
Chapter 4
Interpolating Control—Nominal State
Feedback Case

4.1 Problem Formulation

Consider the problem of regulating to the origin the following time-invariant linear
discrete-time system,

x(k + 1) = Ax(k) + Bu(k) (4.1)

where x(k) ∈ R
n and u(k) ∈ R

m are respectively, the measurable state vector and
the input vector. The matrices A ∈ R

n×n and B ∈ R
n×m. Both x(k) and u(k) are

subject to bounded polytopic constraints,{
x(k) ∈ X, X = {

x ∈R
n : Fxx ≤ gx

}
u(k) ∈ U, U = {

u ∈ R
m : Fuu ≤ gu

} ∀k ≥ 0 (4.2)

where the matrices Fx , Fu and the vectors gx , gu are assumed to be constant. The
inequalities are taken element-wise. It is assumed that the pair (A,B) is stabilizable,
i.e. all uncontrollable states have stable dynamics.

4.2 Interpolating Control via Linear Programming—Implicit
Solution

Define a linear controller K ∈ R
m×n, such that,

u(k) = Kx(k) (4.3)

asymptotically stabilizes the system (4.1) with some desired performance specifi-
cations. The details of such a synthesis procedure are not reproduced here, but we
assume that feasibility is guaranteed. For the controller (4.3) using Procedure 2.1 or
Procedure 2.2 the maximal invariant set Ωmax can be computed as,

Ωmax = {
x ∈R

n : Fox ≤ go

}
(4.4)
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Fig. 4.1 Any state x(k) can
be decomposed as a convex
combination of xv(k) ∈ CN

and xo(k) ∈ Ωmax

Furthermore with some given and fixed integer N > 0, based on Procedure 2.3 the
controlled invariant set CN can be found as,

CN = {
x ∈ R

n : FNx ≤ gN

}
(4.5)

such that all x ∈ CN can be steered into Ωmax in no more than N steps when a
suitable control is applied. As in Sect. 3.4, the set CN is decomposed as a sequence
of simplices C

(j)
N , each formed by n vertices of CN and the origin. For all x(k) ∈

C
(j)
N , the vertex controller

u(k) = K(j)x(k), (4.6)

with K(j) given in (3.38) asymptotically stabilizes the system (4.1), while the con-
straints (4.2) are fulfilled.

The main advantage of the vertex control scheme is the size of the domain of
attraction, i.e. the set CN . Clearly, CN , that is the feasible domain for vertex con-
trol, might be as large as that of any other constrained control scheme. However,
a weakness of vertex control is that the full control range is exploited only on the
boundary of CN in the state space, with progressively smaller control action when
state approaches the origin. Hence the time to regulate the plant to the origin is often
unnecessary long. A way to overcome this shortcoming is to switch to another, more
aggressive, local controller, e.g. the controller (4.3), when the state reaches Ωmax.
The disadvantage of this solution is that the control action becomes nonsmooth [94].

Here a method to overcome the nonsmooth control action [94] will be proposed.
For this purpose, any state x(k) ∈ CN is decomposed as,

x(k) = c(k)xv(k) + (
1 − c(k)

)
xo(k) (4.7)

with xv ∈ CN , xo ∈ Ωmax and 0 ≤ c ≤ 1. Figure 4.1 illustrates such a decomposition.

Consider the following control law,

u(k) = c(k)uv(k) + (
1 − c(k)

)
uo(k) (4.8)

where uv(k) is the vertex control law (4.6) at xv(k) and uo(k) = Kxo(k) is the
control law (4.3) in Ωmax.
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Theorem 4.1 For system (4.1) and constraints (4.2), the control law (4.7), (4.8)
guarantees recursive feasibility for all initial states x(0) ∈ CN .

Proof For recursive feasibility, we have to prove that,{
Fuu(k) ≤ gu

x(k + 1) = Ax(k) + Bu(k) ∈ CN

for all x(k) ∈ CN . For the input constraints,

Fuu(k) = Fu

{
c(k)uv(k) + (

1 − c(k)
)
uo(k)

}
= c(k)Fuuv(k) + (

1 − c(k)
)
Fuuo(k)

≤ c(k)gu + (
1 − c(k)

)
gu = gu

and for the state constraints,

x(k + 1) = Ax(k) + Bu(k)

= A
{
c(k)xv(k) + (

1 − c(k)
)
xo(k)

} + B
{
c(k)uv(k) + (

1 − c(k)
)
uo(k)

}
= c(k)

{
Axv(k) + Buv(k)

} + (
1 − c(k)

){
Axo(k) + Buo(k)

}
Since Axv(k) + Buv(k) ∈ CN and Axo(k) + Buo(k) ∈ Ωmax ⊆ CN , it follows that
x(k + 1) ∈ CN . �

Since the controller (4.3) is designed to give specified unconstrained performance
in Ωmax, it might be desirable to have u(k) in (4.8) as close as possible to it also
outside Ωmax. This can be achieved by minimizing c,

c∗ = min
xv,xo,c

{c} (4.9)

subject to ⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

FNxv ≤ gN,

Foxo ≤ go,

cxv + (1 − c)xo = x,

0 ≤ c ≤ 1

Denote rv = cxv ∈ R
n, ro = (1 − c)xo ∈ R

n. Since xv ∈ CN and xo ∈ Ωmax, it fol-
lows that rv ∈ cCN and ro ∈ (1 − c)Ωmax or equivalently{

FNrv ≤ cgN

Foro ≤ (1 − c)go

Hence the nonlinear optimization problem (4.9) is transformed into the following
linear programming problem,
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c∗ = min
rv,c

{c} (4.10)

subject to ⎧⎪⎪⎨
⎪⎪⎩

FNrv ≤ cgN,

Fo(x − rv) ≤ (1 − c)go,

0 ≤ c ≤ 1

Remark 4.1 If one would like to maximize c, it is obvious that c = 1 for all x ∈ CN .
In this case the controller (4.7), (4.8) becomes the vertex controller.

Theorem 4.2 The control law (4.7), (4.8), (4.10) guarantees asymptotic stability
for all initial states x(0) ∈ CN .

Proof First of all we will prove that all solutions starting in CN \ Ωmax will reach
Ωmax in finite time. For this purpose, consider the following non-negative function,

V (x) = c∗(x), ∀x ∈ CN \ Ωmax (4.11)

V (x) is a candidate Lyapunov function. After solving the LP problem (4.10) and
applying (4.7), (4.8), one obtains, for x(k) ∈ CN \ Ωmax,{

x(k) = c∗(k)x∗
v (k) + (

1 − c∗(k)
)
x∗
o (k)

u(k) = c∗(k)uv(k) + (
1 − c∗(k)

)
uo(k)

It follows that,

x(k + 1) = Ax(k) + Bu(k)

= c∗(k)xv(k + 1) + (
1 − c∗(k)

)
xo(k + 1)

where {
xv(k + 1) = Ax∗

v (k) + Buv(k) ∈ CN

xo(k + 1) = Ax∗
o (k) + Buo(k) ∈ Ωmax

Hence c∗(k) is a feasible solution for the LP problem (4.10) at time k+1. By solving
(4.10) at time k + 1, one gets the optimal solution, namely

x(k + 1) = c∗(k + 1)x∗
v (k + 1) + (

1 − c∗(k + 1)
)
x∗
o (k + 1)

where x∗
v (k + 1) ∈ CN and x∗

o (k + 1) ∈ Ωmax. It follows that c∗(k + 1) ≤ c∗(k) and
V (x) is non-increasing.

Using the vertex controller, an interpolation between a point of CN and the origin
is obtained. Conversely using the controller (4.7), (4.8), (4.10) an interpolation is
constructed between a point of CN and a point of Ωmax which in turn contains the
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Algorithm 4.1 Interpolating control—Implicit solution
1. Measure the current state x(k).
2. Solve the LP problem (4.10).
3. Compute urv in (4.12) by determining to which simplex r∗

v belongs and using
(3.38).

4. Implement as input the control signal (4.12).
5. Wait for the next time instant k := k + 1.
6. Go to step 1 and repeat.

origin as an interior point. This last property proves that the vertex controller is a
feasible choice for the interpolation scheme (4.7), (4.8), (4.10). Hence it follows
that,

c∗(k) ≤
s∑

i=1

β∗
i (k)

for any x(k) ∈ CN , with β∗
i (k) obtained in (3.46), Sect. 3.4.

Since the vertex controller is asymptotically stabilizing, the state reaches any
bounded set around the origin in finite time. In our case this property will imply that
using the controller (4.7), (4.8), (4.10) the state of the closed loop system reaches
Ωmax in finite time or equivalently that there exists a finite k such that c∗(k) = 0.

The proof is complete by noting that inside Ωmax, the LP problem (4.10) has the
trivial solution c∗ = 0. Hence the controller (4.7), (4.8), (4.10) becomes the local
controller (4.3). The feasible stabilizing controller u(k) = Kx(k) is contractive, and
thus the interpolating controller assures asymptotic stability for all x ∈ CN . �

The control law (4.7), (4.8), (4.10) obtained by solving on-line the LP problem
(4.10) is called Implicit Interpolating Control.

Since r∗
v (k) = c∗(k)x∗

v (k) and r∗
o (k) = (1 − c∗(k))x∗

o (k), it follows that,

u(k) = urv(k) + uro(k) (4.12)

where urv(k) is the vertex control law at r∗
v (k) and uro(k) = Kr∗

o (k).

Remark 4.2 Note that at each time instant Algorithm 4.1 requires the solutions of
two LP problems, one is (4.10) of dimension n + 1, the other is to determine to
which simplex r∗

v belongs.

