Medical Image Processing: Mathematical
Modelling and Numerical Resolution
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Abstract Medical image processing is an interdisciplinary research field attracting
expertise from applied mathematics, computer sciences, engineering, statistics,
physics, biology and medicine. In this context we shall present an introduction
to basic techniques and concepts as well as more advanced methods to promote
interests for further study and research in the field.

1 Introduction

Medical image processing is a growing field in medicine and mathematics which
aims to improve the diagnostic power of some acquisition data modalities such as
MRI, fMRI, PET, MEG, CT, etc. This leads to improved treatment control and
therapies. In this work we shall consider some digital image processing related
mathematical problems such as filtering, denoising and segmentation of digital
images with a particular view to medical image processing and restoration. Our
research is based at Fundacién CIEN-Fundacién Reina Soffa, Madrid, Spain
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where a interdisciplinary group of scientists coming from different areas and
institutions is working on biomarkers for neurological diseases such as Alzheimer
and Parkinson.

These lecture notes cover some basic aspects of the mathematical modelling
but they also aim to introduce the reader to the most recent techniques and
numerical algorithms. A very straightforward and applied introduction to the field
can be found in [11] where basic, routinary algorithms are implemented. A more
advanced introduction to the theoretical material we shall consider in this work
is described in the book by Chan and Shen [5] where the mathematical founda-
tions of modern image processing and low-level computer vision are presented,
bridging contemporary mathematics with state-of-the-art methodologies in modern
image processing. An interesting medical images processing overview can be
found in http://www.math.wisc.edu/~angenent/preprints/medicalBAMS.pdf and a
more general, geometric approach to PDE image processing is in the book by
Osher [15].

2 Digital Image Processing

Digital image processing is a recent and challenging branch of applied mathemat-
ics which developes models and numerical algorithms for Filtering, Denoising,
Deblurring, Edge-enhancing, Segmentation, Registration, Tracking, Impainting,
Smoothing, Compression, Features Extraction and Pattern Recognition. The great
improvement in computational power as well as the design of specific patient
tailored acquisition modalities which took place in the last decade have motivated
the implementation of advanced mathematical theories to the pre-processing anal-
ysis and the statistical post-processing interpretation of huge amounts of possibly
multimodal patient data. In short, fast and accurate mathematical analysis are both
possible and necessary paradigms, contrary to the past view where fast but very
approximated results where looked for. In this section we shall briefly introduce
the reader to the key steps of the mathematical analysis focusing on the models
and results which made possible the evolution and implementation of numerical
algorithms for the resolution of the PDE that appear in image processing and
enhancement. We shall consider two basic approaches. In the first one we shall
see how it is possible to filter an image using directly an evolution diffusion
equation. Then we shall move to the variational approach in order to solve the
energy minimization problems which arise when we try to solve the associated
inverse problems and their Tikhonov regularization. This introduces the need for
nonlinear operators which include the very famous Total Variation Model by Rudin,
Osher and Fatemi (1987), see [17].
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Fig. 1 A detail of the image showing the matricial coding

2.1 Linear Filtering and Convolution

The basic material of this section covers linear diffusion filtering and its relations
with gaussian smoothing. This introduces the use of partial differential equations
into image processing. More advanced properties of this linear approach like scale-
space properties and its applications, generalizations and limitations can be found
in http://www.Ipi.tel.uva.es/muitic/pim/docus/anisotropic_diffusion.pdf. Here we
briefly introduce some concepts. Digital images are commonly defined as matrices
of scalars for grayscale images or as vectors for multimodality and/or multichannel
images as well as simple multichannel colour RGB images. In a discrete setting
imagesarethenu = (u; ;),1 <i,j < N,u;; € [0,1]oru; ; € [0,255] 2D discrete,
bounded signals (Fig. 1). In the variational framework we shall adopt a continuous
world view so that a grayscale image is a real valued function # : € — R on an
open set Q C R2. A color image is a vector-valued function u : Q — R? on an
open set  C R? which maps into RGB color space.

