GPU-Accelerated Human Motion Tracking
Using Particle Filter Combined with PSO

Boguslaw Rymut?, Bogdan Kwolek', and Tomasz Krzeszowski?

! AGH University of Science and Technology, 30 Mickiewicza Av.,
30-059 Krakéw, Poland
bkw@agh.edu.pl
2 Rzeszéw University of Technology, W. Pola 2,
35-959 Rzeszow, Poland
brymut@prz.edu.pl

Abstract. This paper discusses how to combine particle filter (PF) with
particle swarm optimization (PSO) to achieve better object tracking.
Owing to multi-swarm based mode seeking the algorithm is capable of
maintaining multimodal probability distributions and the tracking ac-
curacy is far better than accuracy of PF or PSO. We propose parallel
resampling scheme for particle filtering running on GPU. We show the
efficiency of the parallel PF-PSO algorithm on 3D model based human
motion tracking. The 3D model is rasterized in parallel and single thread
processes one column of the image. Such level of parallelism allows us
to efficiently utilize the GPU resources and to perform tracking of the
full human body at rates of 15 frames per second. The GPU achieves
an average speedup of 7.5 over the CPU. For marker-less motion cap-
ture system consisting of four calibrated cameras, the computations were
conducted on four CPU cores and four GTX GPUs on two cards.

1 Introduction

Particle filtering is a widely used framework for visual object tracking since
it offers the flexibility to handle non-linearity and non-normality of the object
models. However, the huge number of particles, which is needed in applications
like 3D model based articulated motion tracking limits their wide application,
particularly if the tracking should be done in real-time. In typical applications
of particle filters, the resampling is needed because of undesirable degeneracy
problem, where all but one particle will have negligible weight after a few itera-
tions. The widely used resampling algorithms in the particle filters are sequential
in essence [5]. In [6] a shared-memory resampling algorithm was proposed. In
the discussed work a left and right boundary was employed in the systematic
resampling [1]. The two introduced variables remove the data dependency that
keeps the systematic resampling serial. In our approach to parallel resampling
we utilize the binary search algorithm [8] for selecting the particle indices.

To reduce the number of the particles, Deutscher and Reid [4] developed an
annealed particle filter (APF), which adopts an annealing scheme to achieve

The original version of this chapter was revised: The copyright line was incorrect. This hasbeen
corrected. The Erratum to this chapter is available at DOI: 10.1007/978-3-319-02895-8 _64

J. Blanc-Talon et al. (Eds.): ACIVS 2013, LNCS 8192, pp. 426-437, 2013.
© Springer-Verlag Berlin Heidelberg 2013

http://dx.doi.org/10.1007/978-3-319-02895-8_64

GPU-Accelerated Human Motion Tracking Using PF-PSO 427

better concentration of the particles and shift them towards the modes of the
probability distribution. Additionally, a crossover operation was proposed to
achieve better diversity of the particles. Compared with the ordinary particle
filter (PF), the annealed particle filter greatly enhances the tracking accuracy.
However, since the particles do not exchange information they have reduced
capability of focusing the search on the promising areas. In contrast, the particle
swarm optimization (PSO) [9] has better capability of exploration of the search
space owing to combining the local search (by self experience) and global one
(by neighboring experience).

In this paper we discuss how to combine a particle filter with a particle swarm
optimization to reduce the number of particles that is needed to achieve the de-
sirable tracking accuracy. Owing to multi-swarm based mode seeking the tracker
is capable of maintaining multimodal probability distributions and the tracking
accuracy is far better than accuracy of PF or PSO. We show the efficiency of
our parallel PF-PSO algorithm on 3D model based human motion tracking.

2 GPU Computing

The programming of GPU has been considerably simplified through introduc-
ing CUDA framework by NVIDIA. In CUDA the parallel portions of an ap-
plication are executed on GPU as kernels. A CUDA kernel is executed by an
array of threads. Blocks of threads are organized into a one-dimensional or two-
dimensional or three-dimensional grid of thread blocks. Blocks are mapped to
multiprocessors and each thread is mapped to a single core. A warp is a group of
threads within a block that are launched together and usually execute together.
When a warp is selected for execution, all active threads execute the same in-
struction but operate on different data. A unique set of indices is assigned to
each thread to determine to which block it belongs and its location inside it.

