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Preface

This two-part book contains the lecture notes of the XV Spanish–French School on
Numerical Simulation in Physics and Engineering that took place in Torremolinos
(Málaga, Spain) in September 2012: Part I corresponds to the four courses and Part
II to the invited talks. This series of Schools is organized every 2 years since 1984
and it intends to bring together professionals, researchers, and students interested in
numerical methods. The previous editions were held in Santiago de Compostela
(1984), Benalmádena, Málaga (1986), Madrid (1988), Santiago de Compostela
(1990), Benicassim, Castellón (1992), Sevilla (1994), Oviedo (1996), Córdoba
(1998), Laredo, Cantabria (2000), Jaca, Huesca (2002), Cádiz (2004), Castro
Urdiales, Cantabria (2006), Valladolid (2008), and La Coruña (2010). Next edition
will take place in Pamplona, Navarra in September 2014. Since its foundation
in 1991, the Sociedad Española de Matemática Aplicada (SEMA) is actively
involved in the organization of these Schools. The Spanish–French Schools and the
Congresos de Ecuaciones Diferenciales y Aplicaciones/Congresos de Matemática
Aplicada constitute the two main series of scientific meetings sponsored by the
Society. In 2004, it was decided to honour the French mathematician Jacques-Louis
Lions by adding his name to the Schools. Since 2008, the Société de Mathématiques
Appliquées et Industrielles (SMAI) co-organizes these meetings. The main goals of
the Schools are the following:

• To initiate people interested in Applied Mathematics in research topics, in
particular in mathematical modeling and numerical simulation related to the
research areas developed in France and Spain.

• To be a meeting point for researchers, teachers, industrial technicians, and
students from both countries.

• To show current applications of numerical simulation in industry, in particular in
French and Spanish companies.

The School is mainly destined to young holders of engineering or science degrees
who want to start working in numerical simulation, either in research or in the field
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viii Preface

of industrial applications. The School is also oriented to technicians working in
industry who are interested in the use of numerical techniques in some problems
similar to those handled by them, or who want to know the research lines developed
in French and Spanish universities and scientific organisms. The School is also of
interest for other university people, as it permits the exchange of experience and
knowledge concerning the research developed in different laboratories.

Each edition is organized around several main courses and conferences delivered
by renowned French and Spanish scientists. On this last occasion there were four 6-h
courses, whose lecturers were Begoña Calvo and Estefanía Peña, Enrique Domingo
Fernández Nieto, Emmanuel Gobet, and Philippe LeFloch, together with five 1-h
talks given by Carlos Castro, Emanuele Schiavi, Michel Langlais, Fabien Mangeant,
and Denis Talay. The XV School was a very special one for the Spanish and French
communities of Numerical Analysis: it was a tribute to Prof. Antonio Valle Sánchez
who sadly passed away on June 24, 2012. Professor Valle was the first Spanish
student of Prof. Jacques-Louis Lions and he was among the main promoters of the
research in modern Applied Mathematics in Spain. He was the founder of a very
large Spanish community of Numerical Methods in Partial Differential Equations
that grew up from the three universities in which he was a Professor: Santiago de
Compostela, Sevilla, and Málaga. He also promoted the scientific collaboration with
French researchers in this field. Professor Antonio Valle was the first President of
the Spanish Society for Applied Mathematics (SEMA) and one of the promoters of
the Spanish–French Schools on Numerical Simulation in Physics and Engineering.
In particular, Prof. Valle was the President of the Organizing Committee of the
second edition of these schools, which took place in Benalmádena (Málaga). The
fifteenth edition of the Schools took place again in Málaga, the city where Prof.
Valle was born and where he concluded his career. It was therefore natural to pay
a special tribute to him and his invaluable work in promoting the development of
research groups whose activity is strongly related to the subject of the Schools
in collaboration with first level French researchers. A special session in his honor
was included in the program, in which, besides the academic authorities and the
President of SEMA, Professors Alfredo Bermúdez de Castro (University of Santiago
de Compostela) and Michel Bernadou (Pôle Universitaire Léonard de Vinci) spoke
on behalf of the many Spanish disciples of Prof. Valle and their French collaborators,
respectively. It is worth mentioning that Prof. Michel Bernadou has been involved
in the organization of the Schools from the beginning.

The Editors warmly thank all the speakers and participants for their contribution
to the success of the School. In particular, we would like to acknowledge the efforts
of all the lecturers and speakers who have contributed to this volume. We are also
grateful to the Organizing and the Scientific Committees for their efforts in the
preparation of the School. We extend our thanks and gratitude to all sponsors and
supporting institutions for their valuable contribution: SEMA, SMAI, Universidad
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de Málaga, the French Embassy in Spain, and the Spanish Ministry of Economy and
Competitiveness that awarded the grant MTM2011-14775-E.

Málaga, Spain Carlos Parés
A Coruña, Spain Carlos Vázquez
Paris, France Frédéric Coquel
January 2014
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Fundamental Aspects in Modelling
the Constitutive Behaviour of Fibered Soft
Tissues

Begoña Calvo and Estefanía Peña

Abstract Fibered soft tissues like ligament, tendons, cartilage or those composing
the cardiovascular system among others are characterized by a complex behaviour
derived from their specific internal composition and architecture that has to be con-
sidered when trying to simulate their response under physiological or pathological
external loads, their interaction with external implants or during and after surgery.
The evaluation of the acting stresses and strains on these tissues is essential in pre-
dicting possible failure (i.e., aneurisms, atherosclerotic plaques, ligaments rupture)
or the evolution of their microstructure under changing mechanical environment
(i.e. cardiac aging, atherosclerosis, ligament remodeling). As structural materials,
fibered soft tissues undergo large deformations even under physiological loads and
are almost incompressible and highly anisotropic, mainly due to the directional
distribution of the different composing families of collagen fibers. In addition, they
are non-linearly elastic under slowly-acting loads, viscoelastic, due both to the
moving internal fluid in some tissues (i.e. cartilage) or to the inherent viscoelasticity
of the solid matrix. They are also subjected to non-negligible initial stresses due to
the growth and remodeling processes that act along their whole live. Finally, they
are susceptible to suffer damage induced by the rupture of the fibers or tearing of the
surrounding matrix. All these aspects should be considered for a full description of
the constitutive behaviour of these materials, requiring an appropriate mathematical
formulation and finite element implementation to get efficient simulations useful
for a better understanding of their phsyiological function, the effect of pathologies
or surgery as well as for surgery planning and design of implants among many
other usual applications. In this work, formulations of all the different phenomena
commented above in fibered soft tissues are presented. The effect of each of these
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4 B. Calvo and E. Peña

aspects is analyzed in simplified examples to demonstrate the applicability of the
models. Finally, different applications of clinical interest are discussed.

1 Introduction

Biological soft tissues are subjected to large deformations with negligible volume
change and show a highly non-linear anisotropic mechanical response due to their
internal structure. The extra-cellular matrix is composed of a network of collagen
fibrils and elastin fibers embedded in a viscous and quasi-isotropic ground substance
[20]. Typical examples of fibered soft biological tissues are blood vessels, tendons,
ligaments, cornea and cartilage.

The purely elastic response of soft tissues is often modelled within the framework
of continuum mechanics by means of the definition of a strain energy function
expressed in terms of kinematic invariants, first developed by Spencer [66]. This
approach was further tuned and applied to finite element simulations of soft
collagenous biological tissues (see for example Weiss et al. [68], Peña et al. [47]
for ligaments, Holzapfel et al. [30] for arteries and Alastrué et al. [2] for cornea).

Fibered soft tissues are also exposed to a complex distribution of “in vivo” initial
strains. This state is a consequence of the continuous growth, remodeling, damage
and viscoplastic strains that suffer these living materials along their whole life. Due
to the non-linear behaviour of this kind of materials and the non-uniform distribution
of the residual stresses, a wrong inclusion of the initial strain state in computational
models of soft tissues can lead to large errors (usually an important underestimation
of the stress level) [48].

Many fibered soft tissues exhibit simultaneously elastic and viscous material
behavior. The rate-dependent material behavior of this kind of materials has been
well-documented and quantified in the literature. For example, works on ligaments
[58], tendons [36], blood vessels [31, 54], cornea [55] and articular cartilage
[26]. Furthermore, non-physiological loads drive soft tissue to damage that may
induce a strong reduction of the stiffness. Damage may arise from two possible
mechanisms: tear or plastic deformation of the fibers, or biochemical degradation of
the extracellular matrix from protease release associated with the observed cellular
necrosis [57].

It is important to note that accuracy of the biomechanical models strongly
depends on a precise geometrical reconstruction and on an accurate mathematical
description of the behavior of the biological tissues involved, and their interactions
with the surrounding environment, see for example for a knee joint in Fig. 1.
The acquisition of an accurate geometry is a fundamental requirement for the
construction of three-dimensional finite element (FE) models. Both magnetic
resonance imaging (MRI) and computerized tomography (CT) are used to acquire
joint geometry. MRI provides detailed images of soft tissues in diarthrodial joints
while CT provides excellent images of the bones. Once the geometrical model has
been reconstructed from the 3D image dataset, it is necessary to generate the FE
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Fig. 1 Steps for the numerical resolution of biomechanics problem using finite element method

mesh. Constitutive equations are used to describe the mechanical behavior of ideal
materials through the establishment of the dependence of the stress on different
variables, such as the deformation gradient, rate of deformation or temperature.
Another important aspect in tissue modelling is the evaluation of the constitutive
parameters. Material coefficients may be based on subject-specific measurements
or on population averages. In the former, uncertainty is related to inherent errors
in experimental measurements and their extension to other individuals. The com-
parison of model predictions to experimental measurements, or clinical evidences
constitutes the validation process. There is no way to completely validate a model.
Therefore, one must pose specific hypotheses about model predictions along with
tolerable errors. Validation is the most challenging aspect of the FE modelling of
tissue mechanics, as it requires accurate experimental measurements of quantities
that are difficult to obtain.

Taken all this into account, this chapter is focused on the development of
constitutive models for soft fibred tissues and organized as follows. In Sect. 2
the constitutive equations of anisotropic hyperelastic materials are reviewed. In
Sect. 3, we present the weak form and linearized weak form of the continuum
problem. Section 4 addresses the different methodologies used to enforce initial
stresses. Section 5 considered an anisotropic visco-hyperelastic model and Sect. 5.2
an anisotropic damage model for biological soft tissue. The application of these
methodologies to some examples is discussed in Sect. 6. Finally, Sect. 7 includes
some concluding remarks.
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Fig. 2 Kinematics of a unit vector field m0.X/

2 Hyperelastic Behavior

This section deals with the formulation of standard finite strain material models
for soft biological tissues. To clarify the framework it is necessary to summarize
the formulation of finite strain hyperelasticity in terms of invariants with uncoupled
volumetric/deviatoric responses, first suggested in Flory [19], generalized in Simo
et al. [65] and employed for anisotropic soft biological tissues in Weiss et al.[68],
Holzapfel et al. [30] among others.

Let˝0 � E
3 be a reference or rather material configuration of a body of interest.

The notation ' W ˝0 � T ! ˝t represents the one to one mapping, continuously
differentiable, transforming a material point X 2 ˝0 to a position x D '.X; t/ 2
˝t � E

3, where ˝t represents the deformed configuration at time t 2 T � R. The
mapping ' represents a motion of the body that establishes the trajectory of a given
point when moving from its reference position X to x. The two-point deformation
gradient tensor is defined as F.X; t/ WD rX'.X; t/, with J.X/ D det.F/ > 0 the
local volume variation.

The direction of a fiber at a point X 2 ˝0 is defined by a unit vector field
m0.X/, jm0j D 1 (see Fig. 2). It is usually assumed that, under deformation, the
fiber moves with the material points of the continuum body, that is, it follows an
affine deformation. Therefore, the stretch � of the fiber defined as the ratio between
its lengths at the deformed and reference configurations can be expressed as

�m.x; t/ D F.X; t/m0.X/; (1)

where m is the unit vector of the fiber in the deformed configuration and

�2 D m0 � FTF � m0 D m0 � Cm0 (2)
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stands for the stretch along the fiber direction at point X. In (2) C D FTF is the
standard deformation gradient and the corresponding right Cauchy–Green strain
measure. The introduced kinematics for one family of fibers can be applied to a
second fiber family in an analogous manner. We shall denote a second preferred
fiber orientation by the unit vector field n0.X/.

It is sometimes useful to consider the multiplicative decomposition of F

F WD J 1=3I � NF: (3)

Hence, deformation is split into a dilatational part, J 1=3I, where I represents the
second-order identity tensor, and an isochoric contribution, NF, so that det. NF/ D 1

[19]. With these quantities at hand, the isochoric counterparts of the right Cauchy–
Green deformation tensors associated with NF are defined as NC WD NFT � NF D J�2=3C.

The free energy function (SEF) is given by a scalar-valued function‰ defined per
unit reference volume in the reference configuration and for isothermal processes.
Flory [19] postulated the additive decoupled representation of this SEF in volumet-
ric and isochoric parts. To differentiate between the isotropic and the anisotropic
parts, the free energy density function can be split up again as

‰ D ‰vol C N‰iso C N‰ani; (4)

where ‰vol describes the free energy associated to changes of volume, N‰iso is
the isochoric isotropic contribution of the free energy (usually associated to the
ground matrix) and N‰ani takes into account the isochoric anisotropic contribution
(associated to the fibers) [66].

This strain-energy density function must satisfy the principle material frame
invariance‰.C;M;N/ D ‰.Q �C;Q �M;Q �N/ for all ŒC;Q� 2 ŒS3C �Q

3C�. Because
of the directional dependence on the deformation, we require that the function ‰
explicitly depends on both the right Cauchy–Green tensor C and the fibers directions
in the reference configuration (m0 and n0 in the case of two fiber families). Since the
sign of m0 and n0 is not significant, ‰ must be an even function of m0 and n0 and
so it may be expressed by‰ D ‰.C;M;N/ where M D m0˝ m0 and N D n0˝ n0
are structural tensors [66]. In terms of the strain invariants [66], ‰ can be written as

‰ D ‰vol.J /C N‰iso. NI1; NI2/C N‰ani. NI4; NI5; NI6; NI7; NI8; NI9/; (5)

with NI1 and NI2 the first two modified strain invariants of the symmetric modified
Cauchy–Green tensor NC (note that I3 D J 2). Finally, the anisotropic invariants
NI4; : : : ; NI9 characterize the constitutive response of the fibers [66]:

NI4 D NC W M D N�2m; NI5 D NC2 W M (6)

NI6 D NC W N D N�2n; NI7 D NC2 W N

NI8 D Œm0 � n0�m0 � NCn0 NI9 D Œm0 � n0�2:
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Remark. While the invariants NI4 and NI6 have a clear physical meaning, the square
of the stretch � in the fibers directions, the influence of NI5, NI7 and NI8 is difficult to
evaluate due to the high correlation between them [28]. For this reason and the
lack of sufficient experimental data it is usual not to include these invariants in
the definition of ‰ for soft biological tissues. Finally, NI9 does not depend on the
deformation, so it has not included in (5).

The second Piola–Kirchhoff stress tensor is obtained by derivation of (4) with
respect to the right Cauchy–Green tensor [40]. Thus, the stress tensor consists of a
purely volumetric and a purely isochoric contribution, i.e. Svol and Sich, so the total
stress is

S D Svol C NS D 2
@‰vol.J /

@C
C 2

@ N‰. NC;M;N/
@C

D
"
@‰vol.J /

@J

@J

@C
C @ N‰. NC;M;N/

@ NC
@ NC
@C

#

D J pC�1 C
X

jD1;2;4;6
P W 2 @

N‰
@ NIj

@ NIj
@ NC D J pC�1 C P W QS; (7)

where the second Piola–Kirchhoff stress S consists of a purely volumetric contribu-
tion and a purely isochoric one. Moreover, one obtains the following noticeable
relations @CJ D 1

2
JC�1 and P D @C NC D J�2=3ŒI � 1

3
C ˝ C�1�. P is the

fourth-order projection tensor and I denotes the fourth-order unit tensor, which, in
index notation, has the form IIJKL D 1

2
ŒıIKıJL C ıILıJK �. The projection tensor P

furnishes the physically correct deviatoric operator in the Lagrangian description,
i.e. DEVŒ�� D .�/� 1=3. NC W .�// NC�1.

Note that it is possible to obtain the Cauchy stress tensor by applying the push-
forward operation to (7) � D J�1��.S/ [40]. Hence:

� D � vol C N� D p1 C 1

J
dev

h NF QS NFT
i

D p1 C 1

J
devŒ Q� � D p1 C P W Q� ; (8)

where we have introduced the projection tensor P D J�1ŒI� 1
3
1˝1�which furnishes

the physically correct deviatoric operator in the Eulerian description, i.e. devŒ�� D
.�/� 1

3
trŒ��1.

Based on the kinematic decomposition of the deformation gradient tensor, the
tangent operator, also known as the elasticity tensor when dealing with elastic
constitutive laws, is defined in the reference configuration as

C D 2
@S.C;M;N/

@C
D Cvol C NC D 2

@Svol

@C
C 2

@ NS
@C

D 4

"
@2‰vol.J /

@C ˝ @C
C @2 N‰. NC;M;N/

@C ˝ @C

#
; (9)
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where

Cvol D 2C�1 ˝
�

p
@J

@C
C J

@p

@C
C 2Jp

@C�1

@C

�
D J QpC�1 ˝ C�1 � 2J IC�1 ;

(10)

with .IC�1 /IJKL D �.C�1 ˇ C�1/IJKL D � 1
2
.C�1

IK C
�1
JL C C�1

IL C
�1
JK /, and Qp D

p C J dp
dJ .

The term NC corresponding to the deviatoric part is given by:

NC D �4
3
J� 4

3

 
@ N‰
@ NC ˝ NC�1 C NC�1 ˝ @ N‰

@ NC

!

C 4

3
J� 4

3

 
@ N‰
@ NC W NC

!�
I NC�1 � 1

3
NC�1 ˝ NC�1

�
C J� 4

3 NC Nw; (11)

where term NC Nw is defined as:

NC Nw D 4
@2 N‰
@ NC@ NC � 4

3

" 
@2 N‰
@ NC@ NC W NC

!
˝ NC�1 C NC�1 ˝

 
@2 N‰
@ NC@ NC W NC

!#

C 4

9

 
NC W @2 N‰

@ NC@ NC W NC
!

NC�1 ˝ NC�1: (12)

Note that its spatial counterpart of (9) is obtained from the application of the
push-forward operation to (9) c D J�1��.C/ [10]. Hence

c D cvol C Nc; (13)

where

cvol D . Qp1 ˝ 1 � 2pI/: (14)

The deviatoric term, Nc, can be obtained using the expression

Nc D 2

3
tr. Q� /P � 2

3
.1 ˝ dev. N� /C dev. N� /˝ 1/C Nc Nw; (15)

where Nc Nw in (15) is the weighted push forward of NC Nw

Nc Nw D P W Nc W P: (16)
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For a more detailed derivation of the material and spatial elasticity tensors for fully
incompressible or compressible fibered hyperelastic materials and their explicit
expressions, see i.e. [30] or [50].

2.1 Phenomenological Soft Tissue Models

Following this approach, different strain energy functions have been proposed in
order to take into account both the isotropy related to the solid matrix and the
anisotropy introduced by the collagen fibers.

The most used transverse model for ligaments is the one proposed by Weiss [68].
The strain energy function for quasi-incompressible material was divided into an
isotropic part (F1) that corresponds to a Neo–Hookean model and other depending
on the collagen fibers (F�).

N‰ D c1Œ NI1 � 3�C F�.�/; (17)

where c1 is the Neo–Hookean constant and D the inverse of the bulk modulus k D
1
D

. Following physical observations in human ligaments, they assumed that collagen
fibers do not support compressive loads. Secondly, the stress-strain relation curves
for ligaments have two well-defined parts: an initial curve with increasing stiffness
(toe region) and a second part with stiffness almost constant (linear region) [67].
The derivatives of the term of the free-energy function related to the fibers were
initially proposed by Weiss et al. [68] as:

� N‰� D 0 � < 1

� N‰� D c3Œexp.c4Œ� � 1�/� 1� � < ��

� N‰� D c5�C c6 � > ��; (18)

where N‰� D @F�
@�

, �� is the stretch at which collagen fibers start to be straightened,
changing N‰� from exponential to linear, c3 scales the exponential stress, c4 is related
to the rate of collagen uncrimping and c5 is the elastic modulus of the straightened
collagen fibers.

Pioletti et al. [56] proposed an isotropic SEF for ligaments that was later modified
in order to consider the anisotropy of the soft tissues by Natali et al. [42]. It consists
in an exponential function where c1 > 0 and c2 > 0 are stress-like parameters, and
c3 > 0 is dimensionless

N‰.C;M/ D c1Œ NI1 � 3�C c2

c3
Œexp.c3Œ NI4 � 1�/ � c3Œ NI4 � 1� � 1�: (19)

The Weiss’s strain-energy functions (SEF) (17) was modified by Calvo et al. [14]
in order to obtain an analytical expression for the strain energy function as shown in
Eq. (20) to model ligaments and passive behaviour of muscular tissue
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N‰ D c1Œ NI1 � 3�C N‰f
N‰f D 0 NI4 < NI40
N‰f D c3

c4
Œexp.c4Œ NI4 � NI40 �/ � c4Œ NI4 � NI40 � � 1� NI4 > NI40 and NI4 < NI4ref

N�f D 2c5

q
NI4 C c6 ln. NI4/C c7 NI4 > NI4ref ; (20)

where NI4ref characterizes the stretch at which collagen fibers start to be straightened,
c1 > 0, c3 > 0, c5 > 0, and c6 > 0 are stress-like parameters, c4 > 0 is
dimensionless and c7 is a strain parameter. Moreover, it has been assumed that
the strain energy corresponding to the anisotropic terms only contributes to the
global mechanical response of the tissue when stretched, that is NI4 > NI40 . Note
that c5, c6 and c7 > 0 are dependent parameters that enforce strain, stress and stress
derivative’s continuity respectively.

To model cardiac tissue, Humphrey and Yin [35] proposed an exponential
function

N‰. NC; �/ D cŒexp.bŒ NI1 � 3�/� 1�C dŒexp.aŒ N� � 1�2/� 1�; (21)

where c and d are stress-like and b and a dimensionless parameters.
Another transversely isotropic function for modeling the cardiac tissue was

proposed by Lin and Yin [39]

N‰. NC;M/ D c1Œexp.Q/ � 1�; (22)

with

Q D c2Œ NI1 � 3�2 C c3Œ NI1 � 3�Œ NI4 � 1�C c4Œ NI4 � 1�2; (23)

where the material constants c2 > 0, c4 > 0, and c3 are dimensionless, whereas
c1 > 0 is a stress-like parameter. Furthermore, note that the convexity of this
function is not guaranteed for all the combinations of the constants in (23).

The most used SEF specifically designed for the arterial tissue that included two
directions of anisotropy was proposed by Holzapfel et al. [30]

N‰. NC;M;N/D�Œ NI1 � 3�C k1

2k2
Œexp.k2Œ NI4 � 1�2/� 1�C k3

2k4
Œexp.k4Œ NI6 � 1�2/�1�;

(24)

where the parameters�, k1 and k3 are stress-like, whereas k2 and k4 are dimension-
less.

In order to include certain amount of fiber dispersion around the anisotropy
directions characterized by the invariants NI4 and NI6, the SEF (24) model was
modified in Holzapfel et al. [32]
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‰. NC;M;N/ D �Œ NI1 � 3�C k1

k2
Œexp.k2ŒŒ1 � ��Œ NI1 � 3�2 C �Œ NI4 � 1�2�/ � 1�

C k3

k4
Œexp.k4ŒŒ1 � ��Œ NI1 � 3�2 C �Œ NI6 � 1�2�/ � 1�: (25)

In this equation � > 0, k1 > 0 and k3 > 0 are stress-like parameters and k2 > 0

and k4 > 0 are dimensionless. This expression includes the exponential dependence
on the factor Œ NI1 � 3� as well as the dimensionless weighting parameter � 2 Œ0; 1� in
order to improve the ability of the original model (24). By means of this parameter
it is possible to regulate the degree of anisotropy in such way that (24) is recovered
when � D 1 whereas the isotropic exponential model is obtained when � D 0.

Regarding to the volumetric contribution to the SEF, the high water content of
soft biological tissues has frequently leaded to the assumption of expressions with
the form

‰vol D k P.J /; (26)

where P.J / is a strictly convex function satisfying P.1/ D 0.
Thus, compressibility is enforced as a function of the constant parameter k,

and (26) renders a fully incompressible behaviour when k ! 1. A wide variety
of particular forms for the volumetric contribution to the strain energy function are
found in the literature. For example, the functions

P.J / D ŒJ � 1�2 (27)

or

P.J / D ln.J / (28)

and combinations of them are widely used in modelling the vascular tissue
behaviour. As another example, similarly to (26), Ogden [43] proposed the relation

‰vol D ˇ�2 �ˇ ln.J /C J�ˇ C 1
�
; (29)

with ˇ > 0.

2.2 Micro-structurally Soft Tissue Models

The models proposed for soft tissues could be classified into two groups. The first
comprises the macroscopic models previously presented, in which a SEF is obtained
disregarding the nature of the micro-structural components of the tissue. Second, a
group of micro-structurally based models are presented in this section, in which the
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macroscopic mechanical properties are obtained by assuming a constitutive relation
for the microscopic components along each direction, whereas the macroscopic
behaviour is obtained by integration of the contributions in all directions of space.

Gasser et al. [24] proposed the SEF

N‰.C;M;N/ D �Œ NI1 � 3�C k1

2k2
Œexp.k2Œ� NI1 C Œ1 � 3�� NI4 � 1�2/� 1� (30)

C k3

2 k4
Œexp.k4Œ� NI1 C Œ1 � 3�� NI6 � 1�2/� 1�; (31)

where � 2 Œ0; 1=3� is a measure of the dispersion of the fibers around the preferred
orientations This parameter is a result of considering the fibers oriented following
the von Mises orientation density function. Thus, � D 1=3 means isotropy and
� D 0 no fiber dispersion.

Histological studies performed in a number of soft tissues [18, 33] have shown
that elastic fibers appear to be wavy and distributed about preferential directions
[38]. Thus, as the load is applied, more and more fibers start to bear load. However,
the degree of straightening of each fiber will also depend upon its orientation
relative to the loading and the interstitial matter which might avoid its complete
straightening. A model that consider the wavy nature of elastic fibers was proposed
by Rodrĺguez et al. [60, 61]. Each bundle of fibers is assumed to behave following
the worm-like eight-chain model proposed by Arruda and Boyce [8]

n N�f. N�/ D

8̂̂̂
<̂
ˆ̂̂̂:

0 if N� < 1
B

�
2

Nr2
L2

C 1

1 � Nr=L � Nr
L

� ln. N�4 r20 /
4 r0 L

h
4
r0

L
C 1

Œ1 � r0=L�2
� 1

i
� �r

� if N� � 1;
(32)

with B D 1
4
nK � r0=A a stress-like material parameter, L the maximum fiber

length, r0 the fiber length in the undeformed configuration, Nr D N� r0 < L the actual
fiber length, N� the actual isochoric fiber stretch, and

�r D 2
r20
L2

C 1

1 � r0=L
� r0

L
; (33)

being a repository constant accounting for a zero strain energy at N� D 1. This model
considers the maximum fiber length,L, as a Beta random variable, and assumes the
same average orientation for all fibers within the bundle as well as that fibers do not
bear compressive loads. Hence, the strain energy density function for a bundle of
fibers is given by
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N‰bun. N�; N�t�/ D

8̂<
:̂
0; N� < 1;Z N�

1

Z 	

a.r0 N�t� /
N� 0

f .
; x/ `L.x/ dx d
; N� � 1;
(34)

where a.r0 N�t�/ is a monotonically increasing function that determines the minimal
fiber length within the bundle for which failure has not yet occurred,1 � 0

f D
n @�f=@ N�, and `L.x/ is a Beta probability density function with parameters � and �

`L.x/ D 1

	 � r0


 .�C �/


 .�/ 
 .�/

�
x � r0
	 � r0

���1 �
1 � x � r0

	 � r0

���1
; x 2 Œr0; 	�: (35)

The parameter N�t� in (34) corresponds to the maximum isochoric fiber stretch
attained by the bundle over the past history up to time t 2 TC. Therefore, the damage
of the fiber bundle increases whenever N�t� N�t� � 0 and, therefore, it is strain driven.
On the other hand, function a.r0 N�t�/ determines the minimum fiber length within
the bundle for which failure has not yet occurred, and is given by

a.r0 N�t�/ D exp

 "
r0 N�t�
ı

#$!
r0 N�t� ; (36)

where $ and ı are dimensionless model parameters. Note that with this form of
a.r0 N�t�/, the bundle will degrade faster as the deformation gets larger (i.e., longer
fiber will fail at a smaller fraction of their maximum length).

With these considerations at hand, fiber damage is quantified as

Df D 1

	 � r0


 .�C �/


 .�/C 
 .�/

Z a.r0 N�t /

r0

�
x � r0

	 � r0
���1 �

1 � x � r0
	 � r0

���1
dx

D Beta

 
a.r0 N�t /
	 � r0

; �; �

!
: (37)

Anisotropy can straightforwardly introduced in micro-structurally based models
by considering an orientation density function, �, weighting the contribution of the
fibers in space

N‰ D 3

4 �

Z
U2

� N‰ dA: (38)

First contributions considering this approach are due to Lanir [37], who pro-
posed a structural model for planar tissues assuming that fibers are arranged

1Notice that x is a dummy variable used for integration purposes.
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in three-dimensional but almost planar wavy array. Thus, collagen fibers were
restricted to a plane in which they were oriented following a Gaussian distribution
around a mean preferred direction. The same assumption was adopted for the elastin
fibers, which were oriented following a different distribution.

More recently, Alastrué et al. [6] proposed a hyperelastic microsphere-based
model with statistically distributed fibers. In that model, it is assumed the existence
of a uniaxial orientation distribution function �.rI a/ D �.� rI a/ for r 2 U

2 a
referential unit vector and U

2 the unit sphere surface. The macroscopic strain energy
density corresponding to one family of fibers associated with the so-called preferred
direction a and with n fibers per unit volume is then defined as

N‰f D
nX
iD1

�.ri I a/ N‰i
f ; (39)

where ri are referential unit vectors associated with the direction of the i-th fiber,
and �i

f is the fiber’s strain energy according to the deformation in the direction of
ri . When expanding this expression in order to account forN preferred orientations
aI related to different families of fibers one obtains

N‰ani D
NX
ID1

‰I
f D

NX
ID1

hn �I �f. N�/i D 1

4 �

Z
U2

n �I �f dA: (40)

Apart from the symmetry condition �.rI a/ D �.� rI a/ it was considered that
fibers are rotationally symmetrically distributed with respect to the preferred mean
orientation a—in other words, �.Q � rI a/ D �.rI a/ 8 Q 2 Q

3C with rotation
axis a. As a consequence of the uniaxial distribution assumed for the one family of
fibers considered, � can be defined as a function of the so-called mismatch angle
! D arccos.a � r/.

In Alastrué et al. [6], it was adopted the frequently applied �-periodic von Mises
orientation distribution function (ODF)

�.�/ D 4

r
b

2�

exp .b Œcos.2 �/C 1�/

erfi.
p
2 b/

; (41)

where the positive concentration parameter b constitutes a measure of the degree
of anisotropy. Moreover, erfi.x/ D � i erf.x/ denotes the imaginary error function
with erf.x/ given by

erf.x/ D
r
2

�

Z x

0

exp.� 
2/ d
: (42)

Recently, the ODF Bingham [9] was proposed by Alastrué et al. [5] to account
for the dispersion of the collagen fibrils with respect to their preferential orientation.
That function is expressed as
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�.rI A/ dA

4�
D ŒK.A/��1 exp

�
r t �A � r	 dA

4�
; (43)

whereA is a symmetric 3 � 3 matrix, dA is the Lebesgue invariant measure on the
unit sphere, r 2 U

2 and K.A/ is a normalizing constant. As its main features, it
is worth noting that this distribution always exhibits antipodal symmetry, but not
rotational symmetry for the general case.

Applying straightforward transformations, Eq. (43) can be rewritten as

�.rI Z ; Q/ dA

4�
D ŒF000.Z /�

�1 etr
�
Z �Qt � r � r t �Q	 dA

4�
; (44)

where etr .�/ � exp .tr .�//,Z is a diagonal matrix with eigenvalues �1;2;3,Q 2 Q
3

such thatA D Q �Z �QT and F000.Z / may be written as

F000.Z / D Œ4 ���1
Z
U2

etr
�
Z � r � r t	 dA D 1F1.

1

2
I 3
2

I Z /; (45)

with 1F1 a confluent hypergeometric function of matrix argument as defined by Herz
[27].

Thus, the probability concentration is controlled by the eigenvalues of Z ,
which might be interpreted as concentration parameters. Specifically, the difference
between pairs of �1;2;3—i.e., Œ�1��2�, Œ�1��3� and Œ�2 ��3�—determines the shape
of the distribution over the surface of the unit sphere. Therefore, the value of one
of these three parameters may be fixed to a constant value without reducing the
versatility of (44). In fact, setting two of the parameters equal to zero the Von Mises
ODF is obtained and when two parameters come close up, a rotational symmetry is
achieved.

3 Weak Form and Linearized Weak Form of the Continuum
Problem in Spatial Description

The principle of virtual work can be defined by the current or the reference
configurations. The spatial version is written as:

ıW.u; ıu/ D ıWint.u; ıu/C ıWext.u; ıu/; (46)

where

ıWint.u; ıu/ D
Z
˝

� W ıedv; (47)
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with e D 1
2
.I � F�TF�1/ the Euler-Almansi strain tensor, and

ıWext.u; ıu/ D
Z
˝

�.b � Ru/:ıudv C
Z
@˝�

Nt:ıuds: (48)

We shall consider a purely static problem, so that Ru D 0. In addition, we assume
that the load (the body force b and the surface traction Nt) are ‘dead’ (independent
of the deformation), so that the linearization of the external virtual work vanishes,
i.e. D4uıWext.u; ıu/ D 0. Hence, the linearization of the variational equation (46)
only affects the internal virtual work ıWint, which we shall consider below. The
idea is first to pull-back the spatial quantities to the reference configuration (internal
virtual work in the material description), then to linearize and to push-forward again.
Starting with the equivalence pull-back

ıWint.u; ıu/ D
Z
˝

�.u/ W ıe.u/dv D
Z
˝0

S.E.u// W ıE.u/dV; (49)

with E D 1
2
.FTF � I/ the Green–Lagrange strain tensor, we consider now the

linearization of the internal virtual work in the material description

D4uıWint.u; ıu/ D
Z
˝0

ŒıE.u/ W D4uS.E.u//C S.E.u// W D4uıE.u/�dV:

(50)

The first term corresponds to the material stiffness matrix and the second to the
geometric part of the stiffness matrix. We can write

D4uıWint.u; ıu/ D
Z
˝0

ŒıE.u/ W C.u/ W D4uE.u/C S.E.u// W D4uıE.u/�dV:

(51)

Considering the push-forward operations already derived, from (51) and taking
into account the relation dv D JdV , the linearized virtual work in the spatial
description may be written as [32]

D4uıWint.u; ıu/ D
Z
˝

.
@ıua
ıxb

cabcd
@4uc
ıxd

C @ıua
ıxb

@4ua
ıxd

�bd/dv

D
Z
˝

@ıua
ıxb

.cabcd C ıac�bd/
@4uc
ıxd

dv; (52)

where .cCı˝� / represents the effective elasticity tensor that includes the material
and geometric parts of the consistent tangent stiffness matrix.
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4 Residual Stresses

Biological soft tissues are usually exposed to a complex distribution of “in vivo”
initial strains or residual stresses. This state is a consequence of the continuous
growth, remodeling, damage and viscoelastic strains that suffer these living mate-
rials along their whole life. Usually, the distinction between residual and initial
strains or stresses refers to their origin. In the context of living tissues, residual
strains are commonly considered a consequence of different phenomena such
as growing or adaptation. On the contrary, initial stresses have a more general
sense, and can be considered as any autobalanced stress distribution defined in the
reference configuration, independently of its origin. Their most important aim is
to homogenize the stress distribution at different stages of tissue deformation. For
example, in arteries, their effect is to decrease the circumferential stresses at the
inner wall and to reduce the stress gradient through the arterial thickness [15]. It has
been assumed by different authors that the physiological state of a healthy artery
requires constant circumferential stress in each layer. This situation is only possible
by the presence of initial stresses [59]. In ligaments of diarthrodial joints, initial
stretches provide joint stability even in a relatively unloaded joint configuration [23].
Typical residual strains are approximately 3–5 % in ligaments and 20 % for arteries.
Initial strains can be relieved by selective cutting of the living tissue and removal of
its internal constraints. Due to the non-linear behavior of this kind of materials and
the non-uniform distribution of the residual stresses, a wrong inclusion of the initial
strain state in computational models of soft tissues can lead to large errors (usually
an important underestimation of the stress level).

The most common procedure to incorporate residual stresses in computational
models consists on the numerical simulation of the reverse of the stress free
configuration. In order to apply this methodology, a suitable discretisation of
the assumed stress-free geometry is considered as the starting configuration for
the analysis. This strategy has some drawbacks. First, it becomes an extremely
complicated task to determine the displacement field required to get the closed
geometry from the stress geometry when dealing with initial geometries. Another
key disadvantage inherent to this methodology is related to the simulation of patient-
specific geometries for clinical purposes. Since it requires starting from the stress
free configuration, it cannot be applied without obtaining the open geometry, which
implies the destruction of the soft tissue.

An alternative method which overcomes some of the disadvantages of the
previous method is the Finite Element implementation of the deformation gradient
tensor decomposition strategy represented in Fig. 3 [1,4,48]. There, Brs corresponds
to the closed starting configuration, namely the configuration corresponding to the
geometry obtained from medical imaging techniques, so it constitutes the initial
configuration on which external loads represented by the deformation' W Brs�T !
R
3 can be applied.
The two-point tensor F oa, that maps elements of the tangent space TB0

associated to the open configuration B0 onto TBrs, is assumed to account for an
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Fig. 3 Graphical illustration of the transformation operations and configurations related to the
overall deformation and the incorporation of residual strains. Adapted from [1, 4]

arbitrary residual strains field coming, e.g., from the opening angle experiment.
TB0 is associated to an, in general, unknown, say virtual, open configuration.
Due to this reason, the application of F oa on TB0, provides a non-equilibrated
residual stress configuration, namely Brs, that constitutes an intermediate step in
obtaining a compatible residually stressed configuration B0

rs, reached by means of
the application of the elastic deformation2 represented by F cp. Thus, B0

rs includes
the information from F 0 D F cp � F oa.

Note that, a good choice of F oa will cause a very small geometrical modification
of Brs, so that the total residual strain field F 0 due to residual strains will mainly
correspond to the estimated F oa. In other words, it is convenient that the residual
stress distribution present in B0

rs to be, as much as possible, the consequence of F oa,
so that F cp ' I has to be satisfied in order to obtain accurate results. Finally, F l,
representing the deformation gradient tensor associated to load, is applied so that
the residually-stressed loaded configuration Bt is obtained.

To introduce initial strains into the finite element formulation, it is necessary to
specify F oa pointwise within the finite element mesh. An equilibrium step is firstly
applied with zero forces with the constitutive behaviour defined by �˝sf in order to
obtain a balanced, although not fully compatible configuration. A second load step
will result in the deformation gradient F that balances the externally applied forces
[3, 50].
F oa is difficult to determine from experiments. In the case of ligaments and

tendons, Gardiner et al. [23] proposed a relatively easy form to measure length
variations along the fiber direction at different points, �oa. They assumed that Foa

corresponds to an axial stretch �oa along the fiber direction m0 in the reference

2Note that, thinking about the numerical implementation of this procedure, the elastic strain tensor
F cp corresponds to the strain field associated to the displacement needed to make Brs to satisfy the
equilibrium equations. Thus, it constitutes an output of the Finite Element Method.
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Fig. 4 Arterial ring before
carrying out the cut in the
radial direction and after
releasing of the residual
stresses

state B0 that in ligaments closely follows the direction of maximal length. The
concomitant contraction in the perpendicular plane is dictated by incompressibility,
usual assumption in biological soft tissues.

In a coordinate system (*) where the fiber direction m0 is aligned with the X1
axis, Foa can be written as:

�
F �

oa

� D

2
64
�oa 0 0

0 1p
�oa

0

0 0 1p
�oa

3
75 (53)

and transformed to the global systems:

F oa D RF �
oa (54)

with R the rotation tensor from this local system to the global one [50].
A number of feasible alternatives exist to determine F oa for blood vessels.

Residual stresses present in blood vessels, their functional role is to homogenize
the circumferential stress distribution, optimizing the mechanical performance of
the vessel wall under physiological loads [20]. The usual procedure to measure
longitudinal strain is to compare the “in vivo” and the “in vitro” vessel lengths [16].
On the other hand, circumferential strain field is usually quantified by performing
the so-called opening angle experiment (see Fig. 4), which consists on performing
a radial cut on a vessel ring. Then, the ring springs open releasing circumferential
residual stresses which can be estimated as a function of the ring opening angle [21].

Most large and middle size blood vessels show a conduit-type geometry, which
has frequently leaded to consider them as purely cylindrical. This assumption has
been widely used in the analytical modelling of residual stresses. Considering a
cylindrical geometry, the solution of the problem consisting on closing an open
thick-walled cylindrical geometry subjected to pure bending constitutes one of the
most widely used approximations in order to analytically determine the residually
strained configuration. A schematic representation of the named problem is given
in Fig. 5. There, Bop constitutes the stress-free open configuration that transforms
to the close configuration Bcl by means of the application of a suitable deformation
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Fig. 5 Arterial ring in the open (Bop) and closed (Bcl) configurations. Adapted from [4]

mapping, F oa. A cylindrical coordinate system fEI ; I D R;�;Zg is defined in
Bop, where the geometrical constraints

Ri 	 R 	 Ro; 0 	 � 	 .2� � ˛/; 0 	 Z 	 L; (55)

must be satisfied, with Ri and Ro denoting the inner and outer radii, respectively, ˛
is the opening angle, andL the length of the open cylinder (see the Bop configuration
in Fig. 5).

The cylindrical coordinate system fei ; i D r; �; zg belonging to Bcl is analo-
gously defined, so the new geometrical constraints can be written as

ri 	 r 	 ro; 0 	 � 	 2�; 0 	 z 	 l; (56)

where ri, ro and l denote the inner and outer radii and length of the arterial ring in
Bcl, respectively.

At this point, imposition of the incompressibility constraint, namely det.F oa/ D
1, allows to express the values of the cylindrical coordinates in the Bcl configura-
tion as

r D
s
R2 � R2i
��z

C r2i ; � D � �; z D �z Z; (57)

where �z, assumed constant, is the axial stretch, and the parameter � D 2�
.2��˛/ is a

measure of the opening angle of the ring [16]. The principal stretches in radial and
circumferential direction can be expressed as

�r.R/ D @r

@R
D R

r��z
; �� .R/ D r

R

@�

@�
D �r

R
: (58)
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Finally, the two-point tensor F oa can be written as a function of principal
stretches and the unit vectors of the basis declared in the open Bop configuration
and in the closed Bcl configuration as

F oa D �r er ˝ER C �� e� ˝E� C �z ez ˝EZ: (59)

5 Inelastic Effects

Many fibred soft tissues exhibit simultaneously elastic and viscous material behav-
ior. The rate-dependent material behavior of this kind of materials has been
well-documented and quantified in the literature. This includes works on ligaments
[69], blood vessels [34], cornea [55] and articular cartilage [26]. This behavior can
arise from the fluid flow inside the tissue, from the inherent viscoelasticity of the
solid phase, or from viscous interactions between the tissue phases. Furthermore,
non-physiological loads drive soft tissue to damage that may induce a strong
reduction of the stiffness. Damage may arise from two possible mechanisms: tear
or plastic deformation of the fibres, or biochemical degradation of the extracellular
matrix from protease release associated with the observed cellular necrosis.

5.1 Time-Dependent Response

In order to describe the viscoelastic response, the finite-strain anisotropic viscoelas-
tic constitutive model proposed by Peña et al. [49] is here considered. The concept
of internal variable [62] is also applied, postulating the existence of an uncoupled
free energy density function ‰ in the form

‰.C;M;N;Qik/ D ‰0
vol.J /C N‰0 � 1

2

nX
iD1

X
kDm;f1;f2

Œ NC W Qik�; (60)

where ‰0
vol and N‰0 are the effective volumetric and is isochoric elastic responses

[66], J > 0 the local volume variation or jacobian [40], and C and NC are the right
and left Cauchy–Green deformation tensors and their isochoric counterparts [66].
The internal variables Qik may be interpreted as non-equilibrium stresses, in the
sense of non-equilibrium thermodynamics that remain unaltered under superposed
spatial rigid body motions. Qim are the isotropic contributions due to the matrix
material, and Qif is the anisotropic contribution due to the family of fibres [49].

Standard arguments based on the Clausius–Duhem inequality lead to the repre-
sentation

S D 2
@‰.C;M;N;Qik/

@C
D Svol C NS0 � J� 2

3

nX
iD1

X
kDm;f1;f2

DEVŒQik�: (61)
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The non-equilibrium second Piola–Kirchhof stress tensor in (61), Qik, are then
assumed to be governed by a set of rate equations [49]

PQik C 1

�ik
Qik D �ik

�ik
DEVŒ2

@ N‰0
k.

NC;M;N/
@ NC �; (62)

lim
t!1 Qik D 0;

where N‰0
k is the isochoric strain energy associated to the k contribution and �ik 2

Œ0; 1� are dimensionless free energy factors associated with the relaxation times
�ik > 0.

The evolution equation (62) explicitly leads to the following convolution repre-
sentation

Qik.t/ D
Z t

�1
�ik

�ik
exp

��Œt � s�

�ik

�
DEVŒ2

@ N‰0
k

@ NC �ds: (63)

The evolution equations obtained are linear, discarding therefore the stretch-
dependence of the relaxation rate which occurs in some kind of tissues [22, 69].
For those cases, we use a modified set of evolution equations that consider a set
of strain-dependent reduced relaxation and time functions �ik and �ik, respectively,
following the relationships below [54]

�im. NI1/ D �aime
�bim.

NI1�3/; �if 1 .
NI4/ D �aif 1e

�bif1
. NI4�1/; �if 2 .

NI6/ D �aif 2e
�bif2

. NI6�1/;
(64)

�mi. NI1/ D �aime
�bim.

NI1�3/; �if 1 .
NI4/ D �aif 1 e

�bif1
. NI4�1/; �if 2 .

NI6/ D �aif 2e
�bif2

. NI6�1/;
(65)

where �aik, �bik and �bik are dimensionless parameters and �aik has a time dimension.
The corresponding evolution equations result as

Qim.t/ D
Z t

�1
�aime

�bim.
NI1�3/

�aime
�bim.

NI1�3/ expŒ
�.t � s/
�aime

�bim.
NI1�3/ � DEVŒ2

@ N‰0
m

@ NC �ds;

Qif 1 .t/ D
Z t

�1

�aif 1e
�bif1

. NI4�1/

�aif 1e
�bif1

. NI4�1/ expŒ
�.t � s/

�aif 1e
�bif1

. NI4�1/ � DEVŒ2
@ N‰0

f1

@ NC �ds;

Qif 2 .t/ D
Z t

�1

�aif 2e
�bif2

. NI6�1/

�aif 2e
�bif2

. NI6�1/ expŒ
�.t � s/

�aif 2e
�bif2

. NI6�1/ � DEVŒ2
@ N‰0

f2

@ NC �ds: (66)

The basic idea in the numerical integration of the constitutive equations is to
evaluate the convolution integral in (63) through a recursive relation. The key idea is
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to transform the convolution representation discussed in the preceding section into
a two-step recursive formula involving internal variables stored at the quadrature
points of a finite-element mesh [63].

First at all, we introduce the following internal algorithmic history variables

H.ik/ D
Z t

�1
expŒ

�.t � s/

�ik
�
d

ds

(
DEVŒ2

@ N‰0
k.

NC;M;N/
@ NC .s/�

)
ds: (67)

Let Œt0; T � � R, with t0 < T , be the time interval of interest. Without loss of
generality, we take t0 D �1. Further, let Œt0; T � D S

n2IŒtn; tnC1�, be a partition of
the interval Œt0; T � with I an appropriate subset of the natural numbers and �tn D
tnC1�tn the associated time increment. From an algorithmic standpoint, the problem
is defined in the usual strain-driven format and we assume that at certain times tn
and tnC1 all relevant kinematic quantities are known.

Using the semigroup property of the exponential function, the property of
additivity of the integral over the interval of integration and the midpoint rule to
approximate the integral over Œtn; tnC1� we can arrive to the update formula [63]

H.ik/
nC1 D expŒ

��tn
�ik

�H.ik/
n C expŒ

��tn
2�ij

�. NS0knC1
� NS0kn/; (68)

where NS0knC1
D DEVŒ2

@ N‰0k. NCnC1;M;N/

@ NC .s/� is the term of the initial stress response

corresponding to Ik , i.e., NS01nC1
is due to the matrix material and NS04nC1

and NS06nC1
are

due to the fibers.
Following the convolution representation (63), the algorithmic approximation for

the second Piola–Kirchhoff stress takes the form

SnC1 D JnC1pnC1C�1
nC1 C J

� 2
3

nC1
X

kDm;f1;f2
Œ.1 �

nX
iD1

�ik/ NS0knC1
�/

CJ� 2
3

nC1
X

kDm;f1;f2

nX
iD1
Œ�ikfDEVŒH.ik/

nC1�g�: (69)

Also, we can calculate the Cauchy stress tensor as:

� nC1 DpnC11 C 1

JnC1
X

kDm;f1;f2
Œ.1 �

nX
iD1

�ik/dev

(
NFnC1Œ2

@ N‰0
k
. NCnC1;M;N/

@ NC � NFTnC1

)
�/C

C 1

JnC1
X

kDm;f1;f2

nX
iD1
Œ�ik

n
devŒ NFnC1ŒH.ik/

nC1� NFTnC1�
o
�: (70)

The tangent modulus plays a crucial role in the numerical solution of the
boundary value problem by Newton-type iterative methods [10]. The use of
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consistently linearized moduli is essential to preserve the quadratic rate of the
asymptotic convergence that characterizes full Newton’s method [63]. In order to
obtain an easier recursive update procedure, we rewrite the update formula (68) as

QH.ik/
n D expŒ

��tn
�ik

�H.ik/
n � expŒ

��tn
2�ik

� NS0kn (71)

H.ik/
nC1 D QH.ik/

n C expŒ
��tn
2�ik

� NS0knC1
: (72)

With this notation

SnC1 D JnC1pnC1C�1
nC1CJ� 2

3

nC1
X

kDm;f1;f2
Œ.1��kC�k/ NS0knC1

C
nX
iD1

�ikfDEVŒ QH.ik/
n �g�;

(73)

� nC1 D pnC11 C
X

kDm;f1;f2
Œ.1 � �k C �k/devŒ� 0knC1

�C 1

JnC1

nX
iD1

�ikfdevŒ Qh.ik/n �g�;

(74)

where �k D Pn
iD1 �ik and �k D Pn

iD1 �ik expŒ��tn
2�ik

�. Note that QH.ik/
n is a constant at

time tnC1 in the linearization process.
Using (9) and (73) we obtain

CnC1 DC0
vol nC1 C

X
kDm;f1;f2

Œ.1 � �k C �k/ NC0

knC1
C

�2
3
J

� 4
3

nC1
nX
iD1

�ikfDEVŒ QH.ik/
n �˝ NC�1

nC1 C NC�1
nC1 ˝ DEVŒ QH.ik/

n ��

�. QH.ik/
n W NC/.I�1C nC1

� 1

3
NC�1
nC1 ˝ NC�1

nC1/g� (75)

and the spatial tangent modulus defined in (13) takes the form

cnC1 Dc0vol nC1 C
X

kDm;f1;f2
Œ.1 � �k C �k/ Nc0knC1

C

� 2

3JnC1

nX
iD1

�ikfdevŒ Qh.ik/n �˝ 1nC1 C 1nC1 ˝ devŒ Qh.ik/n ��

�trŒ Qh.ik/n �.I � 1

3
1 ˝ 1/g� (76)

where Qh.ik/n D NFnC1 QH.ik/
n

NFTnC1.
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Note that in the recursive update procedure presented herein it is necessary
to know at time tnC1 the variables Hn and NS0n, so, the integration algorithm for
the constitutive equations does not oblige to a constant time increment during the
simulation. Frequently, biomechanical problems include highly large deformations
and consequently it is convenient to use a variable time increment approach. In the
case of�tn constant, it is not necessary to store NS0.j /n being only needed to compute
and store QHn and the computational cost of the recursive update procedure is lower.

For the reader’s convenience, we have summarized the overall implementation
of the developed algorithm in the following scheme.

1. Database at each Gaussian point
fNSkn ; fH.ik/

n g i D 1 : : : internal variables and k D m; f1; f2
2. Compute the initial elastic stress Cauchy tensor

devŒ� 0knC1
� D 1

JnC1
dev

n NFnC1Œ2
@ N‰0k.

NCnC1;M;N/
@ NC

� NFTnC1

o
3. Update algorithmic internal variablesNS0knC1

D NFnC1.JnC1devŒ� 0knC1
�/ NFTnC1

QH.ik/
n D expŒ��tn

�ik
�H.ik/

n � expŒ��tn
2�ij

�NS0kn
H.ik/
nC1 D QH.ik/

n C expŒ��tn
2�ik

�NS0knC1

4. Compute the Cauchy stress tensor
pnC1 D d‰vol.JnC1/

dJ jnC1

Qh.k/n D Pn
iD1 �ikdevŒ NFnC1

QH.ik/
n NFTnC1�

Qh.k/n D Pn
iD1 �iktrŒ NFnC1

QH.ik/
n NFTnC1�

� nC1 D pnC11 CP5
jD1;j¤3Œ.1� �k C �k/devŒ� 0knC1

�C 1
JnC1

Qh.k/n �
5. Compute initial elastic modulus

c0vol nC1 and Nc0knC1

6. Introduce viscoelastic effects
ciso nC1 D P5

jD1;j¤3Œ.1� �k C �k/Nc0knC1
�

� 2
3JnC1

ŒQh.k/n ˝ 1 C 1 ˝ Qh.k/n � Qh.k/n .I � 1
3
1 ˝ 1/�g�

7. Compute elastic modulus
cnC1 D c0vol nC1 C NcnC1

5.2 Softening and Damage Effects

In continuum damage mechanics, the free energy for the fibers is assumed to be of
the form

‰.C;M;N;Dk/ D ‰0
vol.J /C

X
kDm;f1;f2

N‰ D ‰0
vol.J /C

X
kDm;f1;f2

Œ1 �Dk� N‰0

(77)
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where .1 � Dk/ are known as the reduction factors [53, 62], being the internal
variables Dk 2 Œ0; 1� normalized scalars referred to as the damage variables, for
the matrix,Dm, and the two families of fibres, Df 4 andDf 6 respectively [12].

Using standard arguments based on the Clausius–Duhem inequality [10]

Dint D � P‰ C 1

2
S W PC � 0 (78)

and Eqs. (77)–(78) gives [12]:

Dint D
2
4S � J d‰

0
vol.J /

dJ
C�1 � 2J �2

3

X
kDm;f1;f2

P W Œ1 �Dk�
@ N‰0

(k)

@ NC

3
5 W

PNC
2

C
X

kDm;f1;f2

@ N‰(k)

@Dk

PDk � 0; (79)

where N‰0
(k).k D m; f1; f2/ being the contributions of the matrix and the two families

of fibres respectively. Equation (79) leads to the representation

S D 2
@‰.C;M/

@C
D Svol C

X
kDm;f1;f2

Œ1 �Dk� NS0; (80)

where Svol and S0 denote a purely volumetric and a purely isochoric effective
contribution of the stress tensor of the undamaged material (7), whereas the principle
of positive dissipation leads to

Dint D
X

kDm;f1;f2
fk PDk � 0; (81)

with fk conjugate state functions of the internal variablesDk defined as

fm D �@
N‰(m)

@Dm

D N‰0
(m).

NC/ � 0;

ff1 D �@
N‰(f1)

@Df1

D N‰0
(f1).

NC;M/ � 0;

ff2 D �@
N‰(f2)

@Df2

D N‰0
(f2).

NC;N/ � 0: (82)

In order to complete the constitutive model we have to determine the evolution
equation for the internal damage variablesDk . Firstly, a Mullins-type discontinuous
damage evolution is assumed where the damage accumulation occurs only within
the first cycle of a strain-controlled loading process. Further strain cycles below the
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maximum effective strain energy reached will not contribute to this type of damage.
Secondly we take into account independently of the mechanism above, a continuous
damage accumulation within the whole strain history of the deformation process
which is also governed by the local effective strain energy. The total damage is then
described by the constitutive expression

Dk
:D D˛

k .˛/CD
ˇ

k .ˇ/; (83)

where D˛
k W RC ! RC and Dˇ

k W RC ! RC are monotonically increasing smooth

functions with the following properties D˛
k .0/ D 0, Dˇ

k .0/ D 0 and D˛
k .˛/ C

D
ˇ

k .ˇ/ 2 Œ0; 1� 8˛; ˇ. They can be considered as shape functions which relate the
damage variablesDk to the new variables ˛ and ˇ which describe the discontinuous
and the continuous damage, respectively. These new variables are related to the
evolution of the damage driving forces fk as follows.

The discontinuous damage (Mullins-type) is assumed to be governed by the
variable

˛k.t/
:D max
s2.�1;t /

q
2 N‰0

(k).
NC.s//: (84)

Thus ˛.t/ is simply the maximum thermodynamic force or effective strain energy
which has been achieved within the loading history interval Œ0; t �. We define a
damage criterion in the strain space by the condition that, at any time t of the loading
process, the following expression is fulfilled [62]

˚k.C.t/; �kt / D
q
2 N‰0

(k).
NC.t// � ˛k.t/ D �k � ˛k.t/ 	 0: (85)

The equation ˚k.C.t/; �kt / D 0 defines a damage surface in the strain
space. Finally, the evolution of the damage parameters Dk is characterized by an
irreversible equation of evolution such as [12]

dD˛
k

dt
D
( Nhk.�k; ˛k/ P�k if ˚k D 0 and Nk W PC > 0:

0 otherwise
(86)

This underlines the discontinuous character of this damage effect. There is no
damage accumulation if the thermodynamic force fk lies inside an undamaged
domain D˛ WD f�k 2 RCj�k � ˛k.t/ 	 0g. Here, Nk WD @�k

@C is the normal
to the damage surface in the strain space, �k are defined at the current time s
and Nhk.�k; ˛k/ are given functions that characterize the damage evolution in the
material.

Continuous damage is assumed to be governed by the arclength of the respective
driving damage force or effective strain energy.
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ˇk.t/
:D
Z t

0

j Pfk.s/jds: (87)

Thus we have the simple evolution equation

P̌
k D j Pfkj D sign. PN‰0

(k)/;

with the initial condition ˇk.0/ D 0. Therefore ˇk monotonically increase within
the deformation process.

The iterative Newton procedure to solve a nonlinear finite element problem
requires the determination of the consistent tangent material operator. This can be
derived analytically for the given material equation (9). The symmetric algorithmic
material tensor is expressed as [62]

C DC0
vol C

X
kDm;f1;f2

h
Œ1 �Dk� NC0

.k/ � Ng0

.k/
NS0(k) ˝ NS0(k)

i
; (88)

with the continuous tangent factor Ng0

.k/ defined as

Ng0

.k/ D
( PD˛

k .˛/C PDˇ

k .ˇ/sign. Pfk/ if ˚k D 0 and Nk W PC > 0:

PDˇ

k .ˇ/sign. Pfk/ otherwise
(89)

Typical evolution equations for the discontinuous damage variables, D˛
k , pro-

posed in the literature for fibred materials such as soft biological tissues have been
used. They correspond to the following expressions [12, 14, 61]

D˛
k .�kt /

:D

8̂̂<
ˆ̂:
0 if �kt < �

0
mink

1 � 1�exp.�k Œ�kt ��maxk �/

1�exp.�k Œ�mink��maxk �/
if �0

mink
	 �kt 	 �0

maxk

1 if �kt > �
0
maxk

; (90)

D˛
k .�kt /

:D

8̂̂
<
ˆ̂:
0 if �kt < �

0
mink

�2
kŒ1 � �kŒ�

2
k � 1�� if �0

mink
	 �kt 	 �0

maxk

1 if �kt > �
0
maxk

; (91)

D˛
k .�kt /

:D 1

2

�
1C 2
k�kt exp.2
kŒŒ2�kt =�k� � 1�/ � 1

2
k�kt exp.2
kŒŒ2�kt =�k� � 1�/C 1

�
; (92)

with 0 	 � D �kt ��0mink

�0maxk
��0mink

	 1 a dimensionless variable and�0
mink

the variables (84)

associated to the strain energies at initial damage for matrix and fibres respectively,
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Fig. 6 Damage evolution for
the modified sigmoidal
function (93) with 0 � � � 1

and �k � 0. Source: [53]

�0
maxk

the variables (84) associated to the strain energy at total damage for matrix
and fibres, and �k 2 Œ�1:0; 1:0�, �k � 0, 
k � 0 and �k � 0 are model parameters.

Some remarks are needed regarding the previous evolution equations for the
discontinuous damage variables, D˛

k . When �kt D �0
maxk

, Eq. (90) has not first
continuous derivative, so some numerical problems could appear. Equation (91) is
a non-monotonically increasing function for the material parameter �k outside the
interval Œ�1:0; 1:0�. This implies that the quality of the fitting of experimental data
may be low when constants are restricted by stability considerations. In addition, in
Eq. (92), we can not control damage initiation since the parameters�0

mink
and�0

maxk
are not considered. With all this in the mind, Peña [44] proposed the new evolution
equation

D˛
k .�kt /

:D

8̂̂
<
ˆ̂:
0 if �kt < �

0
mink

1
2

h
1C 2�k�k exp.2�k Œ2�k�1�/�1

2�k�k exp.2�kŒ2�k�1�/C1
i

if �0
mink

	 �kt 	 �0
maxk

1 if �kt > �
0
maxk

(93)

that is convex for �k � 0, Fig. 6.
It can be shown that depending on the parameter �k when �k D 1 the value

of the damage (93) is not always equal to 1, so the total damage function can not
be reached. In order to solve these concerns arising from the previously damage
equations, a simple sigmoid function is proposed. A sigmoid curve is produced by
a mathematical function having a classical “S” shape

Dk.�kt / D 1

1C exp.�˛kŒ�kt � �k�/ : (94)

The parameter ˛k controls the slope and �k defines the value �kt such that
Dk.�kt / D 0:5.