In fact the digital images can also be organized into functional and algebraic
structures such as multichannel images where different data acquisition modalities
can be grouped to form a unique vectorial description of the image.

These matrices can be seen as the values of a distribution (generalized function)
up(x) defined on an open and bounded 2D or 3D domain Q2 x being a pixel (2D)
or a voxel (3D). This allows a functional analytic setting for image-processing
problems and in particular, for the design of digital processing algorithms through
partial differential equations (PDEs) models. More recent and advanced acquisition
techniques in Magnetic Resonance, such as scalar Diffusion Weighted Images
(DWI) or Diffusion Tensor Images (DTI) provide 3D volumes of tensorial data,
a sort of matrices of matrices which inform about the (anisotropic) movement of
water molecules through the fibers of the white matter of the brain (Figs. 2 and 3).


http://www.lpi.tel.uva.es/muitic/pim/docus/anisotropic_diffusion.pdf
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Fig. 2 A DW-MR image courtesy of Fundacién Reina Sofia, Centro de Alzheimer, Madrid

Fig. 3 The MR scanner of General Electric 3T Signa at Fundacién Reina Sofia, Centro
de Alzheimer, Madrid (Research agreement with General Electric). Image courtesy of CIEN
Foundation

Filtering is a technique for modifying or enhancing an image. For example, you
can filter an image to emphasize certain features or remove other features. Image
processing operations implemented with filtering include smoothing, sharpening,
and edge enhancement. In the continuous case we can understand the analogy
between filtering and convolution by means of the heat equation which is a linear
diffusion equation (Figs. 4 and 5).

Let J be a flux of any scalar magnitude such as intensity of the signal, temperature
or concentration of a chemical substance. The flux is generated by local differences
in the intensity and we have J = —DVu where D is a tensor characterizing the
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Fig. 4 A plot of a 2D gaussian function

possible anisotropy of the diffusion. In the isotropic case D = I, the identity
matrix. The mass conservation equation states that, without sources or sinks, the
local variation of the magnitude of u is caused by the divergence of the flux, d;u =
—divJ which is

du = div(Vu) = Au.
Let n denote the spatial dimension and consider the Cauchy problem
o;u = Au, R" x (0, 400) > 0,
u(x,0) = up(x), R”
associated to the initial data ug(x).
If we assume that ug(x) = o, the Delta function located at x = 0 the explicit

solution (or Gauss kernel) of the Cauchy problem is:

NI

G(X,l) = W

where the gaussian is represented in Fig. 4.
The solution of the original problem can be expressed in terms of the convolution:

W= G wup = / G = uo(r)dy.
R

Defining 0 = +/2¢ we see that the solution of our problem is given by the
convolution of the initial data with a gaussian function with standard deviation o
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Fig. 5 The oversmoothed, blurred image obtained by convolution

(the width of the gaussian kernel) which corresponds to a linear diffusion process
during exactly T = ¢%/2 where o2 is the estimated variance of the noise affecting
the data. In the discrete case filtering is a neighborhood operation, in which the value
of any given pixel in the output image is determined by applying some algorithm to
the values of the pixels in the neighborhood of the corresponding input pixel. Linear
filtering of an image is accomplished through an operation called convolution.
Convolution is a neighborhood operation in which each output pixel is the weighted
sum of neighboring input pixels (Fig. 5).

A fundamental property of the convolution operation is that it regularizes the data
and, even with uy € L'(R) we have G * uy € C*®°(R) for any ¢ > 0. This clearly
is a poor result in image processing because this low pass filter smooths out all the
high frequencies of the image, where noise and details are involved. The need for
nonlinear filtering became readily evident.

