
Chapter 6
Interpolating Control—Output Feedback Case

6.1 Problem Formulation

Consider the problem of regulating to the origin the following uncertain and/or time-
varying linear discrete-time system, described by the input-output relationship,

y(k + 1) + E1y(k) + E2y(k − 1) + · · · + Esy(k − s + 1)

= N1u(k) + N2u(k − 1) + · · · + Nru(k − r + 1) + w(k) (6.1)

where y(k) ∈ R
p , u(k) ∈ R

m and w(k) ∈ R
p are respectively, the output, the

input and the disturbance vector. The matrices Ei ∈ R
p×p , i = 1,2, . . . , s and

Nj ∈R
p×m, j = 1,2, . . . , r .

For simplicity, it is assumed that s = r . The matrices Ei and Ni , i = 1,2, . . . , s

satisfy,
[

E1 E2 . . . Es

N1 N2 . . . Ns

]
=

q∑
j=1

αj (k)

[
E

(j)

1 E
(j)

2 . . . E
(j)
s

N
(j)

1 N
(j)

2 . . . N
(j)
s

]
(6.2)

where αj (k) ≥ 0 and
∑q

j=1 αj (k) = 1 and
[

E
(j)

1 E
(j)

2 . . . E
(j)
s

N
(j)

1 N
(j)

2 . . . N
(j)
s

]
, j = 1,2, . . . , q

are the extreme realizations of the polytopic model (6.2).
The output, control and disturbance vectors are subject to the following bounded

polytopic constraints,⎧⎪⎨
⎪⎩

y(k) ∈ Y, Y = {
y ∈R

p : Fyy ≤ gy

}
,

u(k) ∈ U, U = {
u ∈ R

m : Fuu ≤ gu

}
,

w(k) ∈ W, W = {
w ∈R

p : Fww ≤ gw

}
,

(6.3)

where the matrices Fy , Fu, Fw and the vectors gy , gu, gw are assumed to be constant
with gy > 0, gu > 0 and gw > 0.
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6.2 Output Feedback—Nominal Case

In this section, we consider the case when the matrices Ei and Ni for i = 1,2, . . . , s

are known and fixed. The case when Ei and Ni for i = 1,2, . . . , s are uncertain
and/or time-varying will be treated in the next section.

A state space representation will be constructed along the lines of [126]. All the
steps of the construction are detailed such that the presentation are self contained.
The state of the system is chosen as follows,

x(k) = [
x1(k)T x2(k)T . . . xs(k)T

]T
(6.4)

where ⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

x1(k) = y(k)

x2(k) = −Esx1(k − 1) + Nsu(k − 1)

x3(k) = −Es−1x1(k − 1) + x2(k − 1) + Ns−1u(k − 1)

x4(k) = −Es−2x1(k − 1) + x3(k − 1) + Ns−2u(k − 1)
...

xs(k) = −E2x1(k − 1) + xs−1(k − 1) + N2u(k − 1)

(6.5)

The components of the state vector can be interpreted exclusively in terms of the
input and output vectors as,

x2(k) = −Esy(k − 1) + Nsu(k − 1)

x3(k) = −Es−1y(k − 1) − Esy(k − 2) + Ns−1u(k − 1) + Nsu(k − 2)

...

xs(k) = −E2y(k − 1) − E3y(k − 2) − · · · − Esy(k − s + 1)

+N2u(k − 1) + N3u(k − 2) + · · · + Nsu(k − s + 1)

It holds that,

y(k + 1) = −E1y(k) − E2y(k − 1) − · · · − Esy(k − s + 1)

+N1u(k) + N2u(k − 1) + · · · + Nsu(k − s + 1) + w(k)

or, equivalently

x1(k + 1) = −E1x1(k) + xs(k) + N1u(k) + w(k)

The state space model is then defined in a compact form as follows,
{

x(k + 1) = Ax(k) + Bu(k) + Dw(k)

y(k) = Cx(k)
(6.6)
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where

A =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

−E1 0 0 . . . 0 I

−Es 0 0 . . . 0 0
−Es−1 I 0 . . . 0 0
−Es−2 0 I . . . 0 0

...
...

...
. . .

...
...

−E2 0 0 . . . I 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

, B =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

N1
Ns

Ns−1
Ns−2

...

N2

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

, D =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

I

0
0
0
...

0

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

and

C = [
I 0 0 0 . . . 0

]
Clearly, the realization (6.6) is minimal in the single-input single-output case.