Example 4.1 Consider the following time-invariant linear discrete-time system,

x(k + 1) =
[

1 1
0 1

]
x(k) +

[
1

0.3

]
u(k) (4.13)

The constraints are,

−10 ≤ x1(k) ≤ 10, −5 ≤ x2(k) ≤ 5, −1 ≤ u(k) ≤ 1 (4.14)
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The local controller is chosen as a linear quadratic (LQ) controller with weighting
matrices Q = I and R = 1, giving the state feedback gain,

K = [−0.5609 −0.9758] (4.15)

The sets Ωmax and CN with N = 14 are shown in Fig. 4.1. Note that C14 = C15

is the maximal controlled invariant set. Ωmax is presented in minimal normalized
half-space representation as,

Ωmax =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

x ∈R
2 :

⎡
⎢⎢⎢⎢⎢⎢⎣

0.1627 −0.9867
−0.1627 0.9867
−0.1159 −0.9933
0.1159 0.9933

−0.4983 −0.8670
0.4983 0.8670

⎤
⎥⎥⎥⎥⎥⎥⎦

x ≤

⎡
⎢⎢⎢⎢⎢⎢⎣

1.9746
1.9746
1.4115
1.4115
0.8884
0.8884

⎤
⎥⎥⎥⎥⎥⎥⎦

⎫⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎭

(4.16)

The set of vertices of CN is given by the matrix V (CN), together with the corre-
sponding control matrix Uv ,

V (CN) = [V1 −V1], Uv = [U1 −U1] (4.17)

where

V1 =
[

10.0000 9.7000 9.1000 8.2000 7.0000 5.5000 3.7000 1.6027 −10.0000
1.0000 1.3000 1.6000 1.9000 2.2000 2.5000 2.8000 3.0996 3.8368

]
,

U1 = [−1 −1 −1 −1 −1 −1 −1 −1 1
]

The state space partition of vertex control is shown in Fig. 4.2(a). Using the implicit
interpolating controller, Fig. 4.2(b) presents state trajectories of the closed loop sys-
tem for different initial conditions.

For the initial condition x(0) = [−2.0000 3.3284]T , Fig. 4.3 shows the state and
input trajectories for the implicit interpolating controller (solid). As a comparison,
we take MPC, based on quadratic programming, where an LQ criterion is optimized,
with identity weighting matrices. Hence the set Ωmax for the local unconstrained
control is identical for the MPC solution and for the implicit interpolating controller.
The prediction horizon for the MPC was chosen to be 14 to match the controlled
invariant set C14 used for the implicit interpolating controller. Figure 4.3 shows the
state and input trajectories obtained for the implicit MPC (dashed).

Using the tic/toc function of Matlab 2011b, the computational burdens of inter-
polating control and MPC were compared. The result is shown in Table 4.1

Table 4.1 Durations [ms] of
the on-line computations
during one sampling interval
for interpolating control and
MPC, respectively for
Example 4.1

Computational time

Implicit interpolating control 0.7652

Implicit QP-MPC 4.6743
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Fig. 4.2 State space partition
of vertex control and state
trajectories for Example 4.1

As a final analysis element, Fig. 4.4 presents the interpolating coefficient c∗(k).
It is interesting to note that c∗(k) = 0, ∀k ≥ 15 indicating that from time instant
k = 15, the state of the closed loop system is in Ωmax, and consequently is optimal
in the MPC cost function terms. The monotonic decrease and the positivity confirms
the Lyapunov interpretation given in the present section.

4.3 Interpolating Control via Linear Programming—Explicit
Solution

The structural implication of the LP problem (4.10) is investigated in this section.

4.3.1 Geometrical Interpretation

Let ∂(·) denotes the boundary of the corresponding set (·). The following theorem
holds

Theorem 4.3 For all x ∈ CN \Ωmax, the solution of the LP problem (4.10) satisfies
x∗
v ∈ ∂CN and x∗

o ∈ ∂Ωmax.
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Fig. 4.3 State and input
trajectories for Example 4.1
for implicit interpolating
control (solid), and for
implicit QP-MPC (dashed)

Fig. 4.4 Interpolating
coefficient c∗ as a function of
time example 4.1

Proof Consider x ∈ CN \ Ωmax, with a particular convex combination

x = cxv + (1 − c)xo

where xv ∈ CN and xo ∈ Ωmax. If xo is strictly inside Ωmax, one can set x̃o =
∂Ωmax ∩ x, xo, i.e. x̃o is the intersection between ∂Ωmax and the line segment con-
necting x and xo, see Fig. 4.5. Apparently, x can be expressed as the convex com-
bination of xv and x̃o, i.e.

x = c̃xv + (1 − c̃)x̃o

with c̃ < c, since x is closer to x̃o than to xo. So (4.10) leads to {c∗, x∗
v , x∗

o } with
x∗
o ∈ ∂Ωmax.
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Fig. 4.5 Graphical
illustration for the proof of
Theorem 4.3

One the other hand, if xv is strictly inside CN , one can set x̃v = ∂CN∩ −→
x, xv ,

i.e. x̃v is the intersection between ∂CN and the ray starting from x through xv , see
Fig. 4.5. Again, x can be written as the convex combination of x̃v and xo, i.e.

x = c̃x̃v + (1 − c̃)xo

with c̃ < c, since x is further from x̃v than from xv . This leads to the conclusion that
for the optimal solution {c∗, x∗

v , x∗
o } we have x∗

v ∈ ∂PN . �

Theorem 4.3 states that for all x ∈ CN \ Ωmax, the interpolating coefficient c

is minimal if and only if x is written as a convex combination of two points, one
belonging to CN and the other to ∂Ωmax. It is obvious that for x ∈ Ωmax, the LP
problem (4.10) has the trivial solution c∗ = 0 and thus x∗

v = 0 and x∗
o = x.

Theorem 4.4 For all x ∈ CN \ Ωmax, the convex combination x = cxv + (1 − c)xo

gives the smallest value of c if the ratio ‖xv−x‖
‖x−xo‖ is maximal, where ‖ · ‖ denotes the

Euclidean vector norm.

Proof It holds that

x = cxv + (1 − c)xo

⇒ xv − x = xv − cxv − (1 − c)xo = (1 − c)(xv − xo)

consequently

‖xv − x‖ = (1 − c)‖xv − xo‖ (4.18)

Analogously, one obtains

‖x − xo‖ = c‖xv − xo‖ (4.19)

Combining (4.18) and (4.19) and the fact that c �= 0 for all x ∈ CN \ Ωmax, one gets

‖xv − x‖
‖x − xo‖ = (1 − c)‖xv − xo‖

c‖xv − xo‖ = 1

c
− 1

c > 0 is minimal if and only if 1
c

− 1 is maximal, or equivalently ‖xv−x‖
‖x−xo‖ is maxi-

mal. �
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Fig. 4.6 Graphical
illustration for the proof of
Theorem 4.5

4.3.2 Analysis in R
2

In this subsection an analysis of the optimization problem (4.9) in the R
2 parameter

space is presented with reference to Fig. 4.6. The discussion is insightful in what
concerns the properties of the partition in the explicit solution. The problem con-
sidered here is to decompose the polyhedral X1234 such that the explicit solution
c∗ = min{c} is given in the decomposed cells.

For illustration we will consider four points V1,V2,V3,V4, and any point x ∈
Conv(V1,V2,V3,V4). This schematic view can be generalized to any pair of faces
of CN and Ωmax. Denote Vij as the interval connecting Vi and Vj for i, j = 1, . . . ,4.
The problem is reduced to the expression of a convex combination x = cxv+
(1 − c)xo, where xv ∈ V12 ⊂ ∂CN and xo ∈ V34 ⊂ ∂Ωmax providing the minimal
value of c.

Without loss of generality, suppose that the distance from V2 to V34 is greater
than the distance from V1 to V34, or equivalently the distance from V4 to V12 is
smaller than the distance from V3 to V12.

Theorem 4.5 Under the condition that the distance from V2 to V34 is greater than
the distance from V1 to V34, or equivalently the distance from V4 to V12 is smaller
than the distance from V3 to V12, the decomposition of the polytope V1234, V1234 =
V124 ∪ V234 is the result of the minimization of the interpolating coefficient c.

Proof Without loss of generality, suppose that x ∈ V234. x can be decomposed as,

x = cV2 + (1 − c)xo (4.20)

where xo ∈ V34, see Fig. 4.6. Another possible decomposition is

x = c′x′
v + (

1 − c′)x′
o (4.21)

where x′
v belongs to V34 and x′

o belongs to V12.
Clearly, if the distance from V2 to V34 is greater than the distance from V1 to V34

then the distance from V2 to V34 is greater than the distance from any point in V12
to V34. Consequently, there exists the point T in the ray, starting from V2 through



4.3 Interpolating Control via Linear Programming—Explicit Solution 77

x such that the distance from T to V34 is equal to the distance from x′
v to V34. It

follows that the line connecting T and x′
v is parallel to X34, see Fig. 4.6.

Using Basic Proportionality Theorem, one has

‖x − x′
v‖

‖x − x′
o‖

= ‖x − T ‖
‖x − xo‖ (4.22)

by using Theorem 4.4 and since

‖x − T ‖
‖x − xo‖ <

‖x − V2‖
‖x − xo‖

it follows that c < c′. �

Theorem 4.5 states that the minimal value of the interpolating coefficient c is
found with the help of the decomposition of V1234 as V1234 = V124 ∪ V234.

Remark 4.3 Clearly, if V12 is parallel to V34, then any convex combination x =
cxv + (1 − c)xo gives the same value of c. Hence the partition may not be unique.

Remark 4.4 As a consequence of Theorem 4.5, it is clear that the region CN \Ωmax

can be subdivided into partitions (cells) as follows,

• For each facet of the set Ωmax, one has to find the furthest point on ∂CN on the
same side of the origin as the facet of Ωmax. A polyhedral cell is obtained as the
convex hull of that facet of Ωmax and the furthest point in CN . By the bounded
polyhedral structure of CN , the existence of some vertex of CN as the furthest
point is guaranteed.

• On the other hand, for each facet of CN , one has to find the closest point on ∂Ωmax

on the same side of the origin as the facet of CN . A polyhedral cell is obtained as
the convex hull of that facet of CN and the closest point in Ωmax. Again by the
bounded polyhedral structure of Ωmax, the existence of some vertex Ωmax as the
closest point is guaranteed.