2.2 Nonlinear Filtering

It has been introduced into the digital imaging community through the intriguing
model proposed by Perona and Malik, in [16]. Details about the theoretical
difficulties associated to this forward-backward nonlinear diffusion model can be
found in http://www.Ipi.tel.uva.es/muitic/pim/docus/anisotropic_diffusion.pdf. The
associated PDE is

d:u = div(g(Vu)Vu)


http://www.lpi.tel.uva.es/muitic/pim/docus/anisotropic_diffusion.pdf
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with u(x,0) = up(x) and

1
2y
g(S)—HSZMZ, A>0.

The consideration of the 1D case

Oru = 0, (g (ux)uy)

with flux function

N

B(s) = sg(s?) = T2

reveals that
D) =0 |s| <A, D'(s) <0 |s|> A
and the equation
du = 0x(P(ux)) = ' ()it

has negative diffusion when the gradient is big, e.g. near the edges of the image.
Despite of this, the numerical resolution of this equation introduces numerical
diffusion which stabilizes the solution and the model provide quite good results.
A simple and straightforward introduction to nonlinear diffusion and related algo-
rithms in MATLAB can be found in http://staff.science.uva.nl/~rein/nldiffusionweb/
nldiffusioncode.pdf. The original and detailed analysis of nonlinear diffusion and
anisotropy is in the excellent book by Weickert http://www.Ipi.tel.uva.es/muitic/
pim/docus/anisotropic_diffusion.pdf.

2.3 Modelling Medical Images Processing and Restoration

Digital image denoising and segmentation are basic problems in image processing
and computer vision which can be dealt with in the variational framework. Roughly
speaking this amounts to the minimization of an energy functional defined in
a suitable functional space. The minima of the functional can be characterized
as the weak solutions of the associated Euler-Lagrange equations which are,
typically, nonlinear second order elliptic partial differential equations. These non-
linearities are necessary in order to avoid oversmoothing as predicted by the general
linear elliptic regularity theory. This introduces both, mathematical and numerical
difficulties in the analysis of such models and makes the implementation of efficient
numerical methods challenging.


http://staff.science.uva.nl/~rein/nldiffusionweb/nldiffusioncode.pdf
http://staff.science.uva.nl/~rein/nldiffusionweb/nldiffusioncode.pdf
http://www.lpi.tel.uva.es/muitic/pim/docus/anisotropic_diffusion.pdf
http://www.lpi.tel.uva.es/muitic/pim/docus/anisotropic_diffusion.pdf
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We shall review some aspects of what is called the Tikhonov Regularization
for ill-posed inverse problems. This introduces a General Regularization Model
which can be justified by means of a Bayesian formulation. In fact many of the
tasks encountered in image processing can be considered as problems in statistical
inference. In particular, they fit naturally into a Bayesian framework:

log p(u| f) oclog p(f|u) + log p(u)

and a MAP (Maximum A Posteriori) estimation of u is:
maxilog p(fu) +log p(u);

where p(flu) = exp(—H(u, f)) is the likelihood term and p(u) =
(1/A) exp(—J(u)) is the prior. Following this Bayesian modelling approach we
consider the minimization problem

uel}gl‘i}(lm J(u) + AH u, f) e))

where J(u) is the convex nonnegative Total Variation regularization functional

J(u) = |ulgy = /Q \Dul %)

and the data fidelity term (modelling gaussian noise) is

Hu, f) = /Q \f — uldx.

The term fQ |Du| denotes the Total Variation of u with Du being its generalized
gradient (a vector bounded Radon measure). When u € W!1(Q) we have Jo |Du| =
Jo |Vuldx. The A parameter in (1) is a scale parameter tuning the model. In this
(weak) setting it is a very common and useful approach to describe images as
distributions.

One popular model for image denoising is the Rudin, Osher and Fatemi’s (ROF)
model, where we seek for a distribution u in the space of the Bounded Variation
(BV(£2)) distributions, which is the solution to the following nonlinear minimization
problem.