However, in the multi-input multi-output case, this realization might not be minimal,
as shown in the following example.

Consider the following single-input multi-output linear discrete-time system,

y(k + 1) −
[

2 0
0 2

]
y(k) +

[
1 0
0 1

]
y(k − 1)

=
[

0.5
2

]
u(k) +

[
0.5
1

]
u(k − 1) + w(k) (6.7)

Using the construction (6.4), (6.5), the state space model is given as,{
x(k + 1) = Ax(k) + Bu(k) + Dw(k)

y(k) = Cx(k)

where

A =

⎡
⎢⎢⎣

2 0 1 0
0 2 0 1

−1 0 0 0
0 −1 0 0

⎤
⎥⎥⎦ , B =

⎡
⎢⎢⎣

0.5
0.5
0.5

−1.5

⎤
⎥⎥⎦ ,

D =

⎡
⎢⎢⎣

1
1
0
0

⎤
⎥⎥⎦ , C =

[
1 0 0 0
0 1 0 0

]

This realization is not minimal, since it unnecessarily replicates the common poles
of the denominator in the input-output description. There exists minimal state space
realization like,

A =
[

0 −1
1 2

]
, B =

[
0.5
0.5

]
, D =

[
0
1

]
, C =

[
0 1
1 0

]

Define

z(k) = [
y(k)T . . . y(k − s + 1)T u(k − 1)T . . . u(k − s + 1)T

]T (6.8)

Using (6.5), the state x(k) is expressed through z(k) as,

x(k) = T z(k) (6.9)
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where T = [T1 T2] and

T1 =

⎡
⎢⎢⎢⎢⎢⎣

I 0 0 . . . 0
0 −Es 0 . . . 0
0 −Es−1 −Es . . . 0
...

...
...

. . .
...

0 −E2 −E3 . . . −Es

⎤
⎥⎥⎥⎥⎥⎦

, T2 =

⎡
⎢⎢⎢⎢⎢⎣

0 0 0 . . . 0
Ns 0 0 . . . 0

Ns−1 Ns 0 . . . 0
...

...
...

. . .
...

N2 N3 N4 . . . Ns

⎤
⎥⎥⎥⎥⎥⎦

Hence, it becomes obvious that at any time instant k, the state vector is available
exclusively though measured input and output variables and their past values.

Using (6.3), (6.5), it follows that the state constraints are xi ∈ Xi , where Xi are
given as, ⎧⎨

⎩
X1 = Y,

X2 = Es(−X1) ⊕ NsU,

Xi = Es+2−i (−X1) ⊕ Xi−1 ⊕ Ns+2−iU, ∀i = 3, . . . , s

(6.10)

Example 6.1 Consider the following discrete-time system,

y(k + 1) − 2y(k) + y(k − 1) = 0.5u(k) + 0.5u(k − 1) + w(k) (6.11)

The constraints are,

−5 ≤ y(k) ≤ 5, −5 ≤ u(k) ≤ 5, −0.1 ≤ w(k) ≤ 0.1

Using the construction (6.4), (6.5), the state space model is given as,{
x(k + 1) = Ax(k) + Bu(k) + Dw(k)

y(k) = Cx(k)

where

A =
[

2 1
−1 0

]
, B =

[
0.5
0.5

]
, E =

[
1
0

]
, C = [

1 0
]

x(k) is available though the measured input, output and their past values as,

x(k) =
[

1 0 0
0 −1 0.5

]⎡⎣ y(k)

y(k − 1)

u(k − 1)

⎤
⎦

Using (6.10), the constraints on the state are,

−5 ≤ x1 ≤ 5, −7.5 ≤ x2 ≤ 7.5

The local controller is chosen as an LQ controller with the following weighting
matrices,

Q = CT C =
[

1 0
0 0

]
, R = 0.1

giving the state feedback gain,

K = [−2.3548 −1.3895
]
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Fig. 6.1 Feasible invariant
sets and state trajectories for
Example 6.1

This example will use Algorithm 5.1 in Sect. 5.2, where vertex control is a global
controller. Using Procedure 2.2 and Procedure 2.3, the sets Ωmax and CN with
N = 3 are found and shown in Fig. 6.1(a). Note that C3 = C4 is the maximal in-
variant set for system (6.11). Figure 6.1(b) presents state trajectories for different
initial conditions and realizations of w(k).

