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1 � Introduction

Reading is a relatively recent cultural innovation, emerging in the last 5,000 years 
or so. It is an acquired skill involving the decoding of patterns of visual stimulation 
into a linguistic and, ultimately, a conceptual representation. Because it involves 
a considerable amount of learning and entails the interaction of several disparate 
brain areas, it is an ideal experimental domain to study the plasticity of the brain in 
a relatively pure form. As Huey (1908) observed in his seminal work The Psychol-
ogy and Pedagogy of Reading first published just over 100 years ago, to understand 
reading fully would involve gaining a deep understanding of complex brain func-
tion. Huey’s goal remains elusive to this day. What has changed is the availability 
of a powerful set of tools with which to explore the process: eye tracking, compu-
tational modelling, and electroencephalogram (EEG) recording. I will argue in this 
short chapter that it is only through the coordinated deployment of all three tools 
that we will get close to attaining Huey’s goal.

2 � Eye Movements in Reading

A reader’s eyes move along a line of text in a sequence of fixations separated by 
jumps called saccades. Reading, therefore, takes the form of a series of “snapshots” 
during which textual information is acquired. During one such snapshot, the rec-
ognition of a single English word of average length takes about 100 milliseconds 
(Rayner and Pollatsek 1989). From the pioneering research of McConkie et  al. 
(1988), it emerged that the effective target of a given eye movement is the centre of 
the to-be-fixated word. The goal of eye movements in reading appears to be to attain 
an optimal viewing position (OVP) on a word, which, if successful, facilitates rapid 
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word recognition (O’Regan 1990). In reality, fixation locations are normally distrib-
uted with means somewhere between the beginning and the centre of the word. This 
latter position is referred to as the preferred viewing location (PVL; Rayner 1979). 
The eye frequently undershoots or overshoots the optimal position or even the word 
boundary with the consequence that extra fixations and/or movements back to pre-
viously read words may need to be made (Nuthmann et al. 2005).

All current accounts of word targeting in reading assume that the writing system 
serves up unambiguously delineated word “blobs” that act as targets for the saccade 
programming mechanism. This solves several problems at one fell swoop. There is 
no need, for example, to invoke a word segmentation algorithm to extract the indi-
vidual words for targeting. However, it raises the question of what happens when 
the words in a writing system are not so conveniently delineated. What strategies 
do readers adopt when reading unspaced writing systems such as Thai or Chinese? 
This is still very much an open research question.

3 � Computational Models

Over the last 20 years, there has been a burgeoning of computational models in the 
field of eye movements and reading. This growth has occurred partly as a result of 
the wealth of data generated by modern eye-tracking technology and partly because 
of the need to manage theory development for what turns out to be a complex in-
terplay of cognitive, perceptual, and motor processes. Up until the early 1990s, the 
main types of theory in the field were informal, verbally specified ones. Morrison’s 
(1984) model is a good example of this genre. While providing a plausible account 
of the phenomena of saccade targeting and word skipping in reading, Morrison’s 
model still omitted crucial aspects of the process. For example, it could not account 
for spillover effects, where the processing on one fixation affects another. It was 
also hard to infer reliably testable predictions from the model because of the com-
plex parallel interaction of different processes (e.g. word recognition and saccade 
preparation occur in parallel in the model). The management of this complexity 
clearly called out for computational modelling. Moreover, a computational model 
was required rather than a purely mathematical one, since it effectively involves the 
integration of a number of distinct mathematical models into a process-based ac-
count instantiated as a computer program. As Norris (2005) put it:

In research on word recognition, models don’t just resolve debates over what 
theories predict, they are often the only way that even the theorists themselves can 
be sure what their theories predict. (Norris 2005, p. 333)

While he was referring specifically to visual word recognition (VWR) models, 
his remarks can be applied just as emphatically to models of eye movements in 
reading. Tellingly, the computational instantiation of the Morrison model as E-Z 
Reader (Reichle et al. 1998) led to several important changes in the original model’s 
formulation arising from inconsistencies in the relative timing of several of the 
component processes. These inconsistencies would have been hard or impossible 
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to detect without the support and constraints provided by a computational imple-
mentation.