Given f : Q C R" — R which represents the data, minimize the (strictly
convex) energy

£ = [ 10ul+ 57 [ 1f =P G

where €2 is a Lipschitz domain (the unit square or a cube for the sake of simplicity)
and f € L°°(R2) is the image affected by Gaussian white noise. Due to the fact that
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the functional in (2) is not differentiable at the origin we introduce the notion of the
subdifferential of J(u) at a point u by

0J(w) ={p € BV(Q)*|J(v) = Jw)+ < p,v—u >}

forall v e BV(2), to give a (weak and multivalued) meaning to the Euler-Lagrange
equation associated to the minimization problem. Using variational calculus and
convex analysis the associated Euler—Lagrange Equation is then

AdJ(u)+ (u— f)>0

which is a multivalued equation which reflects the non differentiability of the TV
operator. The proper setting for such multivalued equations is in terms of variational
inequalities which can be deduced from the so called Complementary Formulation.
Typically this difficulty is avoided using the approximating minimization problems

J(“e)Z/ \/mdx-i—%/ | f — ue|dx @)
Q@ Q

with Euler-Lagrange Equation

Vue
—AdiV (\/ﬁ) + (ug — f) =0.

It is standard to look for a solution to (3) [and (4)] by solving a related nonlinear
parabolic equation using a pseudo-time-stepping algorithm in order to approximate
the steady-state configuration u(x). This approach, known as (primal) gradient
descent, has two serious drawbacks: the approximating problems have continuous
solutions u, which are unfeasible in medical imaging because different organs and
subcortical structures are characterized by discontinuities; moreover, the numerical
method is slowly convergent. An elegant and brilliant solution to these problems can
be found in Chambolle [3]. A deep theoretical study of this kind of /inear energy
functionals is considered in [1].

In what follows we shall describe some advanced models that our group has
proposed and applied in the last years.

3 Advanced Models

In this section we shall present some advanced models for image segmentation
and denoising. Notice that image denoising can be considered as a pre-processing
step previous to the segmentation task. A PDE approach to image segmentation is
based on the celebrated Mumford and Shah model, [14]. When piecewise constant
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solutions of the Mumford-Shah model are considered we have a minimal partition
problem and a huge literature is concerned with the analysis of such a model
[6]. Here we shall consider an anisotropic version of the Mumford and Shah
functional which has been proposed in [8,9] for multichannel and multiphase image
segmentation. B

Let f be a vector valued function such as f € L®(;RM) defined on a
bounded open domain  C R, where each scalar component f;(x) : @ — Risa
channel. Let u be a vector valued piecewise constant function such as i = Zf’ Ci Xi
with ¢ € RM and y; the characteristic functions of the domain partition. Then
we can perform multiclass (N classes) and multichannel (M channels) image
segmentation minimizing

N-1 N o ~ 1 Y B _
Jen=>3 3 =il 1o @umon /F__dHD L+ ﬁz o & — f1*dx
ij i=1 !

i=1 j=i+1
&)
where
M 1/p
C C — . .. P
| _cfHLp(Q;]RM) = [Z |¢jum = Cim] :| .
m=1
In our current numerical implementation we choose p = 2. Notice that the

functional is expressed in terms of a matrix C with components ¢; ; which reflect
the different values of the piecewise solution as well as in terms of a curve I' along
which the solution is discontinuous. The key idea of our method relies on the strong
analogy between this anisotropic Mumford and Shah functional (AMS) and the ROF
model we introduced before. In fact, in the class of piecewise constant functions
both energies coincides. This suggests that the minima of the AMS model can
be obtained thresholding the ROF minima. To show an application of these ideas
we consider a four classes segmentation problem, as in MRI brain segmentation
where white and gray matter, together with liquid and background are the relevant
classes. Let u,,r € BV(S2) N [0, 1] be the minimum of the ROF functional (3). If we
threshold this solution by mean of a vector 7 € R? we generate a piecewise constant
approximation of u,, for every ¢ in form ¢(z)- j(f). The problem is then to minimize
the Anisotropic Mumford Shah energy (5) finding the best threshold 7 € R* for
the solution of the ROF model (3). This can be accomplished by using a genetic
algorithm (notice that the problem is not convex) where the search is restricted to
simple functions u;(x) € SBV(Q2) taking, for a.e. x € 2, the (possibly re-ordered)
values ¢ = (cy, ¢2, 3, c4) as defined by formula (6) which we shall deduce below.
Let y = {x;}_, be a given partition. Then
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37 1 €2 .
g == [ fae+ Ze —1,....4
v IZ# il | =g [ e Se

