Gradient Calculus for a Class of Optimal Design
Problems in Engineering

Carlos Castro

Abstract This chapter reviews some recent works in which the analysis and control
of partial differential equations are applied to optimal design in some problems
appearing in aerodynamics and elasticity. From a mathematical point of view, the
idea is to apply a descent algorithm to a cost functional defined on a part of the
boundary. More specifically, we focus here on problems where the cost functional
is defined on the part of the boundary to be optimized. This is the case, for instance,
when the goal is to improve the lift or the drag in aerodynamic problems or to
uniformize the tangential stresses along the boundary of a elastic material.

1 Introduction

This work contains a series of applications of control problems to aerodynamics
and elasticity problems with the aim of improving the industrial software in
simulation. We focus mainly on aerodynamic applications since they have been
more extensively studied in the last years. However the methodology considered
here is general and can be easily adapted to structural optimization, as we show in
Sect. 6.

In the last years, advanced software for automatic aerodynamic design optimiza-
tion has been extensively used by engineers to avoid expensive experimental proofs
in wind tunnels (see the early works by A. Jameson [15] and O. Pironneau [22] or
the more recent book [20] and the references therein). This optimization software
is based on gradient methods to minimize a suitable cost or objective function
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(drag coefficient, deviation from a prescribed surface pressure distribution, etc.)
with respect to a set of design variables (defining, for example, an airfoil profile).
This is a complex problem where several difficulties arise: parametrization of
complex geometries, suitable choice of the correct systems of equations to model the
fluid according to the underlying physics (Euler equations, Navier—Stokes, RANS,
turbulence models, etc.), numerical methods to solve the differential equations,
mesh generation, mesh adaptivity to small changes in the geometry, cost function
approximation, gradient approximation, etc. These and other industrial constraints
make any practical application of such a technology a very complex task. Mathemat-
ical analysis can be useful to improve some of the factors involved in this process.
Here we focus on the computation of the gradient of cost functionals associated to
optimal design.

To fix the problem we consider a fluid domain §2 bounded by a typically
disconnected boundary d£2 which is divided into a far-field component s, and a
wall boundary S (Fig. 1). Aeronautic optimization problems seek the minimization
of a certain cost function, such as the deviation of the pressure on S from
a prescribed pressure distribution in the so-called inverse design problems, or
integrated force coefficients (drag or lift) in force optimization problems. In these
examples the cost function J can be defined as an integral over the wall boundary S
of a suitable function f(U, S) of the flow variables, referred to as a vector U, and the
geometry S

J(S)z/Sf(U,S)ds. (1)

The flow variables U satisfy a suitable flow model (Euler, Navier—Stokes, RANS,
etc.), that we write as

RU)=0, =xe, 2)

including initial and boundary conditions.

Note that the cost functional depends on a part S of the boundary of the domain,
which will be referred to as the control variable. The set of admissible controls is
therefore a set of different geometries for S that we refer as S,;. We are interested
in the following problem: Find S,,;, € S,4 such that,

J(Smin) = s‘?sif,,l,n J(S). 3)

To prove the existence of solution for the above minimization problem is, in general,
a difficult problem which strongly depends on the flow equations, the restrictions
included in S,4, and the functional itself.

However, since these aerodynamical problems are very sensitive to perturbations
of the domain, rather than looking for an optimal S, in the applications one tries
to improve a given “natural” design by performing small perturbations. Therefore,
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I

Fig. 1 Exterior domain with boundary S

the main interest is to make a sensitivity analysis of J with respect to small
perturbations of the boundary S. Once this is done, the deformation for which the
functional decreases with highest rate is chosen: the best descent direction. In other
words, the main objective is to compute the shape derivative of J.

Another important point is that, in the engineering practice, instead of computing
the exact continuous objective function, one computes a discrete approximation
in which the time and physical domain are discretized. The objective function is
evaluated by means of a discrete integration rule and the variables U are estimated
by means of a numerical approximation scheme for solving the flow equations.
Therefore our real optimization problem is in fact a discrete version of (1)-(3),
and the sensitivity analysis should be done for such discrete version. This is usually
referred to as a discrete approach to obtain sensitivity (see for example [19, 20]).
Note that this sensitivity analysis will depend on the discretization aspects, such
as the numerical scheme used to approximate the flow variables, the mesh, the
numerical approximation of the cost functional, and even on the implementation
issues such as multigrid techniques and, possibly, parallel computation.