Remark 4.5 Clearly, in R
2, the state space partition according to Remark 4.4 cover

the entire set CN , see e.g. Fig. 4.7. However in R
n, that is not necessarily the case

as shown in the following example. Let CN and Ωmax be given by the vertex repre-
sentations, displayed in Fig. 4.8(a),

CN = Conv

⎧⎨
⎩

⎡
⎣−4

0
0

⎤
⎦ ,

⎡
⎣4

4
4

⎤
⎦ ,

⎡
⎣ 4

−4
0

⎤
⎦ ,

⎡
⎣ 4

4
−4

⎤
⎦

⎫⎬
⎭

Ωmax = Conv

⎧⎨
⎩

⎡
⎣1

0
0

⎤
⎦ ,

⎡
⎣−0.5

−0.5
−0.5

⎤
⎦ ,

⎡
⎣−0.5

0.5
0

⎤
⎦ ,

⎡
⎣−0.5

−0.5
0.5

⎤
⎦

⎫⎬
⎭
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Fig. 4.7 Simplex based
decomposition as an explicit
solution of the LP problem
(4.10)

Fig. 4.8 Graphical
illustration for Remark 4.5.
The partition is obtained by
two vertices of the inner set
Ωmax and two vertices of the
outer set CN

By solving the parametric linear programming problem (4.10) with respect to x, the
state space partition is obtained [19]. Figure 4.8(b) shows two polyhedral partitions
of the state space partition. The black set is Ωmax. The gray set is the convex hull of
two vertices of Ωmax and two vertices of CN .

In conclusion, in R
n for all x ∈ CN \ Ωmax, the smallest value c will be reached

when CN \ Ωmax is decomposed into polytopes with vertices both on ∂CN and
∂Ωmax. These polytopes can be further decomposed into simplices, each formed by
r vertices of CN and n − r + 1 vertices of Ωmax where 1 ≤ r ≤ n.
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4.3.3 Explicit Solution

Theorem 4.6 For all x ∈ CN \Ωmax, the controller (4.7), (4.8), (4.10) is a piecewise
affine state feedback law defined over a partition of CN \ Ωmax into simplices. The
controller gains are obtained by linear interpolation of the control values at the
vertices of simplices.

Proof Suppose that x belongs to a simplex formed by n vertices {v1, v2, . . . , vn}
of CN and the vertex vo of Ωmax. The other cases of n + 1vertices distributed in a
different manner between CN and Ωmax can be treated similarly.

In this case, x can be expressed as,

x =
n∑

i=1

βivi + βn+1vo (4.23)

where
n+1∑
i=1

βi = 1, βi ≥ 0 (4.24)

Given that n + 1 linearly independent vectors define a non-empty simplex, let the
invertible (n + 1) × (n + 1) matrix be

Ts =
[
v1 v2 . . . vn vo

1 1 . . . 1 1

]
(4.25)

Using (4.23), (4.24), (4.25), the interpolating coefficients βi with i = 1,2, . . . , n+1
are defined uniquely as,

[
β1 β2 . . . βn βn+1

]T = T −1
s

[
x

1

]
(4.26)

On the other hand, from (4.7),

x = cxv + (1 − c)xo,

Due to the uniqueness of (4.23), βn+1 = 1 − c and

xv =
n∑

i=1

βi

c
vi

The Vertex Controller (3.46) gives

uv =
n∑

i=1

βi

c
ui
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where ui are an admissible control value at vi , i = 1,2, . . . , n. Therefore

u = cuv + (1 − c)uo =
n∑

i=1

βiui + βn+1uo.

with uo = Kxo. Together with (4.26), one obtains

u = [
u1 u2 . . . un uo

] [
β1 β2 . . . βn βn+1

]T
= [

u1 u2 . . . un uo

]
T −1

s

[
x

1

]

= Lx + v

where the matrix L ∈ R
m×n and the vector v ∈R

m are defined by,

[
L v

] = [
u1 u2 . . . un uo

]
T −1

s

Hence for all x ∈ CN \ Ωmax the controller (4.7), (4.8), (4.10) is a piecewise affine
state feedback law. �

It is interesting to note that the interpolation between the piecewise linear Vertex
Controller and the linear controller in Ωmax give rise to a piecewise affine controller.
This is not completely unexpected since (4.10) is a multi-parametric linear program
with respect to x.

As in MPC, the number of cells can be reduced by merging those with identical
control laws [45].

Remark 4.6 It can be observed that Algorithm 4.2 uses only the information about
the state space partition of the explicit solution of the LP problem (4.10). The ex-
plicit form of c∗, r∗

v and r∗
o as a piecewise affine function of the state is not used.

Clearly, the simplex-based partition over CN \ Ωmax in step 2 might be very
complex. Also the fact, that for all facets of Ωmax the local controller is of the form
u = Kx, is not exploited. In addition, as practice usually shows, for each facet of
CN , the vertex controller is usually constant. In these cases, the complexity of the
explicit interpolating controller (4.7), (4.8), (4.10) might be reduced as follows.

Consider the case when the state space partition CR of CN \ Ωmax is formed by
one vertex xv of CN and one facet Fo of Ωmax. Note that from Remark 4.4 such
a partition always exists as an explicit solution to the LP problem (4.10). For all
x ∈ CR it follows that

x = c∗x∗
v + (

1 − c∗)x∗
o = c∗x∗

v + r∗
o

with x∗
o ∈ Fo and r∗

o = (1 − c∗)x∗
o .
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Algorithm 4.2 Interpolating control—Explicit solution
Input: The sets CN , Ωmax, the optimal feedback controller u = Kx in Ωmax and
the control values at the vertices of CN .
Output: The piecewise affine control law over the partitions of CN .

1. Solve the LP (4.10) by using explicit multi-parametric linear programming. As a
result, one obtains the state space partition of CN .

2. Decompose each polyhedral partition of CN \ Ωmax in a sequence of simplices,
each formed by r vertices of CN and n− z + 1 vertex of Ωmax, where 1 ≤ z ≤ n.
The result is a the state space partition over CN \ Ωmax in the form of simplices
CRi .

3. In each simplex CRi ⊂ CN \ Ωmax the control law is defined as,

u(x) = Lix + vi (4.27)

where Li ∈ R
m×n and vi ∈ R

m are defined as

[
Li vi

] =
[
u

(i)
1 u

(i)
2 . . . u

(i)
n+1

][
v

(i)
1 v

(i)
2 . . . v

(i)
n+1

1 1 . . . 1

]−1

(4.28)

with {v(i)
1 , v

(i)
2 , . . . v

(i)
n+1} are vertices of CRi that defines a full-dimensional

simplex and {u(i)
1 , u

(i)
2 , . . . u

(i)
n+1} are the corresponding control values at the

vertices.

Let uv ∈R
m be an admissible control value at xv and denote the explicit solution

of c∗ and r∗
o to the LP problem (4.10) for all x ∈ CR as,{

c∗ = Lcx + vc

r∗
o = Lox + vo

(4.29)

where Lc, vc and Lo, vo are matrices of appropriate dimensions. The control value
for x ∈ CR is computed as,

u = c∗uv + (
1 − c∗)Kx∗

o = c∗uv + Kr∗
o (4.30)

By substituting (4.29) into (4.30), one obtains

u = uv(Lcx + vc) + K(Lox + vo)

or, equivalently

u = (uvLc + KLo)x + (uvvc + Kvo) (4.31)

The fact that the control value is a piecewise affine function of state is confirmed.
Clearly, the complexity of the explicit solution with the control law (4.31) is lower
than the complexity of the explicit solution with the simplex based partition, since
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Fig. 4.9 Graphical
illustration for the proof of
Theorem 4.7

one does not have to divide up the facets of Ωmax (and facets of CN , in the case
when the vertex control for such facets is constant) into a set of simplices.

4.3.4 Qualitative Analysis

Theorem 4.7 below shows the Lipschitz continuity of the control law based on linear
programming (4.7), (4.8), (4.10).

Theorem 4.7 The explicit interpolating control law (4.7), (4.8), (4.10) obtained by
using Algorithm 4.2 is continuous and Lipschitz continuous with Lipschitz constant
M = maxi ‖Li‖, where i ranges over the set of indices of partitions and ‖Li‖ is
defined in (4.28).

Proof The explicit interpolating controller might be discontinuous only on the
boundary of polyhedral cells CRi . Suppose that x belongs to the intersection of
s cells CRj , j = 1,2, . . . , s.

For CRj , as in (4.23), the state x can be expressed as,

x = β
(j)

1 v
(j)

1 + β
(j)

2 v
(j)

2 + · · · + β
(j)

n+1v
(j)

n+1

where
∑n+1

i=1 β
(j)
i = 1, 0 ≤ β

(j)
i ≤ 1 and v

(j)
i , i = 1,2, . . . , n + 1 are the vertices

of CRj , j = 1,2, . . . , s. It is clear that the only nonzero entries of the interpolating

coefficients {β(j)

1 , . . . , β
(j)

n+1} are those corresponding to the vertices that belong to
the intersection. Therefore

u = β
(j)

1 u
(j)

1 + · · · + β
(j)

n+1u
(j)

n+1

is equal for all j = 1,2, . . . , s.
For the Lipschitz continuity property, for any two points xA and xB in CN , there

exist r + 1 points x0, x1, . . . , xr that lie on the line segment, connecting xA and xB ,
and such that xA = x0, xB = xr and (xi−1, xi) = xA,xB ∩ ∂CRi , i.e. (xi−1, xi) is the
intersection between the line connecting xA,xB and the boundary of some critical
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Fig. 4.10 Lyapunov function
and Lyapunov level curves
for the interpolating
controller for Example 4.2

region CRi , see Fig. 4.9. Due to the continuity property, proved above, of the control
law (4.27), one has,

∥∥(LAxA + vA) − (LBxB + vB)
∥∥

= ∥∥(L0x0 + v0) − (L0x1 + v0) + (L1x1 + v1) − · · · − (Lrxr + vr)
∥∥

= ‖L0x0 − L0x1 + L1x1 − · · · − Lrxr‖

≤
r∑

i=1

∥∥Li−1(xi − xi−1)
∥∥ ≤

r∑
k=1

‖Li−1‖
∥∥(xi − xi−1)

∥∥

≤ max
k

{‖Li−1‖
} r∑

i=1

∥∥(xi − xi−1)
∥∥ = M‖xA − xB‖

where the last equality holds, since the points xi with k = 0,1, . . . , r are aligned. �

Example 4.2 We consider now the explicit interpolating controller for Example 4.1.
Using Algorithm 4.2, the state space partition is obtained in Fig. 4.7. Merging the
regions with identical control laws, the reduced state space partition is obtained in
Fig. 4.9.
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Table 4.2 Number of
regions for explicit
interpolating control and for
explicit MPC for Example 4.2

Before merging After merging

Explicit interpolating control 25 11

Explicit MPC 127 97

Figure 4.10(a) shows the Lyapunov function as a piecewise affine function of
state. It is well known1 that the level sets of the Lyapunov function for vertex control
are simply obtained by scaling the boundary of the set CN . For the interpolating
controller (4.7), (4.8), (4.10), the level sets of the Lyapunov function V (x) = c∗
depicted in Fig. 4.10(b) have a more complicated form and generally are not parallel
to the boundary of CN . From Fig. 4.10, it can be observed that the Lyapunov level
sets V (x) = c∗ have the outer set CN as an external level set (for c∗ = 1). The inner
level sets change the polytopic shape in order to approach the boundary of the inner
set Ωmax.