The set of vertices of CN is given by the matrix V (CN) below, together with the
control matrix Uv ,

V (CN) =
[−5 −0.1 5 0.1 −0.1 −5 0.1 5

7.5 7.5 −2.6 7.2 −7.2 2.6 −7.5 −7.5

]
,

Uv = [−5 −5 −5 −4.9 5 5 5 4.9
]

Ωmax is presented in minimal normalized half-space representation as,

Ωmax =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

x ∈R
2 :

⎡
⎢⎢⎢⎢⎢⎢⎣

1.0000 0
0 1.0000

−1.0000 0
0 −1.0000

−0.8612 −0.5082
0.8612 0.5082

⎤
⎥⎥⎥⎥⎥⎥⎦

x ≤

⎡
⎢⎢⎢⎢⎢⎢⎣

5.0000
7.5000
5.0000
7.5000
1.8287
1.8287

⎤
⎥⎥⎥⎥⎥⎥⎦

⎫⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎭

For the initial condition x(0) = [−0.1000 7.5000]T , Fig. 6.2 shows the output
and input trajectories as functions of time.
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Fig. 6.2 Output and input
trajectories of the closed loop
system for Example 6.1

The interpolating coefficient and the realization of w(k) as functions of time are
depicted in Fig. 6.3. As expected, the interpolating coefficient, i.e. the Lyapunov
function is positive and non-increasing.

As a comparison, we present a solution based on the well-known steady state
Kalman filter. Figure 6.4 shows the output trajectories for the constrained output
feedback approach (solid) and for the Kalman filter + constrained state feedback
approach (dashed).

The Kalman function of Matlab 2011b was used for designing the Kalman filter.
The process noise is a white noise with an uniform distribution and no measurement
noise was considered. The disturbance w is a random number with an uniform dis-
tribution, wl ≤ w ≤ wu where wl = −0.1 and wu = 0.1. The variance of w is given
as,

Cw = (wu − wl + 1)2 − 1

12
= 0.0367

The estimator gain of the Kalman filter is obtained as,

L = [2 −1]T
The Kalman filter is used to estimate the state of and then this estimation is used to
close the loop with the interpolating controller. In contrast to the output feedback
approach, where the state is exact with respect to the measurement, in the Kalman
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Fig. 6.3 Interpolating
coefficient and realization of
w(k) for Example 6.1

Fig. 6.4 Output trajectories
for our approach (solid) and
for the Kalman filter based
approach (dashed) for
Example 6.1

filter approach, an extra level of uncertainty is introduced, since the real state is un-
known. Thus there is no guarantee that the constraints are satisfied in the transitory
stage. This constraint violation effect is shown in Fig. 6.5.

6.3 Output Feedback—Robust Case

A weakness of the approach in Sect. 6.2 is that the state measurement is available
if and only if the parameters of the system are known. For uncertain and/or time-
varying system, that is not the case. In this section, we provide another method



166 6 Interpolating Control—Output Feedback Case

Fig. 6.5 Constraint violation
for the Kalman filter based
approach for Example 6.1

for constructing the state variables, that do not use the information of the system
parameters. The price to be paid is that the realization is in general non-minimal
even in the single-input single-output case.

Based on the measured plant input, output and their past measured values, the
state of the system (6.1) is chosen as,

x(k) = [
y(k)T . . . y(k − s + 1)T u(k − 1)T . . . u(k − s + 1)T

]T (6.12)

The state space model is then defined as follows,{
x(k + 1) = A(k)x(k) + B(k)u(k) + Dw(k)

y(k) = Cx(k)
(6.13)

where

A(k) =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−E1(k) −E2(k) . . . −Es(k) N2(k) . . . Ns−1(k) Ns(k)

I 0 . . . 0 0 . . . 0 0
0 I . . . 0 0 . . . 0 0
...

...
. . .

...
...

. . .
...

...

0 0 . . . I 0 . . . 0 0
0 0 . . . 0 0 . . . 0 0
0 0 . . . O I . . . 0 0
...

...
. . .

...
...

. . .
...

...