In contrast with this discrete approach there is the alternative continuous
approach where the sensitivity analysis is obtained for the continuous system and
then discretized to obtain the optimal descent direction for the discrete model
(see [14]). The validity of this continuous approach to obtain an accurate sensitivity
analysis of the discrete model is not obvious. It is usually based on strong
convergence results of the chosen discretization for (1)—(3) and the smoothness of
solutions. On the other hand, the continuous approach makes easier the analysis
and reduce the dependence on the numerical scheme chosen to obtain the flow
variables. We refer to [21] for a comparison between both approaches, the discrete
and continuous.
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In this work we focus on the continuous approach of the sensitivity analysis, that
we will briefly describe.

In order to define the shape deformation of the control boundary S we introduce
a suitable parametrization of S given by x : [0, 1] — R2. A generic deformation of
the boundary can be described as a vector field §x(s) such that the new geometry S’
is parametrized by x'(s) = x(s) + §x(s). For sufficiently small perturbations, §x(s)
can be described by normal displacements as follows:

6x(s) = a(s)n, nnormal vectorto S, 4

since tangent deformations are equivalent to reparameterizations of the boundary.
The function o represents a perturbation profile which describes the amount of
displacement, in the normal direction, at each point of S. This « is usually taken
in a finite dimensional subspace generated by some basis functions (polynomial,
trigonometric, etc.)

Uy = span(ay,ay, ..., o).

The sensitivity analysis for the continuous model consists in finding the shape
derivative of J, i.e. the derivative of J with respect to any deformation profile « €
Uad, and then the best decreasing rate is chosen. This will constitute the descent
direction for J. There are two main approaches that have been tried in industrial
applications: finite differences and adjoint methodology.

In the finite difference approach, shape derivatives are calculated by computing
the finite difference

J(Sqe) — J(S)
- .

e << 1,

where S, . is the new geometry obtained from S with the parametrization x(s) +
eayn(s). This is done for each k = 1,..,n. The parameter ¢ should be chosen
small enough to recover the linear behavior but not too small to avoid round errors.
In this way, partial derivatives with respect to each oy are computed. The one with
the highest decreasing rate is chosen as the descent direction for computing the
new geometry. The main drawback of this approach is that it is computationally too
expensive. Note that each finite difference of J requires an evaluation of the cost
functional and therefore a new solution of the flow equations. On the other hand,
the choice of the value of ¢ is difficult and an adequate strategy to estimate it has to
be used.

A more efficient way to compute a descent direction for J is the adjoint method,
in which one seeks for the following representation of the Gateaux derivative of J
with respect to «,

8§J :/G(s)a(s)ds,
S
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for some function G(s), usually known as gradient of J. Once this is known,
an optimal descent direction is chosen by projecting —G(s) in the subspace of
admissible deformations 0ad.

The computation of G involves shape derivatives, in the sense given by
Hadamard (see [12]), and classical control theory which reduces the computation
of the gradient to the resolution of a suitable adjoint system. In contrast with the
finite difference approach, only one system has to be solved to obtain the descent
direction. However, this adjoint system does not issue from a physical fluid problem
but from an algebraic calculation. Therefore the usual numerical methods for fluids
are not well-adapted to solve it, in general, and a particular numerical analysis is
needed to find efficient methods.

The adjoint method is in fact a particular application of the classical control
theory for partial differential equations. This theory was significantly developed due,
in particular, to the works of J.-L. Lions [18]. Later on O. Pironneau investigated
the application of the control theory to the optimal shape design for elliptic
equations [22]. In the late eighties A. Jameson [15] was the first to apply these
techniques to the Euler and Navier-Stokes equations in the field of aeronautical
applications. From these pioneering works a lot of new results and applications have
made of this topic an essential tool in optimal design.

In this work we review the continuous adjoint, when considering different models
to approximate the flow variables, namely the Euler equation (Sect.3), Navier—
Stokes equations (Sect. 4), and Euler equations in presence of shock waves (Sect. 5).
The analysis has been validated with two-dimensional and three-dimensional
examples. At this moment, the Navier—Stokes sensitivity analysis is implemented in
experimental versions of high performance codes as SU2 (Standford University) and
TAU (developed in Germany by DLR). It is worth mentioning that the extension of
the continuous approach to the sensitivity analysis of RANS equations with Spalart—
Allmaras model for turbulence has been studied in [6], where gradient formulas
are derived. In Sect. 6 we show an application of this technique in the context of
elasticity problems.