and the functional J(¢, y) is optimized by the choice

i A ) .
f + = Z f|rij| s Jj=1....,4 (6)
12| Bieyl¥ li —Jjl

where f J are the local averaged data values as predicted by the partition:
fl= /Q fdx/|;, j=1,...,4
j

Moreover we have:

Zc]|9|— /deAZ Z (’ /fdx %

j=1

This implies that, if we calculate u as the (unique) minimum of J(u) in (3) and we
threshold u by means of a threshold vector i = (1, ,,13) € R3, then we generate
a partition ¥ = (x1, X2, X3, x4) (defining Q; = {x € Q/t,_; < u(x) < t;}) and,
using formula (6) for the best constants, an optimal representation of « for the given
partition in form u = ¢ - y. Notice that a relabeling is performed to ensure the
ordering of the optimal constants once the threshold 7 is applied. More details in
this procedure can be found in [8].

The numerics are performed using the dual formulation of the problem. This
provides a convenient framework to solve the multiphase systems associated with
the minimization of the AMS functional. More advanced staggered schemes are
proposed in [10]. Segmentation results with different values of the A parameter are
presented below. Figure 6 shows the segmentation of a brain phantom slice with
three levels of added noise with different values of the parameter.

Finally, we segmented real MRI images acquired at Fundaciéon Reina Sofia in
Madrid. Figure 7 shows the result of the automatic segmentation with two different
values of the parameter. Both results are visually correct, while the A parameter
allows to obtain segmentations at different scales of detail.

More sophisticated results can be obtained when segmenting FA color code DT-
MR images as we show in figures below. A brief introduction to this kind of scalar
MR images which are obtained from tensorial data is presented in the next section
(Figs. 8 and 9).
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Fig. 6 Segmentation of the same slice of a phantom with different noise levels and different values
of A. From left to right, results with A values 0.08, 0.09, 0.1 and 0.11. (a) Phantom with 5 % noise;
(b) phantom with 10 % noise; (c) phantom with 20 % noise

Fig. 7 Segmentation of real MRI brain data with two vales of the A parameter. Left: A = 0.12;
Right: A = 0.08

3.1 MRI Denoising

We now step forward in the modelling exercise. In fact, accurate MRI noise
modelling is a fundamental issue in medical image processing which leads naturally
to the assumption that MR magnitude images are corrupted by Rician noise which
is a signal dependent noise. Indeed this noise is originated in the computation of the



Medical Image Processing: Mathematical Modelling and Numerical Resolution 257

Fig. 8 A color code Fractional Anisotropy (FA) image which is obtained computing the eigenval-
ues of the Diffusion Tensor Image (DTI) reconstructed from the Diffusion Weighted Images (DWI)
acquired at the Hospital Reina Soffa

Fig. 9 The obtained segmentation. Notice that we segment the directions along which the fibers
propagate in the brain

magnitude image from the real and imaginary images, that are obtained from the
inverse Fourier Transform applied to the original raw data. This process involves
a non-linear operation which maps the original Gaussian distribution of the noise
to a Rician distribution. Nevertheless it is usually argued that this bias does not
affect seriously the processing and subsequent analysis of MR images so that a
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(identically distributed and signal independent) Gaussian noise is modelled. This
assumptions fails when low signal-to-noise ratio are considered. With this purpose
we consider, in a variational framework, a denoising model for MR Rician noise
contaminated images proposed in [12] which combines the Total Variation semi-
norm with a Rician data fitting term.

