Structure-Preserving Shock-Capturing
Methods: Late-Time Asymptotics, Curved
Geometry, Small-Scale Dissipation,

and Nonconservative Products

Philippe G. LeFloch

Abstract We consider weak solutions to nonlinear hyperbolic systems of conser-
vation laws arising in compressible fluid dynamics and we describe recent work
on the design of structure-preserving numerical methods. We focus on preserving,
on one hand, the late-time asymptotics of solutions and, on the other hand,
the geometrical effects that arise in certain applications involving curved space.
First, we study here nonlinear hyperbolic systems with stiff relaxation in the late
time regime. By performing a singular analysis based on a Chapman-Enskog
expansion, we derive an effective system of parabolic type and we introduce a
broad class of finite volume schemes which are consistent and accurate even for
asymptotically late times. Second, for nonlinear hyperbolic conservation laws posed
on a curved manifold, we formulate geometrically consistent finite volume schemes
and, by generalizing the Cockburn—Coquel-LeFloch theorem, we establish the
strong convergence of the approximate solutions toward entropy solutions.

1 Introduction

1.1 Objective

We present some recent developments on shock capturing methods for nonlinear
hyperbolic systems of balance laws, whose prototype is the Euler system of
compressible fluid flows, and especially discuss structure-preserving techniques.
The problems under consideration arise with complex fluids in realistic applications
when friction terms, geometrical terms, viscosity and capillarity effects, etc., need
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to be taken into account in order to achieve a proper description of the physical
phenomena. For these problems, it is necessary to design numerical methods that are
not only consistent with the given partial differential equations, but remain accurate
and robust in certain asymptotic regimes of physical interest. That is, certain
structural properties of these hyperbolic problems (conservation or balance law,
equilibrium state, monotonicity properties, etc.) are essential in many applications,
and one seeks that the numerical solutions preserve these properties, which is often
a very challenging task.

To be able to design structure-preserving methods, a theoretical analysis of the
hyperbolic problems under consideration must be performed first by investigating
certain singular limits as well as certain classes of solutions of physical relevance.
The mathematical analysis allows one to exhibit the key properties of solutions
and derive effective equations that describe the limiting behavior of solutions, etc.
This step requires a deep understanding of the initial value problem, as is for
instance the case of small-scale dissipation sensitive, viscosity-capillarity driven
shock waves which, as it turns out, do not satisfy standard entropy criteria; see
LeFloch [45] for a review. Such a study is in many physical applications involving
hyperbolic systems in nonconservative form, in order to avoid the appearance of
spurious solutions with wrong speed; see Hou and LeFloch [38].

The design of structure-preserving schemes forces us to go beyond the basic
property of consistency with the conservative form of the equations, and requires
to revisit the standard strategies, based on finite volumes, finite differences, Runge—
Kutta techniques, etc. By mimicking the theoretical analysis at the discrete numeri-
cal level, we can arrive at structure-preserving schemes, which preserve the relevant
structure of the systems and the asymptotic behavior of solutions.

The techniques developed for model problems provide us with the proper tools
to tackle the full problems of physical interest. A variety of nonlinear hyperbolic
problems arising in the applications do involve small scales or enjoy important
structural or asymptotic properties. By going beyond the consistency with the
conservation form of the equations, one can now develop a variety of numerical
methods that preserve these properties at the discrete level. By avoid physically
wrong solutions, one can understand first the physical phenomena in simplified
situations, and next contribute to validate the “full” physical models.

We will only review here two techniques which allows one to preserve late-
asymptotics and geometrical terms and, for further reading on this broad topic,
we refer to the textbooks [12, 45, 56], as well as the lecture notes [44, 47, 49].
Another challenging application arises in continuum physics in the regime of
(small) viscosity and capillarity, which may still drive the propagation of certain
(nonclassical undercompressive) shock waves. This is relevant in material science
for the modeling of smart (martensite) materials, as well as in fluid dynamics for the
modeling of multiphase flows (for instance in the context of nuclear plants) and for
the coupling of physical models across interfaces.
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1.2 Preserving Late-Time Asymptotics with Stiff Relaxation

In Sect. 2, this strategy is developed for a class of hyperbolic systems with stiff
relaxation in the regime of late times. Such systems arise in the modeling of a
complex multi-fluid flow when two (or more) scales drive the behavior of the
flow. Many examples from continuum physics fall into the proposed framework,
for instance the Euler equations with (possibly nonlinear) friction. In performing a
singular analysis of these hyperbolic systems, we keep in mind the analogy with the
passage from Boltzmann equation (microscopic description) to the Navier—Stokes
equations (macroscopic description). Our aim here is, first, to derive via a formal
Chapman-Enskog expansion an effective system of parabolic type and, second, to
design a scheme which provides consistent and accurate discretizations for all times,
including asymptotically late times.

Indeed, we propose and analyze a class of asymptotic-preserving finite volume
methods, which are consistent with, both, the given nonlinear hyperbolic system and
the effective parabolic system. It thus preserves the late-time asymptotic regime and,
importantly, requires only a classical CFL (Courant, Friedrichs, Lewy) condition of
hyperbolic type, rather than a more restrictive, parabolic-type stability condition.
This section is based on the joint work [9, 11].

1.3 Geometry-Preserving Finite Volume Methods

The second topic of interest here is provided by the class of hyperbolic conser-
vation laws posed on a curved space. Such equations are relevant in geophysical
applications, for which the prototype is given by shallow water equations on
the sphere with topography. Computations of large-scale atmospheric flows and
oceanic motions (involving the Coriolis force, Rosby waves, etc.) requires robust
numerical methods. Another motivation is provided conservation laws on moving
surfaces describing combustion phenomena. We should astrophysical applications,
involving fluids or plasmas, and the study of the propagation of linear waves
(wave operator, Dirac equations, etc.) on curved backgrounds of general relativity
(such as Schwarschild or, more generally, Kerr spacetime). These applications
provide important examples where the partial differential equations of interest are
naturally posed on a curved manifold.

Scalar conservation laws yield a drastically simplified, yet very challenging,
mathematical model for understanding nonlinear aspects of shock wave propagation
on manifolds. In Sect.3, based on the work [52], we introduce the geometry-
preserving finite volume method for hyperbolic balance laws formulated on surfaces
or, more generally, manifolds. First, we present some theoretical tools to handle
the interplay between the nonlinear waves propagating on solutions and the
underlying geometry of the problem. A generalization of the standard Kruzkov
theory is obtained on a manifold, by formulating the hyperbolic equation under
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consideration from a field of differential forms. The proposed finite volume
method is geometry-consistent and relies on a coordinate-independent formulation.
The actual implementation of this finite volume scheme on the sphere is realized in
[3,5].

2 Late-Time Asymptotics with Stiff Relaxation

2.1 A Class of Nonlinear Hyperbolic Systems of Balance Laws

Consider the following system of partial differential equations

R(U
ean+axF(U)=—Q, U=U(x)eRCRY, )
€

in which 7 > 0, x € R denote the time and space variables and the flux F : 2 — RY
is defined on the convex and open subset §2. The first-order part of (1) is assumed
to be hyperbolic in the sense that the matrix-valued map A(U) := Dy F(U) admits
real eigenvalues and a full basis of eigenvectors.

In order to analyze the singular limit ¢ — O of late-time and stiff relaxation, we
distinguish between two distinct regimes. In the hyperbolic-to-hyperbolic regime,
one replaces €9, U by 9, U and establishes that solutions to

R
U+, FU) =2y _yg ),
€

are driven by an effective system of hyperbolic type. Such a study was pioneered by

Chen, Levermore, and Liu [21]. On the other hand, in the hyperbolic-to-parabolic

regime which is under consideration in the present work, we obtain effective

equations of parabolic type. In the earlier papers [31, 58], Marcati et al. established

rigorous convergence theorems for several classes of models. Our objective here is

to introduce a general framework to design numerical methods for such problems.
We make the following assumptions.

Condition 1. There exists an n x N matrix Q with (maximal) rank n < N such that
OR(U) =0, Ueg, 2)

hence, QU € Q52 =: w satisfies
€9, (QU) + 0, (QF(U)) = 0. 3)

Condition 2. There exists a map & : o CRY — 2 describing the equilibria
u € w, with
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R(EW) =0, u=Q&W). “)

We introduce the equilibrium submanifold .#Z := {U =& (u)}.

