure 2 describes our approach, and as follows
we describe each step in detail.

3.1 Create Image of Edges

The first step is to obtain an image of edges based on the input data. From the
basics of image processing, the well-known method to estimate the magnitude
of the edges is the gradient function. Considering that in one image every pixel
can be described as a function f(x, y), where x and y are the coordinates of the
pixel, the gradient is computed as the two-dimensional column vector:

∇f =

[
δf
δx
δf
δy

]
(1)

which is a vector that indicates, for each pixel, the intensities of the border in
horizontal and vertical directions. The magnitude of this vector points out the
border’s strength, and is computed by the following equation:
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Fig. 2. Main diagram to find the optimal cutting line that divides the image into
noncrisp chunks

mag(∇f) =

[(
δf

δx

)2

+

(
δf

δx

)2
] 1

2

. (2)

By applying these equations to all pixels of the image we obtain an image of
edges. This image will be processed to find the optimal cutting line. The chunks
must be defined with an average size (width and height) and a cutting line will
be adapted according to the image of edges. Figure 3 shows one example of input
image and its image of edges. Suppose this example image will be divided into 2
chunks. Therefore, a middle line (shown in yellow in Figure 3) is the candidate
line. This candidate line will adapt to the shortest path between left and right
edges. We also define a region of interest, limited by a maximum displacement
between this candidate line to avoid chunks with very different sizes (shown in
red in the Figure).

Fig. 3. The example input image (left) and its image of edges (right)
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3.2 Find Starting and Finishing Points

To compute the cutting line, we must previously define starting and finishing
points. We use the maximum value in the image of edges (higher magnitude in
the gradient stands to the strongest border) at the beginning and end of the
chunk. Considering the image of edges in Figure 3, they are represented by the
higher values in the first and last columns, highlighted in green.

After, we create an adjacency graph (represented by a matrix) that connects
all pixels in the candidate region. The Dijkstra’s algorithm will be used to find
the best path between starting and finishing points. This path will define the
cutting line used to divide the image into noncrisp chunks.

3.3 Create Adjacency Matrix

The adjacency matrix is a graph, whose nodes are the image pixels and whose
arcs are defined by an adjacency relation between pixels. The cost of a path in
this graph, according to [12], is determined by an application-specific path-cost
function, which usually depends on local image properties along the path, such
as color, gradient, and pixel position. In our approach, the adjacency between the
pixels is defined by 5 connections, including top, top-right, right, bottom-right
and bottom pixels, as shown in Figure 4.

Fig. 4. The 5 weights associated to each pixel to build the adjacency matrix. The
directions are top, top-right, right, bottom-right and bottom (w1 to w5).

The associated cost to each weight is defined by the magnitude of the gradient,
therefore the highest magnitude has a lower cost. Since we defined 5 connections,
we rank the cost with values in the interval [1, 5], where 1 is the highest magnitude
and 5 is the lowest. The choice of using 5 connections is to remove the adjacency
betweenapixel and its left side, so thediscoveredpathwill alwayshave thedirection
tending to the right1.

1 This method is easily extensible to vertical cutting lines. In this case, the adjacency
graph will be created to maintain a direction tending to the bottom, and the starting
and finishing points will be defined in the top and in the bottom of the chunk.
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3.4 Compute Cutting Line

Since we defined the starting and finishing points, and the adjacency matrix,
it is possible to compute the best path between these two points. For this, we
employ the Dijkstra’s algorithm [11] using the weights between the pixels to
find the best cutting line. This line will define the noncrisp border between the
chunks, and will allow the segmentation algorithm to run independently in both
chunks. The resulting segmentation will be the simple merge of regions detected
in all chunks.

4 Results and Discussion

To evaluate the method we performed 2 experiments using images with different
spatial and spectral resolutions. The purpose of the following experiments is to
show that the resultant cutting line divided the image into independent chunks,
in terms of the resultant regions from segmentation. For the sake of compari-
son, we tested our previous approach [18] in the same images, using equivalent
parameters.

In the first experiment we used an image crop of a World View 2 scene from
São José dos Campos, Brazil, with 3200 × 2400 pixels. The pixels of this image
have a spatial resolution of 0.5m. The image was obtained in 2012. We defined
the region of interest with a size of 120 pixels. Figure 5 (top) shows the detected
cutting line. After this step, we applied segmentation (based on [6]) in both
chunks and obtained the regions depicted in Figure 6.

Comparing our results, the cutting line created by our previous approach
is shown in Figure 5 (bottom). It is possible to see that both results followed
the edges inside the region of interest. By applying the Dijkstra’s algorithm
the cutting line got a smoother transition between pixels, while the previous
approach resulted in a line with several spikes. It is noticeable that the cutting
line divided the road (in the left part of the image) in two pieces, which is a limit
of our method. When the object does not follow the direction of the cutting line
(in this example, horizontal direction), the segmentation will produce divided
regions. The second mistake is in the grass field; however this mistake were
caused because of the size of the region of interest.

The second experiment used an image crop of a Quickbird scene from São
Paulo, Brazil, with 1000 × 1175 pixels. The pixels of this image have a spatial
resolution of 0.6m. We defined the region of interest with a size of 150 pixels.
Figure 7 (top) shows the resultant cutting line. After this step, we applied the
segmentation in both chunks (also using the approach based on [6]) and obtained
the regions depicted in Figure 8. The cutting line produced by our previous
approach is shown in Figure 7 (bottom). It is possible to see that in this result,
the cutting line is not smooth, and presents high and low peaks along the line.
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Fig. 5. First experiment: the cutting line created by our approach (top), in comparison
to our previous method (bottom).

Fig. 6. Detail of the resulting segmentation, after merging segments from both chunks
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Fig. 7. Second experiment: the cutting line created by our approach (top), in compar-
ison to our previous method (bottom)

Fig. 8. The resulting segmentation, after merging segments from both chunks

5 Conclusion

This article tackled the specific problem of defining chunks for parallel segmen-
tation. Current methods create crisp chunks, needing postprocessing steps to get
final regions. In certain cases, such methods create inconsistent objects, demand-
ing computational power to deal with bordering regions. Postprocessing detects
the bordering regions, testing the best combination of regions to merge. This
step aims to keep the consistence of the new regions to specific segmentation
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parameters, as spectral homogeneity and size. Our method proposes to change
this postprocessing step into a preprocessing stage, by creating adaptive cutting
lines and dividing the images into chunks without crisp borders.

However, the shape of certain objects near the cutting line does not allow
creating a proper cutting line, like homogeneous regions whose size extrapolates
the region of interest defined by the region of interest. Therefore dealing with
these regions still remains an open problem, currently unsolved by our approach.
Albeit in the results section we showed only horizontal chunks, this method easily
extendable to vertical cutting lines. Another point is that Dijkstra’s method
is a greedy algorithm, which depending on the size of the adjacency matrix,
can become a bottleneck in this operation. Future works on this issue include
subdividing the cutting line into smaller subsets, and applying our approach
individually on each subset, then recomposing the final cutting line by merging
all subsets.

Acknowledgments. The authors acknowledge Digital Globe for providing the
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