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Preface

A fundamental problem in automatic control is the control of uncertain and/or time-
varying plants with input and state or output constraints. Most elegantly, and theo-
retically most satisfying, the problem is solved by optimal control which, however,
rarely gives a feedback solution, and oftentimes only a numerical solutions.

Therefore, in practice, the problem has seen many ad-hoc solutions, such as over-
ride control, anti-windup. Another solution, that has become popular during the last
decades is Model Predictive Control (MPC) where an optimal control problem is
solved at each sampling instant, and the element of the control vector meant for the
nearest sampling interval is applied. In spite of the increased computational power
of control computers, MPC is at present mainly suitable for low-order, nominally
linear systems. The robust version of MPC is conservative and computationally
complicated, while the explicit version of MPC that gives a piecewise affine state
feedback solution involves a very complicated division of the state space into poly-
hedral cells.

In this book a novel and computationally cheap solution is presented for un-
certain and/or time-varying linear discrete-time systems with polytopic bounded
control and state (or output) vectors, with bounded disturbances. The approach
is based on the interpolation between a stabilizing, outer low-gain controller that
respects the control and state constraints, and an inner, high-gain controller, de-
signed by any method that has its robustly positively invariant set satisfying the
constraints. A simple Lyapunov function is used for the proof of closed loop stabil-
ity.

In contrast to MPC, the new interpolating controller is not necessarily employ-
ing an optimization criterion inspired by performance. In its explicit form, the cell
partitioning is considerable simpler that the MPC counterpart. For the implicit ver-
sion, the on-line computational demand can be restricted to the solution of at most
two linear programming problems or one quadratic programming problem or one
semi-definite programming problem.

Several simulation examples are given, including uncertain linear systems with
output feedback and disturbances. Some examples are compared with MPC. It is

vii
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believed that the new controller might see wide-spread use in industry, including
the automotive industry, also for the control of fast, high-order systems with con-
straints.

Hoai-Nam NguyenHaifa, Israel
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Notation1

Sets
R Set of real number
R+ Set of nonnegative real number
R

n Set of real vectors with n elements
R

n×m Set of real matrices with n rows and m columns

Algebraic Operators
AT Transpose of matrix A

A−1 Inverse of matrix A

A � (�)0 Positive (semi)definite matrix
A ≺ (�)0 Negative (semi)definite matrix

Set Operators
P1 ∩ P2 Set intersection
P1 ⊕ P2 Minkowski sum
P1 � P2 Pontryagin difference
P1 ⊆ P2 P1 is a subset of P2

P1 ⊂ P2 P1 is a strict subset of P2

P1 ⊇ P2 P1 is a superset of P2

P1 ⊃ P2 P1 is a strict superset of P2

∂P The boundary of P

Int(P ) The interior of P

Projx(P ) The orthogonal projection of the set P onto the x space

Others
I Identity matrix of appropriate dimension
1 Matrix of ones of appropriate dimension
0 Matrix of zeros of appropriate dimension

1The conventions and the notations used in the book are classical for the control literature. A short
description is provided in the following.
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Acronyms
LMI Linear Matrix Inequality
LP Linear Programming
QP Quadratic Programming
LQR Linear Quadratic Regulator
LTI Linear Time Invariant
LPV Linear Parameter Varying
PWA PieceWise Affine



Chapter 1
Introduction

Constraints are encountered practically in all real-world control problems. The pres-
ence of constraints leads to theoretical and computational challenges. From the con-
ceptual point of view, constraints can have different nature. Basically, there are two
types of constraints imposed by physical limitation and/or performance desiderata.

Physical constraints are due to the physical limitations of the mechanical, elec-
trical, biological, etc controlled systems. The input and output constraints must be
fulfilled to avoid over-exploitation or damage. In addition, the constraint violation
may lead to degraded performance, oscillations or even instability.

Performance constraints are introduced by the designer for guaranteeing perfor-
mance requirements, e.g. transient time, transient overshoot, etc.

The constrained control problem becomes even more challenging in the presence
of model uncertainties which is unavoidable in practice [1, 117]. It is generally
accepted that a key reason of using feedback is to diminish the effects of uncertainty
which may appear in different forms as disturbances or as other inadequacies in the
models used to design the feedback law. Model uncertainty and robustness have
been a central theme in the development of the field of automatic control [8].

A straightforward way to stabilize a system with input constraints is to perform
the control design disregarding the constraints, then an adaptation of the control
law is considered with respect to input saturation. Such an approach is called anti-
windup [73, 123, 124, 132].

