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Abstract. We propose a real-time capable method for human pose esti-
mation from depth and color images that does not need any pre-trained
pose classifiers. The pose estimation focuses on the upper body, as it
is the relevant part for a subsequent gesture and posture recognition
and therefore the basis for a real human-machine-interaction. Using a
graph-based representation of the 3D point cloud, we compute geodesic
distances between body parts. The geodesic distances are independent of
pose and allow the robust determination of anatomical landmarks which
serve as input to a skeleton fitting process using inverse kinematics. In
case of degenerated graphs, landmarks are tracked locally with a mean-
shift algorithm based on skin color probability.

1 Introduction

Gesture recognition plays an important role in real human computer interaction
(HCI) environments since it is very intuitive and close to natural human-human
interaction. The analysis of gestures in HCI systems requires a robust and real-
time capable estimation of the human pose. In the literature pose estimation
techniques can be categorized by several criteria: (1) Whether the approach is
a learning based method or not, (2) Whether the pose estimation is based on
single frames or frame sequences, (3) dimensionality of the input data, i.e. the
approach is image based or 3D, (4) use of markers or marker-less. Learning
based approaches [1] [2] try to match several observed features with a set of
previously trained poses. For this, typical machine learning methods like neural
networks or support vector machines are used. An advantage of these methods
is that they require a less accurate feature extraction compared to learning free
approaches but are restricted to previously trained poses. Methods without any
prior knowledge, e.g. [3], require an exact feature extraction but can estimate
general poses. Much research has been done on image-based pose estimation
techniques which are usually based on features like skin color [4], contours [5]
and silhouettes [6] but often lack the ability to resolve ambiguities, e.g. self-
occlusions. One possibility to resolve the ambiguities is the use of markers [7].
Typical applications for such an approach are the generation of ground truth
data or motion-capture systems. In a real HCI environment, however, the need
of wearing markers, is too awkward and not suitable. Another possibility to
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Fig. 1. Left : RGB color image of the scene with a user performing a pose. Middle and
Right : Main features used for pose estimation are: Geodesic distances along the surface
of the users body (middle) and skin color probability (right).

overcome the limits of the image-based pose estimation is the use of 3D data.
The recent development in the field of 3D sensors – primarily time-of-flight
(ToF) and structured infrared light (IR) based sensors – allows the generation
and processing of dense depth maps in real time. Several authors have used 3D
sensors for pose estimation [8] [9] [2].

In this work, we propose a method that tracks the upper body pose from
depth data. Using a graph-based representation of the 3D information, we com-
pute geodesic distances, i.e. distances along the surface of the human body, and
extract anatomical landmarks which are used as input to a preliminary pose es-
timation. In the case of a degenerated graph, landmarks are determined locally
by skin color tracking. A similar method was provided in [10], where the authors
used geodesic distances and optical flow.

1. We provide a framework that robustly estimates and tracks human upper
body poses in real time.

2. The method does not require any offline training or learning and estimates
arbitrary poses, which is important for different HCI scenarios.

3. Due to the robust measurements of the anatomical landmarks based on
geodesic distances, our method quickly recovers from tracking failures.

4. Typical parameters such as, the length of the forearm and upper arm, are
not a priori required, but determined online.

2 Upper Body Pose Estimation

An overview of our proposed method is shown in figure 2. At each time instant
the depth image Dt and color image It is captured from the Microsoft Kinect
sensor. This capturing is performed in a separate thread, that triple buffers the
sensor data. Thus, the reading thread, in which we perform the pose estimation,
does not have to wait for the writing process to be completed, which results in a
higher processing rate. The segmentation of the observed person is beyond the
scope of this paper. We assume that D contains only depth image pixels that
belong to an already segmented person.
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Fig. 2. Overview of the suggested method for upper-body pose estimation

Using the intrinsic camera parameters (principal point and focus length) and
Dt, we then compute the 3D point cloud data Ψ . It is an organized point cloud,
i.e. each 3D point (vertex) has only one corresponding depth image pixel in Dt.
This is in terms of required computation time of great advantage in the next
two steps, the computation of the graph based representation Γ of Ψ and the
measurement of the geodesic distances (section 2.1).

Especially, when the user touches itself, the graph can, however, contain
cycles and thus landmark positions for the elbows and hands are not deter-
minable. To overcome this problem, we additionally use a local mean-shift tracker
based on skin color probability to track the hand position in subsequent frames
(Section 2.3).