Condition 3. It is assumed that
QF(&(u)) =0, ueEw. (5)

Observe that the term 0, (QF (& (u))) must vanish identically, so that QF (& (1)) must
be a constant, which we normalize to be 0.

Condition 4. For all u € w, we impose

dim (ker(B((f(u)))) =,

(6)
ker (B(é”(u))) N Im (B(é”(u))) = {0},
hence, the N x N matrix B := DRy has “maximal” kernel on the equilibrium
manifold.
2.2 Models Arising in Compressible Fluid Dynamics
2.2.1 Stiff Friction
We begin with the Euler system for compressible fluids with friction:
€d;p + 0x(pv) =0,
v (7

€ di(pv) + B (" + p(p)) = =2

The density p> 0 and the velocity v are the main unknowns, while the pressure
p:RY — RT is a prescribed function satisfying the hyperbolicity condition
p’'(p) > 0 (for p > 0). The first-order homogeneous system is strictly hyperbolic
and (7) fits into our late-time/stiff relaxation framework in Sect. 2.1 if we set

_(r _ pv _(0
v= (pV)’ FO)= (pv2+p(p))’ RU)= (pV)

and Q@ = (1 0). The local equilibria # = p are found to be scalar-valued with
&Ew) = (p, 0)7 and we immediately check that QF (& (u)) = 0.
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2.2.2 Stiff Radiative Transfer

The following model arises in the theory of radiative transfer:

4
T —e€
63;e+3xf= c 5

e +au(x(rrere) =L ®)

6—1'4

Ga[f =
€

The radiative energy e > 0 and the radiative flux f are the main unknowns,

restricted so that | f/e| < 1, while t > 0 is the temperature. The so-called
34482

Eddington factor y : [-1,1] — R™ is, typically, taken to be y(§) = Py =

Again, this system fits within our general framework.

2.2.3 Coupling Stiff Friction and Stiff Radiative Transfert

By combining the previous two examples together, one can consider to the following
coupled Euler/M 1 model

€dip+ 9x(pv) =0,
) K o
€dipy + d:(pv" + p(p) = ——pv + — f.

€de + 0, f =0, ©)

€, f + ax(x (%) e) - —%f

Here, « and o are positive constants and, in the applications, a typical choice for the
pressure is p(p) = Cp,p" with C, < 1 and n > 1. Now, we should set

P pv 0
U - /;v CFU) = psz}p(p) . RW) = va(;of ’
f x(L)e af

and the local equilibria read



Structure-Preserving Shock-Capturing Methods 185

o (p (1000
: ”_QU_(e)’ Q_(oom)’

so that, once again, QF (& (1)) = 0.

Eu) =

SN O

2.3 An Expansion Near Equilibria

Our singular analysis proceeds with a Chapman—Engskog expansion around a local
equilibria u = u(t, x) € w. We set

US=EWu)+eU +e*Us+ ..., u:= QU,

and requires that € 9, U€ + 0, F(U¢) = —R(U¢)/e. We thus obtain QU, = QU, =
... = 0 and then

F(U®) = F(&u)) + € A(EW) U + O(€%),
R(U)

= B(&w) U, + %D?/R(@@(u)).(Ul, U)) + eB(&(u) Uy + ﬁ(ez).
In turn, we deduce that

€0, (EW) + 0, (F(EW))) + € 3, (A(g(u)) Ul)

= —B(EW) Uy — %D%,R(o@(u)).(ul, Uy) — eB(Eu)) Us + O(e2).

The zero-order terms imply that U; € RY satisfies the algebraic system
B(Eu) Uy = =3, (F(&(w))) e RY,
which we can solve in U;. At this juncture, we rely on the condition QU; = 0 and

the following lemma.

Lemma 1 (Technical Lemma). IfC isan N x N matrix satisfying dimker C = n
andkerCNIm C = {O}, and if Q is an nx N matrix of rank n, then forall J € RN,
there exists a unique solution V € RN to CV = J and QV =0 QJ = 0.

Proposition 1 (First-Order Corrector Problem). The first-order term U is char-
acterized by B(&(u)) Uy = —8X(F(é”(u))) and QU, = 0.
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Considering next the first-order terms, we arrive at
1
0(£@) + 05 (AEW) Ur) = =5 DF RE@).(U1.U) = BEwW) U

and, after multiplication by Q and using Q& (u) = u,
i+ 0. (Q A W) V) = 30 DYR@EW) (U, Uy) ~ 0 BEw@) Ui,

On the other hand, by differentiating QR(U) = 0, we get Q D} R.(U;,U;) = 0
and Q B U, = 0. This leads us to the following conclusion.

Theorem 1 (Late Time/Stiff Relaxation Effective Equations). The effective sys-
tem reads

B = —0,(QA(E (W) Uy ) =: 0 (A (w)du)
for some n x n matrix M (u) and with U, being the unique solution to

B(EW) Uy = —A(EW)dx(Ew)),  QU, =0.

2.4 Mathematical Entropy Pair for Stiff Balance Laws

We now assuming now that a mathematical entropy @ : §£2 — R exists and satisfies
the following two additional conditions:

Condition 5. There exists an entropy-flux ¥ : £ — R suchthat Dy® A = DyV¥
in £2. So, all smooth solutions satisfy
R(U9)

€

€0, (@(U°)) + 0, (¥(U*)) = —DyP(U°)

and, consequently, the matrix D7, @ A is symmetric in 2. Moreover, the map @ is
convex, i.e. the N x N matrix D%/(D is positive definite on ./ .

Condition 6. The entropy is compatible withe the relaxation in the sense that
Dy®R=>0 in £2,
Dy®(U) = v(U)Q € RV, v(U) e R?.

Next, we return to the effective equations d,u = 9, % sand Z := —QA(& (u)) Uy
and, multiplying it by the Hessian of the entropy, we see that U; € RY is
characterized by
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LUy = —(DF ) (&) (F(Ew)),

QUI = O’

with £ (u) = D} ®(&(u)) B(& (u)).
Denoting by % (u) ! the generalized inverse with constraint and setting S (1) :=

QA(& (u)), we obtain

9 = S L7 (D} ®)(£)d:(F(&)).
Finally, one can check that, with v := 9, (D, ® ()T,

(D ®) ()0 (F(&)) = STv.

Theorem 2 (Entropy Structure of the Effective System). When a mathematical
entropy is available, the effective equations take the form

du = By (L(u) ax(Ducb(g(u)))T),
with
L(u) = Sw)Zw)~"'Sw)", S(u) = QA(&'(u)),
L(u) = (D§P)(&EW)B(E ().

where, for all b satisfying Qb = 0, the unique solution to £(u)V = b, QV =0is
denoted by £ (u)~'b (generalized inverse).

This result can be formulated in the so-called entropy variable (D,ﬁb(g (u)))T.
Furthermore, a dissipation property follows from our assumptions and, specifically,
from the entropy and equilibrium properties (see R(& (1)) = 0), we obtain

Dy®PR >0 in £2,

(DU¢R) |U=£’(u) =0 inow.

Thus, the matrix Dlz/ (DU §DR) |u=&) is non-negative definite. It follows that
D} (DUqDR) = D2®B + (D2®B)  whenU = &),
so that D%@ Bly=sw > 0in .

For the equilibrium entropy @ (& (1)), the associated (entropy) flux u > W (& (u))
is constant on the equilibrium manifold w. For the map ¥ (&), we have

D, (¥(&)) = Dy¥(E)DyE = DyP(E)A(SE) DS
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Observe that (DU 45)(3) =D, (QD(@?)) 0, so that

D,(¥(E W) = Du® (& W)QAE ) Dy (w)
= Du(®(E W) DuOF (& w)).
Since QF (&) = 0, then D,QF (&) = 0 and the proof is completed.
Therefore, D, (¥ (& (1)) = 0 for all u € w. From the expansion U¢ = & (u) +
eU; + ..., where U] is given by the first-order corrector problem, we deduce

W(U) = ¥(EW) + € Dy¥ (W) Uy + O(€),

and then 0, ¥ (U¢) = €0, DyW¥(&(u)) Uy + O(e?). Similarly, for the relaxation
source, we have

Dy®(U)R(U®) = €D} d(&(u) Dy R(Ew))U, + O(€).
We thus get
0 (P& W) + 0 (Du ¥ (E W) Uy )
= -U] (D} ®(& W) B(& () Uy.

