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Abstract. In this paper, we address the problem of line triangulation, which is 
to find the position of a line in space given its three projections taken with 
cameras with known camera matrices. Because of measurement error in line 
extraction, the problem becomes difficult so that it is necessary to estimate a 3D 
line to optimally fit measured lines. In this work, the normal errors of measured 
line are presented to describe the measurement error and based on their 
statistical property a new geometric-distance optimality criterion is constructed. 
Furthermore, a simple iterative algorithm is proposed to obtain suboptimal 
solution of the optimality criterion, which ensures that the solution satisfies the 
trifocal tensor constraint. Experiments show that our iterative algorithm can 
achieve the estimation accuracy comparable with the Gold Standard algorithm, 
but its computational load is substantially reduced. 

Keywords: Line triangulation, Normal error, Iterative algorithm, Suboptimal 
solution. 

1 Introduction   

In computer vision, triangulation is one of fundamental problems and in the past 
many algorithms [1-11] have been proposed to solve point triangulation. But, as the 
reconstruction of manmade environment becomes hot spot topic, lines in space as 
reconstruction feature draw more and more attention. This is not only because lines 
exist largely in manmade environments, also because they have some advantages that 
points haven’t [1]. For example, a line is extracted with more accuracy, it has less 
chance to be occluded but more information to represent geometric structure of 
object, and etc. However, line triangulation is more difficult than point triangulation. 
To construct overconstrained problem, line triangulation needs at least trilinear 
constraint of three projections, compared with bilinear constraint in the point 
triangulation [2]. Moreover, because a line in space has 4 degrees of freedom, there is 
no trivial representation [12]. 

Although there are many difficulties, some researchers have begun the research of 
line triangulation. In the early works [13-15], the algorithms are proposed to solve 
line triangulation for calibrated cameras. But it is difficult for these algorithms to deal 
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with the practical problem in which just the affine or projective camera matrices are 
known. To solve the problem in practice, with Plücker coordinates, a simple linear 
algorithm [12] is proposed. Because of its algebraic-error cost function and the 
Plücker correction, the solution of this algorithm is not accurate enough. The optimal 
algorithm in [16] can give global solution, but its optimality criterion just describes 
the statistics property of image line coordinates and its computation is very intensive. 
In the Gold Standard algorithm [17], geometric errors in images can be utilized to 
construct cost functions. But, because none of these cost functions for the Gold 
Standard algorithm are convex, even though the LM iteration method has large 
computational load, their solutions are not optimal.  

In this paper, a novel algorithm is proposed for line triangulation of three views, 
equally valid in the projective, affine and metric reconstruction. The main difference 
of our algorithm from the previous algorithms is that its optimality criterion has both 
geometric and statistic meaning. This is because the normal errors of measured line 
are defined to describe measurement error in image, and based on the statistical 
property of the normal error, the likelihood function of the normal error is used to 
construct cost function. Furthermore, because the trifocal tensor constraint in the 
optimality criterion is simplified via the linear normal-error representation of the 
estimated line, a simple iterative algorithm is proposed to find suboptimal solution of 
this optimality criterion, which makes the constraint satisfied in each iterative cycle. 
Experiments show that our algorithm not only has lower computational load than the 
Gold Standard algorithm, but also has almost the same estimation accuracy with the 
Gold Standard algorithm.  

The remainder of this paper is organized as follows. Section 2 is about the 
definition of the normal error and the normal-error representation of line. In Section 3, 
we give the normal-error distribution and construct optimality criterion. Further on in 
Section 4, an iterative algorithm is described to solve the optimality criterion. Section 
5 reports experimental results. Section 6 concludes this paper. 