Our goal is to detect 3D feature points (landmarks) Ω for the head, both
shoulder, elbows and hands (section 2.2). Given these landmarks Ω, we then use
methods of inverse kinematics to find an estimate of the upper-body pose Θ, i.e.
to compute the joint rotations θ of a kinematic skeleton model (section 2.4).

2.1 Graph-Based Representation

Given the point cloud data Ψ , we compute a graph-based representation of it.
The graph Γ = (n, e) consists of nodes n and edges e. The graph creation and
measurement of geodesic distances is performed in one single step. Each node ni

is described by three parameters

ni = (ψ, dg, np)i, (1)

where ψ ∈ Ψ is the corresponding 3D point of the point cloud data, dg is the total
geodesic distance to the root node n0 of the graph, and node np is its parent, i.e.
predecessor, node. For the computation of Γ we make use of the fact that each
node has a corresponding 2D projection n′

i = (x, y)i in the depth image. Instead
of comparing each 3D point with each other, the graph creation can therefore
be done very efficiently in the image domain.
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A node ni is connected to another node nj by edge e if they fulfill one of two
edge criteria, c1Γ (eq. 3) or c2Γ (eq. 4) . The set of edges is thus defined as:

e = {(ni, nj) ∈ n× n | c1Γ (i, j) ∨ c2Γ (i, j)}, (2)

with the edge criteria:

c1Γ (i, j) =||ni(ψ)− nj(ψ)||2 ≤ εΓ ∧ d(n′
i, n

′
j) ≤ 1 (3)

c2Γ (i, j) =||D(n′
i)−D(n′

j)||2 ≤ εDΓ ∧
D(n′

i) > D̄ij + εΓ ∧ d(n′
i, n

′
j) > 1,

(4)

and d(n′
i, n

′
j) = ||(x, y)i − (x, y)j ||2 is the 2D distance between the projections

of node ni and nj to the depth image and D(n′
i) the depth value at location n′

i.
The first criterion (eq. 3) connects two nodes, whose Euclidean distance is be-

low a threshold εΓ and whose 2D projections are adjacent points. This threshold
depends on the resolution and density of the depth image. We used εΓ = 0.02m.
The criterion alone, however, is not sufficient. If two nodes, which should be
connected by an edge, are separated by another occluding body part, in partic-
ular a limb, then the creation of the graph would be incorrect or, at worst, only
performed for a subset of all nodes.

Thus, edge criterion c2Γ (eq. 4) connects nodes with non adjacent projections
d(n′

i, n
′
j) > 1, if they have similar depth values ||D(ni) − D(nj)||2 ≤ εDΓ and

are separated by 3D points that have a less mean depth value D̄ij . This is an
extension to the method described in [10] as we do not require the projections
of two nodes (ni, nj) to be adjacent points and can therefore create complete
graphs also in the case of partial occlusions.
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Fig. 3. Left: Schematic representation of the graph creation: 3D point cloud data is
depicted as a mesh (gray lines). The current node (red sphere) is connected to the first
node in each 2D direction that fulfills either edge criterion c1Γ or c2Γ . Right: Results
of the graph creation. Blue points show the 3D-point cloud data of the segmented
user. A selection of the created graphs is depicted as black lines. The two graphs with
maximum geodesic distance are shown as red and green lines.
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We denote the Euclidean distance between two nodes connected by an edge
as the weight of the edge w(ei,j) = ||ni(ψ)− nj(ψ)||2. The geodesic distance dg
of each node is then the cumulated weights of the sequence of edges that belong
to the shortest path P back to the root node n0: dg =

∑
e∈P w(e).

The shortest path P is found using the Dijkstra algorithm. In each iteration
step, we search for the node with the smallest total geodesic distance dg and set
it as the current node. We implemented the list of all nodes as a priority queue,
because it speeds up the search for current node significantly. Starting at the
projected 2D point of the current node we determine for all four 2D-directions
(up, down, left, right) the first valid 3D-point that fulfills an edge criterion. This
is shown in figure 2.1. When graph creation is completed, we store the total
geodesic distance dg of each node in a 2D map ΓM .

The choice of an appropriate root node n0 is important. A good initialization
is simply the centroid Ψ̄ of the point cloud Ψ . The projection of this point
may, however, be occluded by a limb in front of the torso. The graph creation
would then begin in the limb and result in incorrect geodesic distances. To
overcome this, we define a search window RΓ centered around the projection
of Ψ̄ and search for the point with maximum depth D0 . All nodes in RΓ that
have a similar depth value are then marked as candidates for the root node:
L0 = {ni| ||D(n′

i)−D0||2 ≤ εD0}n′
i∈RΓ

. As a root node, we then take the node,

which is closest to Ψ̄ and element of L0:

n0 = arg min
ni∈L0

||ni(ψ)− Ψ̄ ||2. (5)

2.2 Landmark Detection

In total we use eight landmark positions Ωt = {ωc, ωh, ωsl, ωsr, ωel, ωer, ωwl, ωwr}
that specify the 3D-position of the body center ωc, head ωh, left and right shoul-
der ωs = (ωsl, ωsr), elbow ωe = (ωel, ωer) and both hands ωw = (ωwl, ωwr).