The data term H (u, f) is a fitting functional which is nonnegative with respect
to u for fixed f. To model Rician noise H (u, f) has been deduced previously in [2]
in the context of diffusion tensor MR images. The Rician likelihood term is of the
form:

H(u, f) = # Quzdx—/gloglo (Z—J;) dx (8)

where o is the standard deviation of the Rician noise of the data and I, is
the modified zeroth-order Bessel function of the first kind. It can be shown
that functional (8) is possibly non-convex depending on the data f, A and o.
Using (1), (2) and (8) the minimization problem is formulated as: Fixed A and o
and given a noisy image f € L% (£2) recover u € BV(2) N L°°(2) minimizing the
energy:

J(u) + AH (u, f):/ |Du|+i2/ uzdx—A/ log I (”—J;) dx. (9)
Q 20 Q Q o

When the functional in (9) is considered for minimization, the variational approach
leads to the resolution of a nonlinear multivalued PDE elliptic equation which is the
Euler Lagrange equation for optimization. In fact the first order optimality condition
reads

oJ(u) + A0, H(u, f)>0 (10)
with (Gateaux) differential

2
EaLtl-I(”tv]f):lz_Mi (11)

o I (uf/o?) o?
where I is the modified first-order Bessel function of the first kind and verifies
0 < L) /hE) < 1,VE > 0. As we introduced before, this gives rise to
a number of interesting theoretical problems when the Total Variation operator is
considered as a prior, because the energy functional is not differentiable at the origin
(i.e. Vu = 0) and regular approximated problems must be solved. A number of
mathematical difficulties is associated with the multivalued formulation (10) and a
regularization of the diffusion term div (Vu/|Vu|) in form div (Vu/|Vu|c), with
[Vule = /|Vul?+ €2 and 0 < € < 1 is implemented to avoid degeneration
of the equation where Vu = 0. Using this approximation it is possible to give a
(weak) meaning to the following formulation: Fixed A, ¢ and (small) € and given
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f € L®(Q)N[0,1] find uc € WH(R2) N [0, 1] solving

o (32)- B[ (2) )

which we write in form

) Vu, A B
_d‘V(meu) A et 1= 0 (12)

complemented with Neumann homogeneous boundary conditions du. /dn = 0 and
where, for notational simplicity, we introduced the nonlinear function

re(ue, ) = Il(uef/az)/IO(”ef/az)-

This is a nonlinear (in fact quasilinear) elliptic problem that we solve with a gradient
descent scheme until stabilization (when ¢ — +o00) of the evolutionary solution to
steady state, i.e. a solution of the elliptic problem (12) which is a minimum of the
approximating energy functionals

Ec(ue) = Je(ue) + AH(ue, f) =

:/]e(“e)dx‘FA/ h(ug)dxz
Q Q
A’ €
:/ ,/|vu6|z+ezdx+—/uﬁdx—,\/loglo(u f)dx_ (13)
Q 202 Jq o o2

When € — 0 we have u, — u, J.(u.) — J(u) and the energies in (9) and (13)
coincide.

The gradient descent approach amounts to solve the associated nonlinear
parabolic problem:

U . Vu. A
aat :le(|VM6|€) —F[Me_re(“ef)f] (14)
complemented with Neumann homogeneous boundary conditions du./dn = 0 and
initial condition u(0,x) = u§(x) whose (weak) solution stabilizes (when ¢ —
+00) to the steady state of (12), i.e. a minimum of (13) which approximates, for €
sufficiently small, a minimum of the energy functional (9). A direct gradient descent
method has been used in [12] in order to validate the model assumption of Rician
noise. This approach is found to be inherently slow because a stabilization at the
steady state is needed. Also, that scheme is finally explicit and very small time
steps have to be used to avoid numerical oscillations. Here we present a framework
to solve numerically and efficiently the gradient descent scheme (gradient flow)
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associated to the Rician energy minimization problem introducing a semi-implicit
formulation. Details can be found in [13].