At this juncture, recall that X (D} ®)(&)B(&) X > 0for X € RV,

Proposition 2 (Monotonicity of the Entropy). The entropy is non-increasing, i.e.
0 (D(EW))) + 85 (Du¥(EW) V1) <0
and

0(2(EW)) = 8 ((Du(@(EW)) LW 0. (Du(S(EW)) ).

2.5 Effective Models

2.5.1 Effective Model for Stiff Friction

We now analyze the diffusive regime for the Euler equations with friction. Accord-
ing to the general theory, the equilibria satisfy d,p = —d, (QA(@ (n)) U 1) with
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PuF(et) = ( p’(()p) (1)) ’

Here, U, is the unique solution to B(&(1))U; = —0y (F(g(u))) and QU, = 0 with

sew = (5. 3x@“50”)=(5(£@»)‘

The effective diffusion equation for the Euler equations with friction thus read:

dp =3(p(p)). (10)

which is a nonlinear parabolic equation (away from vacuum) since p’(p) > O.
Near the vacuum, this equation is often degenerate since p’(p) typically vanishes
at p = 0. For instance for polytropic gases p(p) = kp? withx > Oand y € (1,y)
we get

dp = Ky (0"~ dp). (1)

Defining the internal energy e(p) > 0 by e’(p) = p(p)/p> we see that, for all
smooth solutions to (7),

2 3 2
€d, (p”; + pe(p)) + s (p% + (pe(p) + p(p))v) = —"Tv, (12)

so that @(U) = p% + pe(p) is a convex entropy and is compatible with the
relaxation. All the conditions of the general framework are therefore satisfied.

2.5.2 Effective Model for Stiff Radiative Transfer

This system is compatible with our late-time/stiff relaxation framework with now

e f e—1*
u=|r|. FO=[xbe]. RO=| f
. 0 e

The equilibria read u = 7 + t* and

4

Ewy=10]. Q=101
T

and we have QF (& (u)) = 0.
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We determine the diffusive regime for the M1 model from

0 1 0 010
(DuF)(Ew) = | x(0) x¥©o0 |=]|4%00].
0 0 0 000
where U, is the solution to
1 0—473 0
01 0 |U =]|0d.:(43)].
—10 473 0
(1onU, =0.
0
Therefore, we have U; = §r33xr and the effective diffusion equation reads
0
4 4 5
0 (t + %) = 0, gr det |, 13)

which admits an entropy.

2.5.3 Effective Model for Stiff Friction and Stiff Radiative Transfert

Here, we have

0 100 0

/ l_ _l
DyF(Ew) = |7 PO001 ( dxp(p) 38xe) ’

0 001 0

0 00 13

and the effective diffusion system for the coupled Euler/M 1 model reads

1 1
dp——2p(p) — 3—8§e =0,

Kl K (14)
de — —de = 0.

30

The second equation is a heat equation, and its solution appears as a source-term in
the first one.
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2.5.4 Effective Model for Stiff Nonlinear Friction

Our framework encompass handle certain nonlinear diffusion regime under the
scaling

The parameter ¢ > 1 introduces a new scale and is necessary when the relaxation is
nonlinear. We assume that

R(é”(u)—i—eU):eqR<é”(u)+M(e)U), UeQ, ucw

for some matrix M(e). In that regime, the effective equations are now nonlinear
parabolic.
Our final example requires this more general theory and reads

€dih + 9, (hv) =0,

KZ( ) (15)

h
= g ||,

€d; (hv) + 0, (h V4 p(h)) -

where / is the fluid height and v the fluid velocity v. The pressure reads p(h) =

g h?/2 while g > 0 is the gravity constant. The friction ¥ : Rt — R is a positive

function, and for instance one can take « (k) = 52 with Ky > 0.

The nonlinear version of the late-time/stiff relaxation framework applies by
introducing

h hv 0
v= (h) FO)= (hv2 + p(h))’ RO)= (x%h)ghvmw)‘

The equilibria u = h are associated with

E(u) = (g) 0 =(10).

The relaxation is nonlinear and
R(&w) +€U) = ezR(o@(U) + M(e)U),

with

M(e) = (g?)
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in turn, we obtain a nonlinear effective equation for the Euler equations with

nonlinear friction, i.e.
h  0Och
9:h =9, b0k : (16)
K(h) \/19.h]
which is a parabolic and fully nonlinear.

Introducing the internal energy e(h) := gh/2, we see that all smooth solutions
to (15) satisfy the entropy inequality

2 h2 2 2 h
o (nZ + e o (hZ + a2 ) v = =D ey, (17)
) 2 =)

The entropy @(U) = h% + g% satisfies the compatibility properties for the
nonlinear late-time/stiff relaxation theory, with

R(Ew) + MO)T) = ( ) ]?(h)) ,

where U; = (0 B) . We obtain R(&'(u) + M(0)U;) = c(u)U, with

c(u) = gk(h)/hldih| = 0.

2.6 A Class of Asymptotic-Preserving Finite Volume Method

2.6.1 The General Strategy

We now will design a class of finite volume schemes which are consistent with the
asymptotic regime € — 0 and allow us to recover the effective diffusion equation
(independently of the mesh-size) for the limiting solutions. Hence, we develop
here a rather general framework adapted to the hyperbolic-to-parabolic relaxation
regime.

Step 1. We rely on a arbitrary finite volume scheme for the homogeneous system
U+ 0, F(U) =0,

as described below.

Step 2. Next, we modify this scheme and include a matrix-valued free parameter
in order to consistently approximate the non-homogeneous system (for any
y>0)

9,U + 0, F(U) = —y R(U).
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Step 3. By performing an asymptotic analysis of this scheme after replacing the
discretization parameter At by € At, and y by 1/€, we then determine the free
parameters and ensure the desired asymptotic-preserving property.

For definiteness, the so-called HLL discretization of the homogeneous system
(Harten, Lax, and van Leer [36]) are now discussed. We present the solver based on
a single intermediate state and on a uniform mesh with cells of length Ax, that is,

Ax
[Xi—1/2, Xi41/2], Xi412 = Xi + >
foralli =...,—1,0,1,.... The time discretization is based on some At restricted

by the CFL condition [28] with " +! = " 4+ At.
Given any initial data (lying in £2):

0 1 Xi+1/2
U>x) = E/ U(x,0)dx, X € [Xi—1/2, Xi+1/2)-
Xi—1/2

we design approximations that are piecewise constant at each ", that is,
U’"(x) = Uim, X € [xi_l/z,xi+1/2), i €.

At each cell interface we use the approximate Riemann solver
~ X ~ X
U@(;,UL,UR): U*, —b<7<b,

where b > 0 is (sufficiently) large. The “numerical cone” (and numerical diffusion)
is determined by some b > 0 and, for simplicity in the presentation, we assume a
single constant b. More generally, one can introduce distinct speeds b, | < b iﬁ_l 2
at each interface.

We introduce the intermediate state

0* = (U + Up) - ﬁ(F(UR) — F(UL))

and, under the CFL condition b% < 1/2, the underlying Riemann solutions are
non-interacting. Our global approximations

02”X(x’tm + t)’ re [Os At)s X € Rs

are defined as follows.
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At the time 1!, we set

untl = € e U7 (x,t" + At)dx
T ax . Ax (X

i—1/2

and, recalling l~].*+1/2 = %(Ui’" + U/ ) — ﬁ(F(Ui’f’H) — F(U™)), and integrating

1
out the expression given by the Riemann solutions, we arrive at the scheme adapted

to our homogeneous system
gmtl — ym _ ﬂ HLL _ pHLL
i =y Ax \Vit1/2 i—1/2)>
where

1 m m b m m
Fits = 5 (FOm + FU ) - 5@t - U,

More generally one can include here two speeds b, | 2 < bitLl /2
This scheme enjoys an invariant domain property, as follows. The intermediate
states U", /2 can be written in the form of a convex combination

. 1 1 1 1
i+12= 5 (U:m + EF(Uim)) + 3 (Uiyﬁ—l - EF(U;ﬁq)) € £,

provided b is large enough. An alternative decomposition is
7 1 1— m m m 1 1— m m m
i+1/2 = E(I + EA(Ui ’U’+1)) ur+ E(I B EA(UZ‘ ’Ui+1)) Uit

where A is an “average” of Dy F. By induction, we conclude that Ui’" in £2 for
allm,i.