The center position is identical with the root node of the graph, ωc = n0(ψ).
The head appears in D as an elliptical region. We find such regions by a 2D
template matching (sum of squared differences) between D and an template
image TH , which contains an ellipse, whose rotation and size depends on the
last known head position. The head landmark ωh is then the centroid of all 3D
points that correspond to the resulting template location.

Fig. 4. Results of the head detection based on SSD template matching for various
poses. The green points depicts the position of head. The inner rectangle defines the
size of the template and the outer rectangle depicts the search region.
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To find the hand landmark positions, we threshold the geodesic distance map
ΓM
t > τ . We set τ to τ = 1m. For each segmented region Rj , we find the node

with maximum geodesic distance djg and compute the mean 3D position xj :

xj =
∑

ni|n′
i∈Rj

γ(ni) | dg(ni) > djg −Δw
d (6)

with Δw
d the mean estimated geodesic extent of a hand (Δw

d = 0.2m). The set
{xj} may also contain 3D locations of the feet or even the head. We reject these
locations by considering the Euclidean distance to the detected head landmark
||xj − ωh||2 (not further described). The next step is to decide whether the
remaining locations in {xj} refer to the left or right hand. For this, the Euclidean
distances between nodes of the corresponding paths and the shoulder landmarks
are used (Fig.5 left): Tracing back the paths (P0, P1) we search for the points
(ψS

0 , ψ
S
1 ) with minimum Euclidean distance to one of the shoulders and set the

hand landmarks according to:

(ωsl, ωsr) =

{
(x0, x1), if ||ψS

0 − ωsl||2 ≤ ||ψS
1 − ωsr||2

(x1, x0), otherwise
(7)
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Fig. 5. Left : Discrimination between left and right hand based on the minimal Eu-
clidean distances between shoulder landmarks and geodesic paths. Right : Detection of
the elbow landmarks based on curvature analysis of the corresponding geodesic path.

For the elbow landmarks, we first detect, whether the arm of the person is
bent. Here for, the Euclidean distances between the nodes of the hand paths and
the 3D line ¯ωwωs are determined (Fig.5 right). If the maximum distance exceeds
a threshold the arm is considered to be bent and we set the elbow landmark ωe

to the corresponding graph node. Otherwise, we set the elbow landmark to the
first node of the graph whose geodesic distance to the respective hand landmark
is above a threshold. The threshold is initially set to 0.3m and updated each
time the arm is bent.

2.3 Skin Color-Based Tracking

In cases where landmarks can not be detected by geodesic distances, we deter-
mine the hand landmark positions by tracking skin colored regions that are close
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to the last known position of the hand. At first, a skin color probability map Is
(Fig. 6b) is computed from the intensity image It (Fig. 6a). For each pixel its
skin color probability is taken from a pre-computed look-up table (LUT). For
this purpose, we have trained a naive Bayes classifier [11]:

p(skin|x) = p(x|skin) · p(skin)
p(x)

(8)

with x = [cr, cb]T the color components of the pixel in the YCrCb color space,
where Y represents the luminance and Cr, Cb the chrominance values. The Bayes
classifier was trained in an Histogram-based approach using a set of images
containing skin and non-skin colored pixels:

p(x|skin) = ns

Ns
; p(skin) =

Ns

Ns +Ns̃
and p(x) =

ns + ns̃

Ns +Ns̃

where ns, ns̃ are the skin- and non skin histogram counts for each color [cr, cb]i
and Ns, Ns̃ are the total sample sizes of skin and non skin colored pixels,
respectively.

�� �� �� ��

Fig. 6. Skin-color based hand tracking: (a) RGB intensity image. (b) Skin color proba-
bility map. (c) Detection of skin colored elliptical regions by means of normalized cross
correlation between (b) and a template image. (d) Final probability map for hand
position.