In order to obtain the best computing performance on GPU, we have to
keep all processors occupied and hide memory latency. In order to achieve this
aim, CUDA supports running hundred or thousands of lightweight threads in
parallel. The benefit of having multiple blocks per multiprocessor is that the
scheduling hardware is capable to swap out a block that is waiting on a high-
latency instruction and replace it with a block that has threads ready to execute.
The context switch is very fast because everything is stored in registers and thus
there is almost no data movement. To achieve good performance both high
density of arithmetic instructions per memory access as well as several hundreds
of threads per block are needed. This permits the GPU to execute arithmetic
instructions while certain threads are waiting for access to the global memory.

The global memory resides off chip and has a large data bus resulting in very
large bandwidth. It is accessible from different blocks. Its latency can be hidden
by careful design of control flow and adequate design of kernels. The shared
memory resides on chip. It is shared between all processors of a multi-processor
block, but two threads from different blocks cannot cooperate via shared memory.
Its latency is several times shorter than the latency of the global memory.

428 B. Rymut, B. Kwolek, and T. Krzeszowski

3 3D Model-Based Human Motion Tracking

The articulated model of the human body has a form of a kinematic chain
consisting of 11 segments. The 3D model is constructed using truncated cones
(frustums) that represent the pelvis, torso, head, upper and lower arm and legs.
The model has 26 DOF and its configuration is determined by position and
orientation of the pelvis in the global coordinate system and the relative angles
between the limbs. Each truncated cone is parameterized by the center of base
circle A, center of top circle B, bottom radius 1, and top radius r2. Given the
3D camera location C' and 3D coordinates A and B, the plane passing through
the points is determined. Since the vectors AB and AC' lie in the plane, their
cross product, which is perpendicular to the plane of AB and AC, is the normal.
The normal is used to determine the orientation of the trapezoid to be projected
into 2D plane. Each trapezoid of the model is projected into 2D image of each
camera via modified Tsai’s camera model. The projected image of the trapezoid
is obtained by projecting the corners and then a rasterization of the triangles
composing the trapezoid. The main task of a filling rasterizer is to seek all pixels
that are covered by a triangle. Though projecting all truncated cones we obtain
the image representing the 3D model in a given configuration.

For each set of frames acquired simultaneously by the synchronized cameras,
the 3D human pose is reconstructed through matching the current image obser-
vations with the projected human body model into each camera view. In most
of the approaches to articulated object tracking a background subtraction algo-
rithms are employed to extract the subject undergoing tracking. Additionally,
image cues such as edges, ridges and color are often employed to improve the
extraction of the person. In the presented approach the human silhouette is ex-
tracted via background subtraction. Afterwards, the edges are located within the
extracted silhouette. Finally, the edge distance map is extracted. The matching
score reflects (1) matching ratio between the extracted silhouette and the pro-
jected 3D model and (ii) the normalized distance between the model’s projected
edges and the closest edges in the image [11]. The objective function of all cam-
eras is the sum of such matching scores.

3.1 Rasterization of the 3D Model

In PF-based or PSO-based 3D motion tracking a single particle represents a
hypothesis about possible subject pose. In such approaches the most computa-
tionally and time demanding operation is evaluation of the particles’ score. Since
every particle represents a hypothesis about possible subject pose the CPU-time
needed for the rasterizing the 3D models for all particles can be considerable. As
we already mentioned, the image of the projected model is obtained by rasteri-
zation of the triangles composing the trapezoids. In our approach the triangles
that are closer to the camera are rasterized first. During the rendering of a next
triangle the algorithm checks if a triangle has already been rasterized. If yes, it
skips the rasterization, i.e. the triangle already rasterized is not painted over.
Such an operation is performed for each triangle.

GPU-Accelerated Human Motion Tracking Using PF-PSO 429

In the evaluation of the particles’ score the projected and rasterized 3D model
is matched with the current image observation. The fitness score depends on the
degree of overlap between the extracted silhouette in the current image and the
projected and rasterized 3D model in the hypothesized pose. The overlap degree
is calculated through checking the overlap from the silhouette to the rasterized
model as well as from the rasterized model to the silhouette. The larger the
degree overlap is, the larger is the fitness value. The objective function reflects
also the normalized distance between the model’s projected edges and the closest
edges in the image. It is calculated on the basis of the edge distance map [11].