2.6.2 Handling the Stiff Relaxation

Consider the modified Riemann solver:

X
U%’(;? UpL,Ur) =
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with, at the interface,

Ut =aU* + (I =) (UL — R(UL)),
U*R = aU* + (I —@)(Ur — R(Ug)).

We have introduced an arbitrary N x N -matrix and an N -vector by

—1
a= (1 + yzA_bx(I +g)) . RWU)=UI+0a0)"'RO).
The term ¢ is a parameter matrix and we require that all inverse matrices are well-
defined and, importantly, the correct asymptotic regime arises at the discrete level
(see below).

At each x;41/2, we use the Riemann solver Ugz(
impose non-interacting Riemann solutions

X—Xi41/2,
t—tm

ur, Ui’11) and super-

Uy (x,t" + 1), t €[0,4r), xeR.

The approximation at the time ! reads U"*! = f):’:;;z UR.(x,t" + At)dx.

By integration of the Riemann solutions, we arrive at the following discrete form of
the balance law

i o
E(Ui U+ E(%+1/2F}I:II—LIL/2 —%—1/2FiF£L1L/2)

1

b _
= A—x(ﬂiﬂ/z — ;) FU") - A_x(l —a;_yp)Ric12(U") (18)

b )
- EU - Qi+1/2)Ri+1/2(Uim)-

The source can rewritten as

b ] b ) )
A_x(I =41 Rit12U") = A—X%H/z(ﬂiiuz —D)Ri+12(U™)

|4 m
= 5%+1/2R(Uz‘ )
and
b D m 4 m
E(I — ;) Ri1p(U") = Eﬁi—l/zR(Ui )-

Our finite volume scheme for late-time/stiff-relaxation problems finally read
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1 m 1
E(Ui — U + A_x(ﬂi+1/2F+1/z '—1/2E€L1L/2)

1
T Ax

(19)
m )/
(410 — 2 ) F(U] )_§@i+1/2+az 12) RWU™).

Theorem 3 (A Class of Finite Volume Schemes for Relation Problems). When
Oiy12 —0imyj2 = O(AX)
and the matrix-valued map o is smooth, the finite volume scheme above is consistent

with the hyperbolic system with relaxation and satisfies the following invariant
domain property: provided all states

U,-*fl/z = %+1/2U R &) (U — R(Uim)),
Uifl/z = %‘+1/2U St = )WU — R(U, 1)

belong to §2, then all of the states U™ belong to 2.

2.7 Effective Equation for the Discrete Asymptotics

We replace At by At /e and y by 1/€ and consider the expression

€ 1
E(U’ +1_Uim)+A_x(gi+l/2F+l/2 o; 1/2F 1/2)

1

m 1
= E@i+l/2_%—l/2)F(Ui )— Z(Qi+l/2 + ;) RUM),

in which
A _l
Yir12 = 1+ (1+G:+1/2) .
We expand near an equilibrium state U" = &(u") + €(U;)" + O(€?) and find

1 1 b
Fit, = SEEW) + 5F(EGH)) = 5 (B - E6)) + 06,

“RWP) = BEGHU! + 0,

2be -1
Aigyp = E(I + 0,410 +O0).

The first-order terms yield us
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1 m+1 m
G = £

2b _
=T A0 ((1 +Gz+l/2) +1/2|é”(u) (I +0;1p) IEELlL/ﬂéa(u))
2b )
+ o5 (U™ = o)) FEW)

b
— o (T o)™ + U +oi )™ ) BEW) U

Assuming here the existence of an n x n matrix .#; 1/, satisfying

1
Q(I +U,+1/2) ! = ﬁ'%i-l-l/ZQ

and multiplying the equation above by Q, we get

2

1
1 : HLL ) HLL
At( uf! uj') = Th AR (//4+1/2QF,-+1/2|@@(M) ///z—l/zQF,-_l/zlg(u)),

where

0

b
OFI nlow = LW + SR~ 20 (564~ £6h)

= _5(’4;11 —uj").

The asymptotic system for the scheme thus reads

1
A_t( W't —uty = <//4+1/2(M§-"+1 —ui") + MWL — M:-"))- (20)

Recall that for some matrix .# (1), the effective equation reads d,u = 9, (4 (u)0dyu).

Theorem 4 (Discrete Late-Time Asymptotic-Preserving Property). Assume
that the matrix-valued coefficients satisfy the following conditions:

* The matrices I +0,;,,, and (1 + 2€b)l +0;41), are invertible for all € € [0, 1].

There exists a matrix M; 1,2 satisfying the commutation condition

1
5 Miv120.

Q(I +ga +l/2)_ b

* The discrete formulation of # (u) at each interface x; 1/, satisfies

Mit12 = M (u) + O(Ax).
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Then the effective system associated with the proposed finite volume scheme
coincides with the effective system determined in the late-time/stiff relaxation
framework.

Finally, wee refer to [9] for various numerical experiments demonstrating the
relevance of the proposed scheme and its efficiency in order to compute late-time
behaviors of solutions. Asymptotic solutions may have large gradients but are in
fact regular. Note that our CFL stability condition is based on the homogeneous
hyperbolic system and therefore imposes a restriction on At/Ax only. In our test,
for simplicity, the initial data were taken in the image of O, while the reference
solutions (needed for the purpose of comparison) were computed separately by
solving the associated parabolic equations, of course under a (much more restrictive)
restriction on At /(Ax)2.

The proposed theoretical framework for late-time/stiff relaxation problems thus
led us to the development of a good strategy to design asymptotic-preserving
schemes involving matrix-valued parameter. The convergence analysis (¢ — 0)
and the numerical analysis (Ax — 0) for the problems under consideration are
important and challenging open problems. It would be very interesting to apply our
technique to plasma mixtures in a multi-dimensional setting.

Furthermore, high-order accurate Runge—Kutta methods have been recently
developed for these stiff relaxation problems by Boscarino and Russo [10] and by
Boscarino, LeFloch, and Russo [11].

3 Geometry-Preserving Finite Volume Methods

3.1 Objective and Background Material

On a smooth (n + 1)-dimensional manifold M referred to as a spacetime, we
consider the class of nonlinear conservation laws

d(w(u)) =0, u=u(x), x € M. (21)

Forallu € R, w = w(u) is a smooth field of n-forms, referred to as the flux field of
the conservation law under consideration.

Two examples are of particular interest. When M = R4 x N and the n-manifold
N is endowed with a Riemannian metric %, (21) reads

0ru + divy (b(u)) = 0, u=u(ty),t>0,yeN,

where div,, denotes the divergence operator for the metric /. The flux field is then
considered as a flux vector field b = b(u) on the n-manifold N and is independent
of the time variable.

More generally, when M is endowed with a Lorentzian metric g, (21) reads
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divg(a(u)) =0, u=u(x), x eM,

in which the flux a = a(u) is now a vector field on M. In this Riemannian or
Lorentzian settings, the theory of weak solutions on manifolds was initiated by Ben-
Artzi and LeFloch [4] and developed in [1,2,46,51].

In the present paper, we discuss the novel approach in which the conservation
law is written in the form (21), that is, the flux @ = w(u) is defined as a field of
differential forms of degree n. No geometric structure is assumed on M and the sole
flux field structure is assumed. The Eq. (21) is a “conservation law” for the unknown
quantity u, as follows from Stokes theorem for sufficiently smooth solutions u: the
total flux

/ wu)=0, UCM, (22)
4

vanishes for every smooth open subset %/. By relying on (21) rather than the
equivalent expressions in the special cases of Riemannian or Lorentzian manifolds,
we develop a theory of entropy solutions which is technically and conceptually sim-
pler and provides a generalization of earlier works. From a numerical perspective,
relying o (21) leads us to a geometry-consistent class of finite volume schemes,
as we will now present it. So, our main objective i this presentation will be a
generalization of the formulation and convergence of the finite volume method for
general conservation law (21). In turn, this will also establish the existence of a
contracting semi-group of entropy solutions.
We will proceed as follows:

* First we will formulate the initial and boundary problem for (21) by taking into
account the nonlinearity and hyperbolicity of the equation. We need to impose
that the manifold satisfies a global hyperbolicity condition, which provides a
global time-orientation and allow us to distinguish between “future” and “past”
directions in the time-evolution and we suppose that the manifold is foliated by
compact slices.