The hand appears as an elliptical skin colored region. In a template based
step we find such regions in Is. The template Th contains a 2D-ellipse, whose
size and rotation depend on the camera distance of the last known hand position
and the relative position to the last known elbow location. The template match
Im is determined by means of normalized cross-correlation function (Fig. 6c).
We assume that the hand position in the current frame is close to that in the
prior frame and compute for each valid 3D-point ∈ Ψ̄ :

Ip = e−0.5(Ψ̄−xw)2/σw (9)

with xw the last known corresponding hand position. The two probability maps
Ip and Im are combined to a probability map Ih using equation 10 (Lukasiewicz
t-norm):

Ih = max(Ip + Im − 1, 0) (10)

Thus, Ih has a maximum in elliptical skin-colored regions, that match the
size and rotation of the hand and are close to the last known hand position
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(Fig. 6d). Its maximum position is found in a mean-shift step. To obtain the
hand landmark position ωw, we then average all 3D points that lie in a search
window centered at the maximum location.

2.4 Kinematic Skeleton Model

The skeleton model (Figure 7) is defined by Θ = {x, qr0, qr1, ql0, ql1}. Here x =
[xc, xh, xsl, xsr, xel, xer, xwl, xwr]

T ∈ R3 denotes the position of the body center,
the head, both shoulders, elbows and hands in world coordinates and q ∈ H the
relative limb rotations of the left and right fore- and upper arm, respectively.
The indices for left and right version of the skeleton joints are omitted.
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Fig. 7. Left : Kinematic skeleton model used in the CCD based fitting step. Right :
Assignment of 3D points to individual body parts is based on the minimum Euclidean
distance to each line in {g}.

The positions of the center, head, and shoulders are set to the corresponding
landmark positions [xc, xh, xs]

T = [ωc, ωh, ωs]
T . Thus, we only model the arms

as kinematic chains: Let T (q, t) denote a transformation with translation t and
q. The joint positions are then given by:

xe = T0T1[0 0 0 1]T xw = T0T1T2[0 0 0 1]T

with transformation matrices:

T0 = T (0, ωs) T1 = T (q0, [±lu 0 0]T ) T2 = T (q1, [±lf 0 0]T )

and lu = ||ωe−ωs||2 and lf = ||ωw −ωe||2 the length of the upper- and forearm.
The joint rotations (q0, q1) are computed by minimizing either

e1 = [ωw − xw, ωe − xe]
T or (11)

e2 = [ωw − xw]
T (12)

depending on whether the hand landmark was found using geodesic distances and
we therefore detected an elbow landmark as target position (eq.11) or via skin
color tracking (eq.12). We used the Cyclic Coordinate Descent method (CCD)
because it is numerically stable, computationally inexpensive, and provides rea-
sonable results for kinematic chains with only a few elements [12].
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3 Experimental Results

We have created a set of test sequences to evaluate our proposed method. The
sequences were recorded with a Microsoft Kinect for Windows sensor. The reso-
lution was 640 by 480 and 320 by 240 for the color and depth image, respectively.
Sampling frequency was 25 frames per second. We assume that no object is be-
tween the user and the sensor and that the user is facing the camera. This is a
reasonable assumption in a gesture recognition environment. The test database
contains both simple and complex poses. Here, simple means that body parts do
not overlap. In particular, it means that the created graph is not circular and
landmark positions of the hands and elbows can be detected by thresholding
geodesic distances. In the complex test sequences, occlusions of body parts and
self-contacts occurs. Overall, we have recorded eight test sequences with a length
of 70 seconds each. The Microsoft SDK used to control the Kinect Sensor also
provides a skeleton. This gives us the possibility to compare our pose estimation
method to that of the Kinect. The proposed method is implemented in C++. On
a standard dual core computer (2.66 GHz) we can process the sensor data and
estimate complete upper-body poses with 22 frames per second. The processing
speed differs from sampling frequency because in our implementation capturing
and processing are implemented as two separated threads.

� � � �

� � � �

Fig. 8. Robust determination of geodesic distances for various poses. The color denotes
the geodesic distance from the root node (blue circle).

We first investigated the measurement of geodesic distances. In Figure 8 the re-
sults of the geodesic distance measurement for various poses of the test sequences
are shown. The color of each pixel of the depth map represents its geodesic dis-
tance to the root node (center of the blue unfilled circle). Green represents a
distance of 0 meters and red pixels a distance of 1.2 meters. One can see that we
can robustly measure the geodesic distances. In each of the shown examples the
depth image pixels that represent the hands have the highest geodesic distances
to the root node. We can therefore robustly detect the hands by thresholding
the geodesic distances. This also true for complex poses, where both hands are
connected (Fig.8d) or the user crosses the arms (Fig. 8e and 8g ). As already
mentioned the choice of an appropriate root node is important for a correct
geodesic distance measurement. The authors in [10] have used the centroid of
the point cloud (blue filled circle in Fig. 8). However, this is not sufficient if a
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limb is in front of the torso, because the projection of this point to the depth
image could be located in an area that belongs to the limbs (e.g. Fig.8h). The
geodesic distance measurement would then start in the limb instead of the torso.
In fact, in [10] only poses are shown in which the torso is not occluded by a limb.
Due to our described correction of of the root node (unfilled blue circles) we are
able to compute geodesic distance even if limbs are in front of the torso as long
as they are not too close to it.