Finally, the continuous damage Dˇ

k is assumed to have the form proposed by
Peña [53]
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D
ˇ

k D d
ˇ

k1

"
1 � exp

 
� ˇ

�
ˇ

k

!#
: (95)

Note that the parameters dˇk1 describe the maximum possible continuous damage.

Thus we have the constraint dˇk1 2 Œ0; 1�. We refer to �ˇk as the damage saturation
parameters.

This completes the constitutive formulation of anisotropic finite strain elasticity
with damage-caused energy-based softening effects. This results in a symmetric
algorithmic tangent modulus, essential for the solution of the implicit finite element
equations. If the material state is known at a time tn and the deformation is known at
a time tnC1 D tn C�t , we summarize the computational algorithm in the following
scheme.

1. Database at each Gaussian point D˛kn
; �ktn ; Dˇkn

; N‰0
kn

2. Compute the initial elastic stress tensors ( N� 0knC1
) and the initial elastic modulus (c0volnC1

and
Nc0knC1

)
3. Compute the current equivalent measures

�knC1
D
q
2 N‰0

knC1

4. Check the discontinuous damage criterion

˚knC1
. NCnC1; �ktn / D

q
2 N‰0

knC1
��ktn D �knC1

��ktn > 0

YES: update discontinuous damage internal variables

D˛
knC1

.�ktnC1
/
:D 1

2

h
1C 2�k�knC1

exp.2�k Œ2�knC1
�1�/�1

2�k�knC1
exp.2�k Œ2�knC1

�1�/C1

i
NS˛knC1

D D0

˛knC1

NS0knC1
˝ NS0knC1

�ktnC1
D �knC1

NO: no additional damage D˛knC1
D D˛kn and NS˛knC1

D 0.

5. Update continuous damage internal variables
ˇknC1

D ˇkn C j N‰0
knC1

� N‰0
kn

j.
DˇknC1

D d
ˇk
1

h
1� exp



� ˇknC1

�k

�i
NSˇknC1

D D0

ˇknC1
sign. PfknC1

/NS0knC1
˝ NS0knC1

6. Compute the Cauchy stress tensor
pnC1 D d‰vol.JnC1/

dJ jnC1

� nC1 D pnC11 CP
kDm;f1;f2

Œ1�DknC1
�dev. N� 0knC1

/

7. Compute the extra term of the elastic modulus
NSknC1

D NS˛knC1
C NSˇknC1

8. Compute the elastic modulus
cnC1 D c0volnC1 CP

kDm;f1;f2
Œ1�DknC1

�Nc0knC1
� NsknC1

with NsknC1
D J�1�

�

. NSknC1
/

Strain-softening and loss of strong ellipticity phenomena associated with damage
mechanism impose numerical difficulties in finite element computations. Following
[45], a viscous damage mechanism is presented in this section to regularize
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the localization problems. Rate equations governing visco-damage behavior are
obtained from their rate-dependent counterparts (93), by replacing the damage
consistency parameter P�k D P�k by �k˚k for matrix and fibers respectively

PDk D
(
�k˚k Nhk.�k;Dk/ if ˚k > 0 and Nk W PNC > 0:

0 otherwise
(96)

Here � is the damage viscosity coefficient, ˚k denotes the viscous damage flow
function and these are defined in (85) for matrix and fibers.

5.3 Time-Dependent Softening Coupled Response

In order to extend this hyperelastic model to the case of viscoelastic and damage
behaviour of the ground matrix, the isotropic contribution is now assumed to be

N‰iso D Œ1 � Dm� N‰0
m � 1

2

nX
iD1

� NC W Qi
m

�
; (97)

where Œ1 � Dm� is the so-called reduction factor [64] with Dm 2 Œ0; 1� a
monotonically increasing damage internal variable, while the viscoelastic response
of the material is represented by n second-order tensors Qi

m associated to NI1 which
may be interpreted as non-equilibrium stresses [51].

By analogy with (97), the anisotropic contribution to the total strain energy is
assumed to be

N‰ani D �
1 � Df1

� N‰0
f1

C �
1 � Df2

� N‰0
f2

� 1

2

nX
iD1

h NC W Qi
f1

C NC W Qi
f2

i
;

(98)

where Df1;f2 2 Œ0; 1� are the damage variables associated to the first and second
families of fibers, respectively, and Qf1 and Qf2 in (98) are second order non-
equilibrium stress tensors representing the directional viscoelastic response of the
material now associated to the invariants NI4 and NI6, respectively.

The non-equilibrium stress tensors Qi
� are assumed to be governed by the set of

rate equations

PQi
� C 1

�i�
Qi
� D �i�

� i�
Œ1 � D�� DEV

 
@ N‰0

�

@ NC

!
; (99)

lim
t!�1 Qi

� D 0
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where �i� 2 Œ0; 1� are free energy dimensionless factors associated with the
relaxation times �i� > 0 [49]. The application of standard derivations on (99) leads
to convolution representation

Qi
�.t/ D �i�

� i�
Œ1 �D��

Z t

�1
exp

�� Œt � s�

� i�

�
DEV

 
@ N‰0

�

@ NC

!
ds: (100)

Algorithmically, the constitutive model is appealing since Eq. (99) can be
evaluated via a simple recursion relation which was originally developed for finite
strains by Simo [62]. In particular, if the material state is known at a time tn and the
deformation is known at a time tnC1 D tn C�t with �t > 0, we may write

SnC1 DJnC1pnC1C�1
nC1 C J

� 2
3

nC1
X

kDm;f1;f2

"
Œ1 �

nX
iD1

�ik�Œ1 �DknC1
� NS0knC1

#

C J
� 2
3

nC1
nX
iD1

h
�ik DEV



H.ik/
nC1

�i
; (101)

where the subscripts n and n C 1 denote quantities evaluated at times tn and tnC1
[49, 52, 62] and H.ik/

nC1 are internal algorithmic history variables defined as

H.ik/
nC1 D exp

���t
�ik

�
H.ik/
n C exp

���t
2�ik

�h
Œ1 �DknC1

� NS0knC1
� Œ1 �Dkn�

NS0kn
i
:

(102)

Note that the time discretization scheme (101) used for the calculation of the
current value of the stress SnC1 requires the storage of 2k symmetric second-order
tensors H.ik/

n and NS0kn and 2k scalarsDkn and �kt at the previous time t D tn at each
Gauss point of the finite element mesh.

The iterative Newton procedure to solve a nonlinear finite element problem
requires the determination of the consistent tangent material operator. The sym-
metric algorithmic material tensor which is expressed as [62]

CnC1 D NC0

vol nC1 C
X

kDm;f1;f2
ŒŒ1 �DknC1

�Œ1 � �k C �k� NC0

knC1
C

�2
3
J

� 4
3

nC1
nX
iD1

�ikŒDEV. QH.ik/
n /˝ NC�1

nC1 C NC�1
nC1 ˝ DEV. QH.ik/

n /�

�Œ QH.ik/
n W NC�ŒI�1C nC1

� 1

3
NC�1
nC1 ˝ NC�1

nC1�� � NSknC1
�; (103)

where I�1C D � 1
2
ŒC�1

ik C
�1
jl C C�1

il C
�1
jk � and
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NSknC1
D
(

Ng0

knC1

NS0knC1
˝ NS0knC1

if � D 0 and Nk W PC > 0

0 otherwise
(104)

and

QH.ik/
n D exp

���t
�ik

�
H.ik/
n � exp

���t
2�ik

�
Œ1 �Dkn�

NS0kn (105)

being �k D Pn
iD1 �ik, �k D Pn

iD1 �ik exp



��t
2�ik

�
. For more detail to derivation (103)

see [52].
For the reader’s convenience, we have summarized the developed algorithm in

the following scheme.

1. Database at each Gaussian point
NS0kn ; H.ik/

n ; Dkn ; �kt i D 1 : : : N internal viscoelastic variables and k D m; f1; f2
2. Compute the initial elastic stress tensors

devŒ� 0knC1
� D 1

JnC1
dev

�
NFnC1Œ2

@ N�0knC1
. NCnC1;M;N/

@ NCnC1
� NFTnC1



NS0.k/nC1 D NFnC1.JnC1devŒ� 0knC1

�/ NFTnC1

3. Compute the current equivalent measure �knC1
D
q
2 N�0

knC1

4. Check the damage criterion

�knC1
.CnC1; �kt / D

q
2 N�0

knC1
��kt D �knC1

��kt > 0

YES: update damage internal variables
1�DknC1

D 1� 
2Œ1� ˇk.

2 � 1/� and NSknC1

D Ng0

knC1
NS0knC1

˝ NS0knC1

NO: no additional damage
DknC1

D Dkn and NSknC1
D 0.

5. Update the viscoelastic internal variables
QH.ik/
n D expŒ��t

�ik
�H.ik/

n � expŒ��t
2�ik

�.1�Dk/NS0kn
H.ik/
nC1 D QH.ik/

n C expŒ��t
2�ik

�.1�Dk/NS0knC1

6. Compute the Cauchy stress tensor
pnC1 D d‰vol.JnC1/

dJ jnC1

Qh.k/n D Pn
iD1 �ikdevŒ NFnC1

QH.ik/
n NFTnC1�

Qh.k/n D Pn
iD1 �iktrŒ NFnC1

QH.ik/
n NFTnC1�

� nC1 D pnC11 CP
kDm;f1;f2

Œ.1� �k C �k/.1�DknC1
/devŒ� 0knC1

�C 1
JnC1

Qh.k/n �
7. Compute the initial elastic modulus

c0vol nC1 and Nc0knC1

8. Introduce the viscoelastic effects
NcnC1 D P

kDm;f1;f2
ŒDknC1

.1� �k C �k/Nc0knC1
�

� 2
3JnC1

ŒQh.j /n ˝ 1 C 1 ˝ Qh.j /n � Qh.j/n .I � 1
3
1 ˝ 1/�� NsknC1

� with Ns D J�1�
�

. NS/
9. Compute the elastic modulus

cnC1 D c0vol nC1 C NcnC1
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Fig. 7 Fittings of the experimental data for prolapsed tissue. (a) QExp SEF; (b) exponential SEF;
(c) new SEF. Source: [41]

6 Examples

6.1 On Modeling Hyperelastic Behavior of Vaginal Tissue

Modeling of soft tissues as fiber-reinforced elastic materials on the basis of the
invariant structure outlined in Sect. 2 is now well established and widely used. In
this example, most used three-dimensional phenomenological models adopted in
the literature for the study of elastic soft tissue are examined from a comparative
point of view. Experimental data presented in [41] and the SEF (19), (24) and (20)
were used.

SEF (24) has proved to reproduce the arterial behavior accurately [30]. For the
case of prolapsed vaginal tissue, it was possible to fit the experimental curves with
this SEF accurately, Fig. 7. A similar result was obtained when exponential SEF (19)
was used. This exponential function has proved to reproduce the ligament and
tendon behavior accurately [42, 56]. Unlike the two previous SEFs, (20) accounts
the mechanically distinctive regions (exponential and linear) and is able to fit the
experimental data very accurately showing better fitting indicators than the previous
ones [41].

6.2 Knee Flexion

The geometrical data of the model developed herein were obtained by NMR
(Nuclear Magnetic Resonance) for soft tissues and CT (Computerized Tomography)
for bones, with images taken from a normal adult male volunteer by ZIB (Zuse-
Institut Berlin). The contours of the femur, tibia, articular cartilage, menisci and
ligaments (patellar tendon, anterior cruciate, posterior cruciate, medial collateral
and lateral collateral) were identified using AMIRA software developed in ZIB.
Tetrahedral meshes of bones, the ligaments, menisci and articular cartilages were
constructed using the same software (AMIRA). A total of 450,000 elements were
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Fig. 8 Geometry and finite element model of the ligaments including their fiber orientation

used to mesh all tissue components of the knee (Fig. 8). In all the cases, we used
trilinear tetrahedral elements with a full geometrically nonlinear formulation of
ABAQUS.

Since bone stiffness is much higher than that of the relevant soft tissues and its
influence in this study was minimal, bones were assumed to be rigid. Each bony
structure (femur, tibia, fibula and patella) was therefore represented by a primary
node located at its center of rotation at full extension. In the case of the femur this
point was located at the midpoint of the transepicondylar line. These nodes, with six
degrees of freedom, controlled the whole kinematics of each bone as rigid body [50].
Menisci and cartilage are hydrated tissues. However, in our case, and considering
that the loading time of interest corresponded to that of a single leg stance, and the
viscoelastic time constant of cartilage approaches 1,500 s, articular cartilage was
considered to behave as a single-phase linear elastic and isotropic material with an
elastic modulus of E D 5MPa and a Poisson ratio of � D 0:46 [47] and similarly,
menisci were also assumed to be a single-phase linear elastic and isotropic material
with the following average properties: elastic modulus of E D 59MPa and Poisson
ratio of � D 0:49 [47]. On modelling ligaments, two important assumptions were
made. First, no difference in the material behavior between the ligament body and
its insertion were considered. Second, material characteristics depending on time,
such as viscoelasticity, creep and relaxation were neglected due again to the high



Modeling fibered soft tissues 37

Table 1 Material parameters for the ligament stress-free configuration

C1 (MPa) C2 (MPa) C3 (MPa) C4 (�) C5 (MPa) �� (�) D (MPa�1)

MCL 1.44 0.0 0.57 48.0 467.1 1.063 0.00126
LCL 1.44 0.0 0.57 48.0 467.1 1.063 0.00126
ACL 1.95 0.0 0.0139 116.22 535.039 1.046 0.00683
PCL 3.25 0.0 0.1196 87.178 431.063 1.035 0.0041
PT 2.75 0.0 0.065 115.89 777.56 1.042 0.00484

Table 2 % Ligament initial strains at full extension

aACL pACL PCL aLCL mLCL pLCL aMCL mMCL pMCL

0.06 0.1 0.0 0.0 0.0 0.08 0.04 0.04 0.03

ratio between the viscoelastic time constant of the material and the loading time of
interest in this study. We used therefore a transversely isotropic hyperelastic model
including the effect of one family of fibers presented in Sect. 2.1. The ligaments
were modelled using the SEF proposed by Weiss et al. [68] where the volumetric
and isochoric parts are defined by the Eqs. (27) and (17), respectively. We used the
average constants obtained by Gardiner et al.[23] for the MCL in their experimental
data. The LCL constants were assumed to be identical to those of the MCL. We fitted
the uniaxial stress-strain curves obtained by Butler et al. [11] for ACL, PCL and PT
(patellar tendon) with those obtained by Weiss’s getting the associated constants that
have been included in Table 1. Finally, the local fiber orientation .m0/ was specified
according to the local element geometry, see Fig. 8.

Initial strains in our model were defined from data available in literature [47] and
have been included in Table 2 with the following terminology: a: anterior part of
ligament; p: posterior part of ligament; m: medial part of ligament.

Boundary conditions were defined as follows, Fig. 9. The motion of each bone
was controlled by the six degrees of freedom of the reference node. The position
at full extension served as the starting point for the application of initial strains
included in Table 2. In the first step, a 15ı of flexion was applied to the tibia. After
that, a combined load of 50 N in the quadriceps and 134 N anterior-posterior to the
tibia were applied. The femur remained fixed in all cases.

Figure 10 shows the results obtained in different ligaments and cartilage under
the quadriceps and anterior loads. A significant tensile stress appeared in the
posterior part of the ACL, while a moderate tensile stress was observed in the
anterior part. The obtained results also showed that the PCL was mainly in
compression. The LCL was also mainly in compression except at the posterior and
the femoral and tibial insertions. The LCL was tensioned due to the initial strains
since during this movement it is mainly relaxed. The anterior load produced in the
MCL a stress distribution similar to a shear problem, with tension in the anterior-
distal and the posterior-proximal parts of the MCL. The femoral cartilage was
also in compression with the minimum principal stress (maximum compression)
oriented almost normal to the articular surface, showing higher stresses on the
medial condyle.
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Fig. 9 Applied external loads and initial stress distribution map of the knee. (a) Applied external
loads; (b) initial stress

Fig. 10 Stress distribution in the ligaments and cartilage

6.3 Residual Stresses in a Real Geometry of Human Coronary
Artery

In order to test the suitability of the method proposed for including the residual
stresses in real arterial geometries, it was applied to a patient-specific geometry of a
Left Artery Descendant (LAD) coronary artery. The model was reconstructed from
a geometry obtained from Intravascular Ultrasound (IVUS) and angiography images
(Fig. 11a).

The SEF presented in (27) and (24) and the material constants used were obtained
from Peña et al. [48] and are written in Table 3. In order to compute the initial stress,
we used the analytical opening angle solution proposed by Holzapfel et al. [30].
Therefore, the F0 tensor follows the expression (59) where the external and internal
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Fig. 11 (a) Real geometry (b) and initial stress. Source: [48]

Table 3 Material parameters
for the artery (MPa)

� k1 k2 k3 k4 D

0.0274 0:64 � 10�3 3.54 0:64 � 10�3 3.54 1e�3

Source: [48]

Fig. 12 Circumferential initial stresses and under internal pressure load. (a) No F0 applied; (b) F0
applied. Source: [48]

radius and the opening angle were Ri D 4:25mm, Ri D 1:75mm, ˛ D 200ı,
respectively. There was no experimental data for �z so we considered no initial
strain in that direction, that is, �z D 1.

The effect of the internal pressure caused by the blood flow in the cylinder
wall has been also analyzed. 0:0133MPa (100 mmHg) of internal pressure was
considered. As reported by several authors [16, 21], the circumferential component
is much more uniform when residual stresses are taken into account. Maximal values
of circumferential stress are not representative to evaluate this uniformity. When F0
is not included, circumferential stresses vary from 5:013MPa in the inner layer to
0:14MPa in the outer (Fig. 12).

6.4 Anterior Cruciate Ligament Under Different Strain Rates

To illustrate the performance of the visco-hyperelastic behaviour of ligaments and
the importance of the strain-rates during their movement, a model of the human
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Table 4 ACL elastic,
viscoelastic and damage
material parameters (MPa)

C1 C2 C3 C4 D
1 0.0 0.4 8.1019 8.8e�3

�m �m �f 1 �f 1
0.31 0.15 0.69 5

 m
min  m

max ˇm  
f
min  

f
max ˇf

0.2946 0.4399 0.120 0.9427 1.4086 0.1538

Source: [13]

Fig. 13 Experimental results
obtained and theoretical
stress-strain curves at
different rates of elongation
for the human ACL. Source:
[13]

anterior cruciate ligament (ACL) was constructed to simulate its behavior under
a physiological anterior tibial displacement, see Fig. 14a. The surface geometries
of femur and tibia were reconstructed from a set of Computer Tomography (CT)
images, while for the ACL, MRI (Magnetic Resonance Images) were used [47].
Two different strain rates were applied: low (0.012 % s�1) and high (50 % s�1) that
correspond to physiological and non-physiological strain-rates.

The elastic and viscoelastic parameters for the human ACL were fitted from
published experimental data [56] and are shown in Table 4 and Fig. 13. Ligaments
were attached to bone. The motion of each bone was controlled by the six degrees of
freedom of its reference node. In the analyses, tibia remained fixed. The position at
full extension served as the initial reference configuration. An anterior load of 134 N
was applied to the femur. In this example we did not consider initial strains [48].

Maximal principal stress distributions in ACL at 0.012 % s�1 and 50 % s�1 of
strain rates are presented in Fig. 14. The maximal principal stress is located in the
central part of the ligament. The maximal principal stress of 7.27 MPa obtained in
the central region for the higher load rate is due to the stiffening effect induced
by high load rates. Under physiological strain-rates the maximal principal stress of
4.36 MPa is far from the ultimate stress.
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Fig. 14 Finite element model of the human ACL and maximal principal stress at low and high
strain rates (MPa). (a) Finite element model; (b) 0.012 % s�1; (c) 50 % s�1. Source: [13]

6.5 Patellar Tendon Graft After Initial Prestress

Another clinical application of the viscoelastic model is the evolution along time of
the initial prestress in bone-patellar tendon-bone grafts. Surgical reconstruction of
the ACL is a common practice to treat the disability or chronical instability of knees
due to ACL insufficiency [50]. The bone-patellar tendon-bone autograft remains a
common practice due to its high ultimate strength and stiffness that allows for a
more predictable restoration of the knee stability. Before graft fixation, an initial
pretension is applied. This initial tension applied to the replacing graft significantly
alters the joint kinematics. This prestress helps to provide joint stability, but a
very high pretension produces an important additional stress in the graft during
the knee movement. Viscoelasticity decreases the tension imposed during surgery
until getting the final value after reaching equilibrium. The decrease of this initial
stress can compromise the joint stability, affecting the postoperative results. In this
example, we study the evolution of the initial stress in the graft.

The 3D finite element model of the graft and bone plugs is shown in (Fig. 15a).
The plugs were modelled as elastic with a very high stiffness in comparison with that
of the graft. The constitute law of the graft tendon was the same of the ligament [68]
with the SEF (17), while bone plugs were considered to behave as a linearly elastic
and isotropic material with an elastic modulus of E D 14;220MPa and a Poisson
ratio of � D 0:3 [49]. The elastic and viscoelastic parameters of the graft were
obtained fitting the stress-curved obtained by Pioletti et al. [56] from the human
patellar tendon (PT). These parameters are included in Table 5.

Displacements were applied to the femoral bone plug up to an initial stress of
2.93 MPa (Fig. 15b) corresponding to a pretension of about 60 N [46] and then fixed,
while the tibial bone plug remained always fixed. After that, the relaxation process
of the graft was computed until thermodynamic equilibrium (Fig. 15c).
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Fig. 15 Finite element model of the graft and prestress at different times (MPa). (a) Graft model;
(b) t D 0C s; (c) t D 1;000 s. Source: [49]

Table 5 PT material
parameters (MPa)

C1 C2 C3 C4 D
2.7 0.0 15.3146 107.473 0.004938

�11 �11(s) �12 �12(s) �14 �14(s)
0.55 10 0.55 10 0.35 150

Source: [46]

Figure 16 illustrates the evolution of the initial prestress with time. As can be
observed, the initial value at time t D 0:0C decreased very fast at the beginning of
the relaxation process. This results show that tension within the PT graft is reduced
shortly after the fixation. For t D 1;000 s the stress decreased a 32:5%. Graft et
al. [25] showed a reduction of 30 % in the graft load when tensioned up to a strain
of 2.5 % after 10 min, we tensioned up to a strain of 2.4 %. To minimize the stress
relaxation response, preconditioning of the graft is usually recommended.

6.6 Damage in Arteries After Balloon Angioplasty

The purpose of this example is demonstrate the applicability of the viscous damage
model under a more general biomedical loading condition. We will attempt to
model Oktay experiments in bovine coronary arteries. The geometry of a healthy
left anterior descending coronary artery (LAD) of 40 mm in length and internal
and external diameters of Di D 2:7mm and Do D 4:5mm respectively, was
considered, see [1]. The artery was simulated as a multi-layered composite material
by considering the media, and adventitia layers without plaque.

The well-known quadratic exponential SEF for blood vessels (24) proposed by
Holzapfel et al. [30] was used to model the elastic behavior of vascular tissue. The
material properties for both layers are given in Table 6. The damage evolution has
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Fig. 16 Normalized initial stress evolution with and without cyclic load. Source: [49]

Table 6 Material and damage parameters for LAD

� k1 k2 k3 k4 D
Media 2.7 5.1 15.4 5.1 15.4 0.001
Adventitia 1.4 0.64 3.54 0.64 3.54 0.001

˛m ˇm �m �0
m

Media 1.24 1.095 7.01 1.29
Adventitia 0.94 1.0095 5.01 1.14

˛f1 ˇf1 �f1 �0
f1

Media 1.18 0.00114 11.3141 2.97
Adventitia 1.073 0.00612 7.974 1.48

�, k1, k3 are in kPa,D and�0 are in kPa�1 and kPa1=2 and the other parameters are dimensionless.
Source: [45]

been defined by the Eq. (94). Unfortunately, there is no data in the literature that
includes damage region for each layer of arterial tissue, so this example does not
have a real clinical meaning. In addition, initial stress was accounted for in the
simulation by imposing an opening angle of 120ı by means of an initial compatible
deformation gradient, as proposed by Rodríguez et al. [61]. The axial extension is
restrained at both ends while allowing radial expansion.

For the balloon, we have taken a Grüntzig-type balloon catheter. The initial
configuration of the balloon is taken as a cylindrical tube with external diameter,
d D 1:7mm, wall-thickness of 0.1 and 20 mm in length. The mechanical behavior
of the balloon has been taken as orthotropic with reinforcing fibers running lon-
gitudinally and circumferentially as suggested by Rodríguez et al. [61]. Assuming
symmetry conditions, only a quarter of the geometry has been considered, Fig. 17.
Three steps were applied in order to simulate the angioplasty: (1) the residual stress
was imposed in the model as proposed by Rodríguez et al. [61]; (2) the physiological
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Fig. 17 Unloaded and balloon loading of the artery. (a) Initial unloaded configuration; (b)
deformed configuration upon balloon inflation at 1 bar

Fig. 18 Damage distribution in the arterial wall under balloon inflation. Source: [45]

condition where the artery was inflated up to a pressure of 13.3 kPa (100 mmHg);
(3) the angioplasty as a balloon inflation up to a pressure of 100 kPa (1 bar), Fig. 17.
Figure 18 shows the damage distribution in the arterial wall after balloon inflation
for the matrix and fibers. Damage in the matrix occurred in the entire media and
intima, as shown in Fig. 13. In the clinical context damage, known as “controlled
vessel injury” occurs predominantly in the media. Regarding to the fibers, damage
is developed in the adventitia layer, particularly at the media-adventitia interface.
This damage distribution is due to the fiber arrangement and the particular loading
at which the artery is subjected during balloon inflation. As mentioned before, the
balloon induces large longitudinal and circumferential stretching in the artery which
causes larger fiber deformation in the adventitia than in the media leading to larger
stresses and more rapid damage of this layer.

6.7 Damage of Human Ligament Under Impact Testing

The purpose of this simulation is to demonstrate the effectiveness of the numerical
algorithm and finite element implementation discussed in previous sections and the
applicability of the model to simulate the structural behaviour of soft biological
tissues. We reproduce, in a human medial collateral ligament (MCL), the distraction
experiment. This example was previously modelled in [52] using a continuous
inviscid damage model. The SEF presented in (19) was used and elastic and damage
parameters for the human MCL (Fig. 19) were fitted from published experimental
data [7] at 0.1 % s�1 of strain rate and are shown in Table 7.

Damage distributions in matrix and fibers at 0.01 and 113 mm/s of displacement
rates are presented in Fig. 20. In all cases, we consider failure of the MCL when
damage reached a value of 0.6 for both matrix and fibers. We can observe the
effect of the strain rate into the damage behavior. At 113 mm/s of displacement
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Table 7 Material,
viscoelastic and damage
parameters for the human
MCL

a1 a2 a3 a4 D
0.1539 0.0 0.1507 34.7929 3.986e�4

�m �m �f 1 �f 1 �f 2 �f 2
0.4352 0.15 0.1500 2 – –

�m
min �m

max ˇm �
f
min �

f
max ˇf

0.0750 0.0932 0.120 0.3389 1.6652 0.1538

C1, C2, C3, C5 and �i are in MPa, D is in MPa�1, �i in seconds
and the rest of parameters are dimensionless. Source: [52]

Fig. 19 Finite element model of the human MCL and stress-strain response of the human MCL.
(a) Model; (b) stress-stretch response. Source: [52]

Fig. 20 Damage in a human MCL under different displacement rates. (a) Matrix damage at
0.01 mm/s; (b) fibre damage at 0.01 mm/s; (c) matrix damage at 113 mm/s; (d) fibre damage at
113 mm/s. Source: [52]

rate, damage in matrix and fibers was much lower than that at 0.01 mm/s. This
effect is especially evident in the fibers where damage decreased from 0.36 during
the quasi-static test (0.01 mm/s) to 0.24 in the impact test (113 mm/s). The peak
values appeared in the ligament substance (contact region between ligament and
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tibial plate) as also has been reported in previous experimental studies [17, 70].
Damage during distraction usually appears in that region.

7 Conclusion

It is well known that fibered soft biological tissues are subject to finite deformations
and that their mechanical behavior is highly nonlinear, anisotropic and essentially
incompressible with non-zero residual stress and in the non-physiological domain
presents viscoelasticity and damage. In this article, we have provided a critical
review of the fundamental aspects in modeling this kind of the materials. The
application of these constitutive relationships in the context of vascular system and
knee joint mechanics has been presented. The increasing effort devoted to studies
of mechanical models for soft fibred tissues and the applications aimed at refining
basic and clinical analysis demonstrates the vitality of the field of biomechanics
[29].
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1 Introduction: Shallow Water Equations

The classical shallow water equations were first derived in 1871 by Saint-Venant
(see [46]). This system of equations describe the motion of a shallow layer of fluid
in a channel, a lake, coastal areas, etc.

Several extensions of these classical equations have been proposed in the
literature. For example, in [25] Gerbeau and Perthame propose a viscous Shallow
Water model. They perform the asymptotic analysis of the Navier–Stokes equations
where friction effects at the bottom have been taken into account. While in a first
order approximation the viscous terms do not appear in the equations, a second
order is needed to get them. In [35], a viscous one layer 2D Shallow-Water system
is derived, by including a surface-tension term associated to the capillary effects at
the free surface and a quadratic friction term at the bottom. These terms have been
useful to prove the existence of global weak solutions in [13].

In the simple case of a rectangular channel with constant width and a fixed bottom
topography (see Fig. 1), the Shallow Water equations are

8<
:
@thC @x.h u/ D 0;

@t .hu/C @x

�
hu2 C 1

2
gh2

�
D �gh@xzb � ghSf ;

(1)

where x denotes the horizontal variable through the axis of the channel and t is the
time variable. u.x; t/ and h.x; t/ represent the velocity and the height of the water
column, respectively. g is the gravity and zb.x/ the bottom topography (see Fig. 1).

The term Sf models the friction forces. In the particular case of the Manning law
we have

Sf D g�2juju
R
4=3

h

; (2)

where � is the Manning’s coefficient and Rh is the hydraulic radius, which can be
approximated by h.

The Saint-Venant–Exner equations take into account the bed-load sediment
transport. In this case, we have the Shallow Water or Saint-Venant system coupled
with a continuity equation to model the evolution of the sediment layer,

8̂̂
<
ˆ̂:
@thC @x.h u/ D 0;

@t .hu/C @x

�
hu2 C 1

2
gh2

�
D �gh@xzb � ghSf ;

@t zb C 
@xqb D 0;

(3)

where 
 D 1=.1 �  0/ and  0 is the porosity of the sediment layer. qb D
qb.h; q/ represents the solid transport discharge. The definition of the solid transport
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Fig. 1 Shallow water
equations with a fixed bottom

discharge is set usually by empirical laws. In the Appendix some classical formulae
are presented.

Far to be exhaustive, several extensions of the Shallow Water equations can be
mentioned: models that take into account varying bottom topography [11, 18, 24];
models to study erosion phenomena with local coordinate variable in space and
time [12] or to study flows in rotating drums [27]; models that take into account
dispersive effects [33]; models for two-layer stratified flows with viscosity and
capillarity [39], turbidity currents models [38], multilayer shallow water models
to incorporate tridimensional effects [7, 23] : : :

In the pioneering work of Savage and Hutter [47], a shallow-water type model
has been proposed to study aerial avalanches. In the following section we describe
the derivation of the Savage–Hutter model. The classical Shallow Water system is
the particular case of the Savage–Hutter model obtained by neglecting the Coulomb
friction term. Therefore, its derivation from Navier–Stokes equations is a particular
case of the general study presented in next section.

In the following sections, the derivation of several shallow water type models to
study three different types of avalanches are presented. Sections 2–6 correspond
to Savage–Hutter type models for aerial avalanches, partially fluidized aerial
avalanches and submarine avalanches (see [21]). In Sect. 7, we present a brief
introduction to Rheology and plasticity in order to explain the constitutive equation
of the Herschel–Bulkley model. A depth-averaged Herschel–Bulkley model is pre-
sented in Sect. 8. This model is a one-phase approach to study solid–fluid mixtures
avalanches and represents an alternative to the two-phase Coulomb approach.

2 Savage–Hutter Model for Aerial Avalanches

Numerical modelling of sub-aerial debris or snow avalanches has been extensively
investigated during this last decade with application to both laboratory experiments
dealing with granular flows and geological events (see for example [2, 5, 6, 12, 27,
31, 34, 50]). Most of the models devoted to gravitational granular flows describe
the behavior of dry granular material following the pioneering work of Savage and
Hutter (see [47]) in which a shallow water type model (i.e. thin layer approximation
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Fig. 2 Local coordinates

for a continuum medium) is derived to describe granular flows over a slopping
plane based on Mohr–Coulomb considerations: a Coulomb friction is assumed to
reflect the avalanche/bottom interaction and the normal stress tensor is defined
by a constitutive law relating the longitudinal and the normal stresses through a
proportionality factorK .

New Savage–Hutter models over a general bottom have been proposed. For
example in [11], Bouchut et al., propose a Savage–Hutter type model for aerial
avalanche which takes into account the curvature of the bottom. A two-layer
Shallow Water type model with compressible effects has been introduced in [37]
by Morales de Luna. He considers an upper compressible layer and a lower
incompressible layer.

In this section, we present the derivation of the Savage–Hutter model over a plane
with constant slope. First, we consider the Euler equations in Cartesian coordinates
X D .x; z/,

V D
�

u
w

�
; r � V D 0; (4)

@t .�V/C �V � rXV D �r � P C �rX.g � X/; (5)

where g D .0;�g/, g being the gravity acceleration, V is the velocity field and �,
the density of the granular layer. Moreover, we denote by P the negative Cauchy
stress tensor, also named pressure tensor,

P D
�
px x px z

pzx pz z

�
;

with px z D pzx .
Let us rewrite first the Euler equations in local coordinates .X;Z/ on an inclined

plain whose slope is tan.�/ (see Fig. 2). Z is the distance between the points .x; z/
and . Nx; b. Nx//, where

b. Nx/ D tan.�/ Nx:
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That is, Z is the distance to the bed, measured along the normal direction and X
measures the arc length along the inclined plain. Nx is the x-Cartesian coordinate of
the point .X; 0/ (see Fig. 2).

Let h.x; t/ be the height of the granular layer along the normal direction to the
bed. The domain is

f.X;Z/I X 2 Œ0; L�; 0 < Z < h.X; t/g: (6)

The relation between the Cartesian coordinates X D .x; z/ and the coordinates
. Nx;Z/ is

X D
�

Nx �Zsin �; b. Nx/CZcos �/

�
; (7)

where . Nx; b. Nx// is a point of the bed.
The following definitions will also be used:

• U and W are the tangential and normal velocities, respectively,

�
U

W

�
D
�

cos � sin �
�sin � cos �

�
V:

• And P is the rotated Cauchy stress tensor:

P D
�

cos � sin �
�sin � cos �

�
P

�
cos � �sin �
sin � cos �

�
D
�
PXX PXZ

PZX PZZ

�
:

Note that, as pxz D pxz, then PXZ D PZX .

Equations (4) and (5) are re-written in the new variables as follows:

8̂̂̂
ˆ̂<
ˆ̂̂̂̂:

@X.U /C @Z.W / D 0;

�@t . U /C �@X.U
2/C �@Z.WU/� �@X.g � X/ D �@X.PXX/� @Z.PXZ/;

�@t .W /C �@X.U W /C �@Z.W
2/ � �@Z.g � X/ D �@X.PZX/� @Z.PZZ/:

(8)

In what follows, the derivation of the model proposed by Savage and Hutter in
[47] to study aerial avalanches is described following the items:

• Œ@� Boundary and kinematic conditions.
• Œ QA� Dimensional analysis.
• Œl� Hydrostatic pressure and constitutive law.
• ŒM � Momentum conservation law.
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• Œ
R
� Integration process.

• Œ,!� Final system of equations.

2.1 Œ@� Boundary and Kinematic Conditions

We denote by nh the unit normal vector to the free granular surface Z D h with
positive vertical component, and by n0 D .0; 1/ the unit normal vector to the bottom
(Z D 0).

The following kinematic condition is considered

@thC U jZDh@Xh�W jZDh D 0; (9)

which means that the particles at the free surface are transported with velocity
.U jZDh;W jZDh/.

The following boundary conditions are imposed:

• On Z D h:

nh � Pnh D 0 (10)

Pnh � nh.nh � Pnh/ D
�

frich.U /
0

�
i D 1; 2; (11)

where frich.U / is the friction term between the granular layer and the air. For the
sake of simplicity we will suppose that frich.U / D 0.

• On Z D 0:

.U;W / � n0 D 0 ) W D 0; (12)

Pn0 � n0.n0 � Pn0/ D
0
@�n0 � Pn0

U

jU j
ˇ̌̌
ˇ
ZD0

tan ı0

0

1
A : (13)

This last condition corresponds to a Coulomb friction law, defined in terms of the
angle of repose ı0 (see [47]).

2.2 Œ QA� Dimensional Analysis

Next, a dimensional analysis of the set of Eqs. (8), the kinematic and boundary
conditions is performed. The non-dimensional variables ( Q: ) read:
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.X;Z; t/ D .L QX;H QZ; .L=g/1=2 Qt /;

.U;W / D .Lg/1=2. QU ; " QW /;

h D H Qh;

.PXX;PZZ/ D gH. QPXX; QPZZ/;

PXZ D gH� QPXZ;

(14)

where:

• � D tan ı0, ı0 being the angle of repose in the Coulomb term.
• By L and H , we denote, respectively, the tangential and normal characteristic

lengths.
• " D H=L, which is supposed to be small: the Savage–Hutter model has been

shown to reproduce experimental granular collapse over horizontal plane for
aspect ratio � 	 0:5, see [34].

Using the above change of variables, the system of Eqs. (8) is re-written as follows:

@X .U /C @Z.W / D 0; (15)

@t .�U /C�U@XUC�W @ZUC�@X .bCZcos �CPXX

�
/" D ��@Z.PXZ/; (16)

"f@t .�W /C �U@X.W /C �W @Z.W /C @X.PXZ/gC

C �@Z.b CZcos �/ D �@Z.PZZ/; (17)

where tildes have been dropped for simplicity.

The kinematic condition (9) is re-written as:

@thC U jZDh@Xh �W jZDh D 0: (18)

Finally, the boundary conditions (10)–(13) are now given by:

• On Z D h, we have nh D .�"@Xh; 1/='S with 'S D p
1C "2.@Xh/2, then

from (10) and (11) we obtain

� "@XhPXX C �PZX D 0; (19)

� "@Xh�PXZ C PZZ D 0: (20)
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• On Z D 0, we have n0 D .0; 1/, then from (12) and (13) we obtain

W jZD0 D 0; (21)

�PXZ D �PZZ
U

jU j
ˇ̌̌
ˇ
ZD0

tan ı0: (22)

2.3 Œl� Hydrostatic Pressure and Constitutive Law

From (17) we obtain

@Z.PZZ/ D ��cos � C O."/: (23)

If we integrate (23) from Z > 0 to h, we have, up to order ",

PZZ D �.h�Z/cos �: (24)

The following constitutive law is considered (see [47])

PXX D KPZZ ;

whereK measures the anisotropy or normal stress effects: whileK D 1 corresponds
to isotropic conditions, K ¤ 1 makes ‘overburden pressures’ different from the
normal stresses parallel to the basal surface. In the case of the Shallow Water
equations,K D 1 is assumed.

The coefficient K is defined according to the motion of the granular layer (see
[45]):

K D
�
Kact if @XU > 0;

Kpas if @XU < 0;

with

Kact=pas D 2sec2�

�
1
 .1 � cos2 � sec2ı0/1=2

�
� 1;

being � the internal friction angle, defined in terms of the type of grains and size.
The definition of K can be done in different ways. For example, while in [28]

Heinrich et al. consider K D 1, other definitions of K can be found in [29]. The
effects related to the definition of K in numerical modelling of experimental and
natural flows is studied in [43, 45].

Using the previous relations, we have, up to order �,

PXX D KPZZ D K�.h�Z/cos �: (25)



Some Remarks on Shallow Avalanches Modelling 59

2.4 ŒM�Momentum Conservation Law: With Hydrostatic
Pressure and Anisotropy of the Normal Stress

By replacing (24) and (25) in (16) and using the incompressibility equation (15), we
obtain, up to second order,

@t .�U /C�@XU
2C�@Z.UW/C�@X

�
bCZcos �CK.h�Z/cos �

�
" D ��@Z.PXZ/:

(26)

2.5 Œ
R
� Integration Process

In this section, the mass equation (15) and the momentum equation (26) are depth-
averaged in the normal direction. Let us introduce the following notation: we denote
by NU the average of the velocity along the normal direction:

NU D 1

h

Z h

0

U.X;Z/dZ:

We also introduce the notation:

U 2 D 1

h

Z h

0

U 2.X;Z/dZ:

If Eq. (15) is integrated from Z D 0 to Z D h, we obtain

0 D @X .h NU /� U jZDh@XhCW jZDh �W jZD0:

Now, using (18) and (21), the averaged mass equation is obtained

@thC @X.h NU / D 0:

Let us now integrate Eq. (26) from Z D 0 to Z D h. As in the previous case, we
use the kinematic condition (18) to obtain

@t .h NU /C @X.hU 2/C
�Z h

0

@X

�
b CZcos � CK.h �Z/cos �

�
dZ

�
"

D ��
�
.PXZ.h/ � PXZ.0//: (27)
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Moreover, we have

Z h

0

@X

�
b CZcos � C .h�Z/cos �K

�
dZ D h@Xb C @X

�
h2

2
cos �K

�
:

By replacing this last expression in (27) we obtain the equation

@t .h NU /C @X

�
hU 2 C "

h2

2
cos �K

�
D �"h@Xb � �

�
.PXZ.h/ � PXZ.0//: (28)

Then, the boundary conditions and the constitutive laws are used to derive�PXZ.h/

and �PXZ.0/:

• From (19), by using (24) and PXX D KPZZ , we have

�PXZ.h/ D "@XhPZZK:

In [27] Gray introduced the assumption that the Coulomb term is of order � for
some � 2 .0; 1/. That is, � D tan ı0 D O."�/. Under this assumption, we have

�PXZ.h/ D O."1C�/: (29)

• Using Eq. (22), we obtain

�

�
PXZ.0/ D �PZZ.0/

�

U

jU j
ˇ̌̌
ˇ
ZD0

tan ı0 D �hcos �
U

jU j
ˇ̌̌
ˇ
ZD0

tan ı0:

Therefore, assuming tan ı0 D O."� /, we have

�

�
PXZ.0/ D �hcos �

U

jU j
ˇ̌̌
ˇ
ZD0

tan ı0 C O."1C�/: (30)

Finally, substituting (29) and (30) in (28), the averaged momentum equation is
obtained:

@t .h NU /C@X
�
hU 2C"h

2

2
cos �K

�
D �"h@Xb�hcos �

U

jU j
ˇ̌̌
ˇ
ZD0

tan ı0CO."1C� /:

2.6 Œ,!� Final System of Equations

Coming back to the original variables, using (14), neglecting terms of order "1C�
and supposing a constant profile of the velocities, the following system is obtained:
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Fig. 3 Savage–Hutter model. Dotted line: initial profile of the granular layer. Continuous line:
stationary profile of the granular layer

8<
:
@thC @X.h NU / D 0;

@t .h NU /C @X

�
h NU 2 C gcos �

h2

2
K

�
D �gh@Xb C T ;

(31)

where T represents the Coulomb friction term. This term must be understood as
follows:

If jT j � �c ) T D �ghcos �
NU

j NU j tan ı0;

If jT j < �c ) NU D 0; (32)

where �c D gh cos � tan ı0.
Let us illustrate the effects of the Coulomb friction term. We consider a test

case consisting of a granular layer over a flat bottom whose initial profile is
rectangular. The evolution of the layer is simulated by numerically solving System
(31). Let us stress the importance of an adequate treatment of the Coulomb friction
term (32) to obtain satisfactory numerical results (see for example [34]). In Fig. 3
the continuous line corresponds to the stationary profile of the granular layer for
ı0 D 25ı. The initial condition is represented too (dotted line). The main difference
between the classical Shallow Water equations and the Savage–Hutter model is
the presence of the Coulomb friction term: if a closed domain is considered and
the Coulomb friction term is neglected, the stationary solution is a horizontal free
surface, corresponding to water at rest.

In Fig. 4 the evolution of the granular layer surface and its discharge is repre-
sented at several times. Observe that, while at t D 2 the solution is stationary, at
t D 1:5 only the front of the avalanche is still moving.
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Fig. 4 Savage–Hutter model. Left: continuous line: granular free surface. Right: dashed line:
discharge
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3 Fluid–Solid Mixture Aerial Avalanches

In most practical applications to real debris flows, the fluid which is present in the
granular material can not be neglected. Recent attempts have been developed to
describe mixtures of grains and fluid in shallow water two-phase or mixture models
[29, 42, 44].

The model introduced by Jackson in [30] allows to model geophysical mass flows
containing a mixture of solid and fluid materials, by taking into account buoyancy
effects. It is defined by the mass and momentum equations for each phase.

Let us use the following notation: subscript “s” refers to the solid phase and
subscript “f ” to the fluid one. The solid volume fraction is denoted by '. The grain
density, �s and the fluid density, �f , are supposed to be constant.

Then, the two-phase model is defined by the following mass and momentum
equations:

@t .�s'/C div.�s'Vs/ D 0; (33a)

@t .�f .1 � '//C div.�f .1 � '/Vf / D 0; (33b)

�s'.@tVs C VsrVs/ D �divPs C f0 C �s'r.g � X/; (33c)

�f .1 � '/.@tVf C Vf rVf / D �divPf � f0 C �f .1 � '/r.g � X/:
(33d)

Where Ps and Pf represent the stress tensors for the solid and the fluid phase,
respectively. f0 represents the averaged value of the resultant force exerted by the
fluid on a solid particle.

To obtain Jackson’s model, the force f0 is decomposed into the buoyancy force
fB and all the remaining contributions f according to [4]:

f0 D fB C f D �'rpf C f; (34)

where pf denotes the fluid pressure. The term f collects the drag force, the lift
force and the virtual mass force (see [4, 30] for details). Here, we assume that f
reduces to the drag force.

If we assume that the viscous forces related to the fluid are negligible, then the
fluid stress tensor reduces to the pressure term:

r � Pf D rpf : (35)
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By taking this expression into (33c) and (33d), we obtain the system (33a), (33b)
and

�s'.@tVs C VsrVs/ D �divPs � 'rpf C f C �sr.g � X/; (36a)

�f .1 � '/.@tVf C Vf rVf / D �.1 � '/rpf � f C �f .1� '/r.g � X/:
(36b)

The model proposed by Pitman and Le in [44] and reformulated in [42], can be
deduced following a dimensional analysis and an integration process of Jackson’s
model. They suppose a constant vertical profile of the velocity for the solid and
the fluid phase: Us and Uf , respectively. Pitman–Le model can be written as
follows:

@t .h'/C @X.h'Us/ D 0I (37a)

@t .h.1 � '//C @X.h.1 � '/Uf / D 0I (37b)

@t .'hUs/C @X.'hU2
s / D �1

2
.1� r/gh2 cos � @X'

� gh cos � ' @Xh

� gh'@Xb

C ˇh.Uf � Us/C T I (37c)

@t ..1 � '/hUf /C @X..1 � '/hU 2
f / D �gh cos � .1 � '/ @Xh

� gh .1 � '/@Xb

� 1

r
ˇh.Uf � Us/I (37d)

where r D �f =�s , ˇ is a friction coefficient between the phases (see [44]) and T is
the Coulomb friction term.

Let us illustrate the influence of ' in the evolution of the avalanche. We consider
first a test case consisting of a granular layer over a flat bottom whose initial profile
is rectangular. The evolution of the layer is simulated by numerically solving System
(37). We consider r D 0:34, ı0 D 25ı and ' D 0:8. In Fig. 5 the evolution of the
layer is shown. The left column shows the total height, hs C hf (continuous line).
In order to make visible the evolution of the total solid volume fraction, hs is also
plotted in the figures (dotted line). Notice that at the front of the avalanche, the
dotted line practically coincides with the continuous one, meaning that there is only



Some Remarks on Shallow Avalanches Modelling 65

0 5 10 15

–0.6

–0.4

–0.2

0

0.2

0.4

0.6

0 5 10 15

–0.6

–0.4

–0.2

0

0.2

0.4

0.6

0 5 10 15

–0.6

–0.4

–0.2

0

0.2

0.4

0.6

0 5 10 15

–0.6

–0.4

–0.2

0

0.2

0.4

0.6

0 5 10 15
0

0.2

0.4

0.6

0.8

1

0 5 10 15

–0.6

–0.4

–0.2

0

0.2

0.4

0.6

qt = 0.1 s.h

0 5 10 15
0

0.2

0.4

0.6

0.8

1

qt = 0.5 s.h

0 5 10 15
0

0.2

0.4

0.6

0.8

1

qt = 1 s.h

0 5 10 15
0

0.2

0.4

0.6

0.8

1

qt = 1.5 s.h

0 5 10 15
0

0.2

0.4

0.6

0.8

1

qt = 2 s.h

Fig. 5 Two-phase avalanche. ' D 0:8. Left: continuous line: granular free surface. Dotted line:
hs ; Right: discharge. Continuous line: qs . Dashed line: qf
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granular material near the front. The right column shows qf and qs . We can observe
that the motion of the solid phase stops before. Figure 6 shows the evolution of
the avalanche for ' D 0:4. The initial condition and the values of r and ı are the
same. Let us remark that at the front the dotted line practically coincides with the
horizontal axis, meaning that there is only fluid near of the front. If we compare
these two simulations, we can also observe that the maximum heights and the total
lengths of spreading of the avalanches are completely different. For ' D 0:4, the
fluid goes out the domain.

The presence of an interstitial fluid in the avalanche, neglected in the Pitman–
Le model, may have a strong influence in its evolution. The flow of fluidized
avalanches can be much more complex than the ones simulated with the Pitman–
Le model. For example, non-hydrostatic pressure effects, related to the pore fluid
pressure, may appear. Iverson and Denlinger extended the Savage–Hutter model
in [29] to study avalanches of fluidized granular masses where the pores between
the grains are assumed to be filled with a fluid, under the assumption that the
velocities of both phases coincide, and by including the bed pore fluid pressure as
an unknown of the system. Let us study now the derivation of a simplified version
of the model proposed by Iverson and Denlinger in [29] to study partially fluidized
aerial avalanches (Fig. 7).

We consider a granular layer of density �s and porosity  0. We assume that the
pores in the granular layer are filled with a fluid of density �w. Then, the density of
the fluidized layer is defined as

� D .1 �  0/�s C  0�w: (38)

As in the previous section, the model will be described in local coordinates over a
plain with constant slope (see Fig. 2). Again U is the velocity parallel to the bottom;
W , the velocity perpendicular to the bottom; and P the rotated pressure tensor.

Let us consider again the system of equations given by Euler equations in local
coordinates:8̂̂
ˆ̂̂<
ˆ̂̂̂̂:

@X.U /C @Z.W / D 0;

�@t . U /C �@X.U
2/C �@Z.WU/� �@X.g � X/ D �@X .PXX/ � @Z.PZX/;

�@t .W /C �@X.U W /C �@Z.W
2/� �@Z.g � X/ D �@X.PXZ/ � @Z.PZZ/:

(39)

In a binary mixture model the pressure tensor of the mixture is given by

P D Ps C Pf � �w.Uf � Ub/˝ .Uf � Ub/ � �s.Us � Ub/˝ .Us � Ub/;

where Uw is the velocity of the fluid phase, Us is the velocity of the solid phase and
Ub D .�wUw C �wUs/=.�s C �w/ is the barycentric velocity.
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Fig. 6 Two-phase avalanche. ' D 0:4. Left: continuous line: granular free surface. Dotted line:
hs ; Right: discharge. Continuous line: qs . Dashed line: qf
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h(X,t)

Fig. 7 Partially fluidized
avalanches

In order to model the evolution of the granular layer using the Euler equations,
we suppose, following [29], that the velocity of the fluid in the pores and the grains
are the same, Us D Uf D U . Then P can be written as

P D Ps C Pf ;

where Ps and Pf are the pressure tensor of the solid phase (grains) and the fluid
phase.

The derivation of the model follows the same items as in the previous section.

3.1 Œ@� Boundary and Kinematic Conditions

Let us denote again by nh the unit normal vector to the free granular surface Z D
h with positive vertical component and by n0 D .0; 1/ the unit normal vector to
the bottom (Z D 0). The kinematic condition is defined by (9). For the boundary
conditions, the only difference is the definition of the Coulomb friction term. The
following boundary conditions are imposed:

• On Z D h: Pnh D 0.
• On Z D 0: the non-penetration condition W D 0 and the following Coulomb

friction law are imposed:

Pn0 � n0.n0 � Pn0/ D
0
@�n0 � .P � Pf /n0

U

jU j
ˇ̌̌
ˇ
ZD0

tan ı0

0

1
A :

In this last condition, the difference between the stress tensor and the fluid stress
tensor, P � Pf , is used to take into account the buoyancy effects, since Ps D
P � Pf .
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3.2 Œ QA� Dimensional Analysis

The same non-dimensional variables as in the previous section, defined in (14), are
considered. Then,

• The system of equations is defined by (15)–(17).
• The kinematic condition by (18).
• The boundary condition on Z D h by (11) and (20).
• The boundary condition on Z D 0 is different from (22). In this case we have

�PXZ D �.PZZ � P
f
ZZ/

U

jU j
ˇ̌̌
ˇ
ZD0

tan ı0; (40)

and the non-penetration conditionW D 0.

3.3 Œl� Hydrostatic Pressure and Constitutive Law

The main difference between the Savage–Hutter model presented in the previous
section and the model for partially fluidized avalanches appears in this item.

From (17) we obtain

@Z.PZZ/ D ��cos � C O."/: (41)

If we integrate (41) from Z > 0 to Z D h, we have, up to order ",

PZZ D �.h�Z/cos �: (42)

But, as P D Ps C Pf , we have

Ps
ZZ C Pf

ZZ D PZZ D �cos �.h�Z/: (43)

In order to consider the anisotropy of the solid phase the following constitutive
conditions are again considered (see for example [29, 45]):

Ps
XX D KPs

ZZ ; Pf
XX D Pf

ZZ ;

where K measures the anisotropy or normal stress effects in the solid phase (see
previous section).

The difference appears in this step because, in order to impose these two
constitutive conditions, an expression for both Ps

ZZ and P
f
ZZ has to be known. But

only the expression of the total pressure PZZ is known.
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In order to model the flow of a grain-fluid mixture, Iverson and Denlinger (see
[29]) assume a linear profile of the normal stress P

f
ZZ , which is consistent with

Eq. (43). Moreover they suppose that Pf
ZZ takes its maximum value at Z D 0 and

is proportional to the pressure in absence of the granular phase. They suppose

P
f
ZZ.Z/ D ��cos �.h�Z/; (44)

being � a parameter of the model. In this case, by (43) we have

Ps
ZZ.Z/ D .1 � �/�cos �.h�Z/: (45)

Remark 1. In [29], the authors propose not to set � as a fixed parameter in time.
Instead, they propose to rewrite the model in terms of the pore fluid pressure
pbed D ��hcos � . Then, they assume that the evolution of pbed can be described
by a convection-diffusion equation. For the sake of simplicity in these notes, � is
considered as a fixed parameter. Let us remark that we can set � D  0, the porosity
of the layer.

3.4 ŒM�Momentum Conservation Law: With Hydrostatic
Pressure and Anisotropy of the Normal Stress of the Solid
Phase

By replacing (44) and (45) in (16) and using the incompressibility equation (15), we
obtain up to second order

@t .U /C @XU
2 C @Z.UW /C @X

�
b CZcos � C .h �Z/cos �.�CK.1 � �//

�
"

D ��
�
@Z.PXZ/: (46)

3.5 Œ
R
� Integration Process

As in the previous section, let us define:

NU D 1

h

Z h

0

U.X;Z/dZ and U 2 D 1

h

Z h

0

U 2.X;Z/dZ:

As there is no difference in the integration process for the mass equation, we focus
here on the momentum equation.
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Let us integrate Eq. (46) fromZ D 0 to Z D h and use the kinematic conditions
(18) to obtain

@t .h NU /C @X.hU 2/C
�Z h

0

@X

�
b CZcos � C .h �Z/cos �.�CK.1 � �//

�
dZ

�
"

D ��
�
.PXZ.h/ � PXZ.0//: (47)

Moreover,

Z h

0

@X

�
b CZcos � C .h�Z/cos �.�CK.1 � �//

�
dZ D h@Xb

C @X

�
h2

2
cos �.�CK.1 � �//

�
:

Then, we obtain the following averaged momentum conservation law,

@t .h NU /C@X
�
hU 2C"h

2

2
cos �.�CK.1��//

�
D �"h@Xb��

�
.PXZ.h/�PXZ.0//:

(48)

Now, we can use the boundary conditions and the constitutive laws to derive
�PXZ.h/ and �PXZ.0/:

• Using (19) and the constitutive laws Ps
XX D KPs

ZZ , Pf
XX D P

f
ZZ we have

�PXZ.h/ D "@XhP
s
ZZ.K � 1/:

If we suppose again that � is of order � for some � 2 .0; 1/, (� D tan ı0 D
O."� /) then

�PXZ.h/ D O."1C�/: (49)

• Using Eq. (40), we obtain

�PXZ.0/ D �.PZZ.0/� P
f
ZZ.0//

U

jU j
ˇ̌̌
ˇ
ZD0

tan ı0:

Now, using (42) and (43) we have

.PZZ.0/� P
f
ZZ.0// D �hcos �.1 � �/C O."/:
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Then,

�

�
PXZ.0/ D �hcos �.1� �/

U

jU j
ˇ̌̌
ˇ
ZD0

tan ı0 C O."1C� /: (50)

Finally, substituting (49) and (50) in (48), the averaged momentum equation is
obtained

@t .h NU /C @X

�
hU 2 C "

h2

2
cos �.�CK.1� �//

�

D �"h@Xb � h.1 � �/cos �
U

jU j
ˇ̌̌
ˇ
ZD0

tan ı0 C O."1C�/:

3.6 Œ,!� Final System of Equations

Coming back to the original variables, using (14), neglecting the terms of order "1C�
and supposing a constant profile of the velocities, the following system is obtained

8<
:
@thC @X.h NU / D 0;

@t .h NU /C @X

�
h NU 2 C gcos �

h2

2
.�CK.1 � �//

�
D �gh@Xb C T ;

(51)

where T is the Coulomb friction term. In this model this term must be understood
as follows:

If jT j � �c ) T D �gh.1 � �/cos �
NU

j NU j tan ı0;

If jT j < �c ) NU D 0;

where �c D gh.1 � �/ cos � tan ı0.

4 Comparison with Pitman–Le Model

Let us remark that if anisotropy is taken into account in the deduction of the solid
phase momentum equation in the Pitman–Le model, Eqs. (37c) and (37d) will read
as follows:
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@t .'hUs/C @X.'hU
2
s CKgcos �'

h2

2
/ D r

2
gh2 cos � @X'

�gh'@Xb

Cˇh.Uf � Us/C T I
(52a)

@t ..1 � '/hUf /C @X ..1� '/hU 2
f C gcos �.1� '/

h2

2
/ D g

h2

2
cos �@X.1 � '/

�gh .1 � '/@Xb

�1
r
ˇh.Uf � Us/:

(52b)

Let us now consider that Us D Uf D U , that is, the assumption considered in the
deduction of the Iverson–Denlinger model and let us define

� D '�s C .1 � '/�f :

Then, from (37a) and (37b) we obtain

@t .�h/C @X.�hU / D 0:

And from (52a) and (52b) we obtain that

@t .�hU /C @X.�hU
2 C gcos �

h2

2
.�C �s'.K � 1/// D �gh�@Xb C T : (53)

Note that in the two-phase model the pressure of the fluid phase evaluated at Z D
0 is

pPL
bed D g�f cos �.1� '/h;

while in the model proposed by Iverson and Denlinger the pressure at the bottom of
the fluid phase is assumed to be:

pbed D ��gcos �h:

If we set

 D �f

�
.1� '/;
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we have

pPL
bed D  �gcos �h:

On the other hand, we have

�C �s'.K � 1/ D � � �s C  
�

r
CK.�s �  �

r
/:

If we define finally � by

�� D � � �s C  
�

r
;

we have the equality

�C �s'.K � 1/ D ��CK.� � ��/:

Then, we can rewrite system (53) as

@t .�hU/C @X .�hU
2 C gcos �

h2

2
.��CK.� � ��/// D �gh�@Xb C T :

That is, we have the same structure as the momentum equation of (51) for
the Iverson–Denlinger model. This implies a relation between the hypothesis
considered in [29] and the two-phase model when the velocities of the two phases
coincide:

p
pl
bed D pbedr C .1 � '/.�s � �f /rghcos �:

Let us remark finally that, while in the Pitman–Le model the pressure of the phases
are considered to be hydrostatic, the inclusion of the pressure at the bed in terms
of the parameter � can be understood as a way to introduce a deviation from the
hydrostatic pressure law in the Iverson–Denlinger model.

5 Submarine Avalanches

In this section, we present a simplified version of the two-layer Savage–Hutter
type model proposed in [21], with application to submarine avalanches and tsunami
waves generated by them.

Submarine avalanches or landslides have been poorly studied compared to their
subaerial counterparts. This is however a key issue in geophysics. Indeed, submarine
granular flows driven by gravity participate in the evolution of the sea bottom and
in particular of the continental margins. They also represent a threat to submarine
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infrastructures, especially for the oil or port industries as well as to many sea shore
inhabitants due to the potential tsunamis that can be triggered by such landslides.