3.2 Parallelization of Model Rasterization

In the evaluation of particles scores we employ two kernels. In the first one the
3D models are projected into 2D image of each camera. In the second one we
rasterize the models and evaluate the objective functions. In our approach, in
every block we rasterize the model in the pose represented by a single particle
as well as we calculate its fitness score. Thus, the number of blocks is equal to
the number of the particles, see Fig. 1. Each thread is responsible for rasterizing
the model in single column and summing the fitness values of the pixels in
that column. The number of threads in each block is equal to the image width,
whereas the number of running threads in each block is equal to the number of
cores per multiprocessor, see Fig. 1.

parallel threads parallel threads
— —
a1 51
0 0
1 1
[} Q
S S8 £
ke 5|2 %
@ El|® E
" "
012 2 @ W 012 EEXD ; W
threadldx.x " threadldx.x
T ¥
|
I |
Block 0 Block 1 Block 15 Block 300

Grid
Yvve
NN
™R
M%M
P
b A
P VAVaVa
NN
P
AN
NN
NN
X
NN
NN
B AAAY
PN
NN
P
A
b A
b A
b A
R VAVava

|

block of code that run in parallel on available processors
Fig. 1. Parallelization of the cost function

The cost values of the objective function are summed using parallel reduction.
The results from each column of the threaded block are stored in the shared
memory. In the next stage, W/2 consecutive threads determine the sums of the
two adjacent memory cells of the shared memory and then store the results in the
shared memory. The next iteration employs /4 threads to add the results of

430 B. Rymut, B. Kwolek, and T. Krzeszowski

the previous iteration, and so on. In order to speedup the triangle rasterization,
for each triangle a rasterization area is determined. The rasterization is then
only performed for pixels belonging to such a constrained area.

4 Parallel PSO for Object Tracking

Particle Swarm Optimization [9] is a bioinspired meta-heuristic for solving com-
plex global optimization problems. The PSO is initialized with a group of random
particles (hypothetical solutions) and then it searches for optima by updating all
particles locations. The particles move through the solution space and undergo
evaluation according to some fitness function. Each particle iteratively evalu-
ates the candidate solutions and remembers the personal best location with the
best objective value found so far, making this information available to its neigh-
bors. Particles communicate good positions to each other and adjust their own
velocities and positions taking into account such good locations.

In the ordinary PSO algorithm the update of particle’s velocity and position
can be expressed by the following equations:

(z) (1) (i)

—wv;” +c rgz; (pgz) (Z)) + cory (Pg,j — EZ)) (1)

2 e 2 4 o) @)

where w is the positive inertia weight, sz is the velocity of particle 7 in dimen-

sion 7, ngz and rézz are uniquely generated random numbers with the uniform

distribution in the interval [0.0, 1.0], ¢1, c2 are positive constants, p¥ is the
best position that the particle ¢ has found so far, p, denotes best position that
is found by any particle in the swarm.

The velocity update equation (1) has three main components. The first com-
ponent, which is often referred to as inertia models the particle’s tendency to
continue the moving in the same direction. In effect it controls the exploration
of the search space. The second component, called cognitive, attracts towards
the best position p(? previously found by the particle. The last component is

referred to as social and attracts towards the best position p, found by any par-
(4)

best> Whereas

ticle. The fitness value that corresponds p(¥ is called local best p
the fitness value corresponding to p, is referred to as gpest-

Our parallel PSO algorithm for object tracking consists of five main phases,
namely initialization, evaluation, p best, g best, update and motion, see Fig. 2.
Before each optimization cycle, in the initialization stage an initial position z(*)
and velocity v(* is assigned to each particle. In the evaluation phase the fitness
value of each particle is calculated using a cost function. In the p best stage
the determining of pggst as well as p takes place. The operations mentioned
above are computed in parallel using available GPU resources. Afterwards, the
Jvest and its corresponding pg are calculated in a sequential task. Finally, the up-

date stage is done in parallel. That means that in our implementation we employ

GPU-Accelerated Human Motion Tracking Using PF-PSO 431

Input {X(O) X(l)) x(M}

l

Output {p®, p, ... p™, p,}

Fig. 2. Decomposition of synchronous particle swarm optimization algorithm on GPU

the parallel synchronous particle swarm optimization. The synchronous PSO
algorithm updates all particle velocities and positions at the end of each iteration.
In contrast to synchronous PSO the asynchronous algorithm updates particle
positions and velocities continuously using currently accessible information.