����������	
��
�

�

Fig. 9. Graph creation. We do not only connect nodes that are adjacent points in the
depth image but also nodes that are separated by foreground objects (edge criterion
c2Γ ). The two paths with the largest geodesic distances (red and green) are also shown.

A further extension to the graph creation described in [10] is that we do not
only connect nodes that are adjacent points in the depth image but also nodes
that are separated by fore ground nodes (edge criterion c2Γ ). If there were only
graph edges between adjacent points in the depth image (edge criterion c1Γ ), all
3D points in Fig.8h that are below the right fore arm in the depth image would
not have been connected to the graph as they do not fulfill an edge criterion.
This is also illustrated in Figure 9 which depicts a perspective view of the 3D
point cloud and a subset of the detected geodesic pathes (black lines).

Figure 10 shows results of the landmark detection and skeleton fitting for a
subset of poses of the test sequences. In the first row the raw point cloud data
(blue dots) and the detected landmark positions are depicted. The second row
shows the kinematic skeleton model that was fitted to the landmark positions.
For a comparison to the Kinect skeleton, we projected the skeleton of our method
(yellow) and that of the Kinect Sensor (magenta) back to depth data (third
row). As it can be seen, in all cases the proposed method can determine the pose
very well and the projected joint positions match the depth data. Our skeleton
matches also very well that of the Kinect Sensor, but does not need any prior
training. Tracking problems mainly occurs, if the hands are fully occluded. In
this case the hand can neither be detected by thresholding the geodesic distance
nor by skin color. However, the tracker can recover from tracking failures as soon
as landmarks are determinable by geodesic distances again.
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Fig. 10. Evaluation of the proposed method. Each image (a-f) shows the depth data
and the projected skeleton of our approach (yellow) and the skeleton of the Microsoft
Kinect SDK (magenta). Right next to each depth image a 3D-view of the skeleton is
depicted. The thin orange lines show the Microsoft skeleton.

For an qualitative assessment, we manually labeled the positions {x̂i} of the
hand, shoulders and elbows in 3D and computed the mean Euclidean distances
at each time instant to the joint positions xi ∈ Θ obtained by our method.

egeo =
1

N

∑
i

||xi − x̂i||2. (13)

A similar error was computed between the ground truth positions and the joint
positions of the Kinect skeleton. In all 8 test sequences the error of our method
was between 40mm – 120mm and 60mm – 140mm for the Kinect skeleton. The
reason for this difference is the following: The landmark positions of the hands
and elbows are located on the paths that were found by the Dijkstra algorithm.
It computed for each node of the graph the shortest path to the root node. If
the user bents his arm this path, however, does not run throught the center of
the limb but is shifted towards its inner side. This is also shown in Fig. 9.

4 Conclusion and Discussion

In this work, we proposed a method for estimating and tracking the human
upper-body pose from sequences of depth and color images. The method is a
learning-free approach and does not need any pretrained pose classifiers. We can
therefore track arbitrary poses as long as the user is not turned away from the
camera and there is no object between the user and the camera.

At first, we segment the user based on the depth image and determine a graph
based representation of the 3D-data. Using this graph, we measure the geodesic
distances along the surface of the users body. By thresholding the geodesic dis-
tances, landmarks for hand and elbow locations can be obtained. The distinction
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between right and left arm are done by backtracking the corresponding geodesic
pathes. In the cases where geodesic distances could not be measured (degener-
ated graph), hand landmarks are determined by tracking skin colored regions by
means of a mean-shift algorithm. The presented experimental evaluation showed
that we can robustly and exactly estimate arbitrary poses, which builds the basis
for a subsequent gesture recognition process. The proposed method is real-time
capable and can track rapid limb movements. Problems can occure, when mul-
tiple skin-colored regions exists, e.g. skin colored clothes. This is due to the
simplicity of the used skin color tracker. In [13] we presented a multi hypotheses
based approach tracker which we will integrate into the proposed approach.
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