* Second, we introduce a geometry-consistent version of the finite volume method
which provides a natural discretization of the conservation law (21), which solely
uses the n-volume form structure associated with the flux field w.

* Third, we derive stability estimates, especially certain discrete versions of the
entropy inequalities. We obtain a uniform control of the entropy dissipation
measure, which, however, is not sufficient by itself to establish the compactness
of the sequence of solutions. Yet, these stability estimates imply that the sequence
of approximate solutions generated by the finite volume scheme converges to an
entropy measure-valued solution in the sense of DiPerna.

» Fourth, to conclude we rely on DiPerna’s uniqueness theorem [30] and establish
the existence of entropy solutions to the corresponding initial value problem.

In the course of our analysis, we will derive the following contraction property:
for any entropy solutions u, v and any hypersurfaces H, H’ such that H' lies in the
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future of H, one has

.Q(MH/,VH/)f/ .Q(MH,VH). 23)
H' H

Here, for all reals u, v, the n-form field £2 (u,v) is determined from the flux field
w(u) and is a generalization (to the spacetime setting) of the notion (introduced in
[42]) of Kruzkov entropy |u — V.

DiPerna’s measure-valued solutions were first used to establish the convergence
of schemes by Szepessy [64], Coquel and LeFloch [25-27], and Cockburn, Coquel,
and LeFloch [22,23]. Further hyperbolic models including a coupling with elliptic
equations and many applications were investigated by Kroner [40], and Eymard,
Gallouet, and Herbin [34]. For higher-order schemes, see Kroner, Noelle, and
Rokyta [41]. See also Westdickenberg and Noelle [66].

3.2 Entropy Solutions to Conservation Laws Posed
on a Spacetime

We assume that M is an oriented, compact, differentiable (n 4 1)-manifold with
boundary. Given an (n + 1)-form «, its modulus is defined as the (n 4+ 1)-form
loe| := |a@]dx® A --- Adx", where @ = @dx' A --- A dx" is written in an oriented
frame determined in coordinates x = (x*) = (x°,...,x"). If H is a hypersurface,
we denote by i = iy : H — M the canonical injection map, and by i * = i}; is the
pull-back operator acting on differential forms defined on M .

We introduce the following notion:

¢ Aflux field w on the (n+1)-manifold M is a parametrized family w(u) € A"(M)
of smooth fields of differential forms of degree n, that depends smoothly upon
the real parameter u.

* The conservation law associated with a flux field w and with unknownu : M —
Ris

d (w(u) =0, 24)
where d is the exterior derivative operator and, therefore, d (a)(u)) is a field of

differential forms of degree (n + 1).
* A flux field w is said to grow at most linearly if for every 1-form p on M

sup/ lp A duw(@)| < +o00. (25)
weR J M

u

In local coordinates x = (x*) we write (for all u € R) w(u) = o (u) (c/i})a and
(dx)q == dx" A Adx* " Adx®TUA L. Adx™. Here, the coefficients % = w® (i)
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are smooth. The operator d acts on differential forms and that, given a p-form p
and a p’-form p/, one has d(dp) = Oand d(p A p') = dp A p' + (—1)?p A dp'.
The Eq.(24) makes sense for unknowns that are Lipschitz continuous. However,
solutions to nonlinear hyperbolic equations need not be continuous and we need to
recast (24) in a weak form.

Given a smooth solution u of (24) we apply Stokes theorem on any open subset
% (compactly included in M and with smooth boundary d%/) and find

0= /% d(w(u)) = /3% i*(w(u)). (26)

Similarly, given any smooth function v : M — R we write d(V o(u)) =
dy AN o(u) + ¥ d(w(u)), where dy is a 1-form field. Provided u satisfies (24),
we deduce that

/M d(Y o(w) = /M 4y A o

and, by Stokes theorem,

/ dy A w(u) = / i*(Yo(u)). Q27)
M oM

A suitable orientation of the boundary dM is required for this formula to hold.

Definition 1 (Weak Solutions on a Spacetime). Given a flux field (with at most
linear growth) w, a function u € L'(M) is a weak solution to (24) on the spacetime
M if [, dyr A w(u) = 0 for every ¥ : M — R that is compactly supported in the

interior M .

Observe that the function u is integrable and w(u) has at most linear growth in #,
so that the (n + 1)-form dy A w(u) is integrable on the compact manifold M.

Definition 2. A (smooth) field of n-forms £2 = £2(u) is a (convex) entropy flux
field for (24) if there exists a (convex) function U : R — R such that

Q@) = /0 ﬁauU(v) doF) dv, THeR.

It is admissible if, moreover, sup |9, U| < oo.

If we choose the function U(u,v) := |u — V|, where v is a real parameter, the
entropy flux field reads

2 @,7) := sgn(@ — 7) (0(@) — (). (28)

This is a generalization to spacetimes of the so-called Kruzkov’s entropy pairs.



202 P.G. LeFloch

Next, given any smooth solution u to (24), we multiply (24) by d,,U(u) and obtain
the conservation law

d(2(u)) — (d2)(u) + 0,Uu)(dw)(u) = 0.
For discontinuous solutions, we impose the entropy inequalities
d(82(u)) — (d$2)(u) + 9, U(u)(dw)(u) <0 (29)

in the sense of distributions for all admissible entropy pair (U, §2). This is justified,
for instance, via the vanishing viscosity method, i.e. by searching for weak solutions
realizable as limits of smooth solutions to a parabolic regularization.

It remains to prescribe initial and boundary conditions. We emphasize that,
without further assumption on the flux field (to be imposed shortly below), points
along the boundary dM can not be distinguished and it is natural to prescribe the
trace of the solution along the whole of the boundary dM . This is possible provided
the boundary data, ug : dM — R, is assumed by the solution in a suitably weak
sense. Following Dubois and LeFloch [32], we use the notation

ul,y, € Evalup) (30)

for all convex entropy pair (U, §2), where for all reals u
Eue@) = {V eR | E,v):=Q2®@w) + 0,Uu) (o) —o@) < .Q(V)}.

Definition 3 (Entropy Solutions on a Spacetime with Boundary). Letw = w(u)
be a flux field (with at most linear growth) and let up € L'(dM) be a boundary
function. A function u € L'(M) is an entropy solution to the boundary value
problem (24) and (30) if there exists a bounded and measurable field of n-forms
y € L'A"(0M) such that, for every admissible convex entropy pair (U, £2) and
every smooth function ¢y : M — R,

/M (dv A 2 + v (@2) @) - ¥ 3,U W) ([do)w)
+ / Yiom (i*2(up) + 0,Uup)(y —i*w(up))) > 0.
oM

This definition makes sense since each of the terms dy¥ A £2(u), (d$2)(u),
(dw)(u) belong to L' (M). Following DiPerna [30], we can also consider solutions
that are no longer functions but Young measures, i.e, weakly measurable maps
v : M — Prob(R) taking values within is the set of probability measures Prob(R).

Definition 4. Let w = w(u) be a flux field with at most linear growth and let
up € L°(IM) be a boundary function. A compactly supported Young measure
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v : M — Prob(R) is an entropy measure-valued solution to the boundary value
problem (24), (30) if there exists a bounded and measurable field of n-forms
y € L®A"(0M) such that, for all convex entropy pair (U, £2) and all smooth
functions ¢ > 0,

[ {vav n 20+ v (@@ - ,00@)0)

+ /BM Viom <v, (i*[?(ug) + 0,U(up)(y — i*a)(ug)))> > 0.