2 Normal-Error Representation of Line 

In this paper, the discussed situation is that the measured lines in images correspond 
to same 3D line and just have measurement error, so it is reasonable to assume that 
the estimated lines are not far from the measured lines and the angles between them 
are far less than 90 degrees. As shown in Fig 1, this means that the distances 

1λ and 2λ , which are perpendicular to the measured line l  and from the measured 

endpoints ,x y to the estimated line l , are finite. Because these two distances are 

measured along the normal direction of the measured line, we define them as normal 
errors between the measured line and the estimated line. Via the normal errors, two 
intersections ,x y on the estimated line can be obtained and we define them as the 

estimated endpoints of the estimated line, which are represented as follows: 

                            1 2,
0 0

λ λ   
= + = +   

   

n n
x x y y                      (1) 
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where n is the vector including the normalized first two elements of the measured 
line l . Furthermore, via these two estimated endpoints, the normal-error representation 
of the estimated line l can be written as 

( )1 2 1 1 2 2

1 2

,

0 0

λ λ λ λ

λ λ

= × = + +

   
= × + × + ×   

   

l x y l g g

n n
x y y x

                (2) 

 

Fig. 1. Normal errors 1λ and 2λ between measured line l (solid line) and estimated line 

l (dash line) 

It is obvious that the normal-error representation (2) is a linear representation of 
the estimated line l  and its parameters are its two normal errors, which reduce the 
number of line coordinates and make the representation of error easier. 

3 An Optimality Criterion about the Normal Error 

3.1 Normal-Error Distribution 

Before constructing the normal-error optimality criterion, it is necessary to give the 
statistical distribution of the normal error in this section. Therefore, two set of 
experiments are performed as follows. In these experiments, 1000000 random 3D 
lines are projected onto 1024 1024× image plane as standard lines. Then, each 
standard line is randomly sampled with 10 and 30 points (including two endpoints). It 
is common to assume that the extracted points in image are subject to Gaussian noise, 
we add Gaussian noise to these sampling points with zero mean and one-pixel 
standard deviation, the corresponding measured line is fitted to these noised sampling 
points using the least-squares and the measured endpoints are the nearest points from 
the two endpoints to the measured line. Thus, the normal error is the distance between 
the endpoint to the measured endpoint. 

From Fig 2, we can see that no matter whether the experiment is about 10 or 30 
sampling points, its histogram of the normal error can be perfectly approximated by a 
Gaussian distribution. Thus, it is reasonable to assume that each normal error of the 
measured line satisfies the Gaussian distribution. 
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Fig. 2. The histograms of the normal error and their Gaussian distribution fittings for the 10-
sampling-point experiment (left) and the 30-sampling-point experiment (right), where the 
horizontal axis represents the normal error level (pixel), the vertical axis represents the number 
of times each error level occurs. 

Thus, based on maximum likelihood estimation, the most likely values for the 
normal errors in n  images can be obtained by minimizing the function 

( ) 2 2
11 12 21 22 1 2 1 2

1

, , , , , ,
n

n n i i
i

L λ λ λ λ λ λ λ λ
=

= +               (3) 

where i stands for the i th image, subject to some constraint 

( )11 12 21 22 1 2, , , , , , 0n nT λ λ λ λ λ λ =                    (4) 

Once these normal errors are known, the corresponding estimated line can be 
found via (2). 

3.2 The Optimality Criterion for Three Views 

For three-view line triangulation, the constraint (4) can be described with trifocal 
tensor [17]. Given the measured line correspondence ( )1 2 3, ,l l l and their endpoints 

( ) ( ) ( ){ }1 1 2 2 3 3, , , , ,x y x y x y in three images, using the normal errors ( )1 2,j jλ λ on 

the j th image ( )1,2,3j = , the estimated endpoints of the line on the first image can 

be written as  

( ) ( )
( ) ( )

1 2 1 11 1

1 2 1 12 1

, ,1 ,0

, ,1 ,0

TT T

TT T

x x

y y

λ

λ

= +

= +

x n

y n
                     (5) 

and the estimated lines 2 3,l l  on the last two images can be written as  

( )
( )