Fig. 4.11 State space
partition before and after
merging for Example 4.2
using explicit MPC

1See Sect. 3.4.
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The control law over the state space partition is,

u(k) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

−1 if

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0.45 0.89
0.24 0.97
0.16 0.99

−0.55 0.84
0.14 0.99

−0.50 −0.87
0.20 0.98
0.32 0.95
0.37 −0.93
0.70 0.71

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

x(k) ≤

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

5.50
3.83
3.37
1.75
3.30

−0.89
3.53
4.40
2.73
7.78

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

−0.38x1(k) + 0.59x2(k) − 2.23 if

⎡
⎣ 0.54 −0.84

−0.37 0.93
−0.12 −0.99

⎤
⎦x(k) ≤

⎡
⎣−1.75

2.30
−1.41

⎤
⎦

−0.02x1(k) − 0.32x2(k) + 0.02 if

⎡
⎣ 0.37 −0.93

0.06 1.00
−0.26 −0.96

⎤
⎦x(k) ≤

⎡
⎣−2.30

3.20
−1.06

⎤
⎦

−0.43x1(k) − 1.80x2(k) + 1.65 if

⎡
⎣ 0.16 −0.99

0.26 0.96
−0.39 −0.92

⎤
⎦x(k) ≤

⎡
⎣−1.97

1.06
0.38

⎤
⎦

0.16x1(k) − 0.41x2(k) + 2.21 if

⎡
⎣ 0.39 0.92

−1.00 0
0.37 −0.93

⎤
⎦x(k) ≤

⎡
⎣−0.38

10.00
−2.73

⎤
⎦

1 if

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−0.14 −0.99
−0.37 0.93
−0.24 −0.97
−0.71 −0.71
−0.45 −0.89
−0.32 −0.95
−0.20 −0.98
−0.16 −0.99
0.50 0.87
0.54 −0.84

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

x(k) ≤

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

3.30
2.73
3.83
7.78
5.50
4.40
3.53
3.37

−0.89
1.75

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

−0.38x1(k) + 0.59x2(k) + 2.23 if

⎡
⎣ 0.12 0.99

0.37 −0.93
−0.54 0.84

⎤
⎦x(k) ≤

⎡
⎣−1.41

2.30
−1.75

⎤
⎦

−0.02x1(k) − 0.32x2(k) − 0.02 if

⎡
⎣ 0.26 0.96

−0.06 −1.00
−0.37 0.93

⎤
⎦x(k) ≤

⎡
⎣−1.06

3.20
−2.30

⎤
⎦

−0.43x1(k) − 1.80x2(k) − 1.65 if

⎡
⎣ 0.39 0.92

−0.26 −0.96
−0.16 0.97

⎤
⎦x(k) ≤

⎡
⎣ 0.38

1.06
−1.98

⎤
⎦

0.16x1(k) − 0.41x2(k) − 2.21 if

⎡
⎣ 1.00 0

−0.37 0.93
−0.39 −0.92

⎤
⎦x(k) ≤

⎡
⎣ 10.00

−2.73
−0.38

⎤
⎦

−0.56x1(k) − 0.98x2(k) if

⎡
⎢⎢⎢⎢⎢⎣

0.16 −0.99
−0.16 0.99
−0.12 −0.99
0.12 0.99

−0.50 −0.87
0.50 0.87

⎤
⎥⎥⎥⎥⎥⎦x(k) ≤

⎡
⎢⎢⎢⎢⎢⎣

1.97
1.97
1.41
1.41
0.89
0.89

⎤
⎥⎥⎥⎥⎥⎦
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Fig. 4.12 Explicit
interpolating control law and
explicit MPC control law as
piecewise affine functions of
state for Example 4.2

In view of comparison, consider the explicit MPC solution in Example 4.1,
Fig. 4.11(a) presents the state space partition of the explicit MPC with the same
setup parameters as in Example 4.1. Merging the polyhedral regions with an identi-
cal piecewise affine control function, the reduced state space partition is obtained in
Fig. 4.11(b).

The comparison of explicit interpolating control and explicit MPC in terms of
the number of regions before and after merging is given in Table 4.2.

Figure 4.12 shows the explicit interpolating control law and the explicit MPC
control law as piecewise affine functions of state, respectively.

4.4 Improved Interpolating Control

The interpolating controller in Sect. 4.2 and Sect. 4.3 can be considered as an ap-
proximate model predictive control law, which in the last decade has received signif-
icant attention in the control community [18, 60, 63, 78, 108, 114]. From this point
of view, it is worthwhile to obtain an interpolating controller with some given level
of accuracy in terms of performance compared with the optimal MPC one. Natu-
rally, the approximation error can be a measure of the level of accuracy. The methods
of computing bounds on the approximation error are known, see e.g. [18, 60, 114].
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Obviously, the simplest way of improving the performance of the interpolating
controller is to use an intermediate s-step controlled invariant set Cs with 1 ≤ s < N .
Then there will be not only one level of interpolation but two or virtually any number
of interpolation as necessary from the performance point of view. For simplicity, we
provide in the following a study of the case when only one intermediate controlled
invariant set Cs is used. Let Cs be in the form,

Cs = {
x ∈R

n : Fsx ≤ gs

}
(4.32)

and satisfy the condition Ωmax ⊂ Cs ⊂ CN .

Remark 4.7 It has to be noted however that, the expected increase in performance
comes at the price of complexity as long as the intermediate set needs to be stored
along with its vertex controller.

For further use, the vertex control law applied for the set Cs is denoted as us .
Using the same philosophy as in Sect. 4.2, the state x is decomposed as,

1. If x ∈ CN and x /∈ Cs , then

x = c1xv + (1 − c1)xs (4.33)

with xv ∈ CN , xs ∈ Cs and 0 ≤ c1 ≤ 1. The control law is,

u = c1uv + (1 − c1)us (4.34)

2. Else x ∈ Cs ,

x = c2xs + (1 − c2)xo (4.35)

with xs ∈ Cs , xo ∈ Ωmax and 0 ≤ c2 ≤ 1. The control law is,

u = c2us + (1 − c2)uo (4.36)

Depending on the value of x, at each time instant, either c1 or c2 is minimized
in order to be as close as possible to the optimal controller. This can be done by
solving the following nonlinear optimization problems,

1. If x ∈ CN \ Cs ,

c∗
1 = min

xv,xs ,c1
{c1} (4.37)

subject to ⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

FNxv ≤ gN,

Fsxs ≤ gs,

c1xv + (1 − c1)xs = x,

0 ≤ c1 ≤ 1
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2. Else x ∈ Cs ,

c∗
2 = min

xs ,xo,c2
{c2} (4.38)

subject to ⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

Fsxs ≤ gs,

Foxo ≤ go,

c2xs + (1 − c2)xo = x,

0 ≤ c2 ≤ 1

or by changing variables rv = c1xv and rs = c2xs , the nonlinear optimization prob-
lems (4.37) and (4.38) can be transformed in the following LP problems, respec-
tively,

1. If x ∈ CN \ Cs

c∗
1 = min

rv,c1
{c1} (4.39)

subject to ⎧⎪⎪⎨
⎪⎪⎩

FNrv ≤ c1gN,

Fs(x − rv) ≤ (1 − c1)gs,

0 ≤ c1 ≤ 1

2. Else x ∈ Cs

c∗
2 = min

rs ,c2
{c2} (4.40)

subject to ⎧⎪⎪⎨
⎪⎪⎩

Fsrs ≤ c2gs,

Fo(x − rs) ≤ (1 − c2)go,

0 ≤ c2 ≤ 1

The following theorem shows recursive feasibility and asymptotic stability of the
interpolating controller (4.33), (4.34), (4.35), (4.36), (4.39), (4.40),

Theorem 4.8 The control law (4.33), (4.34), (4.35), (4.36), (4.39), (4.40) guaran-
tees recursive feasibility and asymptotic stability of the closed loop system for all
initial states x(0) ∈ CN .

Proof The proof is omitted here, since it follows the same steps as those presented
in the feasibility proof of Theorem 4.1 and the stability proof of Theorem 4.2 in
Sect. 4.2. �
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Remark 4.8 Clearly, instead of the second level of interpolation (4.35), (4.36),
(4.40), the MPC approach can be applied for all states inside the set Cs . This has
very practical consequences in applications, since it is well known [34, 88] that the
main issue of MPC for time-invariant linear discrete-time systems is the trade-off
between the overall complexity (computational cost) and the size of the domain of
attraction. If the prediction horizon is short then the domain of attraction is small. If
the prediction horizon is long then the computational cost may be very burdensome
for the available hardware. Here MPC with the short prediction horizon is employed
inside Cs for the performance and then for enlarging the domain of attraction, the
control law (4.33), (4.34), (4.39) is used. In this way one can achieve the perfor-
mance and the domain of attraction with a relatively small computational cost.

Theorem 4.9 The control law (4.33), (4.34), (4.35), (4.36), (4.39), (4.40) can be
represented as a continuous function of the state.