In order to decompose an algorithm onto GPU we should identify data-parallel
portions of the program and isolate them as CUDA kernels. In the initialization
kernel we generate pseudo-random numbers using the curand library provided
by the CUDA™ SDK. On the basis of the uniform random numbers we gener-
ate normally distributed pseudorandom numbers using Box Mueller transform
based on trigonometric functions [3]. The normally distributed random numbers
are generated at the beginning of each frame to initialize the particles’ veloc-
ities. Then the uniform random numbers 71, ro for the optimal pose seeking
are generated. This means that for every particle we generate 2 x D x K nor-
mally distributed random numbers, where D is dimension and K denotes the
maximum number of iterations. They are stored in the memory and then used
in the update kernel. At this stage the computations are done in [N/(2 x W)]
blocks and W threads on each of them, where W denotes the number of cores
per multiprocessor. In the compute phest kernel and the update kernel the num-
ber of blocks is equal to [N/W], whereas the number of threads in each block
is equal to W. In the update kernel we constrain the velocities of the particles
to the assumed maximal velocity values. In the motion stage the model’s bone
hierarchy is recursively traversed and the internal transformation matrices are
updated according to the state vector of the particle.

432 B. Rymut, B. Kwolek, and T. Krzeszowski

4.1 Fitness Score for Particle Swarm Optimization

The fitness score for i-th camera’s view is calculated on the basis of following
expression: £ (x) =1 — ((1(i) (x))®r - (2(1‘) (x))™*2), where w denotes weighting
coeflicients that were determined experimentally. The function fl(i) (x) reflects
the degree of overlap between the extracted body and the projected 3D model
into 2D image corresponding to camera ¢. The function fz(i) (x) reflects the edge
distance-based fitness in the image from the camera i. The objective function
for all cameras is determined according to the following expression: f(x) =
12?:1 f@(x). The images acquired from the cameras are processed on CPU
and then transferred onto the device.

5 Parallel PF for Object Tracking

The particle filter simulates the behavior of the dynamical system. Each sample
predicts future behavior of the system in a Monte-Carlo fashion, and the samples
that match the observed system behavior are kept, whereas ones that are un-
successful in predicting tend to die out. The evolution of the state of the target
as well as its measurement process is modeled by a set of (possibly non-linear)
equations perturbed by (possibly non-Gaussian) i.i.d. noise:

X = fr(Xk-1, Vi) (3)

2y, = hi(Xp, n) (4)

where x;, denotes the state of the target at discrete time k, vy is the process
noise vector, z; is the measurement vector, and nj is the measurement noise
vector. The aim is to estimate the distribution of the target state given all the
previous measurements, that is, p(Xg—1|21.k—1), where z1.5,-1 = {21,...,2k_1}.
The recursive Bayesian filter first calculates the a priori density p(xj|z1.x—1)
using the system model and then evaluates a posteriori density p(xx|z1.x) given
the new measurement.

In the PF, the distribution p(xx—_1|z1.x—1) is approximated by a set of M par-
ticles {xz_l}izl...M and associated weights {w},_; };=1..as in the following man-
Pz 33)P(xX %} 1)

a(xp %}, q.2n)
whereas Y wi | =1 and 6(-) denotes the Kronecker delta function. The term
q(xi|xi |, z) stands for an importance density, which is typically obtained by
approximating p(xx|Xx—1,2z;) with a Gaussian distribution, or alternatively by
using p(xp[Xg—1)-

One of the practical difficulties that is associated with particle filters is de-
generation of the particle population after a few iterations because weights of
several particles are negligible, and, eventually, only a very small number of
particles contributes to the posterior distribution. To mitigate this problem the
resampling should be used in order to eliminate particles with low importance

ner: p(xg—1|z1:6-1) ~ > wi_,0(xp — x%_;), where wi oc wi_,

GPU-Accelerated Human Motion Tracking Using PF-PSO 433

weights and multiply particles with high importance weights. Resampling can be
carried out at every iteration or only when a substantial amount of degeneracy
is observed [5]. The algorithm can be expressed by the pseudo-code:

GU N

Fori=1,2,..., M sample or propose particles using p(Xp|Xk—1)
Fori=1,2,..., M calculate the weights, 0} = wj,_,p(zx|x},)
Normahze the Welghts w}, using W}

Calculate the state estimates, X = Zgl w,ixff
Resample {x},w}} to get new set of particles {xj,w; = 1/M}

The resampling step can be expressed as follows:

. Given the normalized weight, calculate an array of the cumulative sum of

the weights.
Randomly generate a number and determine which range in that cumulative
weight array to which the number belongs.