2 21 22 2 21 21 22 22

3 31 32 3 31 31 32 32

,

,

λ λ λ λ
λ λ λ λ

= + +

= + +

l l g g

l l g g
                 (6) 

where in is the vector including the normalized first two elements of the measured 

line ( )1,2,3i i =l , 
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2 2
21 2 22 2

3 3
31 3 32 3

,
0 0

,
0 0

   
= × = ×   
   
   

= × = ×   
   

n n
g y g x

n n
g y g x

. 

thus, the trifocal tensor constraint can be written as following point-line-line 
correspondence 

( )
( )

1 2 1 1 2 2 3 3

2 2 1 1 2 2 3 3

( T T T ) 0

( T T T ) 0

T

T

C x x

C y y

= + + =

= + + =

λ l l

λ l l
                     (7) 

where ( )1 2 3T ,T ,T is the trifocal tensor of the three images, 

( )11 12 21 22 31 32, , , , ,
Tλ λ λ λ λ λ=λ is called normal-error vector. From (3) and (4), we have 

the normal-error optimality criterion for three views   

( )
( )

1

2

min

. . 0

0

T

s t C

C

=

=

λ λ
λ

λ
                             (8) 

Although via the normal-error representation of line, the degrees of both the two 
constraints in (8) are just three, the optimality criterion belongs to the nonlinear 
constraint quadratic programming and complex algorithm is needed to solve it but 
hardly to obtain the optimal solution. So, in next section, a simple iterative algorithm 
is proposed to obtain the suboptimal solution which satisfies the trifocal tensor 
constraint. 

4 Iterative Algorithm 

In this section, we regard the two constraints in the optimality criterion (8) as two 3-
degree surfaces in the normal-error vector space, so the triangulation problem is 
converted to find the point on the intersection of the two surfaces and nearest to the 
origin. To simplify solving process and obtain the suboptimal solution, an iterative 
algorithm is used. In each iterative cycle, we define a pencil of lines through the 
origin, and the iteration solution is the nearest point to the origin, which is not only on 
the intersection of the two 3-degree surfaces but also on the pencil. Thus, the original 
criterion (8) can be converted to equation to solve and its process is stated as follows.  

Suppose the solution nλ  of the n th iteration is known, where initial value 0 0=λ , 
the pencil in the 1n + th iteration is defined by the linear span of the gradients of the 
two constraints at nλ  which are the normal vectors to the two degree 3 surfaces at 
point nλ if 0n ≠ . Therefore, the point λ on the pencil can be expressed 

1 2x y= +λ p p                             (9) 

where 
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Substituting λ into the two constraints of (8), we obtain two cubic equations in ,x y  
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where 1 13 21 14 22p p= +u g g , 2 23 21 24 22p p= +u g g , 1 15 31 16 32p p= +v g g ,

2 25 31 26 32 ,p p= +v g g 1 11 11 1 11 12 2M T Tp n p n= + , 2 1 1 2 2 3M T T Tx x= + + ,
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1 22 11 1 22 12 2N T Tp n p n= + , 2 1 1 2 2 3N T T Ty y= + + , ( )1 2 1, ,1
T

x x = x , ( )1 2 1, ,1
T

y y = y ,

( )11 13 14 15 16 1,0, , , ,
T

p p p p p = p , ( )22 23 24 25 26 20, , , , ,
T

p p p p p = p . 

Then the following problem is to solve the two cubic equations. From (10), it can 
be seen that the highest degree of x in the second equation is 2. Therefore, we rewrite 
the second one as 

( ) ( ) ( )2 2 3 2
2 4 3 6 7 1 5 8 9 0b y b x b y b y b x b y b y b y b+ + + + + + + + =       (11) 

And suppose y is known and 4 2/y b b≠ − , the solutions of x are 

( ) ( )
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A y B y
x

C y

− ±
=                       (12) 

where ( ) ( ) ( )( )22 3 2
3 6 7 2 4 1 5 8 94B y b y b y b b y b b y b y b y b= + + − + + + + , ( ) 2 4C y b y b= + ,