In the model derived in this section, index 1 refers to the upper layer, composed
of an homogeneous inviscid fluid of constant density �1. Index 2 refers to the lower
layer, composed of a granular material of density �s and porosity  0 (see Fig. 8).
The pores of the granular layer are assumed to be filled with the fluid of the upper
layer. Accordingly, the density of layer 2 is given by:

�2 D .1 �  0/�s C  0�1: (54)

We consider the incompressible Euler equations, with unknowns

Vi D
�

ui
wi

�
; i D 1; 2;

being ui and wi , the horizontal and vertical velocity components of each layer,
respectively. Then, the incompressible Euler equations can be written as

divVi D 0; i D 1; 2; (55)

�i@tVi C �iVirVi D �divPi C �ir.g � X/; i D 1; 2; (56)

where Pi , i D 1; 2, represent the pressure tensor of each layer

Pi D
�
pi;x x pi;x z

pi;zx pi;z z

�
; i D 1; 2;

with pi;x z D pi;zx , �i , i D 1; 2, the densities of each layer, X D .x; z/, the Cartesian
coordinates and g D .0;�g/, the gravity.

In order to model the evolution of the granular layer using the Euler equations,
on the one hand we suppose following [29] (see Sect. 3) that the velocity of the fluid
in the pores of the second layer coincides with that of the grains. On the other hand,
P2 is assumed to be decomposed as
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P2 D P s
2 C P

f
2 ;

where P s
2 and Pf

2 are the pressure tensor of the solid phase (grains) and the fluid
phase, respectively.

Next, a change of variables is performed: local variables over a non-erodible
bottom defined by z D b.x/ are considered.X denotes the arc’s length of the bottom
and Z is measured orthogonally to the bottom (see Fig. 8 and Sect. 2).

In what follows, we denote by h1 and h2 the thickness of the fluid and granular
layers, respectively, measured orthogonally to the bottom (see Fig. 8), by S D h1 C
h2 the free water surface. The details of this change of variables have been given in
Sect. 2. Equations (55)–(56) are re-written in the new variables as follows:

8̂̂
ˆ̂̂̂̂̂
<̂
ˆ̂̂̂̂̂
ˆ̂̂:

@X.Ui /C @Z.Wi/ D 0; i D 1; 2;

�i@t . Ui /C �i@X.U
2
i /C �i@Z.WiUi /� �i@X.g � X/

D �@X.Pi XX/� @Z.Pi XZ/ i D 1; 2;

�i@t .Wi /C �i@X.Ui Wi/C �i@Z.W
2
i / � �i@Z.g � X/

D �@X.Pi ZX/� @Z.Pi ZZ/ i D 1; 2;

(57)

where Ui , i D 1; 2, represent the velocity parallel to the bottom and Wi , i D 1; 2,
the perpendicular one. The pressure tensor Pi is defined by

Pi D
�

cos � sin �
�sin � cos �

�
Pi

�
cos � �sin �
sin � cos �

�
D
�
Pi;XX Pi;XZ

Pi;ZX Pi;ZZ

�
:

Remember that, as pi;xz D pi;xz, then Pi;XZ D Pi;ZX .
Moreover, let us recall that �1 is the density of the fluid and that �2 is defined by

(54). � is the angle between the tangent vector of the bottom and the horizontal axis
(see Fig. 8).

5.1 Œ@� Boundary and Kinematic Conditions

Let nS , nh2 and n0 D .0; 1/ be the unit normal vector to the free water surface
Z D S (S D h1 C h2), to the interface (Z D h2) and to the bottom (Z D 0),
respectively.

The following kinematic conditions are considered

@tS C U1jZDS@XS �W1jZDS D 0; (58)

@th2 C Ui jZDh2@Xh2 �Wi jZDh2 D 0; i D 1; 2: (59)
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Equation (59) assumes that no water is exchanged between the two layers, which is
a simplification of the model.

Finally, the following boundary conditions are imposed:

• On Z D S :

P1nS D 0: (60)

• On Z D h2:

nh2 � .P1 � P2/nh2 D 0 (61)

Pinh2 � nh2.nh2 � Pinh2/ D
�

fric.U1; U2/
0

�
i D 1; 2; (62)

where fric.U1; U2/ is a friction term between the layers.
• On Z D 0:

.U2;W2/ � n0 D 0 ) W2 D 0; (63)

P2n0 � n0.n0 � P2n0/ D
0
@�n0 � .P2 � P1/n0

U2

jU2j
ˇ̌̌
ˇ
ZD0

tan ı0

0

1
A : (64)

Let us remark that the term .P2 � P1/ in the Coulomb friction law in Eq. (64)
is used again in order to take into account the buoyancy effects.

5.2 Œ QA� Dimensional Analysis

Next, a dimensional analysis of the set of Eqs. (57), the kinematic and boundary
conditions is performed. The non-dimensional variables ( Q: ) read:

.X;Z; t/ D .L QX;H QZ; .L=g/1=2 Qt /;

.Ui ;Wi / D .Lg/1=2.eUi ; "fWi/; i D 1; 2;

hi D Hehi ; i D 1; 2;

.Pi XX;Pi ZZ/ D �igH. QPi XX; QPi ZZ/; i D 1; 2;

Pi XZ D �igH�i QPi XZ; i D 1; 2;

(65)
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where �1 D 1, �2 D tan ı0, ı0 being the angle of repose in the Coulomb term (see
[47]). By L andH we denote, respectively, the characteristic tangential and normal
lengths. We suppose a shallow domain, so " D H=L is supposed to be small.

Using this change of variable, the system of Eqs. (57) are rewritten as (tildes are
omitted):

@X.Ui/C @Z.Wi/ D 0; i D 1; 2; (66)

@t .�iUi/C �iUi@XUi C �iWi@ZUi C �i@X.b CZcos � C Pi XX

�i
/"

D ��i@Z.Pi XZ/ i D 1; 2; (67)

"f@t .�iWi /C �iUi@X.Wi/C �iWi@Z.Wi/C @X .Pi XZ/gC

C �i@Z.b C cos �Z/ D �@Z.Pi ZZ/ i D 1; 2: (68)

The kinematic conditions (58)–(59) are rewritten as:

@tS C U1@XS �W1 D 0jZDS ; @th2 C Ui@Xh2 �Wi D 0jZDh2 ; i D 1; 2:

(69)

Finally, the boundary conditions (60)–(64) are now given by:

• On Z D S , we have nS D .�"@XS; 1/='S with 'S D p
1C "2.@XS/2, then

from (60) we obtain

� "@XSP1XX C �1P1 ZX D 0; (70)

� "@XS�1P1XZ C P1 ZZ D 0: (71)

• OnZ D h2, we have nh2 D .�"@Xh2; 1/='h2 with 'h2 D p
1C "2.@Xh2/2, then

from (61) and (62) we obtain

P1 ZZ D P2 ZZ C O."/; (72)

�"Pi XX@Xh2 C �iPi XZ D �.nh2Pinh2/."@Xh2/C fric.U1; U2/; i D 1; 2;

(73)

� "�iPi ZX@Xh2 C Pi ZZ D .nh2Pinh2 / i D 1; 2: (74)

• On Z D 0, we have n0 D .0; 1/, then from (63) and (64) we obtain

W2 D 0; (75)

�2P2XZ D �.P2 ZZ � P1 ZZ/
U2

jU2j
ˇ̌̌
ˇ
ZD0

tan ı0: (76)
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5.3 Œl� Hydrostatic Pressure and Constitutive Law

From (68) we obtain

@Z.P1 ZZ/ D ��1cos � C O."/; (77)

@Z.P2ZZ/ D ��2cos � C O."/: (78)

If we integrate (77) from Z � h2 to S , we have, up to order ",

P1 ZZ D �1.S �Z/cos �; (79)

therefore, P1 ZZ.h2/ D �1h1cos � . Using this last expression, taking into account
(72) and integrating (78) from Z > 0 to h2, we have

Ps
2 ZZ C P

f
2 ZZ D P2 ZZ D �1h1cos � C �2cos �.h2 �Z/; (80)

up to first order. This last equation defines the total pressure, P2 ZZ , perpendicular
to the bottom. The constitutive relation for both the grains and the fluid, i. e. Ps

2 ZZ

and P
f
2 ZZ , are required to close the model. The following relations are considered:

P1XX D P1 ZZ ; Ps
2XX D KPs

2 ZZ; Pf
2XX D Pf

2ZZ ; (81)

where K measures the anisotropy or normal stress effects in the solid phase (see
Sect. 2).

The same difficulty found in Sect. 3 related to the definition of Ps
2 ZZ and P

f
2 ZZ

appears here. The assumptions considered there can be adapted. We suppose

Pf
2 ZZ.Z/ D �1�1h1cos � C �2�1cos �.h2 �Z/; (82)

where �1 and �2 are two parameters. Moreover, by (80), we have

Ps
2 ZZ.Z/ D �1h1cos �.1 � �1/C cos �.h2 �Z/.�2 � �2�1/: (83)

Remark 2. Note that if (82) and (83) are evaluated in Z D h2, we obtain

P
f
2 ZZ.h2/ D �1�1h1cos �; Ps

2ZZ.h2/ D �1h1cos �.1 � �1/I

Then, �1 controls the distribution of the pressure at the interface between the two
phases of the second layer:

• A possible choice is to set �1 D �2 D  0, where  0 is the porosity of the second
layer.

• We can rewrite the model in terms of pbed D �1�1h1cos � C �2�1h2cos � , the
pore-fluid basal pressure. In this case, a more sophisticated model can be defined
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by coupling it with a convection-diffusion equation (as proposed in [29]), as it
has been mentioned in the case of partially fluidized avalanches.

By taking into account the constitutive closure equations (81) we deduce the
following expression of P2XX D Ps

2XX C P
f
2XX,

P2XX D KPs
2 ZZ C P

f
2 ZZ

D h1cos ��1.�1 CK.1 � �1//C .h2 �Z/cos �.�2�1 CK.�2 � �2�1//: (84)

5.4 ŒM�Momentum Conservation Laws: With Hydrostatic
Pressure and Anisotropy of the Normal Stress of the Solid
Phase of the Submerged Sediment Layer

By replacing (79) and (84) in (5.2) and using the incompressibility equation (66),
we obtain up to second order

@t .�1U1/C �1@XU
2
1 C �1@Z.U1W1/C �1@X.b C Scos �/" D ��1@Z.P1XZ/;

(85)

and

@t .�2U2/C�2@XU 2
2 C�2@Z.U2W2/C�2@X

�
bCZcos �C 1

�2
Œh1cos ��1.�1CK.1��1//

C .h2 �Z/cos �.�2�1 CK.�2 � �2�1//�

�
" D ��2@Z.P2XZ/: (86)

5.5 Œ
R
� Integration Process

In this section, Eqs. (66), (85) and (86) are depth-averaged along the normal
direction to the topography. Let us introduce the following notation: we denote by
NUi , i D 1; 2 the velocities of each layer averaged along the normal direction to the

basal surface:

NU1 D 1

h1

Z S

h2

U1.X;Z/dZ; NU2 D 1

h2

Z h2

0

U2.X;Z/dZ:

We also define:

U 2
1 D 1

h1

Z S

h2

U 2
1 .X;Z/dZ; U 2

2 D 1

h2

Z h2

0

U 2
2 .X;Z/dZ:
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If Eq. (66) is integrated from Z D h2 to Z D S , we obtain

0 D @X .h1 NU1/� U1.S/@XS CW1.S/C U1.h2/@Xh2 �W1.h2/:

And using the kinematic condition (69), the following equation is derived:

@th1 C @X.h1 NU1/ D 0:

Analogously, by integrating (66) between Z D 0 and Z D h2 we obtain

0 D @X.h2 NU2/ � U2.h2/@Xh2 CW2.h2/ �W2.0/;

and, using the kinematic condition (69) and the boundary condition (75), the
following equation is obtained:

@th2 C @X.h2 NU2/ D 0:

If (85) is integrated from Z D h2 to Z D S , we obtain

�1@t .h1 NU1/C �1@X.h1U
2
1 /� �1U1.S/Œ@t .S/C U1.S/@XS �W1.S/�

C�1U1.h2/Œ@t h2 C U1.h2/@Xh2 �W1.h2/�C �1

�Z S

h2

�
@X.b C Scos �/

�
dZ

�
"

D ��1.P1XZ.S/� P1XZ.h2//: (87)

The expressions of P1XZ.S/ and P1XZ.h2/ are now derived using the boundary
conditions and the constitutive laws:

• Using (70) and (79) and the relation P1XX D P1ZZ the following expression is
obtained:

�1P1 ZX.S/ D �"P1XX.S/@XS D �"P1 ZZ.S/@XS D 0C O."2/: (88)

• Using (73), we have

�1P1XZ.h2/C "@Xh2.P1 ZZ � P1XX/ D fric.U1; U2/C O."2/:

Therefore, applying the constitutive law for the fluid layer, that is, P1XX D
P1 ZZ , the following equality is derived:

�1P1XZ.h2/ D fric.U1; U2/C O."2/: (89)

Using the kinematic condition (69), Eq. (87) and the expressions obtained for
�1P1XZ.S/ (88) and for �1P1XZ.h2/ (89), we obtain
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�1@t .h1 NU1/C�1@X.h1U 2
1 /C�1

�Z S

h2

@X.bCScos �/dZ

�
" D fric.U1; U2/CO."2/:

Next, the integral term in the last equality can be computed as follows:

Z S

h2

@X.b C Scos �/dZ D h1@Xb C @X

�
h21
2

cos �

�
C h1@X.cos �h2/:

Finally, we obtain the equation

�1@t .h1 NU1/C �1@X

�
h1U

2
1 C "

h21
2

cos �

�
D "�1

�
� h1@Xb � h1@X.cos �h2/

�

C fric.U1; U2/C O."2/:

Let us now integrate Eq. (86) from Z D 0 to Z D h2. As in the previous case,
we use the kinematic conditions (69) to obtain

�2@t .h2 NU2/C�2@X .h2U 2
2 /C�2

�Z h2

0

@X

�
bCZcos �C 1

�2
Œh1cos ��1.�1CK.1��1//

C.h2 �Z/cos �.�2�1 CK.�2 � �2�1//�
�
dZ

�
" D ��2.P2XZ.h2/ � P2XZ.0//:

(90)

Let us introduce the densities ratio

r D �1

�2
;

where �1 is the density of the fluid and �2 is defined by (54). We obtain

Z h2

0

@X

�
b CZcos � C 1

�2
Œh1cos ��1.�1 CK.1� �1//

C.h2 �Z/cos �.�2�1 CK.�2 � �2�1//�

�
dZ D h2@Xb

Crh2.K.1 � �1/C �1/@X.h1cos �/

C@X
�
h22
2

cos �.r�2 CK.1 � r�2//

�
:
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Replacing this last expression in (90) and dividing by �2, the following equation is
obtained:

@t .h2 NU2/C @X

�
h2U

2
2 C "

h22
2

cos �.r�2 CK.1 � r�2//

�
D �"h2@Xb

� "rh2.�1 CK.1 � �1//@X.h1cos �/ � �2

�2
.P2XZ.h2/� P2XZ.0//: (91)

Just like in the previous case, the boundary conditions and the constitutive laws are
used to derive �2P2XZ.h2/ and �2P2XZ.0/:

• Using (73) and Ps
2XX D KPs

2ZZ , Pf
2XX D P

f
2XX , we have

�2P2XZ.h2/ D fric.U1; U2/C �2"@Xh2P
s
2ZZ.K � 1/:

We suppose again that �2 D tan ı0 D O."� / with � 2 .0; 1/. Under this
assumption, we have

�2P2XZ.h2/ D fric.U1; U2/C O."1C�/: (92)

• Using Eq. (76), we obtain

�2P2XZ.0/ D �.P2 ZZ.0/� P1 ZZ.0//
U2

jU2j
ˇ̌̌
ˇ
ZD0

tan ı0:

Now, using (79) and (80) we have

.P2 ZZ.0/� P1 ZZ.0// D h2cos �.�2 � �1/C O."/:

Therefore, assuming tan ı0 D O."� /, we have

�2P2XZ.0/ D �.�2 � �1/h2cos �
U2

jU2j
ˇ̌̌
ˇ
ZD0

tan ı0 C O."1C� /: (93)

Finally, substituting (92) and (93) in (91), we derive the averaged momentum
equation for the second layer

@t .h2 NU2/C @X

�
h2U

2
2 C "

h22
2

cos �.r�2 CK.1 � r�2//

�

D �"h2@Xb � " rh2.�1 CK.1 � �1//@X .h1cos �/

� 1

�2
fric.U1; U2/� ..1 � r/h2cos � C h2 NU 22 dX�/

U2

jU2j
ˇ̌̌
ˇ
ZD0

tan ı0 C O."1C� /:
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5.6 Œ,!� Final System of Equations

Reverting to the original variables [see (65)], neglecting the terms of order "1C� and
supposing a constant profile of the velocities we obtain the following system:

8̂̂
ˆ̂̂̂̂̂
ˆ̂̂̂̂̂
ˆ̂̂̂̂
<̂
ˆ̂̂̂̂
ˆ̂̂̂̂̂
ˆ̂̂̂̂
ˆ̂̂̂:

@th1 C @X.h1 NU1/ D 0I

@t .h1 NU1/C @X.h1 NU 2
1 C g

h21
2

cos �/ D
D �gh1@Xb � gcos �h1@Xh2 C 1

�1
fric.U1; U2/I

@th2 C @X.h2 NU2/ D 0I

@t .h2 NU2/C @X

�
h2 NU 2

2 C g
h22
2

cos �.r�2 CK.1 � r�2//
�

D

D �gh2@Xb � rgcos �h2.�1 CK.1 � �1//@Xh1 � 1

�2
fric.U1; U2/C T I

(94)

where by T , we denote the Coulomb friction term. Again, this term must be
understood as follows:

If jT j � �c ) T D �.g.1 � r/h2cos �/
NU2

j NU2j
tan ı0;

If jT j < �c ) NU2 D 0;

where �c D g..1 � r/h2 cos � tan ı0. Recall that

r D �1

�2
;

where �1 is the density of the fluid and �2 is defined in (54). We can define the
friction term between the layers fric.U1; U2/ under the following structure

fric.U1; U2/ D �Kin � . NU1 � NU2/; with Kin D �1Kinj NU1 � NU2j;

beingKin a positive constant.
In Fig. 9, an example of application of the model is presented. As initial condition

a rectangular granular layer is imposed at the middle of the domain. The water layer
is initially at rest and its free surface is flat. As we can see in the different times
shown in the figure, the avalanche produced by the granular layer interacts with the
fluid and some waves appear. The stationary solution reached consists of water at
rest with a flat free surface over a granular layer in equilibrium. This simulation has
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Fig. 9 Submarine avalanche test. Continuous line: granular free surface; Dashed-dotted line:
water free surface

been obtained by numerically solving System (94) with the finite volume method
introduced in [21]. See also [32], where an application of the model to the case of
tsunamis in the Alboran Sea is studied.

6 Entropy Inequality and Stationary Solutions
of Savage–Hutter Type Models

In this section we state without proof a result concerning the entropy inequality
and the stationary solutions of the Savage–Hutter type models presented in previous
sections for aerial, fluid–solid mixture and submarine avalanches. The following
result can be proved for the submarine avalanche model:
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Theorem 1. System (94) has the following properties:

.i/ It admits an entropy dissipation inequality,

@t

�
r�1h1 NU 2

1 C h2 NU 2
2

2
C gb.r�1h1 C h2/C gcos �

r�1h
2
1 C�2h

2
2

2

C gcos � r�1h1h2

�

C @X

�
r�1h1 NU1

 NU 2
1

2
C gb C cos �.h1 C h2/

!
C h2 NU2

 NU22
2

C gb C gcos �.r�h1 C�2h2/

!�

	 �rKinj NU1 � NU2j.U2 � U1/.U2 ��1U1/ � g..1 � r/h2cos �

C h2dX�. NU 2
2 � gh2cos �

2
//j NU2jtan ı0

C g
h22
2
U2.1 ��2/sin �@X�:

where

�1 D �1 CK .1 � �1/; �2 D r �2 CK .1 � r �2/:

.ii/ It has the family of steady state solutions:

NU1 D 0; NU2 D 0; (95)

b C .h1 C h2/cos � D cst; (96)

j.�2 � r�1/@x.bC h2cos �/C .1 ��2/.@Xb � h2

2
sin �@x�/j 	 .1 � r/tan ı0;

(97)

corresponding to water at rest over a stationary granular layer. �

Note that the models presented in Sects. 2 and 3 can be seen as particular cases
of this one. They can be obtained as follows:

• Savage–Hutter model: set h1 D 0, NU1 D 0, �2 D 0, r D 1, �1 D 1.
• Iverson–Denlinger model: set h1 D 0, NU1 D 0, �2 D �, r D 1, �1 D 1.

Therefore, the properties presented in Theorem 1 are also valid for the Savage–
Hutter and Iverson–Denlinger models.
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Note that the stationary solutions defined by (97) correspond to situations in
which the free surface of the granular layer is in equilibrium with the internal friction
angle. The angle ı0 can be measured in laboratory experiments.

7 Rheology of Complex Avalanches

Several differential models have been proposed in the literature to describe sediment
mixtures: a review is presented in [2]. A possible approximation is given by
the model presented in Sect. 3, based on a two-phase approach and a friction
law proportional to the normal stress and the tangent of the internal friction
angle. Another possibility is the use of visco-plastic models. They represent an
approximation of the rheological behaviors of complex flows, such as debris flows,
lava flows and snow avalanches.

In this section a brief introduction to non-Newtonian fluids is first given in order
to motivate the definition of the stress tensor corresponding to the Herschel–Bulkley
model. This model can be used to study debris flows, fluid–solid mixture avalanches.

As in the previous section we consider local coordinates on a plane slope with
angle � (see Sect. 2 for details on the notation). Let us denote the velocity vector as

U D
�
U

W

�
:

Let us remember that the general system of Eqs. (4) and (5) can be re-written in the
new variables as follows:8̂̂̂
ˆ̂<
ˆ̂̂̂̂
:

@X.U /C @Z.W / D 0;

�@t . U /C �@X.U
2/C �@Z.WU/ � �@X.g � X/ D �@X.PXX/ � @Z.PXZ/;

�@t .W /C �@X.U W /C �@Z.W
2/� �@Z.g � X/ D �@X.PZX/ � @Z.PZZ/;

(98)

where the density � is assumed to be constant.
Let us remark that, although in these notes we are working with the negative stress
tensor P , it is also usual to write the system of equations in terms of � , the positive
Cauchy stress tensor, where

P D ��:

The stress tensor is defined as the sum of the pressure component and the viscous
one (cf. [9]),

� D �pI C � 0;
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where I is the identity matrix. � 0 is called the deviatoric part of � . Note that we can
also write,

P D pI � � 0:

Let us use the notation:

� 0 D
�
� 0

XX �
0
XZ

� 0
ZX �

0
ZZ

�
:

A fluid is said to be Newtonian if � 0 is proportional to the rate of deformation tensor
D.U/, where

D.U/ D rU C rUt D
�

2@XU @XW C @ZU

@XW C @ZU 2@ZW

�
:

Then for a Newtonian fluid, such as water, we have

� 0 D �D.U/;

where � is the viscosity coefficient, depending on the material. In theses notes, we
suppose that � is a constant value.

Let us consider the case of a uniform flow such that

D.U/ D
�

0 @ZU

@ZU 0

�
� 0 D

�
0 � 0
� 0 0

�
;

where � 0 D �XZ D �ZX is the shear stress. In this case the relation which
characterizes the fluid as Newtonian can be easily represented as a straight line in
the plane .@ZU /� .� 0/ with slope � (see Fig. 10).

The behavior of the flows of materials like honey, corn flour or paint cannot be
modelled with such a linear relation. Moreover, the concept of Newtonian fluid is
an idealization: there are always nonlinear relations between the shear stress and the
shear rate. The study of the deviation (from the linear law) of � 0 as a function of
D.U/ belongs to the field called Rheology. The term Rheology is due to Bingham
in 1929. It comes from the Greek “�"!”—“to flow”. It is related to the study of
deformation and flow of complex fluids.

Years around 1900s saw a significant increase of activity on these subjects,
including authors like Maxwell (1868), Boltzmann (1877), Bingham, Blair, Reiner,
Herschel–Bulkley, Weissenberg (all between 1900 and 1930, see [48]). Then
Rheology became a research field of intense activity.

Fluids in which � is a function of D.U/, � D �.D.U//, i.e.

� 0 D �.D.U//D.U/:
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a b

Fig. 10 (a) Representation of a Newtonian fluid in the plane .� 0/ � .@ZU / with viscosity �; (b)
generalized Newtonian fluids

(see Fig. 10) are called Generalized Newtonian fluids; cf [41]). For example:

• Corn flour is a material whose behavior is fluid when it is gently mixed but it
becomes very viscous if it is strongly mixed. That is, “viscosity ” increases with
“shear”. Such materials are shear-thickening.

In the case of a uniform shear-thickening flow, we have � 0 D �.@ZU /@ZU ,
where �.@ZU / is an increasing function of @ZU . They can be represented in the
.� 0/ � .@ZU / plane as follows:

• There are many other materials, like paint, whose viscosity decreases with shear.
These materials are shear-thinning.

In the case of a uniform shear-thinning flow, we have � 0 D �.@ZU /@ZU ,
where �.@ZU / is a decreasing function of @ZU . They can be represented in the
.� 0/ � .@ZU / plane as follows:



90 E.D. Fernández-Nieto and P. Vigneaux

Shear-thinning and shear-thickening fluids can be modelled using power-law
fluids. The viscosity of power-law fluid is defined by �.D.U// D N� jD.U/jn�1, for
some positive constant N� and n � 0. For these, we have

� 0 D N� jD.U/jn�1D.U/;

Let us remark that:

• If n < 1 the material is shear-thinning.
• If n D 1 the fluid is Newtonian and N� is the constant viscosity.
• If n > 1 the fluid is shear-thickening.

Nevertheless, the flow of some materials cannot be modeled by a power-law
model. This is the case of clay, snow or lava that only flow when the shear stress
is bigger than a critical value. These materials are example of what we can call
“threshold” fluids. Below a stress �c the material present a rigid behavior but above
�c the material begins to flow. They are visco-plastic materials. Bingham defined
Plasticity as follows (see [10]):

We may now define plasticity as a property of solids in virtue of which they hold their
shape permanently under the action of small shearing stresses but they are readily deformed,
worked or molded, under somewhat larger stresses.

Bingham law follows this property and it depends on a threshold shear stress �c .
� 0 is defined as follows:(

j� 0j < �c if jD.U/j D 0

� 0 D �D.U/C �c
D.U/

jD.U/j if jD.U/j ¤ 0:
(99)

Note that this definition implies that, in the case that jD.U/j D 0, we only know
that � 0 is bounded by �c . That is, � 0 is a multivalued function in this case. It is easier
to understand this law by considering the inverse function. Let us suppose that we
perform two experiments of a uniform flow for a plastic material and we measure
the shear rate @ZU in terms of the shear stress � 0. We have marked with crosses in
the following figure two points corresponding to the measures:
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With black dashed line we plot the law corresponding to the case of Newtonian
fluids, that is, straight lines passing by the point of measure and by .0; 0/. Let
us remark that if the fluid is Newtonian then it is enough to look for only one
experiment in order to measure its viscosity. Remember that the viscosity in a
Newtonian fluid is the inverse of the slope of such a straight line. Performing a
second experiment is a way to see if the fluid is Newtonian. If we have a graph as
the one of previous figure in which the second measure does not lead to a point in
the same straight line, then the fluid is not Newtonian.

Conversely, if we consider a straight line passing through these two points, we
obtain the value of the shear threshold �c , as the point at which this line cuts
the horizontal axe. Actually, measurements show that the real behavior of plastic
materials does not follows exactly this straight line. They follow a curve that can be
seen as a regularization of the corner around the point .�c; 0/ (dashed-blue line in
previous figure). The model proposed by Bingham, defined by (99), corresponds to
the graph defined by the union of the two blue straight lines in the previous figure.

The general case combines power-law and plasticity. This is the Herschel–
Bulkley constitutive equation. For the case of uniform flow it can be represented
in the .� 0/ � .@ZU / plane as follows:

Newtonian

Herschel-Bulkley Bingham

Herschel–Bulkley model is characterized by the following stress tensor:

P D pI � � 0; (100)
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where 8̂<
:̂
� 0 D �c

D.U/
jD.U/j C N�jD.U/jn�1D.U/ if jD.U/j ¤ 0;

j� 0j 	 �c if jD.U/j D 0

with n > 0. In the case of avalanches, we have n 2 .0; 1/. In [3] the dam-
break problem for visco-plastic Herschel–Bulkley fluids down a sloping flume is
investigated and laboratory data are presented.

8 A Shallow Herschel–Bulkley Model for Fluid–Solid
Mixture Avalanches

In this section, a shallow Herschel–Bulkley model is deduced (see [1, 14]). One
of the difficulties of Herschel–Bulkley model is that, when jD.U/j D 0, only a
bound of the stress tensor is known. Then, we cannot obtain a shallow Herschel–
Bulkley model following the same steps as in the previous sections. Several types of
shallow Herschel–Bulkley models have been proposed in the literature. For example
in [8, 22] shallow visco-plastic models have been proposed in the case of nearly
steady uniform regime. That is, the reference velocity for the asymptotic analysis is
defined in terms of a stationary solution where the viscous contribution matches the
gravity acceleration. Such a type of models are only valid for � ¤ 0. In these notes,
we present another type of shallow model, which corresponds to the inertial regime,
where inertial and pressure-gradient terms are of the same magnitude.

As mentioned, we cannot follows exactly the same steps as in the derivation
of Savage–Hutter. Basically, we cannot reproduce the items ŒM �: the momentum
conservation law and Œ

R
�: integration process. Nevertheless, note that the integration

process in the derivation of the Savage–Hutter model is equivalent to consider the
variational formulation of the model with test functions that do not depend on
the vertical variable Z. Following this idea, we can consider first the variational
formulation of Herschel–Bulkley model, which has the form of a variational
inequality and then consider test functions that do not depend on the variable Z.

Thus, the derivation of the shallow Herschel–Bulkley model is done following the
items:

• Œ@� Boundary and kinematic conditions.
• Œ

R
M �  .X;Z/ � 0� Momentum conservation law in variational form.

• Œ QA� Dimensional analysis.
• Œ

R
M �  .X/ � 0� Variational inequality for test functions independent on Z.

• Œ,!� Final system of equations.
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8.1 Œ@� Boundary and Kinematic Conditions

Let us remember that nh is the unit normal vector to the free granular surfaceZ D h

with positive vertical component, and n0 D .0; 1/, the unit normal vector to the
bottom (Z D 0), denoted as 
b .

The kinematic condition is considered at the free surface

@thC U jZDh@Xh�W jZDh D 0; (101)

And the following boundary conditions are imposed:

• On Z D h:

nh � Pnh D 0 (102)

P � nh � nh.nh � Pnh/ D
�

frich.U /
0

�
; (103)

where frich.U / is the friction term between the granular layer and the air. For
simplicity, we will suppose that frich.U / D 0.

• On Z D 0:

.U;W / � n0 D 0 ) W D 0; (104)

Pn0 � n0.n0 � Pn0/ D
��˛ U

0

�
: (105)

That is, we consider a simple linear friction law between the material and
the bottom. This is one of the main differences between the model derived
in this section and the Savage–Hutter one: while in the Savage–Hutter model
the Coulomb friction law controls the yielding of the material, in the shallow
Herschel–Bulkley model this effect is due to the stress tensor definition and, in
particular, to the rigidity coefficient �c (also called yield stress).

8.2 Œ
R
M �  .X;Z/ � 0�Momentum Conservation Law

in Variational Form

In this item, we write the variational formulation of the system defined by (98)–
(100). By the definition of the stress tensor � 0 we obtain a variational inequality
(see [19]).

Let us suppose that the domain filled by the avalanche, ˝.t/, can be written as
follows:
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˝.t/ D f.X;Z/ 2 R
2I X 2 Œ0; L�IZ 2 Œ0; h.X; t/� g:

By supposing that h.X; t/, the height of the avalanche, is a bounded function in
space and time we may consider

W .t/ D ˚
� D . ; '/I  ; ' 2 W 1;1Cn.˝.t// =  jXD0 D  jXDL D 0; 'jZD0 D 0

�
:

Then, we look for the solution U.t; �/ 2 W .t/ andp.t; �/ 2 L.1Cn/0.˝.t// satisfying
for every � D . ; '/ 2 W .t/ and for every q 2 L.1Cn/0.˝.t//:
• The incompressibility condition:

Z
˝.t/

q div.X;Z/UdXdZ D 0; 8q 2 L.1Cn/0.˝.t//:

• And the momentum variational inequality:

Z
˝.t/

�

@U
@t

C .U � r.X;Z//U
�

� .� � U/dXdZ

�
Z
˝.t/

�.b CZcos � C p

�
/.div.X;Z/� � div.X;Z/U/dXdZ

C
Z
˝.t/

N�
2

jD.U/jn�1D.U/ W .D.�/ �D.U//dXdZ

C �c

2

Z
˝.t/

.jD.�/j � jD.U/j/ dXdZ

C
Z

b.t/

˛U. � U /d� � 0 8� 2 W .t/ (106)

with n 2 .0; 1/.
Remark 3. The inequality in the weak formulation of the momentum equation is a
consequence of the weak formulation of the rigidity term in the stress tensor. If we
consider the case jD.U/j ¤ 0, we have

�
Z
˝.t/

div.X;Z/.� 0/.� � U/dXdZ D 1

2

Z
˝.t/

� 0 W D.� � U/dXdZ

D 1

2

Z
˝.t/

�c
D.U/

jD.U/j W .D.�/ �D.U//dXdZ

C 1

2

Z
˝.t/

N�jD.U/jn�1D.U/ W .D.�/ �D.U//dXdZ:
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Moreover,

�c

Z
˝.t/

D.U/
jD.U/j W .D.�/ �D.U//dXdZ

D �c

Z
˝.t/

D.U/ W D.�/
jD.U/j dXdZ � �c

Z
˝.t/

jD.U/jdXdZ

and,

�c

Z
˝.t/

D.U/ W D.�/
jD.U/j dXdZ 	 �c

Z
˝.t/

jD.�/jdXdZ:

Observe that this is also true for the case jD.U /j D 0. Therefore, a solution of the
problem in differential form is a solution of the variational inequality. Nevertheless,
it is not trivial to prove rigorously that the solution of the variational inequality is a
solution of the differential problem. Although, formally it is possible to deduce the
differential system from the variational inequality. One can consider as test functions
� D U C �V, � D U � �V and to study the limit when � tends to zero. �

Let us develop the variational inequality (106) in terms of the components of the
vector. As � D . ; '/ and U D .U;W /, we have

Z
˝.t/

�.@t .U /C �U@XU C �W @ZU /. � U /dXdZ

C
Z
˝.t/

�.@t .W /C �U@XW C �W @ZW /.' �W /dXdZ

�
Z
˝.t/

�.b CZcos � C p

�
/.@X. � U /C @Z.' �W //dXdZ

C
Z
˝.t/

N�jD.U/jn�1
�
2@X.U /@X. � U /

C.@X .W /C @Z.U //.@X.' �W /C @Z. � U //C 2@Z.W /@Z.' �W /
�
dXdZ

C�c
Z
˝.t/

�r
.@X /2 C 1

2
.@X' C @Z /2 C .@Z'/2

�
r
.@XU /2 C 1

2
.@XW C @ZU /2 C .@ZW /2

�
dXdZ

C
Z

b

˛U. � U /d� � 0

(107)
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where

jD.U/jn�1 D
�
4.@XU /

2 C 2.@XW C @ZU /
2 C 4.@ZW /

2

�.n�1/=2
:

8.3 Œ QA� Dimensional Analysis

Next, a dimensional analysis of the set of Eqs. (98), the kinematic and boundary
conditions is performed. The non-dimensional variables ( Q: ) read:

.X;Z; t/ D .L QX;H QZ; .L=g/1=2 Qt /;

.U;W / D .Lg/1=2. QU ; " QW /;

h D H Qh;

˛ D ".Lg/1=2 Q̨ ;

p D gH Qp;

�c D gHe�c;
N� D Hg.1� n

2 /L
n
2 QN�:

(108)

Then,

� 0 D gH e� 0 D gH

0
@e� 0 QX QX e� 0 QX QZ

e� 0 QX QZ e� 0 QZ QZ

1
A :

With ( e� 0 D e�c QD". QU/
j QD". QU/j C Q� QD". QU/ if j QD". QU/j ¤ 0;

je� 0j 	 e�c if j QD". QU/j D 0:

And

QD". QU/ D

0
BBB@

2@ QX QU "@ QX QW C 1

"
@ QZ QU

"@ QX QW C 1

"
@ QZ QU 2@ QZ QW

1
CCCA :
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Using the above change of variables, the system of Eqs. (98) can be also rewritten
as follows (tildes are again omitted):

@X .U /C @Z.W / D 0; (109)

@t .�U /C�U@XU C �W @ZU C �@X.bCZcos � C p

�
/" D "@X.�

0
XX/C @Z.�

0
XZ/;

(110)

"f@t .�W /C �U@X.W /C �W @Z.W / � @X.� 0
XZ/gC

C�@Z.b C cos �Z/ D �@Z.p/C @Z.�
0
ZZ/: (111)

For the momentum variational inequality (107), we also consider the following non-
dimensional test functions:

� D . ; '/ D .Lg/1=2 . Q ; " Q' /:

The variational inequality (107) is rewritten as (tildes are omitted again):

Z
˝.t/

�.@t .U /C �U@XU C �W @ZU /. � U /dXdZ

C"2
Z
˝.t/

�.@t .W /C �U@XW C �W @ZW /.' �W /dXdZ

C
Z
˝.t/

�".@Xb. � U /C cos �.' �W //dXdZ

�
Z
˝.t/

�"
p

�
.@X. � U /C @Z.' �W //dXdZ

C
Z
˝.t/

N�jD".U/jn�1
�
2"@X.U /@X. � U /C "."@X.W /C 1

"
@Z.U //."@X.' �W /

C1

"
@Z. � U //

C 2"@Z.W /@Z.' �W /

�
dXdZ

C�c
Z
˝.t/

"

�r
.@X /2 C 1

2
."@X' C 1

"
@Z /2 C .@Z'/2

�
r
.@XU /2 C 1

2
."@XW C 1

"
@ZU /2 C .@ZW /2

�
dXdZ

C
Z

b

˛U. � U /d� � 0

(112)
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where

jD".U/jn�1 D
�
4.@XU /

2 C 2."@XW C 1

"
@ZU /

2 C 4.@ZW /
2

�.n�1/=2
:

Let us also remark that for the inclined plane case considered in these notes we have

@Xb D sin �:

8.4 Œ
R
M �  .X/ � 0� Variational Inequality for Test

Functions Independent of Z

In this section, we obtain the mass and momentum equations of a Shallow Herschel–
Bulkley model. To obtain it, we neglect the second order terms (O."2/) and we
consider test functions which are independent of Z.

Let us remark that to consider test functions independent of Z is analogous
to depth average the mass and momentum equations. In fact, we can see that if
�c D 0, then we have a variational equality for the momentum conservation and the
procedure described below is another way of deriving the Shallow Water equations.
And, if the Coulomb friction law is considered at the bottom, the Savage–Hutter
model deduced in Sect. 2 is recovered.

First, note that if q 2 L.1Cn/0.˝.t// is independent of Z then

Z
˝.t/

q div.X;Z/U D
Z L

0

q.X/

�Z h

0

div.X;Z/UdZ

�
dX D 0:

By using the kinematic conditions, we obtain

Z L

0

q.X/

�
@thC @X.hU/

�
dX D 0; 8q 2 L.1Cn/0.Œ0; L�/:

This gives a different way to obtain the mass conservation equation:

@thC @X.hU/ D 0:

Let us now consider test functions � D . ; '/ where  is independent of Z.
Analogously to previous sections, we assume that the velocity parallel to the bottom
U is independent ofZ. Then, if we neglect second order terms (O."2/) in (112), we
obtain
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Z L

0

�h.@t .U /C �U@XU /. � U /dXdZ

C
Z
˝.t/

�".@Xb. � U /C cos �.' �W //dXdZ

�
Z
˝.t/

�"
p

�
.@X. � U /C @Z.' �W //dXdZ

C
Z
˝.t/

N� 22n�2
�
.@XU /

2 C .@ZW /
2

�n�1�
2"@X.U /@X. � U /

C2"@Z.W /@Z.' �W /

�
dXdZ

C�c
Z
˝.t/

"

�p
.@X /2 C .@Z'/2 �

p
.@XU /2 C .@ZW /2

�
dXdZ

C
Z L

0

˛U. � U /d� � 0:

(113)

Moreover, by using the incompressibility condition, by choosing also test
functions with zero divergence whose vertical component vanishes at the bottom—
to be consistent with boundary condition (104)—we have

W D �Z@XU; and ' D �Z@X : (114)

By using (114) we get:

Z
˝.t/

.@Xb. �U /Ccos �.'�W //dXdZ D
Z L

0

�
h@XbC@X.h

2

2
cos �/

�
. �U /dX:

Finally, using this last equality and (114), we obtain from (113):

Z L

0

�h.@t .U /C �U@XU /. � U /dXdZ

C
Z L

0

�

�
h@Xb C @X .

h2

2
cos �/

�
. � U /dX

C
Z L

0

23n�1 N�j@XU jn�1"@X.U /@X. � U /dX

C2�c
Z L

0

"h.j@X j � j@XU j/dX

C
Z L

0

˛U. � U /d� � 0:

(115)
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8.5 Œ,!� Final System of Equations

Coming back to the original variables and using (108), we obtain the following
system:

• Mass conservation:Z L

0

�
@thC @X.hU /

�
q.X/dX D 0; 8q 2 L.1Cn/0.Œ0; L�/: (116)

• Momentum variational inequality: 8 2 W 1;1Cn.Œ0; L�/,
Z L

0

�

�
h@t .U /C �hU@XU C gh@Xb C g@X.

h2

2
cos �/

�
. � U /dXdZ

C
Z L

0

23n�1 N�j@XU jn�1@X.U /@X. � U /dX

C2�c
Z L

0

h.j@X j � j@XU j/dX

C
Z L

0

˛U. � U /d� � 0:

(117)

Note that the first line corresponds to convection and pressure terms in Shallow
Water systems and the second one to viscous effects. The third line contains the
terms associated to the rigidity properties of the material. Last line of previous
equation correspond to the bottom friction term.

Let us remark that (116) and (117) corresponds to the weak formulation of the
following partial differential system:

8̂̂<
ˆ̂:
@thC @X.hU / D 0;

h

�
@tU C U@xU C g.b C h cos �/

�
C ˛U � @X.h� 0/ D 0

(118)

where 8̂̂
<̂
ˆ̂̂:
� 0 D 23n�1 N�j@XU jn�1@XU C 2�c

@XU

j@XU j if j@xU j ¤ 0

j� 0j 	 2�c if j@xU j D 0:

(119)

As mentioned before, it is easy to see that if �c D 0, n D 1 and the linear friction law
is replaced by the Coulomb friction law (13) then the Savage–Hutter model deduced
in Sect. 2—with standard viscous terms—is obtained.
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Fig. 11 Initial condition. Dashed-dotted line: free surface of the viscoplastic material. Continuous
line: bottom

We refer to [1] for the discretization of this shallow-Herschel–Bulkley model.
Let us present an example. As initial condition a rectangular layer is considered on
a closed domain with a plain with a slope of 30ı (see Fig. 11).

Figure 12 shows the evolution of the avalanche of the visco-plastic material
corresponding to n D 1, �c D 4, N� D 10�2, ˛ D 10�2. The left column shows the
evolution of the free surface at times t 2 f 0.4, 1, 2.4, 4 g s. The right column shows
the velocity profile. This simulation shows a typical behavior of visco-plastic fluids:
at the beginning it moves as a rigid body and then it starts to flow as a viscous fluid.
Indeed, notice that for t D 0:4 and t D 1 s the velocity profile is nearly constant on
all the domain filled by the avalanche, but this is no more the case for t D 2:4 s. For
t D 4 s. the material is at rest. These different behaviors are due to the definition of
the stress tensor (119).

Appendix: Bed-Load Sediment Transport Formulae

In this appendix we present several possible definitions of the solid transport
discharge, qb , that allow one to close the Saint-Venant Exner system (see Sect. 1).

The study of the definition of the solid transport discharge can be seen as a
deterministic problem or a probabilistic one. For example, deterministic methods
have been proposed by Meyer-Peter & Müller [36] and probabilistic methods by
Einstein [20].

In general, the models take into account the fact that motion of the granular
sediment begins when the shear stress (�) is bigger than a certain critical shear stress
(�c). Moreover, shear stress can be written in terms of the hydrodynamic unknowns
h and u by

� D �RhjSf j: (120)
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Fig. 12 Complex avalanche: Herschel–Bulkley model. Left: free surface; Right: velocity

Here Sf is defined by (2) and � is the specific weight of fluid � D g�w, where �w is
the water density.

Shear stress appears usually in non-dimensional form in the formula of qb . If
�� and ��c represent the non-dimensional shear stress and the critical shear stress,
respectively, then
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�� D �

.�s � �/d ; ��c D �c

.�s � �/d
: (121)

Here d is the sediment grain size and �s is the specific sediment weight �s D g�s ,
where �s is the sediment density.

Using (120) and (121), �� can be written as a function of the specific gravity or
the relative density of fluids r D �s=�w.

�� D g�2u2

.r � 1/dR1=3h
:

To determine ��c many experiments have been performed in different works.
Concretely, Shields proposed the well-known Shields-diagram (cf. [40], p. 107).

Some usual formulae for rivers are the following:

• Grass (see [26]) proposed the following formula for the solid transport discharge,

qb D Agu jujmg�1 ; 1 6 mg 6 4;

where the constant Ag (s2=m) must take into account the grain diameter and the
kinematic viscosity. It is usually obtained by experimental data. The usual value
of exponentmg is set to mg D 3.

• Meyer-Peter & Müller (see [36]) developed one of the most popular formulae for
the solid transport discharge,

qb D
q
.r � 1/gd3sgn .u/8 .�� � ��c/3=2 ;

where ��c usually is set to 0:047.
• Van Rijn (see [49]) developed the following formula for the solid transport

discharge,

qb D
q
.r � 1/gd3

0:005

C 1:7
D

�
d

h

�0:2
�
1=2� sgn .u/



�
1=2� � �

1=2�c
�2:4

;

where CD is the drag coefficient.
• Nielsen (see [40]) developed the following formula

qb D
q
.r � 1/gd3sgn .u/12

p
��.�� � ��c/:

In this case the usual value of ��c is set equal to ��c D 0:05.
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All these formulae have a range of application which depends on the grain size,
the slope of the bottom, the Froude number and the relative density r . For example,
the M-P&M formula can be applied if 0:4 	 d 	 29mm, the slope of the bottom is
smaller than 0:02 and 1:25 	 r 	 4:2. For more details see [15–17].

�
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Introduction to Stochastic Calculus
and to the Resolution of PDEs Using Monte
Carlo Simulations

Emmanuel Gobet

Abstract I give a pedagogical introduction to Brownian motion, stochastic calculus
introduced by Itô in the fifties, following the elementary (at least not too technical)
approach by Föllmer [Seminar on Probability, XV (Univ. Strasbourg, Strasbourg,
1979/1980) (French), pp. 143–150. Springer, Berlin, 1981]. Based on this, I develop
the connection with linear and semi-linear parabolic PDEs. Then, I provide and
analyze some Monte Carlo methods to approximate the solution to these PDEs. This
course is aimed at master students, Ph.D. students and researchers interesting in the
connection of stochastic processes with PDEs and their numerical counterpart. The
reader is supposed to be familiar with basic concepts of probability (say first chap-
ters of the book Probability essentials by Jacod and Protter [Probability Essentials,
2nd edn. Springer, Berlin, 2003]), but no a priori knowledge on martingales and
stochastic processes is required.

1 The Brownian Motion and Related Processes

1.1 A Brief History of Brownian Motion

Historically, the Brownian motion (BM in short) is associated with the analysis of
motions which time evolution is so disordered that it seems difficult to forecast their
evolution, even in a very short time interval. It plays a central role in the theory of
random processes, because in many theoretical and applied problems, the Brownian
motion (or the diffusion processes that are built from Brownian motion) provides
simple limit models on which many calculations can be made.
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In 1827, the English botanist Robert Brown (1773–1858) first described the
erratic motion of fine organic particles in suspension in a gas or a fluid. At the
nineteenth century, after him, several physicists had admitted that this motion is
very irregular and does not seem to admit a tangent; thus one could not speak of his
speed, nor apply the laws of mechanics to him! In 1900 [4], Louis Bachelier (1870–
1946) introduced the Brownian motion to model the dynamics of the stock prices,
but his approach then is forgotten until the sixties. . . His Ph.D. thesis, Théorie de la
spéculation, is the starting point of modern finance.

But Physics is the field at the beginning of the twentieth century which is at
the origin of great interest for this process. In 1905, Albert Einstein (1879–1955)
built a probabilistic model to describe the motion of a diffusive particle: he found
that the law of the particle position at the time t , given the initial state x, admits
a density which satisfies the heat equation, and actually it is Gaussian. Its theory
is then quickly confirmed by experimental measurements of satisfactory diffusion
constants. The same year as Einstein, a discrete version of the Brownian motion is
proposed by the Polish physicist Smoluchowski using random walks.

In 1923, Norbert Wiener (1894–1964) built rigorously the random function that
is called Brownian motion; he established in particular that the trajectories are
continuous. By 1930, while following an idea of Paul Langevin, Ornstein and
Uhlenbeck studied the Gaussian random function which bears their name and which
seems to be the stationary or mean-reverting equivalent model associated to the
Brownian motion.

It is the beginning of a very active theoretical research in Mathematics. Paul
Lévy (1886–1971) discovered then, with other mathematicians, many properties of
the Brownian motion [55] and introduced a first form of the stochastic differential
equations, the study of which is later systematized by K. Itô (1915–2008). His work
is gathered in a famous treaty published in 1948 [44] which is usually referred to as
Itô stochastic calculus.

But History knows sometimes incredible bounces. Indeed in 2000, the French
Academy of Science opened a manuscript remained sealed since 1940 pertaining to
the young mathematician Doeblin (1915–1940), a French telegraphist died during
the German offensive. Doeblin was already known for his remarkable achievements
in the theory of probability due to his works on the stable laws and the Markov
processes. This sealed manuscript gathered in fact his recent research, written
between November 1939 and February 1940: it was actually related to his discovery
(before Itô) of the stochastic differential equations and their relations with the
Kolmogorov partial differential equations. Perhaps the Itô stochastic calculus could
have been called Doeblin stochastic calculus. . .

1.2 The Brownian Motion and Its Paths

In the following, we study the basic properties of the Brownian motion and its paths.
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1.2.1 Definition and Existence

The very erratic path which is a specific feature of the Brownian motion is in general
associated with the observation that the phenomenon, although very disordered, has
a certain time homogeneity, i.e. the origin date does not have importance to describe
the time evolution. These properties underly the next definition.

Definition 1 (of Standard Brownian Motion). A standard Brownian motion is a
random process fWt I t � 0g with continuous paths, such that

• W0 D 0.
• The time increment Wt � Ws with 0 	 s < t has the Gaussian law,1 with zero

mean and variance equal .t � s/.
• For any 0 D t0 < t1 < t2 : : : :: < tn; the increments fWtiC1

�Wti I 0 	 i 	 n� 1g
are independent2 random variables.

There are important remarks following from the definition.

1. The state Wt of the system at time t is distributed as a Gaussian r.v. with mean 0
and variance t (increasing as time gets larger). Its probability density is

P.Wt 2 Œx; x C dx�/ D g.t; x/dx D 1p
2�t

exp.�x2=2t/dx: (1)

2. With probability 95%, we have jWt j 	 1:96
p
t (see Fig. 1) for a given time t .

However, it may occur that W goes out this confidence interval.
3. The random variable Wt , as the sum of its increments, can be decomposed as a

sum of independent Gaussian r.v.: this property serves as a basis from the further
stochastic calculus.

Theorem 1. The Brownian motion exists!

Proof. There are different constructive ways to prove the existence of Brownian
motion. Here, we use a Fourier based approach (proposed by Wiener), showing
that W can be represented as a superposition of Gaussian signals. Also, we use a

1A Gaussian random variable X (see [46]) with mean � and variance �2 > 0 (often denoted by
N .�; �2/) is the r.v. with density

g�;�2 .x/ D 1

�
p
2�

expŒ� .x � �/2

2�2
�; x 2 R:

If �2 D 0, X D � with probability 1. Moreover, for any u 2 R, E.euX/ D eu�C

1
2 u2�2 .

2Two random variables X1 and X2 are independent if and only if E.f .X1/g.X2// D
E.f .X1//E.g.X2// for any bounded functions f and g. This extends similarly to a vector.
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equivalent characterization of Brownian motion as a Gaussian process3 with zero
mean and covariance function Cov.Wt ;Ws/ D min.s; t/ D s ^ t .

Let .Gm/m�0 be a sequence of independent Gaussian r.v. with zero mean and unit
variance and set

Wt D tp
�
G0 C

r
2

�

X
m�1

sin.mt/

m
Gm:

We now show that W is a Brownian motion on Œ0; ��; then it is enough to
concatenate and sum up such independent processes to get finally a Brownian
motion defined on R

C. We sketch the proof of our statement onW . First, the series
is a.s.4 convergent since this is a Cauchy sequence in L2: indeed, thanks to the
independence of the Gaussian random variables, we have

k
X

m1�m�m2

sin.mt/

m
Gmk2L2 D

X
m1�m�m2

sin2.mt/

m2
	
X
m1�m

1

m2
�!

m1!C1 0:

3.X1; : : : ; Xn/ is a Gaussian vector if and only if for any .�i /1�i�n 2 R
n,
Pn

iD1 �iXi has a
Gaussian distribution. Independent Gaussian random variables form a Gaussian vector. A process
.Xt /t is Gaussian if .Xt1 ; : : : ; Xtn / is a Gaussian vector for any times .t1; : : : ; tn/ and any n. A
Gaussian process is characterized by its meanm.t/ D E.Xt / and its covariance functionK.s; t/ D
Cov.Xs; Xt /.
4We recall that “an event A occurs a.s.” (almost surely) if P.! W ! 2 A/ D 1 or equivalently if
fw W w … Ag is a set of zero probability measure.
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The partial sum has a Gaussian distribution, thus the a.s. limit5 too. The same
argument gives that W is a Gaussian process. It has zero mean and its covariance is
the limit of the covariance of partial sums: thus

Cov.Wt ;Ws/ D ts

�
C 2

�

X
m�1

sin.mt/

m

sin.ms/

m
:

The above series is equal to min.s; t/ for .s; t/ 2 Œ0; ��2, by a standard computation
of the Fourier coefficients of the function t 2 Œ��; �� 7! min.s; t/ (for s fixed). The
proof of continuity ofW is based on the uniform convergence of the function series
along some appropriate subsequences, which we do not detail (see [45, pp. 21–22]).

ut
In many applications, it is useful to consider non standard Brownian motion.

Definition 2 (of Arithmetic Brownian Motion). An arithmetic Brownian motion
(ABM in short) is a random process fXt I t � 0g whereXt D x0 C bt C �Wt and

• W is a standard Brownian motion.
• x0 2 R is the starting value of X .
• b 2 R is the drift parameter.
• � 2 R is the diffusion parameter.

Usually, � can be taken non-negative due to the symmetry of Brownian motion
(see Proposition 1). X is still a Gaussian process, which position Xt at time t is
distributed as N .x0 C bt; �2t/ (Fig. 2).

5Here, we use the following standard result: let .Xn/n�1 be a sequence of random variables, each
having the Gaussian distribution with mean �n and variance �2n . If the distribution ofXn converges,
then .�n; �2n/ converge to .�; �2/, and the limit distribution is Gaussian with mean � and variance
�2. We recall that if Xn converges a.s., then it also converges in distribution.
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1.2.2 First Easy Properties of the Brownian Path

Proposition 1. Let fWt I t 2 R
Cg a standard Brownian motion.

i) SYMMETRY PROPERTY: f�Wt I t 2 R
Cg is a standard Brownian motion.

ii) SCALING PROPERTY: for any c > 0, fW c
t I t 2 R

Cg is a standard Brownian
motion where

W c
t D c�1Wc2t : (2)

iii) TIME REVERSAL: for any fixed T , OW T
t D WT � WT�t defines a standard

Brownian motion on Œ0; T �.
iv) TIME INVERSION: f OWt D tW1=t ; t > 0; OW0 D 0g is a standard Brownian

motion.

The scaling property is important and illustrates the fractal feature of Brownian
motion path: " times Wt behaves like a Brownian motion at time "2t .

Proof. It is a direct verification of the Brownian motion definition, related to
independent, stationary and Gaussian increments. The continuity is also easy to
verify, except for the case iv) at time 0. For this, we use that lim

t!0C

tW1=t D
lim

s!C1
Ws
s

D 0, see Proposition 7. ut

1.3 Time-Shift Invariance and Markov Property

Previously, we have studied simple spatial transformation of Brownian motion. We
now consider time-shifts, by first considering deterministic shifts.

Proposition 2 (Invariance by a Deterministic Time-Shift). The Brownian
Motion shifted by h � 0, given by f NW h

t D WtCh � WhI t 2 R
Cg, is another

Brownian motion, independent of the Brownian Motion stopped at h, fWsI s 	 hg.

In other words, fWtCh D WhC NW h
t I t 2 R

Cg is a Brownian motion starting fromWh.
The above property is associated to the weak Markov property which states (possibly
applicable to other processes) that the distribution ofW after h conditionally on the
past up to time h depends only on the present value Wh.

Proof. The Gaussian property of NW h is clear.
The independent increments of W induce those of NW h.
It remains to show the independence w.r.t. the past up to h, i.e. the sigma-

field generated by fWsI s 	 hg, or equivalently w.r.t. the sigma-field generated
by fWs1; : : : WsN g for any 0 	 s1 	 � � � 	 sN 	 h. The independence of
increments of W ensures that . NW h

t1
; NW h

t2
� NW h

t1
; � � � ; NW h

tk
� NW h

tk�1
/ D .Wt1Ch �

Wh; � � � ;WtkCh � Wtk�1Ch/ is independent of .Ws1 ;Ws2 � Ws1; � � � ;Wsj � Wsj�1 /.
Then . NW h

t1
; NW h

t2
; � � � ; NW h

tk
/ is independent of fWsI s 	 hg. ut
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As a consequence, we can derive a nice symmetry result making the connection
between the maximum of Brownian motion monitored along a finite time grid t0 D
0 < t1 < � � � < tN D T and that of WT only.

Proposition 3. For any y � 0, we have

PŒsup
i�N

Wti � y� 	 2PŒWT � y� D PŒjWT j � y�: (3)

Proof. The equality at the r.h.s. comes from the symmetric distribution ofWT . Now
we show the inequality on the left. Denote by t�y the first time tj when W reaches
the level y. Notice that fsupi�N Wti � yg D ft�y 	 T g and ft�y D tj g D fWti <

y;8i < j;Wtj � yg. For each j < N , the symmetry of Brownian increments gives

PŒWT �Wtj � 0� D 1
2
. Since the shifted Brownian motion . NW tj

t D NWtjCt � Wtj W
t 2 R

C/ is independent of .Ws W s 	 tj /, we have

1
2 PŒ sup

i�N
Wti � y� D 1

2
PŒt�y 	 T � D 1

2

NX
jD0

PŒt�y D tj �

D 1

2
PŒWti < y;8i < N;WT � y�C

N�1X
jD0

PŒWti < y;8i < j;Wtj � y�PŒWT �Wtj � 0�

D 1

2
PŒWti < y;8i < N;WT � y�C

N�1X
jD0

PŒWti < y;8i < j;Wtj � y;WT �Wtj � 0�

	 PŒWti < y;8i < N;WT � y�C
N�1X
jD0

PŒWti < y;8i < j;Wtj � y;WT � y�

D PŒt�y 	 T;WT � y� D PŒWT � y�:

At the two last lines, we have used fWtj � y;WT �Wtj � 0g � fWtj � y;WT � yg
and fWT � yg � ft�y 	 T g. ut
Taking a grid with time step T=N with N ! C1, we have supi�N Wti "
sup0�t�T Wti . Then, we can pass to the limit (up to some probabilistic convergence
technicalities) in the inequality (3) to get

PŒ sup
0�t�T

Wt � y� 	 PŒjWT j � y�: (4)

Actually, the inequality (4) is an equality: it is proved later in Proposition 5.
Now, our aim is to extend Proposition 2 to the case of stochastic time-shifts h.

Without extra assumption on h, the result is false in general: a counter-example is
the last passage time of W at zero before the time 1 (L D supft 	 1 W Wt D 0g),
which does not satisfy the property. Indeed, since .WsCL � Ws/s�0 do not vanish
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a.s. at short time (due to the definition of L), the marginal distribution can not be
Gaussian and the time-shifted process can not be a Brownian motion.

The right class for extension is the class of stopping times, defined as follows.

Definition 3 (Stopping Time). A stopping time is non-negative random variable
U (taking possibly the value C1), such that for any t � 0, the event fU 	 tg
depends only on the Brownian motion values fWsI s 	 tg.

The stopping time is discrete if it takes only a countable set of values
.u1; � � � ; un; � � � /.
In other words, it suffices to observe the Brownian motion until time t to know
whether or not the event fU 	 tg occurs. Of course, deterministic times are stopping
times. A more interesting example is the first hitting time of a level y > 0

Ty D infft > 0IWt � ygI

it is a stopping time, since fTy 	 tg D f9s 	 t;Ws D yg owing to the continuity of
W . Observe that the counter-example of last passage time L is not a stopping time.

Proposition 4. Let U be a stopping time. On the event fU < C1g, the Brownian
motion shifted by U � 0, i.e. f NW U

t D WtCU �WU I t 2 R
Cg, is a Brownian motion

independent of fWt I t 	 U g.

This result is usually referred to as the strong Markov property.