3.3 Global Hyperbolicity and Geometric Compatibility

The manifold M is now assumed to be foliated by hypersurfaces, say

M= | H. 31)

0<t<T

where each slice has the topology of a (smooth) n-manifold N with boundary.
Topologically we have M ~ [0, 7] x N, and

oM = HyU Hr U B,

B=0.T)xN:= | oH,. (32)

0<t<T

We impose a non-degeneracy condition on the averaged flux on the hypersurfaces.

Definition 5. Let M be a manifold endowed with a foliation (31)-(32) and let
® = w(u) be a flux field. Then, the conservation law (24) on M satisfies the global
hyperbolicity condition if there exist constants 0 < ¢ < ¢ such that, for every non-
empty hypersurface e C H,, the integral fe i*0,w(0) is positive and the function
¢e - R—> R,

_ o [, i*o(@) _
e = = e—a R
) fez w(u) fe 9,(0) ue
satisfies
¢ <0up.() <c, uekR. (33)

The function ¢, represents the averaged flux along e. From now, we assume
that the conditions above are satisfied and we refer to Hj as an initial hypersurface
and we prescribe an initial data uy : Hy — R on this hypersurface. We impose a
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boundary data up on the submanifold B. We sometimes refer to H, as spacelike
hypersurfaces.

Under the global hyperbolicity condition (31)—(33), the initial and boundary
value problem takes the following form. The boundary condition (30) decomposes
into an initial data

UH, = Up (34)
and a boundary condition
u B (S gU,Q(MB). (35)

Correspondingly, the condition in Definition 3 reads
/M (dv A 200 + v (@2)w - ¥ AU ([dw) W)
+ / Yion (2 (up) + 3,U(up)(y —i*w(up))) + / i*82(uny)
B H

T
—/ i*2(uo) = 0.
Hy

Definition 6. A flux field w is geometry-compatible if it is closed for each value of
the parameter,

(do)@) =0, ueR. (36)

This condition ensures that constants are trivial solutions, a property shared by
many models of fluid dynamics (such as the shallow water model). When (36) holds,
it follows from Definition 2 that every entropy flux field £2 satisfies (d£2)(m) = 0
(for all u € R) and the entropy inequalities (29) for a solution u : M — R take the
simpler form

d($2(u) < 0. (37)

3.4 The Spacetime Finite Volume Method

We now assume that M = [0, T]x N is foliated by slices with compact topology N,
and the initial data ug is bounded. We assume that the global hyperbolicity condition
holds and the flux field w is geometry-compatible. Let 7" = | ke K be a
triangulation of M, that is, a collection of cells (or elements), determined as the
images of polyhedra of R"*!, satisfying:
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* The boundary dK of an element K is a piecewise smooth, n-manifold, 0K =
U.cax € and contains exactly two spacelike faces e; and ey and “vertical”
elements

e € K := 9K \ {ef,ex}.

« The intersection K N K’ of two distinct elements K, K’ € 7" is either a common
face of K, K’ or else a submanifold with dimension at most (n — 1).

* The triangulation is compatible with the foliation in the sense that there exist
timesfp = 0 < #; < ... <ty = T such that all spacelike faces are submanifolds
of H, := H,, forsomen = 0,..., N, and determine a triangulation of the slices.
We denote by 90’1 the set of all K which admit one face belonging to the initial
hypersurface Hy.

We define the measure |e| of a hypersurface e C M by

le| := /i*Bua)(O). (38)

This quantity is positive if e is sufficiently “close” to one of the hypersurfaces along
which we have the hyperbolicity condition (33). Provided |e| > 0 which is the case
if e is included in one of the slices of the foliation, we associate to e the function
¢, : R — R. The following hyperbolicity condition holds along the triangulation
since the spacelike elements are included in the spacelike slices:

€ = dup,x (@) < T, KeJh (39)
K

Next, we introduce the finite volume method by averaging (24) over each element
K € 7" Applying Stokes theorem with a smooth solution u to (24), we get

O:/Kd(a)(u)):/aKi*a)(u).

Decomposing the boundary dK into its parts e}g, ey, and 3°K, we obtain

/e+i*w(u)—/e_i*w(u) + Z /eoi*w(u) =0. (40)

K 0ed0K

0

Given the averaged values uj along ey and u}do along ¢ € 3°K, we need an

approximation uz of the solution u along e}'. The second term in (40) can be
approximated by

/_ i*o(u) ~ /_ *o(uy) = legleer (x)

K K
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and the last term by fe() ifou) ~ gy, u}eo), where the total discrete flux

g - R? — R (i.e., a scalar-valued function) must be prescribed.
Finally, the proposed version of the finite volume method for the conservation
law (24) takes the form

[rew= [ ro- X et e
ey ek Ved0 K
or, equivalently,
leklp,s (k) = lexloc () = Y qreolug.ug.,). “2)
e K

We assume that the functions gg .o satisfy the following properties for all
u,vekR:

» Consistency:

qx oW, u) = /0 i*w(7). (43)

* Conservation:
Gr.oo (V. 1) = —qg 0 (U, V). (44)

* Monotonicity:
Inq k00 (U, V) = 0, Ivq 0 (1, V) < 0. (45)

We need to specify the discretization of the initial data and define constant initial
values ug o = uy (for K € 90”) associated with Hj, by setting

/_ Fo(uy) = /_ i*w(ug), ex C Hy. (46)

K K

We also define a piecewise constant function u” : M — R by, for every element
KeJh

u(x) = ug. x € K. 47

We introduce Nx := #03°K, the total number of “vertical” neighbors of an
element K € 7", supposed to be uniformly bounded. We fix a finite family of
local charts covering the manifold M, and assume that the parameter / coincides
with the largest diameter of faces e,% of elements K € 7", where the diameter is
computed with the Euclidian metric in chosen local coordinates.
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We also impose the Courant—Friedrich-Levy condition (for all K € .7")

Nk
—— max sup
|e;| ePK y

/ auw(u)) <infdp,+. (48)
o0 u

in which the supremum and infimum in u are taken over the range of the initial data.
Finally, we assume that the family of triangulations satisfy

2 2 2
T+ h T
Iim 2% = Jim =% =0 (49)
=0 Tmin =0 h
where Ty (= max;(t;+; — t;) and T, (= min; (4,4 — ¢;). For instance, these

conditions are satisfied if Tyax, Tmin, and 2 vanish at the same order.

Our main objective in this presentation is establishing the convergence of the
proposed finite volume schemes towards an entropy solution. Our analysis of the
finite volume method will rely on a decomposition of (42) into (essentially) one-
dimensional schemes, a technique that goes back to Tadmor [65], Coquel and
LeFloch [25], and Cockburn, Coquel, and LeFloch [24].

By applying Stokes theorem to (36) with some u € R, we obtain

0= /K d(@) = /aKi*w(u)

=/+i*w(ﬁ)—/7i*w(ﬁ)+ > (@)

eVeddK
Choosing u = uj;, we deduce
ekl (k) = leklpes (ug) = D qxen . ug), (50)
Ve K

which can be combined with (42):

1
+ _ —_ —_ —_ —_ —_
Pert (ug) = Peit (ug) — Z m (qK,eO (ux ”K(,O) — k.o (ug, ”K))
e WK

Lo - o
=2 (N_K%,t(ux)——+(‘1K-e"(”1<’”1<eo)—qqu“(”K’”K)))'

eddK |eK|

We introduce the intermediate values 12; o

- - Nk - -
Pert (Mz’eo) =@ (ug) — |e—1_’(_|(q1<,eo (U, uKeo) — g0 Uy, uK)), 51
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and thus arrive at the convex decomposition
+
Qo+ (ug) = ~— > o, +( i 0)- (52)
e()ea()K

Given any entropy pair (U, §2) and hypersurface e C M satisfying |e| > 0 we
introduce the averaged entropy flux along e: ¢ (u) := f [ * 2 (u).