Proof Clearly, the discontinuity of the control law may arise only on the boundary
of the set Cs , denoted as ∂Cs . Note that for x ∈ ∂Cs , the LP problems (4.39), (4.40)
have the trivial solution,

c∗
1 = 0, c∗

2 = 1

Therefore, for x ∈ ∂Cs the control law (4.33), (4.34), (4.39) is u = us and the con-
trol law (4.35), (4.36), (4.40) is u = us . Hence the continuity of the control law is
guaranteed. �

Remark 4.9 It is interesting to note that by using N −1 intermediate sets Ci together
with the sets CN and Ωmax, a continuous minimum-time controller is obtained, i.e.
a controller that steers all state x ∈ CN into Ωmax in no more than N steps.

Concerning the explicit solution of the control law (4.33), (4.34), (4.35), (4.36),
(4.39), (4.40), with the same argument as in Sect. 4.3, it can be concluded that,

• If x ∈ CN \ Cs (or x ∈ Cs \ Ωmax), the smallest value c1 (or c2) will be reached
when the region CN \Cs (or CS \Ωmax) is decomposed into polyhedral partitions
in form of simplices with vertices both on ∂CN and on ∂Cs (or on ∂Cs and on
∂Ωmax). The control law in each simplex is a piecewise affine function of the
state, whose gains are obtained by interpolation of control values at the vertices
of the simplex.

• If x ∈ Ωmax, then the control law is the optimal unconstrained controller.

Example 4.3 Consider again Example 4.1. Here one intermediate set Cs with s = 4
is introduced. The set of vertices Vs of Cs is,

Vs =
[

10.00 −5.95 −7.71 −10.00 −10.00 5.95 7.71 10.00
−0.06 2.72 2.86 1.78 0.06 −2.72 −2.86 −1.78

]
(4.41)
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Fig. 4.13 Two-level
interpolation for improving
the performance

Fig. 4.14 State space
partition before merging
(number of regions: Nr = 37)
and after merging (Nr = 19),
and state trajectories for
Example 4.3

and the set of the corresponding control actions at the vertices Vs is,

Us = [−1 −1 −1 −1 1 1 1 1
]

(4.42)

The sets CN , Cs and Ωmax are depicted in Fig. 4.13. For the explicit solution, the
state space partition of the control law (4.33), (4.34), (4.35), (4.36), (4.39), (4.40)
is shown in Fig. 4.14(a). Merging the regions with identical control laws, the re-
duced state space partition is obtained in Fig. 4.14(b). This figure also shows state
trajectories of the closed-loop system for different initial conditions.

Figure 4.15 shows the control law with two-level interpolation.
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Fig. 4.15 Control value as a
piecewise affine function of
the state using two-level
interpolation for Example 4.3

Fig. 4.16 State and input
trajectories for one-level
interpolating control
(dashed), and for two-level
interpolating control (solid)
for Example 4.3

For the initial condition x(0) = [9.9800 −3.8291]T , Fig. 4.16 shows the results
of a time-domain simulation. The two curves correspond to the one-level and two-
level interpolating control, respectively.

Figure 4.17 presents the interpolating coefficients c∗
1 and c∗

2 . As expected c∗
1

and c∗
2 are positive and non-increasing. It is also interesting to note that ∀k ≥ 10,

c∗
1(k) = 0, indicating that x is inside Cs and ∀k ≥ 14, c∗

2(k) = 0, indicating that x is
inside Ωmax.
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Fig. 4.17 Interpolating
coefficients as functions of
time for Example 4.3

4.5 Interpolating Control via Quadratic Programming

The interpolating controller in Sect. 4.2 and Sect. 4.4 makes use of linear program-
ming, which is extremely simple. However, the main issue regarding the implemen-
tation of Algorithm 4.1 is the non-uniqueness of the solution. Multiple optima are
undesirable, as they might lead to a fast switching between the different optimal
control actions when the LP problem (4.10) is solved on-line. In addition, MPC
traditionally has been formulated using a quadratic criterion [92]. Hence, also in in-
terpolating control it is worthwhile to investigate the use of quadratic programming.

Before introducing a QP formulation, let us note that the idea of using QP for
interpolating control is not new. In [10, 110], Lyapunov theory is used to compute
an upper bound of the infinite horizon cost function,

J =
∞∑

k=0

{
x(k)T Qx(k) + u(k)T Ru(k)

}
(4.43)

where Q � 0 and R � 0 are the state and input weighting matrices. At each time
instant, the algorithms in [110] use an on-line decomposition of the current state,
with each component lying in a separate invariant set, after which the corresponding
controller is applied to each component separately in order to calculate the control
action. Polytopes are employed as candidate invariant sets. Hence, the on-line opti-
mization problem can be formulated as a QP problem. The approach taken in this
section follows ideas originally proposed in [10, 110]. In this setting we provide a
QP based solution to the constrained control problem.

This section begins with a brief summary on the works [10, 110]. For this pur-
pose, it is assumed that a set of unconstrained asymptotically stabilizing feedback
controllers u(k) = Kix(k), i = 1,2, . . . , s is available such that the corresponding
invariant set Ωi ⊆ X

Ωi = {
x ∈R

n : F (i)
o x ≤ g(i)

o

}
(4.44)

is non-empty for i = 1,2, . . . , s.
Denote Ω as the convex hull of Ωi , i = 1,2, . . . , s. It follows that Ω ⊆ X, since

Ωi ⊆ X, ∀i = 1,2, . . . , s and the fact that X is convex. Any state x(k) ∈ Ω can be
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decomposed as,

x(k) = λ1(k)̂x1(k) + λ2(k)̂x2(k) + · · · + λs(k)̂xs(k) (4.45)

where x̂i (k) ∈ Ωi , ∀i = 1,2, . . . , s and
∑s

i=1 λi(k) = 1, λi(k) ≥ 0.
Define ri = λix̂i . Since x̂i ∈ Ωi , it follows that ri ∈ λiΩi or equivalently,

F (i)
o ri ≤ λig

(i)
o , ∀i = 1,2, . . . , s (4.46)

From (4.45), one obtains

x(k) = r1(k) + r2(k) + · · · + rs(k) (4.47)

Consider the following control law,

u(k) =
s∑

i=1

λiKix̂i =
s∑

i=1

Kiri (4.48)

where ui(k) = Kiri(k) is the control law in Ωi . One has,

x(k + 1) = Ax(k) + Bu(k) = A

s∑
i=1

ri(k) + B

s∑
i=1

Kiri(k) =
s∑

i=1

(A + BKi)ri(k)

or,

x(k + 1) =
s∑

i=1

ri(k + 1) (4.49)

where ri(k + 1) = Aciri(k) and Aci = A + BKi .
Define the vector z ∈ R

sn as,

z = [
rT

1 rT
2 . . . rT

s

]T (4.50)

Using (4.49), one obtains,

z(k + 1) = Φz(k) (4.51)

where

Φ =

⎡
⎢⎢⎢⎣

Ac1 0 . . . 0
0 Ac2 . . . 0
...

...
. . .

...

0 0 . . . Acs

⎤
⎥⎥⎥⎦

For the given state and control weighting matrices Q ∈ R
n×n and R ∈ R

m×m, con-
sider the following quadratic function,

V (z) = zT P z (4.52)
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where matrix P ∈R
sn×sn, P � 0 is chosen to satisfy,

V
(
z(k + 1)

) − V
(
z(k)

) ≤ −x(k)T Qx(k) − u(k)T Ru(k) (4.53)

Using (4.51), the left hand side of (4.53) can be rewritten as,

V
(
z(k + 1)

) − V
(
z(k)

) = z(k)T
(
ΦT PΦ − P

)
z(k) (4.54)

and using (4.47), (4.48), (4.50), the right hand side of (4.53) becomes,

−x(k)T Qx(k) − u(k)T Ru(k) = z(k)T (Q1 + R1)z(k) (4.55)

where

Q1 = −

⎡
⎢⎢⎢⎣

I

I
...

I

⎤
⎥⎥⎥⎦Q

[
I I . . . I

]
, R1 = −

⎡
⎢⎢⎢⎣

KT
1

KT
2
...

KT
s

⎤
⎥⎥⎥⎦R

[
K1 K2 . . . Ks

]

Combining (4.53), (4.54) and (4.55), one gets,

ΦT PΦ − P � Q1 + R1

or by using the Schur complements, one obtains,

[
P + Q1 + R1 ΦT P

PΦ P

]
� 0 (4.56)

Problem (4.56) is linear with respect to matrix P . Since matrix Φ has a sub-unitary
spectral radius (4.51), problem (4.56) is always feasible. One way to obtain P is to
solve the following LMI problem,

min
P

{
trace(P )

}
(4.57)

subject to constraints (4.56).
At each time instant, for a given current state x, consider the following optimiza-

tion problem,

min
ri ,λi

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

[
rT

1 rT
2 . . . rT

s

]
P

⎡
⎢⎢⎢⎣

r1
r2
...

rs

⎤
⎥⎥⎥⎦

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

(4.58)
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subject to ⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

F (i)
o ri ≤ λig

(i)
o , ∀i = 1,2, . . . , s,

s∑
i=1

ri = x,

s∑
i=1

λi = 1,

λi ≥ 0, ∀i = 1,2, . . . , s

and implement as input the control action u = ∑s
i=1 Kiri .

Theorem 4.10 [10, 110] The control law (4.45), (4.48), (4.58) guarantees recursive
feasibility and asymptotic stability for all initial states x(0) ∈ Ω .

Note that using the approach in [10, 110], for a given state x we are trying to
minimize r1, r2, . . . , rs in the weighted Euclidean norm sense. This is somehow a
conflicting task, since,

r1 + r2 + · · · + rs = x

In addition, if the first controller is optimal and plays the role of a performance
controller, then one would like to have a control law as close as possible to the first
controller. This means that in the interpolation scheme (4.45), one would like to
have r1 = x and

r2 = r3 = · · · = rs = 0

whenever it is possible. And it is not trivial to do this with the approach in [10, 110].
Below we provide a contribution to this line of research by considering one of

the interpolation factors, i.e. control gains to be a performance related one, while
the remaining factors play the role of degrees of freedom to enlarge the domain
of attraction. This alternative approach can provide the appropriate framework for
the constrained control design which builds on the unconstrained optimal controller
(generally with high gain) and subsequently need to adjusted them to cope with the
constraints and limitations (via interpolation with adequate low gain controllers).
From this point of view, in the remaining part of this section we try to build a bridge
between the linear interpolation scheme presented in Sect. 4.2 and the QP based
interpolation approaches in [10, 110].

