
Chapter 8
A Benchmark Problem: The Non-isothermal
Continuous Stirred Tank Reactor

8.1 Continuous Stirred Tank Reactor Model

The case of a single non-isothermal continuous stirred tank reactor [69, 90, 111] is
studied in this chapter. The reactor is the one presented in various works by Perez
et al. [98, 99] in which the exothermic reaction A → B is assumed to take place.
The heat of reaction is removed via the cooling jacket that surrounds the reactor.
The jacket cooling water is assumed to be perfectly mixed and the mass of the
metal walls is considered negligible, so that the thermal inertia of the metal is not
considered. The reactor is also assumed to be perfectly mixed and heat losses are
regarded as negligible, see Fig. 8.1.

The continuous linearized reactor system [90] is modeled as,

ẋ = Acx + Bcu (8.1)

where x = [x1 x2]T , x1 is the reactor concentration and x2 is the reactor temperature,
u = [u1 u2]T , u1 is the feed concentration and u2 is the coolant flow. The matrices
Ac and Bc are,
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(8.2)

The operating parameters are shown in Table 8.1.
The linearized model at steady state x1 = 0.265 kmol/m3 and x2 = 394 K and

under the uncertain parameters k0 and −�Hrxn will be considered. The following
uncertain system [130] is obtained after discretizing system (8.1) with a sampling
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Fig. 8.1 Continuous stirred
tank reactor

Table 8.1 The operating
parameters of non-isothermal
CSTR

Parameter Value Unit

F 1 m3/min

V 1 m3

ρ 106 g/m3

Cp 1 cal/g·K
�Hrxn 107–108 cal/kmol

E/R 8330.1 K

ko 109–1010 min−1

UA 5.34 × 106 cal/K·min

time of 0.15 min, {
x(k + 1) = A(k)x(k) + Bu(k)

y(k) = Cx(k)
(8.3)

where

A(k) =
[

0.85 − 0.0986β1(k) −0.0014β1(k)

0.9864β1(k)β2(k) 0.0487 + 0.01403β1(k)β2(k)

]
,

B =
[

0.15 0
0 −0.912

]
, C =

[
1 0
0 1

]

and the parameter variation bounded by,⎧⎪⎪⎨
⎪⎪⎩

1 ≤ β1(k) = k0

109
≤ 10

1 ≤ β2(k) = −�Hrxn

107 ≤ 10

Matrix A(k) can be expressed as,

A(k) = α1(k)A1 + α2(k)A2 + α3(k)A3 + α4(k)A4
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Fig. 8.2 Feasible invariant
sets

where
∑4

i=1 αi(k) = 1, αi(k) ≥ 0 and

A1 =
[

0.751 −0.0014
0.986 0.063

]
, A2 =

[
0.751 −0.0014
9.864 0.189

]

A3 =
[−0.136 −0.014

9.864 0.189

]
, A4 =

[−0.136 −0.014
98.644 1.451

]

The input and state constraints on input are,

{ − 0.5 ≤ x1 ≤ 0.5, −20 ≤ x2 ≤ 20,

− 0.5 ≤ u1 ≤ 0.5, −1 ≤ u2 ≤ 1
(8.4)

8.2 Controller Design

The explicit interpolating controller in Sect. 5.2 will be used in this example. The
local feedback controller u(k) = Kx(k) is chosen as,

K =
[−2.8413 0.0366

34.4141 0.5195

]
(8.5)

Based on Procedure 2.2 and Procedure 2.3, the robustly maximal invariant set Ωmax

and the robustly controlled invariant set CN with N = 9 are computed. Note that
C9 = C10 is the maximal controlled invariant set for system (8.3) with constraints
(8.4). The sets Ωmax and CN are depicted in Fig. 8.2.

The set Ωmax given in half-space representation is,

Ωmax =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

x ∈R
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⎡
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The set of vertices of CN , V (CN) = [V1 −V1], and the control matrix Uv =
[U1 −U1] at these vertices are,

V1 =
[

0.3401 0.2385 −0.0822
−20.0000 −1.8031 20.0000

]
, U1 =

[−0.5000 −0.5000 0.3534
1.0000 1.0000 1.0000

]

The state space partition of the explicit interpolating controller is shown in Fig. 8.3.
The explicit control law over the state space partition, see below, is illustrated in

Fig. 8.4.

u(k) =
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Fig. 8.3 State space partition

Fig. 8.4 Control inputs as
piecewise affine functions of
state

Fig. 8.5 State trajectories of
the closed loop system
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Fig. 8.6 State trajectories as
functions of time

Fig. 8.7 Input trajectories as
functions of time

Fig. 8.8 The feasible set of
[74] (white) is a subset of
ours (gray)

Figure 8.5 presents state trajectories of the closed loop system for different initial
conditions and realizations of α(k).

Note that the explicit solution of the MMMPC optimization problem [21] with
the
∞-norm cost function with identity weighting matrices, prediction horizon 9 could
not be fully computed after 3 hours due to high complexity.

For the initial condition x(0) = [0.2000 −12.0000]T , Fig. 8.6 and Fig. 8.7 show
the state and input trajectories (solid) of the closed loop system. A comparison
(dashed) is made with the implicit LMI based MPC in [74]. The feasible sets of
our approach (gray), and of [74] (white) are depicted in Fig. 8.8. Finally, Fig. 8.9
shows the interpolating coefficient c∗, and the realizations of αi(k), i = 1,2,3,4.
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Fig. 8.9 Interpolating
coefficient c∗, and the
realizations of αi(k),
i = 1,2,3,4 as functions of
time
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