With the use of computational models now the norm in the field, a new issue 
arises regarding the precise relationship between model and motivating theory that 
it instantiates. Because of the complexity of models involved, the relationship can 
often be ambiguous and is frequently under-specified by the model designers. This 
can, in turn, lead to confusion about the testability of certain features of a model and 
the implications that this might have for its veridicality.

For example, in the case of the very successful interactive activation (IA) model 
of VWR (McClelland and Rumelhart 1981; Rumelhart and McClelland 1982), one 
of its features not especially deliberated over by the authors and by implication not 
attributed much theoretical weight was the input letter representation. The approach 
adopted involved having identical banks of features and letters replicated across the 
visual field. To most researchers, this was taken as a computational convenience 
and a way of skirting around what is still a hard problem in computational vision, 
namely position- and scale-invariant object recognition. Nonetheless, the letter 
representation approach adopted by the IA model became the focus of some criti-
cism and empirical evaluation by other researchers (e.g. Mewhort and Johns 1988; 
Humphreys et al 1990; Davis and Bowers 2004).

The critique that certain letter-migration errors were precluded by the input’s 
design was indeed valid and the results of Davis and Bowers’ (2004) experiments 
were informative. Similarly, the studies of Humphreys et al. (1990) were on a much 
broader canvas than merely a critique of the input format for the IA model. How-
ever, one felt, to a large extent, that both critiques missed the point, since the core 
assumptions of the IA model were not heavily dependent on the precise nature of 
the letter representation used. A more central property of the whole family of IA 
models was that of interactivity between word, letter, and feature levels. Undermin-
ing the centrality of this property to the model’s performance could be seen as much 
more damaging. In fact, Norris (1994) appeared to do just that with his Shortlist 
speech perception model. The Shortlist model, using a purely bottom-up architec-
ture, demonstrated effects that had required top-down influences in the TRACE 
model of speech perception (a member of the IA family of models; McClelland and 
Elman 1986).

The case of the IA models is a good illustration both of how computational mod-
els can act as an important stimulus for research and of how there is little agreement 
about what constitutes a damaging critique. Notwithstanding Norris’ (1994) find-
ings, the IA framework of models has proved very productive in many varied cog-
nitive modelling domains (e.g. Grainger and Jacobs 1998). The Glenmore model 
of reading (Reilly and Radach 2006), for example, is an IA model that can account 
within one mechanism for basic patterns of eye movement behaviour and accom-
modate a wide range of well-established empirical phenomena including parafoveal 
preview effects (Rayner and Pollatsek 1989).

The E-Z Reader model mentioned earlier (Reichle et al. 1998) can be regarded as 
a simulation of reading when higher-level linguistic processing is running smoothly 
(Reichle et al. 2003). The model aims to explain how lexical processing influences 
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the progress of the eyes through the text and provides a framework for understand-
ing word identification, visual processing, attention, and oculomotor control that 
determines when and where the eyes move during reading (Reichle et al. 2003).

E-Z Reader works on the hypothesis that linguistic processing affects eye move-
ments in two different ways. First, there is a relatively low-level linguistic process 
that keeps the eyes moving forward. Second, higher-level processing occurs in par-
allel with this low-level processing and is effective when the higher-level process-
ing is having difficulty.

The SWIFT model (Engbert et al. 2005) embodies a number of features that set 
it apart from E-Z Reader. Most notably, the model assumes the parallel processing 
of several words in a given fixation, the number of such words being constrained by 
the extent of the perceptual span. In contrast, E-Z Reader assumes serial processing 
of words. Another distinguishing feature of SWIFT is that the triggering of a sac-
cade is autonomous from word recognition. E-Z Reader, on the other hand, assumes 
word recognition or at least partial recognition of a word drives the reading process 
forward.

There is still, however, a gulf between the modelling architectures used to ac-
count for reading data (e.g. Glenmore, SWIFT, and E-Z Reader) and those neces-
sary to account for the neural basis of reading. Indeed, the very existence of this 
gulf allows the proliferation of models that are, in my view, difficult to chose among 
on the basis of behavioural data alone. What are required are additional constraints 
from the neural substrate that the models purport to abstract from.