Proof. We show that for any 0 	 t1 < � � � < tk , any 0 	 s1 < � � � < sl , any
.x1; � � � ; xk/ and any measurable sets .B1; � � � ; Bl�1/, we have

P. NW U
t1
< x1; � � � ; NW U

tk
< xk;Ws1 2 B1; � � � ;Wsl�1 2 Bl�1; sl 	 U < C1/

D P.W 0

t1
< x1; � � � ;W 0

tk
< xk/P.Ws1 2 B1; � � � ;Wsl�1 2 Bl�1; sl 	 U < C1/; (5)

where W 0 is a Brownian motion independent of W . We begin with the easier case
where U is a discrete stopping time valued in .un/n�1: then

P. NW U
t1
< x1; � � � ; NW U

tk
< xk;Ws1 2 B1; � � � ;Wsl�1 2 Bl�1; sl 	 U < C1/

D
X
n

P. NW U
t1
< x1; � � �; NW U

tk
< xk;Ws1 2 B1; � � � ;Wsl�1 2 Bl�1; sl 	 U;U D un/

D
X
n

P. NW un
t1 < x1; � � �; NW un

tk
< xk;Ws1 2 B1; � � � ;Wsl�1 2 Bl�1; sl 	 U;U D un/

D
X
n

P.W 0
t1
< x1; � � �;W 0

tk
< xk/P.Ws1 2 B1; � � � ;Wsl�1 2 Bl�1; sl 	 U;U D un/

D P.W 0
t1
< x1; � � � ;W 0

tk
< xk/P.Ws1 2 B1; � � � ;Wsl�1 2 Bl�1; sl 	 U < C1/
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Fig. 3 Brownian motion

.WTyCt D NW Ty
t C y W t 2

R
C/ starting from y and its

symmetric path

applying at the last equality but one the time-shift invariance with deterministic
shift un. For the general case for U , we apply the result to the discrete stopping time
Un D ŒnU�C1

n
, and then pass to the limit using the continuity of W . ut

1.4 Maximum, Behavior at Infinity, Path Regularity

We apply the strong Markov property to identify the law of the Brownian motion
maximum.

Proposition 5 (Symmetry Principle). For any y � 0 and any x 	 y, we have

PŒsup
t�T

Wt � yIWT 	 x� D PŒWT � 2y � x�; (6)

PŒsup
t�T

Wt � y� D PŒjWT j � y� D 2

Z C1
y

p

T

e� 1
2 x

2

p
2�

dx: (7)

Proof. Denote by Ty D infft > 0 W Wt � yg and C1 if the set is empty. Observe
that Ty is a stopping time and that fsupt�T Wt � yIWT 	 xg D fTy 	 T IWT 	
xg. By Proposition 4, on fTy 	 T g, .WTyCt D NW Ty

t C y W t 2 R
C/ is a Brownian

motion starting from y, independent of .Ws W s 	 Ty/. By symmetry (see Fig. 3),
the events fTy 	 T;WT < xg and fTy 	 T;WT > 2y�xg has the same probability.
But for x 	 y, we have fTy 	 T;WT > 2y � xg D fWT > 2y � xg and the first
result is proved.

For the second result, take y D x and write PŒsupt�T Wt � y� D PŒsupt�T Wt �
y;WT > y�CPŒsupt�T Wt � y;WT 	 y� D PŒWT > y�CPŒWT � y� D 2P.WT �
y/ D P.jWT j � y/. ut
As a consequence of the identification of the law of the maximum up to a fixed time,
we prove that the range of Brownian motion becomes R at time goes to infinity.
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Proposition 6. With probability 1, we have

lim sup
t!C1

Wt D C1; lim inf
t!C1Wt D �1:

Proof. For T � 0, set MT D supt�T Wt . As T " C1, it defines a sequence of
increasing r.v., thus converging a.s. to a limit r.v.M1. Applying twice the monotone
convergence theorem, we obtain

PŒM1 D C1� D lim
y"C1

PŒM1 > y� D lim
y"C1

�
lim

T"C1
PŒMT > y�

	
D lim

y"C1
. lim
T"C1

PŒjWT j � y�
	 D 1

using (7). This proves that lim sup
t!C1

Wt D C1 a.s. and a symmetry argument gives

the liminf. ut
However, the increasing rate of W is sublinear as time goes to infinity.

Proposition 7. With probability 1, we have

lim
t!C1

Wt

t
D 0:

Proof. The strong law of large numbers yields that Wn
n

D 1
n

Pn
iD1.Wi � Wi�1/

converges a.s. to E.W1/ D 0. The announced result is thus proved along the
sequence of integers. To fill the gaps between integers, set QMn D supn<t�nC1.Wt �
Wn/ and QM 0

n D supn<t�nC1.Wn �Wt/: due to Proposition 5, QMn and QM 0
n have the

same distribution as jW1j. Then, the Chebyshev inequality writes

P.j QMnj C j QM 0
nj � n3=4/ 	 2

E.j QMnj2/C E.j QM 0
nj2/

n3=2
D 4n�3=2;

implying that
P

n�0 P.j QMnj C j QMnj � n3=4/ < C1. Thus, by Borel–Cantelli’s

lemma, we obtain that with probability 1, for n large enough j QMnj C j QM 0
nj < n3=4,

i.e. QMn

n
and

QM 0

n

n
both converge a.s. to 0. ut

By time inversion, OWt D tW1=t is another Brownian motion: the OW -growth in
infinite time gives an estimate onW at 0, which writes

C1 D lim sup
t!C1

j OWt j D lim sup
s!0C

jWs �W0j
s

which shows that W is not differentiable at time 0. By time-shift invariance, this
is also true at any given time t . The careful reader may notice that the set of full
probability measure depends on t and it is unclear at this stage if a single full set is
available for any t , i.e. if
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P.9t0 such that t 7! Wt is differentiable at t0/ D 0:

Actually, the above result holds true and it is due to Paley–Wiener–Zygmund (1933).
The following result is of comparable nature: we claim that a.s. there does not exist
any interval on which W is monotone.

Proposition 8 (Nowhere Monotonicity). We have

P.t 7! Wt is monotone on an interval/ D 0:

Proof. Define M "
s;t D f! W u 7! Wu.!/ is increasing on the interval�s; t Œg and M #

s;t

similarly. Observe that

M D ft 7! Wt is monotone on the intervalg D
[

s;t2Q;0�s<t
.M

"
s;t [M #

s;t /;

and since this is a countable union, it is enough to show P.M
"
s;t / D P.M

#
s;t / D 0

to conclude P.M/ 	 P
s;t2Q;0�s<t ŒP.M

"
s;t / C P.M

#
s;t /� D 0. For fixed n, set ti D

s C i.t � s/=n, then

P.M
"
s;t / 	 P.WtiC1

�Wti � 0; 0 	 i < n/ D
n�1Y
iD0

P.WtiC1
�Wti � 0/ D 1

2n
;

leveraging the symmetric distribution of the increments. Taking now n large gives
P.M

"
s;t / D 0. We argue similarly for P.M #

s;t / D 0. ut
In view of this lack of smoothness, it seems impossible to define differential calculus
along the paths of Brownian motion. However, as it will be further developed,
Brownian motion paths enjoy a nice property of finite quadratic variations, which
serves to build an appropriate stochastic calculus.

There are much more to tell about the properties of Brownian motion. We
mention few extra properties without proof:

• HOLDER REGULARITY: for any � 2 .0; 1
2
/ and any deterministic T > 0, there

exists a a.s. finite r.v. C�;T such that

8 0 	 s; t 	 T; jWt �Wsj 	 C�;T jt � sj�:

• LAW OF ITERATED LOGARITHM: setting h.t/ D p
2t log log t�1, we have

lim sup
t#0

Wt

h.t/
D 1 a.s. and lim inf

t#0
Wt

h.t/
D �1 a.s.
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• ZEROS OF BROWNIAN MOTION: the set � D ft � 0 W Wt D 0g of the zeros
of W is closed, unbounded, with null Lebesgue measure and it has no isolated
points.

1.5 The Random Walk Approximation

Another algorithmic way to build a Brownian motion consists in rescaling a random
walk. This is very simple and very useful for numerics: it leads to the so-called tree
methods and it has some connections with finite differences in PDEs.

Consider a sequence .Xi /i of independent random variables with Rademacher
distribution: P.Xi D ˙1/ D 1

2
. Then

Sn D
nX
iD1

Xi

defines a random walk on Z. Like Brownian motion, it is a process with stationary
independent increments, but it is not Gaussian. Actually Sn has a binomial
distribution:

P.Sn D �nC 2k/ D P.k rises/ D 2�n


n

k

�
:

A direct computation shows that E.Sn/ D 0 and Var.Sn/ D n. When we rescale
the walk and we let n go towards infinity, we observe however that due the Central
Limit Theorem, the distribution of Snp

n
converges to the Gaussian law with zero mean

and unit variance. The fact that it is equal to the law of W1 is not a coincidence,
since it can be justified that the full trajectory of the suitably rescaled random walk
converges towards that of a Brownian motion, see Fig. 4. This result is known as
Donsker theorem, see for instance [12] for a proof.

Proposition 9. Define .Y nt /t as the piecewise constant process

Y nt D 1p
n

bntcX
iD1

Xi : (8)

The distribution of the process .Y nt /t converges to that of a Brownian motion .Wt /t
as n ! C1, i.e. for any continuous functional

lim
n!1E.˚.Y nt W t 	 1// D E.˚.Wt W t 	 1//:
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Fig. 4 The random walk rescaled in time and space. From left to right: the process Y n for n D
50;100;200. The pieces of path with same color are built with the same Xi

The last result gives a simple way to evaluate numerically expectations of function-
als of Brownian motion. It is the principle of the so-called binomial tree methods.

Link with Finite Difference Scheme. The random walk can be interpreted as a
explicit FD scheme for the heat equation. We anticipate a bit on the following where
the connection between Brownian motion and heat equation will be more detailed.

For t D i
n

(i 2 f0; : : : ; ng) and x 2 R, set

un.t; x/ D E



f
�
x C Y ni

n

	�
:

The independence of .Xi/i gives

un
� i
n
; x
	 D E

�
f .x C Y ni�1

n

C Xip
n
/
	

D 1

2
un
� i � 1

n
; x C 1p

n

	C 1

2
un
� i � 1

n
; x � 1p

n

	
;

un
�
i
n
; x
	 � un

�
i�1
n
; x
	

1
n

D 1

2

un
�
i�1
n
; x C 1p

n

	 � 2un
�
i�1
n
; x
	C un

�
i�1
n
; x � 1p

n

	
�
1p
n

	2 :

Thus, un related to the expectation of the random walk can be read as an explicit FD
scheme of the heat equation @tu.t; x/ D 1

2
@2xxu.t; x/ and u.0; x/ D f .x/, with time

step 1
n

and space step 1p
n

.

1.6 Other Stochastic Processes

We present other one-dimensional processes, with continuous trajectories, which
derive from the Brownian motion.
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1. Geometric Brownian motion: this model is popular in finance to model stocks
and other assets by a positive process.

2. Ornstein–Uhlenbeck process: it has important applications in physics, mechan-
ics, economy and finance to model stochastic phenomena exhibiting mean-
reverting features (like spring endowed with random forces, interest-rates or
inflation, . . . ).

3. Stochastic differential equations: it gives the more general framework.

1.6.1 Geometric Brownian Motion

Definition 4. A Geometric Brownian Motion (GBM in short) with deterministic
initial value S0 > 0, drift coefficient � and diffusion coefficient � , is a process
.St /t�0 defined by

St D S0e
.�� 1

2 �
2/tC�Wt ; (9)

where fWt I t � 0g is a standard Brownian motion.

As the argument in the exponential has a Gaussian distribution, the random variable
St (with t fixed) is known as Lognormal.

This is a process with continuous trajectories, which takes strictly positive values.
The Geometric Brownian motion is often used as a model of asset price (see
Samuelson [65]): this choice is justified on the one hand, by the positivity of S
and on the other hand, by the simple Gaussian properties of its returns:

• The returns log.St / � log.Ss/ are Gaussian with mean .� � 1
2
�2/.t � s/ and

variance �2.t � s/.

• For all 0 < t1 < t2 : : : :: < tn; the relative increments f StiC1

Sti
I 0 	 i 	 n � 1g are

independent.

The assumption of Gaussian returns is not valid in practice but this model still serves
as a proxy for more sophisticated models.

Naming � the drift parameter may be surprising at first sight since it appears in
the deterministic component as .�� 1

2
�2/t . Actually, a computation of expectation

gives easily

E.St / D S0e
.�� 1

2 �
2/t
E.e�Wt / D S0e

.�� 1
2 �

2/t e
1
2 �

2t D S0e
�t :

The above equality gives the interpretation to � as a mean drift term: � D
1
t

logŒE.St /=S0�.
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1.6.2 Ornstein–Uhlenbeck Process

Let us return to physics and to the Brownian motion by Einstein in 1905. In order
to propose a more adequate modeling of the phenomenon of particles diffusion, we
introduce the process of Ornstein–Uhlenbeck and its principal properties.

So far we have built the Brownian motion like a model for a microscopic particle
in suspension in a liquid subjected to thermal agitation. An important criticism
made with this modeling concerns the assumption that displacement increments are
independent and they do not take into account the effects of the particle speed due
to particle inertia.

Let us denote by m the particle mass and by PX.t/ its speed. Owing to Newton’s
second law, the momentum changem PX.tCı.t//�m PX.t/ is equal to the resistance
�k PX.t/ıt of the medium during time ıt , plus the momentum change due to
molecular shocks, that we assume to be with stationary independent increments
and thus associated with a Brownian motion. The process thus modeled is called
sometimes the physical Brownian motion. The equation for the increments becomes

mıŒ PX.t/� D �k PX.t/ıt Cm�ıWt :

Trajectories of the Brownian motion being not differentiable, the equation has to be
read in an integral form

m PX.t/ D m PX.0/�
Z t

0

k PX.s/ds Cm�Wt :

PX.t/ is thus solution of the linear stochastic differential equation (known as
Langevin equation)

Vt D v0 � a
Z t

0

Vsds C �Wt

where a D k
m

. If a D 0, we recover an arithmetic Brownian motion and to avoid
this trivial reduction, we assume a ¤ 0 in the sequel. However, the existence of
solution is not clear since W is not differentiable. To overcome this difficulty, set
Zt D Vt � �Wt : that leads to the new equation

Zt D v0 � a

Z t

0

.Zs C �Ws/ds;

which is now a linear ordinary differential equation that can be solved path by path.
The variation of parameter method gives the representation of the unique solution
of this equation like
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Fig. 5 Ornstein–Uhlenbeck
paths with V0 D 1, a D 2 and
� D 0:1

Zt D v0e
�at � �

Z t

0

ae�a.t�s/Wsds:

The initial solution is thus

Vt D v0e
�at C �Wt � �

Z t

0

ae�a.t�s/Wsds: (10)

Using stochastic calculus, we will derive later (see Sect. 3.3) another convenient
representation of V as follows:

Vt D v0e
�at C �

Z t

0

e�a.t�s/dWs (11)

using a stochastic integral not yet defined. From (10), assuming that v0 is determin-
istic, we can show the following properties (see also Sect. 3.3).

• For a given t , Vt has a Gaussian distribution: indeed, as the limit of a Riemann
sum, it is the a.s. limit of a Gaussian r.v., see footnote 5 page 111.

• More generally, V is a Gaussian process.
• Its mean is v0e�a t , its covariance function Cov.Vt ; Vs/ D e�a.t�s/ �2

2a
.1 � e�2as/

for t > s.

Observe that for a > 0, the Gaussian distribution of Vt converges to N .0; �
2

2a
/ as

t ! C1: it does not depend anymore on v0 and illustrates the mean-reverting
feature of this model, see Fig. 5.
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1.6.3 Stochastic Differential Equations and Euler Approximations

The previous example gives the generic form of a Stochastic Differential Equation,
that generalizes the usual Ordinary Differential Equations x0

t D b.xt / or in integral
form xt D x0 C R t

0 b.xs/ds.

Definition 5. Let b; � W x 2 R 7! R be two functions, respectively the drift and
the diffusion coefficient. A Stochastic Differential Equation (SDE in short) with
parameter .b; �/ and initial value x is a stochastic process .Xt /t�0 solution of

Xt D x C
Z t

0

b.Xs/ds C
Z t

0

�.Xs/dWs; t � 0;

where .Wt /t is a standard Brownian motion.

A slightly more general definition (not considered here) could include the case of
time-dependent coefficients b.t; x/ and �.t; x/, the subsequent analysis would be
quite similar. In the definition above, we use a stochastic integral

R t
0
: : : dWs which

has not yet been defined: it will be explained in the next section. For the moment,
the reader needs to know that in the simplest case where � is constant, we simply
have

R t
0
�.Xs/dWs D �Wt . The previous examples fit this setting:

• The arithmetic Brownian motion corresponds to b.x/ D b et �.x/ D � .
• The Ornstein–Uhlenbeck process corresponds to b.x/ D �ax et �.x/ D � .

Taking � to be non constant allows for more general situations and more flexible
models. Instead of discussing now the important issues of existence and uniqueness
to such SDE, we rather consider natural approximations of them, namely the Euler
scheme (which is the direct extension of Euler scheme for ODEs).

Definition 6. Let .b; �/ be given drift and diffusion coefficients. The Euler scheme
associated to the SDE with coefficients .b; �/, initial value x and time step h, is
defined by

(
Xh
0 D x;

Xh
t D Xh

ih C b.Xh
ih/.t � ih/C �.Xh

ih/.Wt �Wih/; i � 0; t 2 .ih; .i C 1/h�:

(12)

In other words, Xh is a piecewise arithmetic Brownian motion with coefficients on
the interval .ih; .i C 1/h� computed according to the functions .b; �/ evaluated at
Xh

ih. In general, the law ofXh
t is not known analytically: at most, we can give explicit

representations using an induction of the time-step. On the other hand, as it will be
seen further, the random simulation of Xh at time .ih/i�0 is easily performed by
simulating the independent Brownian increments .W.iC1/h �Wih/. The accuracy of
the approximation of X by Xh is expected to get improved as h goes to 0.

Complementary References. See [48, 57, 63].
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2 Feynman–Kac Representations of PDE Solutions

Our purpose in this section is to make the connection between the expectations of
functionals of Brownian motion and the solution of second order linear parabolic
partial differential equations (PDE in short): this leads to the well-known Feynman–
Kac representations. We extend this point of view to other simple processes
introduced before.

2.1 The Heat Equations

2.1.1 Heat Equation in the Whole Space

Let us return to the law of x CWt , the Gaussian density of which is

g.t; x; y/ WD g.t; y � x/ D 1p
2�t

exp.�.y � x/2=2t/;

often called in this context the fundamental solution of the heat equation. One of the
key properties is the property of convolution

g.t C s; x; y/ D
Z
R

g.t; x; z/g.s; z; y/dz (13)

which says in an analytical language that x C WtCs is the sum of the independent
Gaussian variables xCWt andWtCs�Wt . A direct calculation on the density shows
that the Gaussian density is solution to the heat equation w.r.t. the two variables x
and y

(
g0
t .t; x; y/ D 1

2
g00

yy.t; x; y/;

g0
t .t; x; y/ D 1

2
g00

xx.t; x; y/:
(14)

This property is extended to a large class of functions built from the Brownian
motion.

Theorem 2 (Heat Equation with Cauchy Initial Boundary Condition). Let f
be a bounded6 measurable function. Consider the function

u.t; x; f / D EŒf .x CWt/� D
Z
R

g.t; x; y/f .y/dy W

6This growth condition can be relaxed into jf .x/j � C exp



jxj

2

2˛

�
for any x, for some positive

constants C and ˛: in that case, the smoothness of the function u is satisfied for t < ˛ only.
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the function u is infinitely continuously differentiable in space and time for t > 0

and solves the heat equation

u0
t .t; x; f / D 1

2
u00

xx.t; x; f /; u.0; x; f / D f .x/: (15)

Equation (15) is the heat equation with initial boundary condition (Cauchy problem,
see [22]).

Proof. Standard Gaussian estimates allow to differentiate u w.r.t. t or x by
differentiating under the integral sign: then, we have

u0
t .t; x; f / D

Z
R

g0
t .t; x; y/f .y/dy D

Z
R

1

2
g00

xx.t; x; y/f .y/dy D 1

2
u00

xx.t; x; f /:

ut
When the function considered is regular, another formulation can be given to this
relation, which will play a significant role in the following.

Proposition 10. If f is of class C 2
b (bounded and twice continuously differentiable

with bounded derivatives),7 we have

u0
t .t; x; f / D u.t; x;

1

2
f 00

xx/;

or equivalently using a probabilistic viewpoint

EŒf .x CWt/� D f .x/C
Z t

0

E
�1
2
f 00

xx.x CWs/
�
ds: (16)

Proof. Write u.t; x; f / D EŒf .x C Wt/� D R
R
g.t; 0; y/f .x C y/dy DR

R
g.t; x; z/f .z/dz and differentiate under the integral sign: it gives

u00
xx.t; x; f / D

Z
R

g.t; 0; y/f 00
xx.x C y/dy D u.t; x; f 00

xx/ D
Z
R

g00
xx.t; x; z/f .z/dz;

u0
t .t; x; f / D

Z
R

g0
t .t; x; z/f .z/dz D 1

2

Z
R

g00
xx.t; x; z/f .z/dz D 1

2
u.t; x; f 00

xx/;

using at the first line two integration by parts and at the second line the heat equation
satisfied by g. Then the probabilistic representation (16) easily follows:

7Here again, the boundedness could be relaxed to some exponential growth.
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EŒf .x CWt/�� f .x/ D u.t; x; f / � u.0; x; f / D
Z t

0

u0
t .s; x; f /ds

D
Z t

0

u.s; x;
1

2
f 00

xx/ds D
Z t

0

E
�1
2
f 00

xx.x CWs/
�
ds:

ut

2.1.2 Heat Equation in an Interval

We now extend the previous results in two directions: first, we allow the function
f to also depend smoothly on time and second, the final time t is replaced by a
stopping timeU . The first extension is straightforward and we state it without proof.

Proposition 11. Let f be a function of class C 1;2
b (bounded, once continuously

differentiable in time, twice in space, with bounded derivatives): we have

EŒf .t; x CWt/� D f .0; x/C
Z t

0

EŒf 0
t .s; x CWs/C 1

2
f 00

xx.s; x CWs/�ds

D f .0; x/C E

�Z t

0

.f 0
t .s; x CWs/C 1

2
f 00

xx.s; x CWs//ds

�
:

(17)

The second equality readily follows from Fubini’s theorem to invert E and time
integral: this second form is more suitable for an extension to stochastic times t .

Theorem 3. Let f be a function of class C 1;2
b , we have

EŒf .U; x CWU/� D f .0; x/C E

�Z U

0

.f 0
t .s; x CWs/C 1

2
f 00

xx.s; x CWs//ds

�
(18)

for any bounded8 stopping time U .

The above identity between expectations is far to be obvious to establish by hand
since the law of U is quite general and an analytical computation is out of reach.
This level of generality on U is quite interesting for applications: it provides a
powerful tool to determine the distribution of hitting times, to show how often
multidimensional Brownian motion visits a given point or a given set. Regarding

8Meaning that for a deterministic positive constant C , P.U � C/ D 1.
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this lecture, it gives a key tool to derive probabilistic representations of heat equation
with Dirichlet boundary conditions.

Proof. Let us start by giving alternatives of the relation (17). We observe that it
could have been written with a random initial conditionX0, like for instance

EŒ1A0f .t; X0 CWt/�

D E

�
1A0f .0;X0/C 1A0

Z t

0

.f 0
t .s; X0 CWs/C 1

2
f 00

xx.s; X0 CWs//ds

�
;

with W independent of X0 and where the event A0 depends on X0. Similarly, using
the time-shifted Brownian motion f NW u

t D WtCu �WuI t 2 R
Cg that is independent

of the initial condition x CWu (Proposition 2), it leads to

EŒ1Auf .t C u; x CWu C NW u
t /� D E

�
1Auf .u; x CWu/C

1Au

Z t

0

.f 0
t .u C s; x CWu C NW u

s /C 1

2
f 00

xx.u C s; x CWu C NW u
s //ds

�

for any event Au depending only of the values fWs W s 	 ug, or equivalently

EŒ1Auf .t C u; x CWtCu/� D E

�
1Auf .u; x CWu/

C1Au

Z tCu

u
.f 0
t .s; x CWs/C 1

2
f 00

xx.s; x CWs//ds

�
:

Set Mt D f .t; x C Wt/ � f .0; x/ � R t
0 .f

0
t .s; x C Ws/C 1

2
f 00

xx.s; x CWs//ds: our
aim is to prove E.MU / D 0. Observe that the preliminary computation has shown
that

E.1Au.MtCu �Mu// D 0 (19)

for t � 0. In particular, taking Au D ˝ we obtain that the expectation E.Mt / is
constant9 w.r.t. t .

Now, consider first that U is a discrete stopping time valued in f0 D u0 < u1 <
� � � < un D T g: then

E.MU / D
n�1X
kD0

E.MU^ukC1
�MU^uk / D

n�1X
kD0

E.1U>uk .MukC1
�Muk // D 0

9Actually, (19) proves that M is a martingale and the result to be proved is related to the optional
sampling theorem.
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by applying (19) since fU 	 ukg does depend only of fWs W s 	 ukg (by definition
of a stopping time). ut

Second, for a general stopping time (bounded by T ), we take Un D ŒnU�C1
n

which
is a stopping time converging to U : since .Mt/0�t�T is bounded and continuous,
the dominated convergence theorem gives 0 D E.MUn/ �!

n!1 E.MU /. ut
As a consequence, we now make explicit the solutions of the heat equa-

tion in an interval and with initial condition: it is a partial generalization10 of
Theorem 2, which characterized them in the whole space. The introduction of (non-
homogeneous) boundary conditions of Dirichlet type is connected to the passage
time of the Brownian motion.

Corollary 1 (Heat Equation with Cauchy–Dirichlet Boundary Condition).
Consider the PDE8̂̂<

ˆ̂:
u0
t .t; x/ D 1

2
u00

xx.t; x/; for t > 0 and x 2�a; bŒ,
u.0; x/ D f .0; x/ for t D 0 and x 2 Œa; b�;
u.t; x/ D f .t; x/ for x D a or b, with t � 0:

If a solution u of class C1;2
b .Œ0; T � � Œa; b�/ exists, then it is given by

u.t; x/ D EŒf .t � U; x CWU /�

where U D Ta ^ Tb ^ t (using the previous notation for the first passage time Ty at
the level y for the Brownian motion starting at x, i.e. .x CWt/t�0).

Proof. First, extend smoothly the function u outside the interval Œa; b� in order to
apply previous results. The way to extend is unimportant since u and its derivatives
are only evaluated inside Œa; b�. Clearly U is a bounded (by t) stopping time. Apply
now the equality (18) to the function .s; y/ 7! u.t � s; y/ D v.s; y/ of class
C
1;2
b .Œ0; t � � R/, satisfying v0

s.s; y/ C 1
2
v00

yy.s; y/ D 0 for .s; y/ 2 Œ0; t � � Œa; b�.
We obtain

EŒv.U; xCWU /� D v.0; x/CE

�Z U

0

.v0

s.s; x CWs/C 1

2
v00

yy.s; x CWs//ds

�
D v.0; x/;

since for s 	 U , .s; x C Ws/ 2 Œ0; t � � Œa; b�. To conclude, we easily check that
v.0; x/ D u.t; x/ and v.U; x CWU/ D f .t � U; x CWU /. ut

10Indeed, the result gives uniqueness and not the existence.
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2.1.3 A Probabilistic Algorithm to Solve the Heat Equation

To illustrate our purpose, we consider a toy example regarding the numerical
evaluation of u.t; x/ D E.f .xCWt // using random simulations, in order to discuss
main ideas underlying to Monte Carlo methods. Actually, the arguments below
apply also to u.t; x/ D EŒf .t � U; x C WU /� with U D Ta ^ Tb ^ t , although
there are some extra significant issues in the simulation of .U;WU /.

For the notational simplicity, denote by X the random variable inside the
expectation to compute, that is X D f .xCWt/ in our toy example. As a difference
with a PDE method (based on finite differences or finite elements), a standard Monte
Carlo method provides an approximation of u.t; x/ at a given point .t; x/, without
evaluating the values at other points. Actually, this fact holds because the PDE u is
linear; in Sect. 5 related to non-linear PDEs, the situation is different.

The Monte Carlo method is able to provide a convergent, tractable approximation
of u.t; x/, with a priori error bounds, under two conditions.

1. An arbitrary large number of independent realizations of X can be generated
(denote them by .Xi/i�1): in our toy example, this is straightforward since it
requires only the simulation ofWt which is distributed as a Gaussian r.v. N .0; t/

and then we have to computeX D f .xCWt/. The independence of simulations
is achieved by using a good generator of random numbers, like the excellent
Mersenne Twister11 generator.

2. Additionally, X which is already integrable (EjX j < C1) is assumed to be
square integrable: Var.X/ < C1.

Then, by the law of large numbers, we have

XM D 1

M

MX
iD1

Xi �!
M!C1 E.X/I (20)

hence the empirical mean of simulations of X provides a convergent approximation
of the expectation E.X/. As a difference with PDE methods where some stability
conditions may be required (like the Courant–Friedrichs–Lewy condition), the
above Monte Carlo method does not require any extra condition to converge: it is
unconditionally convergent. The extra moment condition is used to define a priori
error bounds on the statistical error: the approximation error is controlled by means
of the Central Limit Theorem

lim
M!C1P

 s
M

Var.X/

�
XM � E.X/

	 2 Œa; b�
!

D P.G 2 Œa; b�/;

11http://www.math.sci.hiroshima-u.ac.jp/~m-mat/MT/emt.html.

http://www.math.sci.hiroshima-u.ac.jp/~m-mat/MT/emt.html
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where G is a centered unit variance Gaussian r.v. Observe that the error bounds are
stochastic: we can not do better than arguing that with probability P.G 2 Œa; b�/,
the unknown expectation (asymptotically as M ! C1) belongs to the interval"

XM � b
r

Var.X/

M
;XM � a

r
Var.X/

M

#
:

This is known as a confidence interval at level P.G 2 Œa; b�/. The larger a and b,
the larger the confidence interval, the higher the confidence probability.

To obtain a fully explicit confidence interval, one may replace Var.X/ by its
estimator using the same simulations:

Var.X/ D E.X2/� .E.X//2 � M

M � 1

 
1

M

MX
iD1
X2
i �X2

M

!
WD �2M :

The factor M=.M � 1/ plays the role of unbiasing12 the value Var.X/, although
it is not a big deal for M large (M � 100). Anyway, we can prove that the above
conditional intervals are asymptotically unchanged by taking the empirical variance
�2M instead of Var.X/. Gathering these different results and seeking a symmetric
confidence interval �a D b D 1:96 and P.G 2 Œa; b�/ � 95%, we obtain the
following: with probability 95 %, approximatively for M large enough, we have

E.X/ 2
�
XM � 1:96 �Mp

M
;XM C 1:96

�Mp
M

�
: (21)

The symmetric confidence interval at level 99% is given by �a D b D 2:58. Since
a Monte Carlo method provides random evaluations of E.X/, different program
runs will give different results (as a difference with a deterministic method which
systematically has the same output) which seems uncomfortable: that is why it is
important to produce a confidence interval. This is also very powerful and useful to
have at hand a numerical method able to state that the error is at most of xxx with
high probability.

The confidence interval depends on

• The confidence level P.G 2 Œa; b�/, chosen by the user.
• The number of simulations: improving the accuracy by a factor 2 requires 4 times

more simulations.
• The variance Var.X/ or its estimator �2M , which depends on the problem to

handle (and not much on M as soon as M is large). This variance can be very
different from one problem to another: on Fig. 6, see the width of confidence
intervals for two similar computations. There exist variance reduction techniques

12Indeed, we can show that E.�2M / D Var.X/.
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Fig. 6 Monte Carlo computations of E.eG=10/ D e
1
2

1
102 � 1:005 on the left and E.e2G/ D e

1
2 2

2 �
7:389 on the right, whereG is a Gaussian r.v. with zero mean and unit variance. The empirical mean
and the symmetric 95 %-confidence intervals are plotted w.r.t. the number of simulations

able to significantly reduce this factor in order to provide thinner confidence
intervals while maintaining the same computational cost.

Another advantage of such a Monte Carlo algorithm is the simplicity of code,
consisting of one loop on the number of simulations; within this loop, the empirical
variance should be simultaneously computed. However, the simulation procedure of
X can be delicate in some situations, see Sect. 4.

At last, we focus our discussion on the impact of the dimension of the underlying
PDE, which has been equal to 1 so far. Consider now a state variable in R

d (d � 1/

and a heat equation with Cauchy initial condition in dimension d ; (15) becomes

u0
t .t; x; f / D 1

2
�u.t; x; f /; u.0; x; f / D f .x/; t > 0; x 2 R

d ; (22)

where � D Pd
iD1 @2xi xi stands for the Laplacian in R

d . Using similar arguments as
in dimension 1, we check that

u.t; x; f / D
Z
Rd

1

.2�t/d=2
exp.�jy � xj2=2t/f .y/dy D EŒf .x CWt/�

where W D

0
B@
W1

:::

Wd

1
CA is a d -dimensional Brownian motion, i.e. each Wi is a one-

dimensional Brownian motion and the d components are independent (Fig. 7).

• The Monte Carlo computation of u.t; x/ is then achieved using independent
simulations of X D f .x C Wt/: the accuracy is then of order 1=

p
N and the

computational effort is N � d . Thus, the dimension has a very low effect on the
complexity of the algorithm.
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Fig. 7 Brownian motion in dimension 2 and 3

• As a comparison with a PDE discretization scheme, to achieve an accuracy
of order 1=N , we essentially13 need N points in each spatial direction and it
follows that the resulting linear system to invert is of size Nd : thus, without
going into full details, it is clear that the computational cost to achieve a given
accuracy depends much on the dimension d . And the situation becomes less and
less favourable as the dimension increases. Also, the memory required to run a
PDE algorithm increases exponentially with the dimension, as a difference with
a Monte Carlo approach.

It is commonly admitted that a PDE approach is more suitable and efficient
in dimension 1 and 2, whereas a Monte Carlo procedure is more adapted for
higher dimensions. On the other hand, a PDE-based method computes a global
approximation of u (at any point .t; x/), while a Monte Carlo scheme gives a
pointwise approximation only. The probabilistic approach can be directly used for
Parallel Computing, each processor being in charge of a bunch of simulations at a
given point .t; x/.

2.2 PDE Associated to Other Processes

We extend the Feynman–Kac representation for the Brownian motion to the
Arithmetic Brownian Motion and the Ornstein–Uhlenbeck process.

13In fact, it generally depends on the regularity of u.
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2.2.1 Arithmetic Brownian Motion

First consider the Arithmetic Brownian motion defined by fXx
t D xCbtC�Wt ; t �

0g. The distribution ofXt is Gaussian with mean xCbt and variance �2t : we assume
in the following that � ¤ 0 which ensures that its density exists and is given by

gb;�2 .t; x; y/ D 1p
2��2t

exp � .y � x � bt/2

2�2t
D g.�2t; x C bt; y/

D g.�2t; x; y � bt/:

Denote by LABM
b;�2

the second order operator

LABM
b;�2

D 1

2
�2@2xx C b@x ; (23)

also called infinitesimal generator14 of X . A direct computation using the heat
equation for g.t; x; y/ gives

@tgb;�2 .t; x; y/ D 1

2
�2g00

xx.�
2t; xCbt; y/Cbg0

x.�
2t; xCbt; y/ D LABM

b;�2
gb;�2 .t; x; y/:

Hence, multiplying by f .y/ and integrating over y 2 R, we obtain the following
representation that generalizes Theorem 2.

Theorem 4. Let f be a bounded measurable function. The function

ub;�2.t; x; f / D EŒf .Xx
t /� D

Z
R

gb;�2 .t; x; y/f .y/dy (24)

solves(
u0
t .t; x; f / D LABM

b;�2
u.t; x; f / D 1

2
�2u00

xx.t; x; f /C bu0
x.t; x; f /;

u.0; x; f / D f .x/:
(25)

The extension of Propositions 10 and 11 follows the arguments used for the BM
case.

Proposition 12. If f 2 C 1;2
b and U is a bounded stopping time (including

deterministic time), then

14This labeling comes from the infinitesimal decomposition of E.f .Xt // as time is small,
@tE.f .Xt //jtD0 D LABM

b;�2
f .x/, see Proposition 12.
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EŒf .U;Xx
U /� D f .0; x/C E

� Z U

0

ŒLABM
b;�2
f .s; Xx

s /C f 0
t .s; X

x
s /�ds

�
:

Theorem 4 gives the Feynman–Kac representation of the Cauchy problem written
w.r.t. the second order operator LABM

b;�2
. When Dirichlet boundary conditions are

added, Corollary 1 extends as follows, using Proposition 12.

Corollary 2. Assume the existence of a solution u of class C1;2
b .Œ0; T � � Œa; b�/ to

the PDE 8̂̂<
ˆ̂:

u0
t .t; x; f / D LABM

b;�2
u.t; x; f /; for t > 0 and x 2�a; bŒ,

u.0; x; f / D f .0; x/ for t D 0 and x 2 Œa; b�;
u.t; x; f / D f .t; x/ for x D a or b, with t � 0:

Then it is given by

u.t; x/ D EŒf .t � Ux;Xx
Ux /�

where Ux D inffs > 0 W Xx
s …�a; bŒg ^ t is the first exit time from the interval �a; bŒ

by the process Xx before t .

As for the standard heat equation, this representation naturally leads to a proba-
bilistic algorithm to compute the PDE solution, by empirical mean of independent
simulation of f .t � Ux;Xx

Ux /.

2.2.2 Ornstein–Uhlenbeck Process

Now consider the process solution to V x
t D x�a R t

0
V x
s dsC�Wt : we emphasize in

our notation the dependence w.r.t. the initial value V0 D x. We define an appropriate
second order operator

LOU
a;�2

g.t; x/ D 1

2
�2g00

xx.t; x/ � axg0
x.t; x/

which plays the role of the infinitesimal generator for the Ornstein–Uhlenbeck
process. We recall that the Gaussian distribution of V x

t has mean xe�a t and variance
�2

2a
.1� e�2at/, the density of which at y (assuming � ¤ 0 for the existence) is

p.t; x; y/ D g.vt ; xe�at; y/:

Using the heat equation satisfied by g, we easily derive that

p0
t .t; x; y/ D 1

2
�2p00

xx.t; x; y/ � axp0
x.t; x; y/ D LOU

a;�2
p.t; x; y/;
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from which we deduce the PDE satisfied by u.t; x; f / D EŒf .V x
t /�. Incorporating

Dirichlet boundary conditions is similar to the previous cases. We state the related
results without extra details.

Theorem 5. Let f be a bounded measurable function. The function

u.t; x; f / D EŒf .V x
t /� D

Z
R

p.t; x; y/f .y/dy

solves (
u0
t .t; x; f / D LOU

a;�2
u.t; x; f /;

u.0; x; f / D f .x/:

Proposition 13. If f 2 C 1;2
b and U is a bounded stopping time, then

EŒf .U; V x
U /� D f .0; x/C E

� Z U

0

ŒLOU
a;�2

f .s; V x
s /C f 0

t .s; V
x
s /�ds

�
:

Corollary 3. Assume the existence of a solution u of class C1;2
b .Œ0; T � � Œa; b�/ to

the PDE 8̂̂<
ˆ̂:

u0
t .t; x; f / D LOU

a;�2
u.t; x; f /; for t > 0 and x 2�a; bŒ,

u.0; x; f / D f .0; x/ for t D 0 and x 2 Œa; b�;
u.t; x; f / D f .t; x/ for x D a or b, with t � 0:

Then u is given by

u.t; x/ D EŒf .t � Ux; V x
Ux /�

where Ux D inffs > 0 W V x
s …�a; bŒg ^ t .

2.2.3 A Natural Conjecture for Stochastic Differential Equations

The previous examples serve as a preparation for more general results, relating the
dynamics of a process and its Feynman–Kac representation. DenoteXx the solution
(whenever it exists) to the Stochastic Differential Equation

Xx
t D x C

Z t

0

b.Xx
s /ds C

Z t

0

�.Xx
s /dWs; t � 0:

In view of the results in simpler models, we announce the following facts.
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1. Set LX
b;�2
g D 1

2
�2.x/g00

xx C b.x/g0
x .

2. u.t; x/ D E.f .Xx
t // solves

u0
t .t; x/ D LX

b;�2
u.t; x/; u.0; x/ D f .x/:

3. If f 2 C 1;2
b and U is a bounded stopping time, then

EŒf .U;Xx
U /� D f .0; x/C E

� Z U

0

ŒLX
b;�2
f .s; Xx

s /C f 0
t .s; X

x
s /�ds

�
:

4. If u of class C1;2
b .Œ0; T � � Œa; b�/ solves the PDE

8̂̂<
ˆ̂:

u0
t .t; x/ D LX

b;�2
u.t; x/; for t > 0 and x 2�a; bŒ,

u.0; x/ D f .0; x/ for t D 0 and x 2 Œa; b�;
u.t; x/ D f .t; x/ for x D a or b, with t � 0;

then it is given by u.t; x/ D EŒf .t � Ux;Xx
Ux /� where Ux D inffs > 0 W Xx

s …
�a; bŒg ^ t .

The above result could be extended to PDE with a space variable in R
d (d � 1)

by considering a R
d -valued SDE: it would be achieved by replacing W by a d -

dimensional standard Brownian motion, by having a drift coefficient b W Rd 7! R
d

and a diffusion coefficient � W Rd 7! R
d ˝R

d , a reward function f W Œ0; T ��R
d 7!

R, by replacing the interval Œa; b� by a domainD in R
d and defining Ux as the first

exit time by Xx from that domain. Then the operator L would be a linear parabolic
second order operator of the form

LX
b;��>

g D 1

2

dX
i;jD1

Œ��>�i;j .x/@2xi xj g C
dX
iD1

bi .x/@xi g;

where > denotes the transpose. We could also add a zero-order term in LX
b;��>

, by
considering a discounting factor for f ; we do not develop further this extension.

The next section provides stochastic calculus tools, that allow to show the validity
of these Feynman–Kac type results, under some appropriate smoothness and growth
assumptions on b; �; f . To allow non smooth f or Dirichlet boundary conditions,
we may additionally assume a non-degeneracy condition on LX

b;��>

(like ellipticity

condition j��>.x/j � 1
c

for some c > 0).

Complementary References. See [1, 15, 20, 22, 23, 48].
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3 The Itô Formula

One achievement of Itô’s formula is to go from an infinitesimal time-decomposition
in expectation like

EŒf .t; x CWt/� � f .0; x/ D
Z t

0

EŒf 0
t .s; x CWs/C 1

2
f 00

xx.s; x CWs/�ds

(see (17)) to a pathwise infinitesimal time-decomposition of

f .t; x CWt/ � f .0; x/:

Since Brownian motion paths are not differentiable, it is hopeless to apply standard
differential calculus based on usual first order Taylor formula. Instead of this, we
go up to the second order, taking advantage of the fact that W has a finite quadratic
variation. The approach presented below is taken from the nice paper Calcul d’Itô
sans probabilité by Föllmer [19], which does not lead to the most general and
deepest approach but it has the advantage of light technicalities and straightforward
arguments compared to the usual tough arguments using L2-spaces and isometry
(see for instance [48] or [63] among others).

3.1 Quadratic Variation

3.1.1 Notations and Definitions

Brownian increments in a small interval Œt; t C h� are centered Gaussian r.v. with
variance h, which thus behave like

p
h. The total variation does not exist, because

the trajectories are not differentiable, but the quadratic variation has interesting
properties.

To avoid convergence technicalities, we consider particular time subdivisions.

Definition 7 (Dyadic Subdivision of Order n). Let n be an integer. The subdivi-
sion of RC defined by Dn D ft0 < � � � < ti < � � � g where ti D i2�n is called the
dyadic subdivision of order n. The subdivision step is ın D 2�n:

Definition 8 (Quadratic Variation). The quadratic variation of a Brownian
motionW associated with the dyadic subdivision of order n is defined, for t � 0, by

V n
t D

X
ti�t
.WtiC1

�Wti /
2: (26)
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3.1.2 Convergence

Then there is the following remarkable result.

Proposition 14 (Pointwise Convergence). With probability 1, we have

lim
n!1V n

t D t

for any t 2 R
C.

Had W been differentiable, the limit of V n would be equal to 0.

Proof. First let us show the a.s. convergence for a fixed time t , and denote by
n.t/ the index of the dyadic subdivision of order n such that tn.t/ 	 t < tn.t/C1:
Then observe that V n

t � t D Pn.t/
jD0 Zj C .tn.t/C1 � t/ where Zj D .WtjC1

�
Wtj /

2 � .tjC1 � tj /. The term tn.t/C1 � t converges to 0 as the subdivision step
shrinks to 0. The random variables Zj are independent, centered, square integrable
(since the Gaussian law ofWtjC1

�Wtj has finite fourth moments): additionally, the
scaling property of Proposition 1 ensures that E.Z2

j / D C2.tjC1� tj /2 for a positive
constant C2. Thus

E

0
@ n.t/X
jD0

Zj

1
A
2

D
n.t/X
jD0

E



Z2
j

�
D

n.t/X
jD0

C2.tjC1 � tj /2 	 C2.T C 1/ın:

This proves the L2-convergence of
Pn.t/

jD0 Zj towards 0.

Moreover we obtain
P

n�1 E

Pn.t/

jD0 Zj
�2

< 1, i.e. the random seriesP
n�1


Pn.t/
jD0 Zj

�2
has a finite expectation, whence a.s. finite and consequently its

general term converges a.s. to 0. This shows that for any fixed t , V n
t ! t except on

a negligible set Nt .
We now extend the result to any time: first the set N D [t2QC

Nt is still
negligible because the union of negligible sets is taken on a countable family. For
an arbitrary t , take two monotone sequences of rational numbers rp " t and sp # t
as p ! C1. Since t 7! V n

t is increasing for fixed n, we deduce, for any ! … N

rp D lim
n!1V n

rp
.!/ 	 lim inf

n!1 V n
t .!/ 	 lim sup

n!1
V n
t .!/ 	 lim

n!1V n
sp
.!/ D sp:

Passing to the limit in p gives the result. ut
As a consequence, we obtain the formula giving the infinitesimal decomposition

of W 2
t .

Proposition 15 (A First Itô Formula). Let W be a standard Brownian motion.
With probability 1, we have for any t � 0
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W 2
t D 2

Z t

0

WsdWs C t (27)

where the stochastic integral
R t
0
WsdWs is the a.s. limit of

P
ti�t Wti .WtiC1

� Wti /,
along the dyadic subdivision.

For usual C1-function f .t/, we have f 2.t/ � f 2.0/ D 2
R t
0
f .s/df .s/: the extra

term t in (27) is intrinsically related to Brownian motion paths.

Proof. Adopting once again the notation with n.t/, we have

W 2
t D W 2

t �W 2
tn.t/C1

C
X
ti�t
.W 2

tiC1
�W 2

ti
/

D W 2
t �W 2

tn.t/C1
C
X
ti�t
.WtiC1

�Wti /
2 C 2

X
ti�t

Wti .WtiC1
�Wti /:

The first term at the r.h.s. tends towards 0 by continuity of the Brownian paths. The
second term is equal to V n

t and converges towards t . Consequently, the third term at
the right-hand side must converge a.s. towards a term that we call stochastic integral
and that we denote by 2

R t
0
WsdWs . ut

The random function V n
t , as a function of t , is increasing and can be associated

to the cumulative distribution function of the positive discrete measure

X
i�0
.WtiC1

�Wti /
2ıti .:/ D �n.:/

satisfying �n.f / D P
i�0 f .ti /.WtiC1

�Wti /
2.

The convergence of cumulative distribution function of �n.:/ (Proposition 14)
can then be extended to integrals of continuous functions (possibly random as well).
It is the purpose of the following result which is of deterministic nature.

Proposition 16 (Convergence as a Positive Measure). For any continuous func-
tion f , with probability 1 we have

lim
n!1

X
ti�t

f .ti /.WtiC1
�Wti /

2 D
Z t

0

f .s/ds

for any t � 0.

The proof is standard: the result first holds for functions of the form f .s/ D
1�r1;r2�.s/, then for piecewise constant functions, at last for continuous functions by
simple approximations.
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3.2 The Itô Formula for Brownian Motion

Differential calculus extends to other functions than x ! x2. To the usual classical
formula with functions that are smooth in time, a term should be added, due to the
non-zero quadratic variation.

Theorem 6 (Itô Formula). Let f 2 C 1;2.RC �R;R/. Then with probability 1, we
have t � 0

f .t; x CWt/ D f .0; x/C
Z t

0

f 0
x .s; x CWs/ dWs

C
Z t

0

f 0
t .s; x CWs/ ds C 1

2

Z t

0

f 00
xx.s; x CWs/ ds: (28)

The term It .f / D R t
0
f 0
x .s; xCWs/dWs is called the stochastic integral of f 0

x.s; xC
Ws/ w.r.t. W and it is the a.s. limit of

I n
t .f;W / D

X
ti�t

f 0
x .ti ; x CWti /.WtiC1

�Wti /

taken along the dyadic subdivision of order n.

The reader should compare the equality (28) with (17) to see that, under the extra
assumptions that f is bounded with bounded derivatives, we have proved that the
stochastic integral It .f / is centered:

E.

Z t

0

f 0
x .s; x CWs/ dWs/ D 0: (29)

This explains how we can expect to go from (28) to (17):

1. Apply Itô formula.
2. Take expectation.
3. Prove that the stochastic integral is centered.

This is an interesting alternative proof to the property satisfied by the Gaussian
kernel, which is difficult to extend to more general (non Gaussian) process.

Proof. As before, let us introduce the index n.t/ such that tn.t/ 	 t < tn.t/C1; then
we can write

f .t ; x CWt/ D f .0; x/C Œf .t; x CWt/� f .tn.t/C1; x CWtn.t/C1
/�

C
X
ti�t
Œf .tiC1; x CWtiC1

/ � f .ti ; x CWtiC1
/�

C
X
ti�t
Œf .ti ; x CWtiC1

/� f .ti ; x CWti /�:
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• The second term of the r.h.s. Œf .t; x CWt/� f .tn.t/C1; x CWtn.t/C1
/� converges

to 0 by continuity of f .t; x CWt/.
• The third term is analyzed by means of the first order Taylor formula:

f .tiC1; x CWtiC1
/ � f .ti ; x CWtiC1

/ D f 0
t .�i ; x CWtiC1

/.tiC1 � ti /

for �i 2�ti ; tiC1Œ. The uniform continuity of .Ws/0�s�tC1 ensures that
supi jf 0

t .�i ; x C WtiC1
/ � f 0

t .ti ; x CWti /j ! 0: thus limn!1
P

ti�t f
0
t .�i ; x C

WtiC1
/.tiC1 � ti / equals to

lim
n!1

X
ti�t

f 0
t .ti ; x CWti /.tiC1 � ti / D

Z t

0

f 0
t .s; x CWs/ds:

• A second order Taylor formula allows to write the fourth term: f .ti ; xCWtiC1
/�

f .ti ; x CWti / equals

f 0
x.ti ; x CWti /.WtiC1

�Wti /C 1

2
f 00

xx.ti ; x C 
i /.WtiC1
�Wti /

2

where 
i 2 .Wti ;WtiC1
/. Similarly to before, supi jf 00

xx.ti ; x C 
i / � f 00
xx.ti ; x C

Wti /j D �n ! 0 and it leads to

ˇ̌̌X
ti�t
.f 00

xx.ti ; x C 
i /� f 00
xx.ti ; x CWti //.WtiC1

�Wti /
2
ˇ̌̌

	 �nV
n
t ;

lim
n!1

X
ti�t

f 00
xx.ti ; x CWti /.WtiC1

�Wti /
2 D

Z t

0

f 00
xx.s; x CWs/ds;

by applying Proposition 16.

Observe that in spite of the non-differentiability of W ,
X
ti�t

f 0
x.ti ; x CWti /.WtiC1

�
Wti / is necessarily convergent as a difference of convergent terms. ut

Interestingly, we obtain a representation of the random variable f .x CWt/ as a
stochastic integral, in terms of the derivatives of solution u to the heat equation

u0
t .t; x/ D 1

2
u00

xx.t; x/; u.0; x/ D f .x/:

Corollary 4. Assume that u 2 C 1;2
b .Œ0; T � � R/. We have

f .x CWT / D u.T; x/C
Z T

0

u0
x.T � s; x CWs/dWs: (30)
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Proof. Apply the Itô formula to v.t; x/ D u.T � t; x/ (which satisfies v0
t .t; x/ C

1
2
v00

xx.t; x/ D 0) at time T . This gives f .x C WT / D u.0; x C WT / D u.T; x/ CR T
0

u0
x.T � s; x CWs/dWs . ut

This representation formula leads to important remarks.

• If the above stochastic integral has zero expectation (as for the examples
presented before), taking the expectation shows that

u.T; x/ D E.f .x CWT //;

recovering the Feynman–Kac representation of Theorem 2.
• Then, the above representation writes, setting � D f .x CWT /,

� D E.�/C
Z T

0

hsdWs:

Actually, a similar stochastic integral representation theorem holds in a larger
generality on the form of � , since any bounded15 functional of .Wt /0�t� T can
be represented as its expectation plus a stochastic integral: the process h is not
tractable in general, whereas here it is explicitly related to the derivative of u
along the Brownian path.

• Assume u 2 C 1;2
b .Œ0; T � � R/ imposes that f 2 C 2

b .R/ which is too strong
for many applications: however, the assumptions on u can be relaxed to handle
bounded measurable function f , because the heat equation is immediately
smoothing out the initial condition. The proof of this extension involves extra
stochastic calculus technicalities that we do not develop.

3.3 Wiener Integral

In general, it is not possible to make explicit the law of the stochastic integralR t
0
f 0
x.s; x C Ws/dWs, except in a situation where f 0

x .s; x/ D h.s/ is independent
of x and square integrable. In that case,

R t
0
h.s/dWs is distributed as a Gaussian r.v.

The resulting stochastic integral is called Wiener integral. We sum up its important
properties.

Proposition 17 (Wiener Integral and Integration by Parts). Let f W Œ0; T � 7! R

be a continuously differentiable function, with bounded derivatives on Œ0; T �.

1. With probability 1, for any t 2 Œ0; T � we have

15Integrability is the right assumption.
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Z t

0

f .s/dWs D f .t/Wt �
Z t

0

Wsf
0.s/ds: (31)

2. The process fR t
0
f .s/dWs I t 2 Œ0; T �g is a continuous Gaussian process, with

zero mean and with a covariance function

Cov.
Z t

0

f .u/dWu;

Z s

0

f .u/dWu/ D
Z s^t

0

f 2.u/du: (32)

3. For another function g satisfying the same assumptions, we have

Cov.
Z t

0

f .u/dWu;

Z s

0

g.u/dWu/ D
Z s^t

0

f .u/g.u/du: (33)

Proof. The first item is a direct application of Theorem 6 to the function .t; x/ 7!
f .t/x.

For any coefficients .˛i /1�i�N and times .Ti /1�i�N ,
PN

iD1 ˛i
R Ti
0
f .u/dWu

is a Gaussian r.v. since it can written as a limit of Gaussian r.v. of the formP
j ˇj .WtjC1

� Wtj /: thus, fR t
0
f .s/dWs I t 2 Œ0; T �g is a Gaussian process. Its

continuity is obvious in view of (31). Its expectation is the limit of the expectation
of
P

ti�t f .ti /ŒWtiC1
� Wti �, thus equal to 0. The covariance is the limit of the

covariance

Cov.
X
ti�t

f .ti /ŒWtiC1
�Wti �;

X
ti�s

f .ti /ŒWtiC1
�Wti �/

D
X

ti�t;tj�s
f .ti /f .tj /Cov.WtiC1

�Wti ;WtiC1
�Wti /

D
X

ti�t;tj�s
f .ti /f .tj /ıi;j .tiC1 � ti / �!

n!C1

Z s^t

0

f 2.u/du:

The second item is proved. The last item is proved similarly. ut
As a consequence, going back to the Ornstein–Uhlenbeck process (Sect. 1.6.2), we
can complete the proof of its representation (11) using a stochastic integral, starting
from (10). For this apply the result below to the function f .s/ D e�a.t�s/ (t fixed):
it gives

R t
0
e�a.t�s/dWs D Wt � a

R t
0
e�a.t�s/Wsds. It leads to

Vt D v0e
�at C �

Z t

0

e�a.t�s/dWs: (34)

Then the Gaussian property from Proposition 17 gives that the variance of Vt is
equal to �2

R t
0
e�2a.t�s/ds D �2

2a
.1 � e�2at/.
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3.4 Itô Formula for Other Processes

The reader should have noticed that the central property for the proof of Theorem 6
is that the Brownian motion has a finite quadratic variation. Thus, the Itô formula
can directly be extended to processes X which enjoy the same property.

3.4.1 The One-Dimensional Case

In this paragraph, we first consider scalar processes. The multidimensional exten-
sion is made afterwards.

Definition 9 (Quadratic Variation of a Process). A continuous process X has a
finite quadratic variation if for any t � 0, the limit

V n
t D

X
ti�t
.XtiC1

� Xti /
2 (35)

along the dyadic subdivision of order n, exists a.s. and is finite. We denote this limit
by hXit and it is usually called the bracket of X at time t .

If X D W is a Brownian motion, we have hXit D t . More generally, it is easy to
check that hXi is increasing and continuous. We associate to it a positive measure
and this extends Proposition 16 to X .

Proposition 18. For any continuous function f , with probability 1 for any t � 0

we have

lim
n!1

X
ti�t

f .ti /.XtiC1
� Xti /

2 D
Z t

0

f .s/dhXis:

Theorem 6 becomes

Theorem 7 (Itô Formula for X ). Let f 2 C 1;2.RC � R;R/ and X be with finite
quadratic variation. With probability 1, for any t � 0 we have

f .t; Xt / D f .0;X0/C
Z t

0

f 0
x .s; Xs/ dXs C

Z t

0

f 0
t .s; Xs/ ds

C1

2

Z t

0

f 00
xx.s; Xs/ dhXis; (36)

where
R t
0
f 0
x.s; Xs/dXs is the stochastic integral of f 0

x .s; Xs/ w.r.t. X and it is the
a.s. limit of

P
ti�t f

0
x.ti ; Xti /.XtiC1

� Xti / along dyadic subdivision of order n.
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Often, the Itô formula is written formally under a differential form

df .t; Xt/ D f 0
x.t; Xt / dXt C f 0

t .t; Xt / dt C 1

2
f 00

xx.t; Xt / dhXit :

We now provide hand-made tools to compute the bracket of X in practice.

Proposition 19 (Computation of the Bracket). Let A and M two continuous
processes such that A has a finite variation16 and M has a finite quadratic
variation:

1. hAit D 0.
2. If Xt D x CMt , then hXit D hM it .
3. If Xt D �Mt , then hXit D �2hM it .
4. If Xt D Mt C At , then hXit D hM it .
5. If Xt D f .At ;Mt / with f 2 C1, then hXit D R t

0 Œf
0
m.As;Ms/�

2dhM is.
The proof is easy and it uses deterministic arguments based on the definition of hXi,
we skip it. Item (5) shows that the class of processes with finite quadratic variation
is stable by smooth composition. The following examples are important.

Example 1 (Arithmetic Brownian Motion). (Xt D x C bt C �Wt ): we have

hXit D h�W it D �2hW it D �2t:

Itô’s formula becomes

df .t; Xt/ D .f 0
t .t; Xt /C f 0

x .t; Xt/b C 1

2
f 00

xx.t; Xt /�
2/dt C f 0

x.t; Xt /�dWt

WD .f 0
t .t; Xt /C LABM

b;�2
f .t; Xt//dt C f 0

x.t; Xt /�dWt: (37)

An important example is associated to f .x/ D exp.x/:

dŒexp.Xt /� D exp.Xt/.b C 1

2
�2/dt C exp.Xt/�dWt : (38)

Example 2 (Geometric Brownian Motion). (St D S0e
.�� 1

2 �
2/tC�Wt ): we have

hSit D
Z t

0

�2S2s ds:

From (38), we obtain a linear equation for the dynamics of S ,

16That is the sum of
P

ti�t jAtiC1
� Ati j exists and is finite, for instance A is continuously

differentiable.
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dSt D St�dt C St�dWt

also written dSt
St

D �dt C �dWt putting an emphasize of the financial interpretation
as returns. The Itô formula writes

df .t; St / D .f 0
t .t; St /C f 0

x.t; St /St�C 1

2
f 00

xx.t; St /S
2
t �

2/dt C f 0
x .t; St /�StdWt

WD .f 0
t .t; St /C LGBM

�;�2
f .t; St //dt C f 0

x .t; St /�StdWt: (39)

Example 3 (Ornstein–Uhlenbeck Process). (Vt D v0 � a
R t
0
Vsds C �Wt ): we have

hV it D �2t:

The Itô formula follows

df .t; Vt / D .f 0
t .t; Vt / � af 0

x .t; Vt /Vt C 1

2
�2f 00

xx.t; Vt //dt C f 0
x.t; Vt /�dWt

WD .f 0
t .t; Vt /CLOU

a;�2
f .t; Vt //dt C f 0

x.t; Vt /�dWt : (40)

Example 4 (Euler Scheme Defined in (12)). (Xh
t D Xh

ih C b.Xh
ih/.t � ih/ C

�.Xh
ih/.Wt �Wih/ for i � 0; t 2 .ih; .iC1/h�). SinceXh is an arithmetic Brownian

motion on each interval .ih; .i C 1/h�, we easily obtain

hXhit D
Z t

0

�2.'.s/; Xh
'.s//ds

where '.t/ D ih for t 2 .ih; .i C 1/h�. The Itô formula writes

df .t; Xh
t / D .f 0

t .t; X
h
t /C b.Xh

'.t//f
0
x.t; X

h
t /C 1

2
�2.Xh

'.t//f
00

xx.t; X
h
t //dt

Cf 0
x .t; X

h
t /�.X

h
'.t//dWt: (41)

3.4.2 The Multidimensional Case

We briefly expose the situation when X D .X1; : : : ; Xd / takes values in R
d . The

main novelty consists in considering the cross quadratic variation defined by the
limit (assuming its existence, along dyadic subdivision) of

hXk;Xlint D
X
ti�t
.Xk;tiC1

�Xk;ti /.Xl;tiC1
�Xl;ti / �!

n!C1 hXk;Xlit : (42)

We list basic properties.
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Properties 8

1. SYMMETRY: hXk;Xlit D hXl;Xkit .
2. USUAL BRACKET: hXk;Xkit D hXkit .
3. POLARIZATION: hXk;Xlit D 1

4
.hXk CXlit � hXk � Xlit / :

4. h�; �it is bilinear.
5. For any continuous function f , we have

lim
n!1

X
ti�t

f .ti /.Xk;tiC1
�Xk;ti /.Xl;tiC1

� Xl;ti / D
Z t

0

f .s/dhXk;Xlis:

6. Let X1;t D f .A1;t ;M1;t / and X2;t D g.A2;t ;M2;t /, where the variation (resp.
quadratic variation) of A D .A1; A2/ (resp. M D .M1;M2/) is finite, and let f
and g be two C 1-functions: we have

hX1;X2it D
Z t

0

f 0
m.A1;s;M1;s/g

0
m.A2;s ;M2;s/dhM1;M2is:

In particular, hA1 CM1;A2 CM2it D hM1;M2it .
7. Let W1 andW2 be two independent Brownian motions: then

hW1;W2it D 0:

Proof. The statements (1)–(6) are easy to check from the definition or using
previous arguments. The statement (7) is important and we give details: use the
polarization identity

hW1;W2it D 1

4
.hW1 CW2it � hW1 �W2it / :

We observe that both 1p
2
.W1 CW2/ and 1p

2
.W1 �W2/ are Brownian motions, since

each one is a continuous Gaussian process with the right covariance function. Thus,
h 1p

2
.W1 CW2/it D h 1p

2
.W1 �W2/it D t and the result follows. ut

The Itô formula naturally extends to this setting.