( ) 2
3 6 7A y b y b y b= + + . Substituting (12) into the first equation of (10), we obtain the 

equation    
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( ) ( )( ) ( ) ( )( ) ( ) ( )( ) ( )

3 2

1 2 4

22 32 2
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2
2 2 2

1 2 4 3 6 7

3 2

4 8

3 4 4

a A y A y B y C y a y a A y B y

A y C y a y a y a C y a y a y a

a A y B y A y C y a y a C y a y a y a B y

− − + + +

− + + + + +

= + − + + + +

 (13) 

This is an equation in y of degree 12, which can be solved with companion matrix [19].  
Based on the above discussion, our iterative algorithm is outlined in Table 1. 

Because the iterative algorithm ensures that each iterative solution satisfies the 
trifocal tensor constraint, the suboptimal solution can be used to determine a 3D line 
directly. Therefore, substituting the suboptimal solution into (5) and (6) to obtain the 
estimated endpoints in the first image and the estimated lines in the other images, the 
3D line can be computed by linear algorithm [12] without the Plücker correction.  

Table 1. The Normal-Error Iterative Algorithm 

Initiation: given a termination threshold ε and let 00, 0n = =λ  

1. Compute 1 2,p p in (9) with nλ and the coefficients of cubic equations (10); 

2. Construct equation (13) and solve it with the companion matrix, substitute 
roots of (13) which are different from 4 2/b b−  into (12) to obtain x , and 

when 4 2/y b b= − , ( ) ( )3 2 2 3 2 2 3
1 4 2 4 5 2 4 8 2 9 2 3 4 2 4 6 2 7/x b b b b b b b b b b b b b b b b b b= − + − − + ; 

3. Select the ( ),x y′ ′ from solutions that satisfies (10) and makes 
2

1 2x y+p p  

smallest, 1
1 2

n x y+ ′ ′= +λ p p ; 

4. If 1n n ε+− ≤λ λ , then output 1n+λ and terminate; otherwise, let 

1n n= + and return to 1. 
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5 Experiments 

Both simulated and real experiments are carried out to evaluate the different four 
algorithms using MATLAB on a PC with Intel Core2 2.33 GHz CPU and 2GB RAM. 
These compared algorithms include LIN(linear algorithm)[12], GS+d(Golden 
Standard method with the distance from the measured endpoint to the estimated line),  
GS+nd(Golden Standard method with the normal distance), NIA(our normal-error 

iterative algorithm). In NIA, the termination threshold ε is 710− . 

5.1 Simulated Data 

As shown in Fig.3, the simulated experimental setup includes three cameras looking 
inward to a cube. The size of the angle between the adjacent cameras is chosen as 15 
degrees, 30 degrees respectively to carry out two experiments. In all of these 
experiments, the distance between each camera centre and cube is 10 units and the 
side length of cube is 1 unit. In cube, 28 lines connecting every two vertices are 
chosen as test lines, which are projected onto 1024 1024× image plane. The internal 
matrices of the three cameras are set as: 

700 0 512

K 0 700 512

0 0 1

 
 =  
 
 

. 

 

Fig. 3. Camera setup 

In each of these experiments, 10 sampling points are extracted from test line 
randomly. After Gaussian noise with zero mean and standard deviationσ is added to 
each sampling point, the measured line is fitted to the 10 sampling points with the least-
squares. The noise levelσ varies from 0.4 to 2 with the steps of 0.4 pixels, 200 trails are 
performed at each noise level. The evaluated performances include: RMS (Root Mean 
Square) error of the normal distance; Average error of the space angle which is the 
angle between the real line and the estimated line in space; RMS error of the space 
distance which is the distance between the real line and the estimated line in space. 
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Fig. 4. RMS error of the normal distance (pixel) 

Table 2. The difference between NIA and GS+nd for RMS error of the normal distance (pixel) 