2 Gradient Computation

In this section we describe the methodology to obtain gradient formulas for the
cost functional in a systematic way. It is worth mentioning that this calculus is
formal since it assumes that solutions of the underlying differential equations are
smooth. This is not true in general. As it is well known, Euler equations may produce
discontinuities even for a smooth initial data. For simplicity, we focus on dimension
n = 2 but the case n = 3 can be treated similarly.

Let us consider U,y C L?(0, 1) and the functional J : Uy — R

J(@) = /S j(U)ds 5)
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where S is described as a normal perturbation of a reference geometry Sy in such
away that S = Sy + a(s)nand o € U,y C L%(0,1). The vector function U is
the solution of system (2). All the functionals considered below can be written in
this form.

Classical shape derivatives allow us to write the Gateaux derivative of J, §J, in
the generic direction « (see [23]), as follows:

8J = / (BLSU + (0,) +Kj)0[) ds (6)
s \ U

where k represents the curvature of S (in 3-d the boundary S will be a surface and «

should be replaced by 2 H with H the mean curvature of S). The vector function §U

represents the Gateaux derivative of U in the direction given by « and it is obtained

by linearization of system (2),

R
ﬁSU = O, x € S2. (7)

Now we introduce an adjoint state ¥ for which

/ Y s ds = / BWSa ds, (8)
s oU s

where 2 is a certain operator and ¥ satisfies the so-called adjoint system
dY =0, X € Q. )

The operators &/ and % strongly depend on the flow equations and boundary
conditions included in R(U), and they must be computed specifically for each
problem. We show an example in the appendix below.

Once obtained the adjoint state we can replace (8) into (6),

§J = / (BY + 0,j + Kj) S ds, (10)
N

and therefore

G(s) = BY(s) + 3. (J(U(5)) + «j(U(s)).

Remark 1. In general, the operator .« is closely related to the linearized system (7)
and its numerical approximation should take into account this fact. There are
several ways to deduce numerical schemes for (7) but the more stable ones
are usually obtained by a suitable adjoint of the linearization of the numerical
methods for R(U). This can be done at several levels, from a specific code
based on the linearized numerical scheme to automatic differentiation tools that
provides a linearization of the whole numerical code used to solve R(U), including
parallelization, multigrid, preconditioners, etc.
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3 Continuous Adjoint Formulation for Euler System

We first consider the case of steady inviscid two dimensional flows. We present a
brief description of the continuous adjoint formulas. We refer to [1,7] for a complete
analysis and full formulation.

The governing equations in this case are

0
JoF, OF),
V.oF=224 20 ine, Uu=|], (1D
ax dy pv
oE
pou oV
2
o Un N P (12)
puv ov-+ P
puH ovH

Here, p is the density, # and v are the Cartesian velocity components, E is the
total energy, and P and H are the pressure and enthalpy, given by the following
relations:

P=(y—1)p|:E—%(u2+v2):|, H=E+§, (13)

where y is the ratio of specific heats. The above system must be completed with
suitable boundary conditions. We consider characteristic-type boundary conditions
[16] on the far-field boundary [, and non-penetrating boundary conditions on
solid wall boundaries,

v.n=0, v=(uv) n=(ngny,), normalvectoronsS. (14)

Far field boundary conditions on ['s. (15)

The operator R(U) in this case contains the whole system of equations and
boundary conditions (11)—(15).

Concerning the cost function, there are several possibilities according to differ-
ent interests. Conventional cost functions include specified pressure distributions
(inverse design), force (drag or lift) or moment coefficients, efficiency (i.e., lift over
drag), etc. All these cost functionals can be written in the general form:

J(S):/Sg(P,n)ds (16)

for some function g(P,n). For example, in the particular case of lift-drag coeffi-
cients, the cost functional take the form
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(cos B,sinB), (drag),
_ _ _ 17
J(S) /SCp(n d) ds, d (sin B,cos B),  (lift), 1n
where B is a constant parameter (angle of attack), C, = (P — Peo)/Coos

Ce = )/Mozo Pso/2, and P and M, are freestream pressure and Mach number
respectively.

Following the general framework in Sect. 2 above j(U) = g(P(U),n).

The final expression for G in the case of (16) is given by

_0g g g
G—B—PanP“r‘tafga_n K(g a—n n)

=V v(py1 + pv- @ + pHY4) + t- v (pY1 + pV- @ + pHYs)
where « is the curvature of S (for 3D flows the mean curvature appears), t is

the unitary tangent vector to S, d, the normal derivative and 9,, the tangential
derivative. The adjoint variables

(2

V= zz , @ = (Y2, ¥3),

Vs
satisfy the adjoint system

ATV =0, A= aﬂ,@ ,
U " U

and the boundary conditions

a
¢~n:£, on S,

adjoint far field conditions on ['s.