. The index of that range would correspond to the particle that should be

selected.

. Repeat until the desired number of samples is selected.

The cumulative sum of the weights has been computed in parallel using all-

prefix-sum operation [2]. The all-prefix-sums operation takes a binary associative
operator @, and an ordered set of n elements ag,aq,...,a,_1 and returns the
ordered set ag, (ap ® a1),..., (a0 B a1®,...,® ap—1). The cumulative sum was
calculated using CUDA implementation of all-prefix-sums operation [7].

Given the cumulative sum of the weights, we randomly generate a number

and then determine which range in that cumulative weight array to which the

0.28 < x[mid]

mid end

X | 0 | 0.15 | 0.19 | 0.25 | 0.32 | 0.48 | 0.61 | 0.80 | 0.88 | 1.00 |

0.28 > x[mid]

9 9
0.19 0.25 0.32 0.4

x | 0 | 0.15 .48 | 0.61 | 0.80 I 0.88 | 1.00 |

0.28 > x[m\d]

X | 0 | 0.15 | 0.19 I 0.25 I 0.32 | 0.48 | 0.61 | 0.80 I 0.88 | 1.00 |
mid
D
X | 0 | 0.15 | 0.19 | 0.25 | 0.32 | 0.48 | 0.61 | 0.80 | 0.88 | 1.00 |

mex@@@@@@@@@

selected index = 4

Fig. 3. Binary Search Algorithm - selecting indices based on uniform random numbers.
Search for index corresponding to value 0.28 (generated by RNG).

434 B. Rymut, B. Kwolek, and T. Krzeszowski

number belongs. The search for the particle index corresponding to the generated
random number was done in parallel using the binary search operation from
Thrust parallel algorithms library [8], see also illustrative example on Fig. 3.

5.1 Observation Model of Particle Filter

In a particle filter the observation model describes the likelihood of a given
observation given the considered object state. It assumes the following form:

p(zr[xi) = exp(—f(2)?/(207)).

6 Parallel PF-PSO for Object Tracking

The strength of particle filter lies in their ability to represent multi-modal probabil-
ity distributions and to maintain multiple hypotheses about target state. However,
the number of particles that is required to adequately approximate the underlying
probability distribution in the pose space might be huge. To mitigate this limita-
tion, Deutscher and Reid [4] developed an annealed particle filter (APF).

Compared with the ordinary particle filter, the annealed particle filter greatly
enhances the tracking accuracy. However, considerable number of particles is still
required. Because the particles do not exchange information they have reduced
capability of focusing the search on the promising areas. In contrast, owing to
combining the local search (by self experience) and global one (by neighboring
experience), the PSO algorithm has better capability of exploration of the search
space. In [10] we demonstrated that a particle filter combined with a particle
swarm optimization is better than each of them in terms of quality of tracking. In
this work we present a modified PF-PSO, which has better capability of dealing
with multimodal distributions. On the other hand, through the use of multiple
swarms the diversity of PSO is also better.

In order to utilize the advantages of both algorithms, to emphasize their com-
plementarities, and in particular to achieve real-time 3D motion tracking of full

[’

Particles
o o o o o o o o o o o o

'

Resampling / Prediction

[} L] L] L] L] L] L] L]

£

<

f3=]

5

z V ' ' '
o o o o o o o o o o o o
SWARM #1 SWARM #2 SWARM #3 SWARM #4

! ' I ,_Llp

Fig. 4. PF-PSO algorithm

GPU-Accelerated Human Motion Tracking Using PF-PSO 435

human body we elaborated a parallel PF-PSO algorithm. A flowchart of the al-
gorithm is depicted in Fig. 4. At the beginning of each frame a PF with parallel
resampling is executed.

After the resampling a diversification of the particles takes place. The parti-
cles are then assigned to four swarms and each self-optimizing swarm executes a
specified number of iterations. In consequence, owing to multi-swarm optimiza-
tion the algorithm is able to maintain the multimodal distributions. In the last
stage the particles are propagated over time to cover the promising object poses
in the next frame.