For a given set of state and control weighting matrices Qi � 0, Ri � 0, consider
the following set of quadratic functions,

Vi(ri) = rT
i Piri , ∀i = 2,3, . . . , s (4.59)

where matrix Pi ∈ R
n×n and Pi � 0 is chosen to satisfy

Vi

(
ri(k + 1)

) − Vi

(
ri(k)

) ≤ −ri(k)T Qiri(k) − ui(k)T Riui(k) (4.60)
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Since ri(k + 1) = Aciri(k) and ui(k) = Kiri(k), equation (4.60) can be written as,

AT
ciPiAci − Pi � −Qi − KT

i RiKi

By using the Schur complements, one obtains[
Pi − Qi − KT

i RiKi AT
ciPi

PiAci Pi

]
� 0 (4.61)

Since matrix Aci has a sub-unitary spectral radius, problem (4.61) is always feasible.
One way to obtain matrix Pi is to solve the following LMI problem,

min
Pi

{
trace(Pi)

}
(4.62)

subject to constraint (4.61).
Define the vector z1 ∈ R

(s−1)(n+1) as,

z1 = [
rT

2 rT
3 . . . rT

s λ2 λ3 . . . λs

]T
Consider the following quadratic function,

J (z1) =
s∑

i=2

rT
i Piri +

s∑
i=2

λ2
i (4.63)

We underline the fact that the sum is built on indices {2,3, . . . , s}, corresponding to
the more poorly performing controllers. At each time instant, consider the following
optimization problem,

V1(z1) = min
z1

{
J (z1)

}
(4.64)

subject to the constraints⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

F (i)
o ri ≤ λig

(i)
o ,∀i = 1,2, . . . , s,

s∑
i=1

ri = x,

s∑
i=1

λi = 1,

λi ≥ 0,∀i = 1,2, . . . , s

and apply as input the control signal u = ∑s
i=1{Kiri}.

Theorem 4.11 The control law (4.45), (4.48), (4.64) guarantees recursive feasibil-
ity and asymptotic stability for all initial states x(0) ∈ Ω .
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Proof Theorem 4.11 makes two important claims, namely the recursive feasibility
and the asymptotic stability. These can be treated sequentially.

Recursive feasibility: It has to be proved that Fuu(k) ≤ gu and x(k + 1) ∈ Ω for
all x(k) ∈ Ω . It holds that,

Fuu(k) = Fu

s∑
i=1

λiKix̂i =
s∑

i=1

λiFuKix̂i ≤
s∑

i=1

λigu = gu

and

x(k + 1) = Ax(k) + Bu(k) =
s∑

i=1

λiAci x̂i (k)

Since Acix̂i(k) ∈ Ωi ⊆ Ω , it follows that x(k + 1) ∈ Ω .
Asymptotic stability: Consider the positive function V1(z1) as a candidate Lya-

punov function. From the recursive feasibility proof, it is apparent that if λ∗
1(k),

λ∗
2(k), . . ., λ∗

s (k) and r∗
1 (k), r∗

2 (k), . . . , r∗
s (k) is the solution of the optimization prob-

lem (4.64) at time instant k, then λi(k + 1) = λ∗
i (k) and

ri(k + 1) = Acir
∗
i (k)

∀i = 1,2, . . . , s is a feasible solution to (4.64) at time instant k + 1. Since at each
time instant we are trying to minimize J (z1), it follows that

V1
(
z∗

1(k + 1)
) ≤ J

(
z1(k + 1)

)

and therefore

V1
(
z∗

1(k + 1)
) − V1

(
z∗

1(k)
) ≤ J

(
z1(k + 1)

) − V1
(
z∗

1(k)
)

together with (4.60), one obtains

V1
(
z∗

1(k + 1)
) − V1

(
z∗

1(k)
) ≤ −

s∑
i=2

(
rT
i Qiri + uT

i Riui

)

Hence V1(z1) is a Lyapunov function and the control law (4.45), (4.48), (4.64) as-
sures asymptotic stability for all x ∈ Ω . �



98 4 Interpolating Control—Nominal State Feedback Case

The constraints of the problem (4.64) can be rewritten as,

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

F (1)
o (x − r2 − · · · − rs) ≤ (1 − λ2 − · · · − λs)g

(1)
o

F (2)
o r2 ≤ λ2g

(2)
o

...

F (s)
o rs ≤ λsg

(s)
o

λi ≥ 0, ∀i = 2, . . . , s

λ2 + λ3 + · · · + λs ≤ 1

or, equivalently

Gz1 ≤ S + Ex (4.65)

where

G =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−F
(1)
o −F

(1)
o . . . −F

(1)
o g

(1)
o g

(1)
o . . . g

(1)
o

F
(2)
o 0 . . . 0 −g

(2)
o 0 . . . 0

0 F
(3)
o . . . 0 0 −g

(3)
o . . . 0

...
...

. . .
...

...
...

. . .
...

0 0 . . . F
(s)
o 0 0 . . . −g

(s)
o

0 0 . . . 0 −1 0 . . . 0
0 0 . . . 0 0 −1 . . . 0
...

...
. . .

...
...

...
. . .

...

0 0 . . . 0 0 0 . . . −1
0 0 . . . 0 1 1 . . . 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

S =
[
(g

(1)
o )T 0 0 . . . 0 0 0 . . . 0 1

]T

E =
[
−(F

(1)
o )T 0 0 . . . 0 0 0 . . . 0 0

]T

And the objective function (4.64) can be written as,

min
z1

{
zT

1 Hz1
}

(4.66)
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Algorithm 4.3 Interpolating control via quadratic programming
1. Measure the current state x(k).
2. Solve the QP problem (4.66), (4.65).
3. Apply the control input (4.48).
4. Wait for the next time instant k := k + 1.
5. Go to step 1 and repeat.

where

H =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

P2 0 . . . 0 0 0 . . . 0
0 P3 . . . 0 0 0 . . . 0
...

...
. . .

...
...

...
. . .

...

0 0 . . . Ps 0 0 . . . 0
0 0 . . . 0 1 0 . . . 0
0 0 . . . 0 0 1 . . . 0
...

...
. . .

...
...

...
. . .

...

0 0 . . . 0 0 0 . . . 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

Hence, the optimization problem (4.64) is transformed into the quadratic program-
ming problem (4.66), (4.65).

It is worth noticing that for all x ∈ Ω1, the QP problem (4.66), (4.65) has the
trivial solution, namely {

ri = 0,

λi = 0
∀i = 2,3, . . . , s

Hence r1 = x and λ1 = 1. That means, inside the set Ω1, the interpolating controller
(4.45), (4.48), (4.64) becomes the optimal unconstrained controller.

Remark 4.10 Note that Algorithm 4.3 requires the solution of the QP problem
(4.66) of dimension (s − 1)(n+ 1) where s is the number of interpolated controllers
and n is the dimension of state. Clearly, solving the QP problem (4.66) can be com-
putationally expensive when the number of interpolated controllers is big. However,
it is usually enough with s = 2 or s = 3 in terms of performance and in terms of the
size of the domain of attraction.

Example 4.4 Consider again the system in Example 4.2 with the same state and
control constraints. Two linear feedback controllers are chosen as,{

K1 = [−0.0942 −0.7724]
K2 = [−0.0669 −0.2875] (4.67)

The first controller u(k) = K1x(k) is an optimal controller and plays the role of the
performance controller, and the second controller u(k) = K2x(k) is used to enlarge
the domain of attraction.
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Figure 4.18(a) shows the invariant sets Ω1 and Ω2 correspond to the controllers
K1 and K2, respectively. Figure 4.18(b) shows state trajectories obtained by solving
the QP problem (4.66), (4.65) for different initial conditions.

The sets Ω1 and Ω2 are presented in minimal normalized half-space representa-
tion as,

Ω1 =

⎧⎪⎪⎨
⎪⎪⎩x ∈ R

2 :

⎡
⎢⎢⎣

1.0000 0
−1.0000 0
−0.1211 −0.9926
0.1211 0.9926

⎤
⎥⎥⎦x ≤

⎡
⎢⎢⎣

10.0000
10.0000
1.2851
1.2851

⎤
⎥⎥⎦

⎫⎪⎪⎬
⎪⎪⎭

Ω2 =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

x ∈ R
2 :

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1.0000 0
−1.0000 0
−0.2266 −0.9740
0.2266 0.9740
0.7948 0.6069

−0.7948 −0.6069
−0.1796 −0.9837
0.1796 0.9837

−0.1425 −0.9898
0.1425 0.9898

−0.1117 −0.9937
0.1117 0.9937

−0.0850 −0.9964
0.0850 0.9964

−0.0610 −0.9981
0.0610 0.9981

−0.0386 −0.9993
0.0386 0.9993

−0.0170 −0.9999
0.0170 0.9999

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

x ≤

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

10.0000
10.0000
3.3878
3.3878
8.5177
8.5177
3.1696
3.1696
3.0552
3.0552
3.0182
3.0182
3.0449
3.0449
3.1299
3.1299
3.2732
3.2732
3.4795
3.4795

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

For the weighting matrices Q2 = I , R2 = 1, and by solving the LMI problem (4.62),
one obtains,

P2 =
[

5.1917 9.9813
9.9813 101.2651

]
(4.68)

For the initial condition x(0) = [6.8200 1.8890]T , Fig. 4.19(a) and 4.19(b) present
the state and input trajectories of the closed loop system for our approach (solid),
and for the approach in [110] (dashed).

For [110], the matrix P in the problem (4.57) is computed as,

P =

⎡
⎢⎢⎣

4.8126 2.9389 4.5577 13.8988
2.9389 7.0130 2.2637 20.4391
4.5577 2.2637 5.1917 9.9813

13.8988 20.4391 9.9813 101.2651

⎤
⎥⎥⎦
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Fig. 4.18 Feasible invariant
sets and state trajectories of
the closed loop system for
Example 4.4

for the weighting matrices Q = I , R = 1.
The interpolating coefficient λ∗

2 and the Lyapunov function V1(z1) are depicted
in Fig. 4.20. As expected V1(z1) is a positive and non-increasing function.