Theorem 9 (Multidimensional Itô Formula). Let f 2 C 1;2.RC � R
d ;R/ and X

be a continuous d -dimensional process with finite quadratic variation. Then, with
probability 1, for any t � 0 we have

f .t; Xt / D f .0;X0/C
dX
kD1

Z t

0

f 0
xk
.s; Xs/ dXk;s

C
Z t

0

f 0
t .s; Xs/ ds C 1

2

dX
k;lD1

Z t

0

f 00
xk ;xl

.s; Xs/ dhXk;Xl is

where the sum of stochastic integrals are defined as before.
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In particular, the integration by parts formula writes

X1;tX2;t D X1;0X2;0 C
Z t

0

X1;sdX2;s C
Z t

0

X2;sdX1;s C hX1;X2it :

For two independent Brownian motions, we recover the usual deterministic formula
(because hW1;W2it D 0), but in general, formulas are different because of the
quadratic variation.

3.5 More Properties on Stochastic Integrals

So far, we have defined some specific stochastic integrals, those appearing in
deriving a Itô formula and which have the form

Z t

0

f 0
x .s; Xs/dXs D lim

n!C1
X
ti�t

f 0
x .ti ; Xti /.XtiC1

� Xti /; (43)

the limit being taken along dyadic subdivision. Also, we have proved that if f has
bounded derivatives andX D W is a Brownian motion, the above stochastic integral
must have zero-expectation [see equality (29)]. Moreover, we also have established
that in the case of deterministic integrand (Wiener integral), the second moment of
the stochastic integral is explicit and given by

E.

Z t

0

hsdWs/
2 D

Z t

0

h2sds:

The aim of this paragraph is to provide extensions of the above properties on the
two first moments to more general integrands, under some suitable boundedness or
integrability conditions.

3.5.1 Heuristic Arguments

In view of the previous construction, there is a natural candidate to be the stochastic
integral

R t
0 hsdWs . When h is piecewise constant process (called simple process),

that is hs D hti if s 2 Œti ; tiC1� for a given deterministic time grid .ti /i , we set

Z t

0

hsdWs D
X
ti�t

hti .Wt^tiC1
�Wti /; (44)

Without extra assumptions on the stochasticity of h, it is not clear why its
expectation equals 0. This property should come from the centered Brownian
incrementsWt^tiC1

�Wti and their independence to hti so that
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E.

Z t

0

hsdWs/ D
X
ti�t

E.hti /E.Wt^tiC1
�Wti / D 0:

To validate this computation, we shall assume that ht depends only the Brownian
Motion W before t and it is integrable. To go to the second moment, assume
additionally that h is square integrable: then

Ej
Z t

0

hsdWs j2

D 2
X

ti <tj�t

E.hti htj .Wt^tiC1
�Wti //E.Wt^tjC1

�Wtj /C
X
ti�t

E.h2ti /EjWt^tiC1
�Wti j2

D
X
ti�t

E.h2ti /.t ^ tiC1 � ti / D E.

Z t

0

h2sds/: (45)

This equality should be read as an isometry property (usually referred to as Itô
isometry), on which we can rely an extension of the stochastic integral of simple
process to more general process. At this point, we should need to enter into
measurability considerations to describe what “ht depends only the Brownian
Motion W before t” means at the most general level. It goes far beyond this
introductory lecture: for the exposure of the general theory, see for instance [48]
or [63].

For most of the examples considered in this lecture, we can restrict to very good
integrands, in the sense that a integrand h is very good if

1. .ht /t is continuous or piecewise continuous (as for simple processes).
2. For a given t , ht is a continuous functional of .Ws W s 	 t/.
3. It is square integrable in time and !: E.

R t
0 h

2
sds/ < C1 for any t .

This setting ensures that we can define stochastic integrals for very good integrands
as the L2-limit of stochastic integrals for simple integrands: indeed, a Cauchy
sequence .hn/n in L2.dt ˝ dP/ gives a Cauchy sequence .

R t
0
hn;sdWs/n in L2.P/

due to the isometry (45).

3.5.2 General Results

We collect here all the stochastic integration results needed in this lecture.

Theorem 10. Let h be a very good integrand. Then the stochastic integral
R t
0
hsdWs

is such that

1. It is the L2 limit of
P

ti�t hti .Wt^tiC1
� Wti / along time subdivision which time

step goes to 0.
2. It is centered: E.

R t
0
hsdWs/ D 0.
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3. It is square integrable: Ej R t
0
hsdWsj2 D E.

R t
0
h2sds/.

4. For two very good integrands h1 and h2, we have

E

h
.

Z t

0

h1;sdWs/.

Z t

0

h2;sdWs/
i

D E.

Z t

0

h1;sh2;sds/:

Beyond the t-by-t construction, actually the full theory gives a construction for any
t simultaneously, proving additionally time continuity property, general centering
property (martingale property), tight Lp-estimates on the value at time t and
the extrema until time t (Burkholder–Davis–Gundy inequalities) and so on. . . For
multidimensionalW and h, the construction should be understood componentwise.
Another fruitful extension is to allow t to be a bounded stopping time, similarly to
the discussion we have made in the proof of Theorem 3.

Another interesting part in the theory is devoted to the existence and uniqueness
of solution to Stochastic Differential Equations (also known as diffusion processes).
The easiest setting is to assume globally Lipschitz coefficients17: it is similar to the
ODE framework, and the proof is also based on the Picard fixed-point argument. We
state the results without proof.

Theorem 11. Let W be a d -dimensional standard Brownian motion.
Assume that the functions b W Rd 7! R

d and � W Rd 7! R
d ˝ R

d are globally
Lipschitz. Then, for any initial condition x 2 R

d , there exists a unique18 continuous
solution .Xx

t /t�0 valued in R
d which satisfies

Xx
t D x C

Z t

0

b.Xx
s /ds C

Z t

0

�.Xx
s /dWs; (46)

with sup0�t�T EjXx
t j2 < C1 for any given T 2 R

C.
The continuous process Xx has a finite quadratic variation given by

hXx
k ;X

x
l it D

Z t

0

Œ��>�k;l .Xx
s /ds; 1 	 k; l 	 d: (47)

Observe that this general result includes all the model considered before, such as
Arithmetic and Geometric Brownian Motion, Ornstein–Uhlenbeck processes, here
stated in a possibly multidimensional framework.

Complementary References. See [48, 63].

17Leading to the notion of strong solution; the case of non-smooth coefficients is much more
delicate and related to weak solutions, see [67].
18Up to a set of zero probability measure.
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4 Monte Carlo Resolutions of Linear PDEs Related to SDEs

Probabilistic methods to solve PDEs have become very popular during the two
last decades. They are usually not competitive compared to deterministic methods
in low dimension, but for higher dimension they provide very good alternative
schemes. In the sequel, we give a brief introduction to the topics, relying on the
material presented in the previous sections. We start with linear parabolic PDEs,
with Cauchy–Dirichlet boundary conditions. Next section is devoted to semi-linear
PDEs.

4.1 Second Order Linear Parabolic PDEs with Cauchy Initial
Condition

4.1.1 Feynman–Kac Formulas

We start with a verification Theorem generalizing Theorems 2, 4, 5 to the case of
general SDEs. We incorporate a source term g.

Theorem 12. Under the assumptions of Theorem 11, let Xx be the solution (46)
starting from x 2 R

d and set

LX
b;��>

D 1

2

dX
i;jD1

Œ��>�i;j .x/@2xi xj C
dX
iD1

bi .x/@xi :

Assume there is a solution u 2 C 1;2
b .RC � R

d ;R/ to the PDE

(
u0
t .t; x/ D LX

b;��>

u.t; x/C g.x/;

u.0; x/ D f .x/
(48)

for two given functions f; g W Rd ! R. Then u is given by

u.t; x/ D EŒf .Xx
t /C

Z t

0

g.Xx
s /ds�: (49)

Proof. Let t be fixed. We apply the general Itô formula (Theorem 9) to the process
Xx and to the function v W .s; y/ 7! u.t � s; y/: it gives

dv.s; Xx
s / D �

v0
s.s; X

x
s /CLX

b;��>

v.s; Xx
s /
�
ds CDv.s; Xx

s /�.X
x
s /dWs (50)

D �g.Xx
s /ds CDv.s; Xx

s /�.X
x
s /dWs (51)
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where Dv WD .@x1v; : : : ; @xd v/. Observe that the integrand hs D Dv.s; Xx
s /�.X

x
s /

is very good, since v has bounded derivatives, � has a linear growth, and Xs
has bounded second moments, locally uniformly in s: thus, the stochastic integralR t
0

Dv.s; Xx
s /�.X

x
s /dWs has zero expectation. Hence, applying the above decompo-

sition between s D 0 and s D t and taking the expectation, it gives

E.f .Xx
t // D E.v.t; Xx

t // D v.0; x/�E.

Z t

0

g.Xx
s /ds/ D u.t; x/�E.

Z t

0

g.Xx
s /ds/:

We are done. ut
Smoothness assumptions on u are satisfied in f; g are smooth enough. If not, and
if a uniform ellipticity condition is met on ��>, the fundamental solution of the
PDE is smoothing the data and the result can be extended. However, the derivatives
blow up as time goes to 0, and more technicalities are necessary to justify the same
stochastic calculus computations. The fundamental solution p.t; x; y/ has a simple
probabilistic interpretation: it is the density ofXx

t at y. Indeed, identify EŒf .Xx
t /CR t

0
g.Xx

s /ds� with

u.t; x/ D
Z
Rd

p.t; x; y/f .y/dy C
Z t

0

Z
Rd

p.s; x; y/g.y/dy ds:

4.1.2 Monte Carlo Schemes

Since u.t; x/ is represented as an expectation, it allows the use of a Monte Carlo
method to numerically compute the solution. The difficulty is that in general,X can
not be simulated perfectly accurately, only an approximation on a finite time-grid
can be simply and efficiently produced. Namely we use the Euler scheme with time
step h D t=N :

(
X
x;h
0 D x;

Xx;h
s D X

x;h
ih C b.X

x;h
ih /.s � ih/C �.X

x;h
ih /.Ws �Wih/; i � 0; s 2 .ih; .i C 1/h�:

(52)

Observe that to get Xx;h
t , we do not need to sample the continuous path of Xx;h (as

difficult as having a continuous path of a Brownian motion): in fact, we only need to
computeXx;h

ih iteratively for i D 0 to i D N . Each time iteration requires to sample
d new independent Gaussian incrementsWk;.iC1/h�Wk;ih, centered with variance h:
it is straightforward. The computational cost is essentially equal to C.d/N where
the constant depends on the dimension (coming from d -dimensional vector and
matrix computations).

As an approximation of the expectation of E .f; g;Xx/ D f .Xx
t /C

R t
0
g.Xx

s /ds,
we take the expectation
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E .f; g;Xx;h/ D f .X
x;h
Nh /C

N�1X
iD0

g.X
x;h
ih /h; (53)

a random variable of which we sample M independent copies, that are denoted by
fE .f; g;Xx;h;m/ W 1 	 m 	 M g. Then, the Monte Carlo approximation, based on
this sample of M Euler schemes with time step h, is

1

M

MX
mD1

E .f; g;Xx;h;m/ D u.t; x/ C 1

M

MX
mD1

E .f; g;Xx;h;m/� E.E .f; g;Xx;h//

„ ƒ‚ …
statistical error Err:stat:.h;M/

CE.E .f; g;Xx;h// � u.t; x/„ ƒ‚ …
discretization error Err:disc:.h/

: (54)

The first error contribution is due to the sample of finite size: the larger M , the
better the accuracy. As mentioned in Sect. 2.1.3, once renormalized by

p
M , this

error is still random and its distribution is closed to the Gaussian distribution with
zero mean and variance Var.E .f; g;Xx;h//: the latter still depends on h but very
little, since it is expected to be close to Var.E .f; g;Xx//.

The second error contribution is related to the time discretization effect: the
smaller the time h, the better the accuracy. In the sequel (Sect. 4.1.3), we theoreti-
cally estimate this error in terms of h, and proves that it is of order h (even equivalent
to) under some reasonable and fairly general assumptions.

What Is the Optimal Tuning of h ! 0 and M ! C1? An easy complexity
analysis shows that the computational effort is Ce D C.d/Mh�1. Observe that the
rate does not depend on the dimension d , as a difference with a PDE method, but
on the other hand, the solution is computed only at single point .t; x/. The squared
quadratic error is equal to

ŒErr2.h;M/�2 WD E

h 1
M

MX
mD1

E .f; g;Xx;h;m/� u.t; x/
i2

D Var.E .f; g;Xx;h//

M
C
h
E.E .f; g;Xx;h//� u.t; x/

i2
:

Only the first factor Var.E .f; g;Xx;h// can be estimated with the same sample, for
M large, and it depends little of h. Say that the second term is equivalent to .Ch/2

as h ! 0, with C ¤ 0. Then, three asymptotic situations occur:

1. If M � h�2, the statistical error becomes negligible and 1
M

PM
mD1 E .f; g;

Xx;h;m/ � u.t; x/ 
 Ch. The computational effort is Ce � h�3 and thus
Err2.h;M/ � C�1=3

e . Deriving a confidence interval as in Sect. 2.1.3 is
meaningless, we face with the discretization error only.
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2. If M � h�2, the discretization error becomes negligible and the distribution

of
p
M


1
M

PM
mD1 E .f; g;Xx;h;m/� u.t; x/

�
converges to that a Gaussian r.v.

centered with variance Var.E .f; g;Xx// (that can be asymptotically computed
using theM - sample). Thus, we can derive confidence intervals: setting �2h;M the
empirical variance of E .f; g;Xx;h/, with probability 95 % we have

u.t; x/2
h 1
M

MX
mD1

E .f; g;Xx;h;m/�1:96�h;Mp
M
;
1

M

MX
mD1

E .f; g;Xx;h;m/C1:96�h;Mp
M

i
:

Regarding the computational effort, we haveCe � M3=2 and thus Err2.h;M/ �
C

�1=3
e .

3. If M 
 ch�2, both statistical and discretization errors have the same magnitude
and one can still derive a asymptotic confidence interval, but it is no more
centered (as in M � h�2) and unfortunately, the bias is not easily estimated
on the fly. The problem is that the bias is of same magnitude as the size of the
confidence interval, thus it reduces the interest of having such a priori statistical
error estimate. Here, Err2.h;M/ D O.C�1=3

e /.

Summing up by considering the ability of having or not on-line error estimates and
by optimizing the final accuracy w.r.t. the computational effort, the second case
M D h�2C" (for a small " > 0) may be the most attractive since it achieves (almost)
the best accuracy w.r.t. the computational effort and gives a centered confidence
interval (and therefore tractable and meaningful error bounds).

4.1.3 Convergence of the Euler Scheme

An important issue is to analyze the impact of time discretization of SDE. This
dates back to the end of eighties, see [68] among others. The result below gives a
mathematical justification of the use of the Euler scheme as an approximation for
the distribution of the SDE.

Theorem 13. Assume that b and � are C 2
b , letXx be the solution (46) starting from

x 2 R
d and let Xh;x be its Euler scheme defined in (52). Assume that u.t; x/ D

EŒf .Xx
t /C R t

0
g.Xx

s /ds� is a C 2;4
b .Œ0; T � � R

d ;R/-function solution of the PDE of
Theorem 12. Then,

E

h
f .X

x;h
Nh /C

N�1X
iD0

g.X
x;h
ih /h

i
� E

h
f .Xx

t /C
Z t

0

g.Xx
s /ds

i
D O.h/:

Proof. Denote by Err:disc:.h/ the above discretization error. As in Theorem 12, we
use the function v W .s; y/ 7! u.t � s; y/ (for a fixed t) and we apply the Itô formula
to Xh;x (Theorem 9): it gives (setting Dv WD .@x1v; : : : ; @xd v/)
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dv.s; Xh;x
s / D

h
v0
s.s; X

h;x
s /C 1

2

dX
i;jD1

Œ��>�i;j .Xh;x
'.s//@

2
xi xj

v.s; Xh;x
s /

C
dX
iD1

bi .X
h;x
'.s//@xi v.s; X

h;x
s /

i
ds CDv.s; Xh;x

s /�.X
h;x
'.s//dWs:

D
h1
2

dX
i;jD1

�
Œ��>�i;j .Xh;x

'.s// � Œ��>�i;j .Xh;x
s /

	
@2xi xj v.s; Xh;x

s /

C
dX
iD1

�
bi .X

h;x
'.s//� bi .X

h;x
s /

	
@xi v.s; X

h;x
s /� g.Xh;x

s /
i
ds

CDv.s; Xh;x
s /�.Xh;x

'.s//dWs

where at the second equality, we have used the PDE solved by v at .s; Xx
s /. Then, by

taking the expectation (it removes the stochastic integral term because the integrand
is very good), we obtain

Err:disc:.h/ D E

h
v.Nh; Xx;h

Nh /C
NX
iD1

hg.Xx;h
ih /

i
� v.0; x/

D E


Z t

0

h1
2

dX
i;jD1

�
Œ��>�i;j .Xh;x

'.s/

	�Œ��>�i;j .Xh;x
s /

	
@2xi xj v.s; Xh;x

s /
i
ds
�

CE


 Z t

0

h dX
iD1

�
bi .X

h;x
'.s//� bi.X

h;x
s /

	
@xi v.s; X

h;x
s /

�
ds
�

CE


 Z t

0

�
g.Xh;x

'.s//� g.Xh;x
s /

�
ds
�
:

The global error is represented as a summation of local errors. For instance, let
us estimate the first term related to ��>: apply once again the Itô formula on the
interval Œkh; s� � Œkh; .k C 1/h� and to the function .s; y/ 7! �

Œ��>�i;j .Xh;x
'.s/

	 �
Œ��>�i;j .y/

	
@2xi xj v.s; y/. It gives raise to a time integral between kh D '.s/ and s

and a stochastic integral that vanishes in expectation. Proceed similarly for the other
contributions with b and g. Finally we obtain a representation formula of the form

Err:disc:.h/ D
X

˛W0�j˛j�4
E


 Z t

0

Z s

'.s/

@j˛j
x v.r; Xh;x

r /l˛
�
X
h;x
'.r/; X

h;x
r

	
drds

�

where the summation is made on differentiation multi-indices of length smaller than
4, where l˛ are functions depending on b; �; g and their derivatives up to order 2,
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and where l˛ has at most a linear growth w.r.t its two variables. Taking advantage of
the boundedness of the derivatives of v, we easily complete the proof.

Observe that, by strengthening the assumptions and by going a bit further in the
analysis, we could establish an expansion w.r.t. h. ut
The previous assumption on u implies that f 2 C 4

b and g 2 C 2
b , which is too

strong in practice. The extension to non smooth f is much more difficult and
we have to take advantage of the smoothness coming from the non-degenerate
distribution of X or Xh. We may follow the same types of computations, mixing
PDE techniques and stochastic arguments, see [6]. But this is a pure stochastic
analysis approach (Malliavin calculus) which provides the extension under the
minimal non-degeneracy assumption (i.e. only stated at the initial point x), see [38].
We state the result without proofs.

Theorem 14. Assume that b and � are C1
b , let Xx be the solution (46) starting

from x 2 R
d and let Xh;x be its Euler scheme defined in (52). Assume additionally

that ��>.x/ is invertible. Then, for any bounded measurable function f , we have

E

h
f .Xx;h

t /
i

� E

h
f .Xx

t /
i

D O.h/:

In the same reference [38], the result is also proved for hypoelliptic system, where
the hypoellipticity holds only at the starting point x. On the other hand, without
such a degeneracy condition and for non smooth f (like Heaviside function), the
convergence may fail.

The case of coefficients b and � with low regularity or exploding behavior is still
an active fields of research.

4.1.4 Sensitivities

If in addition we are interested by computing derivatives of u.t; x/ w.r.t. x or other
model parameters, this is still possible using Monte Carlo simulations. For the sake
of simplicity, in our discussion we focus on the gradient of u w.r.t. x. Essentially,
two approaches are known.

Resimulation Method. The derivative is approximated using the finite difference
method

@xi u.t; x/ � u.t; x C "ei /� u.t; x � "ei/

2"

where ei D .0; : : : ; 0; 1
i th
; 0; : : : /, and " is small. Then, each value function is

approximated by its Monte Carlo approximation given in (54). However, we have
to be careful in generating the Euler scheme starting from x C "ei and x � "ei : its
sampling should use the same Brownian motion increments, that is
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@xi u.t; x/ � 1

M

MX
mD1

E .f; g;XxC"ei ;h;m/ � E .f; g;Xx�"ei ;h;m/
2"

: (55)

Indeed, for an infinite sample (M D C1), it does not have any impact on the
statistical error whether or not we use the same driving noise, but for finite M , this
trick likely maintains a smaller statistical error. Furthermore, the optimal choice of
h, M and " is an important issue, but here results are different according to the
regularity of f and g, we do not go into details.

Likelihood Method. To avoid the latter problems of selecting the appropriate value
of the finite difference parameter ", we may prefer another Monte Carlo estimator
of @xi u.t; x/, which consists in appropriately weighting the output. When g equals
0, it takes the following form

@xi u.t; x/ � 1

M

MX
mD1

f .Xx;h;m
t /Hx;h;m

t (56)

where Hx;h;m
t is simultaneously generated with the Euler scheme and does not

depend on f . The advantage of this approach is to avoid the possibly delicate choice
of the perturbation parameter " and it is valid for any function f : thus, it may reduce
much the computational time, if many sensitivities are required for the same model.
On the other hand, the confidence interval may be larger than that of the resimulation
method.

We now provide the formula for the weight H (known as Bismut–Elworthy–Li
formula). It uses the tangent process, which is the (well-defined, see [52]) derivative
of x 7! Xx

t w.r.t. x and which solves

DXxt WD Y xt D Id C
Z t

0

Db.Xx
s / Y

x
s ds C

dX
jD1

Z t

0

D�j .X
x
s / Y

x
s dWj;s (57)

where �j is the j -th column of the matrix � .

Theorem 15. Assume that b and � are C 2
b -functions, that u 2 C 1;2.Œ0; T ��R

d ;R/

solves the PDE (48), and that � is invertible with a uniformly bounded inverse ��1.
We have

Du.t; x/ D E

 
f .Xx

t /

t

�Z t

0

Œ��1.Xx
s /Y

x
s �

>dWs

�>!
:

Proof. First, we recall the decomposition (51) obtained from Itô formula, using
v.s; y/ D u.t � s; y/:

(
v.r; Xx

r / D v.0; x/C R r
0

Dv.s; Xx
s /�.X

x
s /dWs; 80 	 r 	 t;

f .Xx
t / D v.t; Xx

t /:
(58)
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Second, taking expectation, it gives v.0; x/ D u.t; x/ D E.v.r; Xx
r // for any r 2

Œ0; T �. By differentiating w.r.t. x, we obtain a nice relation letting the expectation
constant in time (actually deeply related to martingale property):

Dv.0; x/ D E.Dv.r; Xx
r /Y

x
r /; 80 	 r 	 t:

Thus, we deduce

Du.t; x/ D Dv.0; x/ D E

�
1

t

Z t

0
Dv.s;Xxs /Y

x
s ds

�

D E

 
1

t

�Z t

0
Dv.s; Xxs /�.X

x
s /dWs

� �Z t

0
Œ��1.Xxs /Y xs �>dWs

�>!

D E

 
v.t; Xxt /� v.0; x/

t

�Z t

0

Œ��1.Xxs /Y xs �>dWs

�>!

D E

 
f .Xxt /

t

�Z t

0
Œ��1.Xxs /Y xs �>dWs

�>!

using Theorem 10 at the second and fourth equality, (58) at the third one. ut
In view of the above assumptions of u, implicitly the function f is smooth. However,
under the current ellipticity condition, u is still smooth even if f is not; since the
formula does depend on f and not on its derivatives, it is standard to extend the
formula to any bounded function f (without any regularity assumption).

The Monte Carlo evaluation of Du.t; x/ easily follows by independently sam-

pling f .Xxt /

t

hR t
0 Œ�

�1.Xx
s /Y

x
s �

>dWs

i>
and taking the empirical mean. The exact

simulation is not possible and once again, we may use an Euler-type scheme, with
time step h:

• The dimension-augmented Stochastic Differential Equation .Xx; Y x/ is approx-
imated using the Euler scheme.

• We use a simple-approximation of the stochastic integral

Z t

0

Œ��1.Xx
s /Y

x
s �

>dWs D
N�1X
iD0

Œ��1.Xx;h
ih /Y

x;h
ih �>.W.iC1/h �Wih/:

The analysis of discretization error is more intricate than for E.f .Xx;h
t /� f .Xx

t //:
nevertheless, the error is still of magnitude h (the convergence order is 1 w.r.t. h, as
proved in [38]).

Theorem 16. Under the setting of Theorem 14, for any bounded measurable
function f , we have
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E

 
f .X

x;h
t /

t

N�1X
iD0

h
Œ��1.Xx;h

ih /Y
x;h

ih �>.W.iC1/h �Wih/
i>
!

� Du.t; x/ D O.h/:

4.1.5 Other Theoretical Estimates in Small Time

The representation formula of Theorem 15 is the starting point for getting accurate
probabilistic estimates on the derivatives of the underlying PDE as time is small, in
terms of the fractional smoothness of f .Xx

t / which is related to the decay of

kf .Xx
t /� E.f .X

y
t�s//jyDXxs kL2 as s ! t:

The derivatives are measured in weighted L2-norms and surprisingly, the above
results are equivalence results [36]; we are not aware of such results using PDE
arguments.

Theorem 17. Under the setting19 of Theorem 14, let t be fixed, for 0 < � 	 1 and
a bounded f , the following assertions are equivalent:

i) For some c � 0, Ejf .Xx
t /� E.f .X

y
t�s//jyDXxs j2 	 c.t � s/� for 0 	 s 	 t .

ii) For some c � 0, EjDu.t � s; Xx
s /j2 	 c

.t�s/1�� for 0 	 s < t .

iii) For some c � 0,
R s
0
EjD2u.t � r; Xx

r /j2dr 	 c

.t�s/1�� for 0 	 s < t .

If 0 < � < 1, it is also equivalent to:

iv) For some c � 0, EjD2u.t � s; Xx
s /j2 	 c

.t�s/2�� for 0 	 s < t .

Theorem 18. Under the setting of Theorem 14, let t be fixed, for 0 < � < 1 and a
bounded f , the following assertions are equivalent:

i)
R t
0
.t � s/���1

Ejf .Xx
t /� E.f .X

y
t�s//jyDXxs j2ds < C1.

ii)
R t
0
.t � s/��EjDu.t � s; Xx

s /j2ds < C1.
iii)

R t
0
.t � s/1��EjD2u.t � s; Xx

s /j2ds < C1.

4.2 The Case of Dirichlet Boundary Conditions and Stopped
Processes

4.2.1 Feynman–Kac Formula

In view of Corollary 1, the natural extension of Theorem 12 in the case of Dirichlet
boundary condition is the following. We state the result without source term to
simplify. The proof is similar and we skip it.

19To simplify the exposure.
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Theorem 19. Let D be a bounded domain of Rd . Under the setting of Theorem 12,
assume there is a solution u 2 C 1;2

b .Œ0; T � �D;R/ to the PDE

8̂̂
<
ˆ̂:

u0
t .t; x/ D LX

b;��>

u.t; x/; for .t; x/ 2�0;C1Œ�D;
u.0; x/ D f .0; x/; for x 2 D;
u.t; x/ D f .t; x/; for .t; x/ 2 R

C � @D;
(59)

for a given function f W RC �D ! R. Then u is given by

u.t; x/ D EŒf .t � �x ^ t; Xx
�x^t /� (60)

for x 2 D, where �x D inffs > 0 W Xx
s … Dg is the first exit time from D by X .

4.2.2 Monte Carlo Simulations

Performing a Monte Carlo algorithm in this context is less easy since we have to
additionally simulate the exit time of X . A simple approach consists in discretizing
X using the Euler scheme with time step h, and then taking for the exit time

�x;h D inffih > 0 W Xx;h
ih … Dg:

It does not require any further computations than those needed to generate
.X

x;h
ih ; 0 	 i 	 N/. But, the discretization error worsens much since it becomes

of magnitude
p
h. Actually, even if the values of .Xx;h

ih ; 0 	 i 	 N/ are generated
without error (like in Brownian motion case or other simple processes), the
convergence order is still 1

2
w.r.t. h [27]. The deterioration of the discretization

error really comes from the high irregularity of Brownian motion paths (and SDE
paths): even if two successive pointsXx;h

ih and Xx;h
.iC1/h are close to the boundary but

inside the domain, a discrete monitoring scheme does not detect the exit while a
continuous Brownian motion-like path would likely exit from the domain between
ih and .i C 1/h. Moreover, it gives a systematic (in mean) underestimation of
the true exit time. To overcome this lack of accuracy, there are several improved
schemes.

• The Brownian bridge technique consists in simulating the exit time of local
arithmetic Brownian motion [corresponding to the local dynamics of Euler
scheme, see (12)]. For simple domain like half-space, the procedure is explicit
and tractable, this is related the explicit knowledge of the distribution of the
Brownian maximum, see Proposition 5. For smooth domain, we can approximate
locally the domain by half-spaces. This improvement allows to recover the order
1 for the convergence, see [27, 28]. For non smooth domains (including corners
for instance) and general SDEs, providing an accurate scheme and performing
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its error analysis is still an open issue; for heuristics and numerical experiments,
see [29] for instance.

• The boundary shifting method consists in shrinking the domain to compensate
the systematic bias in the simulation of the discrete exit time. Very remarkably,
there is a universal elementary rule to make the domain smaller:

locally at a point y close to the boundary, move the boundary inwards by a quantity
proportional to c0

p
h times the norm of the diffusion coefficient in the normal direction.

The constant c0 is equal to the mean of the asymptotic overshoot of the
Gaussian random walk as the ladder height goes to infinity: it can be expressed
using the zeta function

c0 D � �. 1
2
/p

2�
D 0:5826 : : : :

This procedure strictly improves the order 1
2

of the discrete procedure, but it is
still an open question whether the convergence order is 1, although numerical
experiments corroborates this fact.

The result is stated as follows, see [37].

Theorem 20. Assume that the domain D is bounded and has a C 3-boundary, that
b; � are C 2

b and f 2 C 1;2
b . Let n.y/ be the unit inward normal vector to the

boundary @D at the closest20 point to y on the boundary. Set

O�x;h D inf
˚
ih > 0 W Xx;h

ih … D or d.Xx;h
ih ; @D/ 	 c0

p
h
ˇ̌
n>�

ˇ̌
.X

x;h
ih /

�
:

Then, we have

EŒf .t � O�x;h ^ t; Xx
O�x;h^t /� � EŒf .t � �x ^ t; Xx

�x^t /� D o.
p
h/:

Observe that this improvement is very cheap regarding the computational cost. It can
be extended (regarding to the numerical scheme and its mathematical analysis) to a
source term, to time-dependent domain and to stationary problems (elliptic PDE).

Complementary References. See [2, 13, 26, 49, 53, 64] for general references. For
reflected processes and Neumann boundary conditions, see [10, 28]. For variance
reduction techniques, see [34,47,58]. For domain decomposition, see [35,62]. This
list is not exhaustive.

20Uniquely defined if y is close to the boundary.
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5 Backward Stochastic Differential Equations
and Semi-linear PDEs

The link between PDEs and stochastic processes have been developed since several
decades and more recently, say in the last 20 years, researchers have paid attention
to the probabilistic interpretation of non-linear PDEs, and in particular semi-
linear PDEs. These PDEs are connected to non-linear processes, called Backward
Stochastic Differential Equations (BSDE in short). In this section, we define these
equations, firstly introduced by Pardoux and Peng [60], and give their connection
with PDEs. Finally, we present a Monte Carlo algorithm to simulate them, using
empirical regressions: it has the advantage to suit well the case of multidimensional
problems, with a great generality on the type of semi-linearity.

These equations have many fruitful applications in stochastic control theory and
mathematical finance, where they usually provide elegant proofs to characterize the
solution to optimal investment problems for instance; for the related applications,
we refer to reader to [17, 18]. Regarding the semi-linear PDE point of view, the
applications are reaction-diffusion equations in chemistry [24], evolution of species
in population biology [51,66], Hodgkin–Huxley model in neuroscience [43], Allen–
Cahn equation for phase transition in physics. . . see the introductive course [30] and
references therein. For other non-linear equations with connections with stochastic
processes, see the aforementioned reference.

5.1 Existence of BSDE and Feynman–Kac Formula

5.1.1 Heuristics

As a difference with a Stochastic Differential Equation defined by (46) where the
initial condition is given and the dynamics is imposed, a Backward SDE is defined
through a random terminal condition 
 at a fixed terminal T and a dynamics
imposed by a driver g. It takes the form

Yt D 
 C
Z T

t

g.s; Ys; Zs/ds �
Z T

t

ZsdWs (61)

where we write the integrals between t and T to emphasize the backward point of
view: 
 should be thought as a stochastic target to reach at time T . A solution to (61)
is the couple .Y;Z/: without extra conditions, the problem has an infinite number of
solutions and thus is ill-posed. For instance, if g � 0 and 
 D f .WT /: taking c 2 R,
a solution isZt D c and Yt D 
C c.WT �Wt/, thus uniqueness fails. In addition to
integrability properties (appropriate L2-spaces) that we do not detail, an important
condition is that the solution does not anticipate the future of Brownian motion, i.e.
the solution Yt depends on the Brownian Motion W up to t , and similarly to Z: we
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informally say that the solution is adapted toW . In a stochastic control problem, this
adaptedness constraint is natural since it states that the value function or the decision
can not be made in advance to the flow of information given by W . Observe that
in the uniqueness counter-example, Y is not adapted to W since Yt depends on the
Brownian motion on Œ0; T � and not only on Œ0; t �.

Taking the conditional expectation in (61) gives

Yt D E




 C

Z T

t

g.s; Ys; Zs/ds
ˇ̌
Ws W s 	 t

�
; (62)

because the stochastic integral (built with Brownian increments after t) is centered
conditionally on the Brownian motion up to time t . Of course, this rule is fully
justified by the stochastic calculus theory. Since Yt in (62) is adapted toW , it should
be the right solution (if unique); then, Z serves as a control to make the equation
(61) valid (with Y adapted).

5.1.2 Feynman–Kac Formula

The connection with PDE is possible when the terminal condition is a function of
a (forward) SDE: this case is called Markovian BSDE. Additionally, the driver may
depend also on this SDE as g.s;Xs; Ys; Zs/ for a deterministic function g. We now
proceed by a verification theorem. To allow a more natural presentation as backward
system, we choose to write the semi-linear PDE with a terminal condition at time T
instead of an initial condition at time 0.

Theorem 21. Let T > 0 be given. Under the assumptions of Theorem 11, letXx be
the solution (46) starting from x 2 R

d , assume there is a solution v 2 C 1;2
b .Œ0; T ��

R
d ;R/ to the semi-linear PDE

(
v0
t .t; x/C LX

b;��>

v.t; x/C g.t; x; v.t; x/;Dv.t; .x/�.x// D 0;

v.T; x/ D f .x/;
(63)

for two given functions f W Rd ! R and g W Œ0; T � � R
d � R � .R ˝ R

d / ! R.
Then, Y xt D v.t; Xx

t / and Zx
t D ŒDv ��.t; Xx

t / solves the BSDE

Y xt D f .Xx
T /C

Z T

t

g.s; Xx
s ; Y

x
s ; Z

x
s /ds �

Z T

t

Zx
s dWs: (64)

Proof. The Itô formula (50) applied to v and Xx gives

dv.s; Xx
s / D �

v0
s.s; X

x
s /C LX

b;��>

v.s; Xx
s /
�
ds C Dv.s; Xx

s /�.X
x
s /dWs

D �g.s;Xx
s ; v.s; X

x
s /; ŒDv ��.s; Xx

s //ds C Dv.s; Xx
s /�.X

x
s /dWs;
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which writes between s D t and s D T :

v.T;Xx
T / D v.t; Xx

t / �
Z T

t

g.s; Xx
s ; v.s; X

x
s /; ŒDv ��.s; Xx

s //ds

C
Z T

t

Dv.s; Xx
s /�.X

x
s /dWs:

Since v.T; :/ D f .:/, we complete the proof by identification. ut
In particular, at time 0 where Xx

0 D x, we obtain Y x0 D v.0; x/ and in view of (62),
it gives a Feynman–Kac representation to v:

v.0; x/ D E



f .Xx

T /C
Z T

t

g.s; Xx
s ; Y

x
s ; Z

x
s /ds

�
: (65)

As in case of linear PDEs, the assumption of uniform smoothness on v up to T
is too strong to include the case of non-smooth terminal function f . But with an
extra ellipticity condition, as for the heat equation, the solution becomes smooth
immediately away from T (see [21]) and a similar verification could be checked
under milder conditions.

The above Backward SDE (64) is coupled to a Forward SDE, but the latter is
not coupled to the BSDE. Another interesting extension is to allow the coupling in
both directions by having the coefficients of X dependent on v, i.e. b.x/ and �.x/
become functions of x; v.t; x/;Dv.t; .x/. The resulting process is called a Forward
Backward Stochastic Differential Equations and is related to Quasi-Linear PDEs,
where the operator LX

b;��>

also depends on v and Dv, see [56].

5.1.3 Other Existence Results Without PDE Framework

So far, only Markovian BSDEs are presented but from the probabilistic point of
view, the Markovian structure is not required to define a solution: what is really
crucial is the ability to represent a random variable built from .Ws W s 	 T /

as a stochastic integral w.r.t. the Brownian motion. This point has been discussed
in Corollary 4. Then, in the simple case where g is Lipschitz w.r.t. y; z, .Y;Z/
are built by means of an usual fixed point procedure in suitable L2-norms and
of this stochastic integral representation. We now state a more general existence
and uniqueness result for BSDE, which is valid without any underlying (finite-
dimensional) semi-linear PDE, we omit the proof.

Theorem 22. Let T > 0 be fixed and assume the assumptions of Theorem 11 for
the existence of X and that

• The terminal condition 
 D f .Xs W s 	 T / is a square integrable functional of
the stochastic process .Xs W s 	 T /.
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• The measurable function g W Œ0; T � � R
d � R � .R ˝ R

d / is uniformly Lipschitz
in .y; z/:

jg.t; x; y1; z1/� g.t; x; y2; z2/j 	 Cg.jy1 � y2j C jz1 � z2j/;

uniformly in .t; x/.
• The driver is square integrable at .y; z/ D .0; 0/:E.

R T
0 g

2.t; Xt ; 0; 0/dt/ < C1.

Then, there exists a unique solution .Y;Z/, adapted and in L2-spaces, to

Yt D f .Xs W s 	 T /C
Z T

t

g.s; Xs; Ys; Zs/ds �
Z T

t

ZsdWs:

Many works have been done in the last decade to go beyond the case of Lipschitz
driver, which may be too stringent for some applications. In particular, having g with
quadratic growth in Z is particularly interesting in exponential utility maximization
problem (the non-linear PDE term is quadratic in jDvj). This leads to quadratic
BSDEs (see for instance [50]). A simple example of such BSDEs can be cooked up
from heat equation and Brownian motion. Namely from Corollary 4, for a smooth
function f with compact support, set u.t; x/ D E.exp.f .x CWt/// and v.t; y/ D
u.1� t; y/, so that

exp.f .W1// D u.1; 0/C
Z 1

0

u0
x.1 � s;Ws/dWs;

u.1 � t;Wt / D u.1; 0/C
Z t

0

u0
x.1 � s;Ws/dWs;

v.t;Wt / D exp.f .W1// �
Z 1

t

v0
x.s;Ws/dWs;

and by setting Yt D log.v.t;Wt// and Zt D v0
x.t;Wt /=Yt , we obtain

Yt D f .W1/C
Z 1

t

1

2
Z2
s ds �

Z 1

t

ZsdWs;

which is the simplest quadratic BSDE.

5.2 Time Discretization and Dynamic Programming Equation

5.2.1 Explicit and Implicit Schemes

To perform the simulation, a first stage may be the derivation of a discretization
scheme, written backwardly in time (backward dynamic programming equation).
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For the further analysis, assume that the terminal condition is of the form 
 D
f .XT / where X is standard (forward) SDE.

Consider a time grid with N time steps � D f0 D t0 < � � � < ti < � � � < tN D
T g, with possibly non uniform time step, and set j�j D maxi .tiC1 � ti /. We will
suppose later that j�j ! 0.

We write �i D tiC1 � ti and �Wi D WtiC1
�Wti . Writing the Eq. (64) between

times ti and tiC1, we have

Yti D YtiC1
C
Z tiC1

ti

g.s; Xs; Ys; Zs/ds �
Z tiC1

ti

ZsdWs:

Then, by applying simple approximations for ds and dWs integrals and by replacing
X by a Euler scheme computed along the grid � (and denoted X� ), we may define
the discrete BSDE as

.Y �ti ; Z
�
ti
/ D arg min

.Y;Z/2L2.F�
ti
/

E.Y �tiC1
C�ig.ti ; X

�
ti
; Y;Z/ � Y �Z�Wi/

2

with the initialization Y �T D f .X�
T / at i D N , where L2.F�

ti
/ stands for the set

of random variables (with appropriate dimension) that are square integrable and
depend on the Brownian motion increments .�Wj W j 	 i � 1/. The latter property
is the measurability w.r.t. the sigma-field F�

ti
generated by .�Wj W j 	 i � 1/.

Then, a direct computation using the properties of Brownian increments gives

8̂̂̂
<
ˆ̂̂:
Y �T D f .X�

T /;

Z�
ti

D 1

�i

E.Y �tiC1
�W >

i jF�
ti
/; i < N

Y �ti D E.Y �tiC1
C�ig.ti ; X

�
ti
; Y �ti ; Z

�
ti
/jF�

ti
/; i < N:

(66)

This is the implicit scheme since the arguments of the function at the r.h.s. depend on
the quantity Y �ti to compute on the l.h.s. Nevertheless, since g is uniformly Lipschitz
in y, it is not difficult to show that the Dynamic Programming Equation (DPE in
short) (66) is well-defined for j�j small enough and that Y �ti can be computed using
a Picard iteration procedure.

It is easy to turn the previous scheme into an explicit scheme and therefore, to
avoid this extra Picard procedure. It writes

8̂̂̂
<
ˆ̂̂:
Y �T D f .X�

T /;

Z�
ti

D 1

�i

E.Y �tiC1
�W >

i jF�
ti
/; i < N

Y �ti D E.Y �tiC1
C�ig.ti ; X

�
ti
; Y �tiC1

; Z�
ti
/jF�

ti
/; i < N:

(67)

In our personal experience on numerics, we have not observed a significant
outperformance of one scheme on another. Moreover, from the theoretical point
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of view, both schemes exhibit the same rates of convergence w.r.t. j�j, at least when
the driver is Lipschitz.

The explicit scheme is the simplest one, and this is the one that we recommend
in practice.

5.2.2 Time Discretization Error

Define the measure of the quadratic error

E .Y � � Y;Z� �Z/ D max
0�i�N EjY �ti � Yti j2 C

N�1X
iD0

Z tiC1

ti

EjZ�
ti

�Zt j2dt:

Although not explicitly mentioned in the previous existence results on BSDE, this
type of norm is appropriate to perform the fixed point argument in the proof of
Theorem 22. We now state an error estimate [33], in order to show the convergence
of the DPE to the BSDE.

Theorem 23. For a Lipschitz driver w.r.t. .x; y; z/ and 1
2
-Hölder w.r.t. t , there is a

constant C independent on � such that we have

E .Y � � Y;Z� �Z/ 	 C


j�j C sup

i�N
EjX�

ti
� Xti j2 C Ejf .X�

T / � f .XT /j2

C
N�1X
iD0

1

�i

Z tiC1

ti

Z tiC1

ti

EjZt �Zsj2ds dt
�
:

Let us discuss on the nature and the magnitude of different error contributions.

• First, we face the strong approximation error of the forward SDE by its Euler
scheme. Here we rather focus on convergence of paths (in L2-norms), whereas
in Sect. 4.1.3, we have studied the convergence of expectations of function of
X�
T towards those of XT . Anyway, the problem is now well-understood: under a

Lipschitz condition on b and � , we can prove supi�N EjX�
ti

�Xti j2 D O.j�j/.
• Second, we should ensure a good strong approximation of the terminal condi-

tions: if f is Lipschitz continuous, it readily follows from the previous term and
Ejf .X�

T / � f .XT /j2 D O.j�j/. For non Lipschitz f , there are partial answers,
see [3].

• Finally, the last contribution
PN�1

iD0 1
�i

R tiC1

ti

R tiC1

ti
EjZt �Zs j2ds dt is related to

the L2-regularity of Z (or equivalently of the gradient of the semi-linear PDE
along the X -path) and it is intrinsic to the BSDE-solution. For smooth data, Z
has the same regularity of Brownian paths and this error term isO.j�j/. For non
smooth f (but under ellipticity condition on X ), the L2-norm of Zt blows up
as t ! T and the rate j�j usually worsens: for instance for f .x/ D 1x�0, it
becomes N� 1

2 for uniform time-grid.
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Fig. 8 On the horizontal
axis, uniform grid. On the
vertical axis, the grid
.t

N�
k W 0 � k � N/, with
T D 1

The analysis is very closely related to the fractional smoothness of f .XT /
briefly discussed in Sect. 4.1.5, see also [25]. Choosing an appropriate grid of the
form (see Fig. 8)

t
N�
k D T � T .1 � k=N/1= N� . N� 2 .0; 1�/

compensates this blow-up (for appropriate value of N�) and enables to retrieve the
rate N�1.

Actually in [31], it is shown that the upper bounds in Theorem 23 can be refined for
smooth data, to finally obtain that the main error comes from strong approximation
error on the forward component. This is an incentive to accurately approximate the
SDE in L2-sense.

5.2.3 Towards the Resolution of the Dynamic Programming Equation

The effective implementation of the explicit scheme (67) requires the iterative
computations of conditional expectations: this is discussed in the next paragraphs.

Prior to this, we make some preliminary simplifications for the sake of concise-
ness. First, we consider the case of g independent of z,

g.t; x; y; z/ D g.t; x; y/;

therefore we only approximateY � ; the general case is detailed in [39,54]. Second, it
can be easily seen that it is enough to take the conditioning w.r.t.X�

ti
instead of F�

ti
,

because of the Markovian property of X� along the grid � and of the independent
Brownian increments. Thus, (67) becomes

(
Y �T D f .X�

T /;

Y �ti D E.Y �tiC1
C�ig.ti ; X

�
ti
; Y �tiC1

/jX�
ti
/; i < N:

(68)
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The same arguments apply to assert that for a (measurable) deterministic function
y�i we have

y�i .X
�
ti
/ D Y �ti : (69)

Therefore, simulating Y � is equivalent to the computation of the functions y�i for
any i and the simulation of the process X� .

5.3 Approximation of Conditional Expectations Using
Least-Squares Method

5.3.1 Empirical Least-Squares Problem

We adopt the point of view of conditional expectation as a projection operator in
L2. This is not the only possible approach, but it has the advantages (as it will be
seen later)

1. To be much flexible w.r.t. the knowledge on the model for X (or X� ): only inde-
pendent simulations of X� are required (which is straightforward to perform).

2. To be little demanding on the assumptions on the underlying stochastic model:
in particular, no ellipticity nor degeneracy condition are required, it could also
include jumps (corresponding to PDE with a non-local Integro-Differential
operator).

3. To provide robust theoretical error estimates, which allow to optimally tune the
convergence parameters.

4. To be possibly adaptive to the data (data-driven scheme).

We recall that if a scalar random variable R (called the response) is square inte-
grable, the conditional expectation of R given another possibly multidimensional
r.v.O (called the observation) is given by

E.RjO/ D Arg min
m.O/ s.t.m.:/ is a meas. funct. with Ejm.O/j2<C1

EjR �m.O/j2:

This is a least-squares problem in infinite dimension, also called regression problem.
Usually in this context of BSDE simulation, none of the distributions of O , R
or .O;R/ is known in analytical and tractable form: thus an exact computation
of E.RjO/ is hopeless. The difficulty remains unchanged if we approximate the
regression function

m.�/ D E.RjO D �/
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on a finite dimensional functions basis. Alternatively, we can rely on independent
simulations of .O;R/ to compute an empirical version of m. This is the approach
subsequently developed.

The basis functions are .�k.://1�k�K and we assume that Ej�k.O/j2 < C1 for
any k. We emphasize that

we can not assume that .�k.O//1�k�K forms an orthonormal basis in L2;

since in our setting, the distribution ofO is not explicit. Using this finite dimensional
approximation, we anticipate to unfortunately retrieve the curse of dimensionality:
the larger the dimension d of O , the larger the required K for a good accuracy of
m, the larger the complexity.

We compute the coefficients on the basis by solving a empirical least-squares
problem

.˛Mk /k D arg min
˛2RK

1

M

MX
iD1
.Ri �

KX
kD1

˛k�k.Oi //
2;

where .Oi ; Ri /1�i�M are independent simulations of the couple .O;R/. Then, for
the approximation of m, we set

QmM.:/ D
KX
kD1

˛Mk �k.:/:

To efficiently compute the coefficients .˛Mk /k , we might use a SVD decomposition
to account for instability issues, see [41].

5.3.2 Model-Free Error Estimates

Without extra assumptions on the model, we can derive model-free error estimates,
see [42].

Theorem 24. Assume that

• R D m.O/C � with E.�jO/ D 0.21

• .O1;R1/; � � � ; .OM ;RM/ are independent copies of .O;R/.
• �2 D supx Var.RjO D x/ < C1.
• Let K be a finite positive integer and ˚ be the linear vector space spanned by

some functions .�1; : : : �K/, with dim.˚/ 	 K .22

21Meaning that m.O/ D E.RjO/.
22There may be some colinearities within .�j /1�j�K .
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Denote by�M the empirical measure associated to .O1; � � � ; OM/,� the probability
measure of O and by j�j2M D 1

M

PM
iD1 �2.Oi / the empirical L2-measure of � w.r.t.

�M , and set:

QmM.:/ D arg min
�2˚

1

M

MX
iD1

j�.Oi/ �Ri j2: (70)

Then

E.j QmM �mj2M / 	 �2
K

M
C min

�2˚ j� �mj2L2.�/:

The first term in the r.h.s. above is interpreted as a statistical error23 term (due
to a finite sample to compute the empirical coefficients), while the second term
is an approximation error of the functions class24 (due to finite-dimensional
vector space). The first term converges to 0 as M ! C1 but it blows up if
K ! C1, while the second one converges to 0 as K ! C1 (as least if ˚
asymptotically spans all the functions in L2.�/). This bias-variance decomposition
shows that there is a necessary trade-off between K and M to ensure a convergent
approximation. Without this right balance, the approximation (70) may be not
convergent. Furthermore, the parameter tuning can also be made optimally.

In the quoted reference [42], the space ˚ could also depend on the simulations
(data-driven approximation spaces).

Proof. Assume that

E



j QmM �mj2M

ˇ̌
O1; � � � ; OM

�
	 �2

K

M
C min

�2˚ j� �mj2M : (71)

Then, the announced result directly follows by taking expectations and observing
that

E
�

min
�2˚ j� �mj2M / 	 min

�2˚ E.j� �mj2M / D min
�2˚ j� �mj2L2.�/:

We now prove (71). As far as computations conditionally on O1; � � � ; OM are
concerned, without loss of generality we can assume that .�1; : : : �KM / is an
orthonormal family in L2.�M/, with possibly KM 	 K:

1

M

MX
iD1

�k.Oi /�l .Oi / D ık;l :

23Also called variance term.
24Squared bias term.
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Consequently, the solution arg min
�2˚

1

M

MX
iD1

j�.Oi/� Ri j2 is given by

QmM.:/ D
KMX
jD1

˛j �j .:/ with ˛j D 1

M

MX
iD1

�j .Oi /Ri :

Now, set E�.:/ D E.:jO1; � � � ; OM /. Then, observe that E�. QmM.:// is the least-
squares solution to min

�2˚
1
M

PM
iD1 j�.Oi/�m.Oi/j2 D min

�2˚ j� �mj2M . Indeed:

• On the one hand, the above least-squares solution is given by
PKM

jD1 ˛�
j �j .:/ with

˛�
j D 1

M

PM
iD1 �j .Oi /m.Oi/.

• On the other hand, E
�. QmM.:// D PKM

jD1 E�.˛j /�j .:/ and

E
�.˛j / D 1

M

PM
iD1 �j .Oi /E�.Ri / D 1

M

PM
iD1 �j .Oi/E.m.Oi / C �i jO1; � � � ;

OM / D ˛�
j .

Thus, by the Pythagoras theorem, we obtain

j QmM �mj2M D j QmM � E
�. QmM/j2M C jE�. QmM/ �mj2M ;

E
�j QmM �mj2M D E

�j QmM � E
�. QmM/j2M C jE�. QmM/�mj2M

D E
�j QmM � E

�. QmM/j2M C min
�2˚ j� �mj2M :

Since .�j /j is orthonormal in L2.�M /, we have j QmM �E
�. QmM/j2M D PKM

jD1 j˛j �
E

�.˛j /j2: Since ˛j � E
�.˛j / D 1

M

PM
iD1 �j .Oi /.Ri �m.Oi//, we obtain

E
�j QmM �E

�. QmM/j2M D
KMX
jD1

1

M2
E

�
MX
i;lD1

�j .Oi /�j .Ol /.Ri �m.Oi//.Rl �m.Ol/

D
KMX
jD1

1

M2

MX
iD1

�2j .Oi /Var.Ri jOi/

taking advantage that the .�i /i conditionally on .O1; � � �OM/ are centered. This
proves

E
�j QmM � E

�. QmM/j2M 	 �2
KMX
jD1

1

M2

MX
iD1

�2j .Oi / D �2
KM

M
	 �2

K

M
:

The proof of (71) is complete. ut
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5.3.3 Least-Squares Method for Solving Discrete BSDE

We now apply the previous empirical least-squares method to numerically solve the
DPE (68). For simplicity of exposure, we consider here only uniform time grids
with N time steps, �i D T=N . In addition to assumptions of Theorem 23, we
assume that the terminal condition f .:/ is bounded: then, we can easily establish
the following result.

Proposition 20. Under these assumptions, the function y�i .:/ defined in (69) is
bounded by a constant C?, which is independent on N and i .

Actually, C? can be given explicitly in terms of the data. To force the stability in the
iterative computations of conditional expectations (68), we truncate the numerical
solution at the level C? using the soft thresholding

Œ �C? WD �C? _  ^ C?:

Algorithm for Approximating y�
k
.�/. At each time index 0 	 k 	 N � 1, we

consider a vector space ˚k spanned by basis functions pk.�/, which are understood
as vectors of Kk functions. The final approximation of y�k .�/ has the form

y
�;M
k .�/ D Œ˛Mk � pk.�/�C? :

The coefficients ˛Mk are computed with M independent simulations of .X�
tk
/k , that

are denoted by f.X�;m
tk
/kg1�m�M : this single set of simulated paths are used to

compute all the coefficients at once. This is done as follows:

� Initialization : for k D N , take y�N .�/ D f .�/.
� Iteration : for k D N � 1; � � � ; 0, solve the least-squares problem

˛Mk D arg min
˛2RKk

MX
mD1

jy�;MkC1 .X
�;m
tkC1

/C�kg.tk; X
�;m
tk
; y

�;M
kC1.X

�;m
tkC1

//�˛ �pk.X�;m
tk
/j2

and define y�;Mk .�/ D Œ˛Mk � pk.�/�C? .

Error Analysis. We now turn to the error estimates. The analysis combines the
BSDE techniques (a priori estimates using stochastic calculus), regression tools as
those exposed in Sect. 5.3.2, but there is a slight difference which actually requires a
significant improvement in the arguments. Since we use a single set of independent
paths, the “responses” .y�;MkC1 .X

�;m
tkC1

//1�m�M are not independent, because of their

dependence through the function y�;MkC1 . To overcome this interdependence issue in

the proof, we shall replace the random function y�;MkC1 by a deterministic neighbor:
of course, there is a complexity cost to cover the different function spaces in
order to provide close neighbors, and the covering numbers are well controlled
using the Vapnik–Chervonenkis dimension, when the function spaces are bounded
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(Proposition 20). This is the technical reason why we consider bounded functions.
We now state a result regarding the global error, see [30, Theorem VIII.3.4] for full
details.

Theorem 25. Under the previous notations and assumptions, there is a constant
C > 0 (independent on N ) such that we have

max
0�k�N EjY �tk �y�;Mk .X�

tk
/j2 	 C

N�1X
kD0

�
N

Kk

M„ƒ‚…
statistical error

C min
�2˚k

Ejy�k .X�
tk
/� �.X�

tk
/j2„ ƒ‚ …

approximation error of functions class




CC max
0�k�N

r
Kk log.M/

M„ ƒ‚ …
interdependence error

:

When the Z-component has to be approximated as well, the estimates are slightly
modified, see [54] for details.

Parameter Tuning. We conclude this analysis by providing an example of how to
choose appropriately the parametersN , Kk and M . Assume that the value function
y� is Lipschitz continuous, uniformly inN (which usually follows from a Lipschitz
terminal condition). Our objective is to achieve a global error of order " D 1

N

for max0�k�N EjY �tk � y
�;M
k .XN

tk
/j2, i.e. the same error magnitude than the time-

discretization error.
For the vector spaces ˚k , we consider those generated by functions that are

constant on disjoint hypercubes of small edge. Since X� has exponential moments,
we can restrict the partitioning to a compact set of R

d with size c log.N / in
any direction, and the induced error is smaller than N�1 provided that c is large
enough. If the edge of the hypercube is like N�1, the vector spaces have dimension
Kk 
 Nd up to logarithmic factors: then, the terms from approximation error of
functions class are O.N�2/ and they sum up to give a contribution O.N�1/ as
required. A quick inspection of the upper bounds of Theorem 25 shows that the
highest constraint onM comes from the statistical error: we obtainM 
 cN 3Cd , up
to logarithmic terms. The complexity of the scheme is of orderNM (still neglecting
the log terms), because the computation of all regression coefficients at a given date
has a computational costO.M log.N // due to our specific choice of function basis.
Hence, the global complexity is

C 
 "� 1
4Cd

up to logarithmic terms. Not surprisingly, the convergence order deteriorates as the
dimension increases, this is the curse of dimensionality. Had the value function been
smoother, we would have used local polynomials and the convergence order would
have been improved: the smoother the functions, the better the convergence rate.
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In practice, the algorithm has been performed on a computer up to dimension
d D 10 with satisfactory results and rather short computational times (less
than 1 min). There are several possible improvements to this basic version of the
algorithm.

• We can use variance reduction techniques, see [8, 9].
• Instead of writing the DPE between ti and tiC1, it can be written between ti and
T : it has the surprising effect (mathematically justified) to reduce the propagation
of errors in the DPE. This scheme is called MDP scheme (for Multi step forward
Dynamic Programming equation) and it is studied in [39].

Complementary References. For theoretical aspects, see [16, 56, 59, 61]; for
applications, see [17, 18]; for numerics, see [5, 7, 11, 14, 32, 40, 54, 69]. This list
is not exhaustive.
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Structure-Preserving Shock-Capturing
Methods: Late-Time Asymptotics, Curved
Geometry, Small-Scale Dissipation,
and Nonconservative Products

Philippe G. LeFloch

Abstract We consider weak solutions to nonlinear hyperbolic systems of conser-
vation laws arising in compressible fluid dynamics and we describe recent work
on the design of structure-preserving numerical methods. We focus on preserving,
on one hand, the late-time asymptotics of solutions and, on the other hand,
the geometrical effects that arise in certain applications involving curved space.
First, we study here nonlinear hyperbolic systems with stiff relaxation in the late
time regime. By performing a singular analysis based on a Chapman–Enskog
expansion, we derive an effective system of parabolic type and we introduce a
broad class of finite volume schemes which are consistent and accurate even for
asymptotically late times. Second, for nonlinear hyperbolic conservation laws posed
on a curved manifold, we formulate geometrically consistent finite volume schemes
and, by generalizing the Cockburn–Coquel–LeFloch theorem, we establish the
strong convergence of the approximate solutions toward entropy solutions.

1 Introduction

1.1 Objective

We present some recent developments on shock capturing methods for nonlinear
hyperbolic systems of balance laws, whose prototype is the Euler system of
compressible fluid flows, and especially discuss structure-preserving techniques.
The problems under consideration arise with complex fluids in realistic applications
when friction terms, geometrical terms, viscosity and capillarity effects, etc., need
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to be taken into account in order to achieve a proper description of the physical
phenomena. For these problems, it is necessary to design numerical methods that are
not only consistent with the given partial differential equations, but remain accurate
and robust in certain asymptotic regimes of physical interest. That is, certain
structural properties of these hyperbolic problems (conservation or balance law,
equilibrium state, monotonicity properties, etc.) are essential in many applications,
and one seeks that the numerical solutions preserve these properties, which is often
a very challenging task.

To be able to design structure-preserving methods, a theoretical analysis of the
hyperbolic problems under consideration must be performed first by investigating
certain singular limits as well as certain classes of solutions of physical relevance.
The mathematical analysis allows one to exhibit the key properties of solutions
and derive effective equations that describe the limiting behavior of solutions, etc.
This step requires a deep understanding of the initial value problem, as is for
instance the case of small-scale dissipation sensitive, viscosity-capillarity driven
shock waves which, as it turns out, do not satisfy standard entropy criteria; see
LeFloch [45] for a review. Such a study is in many physical applications involving
hyperbolic systems in nonconservative form, in order to avoid the appearance of
spurious solutions with wrong speed; see Hou and LeFloch [38].