7 Experimental Results

The proposed PF-PSO algorithm has been evaluated on image sequences from
[11]. They were acquired by four calibrated and synchronized cameras with 25
frames per second. The first pair of the cameras was approximately perpendicular
to the second camera pair. The input images of size 1920 x 1080 were resized to
480 x 270 resolution. A commercial motion capture (MoCap) system from Vicon
Nexus was employed to provide the ground truth data. The MoCap system
delivers the data with rate of 100 Hz. The synchronization between MoCap
and multi-camera system was accomplished using hardware from Vicon Giganet
Lab. In the above mentioned work we demonstrated sample images with walking
actors as well as the layout of the scene.

The execution time of the proposed algorithm was measured on a PC com-
puter equipped with Intel Xeon X5690 3.46 GHz CPU (6 cores), with 8 GB
RAM, and two NVidia GTX 590 graphics cards, each with 16 multiprocessors
and 32 cores per multiprocessor. Each card has two GTX GPUs, each equipped
with 1536 MB RAM and 48 KB shared memory per multiprocessor. Table 1

Table 1. Computation time [ms] and speedup for marker-less MoCap system consisting
of 4 cameras. The times are for images from single cameras’ shot.

Seq. 1 Seq. 2
F#particles it. GTX590 CPU speedup GTX590 CPU speedup

1000 14.5 143.1 9.9 15.2 141.6 9.3

PP 2000 26.7 264.6 9.9 26.3 263.0 10.0
3000 40.0 387.1 9.8 39.6 388.5 9.8

4000 52.2 515.8 9.9 54.5 517.7 9.5

100 10 30.7 138.7 4.5 30.5 139.0 4.6

PSO 200 10 41.5 253.3 6.1 42.3 254.2 6.0
300 10 58.5 368.0 6.3 58.8 370.0 6.3

400 10 70.8 484.0 6.8 72.1 482.7 6.7

100 10 33.3 139.3 4.2 31.2 138.5 4.4

PF-PSO 200 10 45.8 255.5 5.6 45.4 253.5 5.6

300 10 57.7 371.3 6.4 55.5 367.7 6.6
400 10 67.8 487.1 7.2 68.5 484.1 7.1

436 B. Rymut, B. Kwolek, and T. Krzeszowski

shows the computation time that we obtained on CPU and GPU for a MoCap
configuration with four cameras. The processing times are in milliseconds. It
contains the time needed for processing four images from single cameras’ shot.

We compared the execution time of a generic particle filter (PF), synchronous
Particle Swarm Optimization (PSO) and particle filter combined with PSO (PF-
PSO) as well as the speedup of the GPU over GPU. The number of evaluations
of the cost function by the considered algorithms was the same. For instance,
the PF consisting of 4000 particles was compared with PSO consisting of 400
particles and executing 10 iterations. In the evaluation tests we used 4 CPU
cores and 4 GPUs, i.e. on each GPU or CPU we processed the images from a
single camera. The input images were preprocessed off-line and then transferred
frame by frame to the GPU. As we can notice, the speedup of the algorithm
executed on GPU over the CPU implementation is considerable. The speedup of
PF does not vary much with the number of particles. For PSO and PF-PSO the
speedup grows with the number of the particles. The speedup achieved by the
PF is slightly better in comparison to speedup achieved by PSO and PF-PSO. As
we can see, the full body motion can be tracked at frames larger than 15 frames
by PSO or PF-PSO consisting of 300 particles and executing 10 iterations.

In Tab. 2 are shown the tracking accuracies that were obtained by the dis-
cussed algorithms. The errors were calculated using 39 markers. For each frame
they were computed as average Euclidean distance between individual markers
and the recovered 3D joint locations. For each sequence they were then averaged
over ten runs of the algorithm with unlike initializations. As we can observe, the
PF-PSO allows us to achieve superior tracking accuracy. Only for a PSO consist-
ing of 100 particles and executing 10 iterations the tracking accuracy of the PSO
is better than the accuracy of the PF-PSO. Moreover, the standard deviation
achieved by the PF-PSO is far smaller in comparison to the standard deviation

Table 2. Average errors for M = 39 markers in two image sequences acquired by four
synchronized and calibrated cameras

Seq. 1 Seq. 2
#particles it. error [mm]| std. dev. [mm] error [mm)] std. dev. [mm)]

1000 98.9 60.5 105.3 69.9

PF 2000 74.1 46.1 92.9 61.6
3000 72.3 41.5 75.3 49.0

4000 65.7 35.7 66.8 40.5

100 10 51.1 37.2 63.0 40.3

PSO 200 10 59.1 49.6 65.0 48.2
300 10 59.8 50.0 62.7 45.4

400 10 55.2 44.1 53.9 37.5

100 10 58.8 52.5 71.5 54.9

PF-PSO 200 10 49.4 34.8 58.2 39.0
300 10 48.6 29.3 58.7 40.8

400 10 49.9 36.0 53.9 35.5

GPU-Accelerated Human Motion Tracking Using PF-PSO 437

achieved by the PF and the PSO. This means, that the PF-PSO algorithm copes
better with the multimodal distributions than PSO algorithm.