We refer to [13] for details on how this adjoint boundary conditions are obtained
and implemented numerically.

4 Continuous Adjoint Formulation for Navier—Stokes System

In this section we consider the Navier—Stokes system. We refer to [7] for the full
expression of the adjoint system, the derivation of the gradient formula, and some
numerical experiments. The gradient formula for 3D flows is also given in [7].
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The governing equations, for steady viscous laminar flows in two dimensions, are
V-F-V-F"=0, inf£, (18)

where I = (Fx, Fy) has been defined in (12) and

0 0
o
Fl = O . = » .19
) Oxy Oyy
U0 + VO + k3T Uoy, + voyy + kaa—§

The viscous stresses may be written as
2
O = S (2ux —vy). Oy = Oy = (uy +v2),

2
Oyy = g“ (2Vy - ”X) )

where u is the laminar viscosity coefficient. The coefficient of thermal conductivity
and the temperature are computed as follows:

: P
k:c—plj” T:—’
Pr Rp

where ¢, is the specific heat at constant pressure, Pr is the Prandtl number, and R
is the gas constant.

Equation (18) is complemented with characteristic-type boundary conditions on
the far field, and nonslip conditions on solid walls

u=v=0, onS.

An additional boundary condition has to be imposed to the temperature on the solid
walls, which can be either adiabatic or isothermal (constant temperature)

d,T =0, adiabatic,

T =T,, constanttemperature.
In the adiabatic case, the expression for G is given by

_0g g g
G = B_PanP —I-tatga—n—/c(g—a—nn)

—(Il : an)(pl/fl + PHl/f4) +n-X. anv - Ir//4(n *0 - BnV)
+4(0 0 V) = k(B ¥a) Br T),
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3

where  denotes the double dot contraction of second order tensor fields.
The adjoint variables satisfy the adjoint system

oFy OF)
A+ A)VY =0, A==, ),
(4 +4) (aU BU)

with boundary conditions

dg
= —n, on S
Y= P
and adjoint farfield boundary conditions on [.

The second order tensor X' is defined as follows

Yo Xy 2
=) 3L = Sudn — 8,0),
(ny Eyy) 3“( ) 1//2 yl//?))

2
Exy = ny = ,U«(ayw2 + axWB)a Eyy = gﬂ(zayl/f3 - axw2)-

5 Continuous Adjoint Formulation for Euler System
in the Presence of Shock Waves

So far, we have considered smooth solutions of flow equations. In this case,
the perturbation of the flow field variables with respect to shape changes can
be approximated by linearizing the governing equations. However, inviscid flows
described by the Euler equations can develop discontinuities (shocks or contact
discontinuities) due to the intersection of characteristics. In this case, the smooth
analysis in Sect. 3 is no longer valid. We refer to [2] for the complete formulation
and analysis of this section.

In this section we restrict ourselves to the particular case where there is a
single discontinuity located on a smooth curve X' (Fig.2). When this occurs, Euler
system (11) must be completed with the Rankine-Hugoniot conditions that relate
the flow variables on both sides of the discontinuity. Thus, we replace (11) by

V-F=0, inf\X,
20
[F-n]y =0, onX, (20)

where [A] 5 represents the jump of A across the discontinuity curve X, i.e. [A]y =
At — A,

The sensitivity analysis in this case is much more complex since a perturbation
of the boundary S may affect to the position of the discontinuity X'. Thus, the
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I

Fig. 2 Exterior domain with boundary S and shockwave

variational calculus must be modified to take into account the position of the
discontinuity as a new variable. This analysis has been done in simpler models by
different authors (see for instance [3,4, 10, 11]). Moreover, in [8, 17] the position of
the discontinuity is used to improve gradient algorithms in the case of the inviscid
Burgers equation in 1-d.

A formal calculus based on this approach allows us to obtain a formula for G in
this particular case.