4.6 Interpolating Control Based on Saturated Controllers

In this section, in order to fully utilize the capability of actuators and to enlarge
the domain of attraction, an interpolation between several saturated controllers will
be proposed. For simplicity, only single-input single-output system is considered,
although extensions to multi-input multi-output systems are straightforward.

From Lemma 2.1 in Sect. 2.4.1, recall that for a given stabilizing controller
u(k) = Kx(k), there exists an auxiliary stabilizing controller u(k) = Hx(k) such
that the saturation function can be expressed as, ∀x such that Hx ∈ U ,

sat
(
Kx(k)

) = α(k)Kx(k) + (
1 − α(k)

)
Hx(k) (4.69)

where 0 ≤ α(k) ≤ 1. Matrix H ∈ R
n can be computed using Theorem 2.3. Using

Procedure 2.5 in Sect. 2.4.1, the polyhedral set ΩH
s can be computed, which is

invariant for system,

x(k + 1) = Ax(k) + B sat
(
Kx(k)

)
(4.70)

and with respect to the constraints (4.2).
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Fig. 4.19 State and input
trajectories of the closed loop
system for our approach
(solid), and for the approach
in [110] (dashed) for
Example 4.4

It is assumed that a set of asymptotically stabilizing feedback controllers
Ki ∈ R

n, i = 1,2, . . . , s is available as well as a set of auxiliary matrices Hi ∈ R
n,

i = 2, . . . , s such that the corresponding invariant sets Ω1 ⊆ X

Ω1 = {
x ∈ R

n : F (1)
o x ≤ g(1)

o

}
(4.71)

for the linear controller u = K1x and Ω
Hi
s ⊆ X

ΩHi
s = {

x ∈ R
n : F (i)

o x ≤ g(i)
o

}
(4.72)

for the saturated controllers u = sat(Kix), ∀i = 2,3, . . . , s, are non-empty. De-
note Ωs as the convex hull of the sets Ω1 and Ω

Hi
s , i = 2,3, . . . , s. It follows that

Ωs ⊆ X, since Ω1 ⊆ X, Ω
Hi
s ⊆ X, ∀i = 2,3, . . . , s and the fact that X is a convex

set.

Remark 4.11 We use one linear control law here in order to show that interpolation
can be done between any kind of controllers: linear or saturated. The main require-
ment is that there exists for each of these controllers its own convex invariant set as
the domain of attraction.

Any state x(k) ∈ Ωs can be decomposed as,

x(k) = λ1(k)̂x1(k) +
s∑

i=2

λi(k)̂xi(k) (4.73)
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Fig. 4.20 Interpolating
coefficient λ∗

2 and the
Lyapunov function V1(z1) as
functions of time for
Example 4.4

where x̂1(k) ∈ Ω1, x̂i (k) ∈ Ω
Hi
s , i = 2,3, . . . , s and

s∑
i=1

λi(k) = 1, λi(k) ≥ 0.

Consider the following control law,

u(k) = λ1(k)K1x̂1(k) +
s∑

i=2

λi(k) sat
(
Kix̂i(k)

)
(4.74)

Using Lemma 2.1, one obtains,

u(k) = λ1(k)K1x̂1(k) +
s∑

i=2

λi(k)
(
αi(k)Ki + (

1 − αi(k)
)
Hi

)̂
xi(k) (4.75)

where 0 ≤ αi(k) ≤ 1 for all i = 2,3, . . . , s.
Similar with the notation employed in Sect. 4.5, we denote ri = λix̂i . Since x̂1 ∈

Ω1 and x̂i ∈ Ω
Hi
s , it follows that r1 ∈ λ1Ω1 and ri ∈ λiΩ

Hi
s or, equivalently

F (i)
o ri ≤ λig

(i)
o , ∀i = 1,2, . . . , s (4.76)
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Based on (4.73) and (4.75), one obtains,⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

x = r1 +
s∑

i=2

ri,

u = u1 +
s∑

i=2

ui

(4.77)

where u1 = K1r1 and ui = (αiKi + (1 − αi)Hi)ri , i = 2,3, . . . , s.
As in Sect. 4.5, the first controller, identified by the high gain K1, will play

the role of a performance controller, while the remaining controllers u = sat(Kix),
i = 2,3, . . . , s will be used to extend the domain of attraction.

It holds that,

x(k + 1) = Ax(k) + Bu(k)

= A

s∑
i=1

ri(k) + B

s∑
i=1

ui =
s∑

i=1

ri(k + 1)

where r1(k + 1) = Ar1 + Bu1 = (A + BK1)r1 and

ri(k + 1) = Ari(k) + Bui(k) = {
A + B

(
αiKi + (1 − αi)Hi

)}
ri(k) (4.78)

or, equivalently

ri(k + 1) = Aciri(k) (4.79)

with Aci = A + B(αiKi + (1 − αi)Hi), ∀i = 2,3, . . . , s.
For a given set of state and control weighting matrices Qi � 0 and Ri � 0, i =

2,3, . . . , s, consider the following set of quadratic functions,

Vi(ri) = rT
i Piri , i = 2,3, . . . , s (4.80)

where the matrix Pi ∈R
n×n, Pi � 0 is chosen to satisfy,

Vi

(
ri(k + 1)

) − Vi

(
ri(k)

) ≤ −ri(k)T Qiri(k) − ui(k)T Riui(k) (4.81)

With the same argument as in Sect. 4.5, equation (4.81) can be rewritten as,

AT
ciPiAci − Pi � −Qi − (

αiKi + (1 − αi)Hi

)T
Ri

(
αiKi + (1 − αi)Hi

)
Using the Schur complements, the above condition can be transformed into,[

Pi − Qi − YT
i RiYi AT

ciPi

PiAci Pi

]
� 0

where Yi = αiKi + (1 − αi)Hi . Or, equivalently[
Pi AT

ciPi

PiAci Pi

]
−

[
Qi + YT

i RiYi 0
0 0

]
� 0
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Denote
√

Qi and
√

Ri as the Cholesky factor of the matrices Qi and Ri , which
satisfy

√
Qi

T√
Qi = Qi and

√
Ri

T√
Ri = Ri.

The previous condition can be rewritten as,

[
Pi AT

ciPi

PiAci Pi

]
−

[√
Qi

T
YT

i

√
Ri

T

0 0

][ √
Qi 0√

RiYi 0

]
� 0

or by using the Schur complements, one obtains,

⎡
⎢⎢⎣

Pi AT
ciPi

√
Qi

T
YT

i

√
Ri

T

PiAci Pi 0 0√
Qi 0 I 0√

RiYi 0 0 I

⎤
⎥⎥⎦ � 0 (4.82)

Since Yi = αiKi + (1 − αi)Hi , and Aci = A + BYi the left hand side of inequality
(4.82) is linear in αi , and hence reaches its minimum at either αi = 0 or αi = 1.
Consequently, the set of LMI conditions to be checked is following,

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

⎡
⎢⎢⎣

Pi (A + BKi)
T Pi

√
Qi

T
(
√

RiKi)
T

Pi(A + BKi) Pi 0 0√
Qi 0 I 0√

RiKi 0 0 I

⎤
⎥⎥⎦ � 0

⎡
⎢⎢⎣

Pi (A + BHi)
T Pi

√
Qi

T
(
√

RiHi)
T

Pi(A + BHi) Pi 0 0√
Qi 0 I 0√

RiHi 0 0 I

⎤
⎥⎥⎦ � 0

(4.83)

Condition (4.83) is linear with respect to the matrix Pi . One way to calculate Pi is
to solve the following LMI problem,

min
Pi

{
trace(Pi)

}
(4.84)

subject to constraint (4.83).
Once the matrices Pi , i = 2,3, . . . , s are computed, they can be used in practice

for real-time control based on the following algorithm, which can be formulated as
an optimization problem that is efficient with respect to structure and complexity.
At each time instant, for a given current state x, minimize on-line the quadratic cost
function,
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min
ri ,λi

{
s∑

i=2

rT
i Piri +

s∑
i=2

λ2
i

}
(4.85)

subject to the linear constraints⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

F (i)
o ri ≤ λig

(i)
o , ∀i = 1,2, . . . , s,

s∑
i=1

ri = x,

s∑
i=1

λi = 1,

λi ≥ 0, ∀i = 1,2, . . . , s

Theorem 4.12 The control law (4.73), (4.74), (4.85) guarantees recursive feasibil-
ity and asymptotic stability of the closed loop system for all initial states x(0) ∈ Ωs .

Proof The proof is similar to Theorem 4.11. Hence it is omitted here. �

Example 4.5 Consider again the system in Example 4.1 with the same state and
control constraints. Two gain matrices are chosen as,

{
K1 = [−0.9500 −1.1137],
K2 = [−0.4230 −2.0607] (4.86)

Using Theorem 2.3, matrix H2 is computed as,

H2 = [−0.0669 −0.2875] (4.87)

The invariant sets Ω1 and Ω
H2
s are, respectively constructed for the controllers

u = K1x and u = sat(K2x), see Fig. 4.21(a). Figure 4.21(b) shows state trajecto-
ries for different initial conditions.

The sets Ω1 and Ω
H2
s are presented in minimal normalized half-space represen-

tation as,

Ω1 =

⎧⎪⎪⎨
⎪⎪⎩x ∈R

2 :

⎡
⎢⎢⎣

0.3919 −0.9200
−0.3919 0.9200
−0.6490 −0.7608
0.6490 0.7608

⎤
⎥⎥⎦x ≤

⎡
⎢⎢⎣

1.4521
1.4521
0.6831
0.6831

⎤
⎥⎥⎦

⎫⎪⎪⎬
⎪⎪⎭
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Fig. 4.21 Feasible invariant
sets and state trajectories of
the closed loop system for
Example 4.5

ΩH2
s =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

x ∈ R
2 :

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−0.0170 −0.9999
0.0170 0.9999

−0.0386 −0.9993
0.0386 0.9993

−0.0610 −0.9981
0.0610 0.9981

−0.0850 −0.9964
0.0850 0.9964

−0.1117 −0.9937
0.1117 0.9937

−0.1425 −0.9898
0.1425 0.9898
0.7948 0.6069

−0.7948 −0.6069
−0.1796 −0.9837
0.1796 0.9837
1.0000 0

−1.0000 0
−0.2266 −0.9740
0.2266 0.9740

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

x ≤

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

3.4795
3.4795
3.2732
3.2732
3.1299
3.1299
3.0449
3.0449
3.0182
3.0182
3.0552
3.0552
8.5177
8.5177
3.1696
3.1696

10.0000
10.0000
3.3878
3.3878

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭
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Fig. 4.22 State and input
trajectories of the closed loop
system as functions of time
for Example 4.5 for the
interpolating controller
(solid) and for the saturated
controller u = sat(K2x)

(dashed)

With the weighting matrices Q2 = I , R2 = 0.001 and by solving the LMI problem
(4.84), one obtains,

P2 =
[

5.4929 9.8907
9.8907 104.1516

]

For the initial condition x(0) = [−9.79 −1.2]T , Fig. 4.22 presents the state and
input trajectories for the interpolating controller (solid blue) and for the saturated
controller u = sat(K2x) (dashed red), which is the controller corresponding to the
set Ω

H2
s . The interpolating coefficient λ∗

2 and the objective function as a Lyapunov
function are shown in Fig. 4.23.