8 Conclusions

We presented a PF-PSO algorithm, which has superior tracking accuracy to PF
and PSO. Owing to multi-swarm based optimization the algorithm is capable
of maintaining multimodal probability distributions. We proposed a parallel re-
sampling scheme for particle filtering. The tracking of full human body can be
performed at frame-rates of 16 frames per second using a two high-end graphics
cards and images acquired by four cameras. The algorithm running on GPU is
about 7.5 times faster in comparison to algorithm running on CPU. The average
error is below 55 mm.

Acknowledgment. This work has been partially supported by the National
Science Center (NCN) within the research project N N516 483240 and Ministry
of Science and Higher Education within the grant U-206/DS/M.

References

1. Arulampalam, M., Maskell, S., Gordon, N., Clapp, T.: A tutorial on particle filters
for online nonlinear/non-Gaussian Bayesian tracking. Trans. Sig. Proc. 50(2), 174—
188 (2002)

2. Blelloch, G.E.: Prefix sums and their applications. Tech. Rep. CMU-CS-90-190,
School of Computer Science, Carnegie Mellon University (November 1990)

3. Box, G.E.P., Muller, M.E.: A note on the generation of random normal deviates.
The Annals of Mathematical Statistics 29(2), 610-611 (1958)

4. Deutscher, J., Blake, A., Reid, I.: Articulated body motion capture by annealed
particle filtering. In: IEEE Int. Conf. on Pattern Recognition, pp. 126-133 (2000)

5. Doucet, A., Godsill, S., Andrieu, C.: On sequential Monte Carlo sampling methods
for bayesian filtering. Statistics and Computing 10(1), 197-208 (2000)

6. Gong, P., Basciftci, Y.O., Ozguner, F.: A parallel resampling algorithm for particle
filtering on shared-memory architectures. In: IEEE Int. Parallel and Distributed
Processing Symposium, pp. 1477-1483. IEEE Computer Society (2012)

7. Harris, M., Sengupta, S., Owens, J.D.: Parallel prefix sum (scan) with CUDA. In:
Nguyen, H. (ed.) GPU Gems 3. Addison Wesley (August 2007)

8. Hoberock, J., Bell, N.: Thrust: A parallel template library, version 1.3.0 (2010),
http://www.meganewtons.com/

9. Kennedy, J., Eberhart, R.: Particle swarm optimization. In: Proc. of IEEE Int.
Conf. on Neural Networks, pp. 1942-1948. IEEE Press, Piscataway (1995)

10. Krzeszowski, T., Kwolek, B., Wojciechowski, K.: Articulated body motion track-
ing by combined particle swarm optimization and particle filtering. In: Bolc, L.,
Tadeusiewicz, R., Chmielewski, L.J., Wojciechowski, K. (eds.) ICCVG 2010, Part
I. LNCS, vol. 6374, pp. 147-154. Springer, Heidelberg (2010)

11. Kwolek, B., Krzeszowski, T., Gagalowicz, A., Wojciechowski, K., Josinski, H.: Real-
time multi-view human motion tracking using particle swarm optimization with
resampling. In: Perales, F.J., Fisher, R.B., Moeslund, T.B. (eds.) AMDO 2012.
LNCS, vol. 7378, pp. 92-101. Springer, Heidelberg (2012)

	GPU-Accelerated Human Motion Tracking
Using Particle Filter Combined with PSO

	1 Introduction
	2 GPU Computing
	3 3D Model-Based Human Motion Tracking
	3.1 Rasterization of the 3D Model
	3.2 Parallelization of Model Rasterization

	4 Parallel PSO for Object Tracking
	4.1 Fitness Score for Particle Swarm Optimization

	5 Parallel PF for Object Tracking
	5.1 Observation Model of Particle Filter

	6 Parallel PF-PSO for Object Tracking
	7 Experimental Results
	8 Conclusions
	References