4  �Electroencephalogram

Focussing on the neural foundations of reading is a significant challenge for a num-
ber of reasons: (a) Reading is an active process, so paradigms that restrict eye move-
ments degrade the process under investigation; (b) reading involves coordinated 
activity in a variety of brain regions from the retina and primary visual cortex to 
integration areas to language areas; and (c) both inter-subject and intra-subject vari-
ability is high across various aspects of reading. Despite these difficulties, great 
progress has been made using oculomotor recording, EEG, and functional magnetic 
resonance imaging (fMRI). The primary limitation of fMRI is that its timescale is 
orders of magnitude slower than the timescales of interest in the reading brain.

EEGs are recordings of minute low-frequency electrical potentials on the sur-
face of the skull produced by neural activity within the brain (typically 10–300 μV, 
0.5–40 Hz). EEGs on the surface of the scalp reflect the synchronous activity of 
large populations of cortical neurons—of the order of 10,000 or so—with similarly 
aligned current flow. Variations in the magnitude of these potentials in the same 
spatial location are assumed to reflect underlying cortical processing activity. The 
primary limitation of EEG is that it is difficult to link the noisy EEG responses to 
particular aspects of brain function.
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All current computational models of reading tend to be behavioural rather than 
neuroscientific, constructed on an empirical base derived mainly from studies of 
eye movement patterns. Unfortunately, several successful models can account more 
or less equally well for the same behavioural data. The most promising source of 
additional constraint comes from neuroscientific data, and the best current source of 
such data is cognitive electro-physiological studies. Such studies have the necessary 
temporal resolution to provide insights into the time course of reading (Barber and 
Kutas 2007). Curiously, to date there have been very few attempts to use this source 
of constraint in the development of reading models.

The benefits of … a dynamic interplay between computational models and em-
pirical research are clearly evident in several computational models of VWR [visual 
word recognition] based largely on behavioral measures (reaction time and accu-
racy). By contrast, on the whole, there is no similar give-and-take between com-
putational modelers and electrophysiological researchers, perhaps because compu-
tational models have been agnostic if not silent regarding the time courses of the 
various neurophysiological processes or the brain areas involved in VWR. (Barber 
and Kutas 2007, p. 100).

While Barber and Kutas’ (2007) observations refer to VWR models, their com-
ments are even more apposite for dynamic reading. Consequently, an overarching 
goal of co-registration research should be to help bridge the gap between current 
models of reading and the complex neural basis of the process. However, building 
that bridge will require the significant reworking of current models and the develop-
ment of new EEG paradigms compatible with the model development enterprise.

Reading and Event-Related Potentials (ERPs)  ERP analysis has the potential 
to provide us with an exquisitely precise tool for revealing the temporal dynam-
ics of the component processes of reading. Figure 1 is a schematic representation 
of the locus, size, and reliability of ERP effects associated with different levels of 
analysis of the VWR (from Barber and Kutas 2007, Fig. 4). Note that P1 and P2 
are the first two positive peaks; N400 is a robust negative potential peak occurring 
typically around 400 ms. LPC represent later positive components such as the P600 
(Osterhout et al. 1994). The figures in boxes represent size of effects in milliseconds 
(i. e. the temporal responsivity of the component amplitude)—darker figures are for 
effects supported by more than one study. As can be seen from this figure, ERPs can 
be used to index the temporal stages of the subcomponents of the reading process. 
Note that it is not just peak amplitude that is the source of information about tim-
ing but also the point at which the ERPs diverge as a function of an experimental 
manipulation. There is still some debate about the precise timing and nature of word 
identification, since the N400 is rather late compared to timings derived from eye 
movement behaviour, such as fixation durations (Sereno and Rayner 2003; Kliegl 
et al. 2006).