The design of structure-preserving schemes forces us to go beyond the basic
property of consistency with the conservative form of the equations, and requires
to revisit the standard strategies, based on finite volumes, finite differences, Runge–
Kutta techniques, etc. By mimicking the theoretical analysis at the discrete numeri-
cal level, we can arrive at structure-preserving schemes, which preserve the relevant
structure of the systems and the asymptotic behavior of solutions.

The techniques developed for model problems provide us with the proper tools
to tackle the full problems of physical interest. A variety of nonlinear hyperbolic
problems arising in the applications do involve small scales or enjoy important
structural or asymptotic properties. By going beyond the consistency with the
conservation form of the equations, one can now develop a variety of numerical
methods that preserve these properties at the discrete level. By avoid physically
wrong solutions, one can understand first the physical phenomena in simplified
situations, and next contribute to validate the “full” physical models.

We will only review here two techniques which allows one to preserve late-
asymptotics and geometrical terms and, for further reading on this broad topic,
we refer to the textbooks [12, 45, 56], as well as the lecture notes [44, 47, 49].
Another challenging application arises in continuum physics in the regime of
(small) viscosity and capillarity, which may still drive the propagation of certain
(nonclassical undercompressive) shock waves. This is relevant in material science
for the modeling of smart (martensite) materials, as well as in fluid dynamics for the
modeling of multiphase flows (for instance in the context of nuclear plants) and for
the coupling of physical models across interfaces.
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1.2 Preserving Late-Time Asymptotics with Stiff Relaxation

In Sect. 2, this strategy is developed for a class of hyperbolic systems with stiff
relaxation in the regime of late times. Such systems arise in the modeling of a
complex multi-fluid flow when two (or more) scales drive the behavior of the
flow. Many examples from continuum physics fall into the proposed framework,
for instance the Euler equations with (possibly nonlinear) friction. In performing a
singular analysis of these hyperbolic systems, we keep in mind the analogy with the
passage from Boltzmann equation (microscopic description) to the Navier–Stokes
equations (macroscopic description). Our aim here is, first, to derive via a formal
Chapman–Enskog expansion an effective system of parabolic type and, second, to
design a scheme which provides consistent and accurate discretizations for all times,
including asymptotically late times.

Indeed, we propose and analyze a class of asymptotic-preserving finite volume
methods, which are consistent with, both, the given nonlinear hyperbolic system and
the effective parabolic system. It thus preserves the late-time asymptotic regime and,
importantly, requires only a classical CFL (Courant, Friedrichs, Lewy) condition of
hyperbolic type, rather than a more restrictive, parabolic-type stability condition.
This section is based on the joint work [9, 11].

1.3 Geometry-Preserving Finite Volume Methods

The second topic of interest here is provided by the class of hyperbolic conser-
vation laws posed on a curved space. Such equations are relevant in geophysical
applications, for which the prototype is given by shallow water equations on
the sphere with topography. Computations of large-scale atmospheric flows and
oceanic motions (involving the Coriolis force, Rosby waves, etc.) requires robust
numerical methods. Another motivation is provided conservation laws on moving
surfaces describing combustion phenomena. We should astrophysical applications,
involving fluids or plasmas, and the study of the propagation of linear waves
(wave operator, Dirac equations, etc.) on curved backgrounds of general relativity
(such as Schwarschild or, more generally, Kerr spacetime). These applications
provide important examples where the partial differential equations of interest are
naturally posed on a curved manifold.

Scalar conservation laws yield a drastically simplified, yet very challenging,
mathematical model for understanding nonlinear aspects of shock wave propagation
on manifolds. In Sect. 3, based on the work [52], we introduce the geometry-
preserving finite volume method for hyperbolic balance laws formulated on surfaces
or, more generally, manifolds. First, we present some theoretical tools to handle
the interplay between the nonlinear waves propagating on solutions and the
underlying geometry of the problem. A generalization of the standard Kruzkov
theory is obtained on a manifold, by formulating the hyperbolic equation under
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consideration from a field of differential forms. The proposed finite volume
method is geometry-consistent and relies on a coordinate-independent formulation.
The actual implementation of this finite volume scheme on the sphere is realized in
[3, 5].

2 Late-Time Asymptotics with Stiff Relaxation

2.1 A Class of Nonlinear Hyperbolic Systems of Balance Laws

Consider the following system of partial differential equations

� @tU C @xF.U / D �R.U /
�

; U D U.t; x/ 2 ˝ � R
N ; (1)

in which t > 0; x 2R denote the time and space variables and the flux F W ˝ ! R
N

is defined on the convex and open subset ˝ . The first-order part of (1) is assumed
to be hyperbolic in the sense that the matrix-valued map A.U / WD DUF.U / admits
real eigenvalues and a full basis of eigenvectors.

In order to analyze the singular limit � ! 0 of late-time and stiff relaxation, we
distinguish between two distinct regimes. In the hyperbolic-to-hyperbolic regime,
one replaces �@tU by @tU and establishes that solutions to

@tU C @xF.U / D �R.U /
�

; U D U.t; x/;

are driven by an effective system of hyperbolic type. Such a study was pioneered by
Chen, Levermore, and Liu [21]. On the other hand, in the hyperbolic-to-parabolic
regime which is under consideration in the present work, we obtain effective
equations of parabolic type. In the earlier papers [31, 58], Marcati et al. established
rigorous convergence theorems for several classes of models. Our objective here is
to introduce a general framework to design numerical methods for such problems.

We make the following assumptions.

Condition 1. There exists an n�N matrixQ with (maximal) rank n < N such that

QR.U / D 0; U 2 ˝; (2)

hence, QU 2 Q˝ DW ! satisfies

� @t
�
QU

	C @x
�
QF.U /

	 D 0: (3)

Condition 2. There exists a map E W !�R
N !˝ describing the equilibria

u 2 !, with
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R.E .u// D 0; u D Q E .u/: (4)

We introduce the equilibrium submanifold M WD ˚
U D E .u/

�
.

Condition 3. It is assumed that

QF.E .u// D 0; u 2 !: (5)

Observe that the term @x
�
QF.E .u//

	
must vanish identically, so that QF.E .u//must

be a constant, which we normalize to be 0.

Condition 4. For all u 2 !, we impose

dim



ker.B.E .u///
�

D n;

ker
�
B.E .u//

	\ Im
�
B.E .u//

	 D f0g;
(6)

hence, the N � N matrix B WD DRU has “maximal” kernel on the equilibrium
manifold.

2.2 Models Arising in Compressible Fluid Dynamics

2.2.1 Stiff Friction

We begin with the Euler system for compressible fluids with friction:

� @t� C @x.�v/ D 0;

� @t .�v/C @x
�
�v2 C p.�/

	 D ��v

�
:

(7)

The density �� 0 and the velocity v are the main unknowns, while the pressure
p WRC ! R

C is a prescribed function satisfying the hyperbolicity condition
p0.�/ > 0 (for � > 0). The first-order homogeneous system is strictly hyperbolic
and (7) fits into our late-time/stiff relaxation framework in Sect. 2.1 if we set

U D
�
�

�v

�
; F .U / D

�
�v

�v2 C p.�/

�
; R.U / D

�
0

�v

�

and Q D .1 0/: The local equilibria u D � are found to be scalar-valued with
E .u/ D .�; 0/T and we immediately check that QF.E .u// D 0.
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2.2.2 Stiff Radiative Transfer

The following model arises in the theory of radiative transfer:

� @t e C @xf D �4 � e

�
;

� @tf C @x



� .f=e/ e

�
D �f

�
;

� @t � D e � �4
�

:

(8)

The radiative energy e > 0 and the radiative flux f are the main unknowns,
restricted so that jf=ej 	 1, while � > 0 is the temperature. The so-called

Eddington factor � W Œ�1; 1� ! R
C is, typically, taken to be �.
/ D 3C4
2

5C2
p
4�3
2 :

Again, this system fits within our general framework.

2.2.3 Coupling Stiff Friction and Stiff Radiative Transfert

By combining the previous two examples together, one can consider to the following
coupled Euler/M1 model

�@t �C @x
�
�v
	 D 0;

�@t �v C @x
�
�v2 C p.�/

	 D ��
�
�v C �

�
f;

�@t e C @xf D 0;

�@t f C @x



�

�
f

e

�
e
�

D ��
�
f:

(9)

Here, � and � are positive constants and, in the applications, a typical choice for the
pressure is p.�/ D Cp�

� with Cp � 1 and � > 1: Now, we should set

U D

0
BB@
�

�v
e

f

1
CCA ; F .U / D

0
BB@

�v
�v2 C p.�/

f

�.
f

e
/e

1
CCA ; R.U / D

0
BB@

0

��v � �f

0

�f

1
CCA ;

and the local equilibria read
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E .u/ D

0
BB@
�

0

e

0

1
CCA ; u D QU D

�
�

e

�
; Q D

�
1 0 0 0

0 0 1 0

�
;

so that, once again, QF.E .u// D 0.

2.3 An Expansion Near Equilibria

Our singular analysis proceeds with a Chapman–Engskog expansion around a local
equilibria u D u.t; x/ 2 !. We set

U � D E .u/C � U1 C �2 U2 C : : : ; u WD QU�;

and requires that � @tU � C @xF.U
�/ D �R.U �/=�:We thus obtain QU1 D QU2 D

: : : D 0 and then

F.U �/ D F.E .u//C � A.E .u// U1 C O.�2/;

R.U �/

�
D B.E .u// U1 C �

2
D2
UR.E .u//:.U1; U1/C �B.E .u// U2 C O.�2/:

In turn, we deduce that

� @t
�
E .u/

	C @x
�
F.E .u//

	C � @x



A.E .u// U1

�
D �B.E .u// U1 � �

2
D2
UR.E .u//:.U1; U1/ � �B.E .u// U2 C O.�2/:

The zero-order terms imply that U1 2 R
N satisfies the algebraic system

B.E .u// U1 D �@x
�
F.E .u//

	 2 R
N ;

which we can solve in U1. At this juncture, we rely on the condition QU1 D 0 and
the following lemma.

Lemma 1 (Technical Lemma). If C is anN �N matrix satisfying dim kerC D n

and kerC\Im C D ˚
0
�
, and ifQ is an n�N matrix of rank n, then for all J 2 R

N ,
there exists a unique solution V 2 R

N to C V D J and QV D 0 QJ D 0.

Proposition 1 (First-Order Corrector Problem). The first-order term U1 is char-
acterized by B.E .u// U1 D �@x

�
F.E .u//

	
andQU1 D 0.
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Considering next the first-order terms, we arrive at

@t
�
E .u/

	C @x



A.E .u// U1

�
D �1

2
D2
UR.E .u//:.U1; U1/� B.E .u// U2

and, after multiplication by Q and using QE .u/ D u,

@tu C @x



QA.E .u// U1

�
D �1

2
QD2

UR.E .u//:.U1; U1/ �QB.E .u// U2:

On the other hand, by differentiating QR.U / D 0, we get QD2
UR:.U1; U1/ � 0

andQB U2 � 0. This leads us to the following conclusion.

Theorem 1 (Late Time/Stiff Relaxation Effective Equations). The effective sys-
tem reads

@tu D �@x



QA.E .u// U1
�

DW @x .M .u/@xu/

for some n � n matrix M .u/ and with U1 being the unique solution to

B.E .u// U1 D �A.E .u//@x
�
E .u/

	
; QU1 D 0:

2.4 Mathematical Entropy Pair for Stiff Balance Laws

We now assuming now that a mathematical entropy ˚ W ˝ ! R exists and satisfies
the following two additional conditions:

Condition 5. There exists an entropy-flux � W ˝ ! R such that DU˚ A D DU�

in ˝ . So, all smooth solutions satisfy

�@t
�
˚.U �/

	C @x
�
�.U �/

	 D �DU˚.U
�/
R.U �/

�

and, consequently, the matrix D2
U˚ A is symmetric in ˝ . Moreover, the map ˚ is

convex, i.e. the N �N matrixD2
U˚ is positive definite on M .

Condition 6. The entropy is compatible withe the relaxation in the sense that

DU˚ R � 0 in ˝;

DU˚.U / D �.U /Q 2 R
N ; �.U / 2 R

d :

Next, we return to the effective equations @tu D @xD sand D WD �QA.E .u// U1
and, multiplying it by the Hessian of the entropy, we see that U1 2 R

N is
characterized by
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L .u/U1 D ��D2
U˚

	
.E .u//@x

�
F.E .u//

	
;

QU1 D 0;

with L .u/ D D2
U˚.E .u//B.E .u//.

Denoting by L .u/�1 the generalized inverse with constraint and setting S.u/ WD
QA.E .u//, we obtain

D D SL �1�D2
U˚

	
.E /@x

�
F.E /

	
:

Finally, one can check that, with v WD @x .Du˚.E //
T ,

�
D2
U˚

	
.E /@x

�
F.E /

	 D ST v:

Theorem 2 (Entropy Structure of the Effective System). When a mathematical
entropy is available, the effective equations take the form

@tu D @x



L.u/ @x

�
Du˚.E .u//

	T �
;

with

L.u/ WD S.u/L .u/�1S.u/T ; S.u/ WD QA.E .u//;

L .u/ WD �
D2
U˚

	
.E .u//B.E .u//;

where, for all b satisfying Qb D 0, the unique solution to L .u/V D b, QV D 0 is
denoted by L .u/�1b (generalized inverse).

This result can be formulated in the so-called entropy variable
�
Du˚.E .u//

	T
.

Furthermore, a dissipation property follows from our assumptions and, specifically,
from the entropy and equilibrium properties (see R.E .u// D 0), we obtain

DU˚R � 0 in ˝;

.DU˚R/ jUDE .u/ D 0 in !:

Thus, the matrixD2
U



DU˚R

�
jUDE .u/ is non-negative definite. It follows that

D2
U



DU˚R

�
D D2

U˚B C �
D2
U˚B

	T
when U D E .u/;

so that D2
U˚ BjUDE .u/ � 0 in !.

For the equilibrium entropy˚.E .u//, the associated (entropy) flux u 7! �.E .u//
is constant on the equilibrium manifold !. For the map �.E /, we have

Du
�
�.E /

	 D DU�.E /DuE D DU˚.E /A.E /DuE :
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Observe that
�
DU˚

	
.E / D Du

�
˚.E /

	
Q, so that

Du



�.E .u//

�
D Du˚.E .u//QA.E .u//DuE .u/

D Du



˚.E .u//

�
DuQF.E .u//:

Since QF.E / D 0, then DuQF.E / D 0 and the proof is completed.
Therefore, Du

�
�.E .u//

	 D 0 for all u 2 !. From the expansion U � D E .u/C
�U1 C : : :, where U1 is given by the first-order corrector problem, we deduce

�.U �/ D �.E .u//C � DU�.E .u// U1 C O.�2/;

and then @x�.U �/ D � @xDU�.E .u// U1 C O.�2/. Similarly, for the relaxation
source, we have

DU˚.U
�/R.U �/ D �2D2

U˚.E .u//DUR.E .u//U1 C O.�3/:

We thus get

@t
�
˚.E .u//

	C @x



DU�.E .u// U1

�
D �UT

1

�
D2
U˚.E .u//B.E .u//

	
U1:

At this juncture, recall that X
�
D2
U˚

	
.E /B.E /X � 0 for X 2 R

N .

Proposition 2 (Monotonicity of the Entropy). The entropy is non-increasing, i.e.

@t
�
˚.E .u//

	C @x .DU�.E .u// U1/ 	 0

and

@t
�
˚.E .u//

	 D @x


�
Du
�
˚.E .u/

		
L.u/ @x

�
Du
�
˚.E .u/

		T �
:

2.5 Effective Models

2.5.1 Effective Model for Stiff Friction

We now analyze the diffusive regime for the Euler equations with friction. Accord-

ing to the general theory, the equilibria satisfy @t� D �@x



QA.E .u// U1
�

with
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DUF.E .u// D
�

0 1

p0.�/ 0

�
:

Here, U1 is the unique solution to B.E .u//U1 D �@x
�
F.E .u//

	
andQU1 D 0 with

B.E .u// D
�
0 0

0 1

�
; @x



F.E .u//

�
D
�

0

@x
�
p.�/

	� :
The effective diffusion equation for the Euler equations with friction thus read:

@t� D @2x
�
p.�/

	
; (10)

which is a nonlinear parabolic equation (away from vacuum) since p0.�/ > 0.
Near the vacuum, this equation is often degenerate since p0.�/ typically vanishes
at � D 0. For instance for polytropic gases p.�/ D ��� with � > 0 and � 2 .1; �/
we get

@t� D �� @x
�
���1@�

	
: (11)

Defining the internal energy e.�/ > 0 by e0.�/ D p.�/=�2 we see that, for all
smooth solutions to (7),

� @t



�

v2

2
C �e.�/

�
C @x



�

v3

2
C .�e.�/C p.�//v

�
D ��v2

�
; (12)

so that ˚.U / D � v2

2
C �e.�/ is a convex entropy and is compatible with the

relaxation. All the conditions of the general framework are therefore satisfied.

2.5.2 Effective Model for Stiff Radiative Transfer

This system is compatible with our late-time/stiff relaxation framework with now

U D
0
@ e

f

�

1
A ; F .U / D

0
@ f

�.
f

e
/e

0

1
A ; R.U / D

0
@ e � �4

f

�4 � e

1
A :

The equilibria read u D � C �4 and

E .u/ D
0
@ �40
�

1
A ; Q WD .1 0 1/

and we have QF.E .u// D 0.
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We determine the diffusive regime for the M1 model from

�
DUF

	
.E .u// D

0
@ 0 1 0

�.0/ �0.0/ 0
0 0 0

1
A D

0
@ 0 1 01

3
0 0

0 0 0

1
A ;

where U1 is the solution to

0
@ 1 0 �4�3
0 1 0

�1 0 4�3

1
AU1 D

0
@ 0

@x
�
�4=3

	
0

1
A ;

.1 0 1/U1 D 0:

Therefore, we have U1 D
0
@ 0

4
3
�3@x�

0

1
A and the effective diffusion equation reads

@t .� C �4/ D @x

�
4

3
�3@x�

�
; (13)

which admits an entropy.

2.5.3 Effective Model for Stiff Friction and Stiff Radiative Transfert

Here, we have

DUF.E .u// D

0
BB@

0 1 0 0

p0.�/ 0 0 0
0 0 0 1

0 0 1
3
0

1
CCA ; U1 D

0
BBB@

0
1
�



�@xp.�/ � 1

3
@xe

�
0

� 1
3�
@xe

1
CCCA ;

and the effective diffusion system for the coupled Euler/M1 model reads

@t� � 1

�
@2xp.�/� 1

3�
@2xe D 0;

@t e � 1

3�
@2xe D 0:

(14)

The second equation is a heat equation, and its solution appears as a source-term in
the first one.
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2.5.4 Effective Model for Stiff Nonlinear Friction

Our framework encompass handle certain nonlinear diffusion regime under the
scaling

� @tU C @xF.U / D �R.U /
�q

:

The parameter q � 1 introduces a new scale and is necessary when the relaxation is
nonlinear. We assume that

R
�
E .u/C � U

	 D �qR


E .u/CM.�/U

�
; U 2 ˝; u 2 !

for some matrix M.�/. In that regime, the effective equations are now nonlinear
parabolic.

Our final example requires this more general theory and reads

�@thC @x
�
hv
	 D 0;

�@t
�
hv
	C @x



h v2 C p.h/

�
D ��

2.h/

�2
g hvjhvj;

(15)

where h is the fluid height and v the fluid velocity v. The pressure reads p.h/ D
g h2=2 while g > 0 is the gravity constant. The friction � W RC ! R

C is a positive
function, and for instance one can take �.h/ D �0

h
with �0 > 0.

The nonlinear version of the late-time/stiff relaxation framework applies by
introducing

U D
�
h

hv

�
; F .U / D

�
hv

hv2 C p.h/

�
; R.U / D

�
0

�2.h/ghvjhvj
�
:

The equilibria u D h are associated with

E .u/ D
�
h

0

�
; Q D .1 0/:

The relaxation is nonlinear and

R.E .u/C �U / D �2R
�
E .U /CM.�/U

	
;

with

M.�/ WD
�
� 0

0 1

�
:
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in turn, we obtain a nonlinear effective equation for the Euler equations with
nonlinear friction, i.e.

@th D @x

 p
h

�.h/

@xhpj@xhj

!
; (16)

which is a parabolic and fully nonlinear.
Introducing the internal energy e.h/ WD gh=2, we see that all smooth solutions

to (15) satisfy the entropy inequality

�@t

�
h

v2

2
C g

h2

2

�
C @x

�
h

v2

2
C gh2

�
v D ��

2.h/

�2
ghv2jhvj: (17)

The entropy ˚.U / WD h v2

2
C g h

2

2
satisfies the compatibility properties for the

nonlinear late-time/stiff relaxation theory, with

R.E .u/CM.0/ NU1/ D
�

0

@xp.h/

�
;

where NU1 D .0 ˇ/ . We obtain R.E .u/CM.0/ NU1/ D c.u/ NU1 with

c.u/ D g�.h/
p
hj@xhj � 0:

2.6 A Class of Asymptotic-Preserving Finite Volume Method

2.6.1 The General Strategy

We now will design a class of finite volume schemes which are consistent with the
asymptotic regime � ! 0 and allow us to recover the effective diffusion equation
(independently of the mesh-size) for the limiting solutions. Hence, we develop
here a rather general framework adapted to the hyperbolic-to-parabolic relaxation
regime.

Step 1. We rely on a arbitrary finite volume scheme for the homogeneous system

@tU C @xF.U / D 0;

as described below.
Step 2. Next, we modify this scheme and include a matrix-valued free parameter

in order to consistently approximate the non-homogeneous system (for any
� > 0)

@tU C @xF.U / D �� R.U /:



Structure-Preserving Shock-Capturing Methods 193

Step 3. By performing an asymptotic analysis of this scheme after replacing the
discretization parameter �t by ��t , and � by 1=�, we then determine the free
parameters and ensure the desired asymptotic-preserving property.

For definiteness, the so-called HLL discretization of the homogeneous system
(Harten, Lax, and van Leer [36]) are now discussed. We present the solver based on
a single intermediate state and on a uniform mesh with cells of length�x, that is,

Œxi�1=2; xiC1=2�; xiC1=2 D xi C �x

2

for all i D : : : ;�1; 0; 1; : : :. The time discretization is based on some �t restricted
by the CFL condition [28] with tmC1 D tm C�t:

Given any initial data (lying in ˝):

U 0.x/ D 1

�x

Z xiC1=2

xi�1=2

U.x; 0/dx; x 2 Œxi�1=2; xiC1=2/:

we design approximations that are piecewise constant at each tm, that is,

Um.x/ D Um
i ; x 2 Œxi�1=2; xiC1=2/; i 2 Z:

At each cell interface we use the approximate Riemann solver

QUR.
x

t
IUL;UR/ D

8̂̂
ˆ̂̂<
ˆ̂̂̂̂:

UL;
x

t
< �b;

QU?; �b < x

t
< b;

UR;
x

t
> b;

where b > 0 is (sufficiently) large. The “numerical cone” (and numerical diffusion)
is determined by some b > 0 and, for simplicity in the presentation, we assume a
single constant b. More generally, one can introduce distinct speeds b�

iC1=2 < b
C
iC1=2

at each interface.
We introduce the intermediate state

QU? D 1

2
.UL C UR/ � 1

2b

�
F.UR/ � F.UL/

	
and, under the CFL condition b �t

�x
	 1=2, the underlying Riemann solutions are

non-interacting. Our global approximations

QUm
�x.x; t

m C t/; t 2 Œ0;�t/; x 2 R;

are defined as follows.
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At the time tmC1, we set

QUmC1
i D 1

�x

Z xiC1=2

xi�1=2

QUm
�x.x; t

m C�t/ dx

and, recalling QU?
iC1=2 D 1

2
.Um

i C Um
iC1/ � 1

2b
.F.Um

iC1/ � F.Um
i //; and integrating

out the expression given by the Riemann solutions, we arrive at the scheme adapted
to our homogeneous system

QUmC1
i D Um

i � �t

�x



F HLL
iC1=2 � F HLL

i�1=2
�
;

where

F HLL
iC1=2 D 1

2



F.Um

i /C F.Um
iC1/

�
� b

2
.Um

iC1 � Um
i /:

More generally one can include here two speeds b�
iC1=2 < b

C
iC1=2.

This scheme enjoys an invariant domain property, as follows. The intermediate
states QU?

iC1=2 can be written in the form of a convex combination

QU?
iC1=2 D 1

2

�
Um
i C 1

b
F.Um

i /

�
C 1

2

�
Um
iC1 � 1

b
F.Um

iC1/
�

2 ˝;

provided b is large enough. An alternative decomposition is

QU?
iC1=2 D 1

2



I C 1

b
A.Um

i ; U
m
iC1/

�
Um
i C 1

2



I � 1

b
A.Um

i ; U
m
iC1/

�
Um
iC1;

where A is an “average” of DUF . By induction, we conclude that QUm
i in ˝ for

all m; i .

2.6.2 Handling the Stiff Relaxation

Consider the modified Riemann solver:

UR.
x

t
IUL;UR/ D

8̂̂
ˆ̂̂̂̂̂
ˆ̂<
ˆ̂̂̂̂
ˆ̂̂̂̂:

UL;
x

t
< �b;

U ?L; �b < x

t
< 0;

U ?R; 0 <
x

t
< b;

UR;
x

t
> b;
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with, at the interface,

U?L D ˛ QU? C .I � ˛/
�
UL � NR.UL/

	
;

U ?R D ˛ QU? C .I � ˛/
�
UR � NR.UR/

	
:

We have introduced an arbitraryN �N -matrix and an N -vector by

˛ D
�
I C ��x

2b
.I C �/

��1
; NR.U / D .I C �/�1R.U /:

The term � is a parameter matrix and we require that all inverse matrices are well-
defined and, importantly, the correct asymptotic regime arises at the discrete level
(see below).

At each xiC1=2, we use the Riemann solver UR.
x�xiC1=2

t�tm IUm
i ; U

m
iC1/ and super-

impose non-interacting Riemann solutions

Um
�x.x; t

m C t/; t 2 Œ0;�t/; x 2 R:

The approximation at the time tmC1 reads UmC1
i D R xiC1=2

xi�1=2
U m
�x.x; t

m C �t/ dx.
By integration of the Riemann solutions, we arrive at the following discrete form of
the balance law

1

�t
.UmC1

i � Um
i /C 1

�x



˛iC1=2F HLL

iC1=2 � ˛i�1=2F HLL
i�1=2

�

D 1

�x
.˛iC1=2 � ˛i�1=2/F.Um

i /� b

�x
.I � ˛i�1=2/ NRi�1=2.Um

i /

� b

�x
.I � ˛iC1=2/ NRiC1=2.Um

i /:

(18)

The source can rewritten as

b

�x
.I � ˛iC1=2/ NRiC1=2.Um

i / D b

�x
˛iC1=2.˛�1

iC1=2 � I / NRiC1=2.Um
i /

D �

2
˛iC1=2R.Um

i /

and

b

�x
.I � ˛i�1=2/ NRi�1=2.Um

i / D �

2
˛i�1=2R.Um

i /:

Our finite volume scheme for late-time/stiff-relaxation problems finally read
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1

�t
.UmC1

i � Um
i /C 1

�x
.˛iC1=2F HLL

iC1=2 � ˛i�1=2F HLL
i�1=2/

D 1

�x
.˛iC1=2 � ˛i�1=2/F.Um

i / � �

2
.˛iC1=2 C ˛i�1=2/R.Um

i /:

(19)

Theorem 3 (A Class of Finite Volume Schemes for Relation Problems). When

�iC1=2 � �i�1=2 D O.�x/

and the matrix-valued map � is smooth, the finite volume scheme above is consistent
with the hyperbolic system with relaxation and satisfies the following invariant
domain property: provided all states

U?L
iC1=2 D ˛iC1=2 QU?

iC1=2 C .I � ˛iC1=2/.Um
i � NR.Um

i //;

U ?R
iC1=2 D ˛iC1=2 QU?

iC1=2 C .I � ˛iC1=2/.Um
iC1 � NR.Um

iC1//

belong to ˝ , then all of the states Um
i belong to ˝ .

2.7 Effective Equation for the Discrete Asymptotics

We replace �t by�t=� and � by 1=� and consider the expression

�

�t
.UmC1

i � Um
i /C 1

�x
.˛iC1=2F HLL

iC1=2 � ˛i�1=2F HLL
i�1=2/

D 1

�x
.˛iC1=2 � ˛i�1=2/F.Um

i / � 1

2�
.˛iC1=2 C ˛i�1=2/R.Um

i /;

in which

˛iC1=2 D
�
I C �x

2�b
.I C �iC1=2/

��1
:

We expand near an equilibrium state Um
i D E .umi /C �.U1/

m
i C O.�2/ and find

F HLL
iC1=2 D 1

2
F
�
E .umi /

	C 1

2
F
�
E .umiC1/

	� b

2

�
E .umiC1/� E .umi /

	C O.�/;

1

�
R.Um

i / D B.E .umi //.U1/
m
i C O.�/;

˛iC1=2 D 2b�

�x

�
I C �iC1=2

	�1 C O.1/:

The first-order terms yield us
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1

�t
.E .umC1

i / � E .umi //

D � 2b

�x2



.I C �iC1=2/�1F HLL

iC1=2jE .u/ � .I C �i�1=2/�1F HLL
i�1=2jE .u/

�

C 2b

�x2



.I C �iC1=2/�1 � .I C �i�1=2/�1

�
F.E .umi //

� b

�x



.I C �iC1=2/�1 C .I C �i�1=2/�1

�
B.E .umi //.U1/

m
i :

Assuming here the existence of an n � n matrix MiC1=2 satisfying

Q
�
I C �iC1=2

	�1 D 1

b2
MiC1=2Q

and multiplying the equation above by Q, we get

1

�t
.umC1
i � umi / D � 2

b�x2



MiC1=2QFHLL

iC1=2jE .u/ � Mi�1=2QFHLL
i�1=2jE .u/

�
;

where

QFHLL
iC1=2jE .u/ D Q

2
F.E .umi //C Q

2
F.E .umiC1//� b

2
Q
�
E .umiC1/ � E .umi /

	
D �b

2
.umiC1 � umi /:

The asymptotic system for the scheme thus reads

1

�t
.umC1
i � umi / D 1

�x2



MiC1=2.umiC1 � umi /C Mi�1=2.umi�1 � umi /

�
: (20)

Recall that for some matrixM .u/, the effective equation reads @tu D @x .M .u/@xu/.

Theorem 4 (Discrete Late-Time Asymptotic-Preserving Property). Assume
that the matrix-valued coefficients satisfy the following conditions:

• The matrices IC�iC1=2 and


1C �x

2�b

�
IC�iC1=2 are invertible for all � 2 Œ0; 1�.

There exists a matrix MiC1=2 satisfying the commutation condition

Q.I C �iC1=2/�1 D 1

b2
MiC1=2Q:

• The discrete formulation of M .u/ at each interface xiC1=2 satisfies

MiC1=2 D M .u/C O.�x/:
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Then the effective system associated with the proposed finite volume scheme
coincides with the effective system determined in the late-time/stiff relaxation
framework.

Finally, wee refer to [9] for various numerical experiments demonstrating the
relevance of the proposed scheme and its efficiency in order to compute late-time
behaviors of solutions. Asymptotic solutions may have large gradients but are in
fact regular. Note that our CFL stability condition is based on the homogeneous
hyperbolic system and therefore imposes a restriction on �t=�x only. In our test,
for simplicity, the initial data were taken in the image of Q, while the reference
solutions (needed for the purpose of comparison) were computed separately by
solving the associated parabolic equations, of course under a (much more restrictive)
restriction on �t=.�x/2.

The proposed theoretical framework for late-time/stiff relaxation problems thus
led us to the development of a good strategy to design asymptotic-preserving
schemes involving matrix-valued parameter. The convergence analysis (� ! 0)
and the numerical analysis (�x ! 0) for the problems under consideration are
important and challenging open problems. It would be very interesting to apply our
technique to plasma mixtures in a multi-dimensional setting.

Furthermore, high-order accurate Runge–Kutta methods have been recently
developed for these stiff relaxation problems by Boscarino and Russo [10] and by
Boscarino, LeFloch, and Russo [11].

3 Geometry-Preserving Finite Volume Methods

3.1 Objective and Background Material

On a smooth .n C 1/-dimensional manifold M referred to as a spacetime, we
consider the class of nonlinear conservation laws

d.!.u// D 0; u D u.x/; x 2 M: (21)

For all u 2 R, ! D !.u/ is a smooth field of n-forms, referred to as the flux field of
the conservation law under consideration.

Two examples are of particular interest. WhenM D RC �N and the n-manifold
N is endowed with a Riemannian metric h, (21) reads

@tu C divh.b.u// D 0; u D u.t; y/; t � 0; y 2 N;

where divh denotes the divergence operator for the metric h. The flux field is then
considered as a flux vector field b D b.u/ on the n-manifold N and is independent
of the time variable.

More generally, when M is endowed with a Lorentzian metric g, (21) reads
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divg.a.u// D 0; u D u.x/; x 2 M;

in which the flux a D a.u/ is now a vector field on M . In this Riemannian or
Lorentzian settings, the theory of weak solutions on manifolds was initiated by Ben-
Artzi and LeFloch [4] and developed in [1, 2, 46, 51].

In the present paper, we discuss the novel approach in which the conservation
law is written in the form (21), that is, the flux ! D !.u/ is defined as a field of
differential forms of degree n. No geometric structure is assumed onM and the sole
flux field structure is assumed. The Eq. (21) is a “conservation law” for the unknown
quantity u, as follows from Stokes theorem for sufficiently smooth solutions u: the
total flux Z

@U
!.u/ D 0; U � M; (22)

vanishes for every smooth open subset U . By relying on (21) rather than the
equivalent expressions in the special cases of Riemannian or Lorentzian manifolds,
we develop a theory of entropy solutions which is technically and conceptually sim-
pler and provides a generalization of earlier works. From a numerical perspective,
relying o (21) leads us to a geometry-consistent class of finite volume schemes,
as we will now present it. So, our main objective i this presentation will be a
generalization of the formulation and convergence of the finite volume method for
general conservation law (21). In turn, this will also establish the existence of a
contracting semi-group of entropy solutions.

We will proceed as follows:

• First we will formulate the initial and boundary problem for (21) by taking into
account the nonlinearity and hyperbolicity of the equation. We need to impose
that the manifold satisfies a global hyperbolicity condition, which provides a
global time-orientation and allow us to distinguish between “future” and “past”
directions in the time-evolution and we suppose that the manifold is foliated by
compact slices.

• Second, we introduce a geometry-consistent version of the finite volume method
which provides a natural discretization of the conservation law (21), which solely
uses the n-volume form structure associated with the flux field !.

• Third, we derive stability estimates, especially certain discrete versions of the
entropy inequalities. We obtain a uniform control of the entropy dissipation
measure, which, however, is not sufficient by itself to establish the compactness
of the sequence of solutions. Yet, these stability estimates imply that the sequence
of approximate solutions generated by the finite volume scheme converges to an
entropy measure-valued solution in the sense of DiPerna.

• Fourth, to conclude we rely on DiPerna’s uniqueness theorem [30] and establish
the existence of entropy solutions to the corresponding initial value problem.

In the course of our analysis, we will derive the following contraction property:
for any entropy solutions u; v and any hypersurfacesH;H 0 such that H 0 lies in the
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future of H , one has Z
H 0

˝.uH 0; vH 0/ 	
Z
H

˝.uH; vH/: (23)

Here, for all reals u; v, the n-form field ˝.u; v/ is determined from the flux field
!.u/ and is a generalization (to the spacetime setting) of the notion (introduced in
[42]) of Kruzkov entropy ju � vj.

DiPerna’s measure-valued solutions were first used to establish the convergence
of schemes by Szepessy [64], Coquel and LeFloch [25–27], and Cockburn, Coquel,
and LeFloch [22, 23]. Further hyperbolic models including a coupling with elliptic
equations and many applications were investigated by Kröner [40], and Eymard,
Gallouet, and Herbin [34]. For higher-order schemes, see Kröner, Noelle, and
Rokyta [41]. See also Westdickenberg and Noelle [66].

3.2 Entropy Solutions to Conservation Laws Posed
on a Spacetime

We assume that M is an oriented, compact, differentiable .n C 1/-manifold with
boundary. Given an .n C 1/-form ˛, its modulus is defined as the .n C 1/-form
j˛j WD j˛j dx0 ^ � � � ^ dxn, where ˛ D ˛ dx1 ^ � � � ^ dxn is written in an oriented
frame determined in coordinates x D .x˛/ D .x0; : : : ; xn/. If H is a hypersurface,
we denote by i D iH W H ! M the canonical injection map, and by i� D i�H is the
pull-back operator acting on differential forms defined on M .

We introduce the following notion:

• A flux field ! on the .nC1/-manifoldM is a parametrized family!.u/ 2 �n.M/

of smooth fields of differential forms of degree n, that depends smoothly upon
the real parameter u.

• The conservation law associated with a flux field ! and with unknown u W M !
R is

d
�
!.u/

	 D 0; (24)

where d is the exterior derivative operator and, therefore, d
�
!.u/

	
is a field of

differential forms of degree .nC 1/.
• A flux field ! is said to grow at most linearly if for every 1-form � onM

sup
u2R

Z
M

j� ^ @u!.u/j < C1: (25)

In local coordinates x D .x˛/ we write (for all u 2 R) !.u/ D !˛.u/ .cdx/˛ and
.cdx/˛ WD dx 0^ : : :^dx ˛�1^dx ˛C1^ : : :^dx n. Here, the coefficients !˛ D !˛.u/
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are smooth. The operator d acts on differential forms and that, given a p-form �

and a p0-form �0, one has d.d�/ D 0 and d.� ^ �0/ D d� ^ �0 C .�1/p� ^ d�0.
The Eq. (24) makes sense for unknowns that are Lipschitz continuous. However,
solutions to nonlinear hyperbolic equations need not be continuous and we need to
recast (24) in a weak form.

Given a smooth solution u of (24) we apply Stokes theorem on any open subset
U (compactly included in M and with smooth boundary @U ) and find

0 D
Z
U

d.!.u// D
Z
@U

i�.!.u//: (26)

Similarly, given any smooth function  W M ! R we write d. !.u// D
d ^ !.u/ C  d.!.u//, where d is a 1-form field. Provided u satisfies (24),
we deduce that Z

M

d. !.u// D
Z
M

d ^ !.u/

and, by Stokes theorem,

Z
M

d ^ !.u/ D
Z
@M

i�. !.u//: (27)

A suitable orientation of the boundary @M is required for this formula to hold.

Definition 1 (Weak Solutions on a Spacetime). Given a flux field (with at most
linear growth) !, a function u 2 L1.M/ is a weak solution to (24) on the spacetime
M if

R
M d ^ !.u/ D 0 for every  W M ! R that is compactly supported in the

interior VM .

Observe that the function u is integrable and !.u/ has at most linear growth in u,
so that the .nC 1/-form d ^ !.u/ is integrable on the compact manifoldM .

Definition 2. A (smooth) field of n-forms ˝ D ˝.u/ is a (convex) entropy flux
field for (24) if there exists a (convex) function U W R ! R such that

˝.u/ D
Z u

0

@uU.v/ @u!.v/ dv; u 2 R:

It is admissible if, moreover, sup j@uU j < 1.

If we choose the function U.u; v/ WD ju � vj, where v is a real parameter, the
entropy flux field reads

˝.u; v/ WD sgn.u � v/ .!.u/� !.v//: (28)

This is a generalization to spacetimes of the so-called Kruzkov’s entropy pairs.
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Next, given any smooth solution u to (24), we multiply (24) by @uU.u/ and obtain
the conservation law

d.˝.u//� .d˝/.u/C @uU.u/.d!/.u/ D 0:

For discontinuous solutions, we impose the entropy inequalities

d.˝.u//� .d˝/.u/C @uU.u/.d!/.u/ 	 0 (29)

in the sense of distributions for all admissible entropy pair .U;˝/. This is justified,
for instance, via the vanishing viscosity method, i.e. by searching for weak solutions
realizable as limits of smooth solutions to a parabolic regularization.

It remains to prescribe initial and boundary conditions. We emphasize that,
without further assumption on the flux field (to be imposed shortly below), points
along the boundary @M can not be distinguished and it is natural to prescribe the
trace of the solution along the whole of the boundary @M . This is possible provided
the boundary data, uB W @M ! R, is assumed by the solution in a suitably weak
sense. Following Dubois and LeFloch [32], we use the notation

u
ˇ̌
@M

2 EU;˝.uB/ (30)

for all convex entropy pair .U;˝/, where for all reals u

EU;˝.u/ WD
n
v 2 R

ˇ̌
E.u; v/ WD ˝.u/C @uU.u/.!.v/� !.u// 	 ˝.v/

o
:

Definition 3 (Entropy Solutions on a Spacetime with Boundary). Let ! D !.u/
be a flux field (with at most linear growth) and let uB 2 L1.@M/ be a boundary
function. A function u 2 L1.M/ is an entropy solution to the boundary value
problem (24) and (30) if there exists a bounded and measurable field of n-forms
� 2 L1�n.@M/ such that, for every admissible convex entropy pair .U;˝/ and
every smooth function  W M ! RC,

Z
M



d ^˝.u/C  .d˝/.u/�  @uU.u/.d!/.u/

�

C
Z
@M

 j@M
�
i�˝.uB/C @uU.uB/

�
� � i�!.uB/

		 � 0:

This definition makes sense since each of the terms d ^ ˝.u/, .d˝/.u/,
.d!/.u/ belong to L1.M/. Following DiPerna [30], we can also consider solutions
that are no longer functions but Young measures, i.e, weakly measurable maps
� W M ! Prob.R/ taking values within is the set of probability measures Prob.R/.

Definition 4. Let ! D !.u/ be a flux field with at most linear growth and let
uB 2 L1.@M/ be a boundary function. A compactly supported Young measure



Structure-Preserving Shock-Capturing Methods 203

� W M ! Prob.R/ is an entropy measure-valued solution to the boundary value
problem (24), (30) if there exists a bounded and measurable field of n-forms
� 2 L1�n.@M/ such that, for all convex entropy pair .U;˝/ and all smooth
functions  � 0,

Z
M

D
�; d ^˝.�/C  

�
d.˝.�//� @uU.�/.d!/.�/

	E

C
Z
@M

 j@M
D
�;


i�˝.uB/C @uU.uB/

�
� � i�!.uB/

	�E � 0:

3.3 Global Hyperbolicity and Geometric Compatibility

The manifoldM is now assumed to be foliated by hypersurfaces, say

M D
[

0�t�T
Ht ; (31)

where each slice has the topology of a (smooth) n-manifold N with boundary.
Topologically we have M ' Œ0; T � �N , and

@M D H0 [HT [ B;

B D .0; T / �N WD
[

0<t<T

@Ht :
(32)

We impose a non-degeneracy condition on the averaged flux on the hypersurfaces.

Definition 5. Let M be a manifold endowed with a foliation (31)–(32) and let
! D !.u/ be a flux field. Then, the conservation law (24) on M satisfies the global
hyperbolicity condition if there exist constants 0 < c < c such that, for every non-
empty hypersurface e � Ht , the integral

R
e
i�@u!.0/ is positive and the function

'e W R ! R,

'e.u/ WD �
Z
e

i�!.u/ D
R
e
i�!.u/R

e
i�@u!.0/

; u 2 R

satisfies

c 	 @u'e.u/ 	 c; u 2 R: (33)

The function 'e represents the averaged flux along e. From now, we assume
that the conditions above are satisfied and we refer to H0 as an initial hypersurface
and we prescribe an initial data u0 W H0 ! R on this hypersurface. We impose a
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boundary data uB on the submanifold B . We sometimes refer to Ht as spacelike
hypersurfaces.

Under the global hyperbolicity condition (31)–(33), the initial and boundary
value problem takes the following form. The boundary condition (30) decomposes
into an initial data

uH0 D u0 (34)

and a boundary condition

u
ˇ̌
B

2 EU;˝.uB/: (35)

Correspondingly, the condition in Definition 3 reads

Z
M



d ^˝.u/C  .d˝/.u/�  @uU.u/.d!/.u/

�

C
Z
B

 j@M
�
i�˝.uB/C @uU.uB/

�
� � i�!.uB/

		C
Z
HT

i�˝.uHT /

�
Z
H0

i�˝.u0/ � 0:

Definition 6. A flux field ! is geometry-compatible if it is closed for each value of
the parameter,

.d!/.u/ D 0; u 2 R: (36)

This condition ensures that constants are trivial solutions, a property shared by
many models of fluid dynamics (such as the shallow water model). When (36) holds,
it follows from Definition 2 that every entropy flux field ˝ satisfies .d˝/.u/ D 0

(for all u 2 R) and the entropy inequalities (29) for a solution u W M ! R take the
simpler form

d.˝.u// 	 0: (37)

3.4 The Spacetime Finite Volume Method

We now assume thatM D Œ0; T ��N is foliated by slices with compact topologyN ,
and the initial data u0 is bounded. We assume that the global hyperbolicity condition
holds and the flux field ! is geometry-compatible. Let T h D S

K2T h K be a
triangulation of M , that is, a collection of cells (or elements), determined as the
images of polyhedra of RnC1, satisfying:
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• The boundary @K of an element K is a piecewise smooth, n-manifold, @K DS
e�@K e and contains exactly two spacelike faces eC

K and e�
K and “vertical”

elements

e0 2 @0K WD @K n ˚eC
K ; e

�
K

�
:

• The intersectionK\K 0 of two distinct elementsK;K 0 2 T h is either a common
face ofK;K 0 or else a submanifold with dimension at most .n� 1/.

• The triangulation is compatible with the foliation in the sense that there exist
times t0 D 0 < t1 < : : : < tN D T such that all spacelike faces are submanifolds
ofHn WD Htn for some n D 0; : : : ; N , and determine a triangulation of the slices.
We denote by T h

0 the set of all K which admit one face belonging to the initial
hypersurfaceH0.

We define the measure jej of a hypersurface e � M by

jej WD
Z
e

i�@u!.0/: (38)

This quantity is positive if e is sufficiently “close” to one of the hypersurfaces along
which we have the hyperbolicity condition (33). Provided jej > 0 which is the case
if e is included in one of the slices of the foliation, we associate to e the function
'e W R ! R. The following hyperbolicity condition holds along the triangulation
since the spacelike elements are included in the spacelike slices:

c 	 @u'e˙

K
.u/ 	 c; K 2 T h: (39)

Next, we introduce the finite volume method by averaging (24) over each element
K 2 T h. Applying Stokes theorem with a smooth solution u to (24), we get

0 D
Z
K

d.!.u// D
Z
@K

i�!.u/:

Decomposing the boundary @K into its parts eC
K ; e

�
K , and @0K , we obtainZ

e
C

K

i�!.u/ �
Z
e�

K

i�!.u/C
X

e02@0K

Z
e0
i�!.u/ D 0: (40)

Given the averaged values u�
K along e�

K and u�
K
e0

along e0 2 @0K; we need an

approximation uC
K of the solution u along eC

K . The second term in (40) can be
approximated by Z

e�

K

i�!.u/ �
Z
e�

K

i�!.u�
K/ D je�

K j'e�

K
.u�
K/
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and the last term by
R
e0
i�!.u/ � qK;e0.u

�
K; u

�
Ke0
/, where the total discrete flux

qK;e0 W R2 ! R (i.e., a scalar-valued function) must be prescribed.
Finally, the proposed version of the finite volume method for the conservation

law (24) takes the formZ
e

C

K

i�!.uC
K/ D

Z
e�

K

i�!.u�
K/ �

X
e02@0K

qK;e0 .u
�
K; u

�
Ke0
/ (41)

or, equivalently,

jeC
K j'

e
C

K
.uC
K/ D je�

K j'e�

K
.u�
K/�

X
e02@0K

qK;e0 .u
�
K; u

�
Ke0
/: (42)

We assume that the functions qK;e0 satisfy the following properties for all
u; v 2 R W
• Consistency:

qK;e0 .u; u/ D
Z
e0
i�!.u/: (43)

• Conservation:

qK;e0 .v; u/ D �qKe0 ;e0 .u; v/: (44)

• Monotonicity:

@uqK;e0 .u; v/ � 0; @vqK;e0 .u; v/ 	 0: (45)

We need to specify the discretization of the initial data and define constant initial
values uK;0 D u�

K (forK 2 T h
0 ) associated with H0, by setting

Z
e�

K

i�!.u�
K/ WD

Z
e�

K

i�!.u0/; e�
K � H0: (46)

We also define a piecewise constant function uh W M ! R by, for every element
K 2 T h,

uh.x/ D u�
K; x 2 K: (47)

We introduce NK WD #@0K , the total number of “vertical” neighbors of an
element K 2 T h, supposed to be uniformly bounded. We fix a finite family of
local charts covering the manifold M , and assume that the parameter h coincides
with the largest diameter of faces eK̇ of elements K 2 T h, where the diameter is
computed with the Euclidian metric in chosen local coordinates.
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We also impose the Courant–Friedrich–Levy condition (for all K 2 T h)

NK

jeC
K j max

e02@0K
sup

u

ˇ̌̌ Z
e0
@u!.u/

ˇ̌̌
< inf

u
@u'eC

K
; (48)

in which the supremum and infimum in u are taken over the range of the initial data.
Finally, we assume that the family of triangulations satisfy

lim
h!0

�2max C h2

�min
D lim

h!0

�2max

h
D 0 (49)

where �max WD maxi .tiC1 � ti / and �min WD mini .tiC1 � ti /. For instance, these
conditions are satisfied if �max, �min, and h vanish at the same order.

Our main objective in this presentation is establishing the convergence of the
proposed finite volume schemes towards an entropy solution. Our analysis of the
finite volume method will rely on a decomposition of (42) into (essentially) one-
dimensional schemes, a technique that goes back to Tadmor [65], Coquel and
LeFloch [25], and Cockburn, Coquel, and LeFloch [24].

By applying Stokes theorem to (36) with some u 2 R, we obtain

0 D
Z
K

d.!.u// D
Z
@K

i�!.u/

D
Z
e

C

K

i�!.u/ �
Z
e�

K

i�!.u/C
X

e02@0K
qK;e0 .u; u/:

Choosing u D u�
K , we deduce

jeC
K j'

e
C

K
.u�
K/ D je�

K j'e�

K
.u�
K/ �

X
e02@0K

qK;e0 .u
�
K; u

�
K/; (50)

which can be combined with (42):

'
e

C

K
.uC
K/ D '

e
C

K
.u�
K/�

X
e02@0K

1

jeC
K j


qK;e0 .u

�
K; u

�
Ke0
/� qK;e0 .u

�
K; u

�
K/
�

D
X

e02@0K

 
1

NK
'
e

C

K
.u�
K/ � 1

jeC
K j


qK;e0 .u

�
K; u

�
Ke0
/� qK;e0 .u

�
K; u

�
K/
�!

:

We introduce the intermediate values QuC
K;e0

:

'
e

C

K
.QuC
K;e0

/ WD '
e

C

K
.u�
K/ � NK

jeC
K j


qK;e0 .u

�
K; u

�
Ke0
/� qK;e0 .u

�
K; u

�
K/
�
; (51)
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and thus arrive at the convex decomposition

'
e

C

K
.uC
K/ D 1

NK

X
e02@0K

'
e

C

K
.QuC
K;e0

/: (52)

Given any entropy pair .U;˝/ and hypersurface e � M satisfying jej > 0 we
introduce the averaged entropy flux along e: '˝e .u/ WD �

R
e
i�˝.u/.

Lemma 2. For every convex entropy flux ˝ one has

'˝
e

C

K

.uC
K/ 	 1

NK

X
e02@0K

'˝
e

C

K

.QuC
K;e0

/: (53)

In fact, the function '˝
e

C

K

ı .'!
e

C

K

/�1 is convex.

Proof. It suffices to show the inequality for the entropy flux, and then average this
inequality over e. We need to check

˝.uC
K/ 	 1

NK

X
e02@0K

˝.QuC
K;e0

/; (54)

namely

1

NK

X
e02@0K

�
˝.QuC

K;e0
/ �˝.uC

K/
	

D 1

NK

X
e02@0K

�
!.uC

K/� !.QuC
K;e0

/
	
@uU.u

C
K/C 1

NK

X
e02@0K

DK;e0 ;

with

DK;e0 WD
Z 1

0

@uuU.u
C
K/


!.QuC

K;e0
C a.uC

K � QuC
K;e0

//� !.QuC
K;e0

/
�
.uC
K � QuC

K;e0
/ da:

In the right-hand side, the former term vanishes identically (see (51)) and the latter
term is non-negative, since U.u/ is convex and @u! is positive. �

3.5 Discrete Entropy Estimates

From the decomposition (52), we derive the discrete entropy inequalities of interest.
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Lemma 3 (Entropy Inequalities for the Faces). For all convex entropy pair
.U;˝/ and allK 2 T h and e0 2 @0K , there exists numerical entropy flux functions
QK;e0 W R2 ! R satisfying (for all u; v 2 R):

• QK;e0 is consistent with the entropy flux ˝:

QK;e0.u; u/ D
Z
e0
i�˝.u/: (55)

• Conservation property:

QK;e0 .u; v/ D �QKe0 ;e
0 .v; u/: (56)

• Discrete entropy inequality:

'˝
e

C

K

.QuC
K;e0

/ � '˝
e

C

K

.u�
K/C NK

jeC
K j


QK;e0.u

�
K; u

�
Ke0
/�QK;e0.u

�
K; u

�
K/
�

	 0:

(57)

Proof. Step 1. For u; v 2 R and e0 2 @0K , let us set

HK;e0 .u; v/ WD '
e

C

K
.u/� NK

jeC
K j


qK;e0 .u; v/� qK;e0 .u; u/

�

and note that HK;e0 .u; u/ D '
e

C

K
.u/. We now check that HK;e0 satisfies

@

@u
HK;e0 .u; v/ � 0;

@

@v
HK;e0 .u; v/ � 0: (58)

The second property is immediate by the monotonicity (45). For the first one, we
recall the CFL condition (48) and the monotonicity (45). From the definition of
HK;e0 .u; v/, we have

HK;e0 .u; uKe0 / D �
1 �

X
e02@0K

˛K;e0
	
'
e

C

K
.u/C

X
e02@0K

˛K;e0'eC

K
.uK

e0
/;

and

˛K;e0 WD 1

jeC
K j
qK;e0 .u; uKe0 / � qK;e0 .u; u/
'
e

C

K
.u/� '

e
C

K
.uK

e0
/

:

This gives a convex combination of '
e

C

K
.u/ and '

e
C

K
.uK

e0
/. By (45) we haveP

e02@0K ˛K;e0 � 0 and, with (48),

X
e02@0K

˛K;e0 	
X

e02@0K

1

jeC
K j
ˇ̌̌qK;e0 .u; uKe0 / � qK;e0 .u; u/

'
e

C

K
.u/� '

e
C

K
.uKe0 /

ˇ̌̌
	 1:
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Step 2. We will establish the entropy inequalities for Kruzkov’s entropies ˝ .
Introduce the discrete version of Kruzkov’s entropy flux

Q.u; v; c/ WD qK;e0 .u _ c; v _ c/ � qK;e0 .u ^ c; v ^ c/;

where a _ b D max.a; b/ and a ^ b D min.a; b/. Note that QK;e0 .u; v/ satisfies
the first two properties of the lemma with the entropy flux replaced by the
Kruzkov’s family ˝ D ˝ in (28).
First, we observe:

HK;e0 .u _ c; v _ c/ �HK;e0 .u ^ c; v ^ c/

D '
e

C

K
.u _ c/ � NK

jeC
K j
�
qK;e0 .u _ c; v _ c/ � qK;e0 .u _ c; u _ c/	

�


'
e

C

K
.u ^ c/ � NK

jeC
K j
�
qK;e0 .u ^ c; v ^ c/ � qK;e0 .u ^ c; u ^ c/	�

D '˝
e

C

K

.u; c/ � NK

jeC
K j



Q.u; v; c/� Q.u; u; c/
�
;

(59)

where '
e

C

K
.u _ c/ � '

e
C

K
.u ^ c/ D �

R
e

C

K
i�˝.u; c/ D '˝

e
C

K

.u; c/.

Second, we prove that for u D u�
K , v D u�

Ke0
and for any c 2 R

HK;e0 .u
�
K _ c; u�

Ke0
_ c/ �HK;e0 .u

�
K ^ c; u�

Ke0
^ c/ � '˝

e
C

K

.QuC
K;e0

; c/: (60)

Indeed, we have

HK;e0 .u; v/ _HK;e0 .�; �/ 	 HK;e0 .u _ �; v _ �/;
HK;e0 .u; v/ ^HK;e0 .�; �/ � HK;e0 .u ^ �; v ^ �/;

whereHK;e0 is monotone in both variables. Since '
e

C

K
is monotone, we have

HK;e0 .u
�
K _ c; u�

Ke0
_ c/ �HK;e0 .u

�
K ^ c; u�

Ke0
^ c/

�
ˇ̌̌
HK;e0 .u

�
K; u

�
Ke0
/�HK;e0 .c; c/

ˇ̌̌
D
ˇ̌̌
'
e

C

K
.QuC
K;e0

/� '
e

C

K
.c/
ˇ̌̌

D sgn
�
'
e

C

K
.QuC
K;e0

/� '
e

C

K
.c/
	�
'
e

C

K
.QuC
K;e0

/� '
e

C

K
.c/
	

D sgn
�QuC
K;e0

� c
	�
'
e

C

K
.QuC
K;e0

/� '
e

C

K
.c/
	 D '˝

e
C

K

.QuC
K;e0

; c/:

Combining this with (59) (with u D u�
K , v D u�

Ke0
), we obtain the inequality
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'˝
e

C

K

.QuC
K;e0

; c/ � '˝
e

C

K

.u�
K; c/C NK

jeC
K j



Q.u; v; c/� Q.u; u; c/
�

	 0;

which implies a similar inequality for all convex entropy flux fields. ut
We now combine Lemma 2 with Lemma 3.

Lemma 4 (Entropy Inequalities for the Elements). For each K 2 T h, one has

jeC
K j �'˝

e
C

K

.uC
K/� '˝

e
C

K

.u�
K/
	C

X
e02@0K

�
Q.u�

K; u
�
Ke0
/ �Q.u�

K; u
�
K/
	 	 0: (61)

If V is convex, then a modulus of convexity for V is a positive real ˇ < infV 00
(where the infimum is taken over the range of the data and solutions). In view of the
proof of Lemma 2, '˝e ı .'!e /�1 is convex for every spacelike hypersurface e and
every convex function U . (Note that the discrete entropy flux terms do not appear
in (62) below.)

Lemma 5 (Entropy Balance Inequality Between Two Hypersurfaces). For
K 2T h, denote by ˇ

e
C

K
a modulus of convexity for '˝

e
C

K

ı �
'!
e

C

K

	�1
and set

ˇD minK2T h ˇ
e

C

K
. Then, for i 	 j one has

X
K2T h

tj

jeC
K j'˝

e
C

K

.uC
K/C

X
K2T h

Œti ;tj /

e02@0K

ˇ

2NK
jeC
K jˇ̌QuC

K;e0
� uC

K

ˇ̌2 	
X
K2T h

ti

je�
K j'˝e�

K
.u�
K/;

(62)

where T h
ti

is the subset of all K satisfying e�
K 2 Hti , and one sets T h

Œti ;tj /
WDS

i�k<j T h
tk

.

Proof. Multiplying (57) by jeC
K j=NK and summing in K 2 T h, e0 2 @0K yield

X
K2T h

e02@0K

jeC
K j
NK

'˝
e

C

K

.QuC
K;e0

/ �
X
K2T h

jeC
K j'˝

e
C

K

.u�
K/

C
X
K2T h

e02@0K

�
QK;e0.u

�
K; u

�
K
e0
/ �QK;e0 .u

�
K; u

�
K/
	 	 0:

The conservation property (56) gives

X
K2T h

e02@0K

QK;e0 .u
�
K; u

�
Ke0
/ D 0 (63)
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and so

X
K2T h

e02@0K

jeC
K j
NK

'˝
e

C

K

.QuC
K;e0

/�
X
K2T h

jeC
K j'˝

e
C

K

.u�
K/�

X
K2T h

e02@0K

QK;e0.u
�
K; u

�
K/ 	 0:

(64)

If V is convex and if v D P
j ˛j vj is a convex combination of vj , then

V.v/C ˇ

2

X
j

˛j jvj � vj2 	
X
j

˛j V .vj /;

where ˇ D infV 00, the infimum being taken over all vj . We apply this with v D
'
e

C

K
.uC
K/ and V D '˝

e
C

K

ı .'!
e

C

K

/�1, which is convex.

In view of (52) and by multiplying the above inequality by jeC
K j and summing in

K 2 T h, we obtain

X
K2T h

e02@0K

jeC
K j'˝

e
C

K

.uC
K/C

X
K2T h

e02@0K

ˇ

2

jeC
K j
NK

jQuC
K;e0

� uC
K j2 	

X
K2T h

e02@0K

jeC
K j
NK

'˝
e

C

K

.QuC
K;e0

/:

Combining the result with (64), we conclude that

X
K2T h

jeC
K j'˝

e
C

K

.uC
K/�

X
K2T h

jeC
K j'˝

e
C

K

.u�
K/C

X
K2T h

e02@0K

ˇ

2

jeC
K j
NK

jQuC
K;e0

� uC
K j2

	
X
K2T h

e02@0K

QK;e0.u
�
K; u

�
K/:

(65)

Finally, using

0 D
Z
K

d.˝.u�
K// D

Z
@K

i�˝.u�
K/

D jeC
K j'˝

e
C

K

.u�
K/� je�

K j'˝e�

K
.u�
K/C

X
e02@0K

QK;e0.u
�
K; u

�
K/;

we obtain the desired inequality, after further summation over all of K within two
arbitrary hypersurfaces. �

We apply Lemma 5 and obtain an important uniform estimate.

Lemma 6 (Global Entropy Dissipation Estimate). The entropy dissipation is
globally bounded, as follows:
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X
K2T h

e02@0K

jeC
K j
NK

ˇ̌QuC
K;e0

� uC
K

ˇ̌2 . C

Z
H0

i�˝.u0/ (66)

for some constant C > 0 depending upon the flux field and the sup-norm of the
initial data. Here, ˝ is the n-form entropy flux field associated with U.u/ D u2=2.