We must distinguish two different situations: either the shock wave X' meets the
boundary S at a point x; € S, or it does not. We focus on the first case since the
second one is simpler. We have the following

_0g g g
G—a—PanP“r‘targa_n K(g a—nn)

=V V(oY1 + pv-@ + pHY4) + t- Vi, (oY1 + pv- @ + pHY4),

for x € S but x # x;. Note that this formula is analogous to the gradient formula
for smooth solutions. The only difference is that we do not have to compute it at the
discontinuity point x; where the flow variables may have discontinuities and their
derivatives may produce singularities. The adjoint system is given by

ATVY =0, in 2\ X
t 0,0 =0, on XY, 21)
[‘1’]2 =0,
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together with the adjoint boundary conditions for the far field and

_ %

=5p onS.

¢-n
The second and third equations in (21) are transmission conditions that comes from
the Rankine—Hugoniot conditions by duality. They are usually referred as adjoint
Rankine—Hugoniot conditions. They establish, in particular, that the adjoint vector
variables ¥ must be continuous at X'
It is worth mentioning that well-posedness of the adjoint system (21) is a difficult
task due to the discontinuity of the matrix coefficients A at X'. This is a challenging
problem even for simpler scalar conservation laws in one dimension [5].

6 An Example in Elasticity

In this section we apply the same strategy in the context of elasticity problems.
In particular, we consider optimal design problems whose cost functions depend on
the stresses at the boundary to be optimized. An example described in [9] considers
the shape optimization of the cross-sectional vault of a tunnel in order to have
uniform stresses along the profile (see also [24]). In this way, we avoid regions
with larger compression stresses at the boundary that could produce more fatigue.
For this specific problem, a two-dimensional elastic problem is solved for the cross-
section of the tunnel with the following objective function

J(a) = % /S (01 — Om)* ds. (22)

where o0; represents the tangential stresses along S (0; = t-o -t where o is the stress
tensor and t the tangent vector to S) and oy, a reference value that can be either a
given constant or the average of the tangential stresses along S,

fS U,ds
Om = .
m fS ds
Of course, other functionals are also possible according to the interest of the

application.
Let us state the problem: consider the elasticity system defined on a domain £2 C
R? with boundary 02 = ' US and I" () S = 0, (Fig. 3) and the objective function

J(oz)z/sj(t-o-t)ds, (23)
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Fig. 3 Cross section
of a tunnel vault r

for some function j, where 0 = o0yg is the second order stress tensor and t the
tangent vector to S that we obtain rotating /2 the outward normal clockwise.
The stress tensor is obtained by solving the elasticity system

Oupp+ fu=0 x€82, o pf=12, (24)
033 = V(o) +0m), XE€E L2, (25)
14+v v
af = (7 R— 50( s 26
Eup 7 Oap — Ok (26)
€13 = &3 = €33 =0, (27)
where x = (x1,x3) € £ is a generic point of the elastic body, (fi, f2)

the components of the external forces, §,s the Kronecker delta and g,4 are the
components of the strain tensors respectively. The elastic constants of the isotropic
material are the Young modulus £ and Poisson ratio v. Partial derivative is denoted
by a comma (,). The expression of the strain tensor components are given as a
function of the displacements as follows:

ap = = (Uap + Upa) . (28)

=

To fix ideas, the following boundary conditions are assumed

Uy = Uy, X€I, a=1,2 29)
Ouplp = 0, xe€ S, Ol,,B =1,2 (30)

where i, are specified displacement, n = (ny, n,) is the outward normal unit vector
to the boundary I". Other boundary conditions are also possible.
The gradient in this case is given by

G=-0,(j(o)m-0-t+t-0-n)—¥-9,0 -n+ (¥ -0-t)

_ﬁj/(oz)n- On(0) -+ [iej(0r) + 0 (j(01))]

where 0,, and d,, represent the tangential and normal derivatives respectively, and
¥ = (Y, ) satisfies the adjoint problem,
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Fig. 4 Cross-sectional designs obtained with a gradient type method

ao;ﬂ

9B

of =v(o], +03), xe,
" I4+v , v

€qp = E Oup — Eal:;cgaﬂ’

R E 7 I
eaﬂ_z(aa + 8,3)’

* *  _ _x
€13 = €3 = €33, =0,

=0, xR, a,pf=12,

with the following boundary conditions:

1//(1:0, XEF, 0521,2,
on —i(? (j'(o0) ¢ es =12
af ﬂ—l_vz g \J \O¢ o> X , a=1,2.

C. Castro

The practical implementation of these formulas and some numerical experiments
are given in [9]. As an example Figs.4 and 5 show the different profiles obtained
by a gradient-type algorithm applied to the functional (22). In this example, the
initial geometry is a semicircle that is transformed into a parabolic profile after the

optimization procedure.
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Fig. 5 Evolution of the cost functional

Appendix

239

In this section we show how to compute the adjoint operators <7 and 4 in (8)—(9) for
one of the examples above. As it has been said, this computation strongly depends
on the specific problem, but nevertheless the methodology is straightforward as it

will be shown here.