Noise (pixel)  0.4 0.8 1.2 1.6 2.0 
15 degrees 1.68 710−×  9.63 910−×  2.08 1210−×  -0.007 -0.014 

30 degrees 2.39 1210−×  8.67 910−×  3.23 1310−×  -0.004 -0.007 
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Fig. 5. Average error of the space angle (radian) 

The error of normal distance in image and two errors of 3D reconstruction in space 
are shown in Fig.4, Fig.5 and Fig.6, respectively. From these errors, we can see that, 
in both experiments, the LIN has the worst performance and the other three 
geometric-distance algorithms have almost the same accuracy. In more detail, from 
Table2, it can be seen that the accuracy of the NIA is the similar to the GS+nd in the 
case of low noise level, but is better than it as the increase of noise level. From Table3 
and Table4 which are about the differences of 3D reconstruction accuracy between 
the normal-distance algorithm (the NIA) and the point-line-distance algorithm (the 
GS+d), we can see that the NIA has better accuracy than the GS+d as the increase of 
noise level, not only in the case of the space angle but also in the case of the space 
distance.  
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Table 3. The difference between NIA and GS+d for average error of the space angle (radian) 

Noise (pixel) 0.4 0.8 1.2 1.6 2.0 

15 degrees 7.89 810−×  -1.54 710−×  9.66 810−×  -6.94 510−×  -0.00013 

30 degrees 1.83 810−×  -1.28 810−×  -2.21 710−×  -3.89 710−×  -5.60 710−×  
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Fig. 6. RMS error of the space distance (unit) 

Table 4. The difference between NIA and GS+d for RMS error of the space distance (unit) 

Noise (pixel) 0.4 0.8 1.2 1.6 2.0 
15 degrees 3.94 810−×  1.94 810−×  -1.84 710−×  -5.85 710−×  -2.37 610−×  

30 degrees -4.12 810−×  -2.25 810−×  -3.87 710−×  -1.57 610−×  -1.17 510−×  

5.2 Real Data 

In real experiments, two sets of real images are used to test the algorithms mentioned 
above. One of the two sets is indoor objects as shown in Fig.7(left), in which the 36 
measured lines are fitted to the points extracted by hand; the other is Tsinghua school 
as shown in Fig.8(left), in which the 196 measured lines are extracted by Canny edge 
detector. Their right figures show the reconstructions of indoor objects and Tsinghua 
school by NIA, respectively. 

From Table 5 and Table 6 we can see that the accuracy of NIA is just the same as 
GS+d and GS+nd. But the running times of NIA are all less than 1/ 3 times of them. 
Although the running time of the LIN is the least of all, its worst accuracy indicates 
that the LIN is not suitable to be utilized in practice. 

Table 5. Results of indoor objects 

 LIN NIA GS+d GS+nd 
RMS error of the normal distance (pixel) 0.76 0.29 0.29 0.29 

average of running time( 410− s) 2.06 45.90 146.74 183.02 
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Table 6. Results of Tsinghua school 

 LIN NIA GS+d GS+nd 

RMS error of the normal distance (pixel) 3.54 0.19 0.19 0.19 

average of the running time( 410− s) 2.13 38.87 146.24 177.00 

 

Fig. 7. Measured lines from indoor objects (white line) and its 3D reconstruction by NIA 

 

Fig. 8. Measured lines from Tsinghua school (white line in the left of pictures, black line in the 
right of pictures) and its 3D reconstruction by NIA 

6 Conclusions 

This paper discusses the line triangulation for three images. The main contributions 
include: the normal error is defined to describe measurement error of measured line 
and construct a linear representation of image line; based on the statistical property of 
the normal error, an optimality criterion about the normal error is presented; 
furthermore, a simple iterative algorithm is proposed to solve this optimality criterion, 
which makes the trifocal tensor constraint satisfied in each iterative cycle. 
Experiments show that our iterative algorithm can achieve comparable estimation 
accuracy with the Gold Standard algorithm, but with much less computational load. 
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