Using a simple Euler discretization of the time derivative, stationary problems of
the ROF type [17] are deduced. This allows to use the well known dual formulation
of the ROF model proposed in [3] to speed up the computations. As a by-product of
this approach the exact Total Variation operator can be computed and this provides
accuracy of the solution in so far truly (discontinuous) bounded variation solutions
are numerically approximated. In fact we considered the approximated Euler—
Lagrange equation (12) associated to the minimization of the energy (9). This is a
modelling approximation and we can get rid of it. We argue as follows. Considering
the original Euler-Lagrange equation associated to the energy (9) we have (with
abuse of notation for the diffusive term)

— div (—”) n iz [—r(u f)f] =0 (15)
u o

with r(u, f) = Ii(uf/o?)/Io(uf /*). A rigorous treatment of Eq.(15) should
follow the multivalued formalism of (10).
Using again a gradient descent scheme we have to solve the parabolic problem:

3 (Vv A
B—L;:dlv(w—lzd)—;[u—r(usf)f] (16)

together with Neumann homogeneous boundary conditions du/dn = 0 and initial
condition u(0, x) = uo(x). For comparison purposes we used uo(x) = ug(x) in all
numerical tests.

Using forward finite differences for the temporal derivative in (16) and a semi-

implicit scheme where only the term depending on the ratio of the Bessel’s functions
is delayed, results in the numerical scheme:

2 ' V' t! A
(1 + ‘L'Oj) W=y 4t (le (m) + ;r(un, f)f) 17)

where the diffusive term is (formally) exact and implicitly considered. Defining 8 =
(tA)/o% y = (1 + B)/t and

¢ = (ﬁ) o+ (1 fﬂ) ' ) f (1)

V't 1
— div (#) + (;) (Wt —g") =0 (19)

which is the Euler-Lagrange equation of a ROF energy functional.

we can write:
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—~ v

.
s |
Fig. 10 The original image and the contaminated phantom are shown in (a) original phantom and
(b) noisy for o = 0.05. The denoised images obtained with the R-ROF-Dual, R-ROF-Primal-Dual,

R-Primal-Dual algorithms and for the parametric values ¢ = 0.05, A = 0.075 are presented in the
sub-plots (¢) R-ROF-D denoised, (d) R-ROF-PD denoised and (e) R-PD denoised, respectively

E,(u) = /Q |Du| + (%) /Q(u —g")%dx (20)

for any positive integer n > 0, with (artificial) time #, = nt. Hence, at each gradient
descent step t, we can solve a ROF problem associated to the minimization of the
energy (20) in the space BV(£2) N[0, 1]. This problem is mathematically well-posed
and it can be numerically solved by very efficient methods, when formulated using
well known duality arguments in [3] or primal-dual algorithms in [4, 18].

In our study we first compared different algorithms using synthetic brain images

from the BrainWeb Simulated Brain Database' at the Montreal Neurological
Institute. The original phantoms were artificially contaminated with Rician noise
considering the data as a complex image with zero imaginary part and adding ran-
dom Gaussian perturbations to both the real and imaginary part, before computing
the magnitude image (Fig. 10).
Apart from the modelling exercise and the implementation details of the algorithms
presented above, our main interest relies in the application to real brain images. In
the following we present some preliminary results we obtained in [13] for Diffusion
Weighted Magnetic Resonance Images (DW-MRI) denoising. The DW-MRI are
images acquired in order to obtain a Diffusion Tensor Image (DTI). Accurate
denoising of the DW-MRI is crucial for a good DTI reconstruction because of their
characteristic very low SNR, [2].