Lemma 2. For every convex entropy flux §2 one has

wh k) = N— D VR W) (53)
eVedK

In fact, the function ¢4 o (¢, )~! is convex.
K €K

Proof. Tt suffices to show the inequality for the entropy flux, and then average this
inequality over e. We need to check

1 -
Q(uf) < Ne Z -Q(M;eo), (54)
K E()anK
namely
Z (R0 ) — 20a}))
€K
1 . 1
= Ne Z (w(u;) - w(”;ﬁeo))auU(u;) + Ne Z Dg 0,
eVed0K K ek
with

1
Dy o = /0 auuU(u;)(w(ﬁ;eo +a(uf —if ) - w(a;eo)) (wf — it o) da.

In the right-hand side, the former term vanishes identically (see (51)) and the latter
term is non-negative, since U(u) is convex and d, is positive. |

3.5 Discrete Entropy Estimates

From the decomposition (52), we derive the discrete entropy inequalities of interest.
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Lemma 3 (Entropy Inequalities for the Faces). For all convex entropy pair
(U,R2)andall K € T" and e° € 3°K, there exists numerical entropy flux functions
Ok : R? > R satisfying (for all u,v € R):

* Qg0 is consistent with the entropy flux §2:

Oxatww = [ i*2w. (55)
0
* Conservation property:
QK,eO(MsV) = _QKP(),eO(Vv M) (56)

* Discrete entropy inequality:

N
2 o+ 2 (- K - - - -
0% G ) — 95 (7) + |TIU(QK,eo (x5 ) = Ok otz ) ) =0,
(57)
Proof.  Step 1. Foru,v € Rand e € 3°K, let us set
N
Hoo(u.9) = ¢, (1) = — (o) = g (.
, ey |e;(|_| , ,
and note that Hg .0 (u, u) = ¢+ (u). We now check that Hg .o satisfies
: p; :
0 0
a_MHK’eO (u, v) >0, gHK,e" (Lt, v) > 0. (58)

The second property is immediate by the monotonicity (45). For the first one, we
recall the CFL condition (48) and the monotonicity (45). From the definition of
Hg o0 (u,v), we have

Hyolug,y) = (1= Y axo)g )+ D axoptu,).
eVeddK eVed0K

and

1 ggeo (uv MKE()) 4K (”s u)

+ —
lek | @ot () = ¢+ (uk,,)

Qg 0 =

This gives a convex combination of ¢ +(u) and ¢ + (ug ,). By (45) we have
ex eg e
E e g K O = 0 and, with (48),

1 o, u —ggeo (U, u
Z OlK,eOS Z )qK, ( Ké,o) qk, ( )

+ —
Ved0 K VedOK |eK | (pe,J{ (u) ('De;(r (uKeU)
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Step 2. We will establish the entropy inequalities for Kruzkov’s entropies 2.
Introduce the discrete version of Kruzkov’s entropy flux

Q(u,v,c) :==qgeo(uVe,vve)—qgo(unc,vac),
where a v b = max(a, b) and a A b = min(a, b). Note that Q g .0 (u, v) satisfies
the first two properties of the lemma with the entropy flux replaced by the
Kruzkov’s family £2 = £2 in (28).

First, we observe:

Hg ouve,vve)—HgpouAc,vAac)

N
=¢,+WVve)— |—f|(qK,eo(u Ve, vve)—qgeowve,uv c))
K eK
Ny (59)
_ (¢e+(u Ac) — W(QK’EO(M ANC,VAC)—qgouAc,un c)))
K eK :
Nk
= @er (M, C) - _+(Q(uv v, C) - Q(M, u, C)),
K |eK|
where ¢ + (V) — @+ (unc) = f+i*2(u.c) = 9% (uc).
K K K e
Second, we prove that for u = uy, v = ”}‘,o and for all(ny celR
Hy o (ug Veuy vV ¢)— Hgo(ug Acug , Ac) = @9 (@) o.0).  (60)
e e eK 9!

Indeed, we have

HK’eo(u,v) % HK,eo(A,A) < HK,eo(M VA, VvV A),
Hg o (u,v) AN Hgopo(A,A) > Hg oA X, vAR),

where H .o is monotone in both variables. Since ¢ + is monotone, we have
) K

Hy po(ug v e uy oV ¢) — Hg po(ug N, uy o N ¢)
e e

= |Hy o ik ) = Hicoo(,0)| = [0 (i ) = 0,4 €)|

= sgn (f/’e;: (’7[;30) - (Pe;g' (C)) (f/’e;: (’T‘;eo) - (Pe;g' (C))

+

= sgn (i o =€) (@4 (i o) — @, () = @e% (i, 0 ©)-

Combining this with (59) (withu = uy,v = Ug ), we obtain the inequality
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2

02 @f 0 0) = (. 0) + (Q(uvc) QUu..¢)) <0

which implies a similar inequality for all convex entropy flux fields. O
We now combine Lemma 2 with Lemma 3.
Lemma 4 (Entropy Inequalities for the Elements). For each K € 7", one has

lex] (2% () — o W) + D (QUuik k) = Ouix.ux)) <0. (61)

DK

If V is convex, then a modulus of convexity for V is a positive real § < inf V"
(where the infimum is taken over the range of the data and solutions). In view of the
proof of Lemma 2, ¢ o (¢©)~! is convex for every spacelike hypersurface e and
every convex function U. (Note that the discrete entropy flux terms do not appear
in (62) below.)

Lemma 5 (Entropy Balance Inequality Between Two Hypersurfaces). For
K e T, denote by B+ a modulus of convexity for (p“(i o ((p“’+)_1 and set
K ex ex

B = minge g B,+. Then, fori < j one has
K

p _
Z |eK|<P +(“K)+ Z mk?{—”“;eo_“]( Z |eK|(PeK(“K)

Keﬁh Keg! KeZ!
(62)
where T, lh is the subset of all K satisfying ey € H,, and one sets Fh =

[ti.2))
Uz<k<] gh
Proof. Multiplying (57) by |ez|/NK and summing in K € 7", ¢* € 3°K yield

3 va’}' g )= 2 leklef (up)

Keagh Kegh

+ Z (QK,eO (uy. MEEO) — Okeo(uy, u})) <O0.

KeTh
ed’k
The conservation property (56) gives

Y Oxelug.ug,) =0 (63)

Kegh
Ved'K
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and so

+
Z %(p eO) Z |6‘K|(p +("‘K)_ Z Ogeo(ug,ug) <0.

Kegh KeJh Ke?”
€' K e’k

(64)

If V is convex and if v =) j ;v is a convex combination of v;, then
p 2
V(V)+§Zaj|Vj—V| SZajV(Vj),
J J

where f = inf V", the infimum being taken over all v;. We apply this with v =
@ +(uh)and V = ¢ o (p©.)~', which is convex.
€K ey ey

In view of (52) and by multiplying the above inequality by |e}§| and summing in
K € T, we obtain

Z Ie |§0 +(“K)+ Z IB |eK| Keo_“zpf Z IeKI (~ e")'

Kegh Keﬂ” Kegh
e’k e’k ed'K

Combining the result with (64), we conclude that

/3|e |-+
D leklel i) = 3 ekl i) + 3 55 o — il

Kegh Kegh Ke ylz
0 0
e’ed’K (65)
= E QK,e" (“E’ “})
KeTh
Ved'K

Finally, using

0= [ a@upn = [ e
= leklof i) = lexlef () + Y Okeolug, ug),
V€K

we obtain the desired inequality, after further summation over all of K within two
arbitrary hypersurfaces. O

We apply Lemma 5 and obtain an important uniform estimate.

Lemma 6 (Global Entropy Dissipation Estimate). The entropy dissipation is
globally bounded, as follows:
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e ~ 2 .
> Wl i sc [ e (66
0

for some constant C > 0 depending upon the flux field and the sup-norm of the
initial data. Here, §2 is the n-form entropy flux field associated with U(u) = u®/2.

Proof. We apply (62) with the choice U(u) = u?

0> 3 (e ol ) = leklef ) + D 5 £ 'eK' i} o —uf |

Kegh Kegh

After summing up in the “vertical” direction and keeping the contribution of all
K € ' on Hy, we deduce that

lex | ~ 4 2 e)
Z N 'B’MK.eO 2z Z lex |, (uk.0)-
Kegh K ' 'B g
ek

For some constant C > 0, we have ZKG%h |€1_<|‘P;Q; (ugo) < C fHo i* 82 (uo).