Fixation-Related Potentials (FRPs)  Although still very much at an explor-
atory stage, the co-registration of eye movements and EEG has been successfully 
employed by several research groups (e.g. Baccino et al. 2005; Hutzler et al. 2007; 
Dambacher and Kliegl 2007; Dimigen et al. 2011).
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One of the disadvantages of permitting eye movements when recording EEGs is 
having to deal with artefacts from the movement of the eyes themselves. The eye is, 
in effect, a large dipole, any movement of which causes significant potential flows 
when viewed against the background of the much smaller scalp potentials. Nonethe-
less, the detection and removal of these artefacts is now relatively straightforward. 
For example, the use of independent component analysis (ICA) has been shown to 
be quite effective (Hutzler et al. 2007; Tang et al. 2002; Pearlmutter and Jaramil-
lo 2003; Tang and Pearlmutter 2003; Henderson et al. 2013). Moreover, since the 
time-locking event is now the start of the fixation (hence, the term fixation-related 
potentials—FRPs—rather than ERPs), from the eye-tracking record we will know 
precisely when an eye movement has occurred.

The use of a more ecologically valid reading setting has many advantages. For 
example, in some reading studies involving a lexical decision task where the sub-
ject must press one of two buttons to indicate whether a word or non-word is being 
displayed, one can obtain P300 components that are merely associated with the 
need to generate a binary response (Kutas and van Petten 1994). These, in turn, can 
overlap with N400 responses, which are the usual focus of interest in lexical deci-
sion experiments. In contrast, by allowing free viewing and using the standard eye 
movement parameters of fixation duration and saccade extent, we get closer to the 
real reading process and avoid such procedural artefacts.

Naturally, the analysis of FRPs is not without its own significant challenges. 
Foremost among these is the problem of spillover of FRP components from one 
fixation to the next.

Fig. 1   Time course of effects in visual word recognition. (From Barber and Kutas 2007)
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Figure 2 from Henderson et al. (2013) gives a striking example of how spillover 
can make the interpretation of waveforms from natural reading problematic. In the 
case of, say, the 151–175-ms waveform in Fig. 2, it is impossible to distinguish the 
source of the negative inflection following the peak at P1. It could be the expected 
N1 for the second fixation, or it could have arisen from a possible N400 from the 
preceding fixation. A possible way to deal with this challenge is to provide con-
text for the interpretation in the form of predictions from a computational model 
that would allow us to systematically unpack the various contributions to the final 
waveform.

5 � A Synergistic Alliance

Two complementary challenges have been discussed in this chapter: (1) the need 
to determine which of a number of competing computational accounts of the read-
ing process is the more plausible and (2) how to handle the complex spillover ef-
fects we find in co-registered EEG and eye movement data from natural reading 
experiments. However, by placing one challenge at the service of the other—in 
other words, use computational models to help disentangle the multiplexed EEG 

Fig. 2   Electroencephalogram (EEG) waveforms for fixations of different durations from Hender-
son et al. (2013). The vertical bars indicate fixation offset. Note that for short fixations, the P1 
peak following fixation offset and associated with the new fixation can occur before some of the 
later components (e.g. N400) of the preceding fixations
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waveforms, and use EEG data to ground the current generation of reading models—
we may end up with a powerful and productive alliance.

Barber and Kutas (2007) made a similar appeal several years ago in the context 
of VWR models (2007):

We suggest that it is time that computational modelers and neurophysiologists come together 
in practice and in theory to unravel the mysteries of reading (Barber and Kutas 2007, p. 119).

The pressure to combine forces is even more pressing in the case of the co-registra-
tion paradigm in reading, if only to make analysing the data more tractable.

A recent approach to neurally grounded modelling at the level off EEG-gener-
ating current flows has been that of dynamic causal modelling (DCM; Kiebel et al. 
2008; Stephan et al. 2007). DCM aims to account for EEG data in terms of coupled 
neuronal groups and analyses how the topography of the couplings variously impact 
on the brain’s response to different experimental conditions. Bayesian methods are 
then used to select the most likely candidate from among competing patterns of con-
nectivity. This and approaches at a similar level of neural granularity are the next 
step forward in the computational modelling of reading.
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