4.7 Convex Hull of Ellipsoids

For high dimensional systems, the polyhedral based interpolation approaches in
Sects. 4.2, 4.3, 4.4, 4.5, 4.6 might be impractical due to the huge number of ver-
tices or half-spaces in the representation of polyhedral sets. In that case, ellipsoids
might be a suitable class of sets for interpolation.

Note that the idea of using ellipsoids for a constrained control system is well
known, for time-invariant linear continuous-time systems, see [56], and for time-
invariant linear discrete-time systems, see [10]. In these papers, a method to con-
struct a continuous control law based on a set of linear control laws was proposed
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Fig. 4.23 Interpolating
coefficient λ∗

2 and Lyapunov
function as functions of time
for Example 4.5

to make the convex hull of an associated set of invariant ellipsoids invariant. How-
ever these results do not allow to impose priority among the control laws.

In this section, an interpolation using a set of saturated controllers and its asso-
ciated set of invariant ellipsoid is presented. The main contribution with respect to
[10, 56] is to provide a new type of controller, that uses interpolation.

It is assumed that a set of asymptotically stabilizing saturated controllers u =
sat(Kix) is available such that the corresponding ellipsoidal invariant sets E(Pi)

E(Pi) = {
x ∈ R

n : xT P −1
i x ≤ 1

}
(4.88)

are non-empty for i = 1,2, . . . , s. Recall that for all x(k) ∈ E(Pi), it follows that
sat(Kix) ∈ U and x(k + 1) = Ax(k) + B sat(Kix(k)) ∈ X. Denote ΩE ⊂R

n as the
convex hull of E(Pi), i = 1,2, . . . , s. It follows that ΩE ⊆ X, since X is convex and
E(Pi) ⊆ X, i = 1,2, . . . , s.

Any state x(k) ∈ ΩE can be decomposed as,

x(k) =
s∑

i=1

λi(k)̂xi(k) (4.89)
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where x̂i (k) ∈ E(Pi) and λi(k) are interpolating coefficients, that satisfy

s∑
i=1

λi(k) = 1, λi(k) ≥ 0

Consider the following control law,

u(k) =
s∑

i=1

λi(k) sat
(
Kix̂i(k)

)
(4.90)

where sat(Kix̂i(k)) is the saturated control law in E(Pi).

Theorem 4.13 The control law (4.89), (4.90) guarantees recursive feasibility for
all initial conditions x(0) ∈ ΩE .

Proof One has to prove that u(k) ∈ U and x(k + 1) = Ax(k) + Bu(k) ∈ ΩE for all
x(k) ∈ ΩE . For the input constraints, from equation (4.90) and since sat(Kix̂i(k)) ∈
U , it follows that u(k) ∈ U .

For the state constraints, it holds that,

x(k + 1) = Ax(k) + Bu(k)

= A

s∑
i=1

λi(k)̂xi(k) + B

s∑
i=1

λi(k) sat(Kix̂i(k))

=
s∑

i=1

λi(k)(Ax̂i(k) + B sat(Kix̂i(k)))

One has Ax̂i(k) + B sat(Kix̂i(k)) ∈ E(Pi) ⊆ ΩE , i = 1,2, . . . , s, which ultimately
assures that x(k + 1) ∈ ΩE . �

As in Sects. 4.5 and 4.6, the first high gain controller will be used for the perfor-
mance, while the rest of available low gain controllers will be used to enlarge the
domain of attraction. For a given current state x, consider the following optimization
problem,

λ∗
i = min

x̂i ,λi

{
s∑

i=2

λi

}
(4.91)
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subject to ⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

x̂T
i P −1

i x̂i ≤ 1, ∀i = 1,2, . . . , s,

s∑
i=1

λix̂i = x,

s∑
i=1

λi = 1,

λi ≥ 0, ∀i = 1,2, . . . , s

Theorem 4.14 The control law (4.89), (4.90), (4.91) guarantees asymptotic stabil-
ity for all initial states x(0) ∈ ΩE .

Proof Consider the following non-negative function,

V (x) =
s∑

i=2

λ∗
i (k) (4.92)

for all x ∈ ΩE \ E(P1). V (x) is a Lyapunov function candidate.
For any x(k) ∈ ΩE \ E(P1), by solving the optimization problem (4.91) and by

applying (4.89), (4.90), one obtains

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

x(k) =
s∑

i=1

λ∗
i (k)̂x∗

i (k)

u(k) =
s∑

i=1

λ∗
i (k) sat(Kix̂

∗
i (k))

It follows that,

x(k + 1) = Ax(k) + Bu(k) = A

s∑
i=1

λ∗
i (k)̂x∗

i (k) + B

s∑
i=1

λ∗
i (k) sat(Kix̂

∗
i (k))

=
s∑

i=1

λ∗
i (k)̂xi(k + 1)

where x̂i (k + 1) = Ax̂∗
i (k) + B sat(Kix̂

∗
i (k)) ∈ E(Pi), ∀i = 1,2, . . . , s. Hence

λ∗
i (k), ∀i = 1,2, . . . , s is a feasible solution of (4.91) at time k + 1.

At time k + 1, by soling the optimization problem (4.91), one obtains

x(k + 1) =
s∑

i=1

λ∗
i (k + 1)̂x∗

i (k + 1)
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where x̂∗
i (k + 1) ∈ E(Pi). It follows that

∑s
i=2 λ∗

i (k + 1) ≤ ∑s
i=2 λ∗

i (k) and V (x)

is a non-increasing function.
The contractive property of the ellipsoids E(Pi), i = 1,2, . . . , s assures that there

is no initial condition x(0) ∈ ΩE \ E(P1) such that
∑s

i=2 λ∗
i (k + 1) = ∑s

i=2 λ∗
i (k)

for sufficiently large and finite k. It follows that V (x) = ∑s
i=2 λ∗

i (k) is a Lyapunov
function for all x ∈ ΩE \ E(P1).

The proof is completed by noting that inside E(P1), λ1 = 1 and λi = 0, i =
2,3, . . . , s, the saturated controller u = sat(K1x̂) is contractive and thus the control
laws (4.89), (4.90), (4.91) assures asymptotic stability for all x ∈ ΩE . �

Denote ri = λix̂i . Since x̂i ∈ E(Pi), it follows that ri ∈ λiE(Pi), and hence
rT
i P −1

i ri ≤ λ2
i . The non-linear optimization problem (4.91) can be rewritten as,

min
ri ,λi

{
s∑

i=2

λi

}
(4.93)

subject to

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

rT
i P −1

i ri ≤ λ2
i , ∀i = 1,2, . . . , s,

s∑
i=1

ri = x,

s∑
i=1

λi = 1, λi ≥ 0, ∀i = 1,2, . . . , s

By using the Schur complements, (4.93) is converted into the following LMI prob-
lem,

min
ri ,λi

{
s∑

i=2

λi

}
(4.94)

subject to ⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

[
λi rT

i

ri λiPi

]
� 0, ∀i = 1,2, . . . , s,

s∑
i=1

ri = x,

s∑
i=1

λi = 1, λi ≥ 0, ∀i = 1,2, . . . , s
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Algorithm 4.4 Interpolating control—Convex hull of ellipsoids
1. Measure the current state x(k).
2. Solve the LMI problem (4.94).
3. Apply as input the control signal (4.90).
4. Wait for the next time instant k := k + 1.
5. Go to step 1 and repeat.

Remark 4.12 It is worth noticing that for all x(k) ∈ E(P1), the LMI problem (4.94)
has the trivial solution,

λi = 0, ∀i = 2,3, . . . , s

Hence λ1 = 1 and x = x̂1. In this case, the interpolating controller becomes the
saturated controller u = sat(K1x).

Example 4.6 Consider again the system in Example 4.1 with the same state and
control constraints. Three gain matrices are chosen as,⎧⎪⎪⎨

⎪⎪⎩
K1 = [−0.9500 −1.1137],
K2 = [−0.4230 −2.0607],
K3 = [−0.5010 −2.1340]

(4.95)

Fig. 4.24 Invariant ellipsoids
and state trajectories of the
closed loop system for
Example 4.6
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Fig. 4.25 State trajectory,
input trajectory and the sum
(λ∗

2 + λ∗
3) of the closed loop

system for Example 4.6

By solving the LMI problem (2.55) three invariant ellipsoids E(P1), E(P2),
E(P3) are computed corresponding to the saturated controllers u = sat(K1x),
u = sat(K2x) and u = sat(K3x). The sets E(P1), E(P2), E(P3) and their convex
hull are depicted in Fig. 4.24(a). Figure 4.24(b) shows state trajectories for different
initial conditions.

The matrices P1, P2 and P3 are,

P1 =
[

42.27 2.82
2.82 4.80

]
, P2 =

[
100.00 −3.10
−3.10 8.12

]
, P3 =

[
100.00 −19.40
−19.40 9.54

]

For the initial condition x(0) = [−0.64 −2.8]T , using Algorithm 4.4, Fig. 4.25
presents the state and input trajectories and the sum (λ∗

2 + λ∗
3). As expected, the

sum (λ∗
2 + λ∗

3), i.e. the Lyapunov function is positive and non-increasing.
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