Proof. We apply (62) with the choice U.u/ D u2

0 �
X
K2T h

.jeC
K j'˝

e
C

K

.uC
K/� je�

K j'˝e�

K
.u�
K//C

X
K2T h

e02@0K

ˇ

2

jeC
K j
NK

ˇ̌QuC
K;e0

� uC
K

ˇ̌2
:

After summing up in the “vertical” direction and keeping the contribution of all
K 2 T h

0 onH0, we deduce that

X
K2T h

e02@0K

jeC
K j
NK

ˇ
ˇ̌QuC
K;e0

� uC
K

ˇ̌2 	 2

ˇ

X
K2T h

0

je�
K j'˝e�

K
.uK;0/:

For some constant C > 0, we have
P

K2T h
0

je�
K j'˝e�

K
.uK;0/ 	 C

R
H0
i�˝.u0/.

These are essentially L2 norm of the initial data, and this inequality is checked
by fixing a reference volume form on H0 and using the discretization (46) of the
initial data u0. �

3.6 Global Form of the Discrete Entropy Inequalities

One additional notation now is needed in order to handle “vertical face” of
the triangulation: we fix a reference field of non-degenerate n-forms Q! on M

(to measure the “area” of the faces e0 2 @K0). This is used in the convergence proof
only, but not in the formulation of the finite volume schemes. For every K 2 T h

we define

je0j Q! WD
Z
e0
i� Q! for faces e0 2 @0K (67)

and the non-degeneracy condition is equivalent to je0j Q! > 0. Given a smooth
function defined onM and given a face e0 2 @0K of some element, we introduce

 e0 WD
R
e0
 i� Q!R
e0 i

� Q! ;  @0K WD 1

NK

X
e02@0K

 e0 :
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Lemma 7 (Global Form of the Discrete Entropy Inequalities). Let ˝ be a
convex entropy flux field and let  � 0 be a smooth function supported away
from the hypersurface t D T . Then, the finite volume scheme satisfies the entropy
inequality

�
X
K2T h

Z
K

d. ˝/.u�
K/�

X
K2T h

0

Z
e�

K

 i�˝.uK;0/ 	 Ah. /C Bh. /C Ch. /;

(68)
with

Ah. / WD
X
K2T h

e02@0K

jeC
K j
NK

�
 @0K �  e0

	 �
'˝
e

C

K

.QuC
K;e0

/ � '˝
e

C

K

.uC
K/
	
;

Bh. / WD
X
K2T h

e02@0K

Z
e0

�
 e0 �  	 i�˝.u�

K/;

C h. / WD �
X
K2T h

Z
e

C

K

�
 @0K �  	 �i�˝.uC

K/� i�˝.u�
K/
	
:

Proof. From the discrete entropy inequalities (57), we get

X
K2T h

e02@0K

jeC
K j
NK

 e0


'˝
e

C

K

.QuC
K;e0

/� '˝
e

C

K

.u�
K/
�

C
X
K2T h

e02@0K

 e0
�
QK;e0 .u

�
K; u

�
Ke0
/�QK;e0.u

�
K; u

�
K/
	 	 0:

(69)

Thanks (56), we have
P

K2T h

e02@0K
 e0QK;e0.u

�
K; u

�
Ke0
/ D 0 and, from (55),

X
K2T h

e02@0K

 e0QK;e0 .u
�
K; u

�
K/ D

X
K2T h

e02@0K

 e0

Z
e0
i�˝.u�

K/

D
X
K2T h

e02@0K

Z
e0
 i�˝.u�

K/C
X
K2T h

e02@0K

Z
e0
. e0 �  /i�˝.u�

K/:

Next, we observe
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X
K2T h

e02@0K

jeC
K j
NK

 e0 '
˝

e
C

K

.QuC
K;e0

/

D
X
K2T h

e02@0K

jeC
K j
NK

 @0K'
˝

e
C

K

.QuC
K;e0

/C
X
K2T h

e02@0K

jeC
K j
NK

. e0 �  @0K/'˝eC

K

.QuC
K;e0

/

�
X
K2T h

jeC
K j @0K'˝eC

K

.uC
K/C

X
K2T h

e02@0K

jeC
K j
NK

. e0 �  @0K/'
˝

e
C

K

.QuC
K;e0

/;

where, we recalled (53) and the convex combination (52). From

X
K2T h

e02@0K

jeC
K j
NK

 e0 '
˝

e
C

K

.u�
K/ D

X
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the inequality (69) reads
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(70)

The first term in (70) reads
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We sum up with respect to K the identities
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and we combine them with (70). We arrive at the desired conclusion by observ-
ing that
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�

3.7 Convergence and Well-Posedness Results

This is the final step of our analysis.

Theorem 5 (Convergence Theory). Under the assumptions in Sect. 3.4, the family
of approximate solutions uh generated by the finite volume scheme converges
(as h ! 0) to an entropy solution to the initial value problem (24), (34).

This theorem generalizes to spacetimes the technique originally introduced by
Cockburn, Coquel and LeFloch [22,23] for the (flat) Euclidean setting and extended
to Riemannian manifolds by Amorim et al. [1] and to Lorentzian manifolds by
Amorim et al. [2].

Corollary 1 (Well-Posedness Theory on a Spacetime). Fix M D Œ0; T � � N a
.n C 1/-dimensional spacetime foliated by n-dimensional hypersurfaces Ht (t 2
Œ0; T �) with compact topology N (cf. (24)). Consider also a geometry-compatible
flux field! onM satisfying the global hyperbolicity condition (33). Given any initial
data u0 onH0, the initial value problem (24), (34) admits a unique entropy solution
u 2 L1.M/ which has well-defined L1 traces on spacelike hypersurface of M .
These solutions determines a (Lipschitz continuous) contracting semi-group:

Z
H 0

i�H 0

˝
�
uH 0; vH 0

	 	
Z
H

i�H˝
�
uH ; vH

	
(71)

for any two hypersurfacesH;H 0 such thatH 0 lies in the future ofH , and the initial
condition is assumed in the sense

lim
t!0
t>0

Z
Ht

i�Ht˝
�
u.t/; v.t/

	 D
Z
H0

i�H0˝.u0; v0/: (72)

The following conclusion was originally established by DiPerna [30] for conser-
vation laws posed on the Euclidian space.

Theorem 6. Fix ! a geometry-compatible flux field on M satisfying the global
hyperbolicity condition (33). Then, any entropy measure-valued solution � to the
initial value problem (24), (34) reduces to a Dirac mass and, more precisely,
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� D ıu; (73)

where u 2 L1.M/ is the entropy solution to the problem.

We now give a proof of Theorem 5. By definition, a Young measure � represents
all weak-� limits of composite functions a.uh/ for all continuous functions a
(as h ! 0):

a.uh/
�
* h�; ai D

Z
R

a.�/ d�.�/: (74)

Lemma 8 (Entropy Inequalities for Young Measures). Given any Young mea-
sure � associated with the approximations uh. and for all convex entropy flux field
˝ and smooth functions  � 0 supported away from the hypersurface t D T ,
one has Z

M

h�; d ^˝.�/i �
Z
H0

i�˝.u0/ 	 0: (75)

Thanks to (75), for all convex entropy pairs .U;˝/ we have d h�;˝.�/i 	 0

onM . On the initial hypersurfaceH0 the Young measure � coincides with the Dirac
mass ıu0 . By Theorem 6 there exists a unique function u 2 L1.M/ such that the
measure � coincides with the Dirac mass ıu. This implies that uh converge strongly
to u, and this concludes our proof of convergence.

Proof. We pass to the limit in (68), by using the property (74) of the Young measure.
Observe that the left-hand side of (68) converges to the left-hand side of (75).
Indeed, since ! is geometry-compatible, the first term
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converges to
R
M

h�; d ^˝.�/i. On the other hand, one has
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 i�˝.uh0/ !
Z
H0

 i�˝.u0/;

in which uh0 is the initial discretization of the data u0 converges strongly to u0 since
the maximal diameter h tends to zero.

The terms on the right-hand side of (68) also vanish in the limit h ! 0.
We begin with the first termAh. /. Taking the modulus, applying Cauchy–Schwarz
inequality, and using (66), we obtain



218 P.G. LeFloch
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hence

jAh. /j 	 C 0 .�max C h/

 X
K2T h

jeC
K j
�1=2 	 C 00 �max C h

.�min/1=2
:

Here, ˝ is associated with the quadratic entropy and we used that j @0K �  j 	
C .�max C h/. Our conditions (49) imply that the upper bound for Ah. / tends to
zero with h.

Next, we rely on the regularity of  and ˝ and we estimate the second term in

the right-hand side of (68). By setting Ce0 WD
R
e0 i

�˝.u�

K /R
e0
i� Q! , we obtain
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hence jBh. /j 	 C
.�maxCh/2

h
. This implies the upper bound forBh. / tends to zero

with h.
Finally, we treat the last term in the right-hand side of (68)
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using the modulus defined earlier. In view of (54), we obtain
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and it is now clear that Ch. / satisfies the same estimate as the one we derived
for Ah. /. �
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Gradient Calculus for a Class of Optimal Design
Problems in Engineering

Carlos Castro

Abstract This chapter reviews some recent works in which the analysis and control
of partial differential equations are applied to optimal design in some problems
appearing in aerodynamics and elasticity. From a mathematical point of view, the
idea is to apply a descent algorithm to a cost functional defined on a part of the
boundary. More specifically, we focus here on problems where the cost functional
is defined on the part of the boundary to be optimized. This is the case, for instance,
when the goal is to improve the lift or the drag in aerodynamic problems or to
uniformize the tangential stresses along the boundary of a elastic material.

1 Introduction

This work contains a series of applications of control problems to aerodynamics
and elasticity problems with the aim of improving the industrial software in
simulation. We focus mainly on aerodynamic applications since they have been
more extensively studied in the last years. However the methodology considered
here is general and can be easily adapted to structural optimization, as we show in
Sect. 6.

In the last years, advanced software for automatic aerodynamic design optimiza-
tion has been extensively used by engineers to avoid expensive experimental proofs
in wind tunnels (see the early works by A. Jameson [15] and O. Pironneau [22] or
the more recent book [20] and the references therein). This optimization software
is based on gradient methods to minimize a suitable cost or objective function
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(drag coefficient, deviation from a prescribed surface pressure distribution, etc.)
with respect to a set of design variables (defining, for example, an airfoil profile).
This is a complex problem where several difficulties arise: parametrization of
complex geometries, suitable choice of the correct systems of equations to model the
fluid according to the underlying physics (Euler equations, Navier–Stokes, RANS,
turbulence models, etc.), numerical methods to solve the differential equations,
mesh generation, mesh adaptivity to small changes in the geometry, cost function
approximation, gradient approximation, etc. These and other industrial constraints
make any practical application of such a technology a very complex task. Mathemat-
ical analysis can be useful to improve some of the factors involved in this process.
Here we focus on the computation of the gradient of cost functionals associated to
optimal design.

To fix the problem we consider a fluid domain ˝ bounded by a typically
disconnected boundary @˝ which is divided into a far-field component 
1 and a
wall boundary S (Fig. 1). Aeronautic optimization problems seek the minimization
of a certain cost function, such as the deviation of the pressure on S from
a prescribed pressure distribution in the so-called inverse design problems, or
integrated force coefficients (drag or lift) in force optimization problems. In these
examples the cost function J can be defined as an integral over the wall boundary S
of a suitable function f .U; S/ of the flow variables, referred to as a vectorU , and the
geometry S

J.S/ D
Z
S

f .U; S/ ds: (1)

The flow variables U satisfy a suitable flow model (Euler, Navier–Stokes, RANS,
etc.), that we write as

R.U / D 0; x 2 ˝; (2)

including initial and boundary conditions.
Note that the cost functional depends on a part S of the boundary of the domain,

which will be referred to as the control variable. The set of admissible controls is
therefore a set of different geometries for S that we refer as Sad. We are interested
in the following problem: Find Smin 2 Sad such that,

J.Smin/ D min
S2Smin

J.S/: (3)

To prove the existence of solution for the above minimization problem is, in general,
a difficult problem which strongly depends on the flow equations, the restrictions
included in Sad, and the functional itself.

However, since these aerodynamical problems are very sensitive to perturbations
of the domain, rather than looking for an optimal S , in the applications one tries
to improve a given “natural” design by performing small perturbations. Therefore,
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Fig. 1 Exterior domain with boundary S

the main interest is to make a sensitivity analysis of J with respect to small
perturbations of the boundary S . Once this is done, the deformation for which the
functional decreases with highest rate is chosen: the best descent direction. In other
words, the main objective is to compute the shape derivative of J .

Another important point is that, in the engineering practice, instead of computing
the exact continuous objective function, one computes a discrete approximation
in which the time and physical domain are discretized. The objective function is
evaluated by means of a discrete integration rule and the variables U are estimated
by means of a numerical approximation scheme for solving the flow equations.
Therefore our real optimization problem is in fact a discrete version of (1)–(3),
and the sensitivity analysis should be done for such discrete version. This is usually
referred to as a discrete approach to obtain sensitivity (see for example [19, 20]).
Note that this sensitivity analysis will depend on the discretization aspects, such
as the numerical scheme used to approximate the flow variables, the mesh, the
numerical approximation of the cost functional, and even on the implementation
issues such as multigrid techniques and, possibly, parallel computation.

In contrast with this discrete approach there is the alternative continuous
approach where the sensitivity analysis is obtained for the continuous system and
then discretized to obtain the optimal descent direction for the discrete model
(see [14]). The validity of this continuous approach to obtain an accurate sensitivity
analysis of the discrete model is not obvious. It is usually based on strong
convergence results of the chosen discretization for (1)–(3) and the smoothness of
solutions. On the other hand, the continuous approach makes easier the analysis
and reduce the dependence on the numerical scheme chosen to obtain the flow
variables. We refer to [21] for a comparison between both approaches, the discrete
and continuous.
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In this work we focus on the continuous approach of the sensitivity analysis, that
we will briefly describe.

In order to define the shape deformation of the control boundary S we introduce
a suitable parametrization of S given by x W Œ0; 1� ! R

2. A generic deformation of
the boundary can be described as a vector field ıx.s/ such that the new geometry S 0
is parametrized by x0.s/ D x.s/C ıx.s/. For sufficiently small perturbations, ıx.s/
can be described by normal displacements as follows:

ıx.s/ D ˛.s/n; n normal vector to S , (4)

since tangent deformations are equivalent to reparameterizations of the boundary.
The function ˛ represents a perturbation profile which describes the amount of
displacement, in the normal direction, at each point of S . This ˛ is usually taken
in a finite dimensional subspace generated by some basis functions (polynomial,
trigonometric, etc.)

QUad D span.˛1; ˛2; : : : ; ˛n/:

The sensitivity analysis for the continuous model consists in finding the shape
derivative of J , i.e. the derivative of J with respect to any deformation profile ˛ 2
QUad, and then the best decreasing rate is chosen. This will constitute the descent

direction for J . There are two main approaches that have been tried in industrial
applications: finite differences and adjoint methodology.

In the finite difference approach, shape derivatives are calculated by computing
the finite difference

J.S˛k;"/� J.S/

�
; " << 1;

where S˛k;" is the new geometry obtained from S with the parametrization x.s/C
"˛kn.s/. This is done for each k D 1; ::; n. The parameter " should be chosen
small enough to recover the linear behavior but not too small to avoid round errors.
In this way, partial derivatives with respect to each ˛k are computed. The one with
the highest decreasing rate is chosen as the descent direction for computing the
new geometry. The main drawback of this approach is that it is computationally too
expensive. Note that each finite difference of J requires an evaluation of the cost
functional and therefore a new solution of the flow equations. On the other hand,
the choice of the value of " is difficult and an adequate strategy to estimate it has to
be used.

A more efficient way to compute a descent direction for J is the adjoint method,
in which one seeks for the following representation of the Gateaux derivative of J
with respect to ˛,

ıJ D
Z
S

G.s/˛.s/ ds;
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for some function G.s/, usually known as gradient of J . Once this is known,
an optimal descent direction is chosen by projecting �G.s/ in the subspace of
admissible deformations QUad.

The computation of G involves shape derivatives, in the sense given by
Hadamard (see [12]), and classical control theory which reduces the computation
of the gradient to the resolution of a suitable adjoint system. In contrast with the
finite difference approach, only one system has to be solved to obtain the descent
direction. However, this adjoint system does not issue from a physical fluid problem
but from an algebraic calculation. Therefore the usual numerical methods for fluids
are not well-adapted to solve it, in general, and a particular numerical analysis is
needed to find efficient methods.

The adjoint method is in fact a particular application of the classical control
theory for partial differential equations. This theory was significantly developed due,
in particular, to the works of J.-L. Lions [18]. Later on O. Pironneau investigated
the application of the control theory to the optimal shape design for elliptic
equations [22]. In the late eighties A. Jameson [15] was the first to apply these
techniques to the Euler and Navier–Stokes equations in the field of aeronautical
applications. From these pioneering works a lot of new results and applications have
made of this topic an essential tool in optimal design.

In this work we review the continuous adjoint, when considering different models
to approximate the flow variables, namely the Euler equation (Sect. 3), Navier–
Stokes equations (Sect. 4), and Euler equations in presence of shock waves (Sect. 5).
The analysis has been validated with two-dimensional and three-dimensional
examples. At this moment, the Navier–Stokes sensitivity analysis is implemented in
experimental versions of high performance codes as SU2 (Standford University) and
TAU (developed in Germany by DLR). It is worth mentioning that the extension of
the continuous approach to the sensitivity analysis of RANS equations with Spalart–
Allmaras model for turbulence has been studied in [6], where gradient formulas
are derived. In Sect. 6 we show an application of this technique in the context of
elasticity problems.

2 Gradient Computation

In this section we describe the methodology to obtain gradient formulas for the
cost functional in a systematic way. It is worth mentioning that this calculus is
formal since it assumes that solutions of the underlying differential equations are
smooth. This is not true in general. As it is well known, Euler equations may produce
discontinuities even for a smooth initial data. For simplicity, we focus on dimension
n D 2 but the case n D 3 can be treated similarly.

Let us consider Uad � L2.0; 1/ and the functional J W Uad ! R

J.˛/ D
Z
S

j.U / ds (5)
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where S is described as a normal perturbation of a reference geometry S0 in such
a way that S D S0 C ˛.s/n and ˛ 2 QUad � L2.0; 1/. The vector function U is
the solution of system (2). All the functionals considered below can be written in
this form.

Classical shape derivatives allow us to write the Gateaux derivative of J , ıJ , in
the generic direction ˛ (see [23]), as follows:

ıJ D
Z
S

�
@j

@U
ıU C .@nj C �j /˛

�
ds (6)

where � represents the curvature of S (in 3-d the boundary S will be a surface and �
should be replaced by 2H withH the mean curvature of S ). The vector function ıU
represents the Gateaux derivative of U in the direction given by ˛ and it is obtained
by linearization of system (2),

@R

@U
ıU D 0; x 2 ˝: (7)

Now we introduce an adjoint state � for which

Z
S

@j

@U
ıU ds D

Z
S

B�ı˛ ds; (8)

where B is a certain operator and � satisfies the so-called adjoint system

A � D 0; x 2 ˝: (9)

The operators A and B strongly depend on the flow equations and boundary
conditions included in R.U /, and they must be computed specifically for each
problem. We show an example in the appendix below.

Once obtained the adjoint state we can replace (8) into (6),

ıJ D
Z
S

.B� C @nj C �j / ı˛ ds; (10)

and therefore

G.s/ D B�.s/C @n.j.U.s///C �j.U.s//:

Remark 1. In general, the operator A is closely related to the linearized system (7)
and its numerical approximation should take into account this fact. There are
several ways to deduce numerical schemes for (7) but the more stable ones
are usually obtained by a suitable adjoint of the linearization of the numerical
methods for R.U /. This can be done at several levels, from a specific code
based on the linearized numerical scheme to automatic differentiation tools that
provides a linearization of the whole numerical code used to solve R.U /, including
parallelization, multigrid, preconditioners, etc.
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3 Continuous Adjoint Formulation for Euler System

We first consider the case of steady inviscid two dimensional flows. We present a
brief description of the continuous adjoint formulas. We refer to [1,7] for a complete
analysis and full formulation.

The governing equations in this case are

r � F D @Fx

@x
C @Fy

@y
D 0; in ˝ , U D

0
BB@
�

�u
�v
�E

1
CCA ; (11)

Fx D

0
BB@

�u
�u2 C P

�uv
�uH

1
CCA ; Fy D

0
BB@

�v
�uv

�v2 C P

�vH

1
CCA : (12)

Here, � is the density, u and v are the Cartesian velocity components, E is the
total energy, and P and H are the pressure and enthalpy, given by the following
relations:

P D .� � 1/�
�
E � 1

2
.u2 C v2/

�
; H D E C P

�
; (13)

where � is the ratio of specific heats. The above system must be completed with
suitable boundary conditions. We consider characteristic-type boundary conditions
[16] on the far-field boundary 
1, and non-penetrating boundary conditions on
solid wall boundaries,

v � n D 0; v D .u; v/ n D .nx; ny/; normal vector on S . (14)

Far field boundary conditions on 
1. (15)

The operator R.U / in this case contains the whole system of equations and
boundary conditions (11)–(15).

Concerning the cost function, there are several possibilities according to differ-
ent interests. Conventional cost functions include specified pressure distributions
(inverse design), force (drag or lift) or moment coefficients, efficiency (i.e., lift over
drag), etc. All these cost functionals can be written in the general form:

J.S/ D
Z
S

g.P;n/ ds (16)

for some function g.P;n/. For example, in the particular case of lift-drag coeffi-
cients, the cost functional take the form
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J.S/ D
Z
S

Cp.n � d/ ds; d D
�
.cosˇ; sinˇ/; .drag/;
.sinˇ; cosˇ/; .lift/;

(17)

where ˇ is a constant parameter (angle of attack), Cp D .P � P1/=C1,
C1 D �M21P1=2, and P1 and M1 are freestream pressure and Mach number
respectively.

Following the general framework in Sect. 2 above j.U / D g.P.U /;n/.
The final expression for G in the case of (16) is given by

G D @g

@P
@nP C t � @tg @g

@n
� �

�
g � @g

@n
� n
�

�r � v.� 1 C �v � 'C �H 4/C t � v@tg.� 1 C �v � 'C �H 4/

where � is the curvature of S (for 3D flows the mean curvature appears), t is
the unitary tangent vector to S , @n the normal derivative and @tg the tangential
derivative. The adjoint variables

� D

0
BB@
 1

 2
 3
 4

1
CCA ; ' D . 2;  3/;

satisfy the adjoint system

ATr� D 0; A D
�
@Fx

@U
;
@Fy

@U

�
;

and the boundary conditions

' � n D @g

@P
; on S;

adjoint far field conditions on 
1.

We refer to [13] for details on how this adjoint boundary conditions are obtained
and implemented numerically.

4 Continuous Adjoint Formulation for Navier–Stokes System

In this section we consider the Navier–Stokes system. We refer to [7] for the full
expression of the adjoint system, the derivation of the gradient formula, and some
numerical experiments. The gradient formula for 3D flows is also given in [7].
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The governing equations, for steady viscous laminar flows in two dimensions, are

r � F � r � F v D 0; in ˝ , (18)

where F D .Fx; Fy/ has been defined in (12) and

F v
x D

0
BB@

0

�xx

�xy

u�xx C v�xy C k @T
@x

1
CCA ; F v

y D

0
BBB@

0

�xy

�yy

u�yx C v�yy C k @T
@y

1
CCCA : (19)

The viscous stresses may be written as

�xx D 2

3
�
�
2ux � vy

	
; �yx D �xy D �

�
uy C vx

	
;

�yy D 2

3
�
�
2vy � ux

	
;

where � is the laminar viscosity coefficient. The coefficient of thermal conductivity
and the temperature are computed as follows:

k D cp

P r
�; T D P

R�
;

where cp is the specific heat at constant pressure, P r is the Prandtl number, and R
is the gas constant.

Equation (18) is complemented with characteristic-type boundary conditions on
the far field, and nonslip conditions on solid walls

u D v D 0; on S:

An additional boundary condition has to be imposed to the temperature on the solid
walls, which can be either adiabatic or isothermal (constant temperature)

@nT D 0; adiabatic,

T D T0; constant temperature.

In the adiabatic case, the expression for G is given by

G D @g

@P
@nP C t � @tg @g

@n
� �

�
g � @g

@n
� n
�

�.n � @nv/.� 1 C �H 4/C n �˙ � @nv �  4.n � � � @nv/

C 4.� W rv/� k.@tg 4/.@tgT /;
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where ‘ W0 denotes the double dot contraction of second order tensor fields.
The adjoint variables satisfy the adjoint system

.ACAv/Tr� D 0; Av D
�
@F v

x

@U
;
@F v

y

@U

�
;

with boundary conditions

' D @g

@P
n; on S

and adjoint farfield boundary conditions on 
1.
The second order tensor˙ is defined as follows

˙ D
�
˙xx ˙xy

˙yx ˙yy

�
; ˙xx D 2

3
�.2@x 2 � @y 3/;

˙xy D ˙yx D �.@y 2 C @x 3/; ˙yy D 2

3
�.2@y 3 � @x 2/:

5 Continuous Adjoint Formulation for Euler System
in the Presence of Shock Waves

So far, we have considered smooth solutions of flow equations. In this case,
the perturbation of the flow field variables with respect to shape changes can
be approximated by linearizing the governing equations. However, inviscid flows
described by the Euler equations can develop discontinuities (shocks or contact
discontinuities) due to the intersection of characteristics. In this case, the smooth
analysis in Sect. 3 is no longer valid. We refer to [2] for the complete formulation
and analysis of this section.

In this section we restrict ourselves to the particular case where there is a
single discontinuity located on a smooth curve ˙ (Fig. 2). When this occurs, Euler
system (11) must be completed with the Rankine–Hugoniot conditions that relate
the flow variables on both sides of the discontinuity. Thus, we replace (11) by

� r � F D 0; in ˝n˙ ,
ŒF � n�˙ D 0; on ˙ ,

(20)

where ŒA�˙ represents the jump of A across the discontinuity curve˙ , i.e. ŒA�˙ D
AC � A�.

The sensitivity analysis in this case is much more complex since a perturbation
of the boundary S may affect to the position of the discontinuity ˙ . Thus, the
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Fig. 2 Exterior domain with boundary S and shockwave

variational calculus must be modified to take into account the position of the
discontinuity as a new variable. This analysis has been done in simpler models by
different authors (see for instance [3, 4, 10, 11]). Moreover, in [8, 17] the position of
the discontinuity is used to improve gradient algorithms in the case of the inviscid
Burgers equation in 1-d.

A formal calculus based on this approach allows us to obtain a formula for G in
this particular case.

We must distinguish two different situations: either the shock wave ˙ meets the
boundary S at a point xb 2 S , or it does not. We focus on the first case since the
second one is simpler. We have the following

G D @g

@P
@nP C t � @tg

@g

@n
� �

�
g � @g

@n
� n
�

�r � v.� 1 C �v � 'C �H 4/C t � v@tg.� 1 C �v � 'C �H 4/;

for x 2 S but x ¤ xb . Note that this formula is analogous to the gradient formula
for smooth solutions. The only difference is that we do not have to compute it at the
discontinuity point xb where the flow variables may have discontinuities and their
derivatives may produce singularities. The adjoint system is given by

8<
:
ATr� D 0; in ˝n˙
t � @tg' D 0; on˙ ,
Œ� �˙ D 0;

(21)
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together with the adjoint boundary conditions for the far field and

' � n D @g

@P
; on S .

The second and third equations in (21) are transmission conditions that comes from
the Rankine–Hugoniot conditions by duality. They are usually referred as adjoint
Rankine–Hugoniot conditions. They establish, in particular, that the adjoint vector
variables � must be continuous at ˙ .

It is worth mentioning that well-posedness of the adjoint system (21) is a difficult
task due to the discontinuity of the matrix coefficients A at ˙ . This is a challenging
problem even for simpler scalar conservation laws in one dimension [5].

6 An Example in Elasticity

In this section we apply the same strategy in the context of elasticity problems.
In particular, we consider optimal design problems whose cost functions depend on
the stresses at the boundary to be optimized. An example described in [9] considers
the shape optimization of the cross-sectional vault of a tunnel in order to have
uniform stresses along the profile (see also [24]). In this way, we avoid regions
with larger compression stresses at the boundary that could produce more fatigue.
For this specific problem, a two-dimensional elastic problem is solved for the cross-
section of the tunnel with the following objective function

J.˛/ D 1

2

Z
S

.�t � �tm/
2 ds; (22)

where �t represents the tangential stresses along S (�t D t �� � t where � is the stress
tensor and t the tangent vector to S ) and �tm a reference value that can be either a
given constant or the average of the tangential stresses along S ,

�tm D
R
S
�tdsR
S

ds
:

Of course, other functionals are also possible according to the interest of the
application.

Let us state the problem: consider the elasticity system defined on a domain˝ �
R
2 with boundary @˝ D 
 [S and 


T
S D ;, (Fig. 3) and the objective function

J.˛/ D
Z
S

j.t � � � t/ ds; (23)
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Fig. 3 Cross section
of a tunnel vault

for some function j , where � D �˛ˇ is the second order stress tensor and t the
tangent vector to S that we obtain rotating �=2 the outward normal clockwise.
The stress tensor is obtained by solving the elasticity system

�˛ˇ;ˇ C f˛ D 0; x 2 ˝; ˛; ˇ D 1; 2; (24)

�33 D �.�11 C �22/; x 2 ˝; (25)

"˛ˇ D 1C �

E
�˛ˇ � �

E
�kkı˛ˇ; (26)

"13 D "23 D "33 D 0; (27)

where x D .x1; x2/ 2 ˝ is a generic point of the elastic body, .f1; f2/
the components of the external forces, ı˛ˇ the Kronecker delta and "˛ˇ are the
components of the strain tensors respectively. The elastic constants of the isotropic
material are the Young modulusE and Poisson ratio �. Partial derivative is denoted
by a comma (,). The expression of the strain tensor components are given as a
function of the displacements as follows:

"˛ˇ D 1

2

�
u˛;ˇ C uˇ;˛

	
: (28)

To fix ideas, the following boundary conditions are assumed

u˛ D Nu˛; x 2 
; ˛ D 1; 2 (29)

�˛ˇnˇ D 0; x 2 S; ˛; ˇ D 1; 2 (30)

where Nu˛ are specified displacement, n D .n1; n2/ is the outward normal unit vector
to the boundary 
 . Other boundary conditions are also possible.

The gradient in this case is given by

G D �@tg.j 0.�t /.n � � � t C t � � � n// � � � @n� � n C @tg.� � � � t/

� �

1 � � j
0.�t /n � @n.�/ � n C Œ�j.�t /C @n .j.�t //�

where @tg and @n represent the tangential and normal derivatives respectively, and
� D . 1;  2/ satisfies the adjoint problem,
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Fig. 4 Cross-sectional designs obtained with a gradient type method

@� �̨̌

@̌
D 0; x 2 ˝; ˛; ˇ D 1; 2;

��
33 D �.��

11 C ��
22/; x 2 ˝;

��̨̌ D 1C �

E
� �̨̌ � �

E
��

kkı˛ˇ;

��̨̌ D 1

2

�
@ ˇ

@˛
C @ ˛

@̌

�
;

��
13 D ��

23 D ��
33 D 0;

with the following boundary conditions:

 ˛ D 0; x 2 
; ˛ D 1; 2;

� �̨̌ nˇ D �E
1 � �2

@tg
�
j 0.�t /

	
t˛; x 2 S; ˛ D 1; 2:

The practical implementation of these formulas and some numerical experiments
are given in [9]. As an example Figs. 4 and 5 show the different profiles obtained
by a gradient-type algorithm applied to the functional (22). In this example, the
initial geometry is a semicircle that is transformed into a parabolic profile after the
optimization procedure.
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Fig. 5 Evolution of the cost functional

Appendix

In this section we show how to compute the adjoint operatorsA andB in (8)–(9) for
one of the examples above. As it has been said, this computation strongly depends
on the specific problem, but nevertheless the methodology is straightforward as it
will be shown here.

We focus on the 2D elasticity problem described in Sect. 6. The objective
function is given by (23) so that, according to (8) we look for B, A and an adjoint
state � such that Z

S

ı.j.t � � � t// ds D
Z
S

B�ı˛ ds; (31)

with � satisfying A � D 0.
First of all, observe that, as ıt D ı˛0n, we have

ı.j.t � � � t// D j 0.t � � � t/.n � � � t C t � � � n/ı˛0

Cj 0.t � � � t/t � ı� � t; (32)

where the tensor ı� is the solution of the linearized elasticity system

ı�˛ˇ;ˇ D 0; x 2 ˝; ˛; ˇ D 1; 2; (33)

ı�33 D �.ı�11 C ı�22/; x 2 ˝; (34)

ı"˛ˇ D 1C �

E
ı�˛ˇ � �

E
ı�kkı˛ˇ; x 2 ˝; (35)
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ı"˛ˇ D 1

2

�
ıu˛;ˇ C ıuˇ;˛

	
; x 2 ˝; (36)

ı"13 D ı"23 D ı"33 D 0; x 2 ˝; (37)

and the linearized boundary conditions

ıu D 0; x 2 
; (38)

ı� � n C @n.�/ � nı˛ � � � t˛0.s/ D 0; x 2 S: (39)

The only term that requires further analysis in (32) is the last one, i.e.

Z
S

j 0.t � � � t/t � ı� � t ds: (40)

To simplify it we write the linearized stress-strain tensor given in (34)–(35) with
respect to the local system of coordinates associated to S , ft;ng. The following
expression for ı�˛ˇ is obtained:

t � ı� � t D E

1 � �2
t � ı" � t C �

1 � �
n � ı� � n

D E

1 � �2
@tg.ıu � t/ � �

1 � �
n � @n.�/ � nı˛: (41)

In the last equality, we have used

t � ı" � t D @tg.ıu � t/;

and the boundary conditions to be satisfied for ıu and u on S .
Therefore (40) can be written asZ

S

j 0.t � � � t/t � ı� � t ds D E

1 � �2
Z
S

j 0.t � � � t/@tg.ıu � t/ ds

� �

1 � �
Z
S

j 0.t � � � t/n � @n.�˛ˇ/ � nı˛ ds

D � E

1 � �2
Z
S

@tgj
0.t � � � t/.ıu � t/ ds

� �

1 � �
Z
S

j 0.t � � � t/n � @n.�˛ˇ/ � nı˛ ds: (42)

In order to eliminate the term ıu the adjoint problem to the linearized system is
introduced
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@� �̨̌

@̌
D 0; x 2 ˝; ˛; ˇ D 1; 2; (43)

��
33 D �.��

11 C ��
22/; x 2 ˝; (44)

��̨̌ D 1C �

E
� �̨̌ � �

E
��
kkı˛ˇ; (45)

��̨̌ D 1

2

�
@ ˇ

@˛
C @ ˛

@̌

�
(46)

ı��
13 D ı��

23 D ı��
33 D 0; (47)

with the following boundary conditions

 ˛ D 0; x 2 
; ˛ D 1; 2; (48)

�� � n D �E
1 � �2

@tgj
0.t � � � t/t; x 2 S: (49)

Multiplying the equations of the linearized system by � D . 1;  2/ and
integrating by parts it is easily obtained

0 D �
Z
˝

ı� W �� dx �
Z
S

� � �@n� � nı˛ � � � tı˛0	 ds; (50)

where W represents the double dot product of second order tensors.
A straightforward computation allows us to write the first term in this formula as

follows, Z
˝

ı� W �� dx D
Z
˝

�� W ı� dx: (51)

Now we integrate by parts in the right hand side of (51), taking into account the
boundary conditions for u and � ,

Z
˝

�� W ı� dx D �
Z
˝

ıu˛
@� �̨̌

@̌
dx C

Z
S

ıu � �� � n ds

D � E

1 � �2

Z
S

@tgj
0.t � � � t/ıu � t ds: (52)

Therefore, combining (50)–(52) the following equation is obtained

E

1 � �2

Z
S

@tgj
0.t � � � t/ıu � t ds D

Z
S

� � �@n� � nı˛ � � � tı˛0	 ds: (53)
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Substituting (53) into (42) we obtain the final expression for (40),

Z
S

j 0.t � � � t/t � ı� � t ds D �
Z
S

� � �@n� � nı˛ � � � tı˛0	 ds

� �

1 � �
Z
S

j 0.t � � � t/n � @n.�˛ˇ/ � nı˛ ds:

(54)

From this formula together with (32) we obtain in the left hand side of (31) an
expression where all the terms contain a factor with ı˛ or its derivative. Integrating
by parts on S and assuming that either S has no boundary or ı˛ D 0 at the boundary
of S we easily obtain the expression for B in (31),

B D �@tg.j
0.t � � � t/.n � � � t C t � � � n//

�� � @n� � n C @tg.� � � � t/ � �

1 � �
j 0.t � � � t/n � @n.�/ � n:

The operator A � D 0 contain all the adjoint equations and boundary condi-
tions (43)–(49).
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Abstract Medical image processing is an interdisciplinary research field attracting
expertise from applied mathematics, computer sciences, engineering, statistics,
physics, biology and medicine. In this context we shall present an introduction
to basic techniques and concepts as well as more advanced methods to promote
interests for further study and research in the field.

1 Introduction

Medical image processing is a growing field in medicine and mathematics which
aims to improve the diagnostic power of some acquisition data modalities such as
MRI, fMRI, PET, MEG, CT, etc. This leads to improved treatment control and
therapies. In this work we shall consider some digital image processing related
mathematical problems such as filtering, denoising and segmentation of digital
images with a particular view to medical image processing and restoration. Our
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where a interdisciplinary group of scientists coming from different areas and
institutions is working on biomarkers for neurological diseases such as Alzheimer
and Parkinson.

These lecture notes cover some basic aspects of the mathematical modelling
but they also aim to introduce the reader to the most recent techniques and
numerical algorithms. A very straightforward and applied introduction to the field
can be found in [11] where basic, routinary algorithms are implemented. A more
advanced introduction to the theoretical material we shall consider in this work
is described in the book by Chan and Shen [5] where the mathematical founda-
tions of modern image processing and low-level computer vision are presented,
bridging contemporary mathematics with state-of-the-art methodologies in modern
image processing. An interesting medical images processing overview can be
found in http://www.math.wisc.edu/~angenent/preprints/medicalBAMS.pdf and a
more general, geometric approach to PDE image processing is in the book by
Osher [15].

2 Digital Image Processing

Digital image processing is a recent and challenging branch of applied mathemat-
ics which developes models and numerical algorithms for Filtering, Denoising,
Deblurring, Edge-enhancing, Segmentation, Registration, Tracking, Impainting,
Smoothing, Compression, Features Extraction and Pattern Recognition. The great
improvement in computational power as well as the design of specific patient
tailored acquisition modalities which took place in the last decade have motivated
the implementation of advanced mathematical theories to the pre-processing anal-
ysis and the statistical post-processing interpretation of huge amounts of possibly
multimodal patient data. In short, fast and accurate mathematical analysis are both
possible and necessary paradigms, contrary to the past view where fast but very
approximated results where looked for. In this section we shall briefly introduce
the reader to the key steps of the mathematical analysis focusing on the models
and results which made possible the evolution and implementation of numerical
algorithms for the resolution of the PDE that appear in image processing and
enhancement. We shall consider two basic approaches. In the first one we shall
see how it is possible to filter an image using directly an evolution diffusion
equation. Then we shall move to the variational approach in order to solve the
energy minimization problems which arise when we try to solve the associated
inverse problems and their Tikhonov regularization. This introduces the need for
nonlinear operators which include the very famous Total Variation Model by Rudin,
Osher and Fatemi (1987), see [17].

http://www.math.wisc.edu/~angenent/preprints/medicalBAMS.pdf
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Fig. 1 A detail of the image showing the matricial coding

2.1 Linear Filtering and Convolution

The basic material of this section covers linear diffusion filtering and its relations
with gaussian smoothing. This introduces the use of partial differential equations
into image processing. More advanced properties of this linear approach like scale-
space properties and its applications, generalizations and limitations can be found
in http://www.lpi.tel.uva.es/muitic/pim/docus/anisotropic_diffusion.pdf. Here we
briefly introduce some concepts. Digital images are commonly defined as matrices
of scalars for grayscale images or as vectors for multimodality and/or multichannel
images as well as simple multichannel colour RGB images. In a discrete setting
images are then u D .ui;j /, 1 	 i; j 	 N , ui;j 2 Œ0; 1� or ui;j 2 Œ0; 255� 2D discrete,
bounded signals (Fig. 1). In the variational framework we shall adopt a continuous
world view so that a grayscale image is a real valued function u W � ! R on an
open set � � R

2. A color image is a vector-valued function u W � ! R
3 on an

open set � � R
2 which maps into RGB color space.

In fact the digital images can also be organized into functional and algebraic
structures such as multichannel images where different data acquisition modalities
can be grouped to form a unique vectorial description of the image.

These matrices can be seen as the values of a distribution (generalized function)
u0.x/ defined on an open and bounded 2D or 3D domain � x being a pixel (2D)
or a voxel (3D). This allows a functional analytic setting for image-processing
problems and in particular, for the design of digital processing algorithms through
partial differential equations (PDEs) models. More recent and advanced acquisition
techniques in Magnetic Resonance, such as scalar Diffusion Weighted Images
(DWI) or Diffusion Tensor Images (DTI) provide 3D volumes of tensorial data,
a sort of matrices of matrices which inform about the (anisotropic) movement of
water molecules through the fibers of the white matter of the brain (Figs. 2 and 3).

http://www.lpi.tel.uva.es/muitic/pim/docus/anisotropic_diffusion.pdf
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Fig. 2 A DW-MR image courtesy of Fundación Reina Sofia, Centro de Alzheimer, Madrid

Fig. 3 The MR scanner of General Electric 3 T Signa at Fundación Reina Sofia, Centro
de Alzheimer, Madrid (Research agreement with General Electric). Image courtesy of CIEN
Foundation

Filtering is a technique for modifying or enhancing an image. For example, you
can filter an image to emphasize certain features or remove other features. Image
processing operations implemented with filtering include smoothing, sharpening,
and edge enhancement. In the continuous case we can understand the analogy
between filtering and convolution by means of the heat equation which is a linear
diffusion equation (Figs. 4 and 5).

Let J be a flux of any scalar magnitude such as intensity of the signal, temperature
or concentration of a chemical substance. The flux is generated by local differences
in the intensity and we have J D �Dru where D is a tensor characterizing the
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Fig. 4 A plot of a 2D gaussian function

possible anisotropy of the diffusion. In the isotropic case D D Id , the identity
matrix. The mass conservation equation states that, without sources or sinks, the
local variation of the magnitude of u is caused by the divergence of the flux, @tu D
�divJ which is

@tu D div.ru/ D #u:

Let n denote the spatial dimension and consider the Cauchy problem

8<
:
@tu D #u; R

n � .0;C1/ > 0;

u.x; 0/ D u0.x/; Rn

associated to the initial data u0.x/.
If we assume that u0.x/ D ı0, the Delta function located at x D 0 the explicit

solution (or Gauss kernel) of the Cauchy problem is:

G.x; t/ D e�jxj2=t

.4�t/n=2

where the gaussian is represented in Fig. 4.
The solution of the original problem can be expressed in terms of the convolution:

u D G � u0 D
Z
R2

G.x � y/u0.y/dy:

Defining � D p
2t we see that the solution of our problem is given by the

convolution of the initial data with a gaussian function with standard deviation �
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Fig. 5 The oversmoothed, blurred image obtained by convolution

(the width of the gaussian kernel) which corresponds to a linear diffusion process
during exactly T D �2=2 where �2 is the estimated variance of the noise affecting
the data. In the discrete case filtering is a neighborhood operation, in which the value
of any given pixel in the output image is determined by applying some algorithm to
the values of the pixels in the neighborhood of the corresponding input pixel. Linear
filtering of an image is accomplished through an operation called convolution.
Convolution is a neighborhood operation in which each output pixel is the weighted
sum of neighboring input pixels (Fig. 5).

A fundamental property of the convolution operation is that it regularizes the data
and, even with u0 2 L1.R/ we have G � u0 2 C1.R/ for any t > 0. This clearly
is a poor result in image processing because this low pass filter smooths out all the
high frequencies of the image, where noise and details are involved. The need for
nonlinear filtering became readily evident.

2.2 Nonlinear Filtering

It has been introduced into the digital imaging community through the intriguing
model proposed by Perona and Malik, in [16]. Details about the theoretical
difficulties associated to this forward-backward nonlinear diffusion model can be
found in http://www.lpi.tel.uva.es/muitic/pim/docus/anisotropic_diffusion.pdf. The
associated PDE is

@tu D div.g.ru/ru/

http://www.lpi.tel.uva.es/muitic/pim/docus/anisotropic_diffusion.pdf
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with u.x; 0/ D u0.x/ and

g.s2/ D 1

1C s2=�2
; � > 0:

The consideration of the 1D case

@tu D @x.g.ux/ux/

with flux function

ˆ.s/ D sg.s2/ D s

1C s2=�2

reveals that

ˆ0.s/ � 0 jsj 	 �; ˆ0.s/ < 0 jsj > �

and the equation

@tu D @x.ˆ.ux// D ˆ0.ux/uxx

has negative diffusion when the gradient is big, e.g. near the edges of the image.
Despite of this, the numerical resolution of this equation introduces numerical
diffusion which stabilizes the solution and the model provide quite good results.
A simple and straightforward introduction to nonlinear diffusion and related algo-
rithms in MATLAB can be found in http://staff.science.uva.nl/~rein/nldiffusionweb/
nldiffusioncode.pdf. The original and detailed analysis of nonlinear diffusion and
anisotropy is in the excellent book by Weickert http://www.lpi.tel.uva.es/muitic/
pim/docus/anisotropic_diffusion.pdf.

2.3 Modelling Medical Images Processing and Restoration

Digital image denoising and segmentation are basic problems in image processing
and computer vision which can be dealt with in the variational framework. Roughly
speaking this amounts to the minimization of an energy functional defined in
a suitable functional space. The minima of the functional can be characterized
as the weak solutions of the associated Euler–Lagrange equations which are,
typically, nonlinear second order elliptic partial differential equations. These non-
linearities are necessary in order to avoid oversmoothing as predicted by the general
linear elliptic regularity theory. This introduces both, mathematical and numerical
difficulties in the analysis of such models and makes the implementation of efficient
numerical methods challenging.

http://staff.science.uva.nl/~rein/nldiffusionweb/nldiffusioncode.pdf
http://staff.science.uva.nl/~rein/nldiffusionweb/nldiffusioncode.pdf
http://www.lpi.tel.uva.es/muitic/pim/docus/anisotropic_diffusion.pdf
http://www.lpi.tel.uva.es/muitic/pim/docus/anisotropic_diffusion.pdf
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We shall review some aspects of what is called the Tikhonov Regularization
for ill-posed inverse problems. This introduces a General Regularization Model
which can be justified by means of a Bayesian formulation. In fact many of the
tasks encountered in image processing can be considered as problems in statistical
inference. In particular, they fit naturally into a Bayesian framework:

logp.ujf / / logp.f ju/C logp.u/

and a MAP (Maximum A Posteriori) estimation of u is:

max
u

flogp.f ju/C logp.u/g

where p.f ju/ D exp.�H.u; f // is the likelihood term and p.u/ D
.1=�/ exp.�J.u// is the prior. Following this Bayesian modelling approach we
consider the minimization problem

min
u2BV.�/

J.u/C �H.u; f / (1)

where J.u/ is the convex nonnegative Total Variation regularization functional

J.u/ D jujBV D
Z
�

jDuj (2)

and the data fidelity term (modelling gaussian noise) is

H.u; f / D
Z
�

jf � uj2dx:

The term
R
� jDuj denotes the Total Variation of u with Du being its generalized

gradient (a vector bounded Radon measure). When u 2 W 1;1.�/we have
R
� jDuj DR

� jrujdx. The � parameter in (1) is a scale parameter tuning the model. In this
(weak) setting it is a very common and useful approach to describe images as
distributions.

One popular model for image denoising is the Rudin, Osher and Fatemi’s (ROF)
model, where we seek for a distribution u in the space of the Bounded Variation
(BV.�/) distributions, which is the solution to the following nonlinear minimization
problem.

Given f W � � R
n ! R which represents the data, minimize the (strictly

convex) energy

E.u/ D
Z
�

jDuj C 1

2�

Z
�

jf � uj2dx (3)

where� is a Lipschitz domain (the unit square or a cube for the sake of simplicity)
and f 2 L1.�/ is the image affected by Gaussian white noise. Due to the fact that
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the functional in (2) is not differentiable at the origin we introduce the notion of the
subdifferential of J.u/ at a point u by

@J.u/ D fp 2 BV.�/�j J.v/ � J.u/C < p; v � u >g

for all v 2 BV.�/, to give a (weak and multivalued) meaning to the Euler–Lagrange
equation associated to the minimization problem. Using variational calculus and
convex analysis the associated Euler–Lagrange Equation is then

�@J.u/C .u � f / 3 0

which is a multivalued equation which reflects the non differentiability of the TV
operator. The proper setting for such multivalued equations is in terms of variational
inequalities which can be deduced from the so called Complementary Formulation.
Typically this difficulty is avoided using the approximating minimization problems

J.u�/ D
Z
�

p
jru�j2 C �dx C 1

2�

Z
�

jf � u�j2dx (4)

with Euler–Lagrange Equation

��div

 
ru�pjru�j2 C �

!
C .u� � f / D 0:

It is standard to look for a solution to (3) [and (4)] by solving a related nonlinear
parabolic equation using a pseudo-time-stepping algorithm in order to approximate
the steady-state configuration u.x/. This approach, known as (primal) gradient
descent, has two serious drawbacks: the approximating problems have continuous
solutions u� which are unfeasible in medical imaging because different organs and
subcortical structures are characterized by discontinuities; moreover, the numerical
method is slowly convergent. An elegant and brilliant solution to these problems can
be found in Chambolle [3]. A deep theoretical study of this kind of linear energy
functionals is considered in [1].

In what follows we shall describe some advanced models that our group has
proposed and applied in the last years.

3 Advanced Models

In this section we shall present some advanced models for image segmentation
and denoising. Notice that image denoising can be considered as a pre-processing
step previous to the segmentation task. A PDE approach to image segmentation is
based on the celebrated Mumford and Shah model, [14]. When piecewise constant



254 E. Schiavi et al.

solutions of the Mumford-Shah model are considered we have a minimal partition
problem and a huge literature is concerned with the analysis of such a model
[6]. Here we shall consider an anisotropic version of the Mumford and Shah
functional which has been proposed in [8,9] for multichannel and multiphase image
segmentation.

Let Nf be a vector valued function such as Nf 2 L1.�IRM/ defined on a
bounded open domain � � RD , where each scalar component fi .x/ W � ! R is a
channel. Let Nu be a vector valued piecewise constant function such as Nu D PN

1 Nci�i
with Nci 2 RM and �i the characteristic functions of the domain partition. Then
we can perform multiclass (N classes) and multichannel (M channels) image
segmentation minimizing

J.C; &/ D
N�1X
iD1

NX
jDiC1

ˇ̌ˇ̌ Ncj � Nci
ˇ̌ˇ̌
Lp.�IRM /

Z
&ij

dHD�1 C 1

2�

NX
iD1

Z
�i

j Nci � Nf j2dx

(5)

where

ˇ̌ˇ̌ Ncj � Nci
ˇ̌ˇ̌
Lp.�IRM/

D
"

MX
mD1

ˇ̌
cj;m � ci;m

ˇ̌p#1=p
:

In our current numerical implementation we choose p D 2. Notice that the
functional is expressed in terms of a matrix C with components ci;j which reflect
the different values of the piecewise solution as well as in terms of a curve & along
which the solution is discontinuous. The key idea of our method relies on the strong
analogy between this anisotropic Mumford and Shah functional (AMS) and the ROF
model we introduced before. In fact, in the class of piecewise constant functions
both energies coincides. This suggests that the minima of the AMS model can
be obtained thresholding the ROF minima. To show an application of these ideas
we consider a four classes segmentation problem, as in MRI brain segmentation
where white and gray matter, together with liquid and background are the relevant
classes. Let urof 2 BV.�/\ Œ0; 1� be the minimum of the ROF functional (3). If we
threshold this solution by mean of a vector Nt 2 R

3 we generate a piecewise constant
approximation of urof for every Nt in form Nc.Nt/� N�.Nt/. The problem is then to minimize
the Anisotropic Mumford Shah energy (5) finding the best threshold Nt 2 R

3 for
the solution of the ROF model (3). This can be accomplished by using a genetic
algorithm (notice that the problem is not convex) where the search is restricted to
simple functions uNt .x/ 2 SBV.�/ taking, for a.e. x 2 �, the (possibly re-ordered)
values Nc D .c1; c2; c3; c4/ as defined by formula (6) which we shall deduce below.
Let N� D f�i g4iD1 be a given partition. Then
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@J

@cj
D
0
@ 4X
iD1; i¤j

.j � i/

jj � i j j&i;j j
1
A� 1

�

Z
�j

f dx C j�j j
�
cj ; j D 1; : : : ; 4

and the functional J. Nc; N�/ is optimized by the choice

cj D Nf j C �

j�j j

0
@ 4X
iD1; i¤j

.i � j /

ji � j j j&ijj
1
A ; j D 1; : : : ; 4 (6)

where Nf j are the local averaged data values as predicted by the partition:

Nf j D
Z
�j

f dx=j�j j; j D 1; : : : ; 4

Moreover we have:

4X
jD1

cj j�j j D
4X

jD1

Z
�j

f dx C �

4X
jD1

0
@ 4X
iD1; i¤j

.i � j /

ji � j j j&ij

1
A D

Z
�

f dx: (7)

This implies that, if we calculate u as the (unique) minimum of J.u/ in (3) and we
threshold u by means of a threshold vector Nt D .t1; t2; t3/ 2 R

3, then we generate
a partition N� D .�1; �2; �3; �4/ (defining �i D fx 2 �= ti�1 	 u.x/ < ti g) and,
using formula (6) for the best constants, an optimal representation of u for the given
partition in form u D Nc � N�. Notice that a relabeling is performed to ensure the
ordering of the optimal constants once the threshold Nt is applied. More details in
this procedure can be found in [8].

The numerics are performed using the dual formulation of the problem. This
provides a convenient framework to solve the multiphase systems associated with
the minimization of the AMS functional. More advanced staggered schemes are
proposed in [10]. Segmentation results with different values of the � parameter are
presented below. Figure 6 shows the segmentation of a brain phantom slice with
three levels of added noise with different values of the parameter.

Finally, we segmented real MRI images acquired at Fundación Reina Sofía in
Madrid. Figure 7 shows the result of the automatic segmentation with two different
values of the parameter. Both results are visually correct, while the � parameter
allows to obtain segmentations at different scales of detail.

More sophisticated results can be obtained when segmenting FA color code DT-
MR images as we show in figures below. A brief introduction to this kind of scalar
MR images which are obtained from tensorial data is presented in the next section
(Figs. 8 and 9).
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Fig. 6 Segmentation of the same slice of a phantom with different noise levels and different values
of �. From left to right, results with � values 0.08, 0.09, 0.1 and 0.11. (a) Phantom with 5 % noise;
(b) phantom with 10 % noise; (c) phantom with 20 % noise

Fig. 7 Segmentation of real MRI brain data with two vales of the � parameter. Left: � D 0:12;
Right: � D 0:08

3.1 MRI Denoising

We now step forward in the modelling exercise. In fact, accurate MRI noise
modelling is a fundamental issue in medical image processing which leads naturally
to the assumption that MR magnitude images are corrupted by Rician noise which
is a signal dependent noise. Indeed this noise is originated in the computation of the



Medical Image Processing: Mathematical Modelling and Numerical Resolution 257

Fig. 8 A color code Fractional Anisotropy (FA) image which is obtained computing the eigenval-
ues of the Diffusion Tensor Image (DTI) reconstructed from the Diffusion Weighted Images (DWI)
acquired at the Hospital Reina Sofía

Fig. 9 The obtained segmentation. Notice that we segment the directions along which the fibers
propagate in the brain

magnitude image from the real and imaginary images, that are obtained from the
inverse Fourier Transform applied to the original raw data. This process involves
a non-linear operation which maps the original Gaussian distribution of the noise
to a Rician distribution. Nevertheless it is usually argued that this bias does not
affect seriously the processing and subsequent analysis of MR images so that a
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(identically distributed and signal independent) Gaussian noise is modelled. This
assumptions fails when low signal-to-noise ratio are considered. With this purpose
we consider, in a variational framework, a denoising model for MR Rician noise
contaminated images proposed in [12] which combines the Total Variation semi-
norm with a Rician data fitting term.

The data term H.u; f / is a fitting functional which is nonnegative with respect
to u for fixed f . To model Rician noiseH.u; f / has been deduced previously in [2]
in the context of diffusion tensor MR images. The Rician likelihood term is of the
form:

H.u; f / D 1

2�2

Z
�

u2dx �
Z
�

log I0

�
uf

�2

�
dx (8)

where � is the standard deviation of the Rician noise of the data and I0 is
the modified zeroth-order Bessel function of the first kind. It can be shown
that functional (8) is possibly non-convex depending on the data f , � and � .
Using (1), (2) and (8) the minimization problem is formulated as: Fixed � and �
and given a noisy image f 2 L1.�/ recover u 2 BV.�/\L1.�/minimizing the
energy:

J.u/C �H.u; f / D
Z
�

jDuj C �

2�2

Z
�

u2dx � �

Z
�

log I0

�
uf

�2

�
dx: (9)

When the functional in (9) is considered for minimization, the variational approach
leads to the resolution of a nonlinear multivalued PDE elliptic equation which is the
Euler Lagrange equation for optimization. In fact the first order optimality condition
reads

@J.u/C �@uH.u; f / 3 0 (10)

with (Gâteaux) differential

@uH.u; f / D u

�2
� I1

�
uf=�2

	
I0 .uf=�2/

f

�2
(11)

where I1 is the modified first-order Bessel function of the first kind and verifies
0 	 I1 .
/ =I0 .
/ < 1; 8 
 > 0. As we introduced before, this gives rise to
a number of interesting theoretical problems when the Total Variation operator is
considered as a prior, because the energy functional is not differentiable at the origin
(i.e. ru D N0) and regular approximated problems must be solved. A number of
mathematical difficulties is associated with the multivalued formulation (10) and a
regularization of the diffusion term div .ru=jruj/ in form div .ru=jruj�/, with
jruj� D pjruj2 C �2 and 0 < � � 1 is implemented to avoid degeneration
of the equation where ru D N0. Using this approximation it is possible to give a
(weak) meaning to the following formulation: Fixed �, � and (small) � and given
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f 2 L1.�/\ Œ0; 1� find u� 2 W 1;1.�/\ Œ0; 1� solving

�div

� ru

jruj�
�

C �

�2

�
u �

�
I1

�
uf

�2

�
=I0

�
uf

�2

��
f

�
D 0

which we write in form

� div

� ru�
jru�j�

�
C �

�2
Œu� � r�.u�; f /f � D 0 (12)

complemented with Neumann homogeneous boundary conditions @u�=@n D 0 and
where, for notational simplicity, we introduced the nonlinear function

r�.u�; f / D I1.u�f =�
2/=I0.u�f =�

2/:

This is a nonlinear (in fact quasilinear) elliptic problem that we solve with a gradient
descent scheme until stabilization (when t ! C1) of the evolutionary solution to
steady state, i.e. a solution of the elliptic problem (12) which is a minimum of the
approximating energy functionals

E�.u�/ D J�.u�/C �H.u�; f / D

D
Z
�

j�.u�/dx C �

Z
�

h.u�/dx D

D
Z
�

p
jru�j2 C �2dx C �

2�2

Z
�

u2�dx � �
Z
�

log I0

�
u�f

�2

�
dx: (13)

When � ! 0 we have u� ! u, J�.u�/ ! J.u/ and the energies in (9) and (13)
coincide.

The gradient descent approach amounts to solve the associated nonlinear
parabolic problem:

@u�
@t

D div

� ru�
jru�j�

�
� �

�2
Œu� � r�.u�; f /f � (14)

complemented with Neumann homogeneous boundary conditions @u�=@n D 0 and
initial condition u�.0; x/ D u�0.x/ whose (weak) solution stabilizes (when t !
C1) to the steady state of (12), i.e. a minimum of (13) which approximates, for �
sufficiently small, a minimum of the energy functional (9). A direct gradient descent
method has been used in [12] in order to validate the model assumption of Rician
noise. This approach is found to be inherently slow because a stabilization at the
steady state is needed. Also, that scheme is finally explicit and very small time
steps have to be used to avoid numerical oscillations. Here we present a framework
to solve numerically and efficiently the gradient descent scheme (gradient flow)
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associated to the Rician energy minimization problem introducing a semi-implicit
formulation. Details can be found in [13].

Using a simple Euler discretization of the time derivative, stationary problems of
the ROF type [17] are deduced. This allows to use the well known dual formulation
of the ROF model proposed in [3] to speed up the computations. As a by-product of
this approach the exact Total Variation operator can be computed and this provides
accuracy of the solution in so far truly (discontinuous) bounded variation solutions
are numerically approximated. In fact we considered the approximated Euler–
Lagrange equation (12) associated to the minimization of the energy (9). This is a
modelling approximation and we can get rid of it. We argue as follows. Considering
the original Euler–Lagrange equation associated to the energy (9) we have (with
abuse of notation for the diffusive term)

� div

� ru

jruj
�

C �

�2
Œu � r.u; f /f � D 0 (15)

with r.u; f / D I1.uf=�2/=I0.uf=�2/. A rigorous treatment of Eq. (15) should
follow the multivalued formalism of (10).

Using again a gradient descent scheme we have to solve the parabolic problem:

@u

@t
D div

� ru

jruj
�

� �

�2
Œu � r.u; f /f � (16)

together with Neumann homogeneous boundary conditions @u=@n D 0 and initial
condition u.0; x/ D u0.x/. For comparison purposes we used u0.x/ D u�0.x/ in all
numerical tests.