0 0 . . . O 0 . . . I 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

B(k) = [
N1(k)T 0 0 . . . 0 I 0 . . . 0

]T
D = [

I 0 0 . . . 0 0 0 . . . 0
]T

C = [
I 0 0 . . . 0 0 0 . . . 0

]
Using (6.2), it follows that matrices A(k) and B(k) belong to a polytopic set,

(A,B) ∈ Conv
{
(A1,B1), (A2,B2), . . . , (Aq,Bq)

}
(6.14)

where the vertices (Ai,Bi), i = 1,2, . . . , q are obtained from the vertices of (6.2).
Although the obtained representation is non-minimal, it has the merit that the

original output-feedback problem for the uncertain and/or time-varying plant has
been transformed into a state-feedback problem where the matrices A and B lie in
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the polytope defined by (6.14) without any additional uncertainty. Clearly, any state-
feedback control which is designed for the representation (6.13) in the form u = Kx

can be translated into a dynamic output-feedback controller.
Using (6.3), it follows that x(k) ∈ X ⊂R

s×(p+m), where the set X is given by,

X = Y × Y × · · · × Y︸ ︷︷ ︸
s times

×U × U × · · · × U︸ ︷︷ ︸
s times

Example 6.2 Consider the following transfer function,

P(s) = k1s + 1

s(s + k2)
(6.15)

where k1 = 0.787, 0.1 ≤ k2 ≤ 3. Using a sampling time of 0.1 and Euler’s first order
approximation for the derivative, the following input-output relationship is obtained,

y(k + 1) − (2 − 0.1k2)y(k) + (1 − 0.1k2)y(k − 1)

= 0.1k1u(k) + (0.01 − 0.1k2)u(k − 1) + w(k) (6.16)

The signal w(k) is added to represent the process noise with −0.01 ≤ w ≤ 0.01.
The constraints on output and input are,

−10 ≤ y ≤ 10, −5 ≤ u ≤ 5

The state x(k) is constructed as follows,

x(k) = [
y(k) y(k − 1) u(k − 1)

]T
Hence, the state space model is given by,{

x(k + 1) = A(k)x(k) + Bu(k) + Dw(k)

y(k) = Cx(k)

where

A(k) =
⎡
⎣ (2 − 0.1k2) −(1 − 0.1k2) (0.01 − 0.1k1)

1 0 0
0 0 0

⎤
⎦ ,

B =
⎡
⎣0.1k1

0
1

⎤
⎦ , D =

⎡
⎣1

0
0

⎤
⎦ and C = [

1 0 0
]

Using the polytopic uncertainty description, one obtains,

A(k) = α(k)A1 + (
1 − α(k)

)
A2

where

A1 =
⎡
⎣1.99 −0.99 −0.0687

1 0 0
0 0 0

⎤
⎦ , A2 =

⎡
⎣1.7 −0.7 −0.0687

1 0 0
0 0 0

⎤
⎦

At each time instant 0 ≤ α(k) ≤ 1 and −0.01 ≤ w(k) ≤ 0.01 are uniformly dis-
tributed pseudo-random numbers. This example will use Algorithm 5.1 with a global
saturated controller. For this purpose, two controllers have been designed
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Fig. 6.6 Feasible invariant
sets for Example 6.2

Fig. 6.7 Output and input
trajectories of the closed loop
system for Example 6.2
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Fig. 6.8 Interpolating
coefficient and realizations of
α(k) and w(k) for
Example 6.2

• The local linear controller u(k) = Kx(k) for the performance is chosen as,

K = [−22.7252 10.7369 0.8729]
• The global saturated controller u(k) = sat(Ksx(k)) for the domain of attraction,

Ks = [−4.8069 4.5625 0.3365]
It is worth noticing that u(k) = Kx(k) and u(k) = sat(Ksx(k)) can be described in
the output-feedback form as,

K(z) = −22.7894 + 10.7369z−1

1 − 0.8729z−1
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and respectively

Ks(z) = sat

(−4.8069 + 4.5625z−1

1 − 0.3365z−1

)

Overall the control scheme is described by a second order plant and two first order
controllers, which provide a reduced order solution for the stabilization problem.

Using Procedure 2.2 and Procedure 2.4 and corresponding to the control laws
u(k) = Kx(k) and u(k) = sat(Ksx(k)), the maximal robustly invariant sets Ωmax
(white) and Ωs (black) are computed and depicted in Fig. 6.6(a). Figure 6.6(b)
presents the projection of the sets Ωmax and Ωs onto the (x1, x2) state space.

For the initial condition x(0) = [6.6970 7.7760 5.0000]T , Fig. 6.7 presents the
output and input trajectories as functions of time.

Finally, Fig. 6.8 shows the interpolating coefficient, the realizations of α(k) and
w(k) as functions of time.
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