We focus on the 2D elasticity problem described in Sect.6. The objective
function is given by (23) so that, according to (8) we look for %, <7 and an adjoint

state ¥ such that
/ 8(j(t-o-t))ds = / PBWa ds,
s s

with ¥ satisfying &/¥ = 0.
First of all, observe that, as §t = §a’n, we have
8(jt-o-t) =j'(t-o-t)(m-o-t+t-o-n)sa’
+j'(t-o-t)t-8o -t,

where the tensor §o is the solution of the linearized elasticity system
Soupp =0, xe€£2, o f=12,

8033 = v(§o11 + 8022), X €S2,

14+v
E

Seap = 800p — %80;(1(8&,3, X €S2,

(€19

(32)

(33)
(34)

(35)
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Seap = % (Suap + Supa), x€ 82, (36)
Se13 =803 =68633=0, x€ 2, (37)
and the linearized boundary conditions
Su=0, xel, (38)
So0-n+d,(0) -nda—o-ta’(s) =0, x€S8. (39)

The only term that requires further analysis in (32) is the last one, i.e.
/j’(t-a-t)t-é’o-tds. (40)
s

To simplify it we write the linearized stress-strain tensor given in (34)—(35) with
respect to the local system of coordinates associated to S, {t,n}. The following
expression for 8o, is obtained:

v

t-do-t= t-de-t+ n-éo-n

— 2 1—v

Vv

= La,g(Su-t) - n-d,(0) - nda. 41)

1—v2 1—v

In the last equality, we have used
t-de-t =0,(0u-t),

and the boundary conditions to be satisfied for fu andu on S.
Therefore (40) can be written as

/j’(t-o-t)t-é’o-tds=
S 1 -2

/ J'(t-0 - t)d,(Su-t)ds
s

J'(t-o-t)n-9,(0up) - néo ds
s

C1—v
E .
:—1_VZ/S3tgj/(t-o-t)(8u-t)ds
——— | j/(t-0-t)n-9,(0up) - NS ds. (42)
1—v S

In order to eliminate the term éu the adjoint problem to the linearized system is
introduced
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800’;3
9 =0, xef, apf=12, (43)
o33 = v(oy, +03), X€R, (44)
1+v v
1 (0yp Yo
R i A T 46
= 5 ( ™ + 95 (46)
Sef3 = Jeyy = Se33 = 0, 47

with the following boundary conditions
Yo =0, xel, a=12, (48)

—F
o*-n= ﬁa,gj’(t'(f-t)t, xesS. (49)
—v

Multiplying the equations of the linearized system by ¥ = (¥,v,) and
integrating by parts it is easily obtained

0=—/ 50:e*dx—/lI/-(ano-né’a—o-té’a’) ds, (50)
2 s

where : represents the double dot product of second order tensors.
A straightforward computation allows us to write the first term in this formula as
follows,

/SU:G*dx:/ o* : edx. (51)
2 2

Now we integrate by parts in the right hand side of (51), taking into account the
boundary conditions for u and ¥,

dogg
/0*:86dx:—/ Suy dx+/8u~o*~nds
fo) fo) ap s

E
— __2/ i (t- 0 - t)8u - tds. (52)
1—v S

Therefore, combining (50)—(52) the following equation is obtained

E
—2/Btgj’(t-o-t)Su-tdszflII-(ancr-nSa—cr-té’a’) ds. (53)
1—v S S
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Substituting (53) into (42) we obtain the final expression for (40),

/j’(t-cr-t)t-é’cr-tds:—/lI/-(Bna-nS(x—a-t&x’) ds
s s

/j/(t-cr-t)n-Bn(oaﬂ)-nSads.
s

1—v
(54)

From this formula together with (32) we obtain in the left hand side of (31) an
expression where all the terms contain a factor with S« or its derivative. Integrating
by parts on S and assuming that either S has no boundary or ¢ = 0 at the boundary
of S we easily obtain the expression for % in (31),

B =—0(j'(t-o-t)(n-0-t+t-o-n))

—lI/-Bna-n+3,g(lI/-a-t)—le/(t-o-t)n-Bn(o)-n.
—V

The operator &/¥ = 0 contain all the adjoint equations and boundary condi-
tions (43)—(49).
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