Using forward finite differences for the temporal derivative in (16) and a semi-
implicit scheme where only the term depending on the ratio of the Bessel’s functions
is delayed, results in the numerical scheme:

�
1C �

�

�2

�
unC1 D un C �

�
div

� runC1

jrunC1j
�

C �

�2
r.un; f /f

�
(17)

where the diffusive term is (formally) exact and implicitly considered. Defining ˇ D
.��/=�2, � D .1C ˇ/=� and

gn D
�

1

1C ˇ

�
un C

�
ˇ

1C ˇ

�
r.un; f /f (18)

we can write:

� div

� runC1

jrunC1j
�

C
�
1

�

��
unC1 � gn

	 D 0 (19)

which is the Euler–Lagrange equation of a ROF energy functional.
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Fig. 10 The original image and the contaminated phantom are shown in (a) original phantom and
(b) noisy for � D 0:05. The denoised images obtained with the R-ROF-Dual, R-ROF-Primal-Dual,
R-Primal-Dual algorithms and for the parametric values � D 0:05, � D 0:075 are presented in the
sub-plots (c) R-ROF-D denoised, (d) R-ROF-PD denoised and (e) R-PD denoised, respectively

En.u/ D
Z
�

jDuj C
�
1

2�

�Z
�

.u � gn/2dx (20)

for any positive integer n > 0, with (artificial) time tn D n� . Hence, at each gradient
descent step � , we can solve a ROF problem associated to the minimization of the
energy (20) in the space BV.�/\ Œ0; 1�. This problem is mathematically well-posed
and it can be numerically solved by very efficient methods, when formulated using
well known duality arguments in [3] or primal-dual algorithms in [4, 18].

In our study we first compared different algorithms using synthetic brain images
from the BrainWeb Simulated Brain Database1 at the Montreal Neurological
Institute. The original phantoms were artificially contaminated with Rician noise
considering the data as a complex image with zero imaginary part and adding ran-
dom Gaussian perturbations to both the real and imaginary part, before computing
the magnitude image (Fig. 10).
Apart from the modelling exercise and the implementation details of the algorithms
presented above, our main interest relies in the application to real brain images. In
the following we present some preliminary results we obtained in [13] for Diffusion
Weighted Magnetic Resonance Images (DW-MRI) denoising. The DW-MRI are
images acquired in order to obtain a Diffusion Tensor Image (DTI). Accurate
denoising of the DW-MRI is crucial for a good DTI reconstruction because of their
characteristic very low SNR, [2].

Diffusion Tensor Imaging is becoming one of the most popular methods for the
analysis of the white matter (WM) structure of the brain, where some alterations can
be found from early stages in some degenerative diseases. This technique measures
Brownian motion (random motion) of the water molecules in the brain, which is
assumed to be isotropic when it is not restricted by the surrounding structure. In the
WM regions, which contain densely packed fibre bundles, they cause an anisotropic
diffusion of water molecules along the perpendicular directions to them. At each

1Available at http://www.bic.mni.mcgill.ca/brainweb.

http://www.bic.mni.mcgill.ca/brainweb
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Fig. 11 A slice of the original Diffusion Weighted Image corresponding to the (1, 0, 0) gradient
direction and the corresponding denoised image. (a) Original; (b) denoised with � D �=2

voxel of a DTI the water diffusion is represented by a symmetric 3 � 3 tensor,
where the information of the preferred directions of the motion and the relevance of
these directions is found in the eigenvectors and the eigenvalues of the tensor. These
tensorial data can be represented as different scalar measurements, one of them is
the Fractional Anistropy (FA) of the tissue, which is defined as

FA D

vuut3


. O� � �1/2 C . O� � �2/2 C . O� � �3/2

�
2
�
�21 C �22 C �23

	
where the �i are the eigenvalues of the tensor and O� D .�1 C �2 C �3/ =3. The
FA values vary from 0, (when the motion in the voxel is completely isotropic) to
1 (totally anisotropic). For the reconstruction of the DTI a set of DWI has to be
acquired, scanning the tissue in different directions of the space. At least six DWI
volumes are needed in order to be able to calculate the DTI, which is a positive
defined matrix. The noise present into the DWI scalar images can generate small,
negative eigenvalues. Increasing the number of directions along which the brain
is scanned improves the image quality but at the expenses of a longer acquisition
time. The importance of pre-processing the DW Images previously to the DTI
reconstruction is then two-fold: to improve the DT image quality through accurate
Rician denoising so allowing shorter scanning time.

The data we used consist of a DW-MR brain volume provided by Fundación
CIEN-Fundación Reina Sofía which was acquired with a 3 T General Electric
scanner equipped with an 8-channel coil. The DW images have been obtained with
a single-shot spin-eco EPI sequence (FOV D 24 cm, TR D 9,100, TE D 88.9, slice
thickness D 3 mm, spacing D 0.3, matrix size D 128 � 128, NEX D 2 ). The DW-
MRI data consists on a volume obtained with b D 0 /mm2 and 15 volumes with
b D 1,000 s/mm2.
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Fig. 12 A slice of the Fractional Anisotropy estimated from the Tensor Image. Dark colour
corresponds to values near zero (isotropic regions) and bright color corresponds to values near
one (anisotropic regions). (a) From original DWI data; (b) from denoised DWI data with � D �=2

Fig. 13 A detail of the first eigenvectors of the DTI over the FA image. The color is based on the
main orientation of the tensorial data. Red means right-left direction, green anterior-posterior and
blue inferior-superior. Fibres with an oblique angle have a color that is a mixture of the principal
colors and dark color is used for the isotropic regions. (a) From original DWI data; (b) from
denoised DWI data with � D �=2

These DW-MR images, which represent diffusion measurements along multiples
directions, are denoised with the proposed method previously to the Diffusion
Tensorial Image reconstruction, which was done with the 3d Slicer tools.2 In
Fig. 11a we show a slice of the original DWI data corresponding to the (1, 0,
0) gradient direction where the affecting noise is clearly visible. The complete
DW-MRI data volume is denoised using the proposed method. The Rician noise

2Free available in http://www.slicer.org/.

http://www.slicer.org/


264 E. Schiavi et al.

standard deviation (�) has been estimated for each slice of each gradient direction
while we used a value of � D �=2 for the denoising. The slice resulting from
the denoising process is shown in Fig. 11b. It can be observed how noise has been
removed in the denoised images but the details and the edges have been fully
preserved, as we should expect when the exact TV model is solved. The effect
of this denoising process over the reconstructed tensor and their derived scalar
measurements (obtained with the 3d Slicer tools) is presented in Figs. 12 and 13.
Figure 12 shows a Fractional Anisotropy image where the structures and details are
clearly enhanced if the DW-MRI volume is denoised previously. When finer details
are considered the denoising step is yet more crucial. For instance in Fig. 13 the
main eigenvector of the tensor is represented, where the noise on the original DWI
data cause inhomogeneities (see Fig. 13a) in the eigenvectors field which are product
of the noise (Fig. 13b).
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On Probabilistic Analytical and Numerical
Approaches for Divergence Form Operators
with Discontinuous Coefficients

Denis Talay

Abstract In this paper we review some recent results on stochastic analytical
and numerical approaches to parabolic and elliptic partial differential equations
involving a divergence form operator with a discontinuous coefficient and a
compatibility transmission condition.

In the one-dimensional case existence and uniqueness results for such PDEs can
be obtained by stochastic methods. The probabilistic interpretation of the solutions
allows one to develop and analyze a low complexity Monte Carlo numerical
resolution method. In addition, it allows to get accurate pointwise estimates for
the derivatives of the solutions from which sharp convergence rate estimates are
deduced for the stochastic numerical method.

A stochastic approach is also developed for the linearized Poisson–Boltzmann
equation in Molecular Dynamics. As in the one-dimensional case, the probabilistic
interpretation of the solution involves the solution of a SDE including a non
standard local time term related to the discontinuity interface. We present an
extended Feynman–Kac formula for the Poisson–Boltzmann equation. This formula
justifies various probabilistic numerical methods to approximate the free energy of
a molecule and bases error analyzes.

We finally present probabilistic interpretations of the non-linearized Poisson–
Boltzmann equation in terms of backward stochastic differential equations.

1 Introduction

Let us consider a positive matrix-valued function a which is smooth except at the
interface surfaces between subdomains of Rd and the parabolic diffraction problem
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8̂̂
<
ˆ̂:
@tu.t; x/� 1

2
div.a.x/r/u.t; x/ D 0 for all .t; x/ 2 .0; T � � R

d ;

u.0; x/ D f .x/ for all x 2 R
d ;

Compatibility transmission conditions along the interfaces surfaces:

(1)

Suppose that L WD 1
2
div.ar/ is a strongly elliptic operator. One can find in, e.g.,

Ladyzenskaya et al. [12, Chap. III, Sect. 13] the proof of existence and uniqueness
of continuous solutions with possibly discontinuous derivatives along the interface
surfaces.

Various probabilistic interpretations of the operator L have been developed by
many authors: for example, Fukushima et al. [10] and Rozkosz [22] use the theory
of Dirichlet forms to construct an abstract Markov process whose generator is L.
However, these constructions are neither favorable to derive stochastic numerical
resolution methods for (1), nor to get the accurate pointwise estimates for partial
derivatives of the function u which are necessary to analyze the convergence rate of
the numerical methods.

In the one dimensional case d D 1, the differential operator 1
2
@x.a@x/ is the

generator of the solution to a stochastic differential equation (SDE) involving its
own local time: see, e.g., Bass and Chen [2], Étoré [7], Martinez and Talay [15].
This new description is the starting point for recent numerical studies: Lejay and
Martinez [14] and Étoré [7, 8] proposed simulation methods for this solution based
on approximations of a.x/ and random walks simulations, and they analyzed the
convergence rates of these methods.

We here focus on a numerical method based on the Euler discretization scheme
for stochastic differential equations with weighted local times. We obtain sharp
convergence rate estimates owing to our probabilistic interpretation of the strong
solutions to (1) in terms of exact solutions to such SDEs.

The extension of this new analytical and numerical approach to general multi-
dimensional cases is still in progress: see [17]. However recent advances concern the
Poisson–Boltzmann equation in Molecular Dynamics in its linear and semi-linear
forms, which we summarize in the last sections.

In all the paper we emphasize the tools from stochastic numerics and stochastic
analysis which allow us to deal with the transmission boundary conditions.

1.1 Notation

For a left continuous function g we denote by g�.x/ and g.x�/ the left limit of g
at point x, respectively. When g is right continuous, we denote either by gC.x/ or
by g.xC/ the right limit of g at point x.

We denote by C`b.R/ the set of all bounded continuous functions with bounded
continuous derivatives up to order `, and by @ixg the i -th derivative of g.
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For all integers 0 	 ` < 1 and 1 	 p 	 1 we denote the Lp.R/ norm of the
function g by kgkp and we set

kgk`;p WD
X̀
iD0

k@ixgkp: (2)

2 One-Dimensional Diffraction Problems

All the results of this section come from Martinez and Talay [15].
We consider the case d D 1 and a.x/ D .�.x//2 is a real function on R

which is right continuous at point 0 and differentiable on R � f0g with a bounded
derivative. All the contents of the section hold true when a has a finite number of
discontinuities.

We rewrite the partial differential equation (PDE) (1) and its transmission
condition as8̂̂

ˆ̂<
ˆ̂̂̂:

@tu.t; x/ � 1
2
@x.a.x/@xu.t; x// D 0; .t; x/ 2 .0; T � � .R � f0g/;

u.t; 0C/ D u.t; 0�/; t 2 Œ0; T �;
u.0; x/ D f .x/; x 2 R;

a.0C/@xu.t; 0C/ D a.0�/@xu.t; 0�/; t 2 Œ0; T �: .?/

(3)

We assume

9� > 0; ƒ > 0; 0 < � 	 a.x/ D .�.x//2 	 ƒ < C1 for all x 2 R: (4)

We also assume that � is of class C3b.R � f0g/ and is left and right continuous at
point 0, and that the first derivative of � has finite left and right limits at 0.

Our first result shows that, for a wide class of functions f , the solution of the
PDE (1) with d D 1 can be represented as

u.t; x0/ WD E
x0f .Xt /; (5)

where the process .Xt / is the unique weak solution to the one-dimensional
stochastic differential equation (SDE) with weighted local time

dXt D �.Xt /dBt C �.Xt /�
0�.Xt/ dt C a.0C/ � a.0�/

2a.0C/ dL0t .X/; X0 D x0:

(6)

Here � 0� is the left derivative of � , .Bt ; t � 0/ is a one-dimensional standard
Brownian motion on a filtered probability space, and L0t .X/ is the right-sided local
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time of X WD .Xt/ corresponding to the sign function defined as sgn.x/ WD 1 for
x > 0 and sgn.x/ WD �1 for x 	 0 (see, e.g., Revuz an Yor [21]).

Notice that Eq. (6) involves the local time of the solution. Under conditions
weaker than those ones of Theorem 2.2 below, the unique weak solution exists,
and this solution is a strong Markov process: see Le Gall [13]. For all real number
x0 we denote by P

x0 the probability distribution of the solution such that X0 D x0;

P
x0 � a.s.

From a numerical point of view, the stochastic representation (5) is unsatisfying
because of the difficulty to numerically approximate the local time process .L0t .X//
with good accuracy and weak computational cost. We thus apply a transformation
which removes the local time of X already used by Le Gall [13]. We thus get a
new stochastic differential equation without local time which can be discretized by
the standard Euler scheme. As the transformation is one-to-one and its inverse is
explicit, one then readily deduces an approximation X of X . Choosing X0 D X0
we then approximate u.t; x0/ by E

x0f .Xt/, the latter being computed by Monte
Carlo simulations of X .

We below state sharp convergence rate estimates for E
x0f .Xt / to u.t; x0/

according to different hypotheses on f . These convergence rates are new in the
literature because the SDE obtained by removing the local time has discontinuous
coefficients: see [11,24] for a review when the coefficients are smooth, and Yan [25]
for a weak convergence of the Euler scheme for general SDEs with discontinuous
coefficients (without precise convergence rates).

2.1 A Probabilistic Interpretation of the One-Dimensional
PDE (1)

The SDE (6) allows us to construct a stochastic interpretation of Eq. (3).

Theorem 2.1. Let us assume condition (4) and that the function � is of class
C3b.R � f0g/ and is left and right continuous at point 0. Moreover, we assume that
the first derivative of the function � has finite left and right limits at 0. Let .Xt/ be
the solution to (6). Let the bounded function f be in the set

W2 D ˚
g 2 C2b.R � f0g/; g.i/ 2 L2.R/\ L1.R/ for i D 1; 2;

a.0C/g0.0C/ D a.0�/g0.0�/� : (7)

Then the function

u.t; x/ WD E
xf .Xt /; .t; x/ 2 Œ0; T � � R;
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is the unique one in C1;2b .Œ0; T � � .R � f0g// and continuous on Œ0; T � � R which
satisfies (3).

Using the preceding stochastic representation of u.t; x/ one can get the following
accurate pointwise estimates for its derivatives.

Theorem 2.2. (i) Under the hypotheses on the function � made in Theorem 2.1,
the probability distribution of Xt under P

x has a density qX.x; t; y/ which
satisfies:

9C > 0; 8x 2 R; 8t > 0; Leb-a-e. y 2 R � f0g; qX.x; t; y/ 	 Cp
t

(8)

and

9C > 0; 8x 2 R; 8t 2 .0; T �; 8f 2 L1.R/; ju.t; x/j D jExf .Xt /j 	 Cp
t
kf k1:

(9)

(ii) Suppose in addition that the function � is of class C4b.R�f0g/ and that its three
first derivatives have finite left and right limits at 0. Set

W4 WD ˚
g 2 C4b.R � f0g/; g.i/ 2 L2.R/ \L1.R/ for i D 1; : : : ; 4

a.0C/g0.0C/ D a.0�/g0.0�/ and

a.0C/.Lg/0.0C/ D a.0�/.Lg/0.0�/� ; (10)

where

Lg.x/ WD �.x/� 0�.x/@xg�.x/C 1

2
a.x/@2xxg.x/Ix¤0: (11)

Then, for all j D 0; 1; 2 and i D 1; : : : ; 4 such that 2j C i 	 4,

9C > 0; 8x 2 R; 8t 2 .0; T �; 8f 2 W4; j@jt @ixu.t; x/j 	 Cp
t
kf 0k�;1;

(12)

where � D 1 if 2j C i D 1 or 2, and � D 3 if 2j C i D 3 or 4, and k � k�;1 is
defined as in (2).

The proofs of the two preceding theorems are quite long. We here summarize
their key steps.
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2.2 Proof of Theorem 2.1

The two following observations are key ingredients in the proof.
First, for all function g of class C2b.R � f0g/ having a second derivative in the

sense of the distributions which is a Radon measure and satisfying the transmission
condition

a.0C/g0.0C/ D a.0�/g0.0�/;

the Itô–Tanaka formula applied to g.Xt / and the definition (11) of L lead to

8x 2 R; 8t > 0; Exg.Xt / D g.x/C
Z t

0

E
xLg.Xs/ ds: (13)

Second, let �C.x/ be an arbitrary C3b.R/ extension of the function �.x/Ix>0
which satisfies, for aC.x/ WD .�C.x//2,

0 < � 	 aC.x/ 	 ƒ < C1 for all x 2 R:

Denote by .XC
t / the unique strong solution to

dXC
t D �C.XC

t /dBt C �C.XC
t /.�

C/0.XC
t / dt:

Let �0.X/ be the first passage time of the process .Xt / at point 0:

�0.X/ WD inffs > 0 W Xs D 0g:

Given T > 0, let rx0 .s/ be the density under Px of �0.X/ ^ T . Notice that �0.X/ D
�0.X

C/. For all function � such that Ej�.Xt/j is finite we have, for all x > 0 and
0 	 t 	 T ,

E
x�.Xt/ D E

x
�
�.Xt/If�0�tg

�C E
x
�
�.Xt/If�0<tg

�
D E

x
�
�.XC

t /If�0�tg
�C

Z t

0

E
0�.Xt�s/rx0 .s/ ds

D E
x�.XC

t /� E
x
�
�.XC

t /If�0<tg
�C

Z t

0

E
0�.Xs/r

x
0 .t � s/ ds

D E
x�.XC

t /�
Z t

0

E
0�.XC

s /r
x
0 .t � s/ds C

Z t

0

E
0�.Xs/r

x
0 .t � s/ ds:

(14)

Of course, a similar representation holds true for all x < 0 provided the introduction
of a diffusion process X� obtained by smoothly extending �.x/Ix<0.
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We need the following lemma.

Lemma 2.3. There exists QC > 0 such that, for all 0 	 ˛ < 1, and all function H
bounded on Œ0; T �, continuously differentiable on .0; T �, satisfying H.0/ D 0 and

jH 0.s/j 	 CH

s˛
for all s 2 .0; T �;

it holds

8t 2 .0; T �; 8x ¤ 0;

ˇ̌̌
ˇ@x

Z t

0

rx0 .t � s/H.s/ds

ˇ̌̌
ˇ 	 CH QC;

and

8t 2 .0; T �; 8x ¤ 0;

ˇ̌̌
ˇ@2xx

Z t

0

rx0 .t � s/H.s/ds

ˇ̌̌
ˇ 	 CH QC

�
1C 1

t˛

�
:

First Step: Smoothness and Boundedness. In this paragraph we prove that the
function u.t; x/ WD E

xf .Xt / is in C1;2
b .Œ0; T ��.R�f0g/. Without loss of generality,

we limit ourselves to the case x > 0. From the representation (14) with � � f

and a representation of rx0 .s/ in terms of the joint distribution of Brownian motion
and Bessel bridges (see, e.g., Pauwels [19]), it is easy to deduce the continuity of
u.t; x/ w.r.t. t and x. In particular, the second and third equalities in (3) are satisfied.
Next, to study the boundedness of the function @xu.t; x/, we differentiate the flow
of .XC

t /:

@xE
xf .XC

t /

D E
x

�
f 0.XC

t / exp

�Z t

0

.�C/0.XC
s /dBs

C1

2

Z t

0

f..�C/0.XC
s //

2 C �C.XC
s /.�

C/00.XC
s /gds

��
:

If we integrate by parts the stochastic integral in the right-hand side of the previous
expression, then there exists a bounded continuous functionG such that

@xE
xf .XC

t / D E
x

�
f 0.XC

t / exp

�
�C.XC

t / � �C.x/C
Z t

0

G.XC
s /ds

��
:

(15)

Therefore

9C > 0; 80 < t 	 T; 8x 2 R; j@xExf .XC
t /j 	 Ckf 0k1:

We then consider the two last terms of the right-hand side of (14). We now use (13)
and Lemma 2.3 with
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H.s/ D E
0f .XC

s / � E
0f .Xs/

and CH D C.jjLCf jj1 CjjLf jj1/, where LC is the infinitesimal generator of the
process .XC

t /, that is,

LCf .x/ WD 1

2
aC.x/f 00.x/C 1

2
.aC/0.x/f 0.x/:

Then, we have

9C > 0; 80 < t 	 T; 8x ¤ 0; j@xu.t; x/j 	 Ckf 0k1 C Ckf 00k1:

We proceed similarly to prove that

9C > 0; 80 < t 	 T; 8x ¤ 0; j@2xxu.t; x/j 	 Ckf 0k1 C Ckf 00k1; (16)

noticing that, from (15),

9C > 0; 80 < t 	 T; 8x 2 R; j@2xxExf .XC
t /j 	 Ckf 0k1 C Ckf 00k1:

Second Step: u.t; x/ Satisfies the First Equality in (3). In view of (13) we have,
for all 0 < t < T , 0 < � < T � t and x in R,

u.t C �; x/ � u.t; x/ D E
xf .XtC�/� E

xf .Xt / D
Z tC�

t

E
xLf .Xs/ds: (17)

Changing � into Lf in (14) shows that ExLf .Xt / is a continuous function w.r.t. t .
Therefore @tu.t; x/ is well defined for all 0 < t 	 T and all x in R.

In addition, as .Xt/ is strong Markov,

u.t C �; x/ � u.t; x/ D E
xu.t; X�/� u.t; x/: (18)

Itô’s formula leads to

E
xu.t; X�/� u.t; x/ D E

xu.t; X�/I�0�� C E
xu.t; X�/I�0<� � u.t; x/

D
Z �

0

E
xLu.t; Xs/ds I�0�� � u.t; x/ Px.�0 	 �/

C
Z �

0

E
0u.t; Xs/r

x
0 .� � s/ds:

Divide by � the left and right-hand sides and observe that, for all x ¤ 0,

P
x � a.s.; lim

�&0

1

�

Z �

0

Lu.t; Xs/ds D Lu.t; x/:
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Applying Lebesgue’s Dominated Convergence theorem we deduce

lim
�&0

E
xu.t; X�/ � u.t; x/

�
DLu.t; x/�u.t; x/rx0 .0/Clim

�&0

R �
0
E
0u.t; Xs/rx0 .� � s/ds

�
:

As rx0 .0/ D 0, Lebesgue’s Dominated Convergence theorem implies that, for all
x ¤ 0,

@tu.t; x/ D Lu.t; x/: (19)

Third Step: u.t; x/ Satisfies the Transmission Condition .?/. In view of the
preceding first step, for all fixed t the second partial derivative w.r.t. x of u.t; x/
is a Radon measure. Thus we may apply the Itô–Tanaka formula to u.t; Xs/ for
0 	 s 	 � and fixed time t . Our first step also ensures that the resulting Brownian
integrals are martingales. Therefore

E
0u.t; X�/� u.t; 0/ D E

0

Z �

0

Lu.t; Xs/ds

C 1

2a.0C/ .a.0C/@xu.t; 0C/

� a.0�/@xu.t; 0�//E0L0�.X/: (20)

Observe that the equality (18) holds true for x D 0 since it only results from the
Markov property of .Xt / and that, combined with (17) it leads to

E
0u.t; X�/� u.t; 0/ D

Z tC�

t

E
0Lf .Xs/ds:

Therefore we deduce from (20) that

.a.0C/@xu.t; 0C/� a.0�/@xu.t; 0�//E0L0�.X/

D 2a.0C/
�Z tC�

t

E
0Lf .Xs/ds �

Z �

0

E
0Lu.t; Xs/ds

�
:

Since Lf and Lu.t; �/ are bounded functions, the compatibility transmission
condition .?/ will be proved if we show that

lim inf
�&0

E
0L0�.X/

�
D C1: (21)

This is achieved by reducing the question to Brownian local times.
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Last Step: Uniqueness. We finally prove that u.t; x/ WD E
xf .Xt / is the unique

solution to (3) in the sense of Theorem 2.1. The standard method to prove stochastic
representations of solutions v.t; x/ of parabolic equations with smooth coefficients
(see, e.g., Friedman [9]) relies on Itô’s formula applied to v.t; Xt/. Here, as the first
space derivative of u.t; x/ is discontinuous at x D 0 for all t , one would rather
need to apply a formula of Itô–Tanaka type. However the classical Itô–Tanaka’s
formula cannot be extended to functions which depend on time and space. In order
to circumvent this difficulty we use a trick taken from Peskir [20, Sect. 3] which,
according to the author, is due to Kurtz.

As, for all real number x, x_0 D 1
2
.xCjxj/ and x^0 D 1

2
.x�jxj/, Itô–Tanaka’s

formula implies

d.Xt _ 0/ D 1

2
dXt C 1

2
sgn.Xt / dXt C 1

2
dL0t .X/

D IXt>0 dXt C 1

2
dL0t .X/;

d.Xt ^ 0/ D 1

2
dXt � 1

2
sgn.Xt / dXt � 1

2
dL0t .X/

D IXt<0 dXt � a.0�/
2a.0C/ dL0t .X/:

Now, let U.t; x/ be an arbitrary solution to (3). For all fixed t in Œ0; T � the
function U.t � s; x/ is of class C1;2b .Œ0; t � � R � f0g/ and its partial derivatives
have left and right limits when x tends to 0. Thus we may apply the classical Itô’s
formula to this function and the semi-martingales .Xs _ 0/ and .Xs ^ 0/. As the
resulting Brownian integrals are martingales we obtain:

E
xU.0;Xt _ 0/ D U.t; x _ 0/� E

x

Z t

0

@tU.t � s; Xs _ 0/ ds

C E
x

Z t

0

@xU.t � s; Xs _ 0/ IXs>0 �.Xs/� 0.Xs/ ds

C 1

2
E
x

Z t

0

@2xxU.t � s; Xs/ IXs>0 a.Xs/ ds

C 1

2
E
x

Z t

0

@xU.t � s; 0C/dL0s .X/:

Similarly, we get

E
xU.0;Xt ^ 0/ D U.t; x ^ 0/� E

x

Z t

0

@tU.t � s; Xs ^ 0/ ds

C E
x

Z t

0

@xU.t � s; Xs ^ 0/ IXs<0 �.Xs/� 0.Xs/ ds
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C 1

2
E
x

Z t

0

@2xxU.t � s; Xs/ IXs<0 a.Xs/ ds

� a.0�/
2a.0C/E

x

Z t

0

@xU.t � s; 0�/dL0s .X/:

We finally use that U.t; x/ D U.t; x _ 0/CU.t; x ^ 0/�U.t; 0/ and U.0; x/ D
f .x/. In view of the first equality in (3), it follows that

E
xf .Xt / D U.t; x/C 1

2a.0C/E
x

Z t

0

.a.0C/@xU.t � s; 0C/

� a.0�/@xU.t � s; 0�//dL0s .X/:

It now remains to use that, by hypothesis, U.t; x/ satisfies the transmission
condition .?/. That ends the proof.

2.3 Proof of Theorem 2.2

One proves (9) by closely following a part of the proof of Aronson’s estimate (see,
e.g., Bass [1, Chap. 7, Sect. 4] and Stroock [23]).

Proposition 2.4. There exists C > 0 such that, for all t 2 .0; T �,

sup
x¤0

j@tu.t; x/j 	 Cp
t
kf 0k1;1: (22)

Proof. As above, w.l.g. we may and do assume x > 0. We start from (14) and write

u.t; x/ D E
xf .XC

t /C v.t; x/; (23)

where

v.t; x/ WD �
Z t

0

E
0f .XC

s /r
x
0 .t � s/ ds C

Z t

0

E
0f .Xs/r

x
0 .t � s/ ds: (24)

We have

v.t; x/ D
Z t

0

Z t�s

0



E
0Lf .X
/� E

0LCf .XC

 /
�
d
 rx0 .s/ ds; (25)

and thus

@t v.t; x/ D
Z t

0

�
E
0Lf .Xs/ � E

0LCf .XC
s /
	
rx0 .t � s/ ds: (26)
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One can prove the following estimate: for all 0 	 ˛ < 1 there existsC > 0 such that

80 	 t 	 T; 8x ¤ 0;

Z t

0

1

s˛
rx0 .t � s; x/ ds 	 C

t˛
: (27)

Successively using Inequalities (9) and (27) we obtain

j@tv.t; x/j 	 C
�kLCf k1 C kLf k1

	 Z t

0

1p
s
rx0 .t � s/ ds

	 Cp
t

�kLCf k1 C kLf k1
	
:

We now use the following well known estimate (see, e.g., Friedman [9]): for all
t > 0, the probability density qX

C

.x; t; y/ of XC
t under Px satisfies

9C > 0; 9� > 0; 80 < t 	 T; qX
C

.x; t; y/ 	 Cp
t

exp


� .y�x/2

�t

�
: (28)

From Itô’s formula and the preceding inequality we have

sup
x2R

j@tExf .XC
t /j 	 Cp

t
kLCf k1:

In view of (23) we thus are in a position to obtain (22). �

Similar calculations lead to: There exists C > 0 such that, for all t 2 .0; T �,

sup
x¤0

j@2ttu.t; x/j 	 Cp
t
kf 0k3;1:

Proposition 2.5. There exists C > 0 such that, for all t 2 .0; T �,

sup
x¤0

j@xu.t; x/j 	 Cp
t
kf 0k1;1: (29)

Proof. In view of (15) and the Gaussian estimate (28) we have

k@xExf .XC
t /k1 	 Cp

t
kf 0k1: (30)

Therefore it suffices to prove

sup
x¤0

j@xv.t; x/j 	 C
�kLCf k1 C kLf k1

	
: (31)
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In view of (25) this inequality results from Lemma 2.3 applied to the function

H.s/ WD
Z s

0



E
0LCf .XC


 / � E
0Lf .X
/

�
d
;

noticing that, in view of (9), we may choose

CH WD C
�kLCf k1 C kLf k1

	
:

�
We proceed similarly to get: For ` D 2; � � � ; 4, there exists C > 0 such that, for

all t in .0; T �,

sup
x¤0

j@`x`u.t; x/j 	 Cp
t
kf 0k1;1:

2.4 A Transformed Euler Scheme

Without loss of generality, we assume that a.0C/�a.0�/ is strictly positive. Using
the symmetric local time QL as in [13], Eq. (6) writes

dXt D �.Xt / dBt C �.Xt /�
0�.Xt/ dt C a.0C/ � a.0�/

a.0C/C a.0�/d
QL0t .X/;

so that the hypotheses of Theorem 2.3 in [13] are well satisfied since

�1 < a.0C/�a.0�/
a.0C/Ca.0�/ < 1:

Therefore Girsanov’s theorem implies that the stochastic differential equation (6)
has a unique weak solution.

Set

ˇC WD 2a.0�/
a.0C/Ca.0�/ and ˇ� WD 2a.0C/

a.0C/Ca.0�/ ; (32)

and (
ˇ.x/ WD x .ˇ�Ix�0 C ˇCIx>0/ ;

ˇ�1.x/ WD x
ˇ

�

Ix�0 C x
ˇ

C

Ix>0:
(33)
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Set also (
Q�.x/ WD � ı ˇ�1.x/ .ˇ�Ix�0 C ˇCIx>0/ ;

Qb.x/ WD � ı ˇ�1.x/� 0� ı ˇ�1.x/ .ˇ�Ix�0 C ˇCIx>0/ :
(34)

From Itô–Tanaka’s formula (see, e.g., Revuz and Yor [21, Chap. VI]) to ˇ.Xt/ we
get that the process Y WD ˇ.X/ satisfies the SDE with discontinuous coefficients:

Yt D ˇ.X0/C
Z t

0

Q�.Ys/ dBs C
Z t

0

Qb.Ys/ ds: (35)

Now denote by hn the step-size of the discretization, that is, hn WD T
n

. For all

0 	 k 	 n set tnk WD k hn. Let .Y
n

t / be the Euler approximation of .Yt / defined by
Y
n

0 D ˇ.X0/ and, for all tnk 	 t 	 tnkC1,

Y
n

t D Y
n

tnk
C Q�.Y ntnk /IY ntnk ¤0.Bt � Btnk /C Qb.Y ntnk /IY ntnk ¤0.t � tnk /: (36)

The transformed Euler scheme for.Xt/ is then defined by

X
n

t D ˇ�1


Y
n

t

�
; 0 	 t 	 T: (37)

When the coefficient a.x/ is smooth, the weak convergence rate of the classical
Euler scheme is of order 1=n and the discretization error can even be expanded in
terms of powers of 1=n: for a survey, see, e.g., Talay [24]. Our next theorem states
that the discretization error of the transformed Euler scheme is of order 1=n1=2��
for all 0 < � < 1

2
when the function f belongs to W4.

Theorem 2.6. Under the hypotheses made on the function � in Theorem 2.2-(ii),
there exists a positive number C such that, for all initial condition f in W4, all
parameter 0 < � < 1

2
, all n large enough, and all x0 in R,

ˇ̌̌
E
x0f .XT /� E

x0f .X
n

T /
ˇ̌̌

	 Ckf 0k1;1h.1��/=2n C Ckf 0k1;1
p
hn C Ckf 0k3;1h1��n :

(38)

2.5 Convergence Rate Analysis: Proof of Theorem 2.6

For all k 	 n set

�nk WD T � tnk :
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The proof of Theorem 2.6 proceeds as follows. Since u.0; x/ D f .x/ and
u.T; x/ D E

xf .XT / for all x, the discretization error at time T can be decomposed
as follows:

�
x0
T D

ˇ̌̌
E
x0f ı ˇ�1.YT /� E

x0f ı ˇ�1


Y
n

T

�ˇ̌̌

D
ˇ̌̌
ˇ̌n�1X
kD0
.Ex0u.T � tnk ; ˇ�1.Y ntnk // � E

x0u.T � tnkC1; ˇ�1.Y ntn
kC1
///

ˇ̌̌
ˇ̌ ; (39)

and thus

�
x0
T 	

ˇ̌̌
ˇ̌n�2X
kD0

E
x0
n
u.�nk ; ˇ

�1.Y ntnk // � u.�nkC1; ˇ�1.Y ntnk //

Cu.�nkC1; ˇ�1.Y ntnk //� u.�nkC1; ˇ�1.Y ntn
kC1
//
oˇ̌̌

C
ˇ̌̌
E
x0u.�n1 ; ˇ

�1.Y ntnn�1
// � E

x0u.0; ˇ�1.Y nT //
ˇ̌̌
:

(40)

One readily proves that

ˇ̌̌
E
x0u.�n1 ; ˇ

�1.Y ntnn�1
//� E

x0u.0; ˇ�1.Y nT //
ˇ̌̌

	 Ckf 0k1;1
p
hn: (41)

The rest of this section is devoted to the analysis of

ˇ̌̌
ˇ̌n�2X
kD0

E
x0.Tk � Sk/

ˇ̌̌
ˇ̌ ;

where the time increment Tk is defined as

Tk WD u.�nk ; ˇ
�1.Y ntnk //� u.�nkC1; ˇ�1.Y ntnk // (42)

and the space increment is defined as

Sk WD u.�nkC1; ˇ�1.Y ntn
kC1
// � u.�nkC1; ˇ�1.Y ntnk //: (43)

In all the calculation below, we use the following notation: given some real
number r.n/ depending on n, and two positive numbers � and �,

r.n/DQ3



h�n
.tnk /

�

�
means 9C >0; 8n� 1; 80 	 k 	 n; jr.n/j 	 C

h�n
.tnk /

�
kf 0k3;1:

(44)
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We distinguish two cases. On the one hand, when Y
n

tnk
and Y

n

tn
kC1

are simultane-

ously positive or negative, we use a Taylor expansion of u.tnkC1; �/ around .tnk ; Y
n

tnk
/

and then apply accurate estimates of the derivatives of u.t; x/ for t in .0; T � and
x ¤ 0. On the other hand, we combine two tricks: first, we prove that Y

n

tnk
and Y

n

tn
kC1

have opposite signs with small probability when Y
n

tnk
is large enough; second, when

Y
n

tnk
is small, we explicit the expansion of u.tnkC1; �/ around 0 and use Theorem 2.1;

these two calculations allow us to cancel the lower order term in the expansion.
We emphasize that using the transmission condition .?/ is natural: it results from
the construction of the approximation scheme by means of the function ˇ�1 whose
derivatives are discontinuous at 0.

In view of (12) one easily gets

E
x0Tk D E

x0@tu.�
n
kC1; ˇ�1.Y ntnk //hn C Q3

�
h2np
�nkC1

�
: (45)

Let Sk be defined as in (43). Set

4kC1B WD Btn
kC1

� Btnk ;
4kC1Y

n WD Q�.Y ntnk /4kC1B C Qb.Y ntnk /hn;
4]

kC1X
n WD �.X

n

tnk
/4kC1B C �� 0�.X

n

tnk
/hn:

We emphasize that, due to the asymmetry of the definition ˇ�1, 4]

kC1X
n

does not

coincide withX
n

tn
kC1

�Xn

tnk
whenX

n

tn
kC1

andX
n

tnk
have opposite signs, which explains

the two notations 4 and 4]. However the definitions (34) and (36) imply

4kC1Y
n

ˇC
IŒY

n
tn
k
>0� C

4kC1Y
n

ˇ�
IŒY

n
tn
k

�0� D 4]

kC1X
n
: (46)

We need to introduce the four following events:

8̂̂̂
ˆ̂<
ˆ̂̂̂̂
:

�CC
k WD ŒY

n

tnk
> 0 and Y

n

tnkC1
> 0�;

���
k WD ŒY

n

tnk
	 0 and Y

n

tn
kC1

	 0�;

�C�
k WD ŒY

n

tnk
> 0 and Y

n

tn
kC1

	 0�;

��C
k WD ŒY

n

tnk
	 0 and Y

n

tnkC1
> 0�:

(47)

In view of the definition of the function ˇ�1 in Sect. 2.4 we have

On �CC
k ; ˇ�1.Y ntnkC1

/ D 1

ˇC
Y
n

tnkC1
D ˇ�1.Y ntnk /C 1

ˇC
4kC1Y

n
:
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Therefore

SkI�CC

k
D 4kC1Y

n

ˇC
@xu.�nkC1; ˇ�1.Y ntnk // I�CC

k

C 1

2

.4kC1Y
n
/2

.ˇC/2
@2xxu.�nkC1; ˇ�1.Y ntnk // I�CC

k

C 1

6

.4kC1Y
n
/3

.ˇC/3
@3
x3

u.�nkC1; ˇ�1.Y ntnk // I�CC

k

C .4kC1Y
n
/4

.ˇC/4

Z
Œ0;1�4

@4
x4

u.�nkC1; ˇ�1.Y ntnk /C ˛1˛2˛3˛44kC1Y
n
/

˛1˛2˛3 d˛1 : : : d˛4 I�CC

k

DW SCC1
k C SCC2

k C SCC3
k C SCC4

k :

A similar decomposition holds for SkI���

k
.

We now use that�CC
k [���

k D ��.�C�
k [��C

k / and notice that�C�
k [��C

k

belongs to the �-field generated by .Bt / up to time tnkC1. In view of (46) we get

E
x0 .SCC1

k C S��1
k / D E

x0
h
�� 0 ı ˇ�1.Y ntnk /@xu.�nkC1; ˇ�1.Y ntnk //

i
hn

� E
x0
h
4]

kC1X
n
@xu.�nkC1; ˇ�1.Y ntnk // I�C�

k [��C

k

i
:

Proceeding similarly and making it explicit the conditional expectation of
.4]

kC1X
n
/2 w.r.t. the past of .Bt / up to time tnk , we obtain

E
x0 .SCC2

k C S��2
k / D 1

2
E
x0
h
a ı ˇ�1.Y ntnk /@

2
xxu.�nkC1; ˇ�1.Y ntnk //

i
hn

� 1

2
E
x0
h
.4]

kC1X
n
/2@2xxu.�nkC1; ˇ�1.Y ntnk // I�C�

k [��C

k

i
;

and, since E
x0.4kC1B/3 D 0,

E
x0 .SCC3

k C S��3
k / D 1

2
E
x0
h
a ı ˇ�1.Y

n

tnk
/�� 0 ı ˇ�1.Y

n

tnk
/@3
x3

u.�nkC1; ˇ
�1.Y

n

tnk
//
i
h2n

� 1

6
E
x0
h
.4]

kC1
X
n
/3@3

x3
u.�nkC1; ˇ

�1.Y
n

tnk
// I

�
C�

k [�
�C

k

i

C Q3

�
h2np
�nkC1

�
:
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In addition, in view of Theorem 2.2 we have

E
x0 jSCC4

k C S��4
k j 	 Ch2np

�nkC1
kf 0k3;1:

To summarize the calculations of this subsection, we have obtained

E
x0Sk DW Ex0Lu.�nkC1; ˇ�1.Y ntnk //hn C E

x0Rk C Q3

�
h2np
�n
kC1

�
: (48)

We now estimate the remaining term E
x0Rk .

2.6 Estimate for Ex0Rk: Localization Around 0

Arbitrarily fix 0 < � < 1
2
. We aim to show

jEx0Rk j 	 Ch1�2�np
�nk

kf 0k1;1Px0
h
jY ntnkC1

j 	 h1=2��n

i

CCh3=2.1��/np
�nkC1

kf 0k3;1Px0
h
jY ntnk j 	 h1=2��n

i
: (49)

To get this precise estimate we need to use the transmission condition .?/ in
Eq. (3). This explains that we localize on the event where Y

n

tnk
is close to 0. We start

with checking that we may neglect the complementary event.
Define &.y/ by

&.y/ WD �y � Qb.y/hn
Q�.y/ :

Observe that

�C�
k D

h
0 < Y

n

tnk
	 h1=2��n and Y

n

tnkC1
	 �h1=2��n

i
[
h
0 < Y

n

tnk
	 h1=2��n and

�h1=2��n 	 Y
n

tnkC1
	 0

i
[
h
Y
n

tnk
� h1=2��n and 4kC1B 	 &.Y

n

tnk
/
i
:

Notice that

P
x0
h
Y
n

tnk
� h1=2��n and 4kC1B 	 &.Y

n

tnk
/
i

	 C exp.� 1
C
n��/;
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and, similarly,

P
x0
h
0 	 Y

n

tnk
	 h1=2��n and Y

n

tnkC1
	 �h1=2��n

i
	 C exp.� 1

C
n��/:

We proceed analogously on the event ��C
k . This leads us to limit ourselves to

consider the events

�C��
k WD

h
0 < Y

n

tnk
	 h1=2��n and � h1=2��n 	 Y

n

tn
kC1

	 0
i

and

��C�
k WD

h
�h1=2��n 	 Y

n

tnk
	 0 and 0 	 Y

n

tn
kC1

	 h1=2��n

i
:

Notice that, on these events, equality (46) implies that j4]

kC1X
nj 	 Ch1=2��n .

Therefore, in view of the estimates (12) one hasˇ̌̌
E
x0
h
.4]

kC1X
n
/2@2xxu.�nkC1; ˇ�1.Y ntnk // I�C��

k [��C�

k

iˇ̌̌

	 Ch1�2�np
�nkC1

kf 0k1;1Px0
h
jY ntnk j 	 h1=2��n

i
;

and ˇ̌̌
E
x0
h
.4]

kC1X
n
/3@3

x3
u.�nkC1; ˇ�1.Y ntnk // I�C��

k [��C�

k

iˇ̌̌

	 Ch3=2.1�2�/np
�nkC1

kf 0k3;1Px0
h
jY ntnk j 	 h1=2��n

i
:

Therefore, to show (49) it suffices to showˇ̌̌
E
x0
h
.Sk � 4]

kC1X
n
@xu.�nkC1; ˇ�1.Y ntnk /// I�C��

k [��C�

k

iˇ̌̌

	 Ch1�2�np
�nkC1

kf 0k1;1Px0
h
jY ntnk j 	 h1=2��n

i
:

(50)

2.7 Proof of (50): Expansion Around 0

On the event �C��
k we have that Y

n

tnkC1
and Y

n

tnk
are close to 0. On this event, we

also have that Y
n

tnkC1
is negative and Y

n

tnk
is positive, so that ˇ�1.Y ntnkC1

/ D 1
ˇ

�

Y
n

tnkC1

and ˇ�1.Y ntnk / D 1
ˇ

C

Y
n

tnk
. As u.t; x/ is continuous at point 0, we get
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E
x0
h
.Sk � 4]

kC1X
n
@xu.�nkC1; ˇ�1.Y ntnk /// I�C��

k

i

D 1

ˇ�
E
x0
h
Y
n

tn
kC1
@xu.�nkC1; 0�/ I�C��

k

i
� 1

ˇC
E
x0
h
Y
n

tnk
@xu.�nkC1; 0C/ I�C��

k

i

� E
x0
h
4]

kC1X
n
@xu.�nkC1; 0C/ I�C��

k

i

C E
x0

��
.ˇ�1.Y ntn

kC1
//2
Z
Œ0;1�2

@2xxu.�nkC1; ˛1˛2ˇ�1.Y ntn
kC1
//˛1 d˛1d˛2

�.ˇ�1.Y ntnk //
2

Z
Œ0;1�2

@2xxu.�nkC1; ˛1˛2ˇ�1.Y ntnk //˛1 d˛1d˛2

�4]

kC1X
n
ˇ�1.Y ntnk /

Z 1

0

@2xxu.�nkC1; ˛1ˇ�1.Y ntnk // d˛1
�

I
�

C��

k

�
:

The absolute value of the last expectation in the right-hand side can be bounded
from above by

Ch1�2�np
�n
kC1

kf 0k1;1Px0
h
jY ntnk j 	 h1=2��n

i

since

on�C��
k ; jˇ�1.Y ntnkC1

/j C jˇ�1.Y ntnk /j 	 Ch1=2��n :

In addition, in view of (46) the sum of the three first terms in the right-hand side
reduces to

E
x0

�
Y
n

tn
kC1

I
�

C��

k

�
1

ˇ�
@xu.�nkC1; 0�/� 1

ˇC
@xu.�nkC1; 0C/

��
;

so that now are in a position to use the transmission condition .?/ in Eq. (3).
Remembering the definition (32) of ˇC and ˇ� we deduce that the preceding
expression is null. We may proceed similarly as above on the event��C�

k . We thus
have proven (50), which ends the proof of (49).

2.8 Summing Up

Gather the expansions (45) and (48). One can easily prove that the law of Y
n

tk
has a

density for all k, from which

E
x0@tu



T � tnk ; ˇ�1



Y
n

tk

��
� E

x0Lu


T � tnk ; ˇ�1



Y
n

tk

��
D 0: (51)
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Use the equality (51) and the inequalities (49), (41). It follows:

�
x0
T 	

n�2X
kD0

Ch1�2�np
�nk

kf 0k1;1Px0
h
jY ntnkC1

j 	 h1=2��n

i

C
n�2X
kD0

Ch3=2.1�2�/np
�nkC1

kf 0k3;1Px0
h
jY ntnk j 	 h1=2��n

i

C Ckf 0k1;1
p
hn C Ckf 0k3;1hn:

To deduce (38) it now remains to apply Theorem 2.7 below to the Itô process .Y
n

t /.

2.9 Estimate for the Number of Visits of Small Balls
by the Euler Scheme

In this subsection we recall a result from Bernardin et al. [3] which was essential to
estimate the remaining terms in the above error expansion. This estimate is useful
to analyze convergence rates of discretization schemes for SDEs with irregular
coefficients.

Let .�;F ; .Ft /;P/ be a filtered probability space satisfying the usual conditions.
Let .Wt / be a m-dimensional standard Brownian motion on this space. Given two
progressively measurable processes .bt / and .�t / taking values respectively in R

d

and in the space of real d �m matrices, Zt is the R
d valued Itô process

Zt D Z0 C
Z t

0

bs ds C
Z t

0

�s dWs: (52)

Suppose: There exists a positive numberK � 1 such that, P-a.s.,

8t � 0; kbtk 	 K;

and

80 	 s 	 t;
1

K2

Z t

s

 .s/ ds 	
Z t

s

 .s/k�s��
s k ds 	 K2

Z t

s

 .s/ ds

for all positive locally integrable map  W RC ! RC.

Theorem 2.7. Let .Zt / be as in (52). Let f be a positive and increasing function
in C1.Œ0; T /IRC/ such that f ˛ is integrable on Œ0; T / for all 1 	 ˛ < 2. Assume
also that there exists 1 < � < 1C �, where � WD 1

4K4 , such that
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Z T

0

f 2��1.s/f 0.s/
.T � s/1C�

s�
ds < C1:

Then there exists C > 0, depending only on �,K and T , such that, for all 
 2 R
d

and 0 < " < 1=2, there exists h0 > 0 satisfying

8 h 	 h0; h

NhX
kD0

f .kh/P.kZph � 
k 	 h1=2�"/ 	 Ch1=2�"; (53)

where Nh WD bT=hc � 1.

2.10 Extensions

One can relax the condition that the functions f and Lf satisfy the transmission
conditions in the definition (10) of W4.

Theorem 2.8. Let f W R 7! R be in the space

W WD ˚
g 2 C4b.R � f0g/; g.i/ 2 L2.R/\ L1.R/ for i D 1; : : : ; 4;

�
: (54)

Under the hypotheses on the function � made in Theorem 2.2-(ii), there exists a
positive number C (depending on f ) such that, for all 0 < � < 1

2
, all n large

enough, and all x0 in R,

ˇ̌̌
E
x0f .XT /� E

x0f .X
n

T /
ˇ̌̌

	 Ch1=2��n : (55)

In the case where a.x/ has a finite number of discontinuities, one can split the
real line into intervals whose boundary points are the discontinuity points of a.x/
and introduce transmission conditions at each of these points. One can also construct
an explicit transformation ˇ removing the local time of .Xt / at these discontinuity
points. Thus one can readily extend our transformed Euler Scheme. The above
convergence rate estimates still hold true.

Now consider the equation

8̂̂
<
ˆ̂:
@tv.t; x/ � Lv.t; x/ � b.x/

@

@x
v.t; x/ D 0 for all .t; x/ 2 .0; T � � R;

v.0; x/ D f .x/ for all x 2 R;

Compatibility transmission conditions at the discontinuity points of a.x/:
(56)



Stochastic Approaches for Divergence Form Operators 289

If the bounded function b is smooth enough (e.g. b is in C6b.R/), one can represent
the solution of (56) by means of a SDE similar to (6) except that the drift term
involves b.Xt/, a new modified Euler scheme can easily be constructed, and all our
results remain true.

The multi-dimensional setting requires non trivial additional works to define the
suitable stochastic differential equation with weighted local time which provides
a representation similar to (5), to derive accurate pointwise estimates on the
derivatives of the solution to the PDE, to construct a discretization scheme which
may easily be simulated, and to estimate its convergence rate. See [17].

3 The Linear 3D Poisson–Boltzmann PDE
in Molecular Dynamics

The results in this section come from Bossy et al. [4].
The Poisson–Boltzmann (PB) PDE in Molecular Dynamics describes the elec-

trostatic potential around a biomolecular assembly, and is used to compute global
characteristics of the system such as the solvatation free energy and the electrostatic
forces exerted by the solvent on the molecule.

The implicit solvent equation, which means that the solvent is considered as a
continuum, reads

Lu.x/ WD �r � .".x/ru.x//C �2.x/u.x/ D f .x/; x 2 R
3;

where ".x/ is the permittivity of the medium and �2.x/ is called the ion accessibility
parameter. The singular source term f is defined as

f WD
NX
iD1

qi ıxi ;

the atomic structure of the molecule being modelled as N atoms at positions
x1; : : : ; xN with charges qi .

Difficulties arising from the singularity of f can be removed as follows. Let � be
a C1 function with compact support in�int such that �.x/ D 1 in the neighborhood
of the points fx1; : : : ; xN g. Consider the function u0 WD P

i Gi where

Gi.x/ WD 1

4�

qi

�int

1

jx � xi j ; x 2 R
3:

Notice that the functionsGi satisfy

�r � .�intrGi/ D qi ıi ; x 2 R
3:
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Define the C1 function g with compact support in �int as

g.x/ D �int .u0.x/#�.x/C ru0.x/ � r�.x// ; x 2 R
3: (57)

Then, the function v WD u � �G solves the PB equation with regularized source
term g’ (RPBE in the terminology of Chen et al. [6] where this transformation
appears)

� r � .�.x/rv.x//C �2.x/v.x/ D g.x/; x 2 R
3: (58)

Therefore the singularity of the source term is not an issue. However it remains
to face the discontinuities of the function � and the fact that the Poisson–Boltzmann
PDE involves a divergence form operator with discontinuous coefficient ".

Assume that & is a smooth (C3) manifold in R
d . We denote by �.x/ the

orthogonal projection of x on & , n.y/ the outward normal to & for y 2 & ,
and �.x/ the signed distance between x and & , that is, �.x/ WD .x � �.x// �
n.�.x//.

We say that .Px/x2Rd on .C;B/ solves the martingale problem (MP) for L if

P
xfw 2 C W w.0/ D xg D 1;

for all x 2 R
d , and

M
'
t .w/ WD '.w.t// � '.w.0//�

Z t

0

L'.w.s// ds is a Px martingale,

for all ' satisfying

' 2 C0
b .R

d / \ C2
b .R

d n &/; "r' � .n ı �/ 2 C0
b .N /:

Notice that the test functions satisfy the transmission condition

"intr int'.x/ � n.x/ D "extrext'.x/ � n.x/:

The following theorem bases the probabilistic interpretation of the linear and
non-linear Poisson–Boltzmann equations. The technical difficulties of its proof
come from the fact that the dynamics of the unknown process .Xt / depends on
the local time of the auxiliary process .�.Xt //.
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Theorem 3.1. For all x the above martingale problem has a unique solution P

which is the unique weak solution to the following SDE with weighted local time:

8<
:
Xt D x C R t

0

p
2�.Xs/ dBs C �ext � �int

2�ext

R t
0

n.Xs/ dL0s .D/;

Dt D �.Xt /;
(59)

where B is a d -dimensional Brownian motion and .L0t .D//t>0 is the right-sided
local time at 0 of the continuous semi-martingale .Dt /.

Now, to prove that the solution to the martingale problem (MP) provides a
stochastic representation of the solution to the Poisson–Boltzmann equation, a key
step consists in proving the next lemma.

Lemma 3.2 (Generalized Itô–Meyer Formula). If X is a continuous semi-
martingale, Y WD �.X/, and if � is a test function for the martingale problem
for L, then

�.Xt/ D �.X0/C
Z t

0

r int�.Xs/ � dXs C 1

2

3X
i;jD1

Z t

0

@2u

@xi@xj
.Xs/d hXi;Xj is

C 1

2

Z t

0

h.Xs/ dL0s .Y /; 8t � 0 a.s.;

where h.x/ WD
�
"int

"ext
� 1

�
r int�.�.x// � n.�.x//.

The preceding formula would be easily obtained from Itô’s and Itô–Tanaka’s
formulas if the functions �.x/ � g.x/Œ�.x/�C and g.x/ were C2.

Theorem 3.3 (First Feynman–Kac Representation). Let v be the solution of �r �
."rv/C �2v D g, where g is a smooth function. Then, for all x 2 R

3,

v.x/ D E
x

�Z C1

0

g.Xt / exp

�
�
Z t

0

�2.Xs/ ds

�
dt

�
:

This representation does not allow to develop an efficient numerical scheme:
first, one needs to precisely discretize X everywhere where g is nonzero; second,
generally the computation of g is costly. Thus the next representation is more
favorable to the derivation of a simulation algorithm because it only involves
the entrance time and entrance position in small neighborhoods of & of (scaled)
Brownian paths.

Fix h > 0 and define the following sequence of stopping times

�k D infft � � 0
k�1 W �.Xt/ D �hg

� 0
k D infft � �k W Xt 2 &g:
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Since #.u �G/ D 0 in �i , for all x such that �.x/ 	 �h,

u.x/ D E
xŒu.X� 0

1
/ �G.X� 0

1
/�CG.x/:

For all x 2 �ext,

u.x/ D E
x

�
u.X�1/ exp

�
�
Z �1

0

�2.Xt/ dt

��
:

Recursively applying the two preceding formulas leads to the following result.

Theorem 3.4. One has

u.x/ D E
x

"C1X
kD1



G.X�k / �G.X� 0

k
/
�

exp



�
Z �k

0

�2.Xt / dt
�#
:

This new representation allows one to justify Walk on Spheres algorithms
introduced in this context by Mascagni and Simonov [16], construct improved
versions of these algorithms, and analyze the convergence rates of all these methods.

4 The Semi-linear 3D Poisson–Boltzmann PDE
in Molecular Dynamics

The results of this section come from Champagnat et al. [5].
The semi-linear Poisson–Boltzmann equation reads

� r � .".x/rv.x//C �2.x/ sinh.v.x// D f .x/; x 2 R
3: (60)

The semi-linear structure of this PDE leads to interpret it in terms of Backward
Stochastic Differential Equations. When the differential operator in the PDE has
smooth coefficients and the zero order term satisfies suitable strict monotonicity
conditions, the theory is well developed: see e.g. Pardoux [18] for a survey. Here
the context requires new arguments to face the discontinuity of " and the fact that �
is null in �ext.

As in the preceding section, consider the Poisson–Boltzmann equation with
regularized source term

� r � .�.x/rv.x//C �2.x/ sinh.v.x// D g.x/; x 2 R
3: (61)

Consider the Backward Stochastic Differential Equation

8T > 0; 80 	 t 	 T; Y xt D Y xT C
Z T

t
.g.Xxs /� �2.Xxs / sinh.Y xs // ds �

Z T

t
Zxs dBs :
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Consider the following subspaceM of the Sobolev space H1.R3/:

M WD ˚
v 2 H1.R3/j cosh2 v � 1 2 L1.R3/� :

Observe that

˚
v 2 H1.R3/j cosh2.v/� 1 2 L1.R3/� D ˚

v 2 H1.R3/j sinh.v/ 2 L2.R3/�
� ˚

v 2 H1.R3/j sinh .v=2/ 2 L2.R3/� D ˚
v 2 H1.R3/j cosh.v/ � 1 2 L1.R3/� :

Definition 4.1. Suppose that �int is a bounded connex subdomain of R
d with

boundary & of class C1.A weak solution to the RPBE (61) is a map v belonging to
M such that

E0.v; �/C
Z
�2.y/ sinh .v.y//�.y/ dy �

Z
g.y/�.y/ dy D 0; � 2 H1.R3/;

(62)

where E0.v; �/ WD .�rv;r�/ D R
�.y/rv.y/r�.y/ dy and where g is defined as

in (57).

Theorem 4.2. The RPBE (61) has a unique weak solution v in the sense of
Definition 4.1. This solution belongs to C0b.R3/\C2.R3n&/ and its trace vj& belongs
to C3.&/.

In addition, there exists a function r.x/ on C2.R3/ such that

r.x/ D
�
�int

�ext
� 1

�
r intv.�.x// � n.�.x//; x 2 N ; (63)

and such that the map

Ov.x/ WD v.x/ � r.x/Œ�.x/�C; x 2 R
3 (64)

is in C2.R3n&/ \W 2;1
loc .R3/. Finally, the gradient rv belongs to L1.R3/.

On a filtered probability space equipped with a Brownian motion .Bt / where a
weak solution .Xt/ to the SDE (59) has been constructed, let � be a .Ft /t>0 stopping
time. We allow � to take infinite values. Let 
 be a F� measurable random variable
and f a progressively measurable map from � � R

C � R
k � R

k	d to R
k .

The map Nf .s; y; z/ WD f .Xs; y; z/ is assumed to satisfy the following conditions.
Almost surely, for all .t; z/ in Œ0; T � � R

k	d the map y 2 R
k ! Nf .t; y; z/ is

continuous. There exists a progressively measurable bounded process .Kt / such
that, a.s., for all .t; z; z0/ in Œ0; T � � R

k	d � R
k	d , for all y in R

d ,

j Nf .t; y; z/ � Nf .t; y; z0/j 6 K.t/kz � z0k:



294 D. Talay

There exists a progressively measurable bounded process .�t / such that, a.s., for all
.t; y; y0; z/ in Œ0; T � � R

k � R
k � R

k	d ,

hy � y0; Nf .t; y; z/ � Nf .t; y0; z/i 6 �.t/jy � y0j2:

There exists a progressively measurable process � satisfying

8t > 0; �.t/ � 2�.t/ �K2.t/ > N� > 0

such that

E

Z �

0

e
R t
0 �.s/dsj Nf .t; 0; 0/j2 dt < 1:

For all real number r > 0 and all integer n > 0, one has

sup
jyj6r

j Nf .t; y; 0/� Nf .t; 0; 0/j 2 L1.�0; nŒ��; dt ˝ P/:

The random variable 
 is supposed to satisfy

Ee
R �
0 �.s/dsj
j2 < 1

and

E

Z �

0

e
R t
0 �.s/dsj Nf .t; e�1=2 R t0 Q�.s/ds N
t ; e�1=2 R t0 Q�.s/ds N�t /j2 dt < 1;

where we have set Q�.t/ WD 2�.t/ �K2.t/, N
 WD e
R �
0

Q�.s/ ds
, N
t WD EŒ N
 jFt � and N� is
a predictable process satisfying

N
 D E N
 C
Z 1

0

N�t dBt ;

E

Z 1

0

j N�t j2 dt < 1:

We now are in a position to exhibit our stochastic interpretation of the non-linear
Poisson–Boltzmann equation.

Theorem 4.3. There exists a unique progressively measurable process .Yt ; Zt /
such that

8T > 0; Yt^� D YT^� C
Z T^�

t^�
f .Xs; Ys; Zs/ ds �

Z T^�

t^�
ZsdBs; 0 6 t 6 T;

(65)
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and satisfying

E

�
sup
06t

e
R t
0 �.Xs/dsjYt j2 C

Z 1

0

e
R t
0 �.Xs/ds

�jYt j2 C jZt j2
	

dt

�

6 CE

�Z 1

0

e
R �
0 .Xs/dsjf .Xt ; 0; 0/j2dt

�
:

Let u.x/ be the unique weak solution u in the sense of Definition 4.1 of the
Poisson–Boltzmann equation (60). It admits the following probabilistic represen-
tation:

u.x/ D �.x/u0.x/C Y0; x 2 R
3;

where .Y;Z/ solves (65).
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