These are essentially L? norm of the initial data, and this inequality is checked
by fixing a reference volume form on H, and using the discretization (46) of the
initial data u. O

3.6 Global Form of the Discrete Entropy Inequalities

One additional notation now is needed in order to handle “vertical face” of
the triangulation: we fix a reference field of non-degenerate n-forms @ on M
(to measure the “area” of the faces e® € dK°). This is used in the convergence proof
only, but not in the formulation of the finite volume schemes. For every K € 7"
we define

le%5 :=/ i*& for faces e € °K (67)
o0

and the non-degeneracy condition is equivalent to |e’|; > 0. Given a smooth
function v defined on M and given a face ¢” € 3°K of some element, we introduce

] feo Yi*o ) 1
Ve 1= e Vg 1= Ne Z V.
e
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Lemma 7 (Global Form of the Discrete Entropy Inequalities). Ler 2 be a
convex entropy flux field and let v > 0 be a smooth function supported away
from the hypersurface t = T. Then, the finite volume scheme satisfies the entropy

inequality

-y /K AR - Y [ it = 40 + B W) + ).

Kegh Keg) ‘K
with

+
A= Y S = ) (68 @) — % WD)

Kegh
%ed'K

Bwi= Y [ (- )it

Keah
e(lea()K

C'y)=- > /+ (Vaox — V) ((*2u}) —i* 2(uy)).

Kegh K

Proof. From the discrete entropy inequalities (57), we get

|e}<F| 2 (~+ 2 (-
led'k
+ Z Y,0 (QK,e" (U, u}e") — Qg0 (ug, u})) <0.
Keg!h
Nl K

Thanks (56), we have Y ge 71 Yoo Q g o0 (U, uy ) = 0 and, from (55),

Ved'K

> voQrotzan) = Y v [ "0

e

Kegh Kegh
e()ea()K E()ea()K
- [virew+ X [ we-witewp.
Kegh ¢ Kegh ¢
VeV K ed'K

Next, we observe

(68)

(69)
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Z |e; Q =+
N We0</’+(uKeo)
Kegh K

e()ea()K

le KI ekl 2 -
= § -~ Vpke +(uKeo) + § (Yo — Vo) +(uzeo)
, Nk » Nk A

lef | 3
> Y ek ke @D+ Y SE o — v @ ).
KeJh Keﬁh K K
e’k

where, we recalled (53) and the convex combination (52). From

)3 'eK'weom(uK)— 3 lef Vs 5 ().

KeTh Kegh

the inequality (69) reads

> |€K|%0K(<ﬂ ) — o +(u1<) / v i*Q2(uy)
Kegh Keé%h
ek | (70)
< - Z eK (1//60 WBOK)(/’;Z (’2;,60) + Z /()(I//'eo —_ W) Z*Q(ME)
KGyh K KE,?” €
ledk ek

The first term in (70) reads

Y-tk (¢ ) — 02 ()

Kegh
= ) [, VR0 — i 2u)
Kegh eK
+ 3 / Wk — ) (20 — i* 2uz)).
KeTh

We sum up with respect to K the identities
[ a2 = [ vitea)

/ yi 9(»@—/ vireup+ Y [ vireu

VeV K
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and we combine them with (70). We arrive at the desired conclusion by observ-
ing that

> ([, vfz*ﬂ(uK)—/ vitewp)=- 3 [ vit@uxo).

l "K n v ek
Kegh KeJ]

3.7 Convergence and Well-Posedness Results

This is the final step of our analysis.

Theorem 5 (Convergence Theory). Under the assumptions in Sect. 3.4, the family
of approximate solutions u" generated by the finite volume scheme converges
(as h — 0) to an entropy solution to the initial value problem (24), (34).

This theorem generalizes to spacetimes the technique originally introduced by
Cockburn, Coquel and LeFloch [22,23] for the (flat) Euclidean setting and extended
to Riemannian manifolds by Amorim et al. [1] and to Lorentzian manifolds by
Amorim et al. [2].

Corollary 1 (Well-Posedness Theory on a Spacetime). Fix M = [0,T] x N a
(n + 1)-dimensional spacetime foliated by n-dimensional hypersurfaces H; (t €
[0, T']) with compact topology N (cf. (24)). Consider also a geometry-compatible
flux field w on M satisfying the global hyperbolicity condition (33). Given any initial
data uy on Hy, the initial value problem (24), (34) admits a unique entropy solution
u € L®(M) which has well-defined L' traces on spacelike hypersurface of M.
These solutions determines a (Lipschitz continuous) contracting semi-group:

/ i,";/SZ(MH/,vH/)f/ i5 2 (up.vi) (71)
H' H

for any two hypersurfaces H, H' such that H' lies in the future of H, and the initial
condition is assumed in the sense

hrn/ lH.Q u(t) v(t)) / i}'fIOJZ(uo,vo). (72)

>0 Ho

The following conclusion was originally established by DiPerna [30] for conser-
vation laws posed on the Euclidian space.

Theorem 6. Fix w a geometry-compatible flux field on M satisfying the global
hyperbolicity condition (33). Then, any entropy measure-valued solution v to the
initial value problem (24), (34) reduces to a Dirac mass and, more precisely,
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v =6, (73)

where u € L°° (M) is the entropy solution to the problem.

We now give a proof of Theorem 5. By definition, a Young measure v represents
all weak-# limits of composite functions a(u) for all continuous functions a
(as h — 0):

a@) X (v,a) = /Ra(x)du(x). (74)

Lemma 8 (Entropy Inequalities for Young Measures). Given any Young mea-
sure v associated with the approximations u". and for all convex entropy flux field
2 and smooth functions W > 0 supported away from the hypersurfacet = T,
one has

/ (v.dy A 2()) — / i*2(u0) < 0. (75)
M Hyp

Thanks to (75), for all convex entropy pairs (U, §£2) we have d (v, 2(:)) < 0
on M. On the initial hypersurface Hj the Young measure v coincides with the Dirac
mass 8,,. By Theorem 6 there exists a unique function u € L°° (M) such that the
measure v coincides with the Dirac mass §,. This implies that «" converge strongly
to u, and this concludes our proof of convergence.

Proof. We pass to the limit in (68), by using the property (74) of the Young measure.
Observe that the left-hand side of (68) converges to the left-hand side of (75).
Indeed, since w is geometry-compatible, the first term

5 [ v = 5 [ av s - [ ap o

Kegh Kegh

converges to [, (v, dy A §2(-)). On the other hand, one has

Z /wi*ﬂ(um)=L0wi*9(u’g)—>Lowi*9(uo),

n ek
KeTy

in which ug is the initial discretization of the data uy converges strongly to ug since
the maximal diameter / tends to zero.

The terms on the right-hand side of (68) also vanish in the limit 7 — 0.
We begin with the first term A” (). Taking the modulus, applying Cauchy—Schwarz
inequality, and using (66), we obtain
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+
h |eK| - _
A"yl < D N Wk = Wl o — ug
Kegh K '
e’k

IA
—~
Y
=I5,

<

<
o
N—
=
(3]
—~
Y

2

=
=+

mo
|

= |
o
N—
Z
[} %)

Kegh KeTh

Nedk e’k
et 12 !
= (X S C@m+n?) (| Q) .

Kegh o

eV K
hence

1/2 Tmax + 7
Ah - C/ - h + < C// max .
A" ()] = C7 (Tmax + )( Z IeKI) T (tmin)/?

KeTh

Here, £2 is associated with the quadratic entropy and we used that |y — V| <
C (Tmax + h). Our conditions (49) imply that the upper bound for A" (v/) tends to
zero with A.

Next, we rely on the regularity of ¥ and £2 and we estimate the second term in

the right-hand side of (68). By setting C,o0 := %

, we obtain
|B"(¥)| = ‘ Z /O(WeO - (I*Q(ME) B Ceoi*@))

Keah ¢
e()ea()K

2 suplys — v /

Kegh
Ned0 g
c Z (Tmax + h)z Ieo|a~)a

Kegh
e’k

IA

i*Q2(uy) —Ceoi*d)‘

IA

hence |B" ()| < C M This implies the upper bound for B" (1) tends to zero
with A.
Finally, we treat the last term in the right-hand side of (68)

IEDS |e,t|sl;<p|waol<—w|/e; 20 - i 207)l,

KeTh

using the modulus defined earlier. In view of (54), we obtain
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x| _ _
ic'p)l=C Y N ook = i o = k.

KeTh
e K

and it is now clear that C"(y) satisfies the same estimate as the one we derived
for A" (). O
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