Diffusion Tensor Imaging is becoming one of the most popular methods for the
analysis of the white matter (WM) structure of the brain, where some alterations can
be found from early stages in some degenerative diseases. This technique measures
Brownian motion (random motion) of the water molecules in the brain, which is
assumed to be isotropic when it is not restricted by the surrounding structure. In the
WM regions, which contain densely packed fibre bundles, they cause an anisotropic
diffusion of water molecules along the perpendicular directions to them. At each

! Available at http://www.bic.mni.mcgill.ca/brainweb.
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Fig. 11 A slice of the original Diffusion Weighted Image corresponding to the (1, 0, 0) gradient
direction and the corresponding denoised image. (a) Original; (b) denoised with A = 07/2

voxel of a DTI the water diffusion is represented by a symmetric 3 x 3 tensor,
where the information of the preferred directions of the motion and the relevance of
these directions is found in the eigenvectors and the eigenvalues of the tensor. These
tensorial data can be represented as different scalar measurements, one of them is
the Fractional Anistropy (FA) of the tissue, which is defined as

3(A=22+ =2+ (A -27)

FA =
2(A1 4+ 23 +23)

where the A; are the eigenvalues of the tensor and A= (A1 4+ Az + A3) /3. The
FA values vary from 0, (when the motion in the voxel is completely isotropic) to
1 (totally anisotropic). For the reconstruction of the DTI a set of DWI has to be
acquired, scanning the tissue in different directions of the space. At least six DWI
volumes are needed in order to be able to calculate the DTI, which is a positive
defined matrix. The noise present into the DWI scalar images can generate small,
negative eigenvalues. Increasing the number of directions along which the brain
is scanned improves the image quality but at the expenses of a longer acquisition
time. The importance of pre-processing the DW Images previously to the DTI
reconstruction is then two-fold: to improve the DT image quality through accurate
Rician denoising so allowing shorter scanning time.

The data we used consist of a DW-MR brain volume provided by Fundacién
CIEN-Fundacién Reina Soffa which was acquired with a 3T General Electric
scanner equipped with an 8-channel coil. The DW images have been obtained with
a single-shot spin-eco EPI sequence (FOV =24 cm, TR =9,100, TE = 88.9, slice
thickness = 3 mm, spacing = 0.3, matrix size = 128 x 128, NEX =2 ). The DW-
MRI data consists on a volume obtained with b=0/mm? and 15 volumes with
b= 1,000 s/mm?2.
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Fig. 12 A slice of the Fractional Anisotropy estimated from the Tensor Image. Dark colour
corresponds to values near zero (isotropic regions) and bright color corresponds to values near
one (anisotropic regions). (a) From original DWI data; (b) from denoised DWI data with A = ¢/2

e

Fig. 13 A detail of the first eigenvectors of the DTI over the FA image. The color is based on the
main orientation of the tensorial data. Red means right-left direction, green anterior-posterior and
blue inferior-superior. Fibres with an oblique angle have a color that is a mixture of the principal
colors and dark color is used for the isotropic regions. (a) From original DWI data; (b) from
denoised DWI data with A = ¢/2

These DW-MR images, which represent diffusion measurements along multiples
directions, are denoised with the proposed method previously to the Diffusion
Tensorial Image reconstruction, which was done with the 3d Slicer tools.2 In
Fig. 11a we show a slice of the original DWI data corresponding to the (1, O,
0) gradient direction where the affecting noise is clearly visible. The complete
DW-MRI data volume is denoised using the proposed method. The Rician noise

2Free available in http://www.slicer.org/.
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standard deviation (o) has been estimated for each slice of each gradient direction
while we used a value of A = ¢/2 for the denoising. The slice resulting from
the denoising process is shown in Fig. 11b. It can be observed how noise has been
removed in the denoised images but the details and the edges have been fully
preserved, as we should expect when the exact TV model is solved. The effect
of this denoising process over the reconstructed tensor and their derived scalar
measurements (obtained with the 3d Slicer tools) is presented in Figs. 12 and 13.
Figure 12 shows a Fractional Anisotropy image where the structures and details are
clearly enhanced if the DW-MRI volume is denoised previously. When finer details
are considered the denoising step is yet more crucial. For instance in Fig. 13 the
main eigenvector of the tensor is represented, where the noise on the original DWI
data cause inhomogeneities (see Fig. 13a) in the eigenvectors field which are product
of the noise (Fig. 13b).
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