Over the last decades, the research on constrained control topics has developed
to the degree that constraints can be taken into account during the synthesis phase.
By its principle, model predictive control (MPC) approach shows its importance
on dealing with constraints [2, 30, 34, 47, 48, 88, 92, 107]. In MPC, a sequence
of predicted optimal control values over a finite prediction horizon is computed for
optimizing the performance of the controlled system, expressed in terms of a cost
function. Then only the first element of the optimal sequence is actually applied to
the system and the entire optimization is repeated at the next time instant with the
new state measurement [4, 88, 92].

In MPC, with a linear model, polyhedral constraints, and a quadratic cost, the re-
sulting optimization problem is a quadratic programming (QP) problem [37, 104].

H.-N. Nguyen, Constrained Control of Uncertain, Time-Varying, Discrete-Time Systems,
Lecture Notes in Control and Information Sciences 451,
DOI 10.1007/978-3-319-02827-9_1,
© Springer International Publishing Switzerland 2014
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2 1 Introduction

Solving the QP problem can be computationally costly, specially when the predic-
tion horizon is large, and this has traditionally limited MPC to applications with
relatively low complexity/sampling interval ratio [3].

In the last decade, attempts have been made to use predictive control in fast pro-
cesses. In [20, 100, 101, 127] it was shown that the constrained linear MPC is equiv-
alent to a multi-parametric optimization problem, where the state plays the role of
a vector of parameters. The solution is a piecewise affine function of the state over
a polyhedral partition of the state space, and the computational effort of MPC is
moved off-line. This control law is called explicit MPC. However, explicit MPC also
has disadvantages. Obtaining the explicit optimal MPC solution requires to solve an
off-line parametric optimization problem, which is NP-hard. Although the problem
is tractable and practically solvable for several interesting control applications, the
off-line computational effort grows exponentially fast as the problem size increases
[61, 62, 77–79].

In [131], it was shown that the on-line computation is preferable for high dimen-
sional systems where significant reduction of the computational complexity can be
achieved by exploiting the particular structure of the optimization problem as well
as by early stopping and warm-starting from a solution obtained at the previous
time-step. The same reference mentioned that for models of more than five dimen-
sions the explicit solution might be impractical. It is worth mentioning that approx-
imate explicit solutions have been investigated to go beyond this ad-hoc limitation
[18, 60, 114].

Note that as its name says, most traditional implicit and explicit MPC approaches
are based on mathematical models which invariably present a mismatch with respect
to the physical systems. The robust MPC is meant to address both model uncertainty
and disturbances. However, the robust MPC presents great conservativeness and/or
on-line computational burden [21, 35, 74, 81, 84].

The use of interpolation in constrained control in order to avoid very complex
control design procedures is well known in the literature. There is a long line of
developments on these topics generally closely related to MPC, see for example
[10, 102, 108–110], where interpolation between input sequences, state trajectories,
different feedback gains with associated invariant sets can be found.

The vertex control law can be considered also as an interpolation approach based
on the admissible control values, assumed to be available for the vertices of a poly-
hedral positively invariant set CN in the state space [23, 53]. A weakness of vertex
control is that the full control range is exploited only on the border of CN , and
hence the time to regulate the plant to the origin is much longer than e.g. by time-
optimal control. A way to overcome this shortcoming is to switch to another, more
aggressive, local controller near the origin in the state space, e.g. a state feedback
controller u = Kx, when the state reaches the Maximal Admissible Set (MAS) of
the local controller. The disadvantage of such a switching-based solution is that the
control action becomes non-smooth [94].

The aim of this book is to propose an alternative to MPC. The book gives a
comprehensive development of the novel Interpolating Control (IC) of the regula-
tion problem for linear, time-invariant, discrete-time uncertain dynamical systems
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with polyhedral state space, and polyhedral control constraints, with and without
disturbances, under state- or output feedback. For output feedback a non-minimal
state-space representation is used with old inputs and outputs as state variables.

The book is structured in three parts. The first part includes background material
and the theoretical foundation of the work. Beyond a briefly review of the area, some
new results on estimating the domain of attraction are provided.

The second part contains the main body of the book, with three chapters on in-
terpolating control that addresses nominal state feedback, robust state feedback and
output feedback, respectively. The IC is given in both its implicit form, where at
most two LP-problems or one QP-problem or one semi-definite problem are solved
on-line at each sampling instant to yield the value of the control variable, and in
its explicit form where the control law is shown to be piecewise affine in the state,
whereby the state space is partitioned in polyhedral cells and whereby at each sam-
pling interval it has to be determined to which cell the measured state belongs. The
interpolation in IC is performed between constraint-aware low-gain feedback strate-
gies in order to respect the constraints, and a user-chosen performance control law
in its MAS surrounding the origin.

Thus, IC is composed by an outer control law (the interpolated control) near the
boundaries of the allowed state set whose purpose is to make the state enter the
MAS rapidly (but not necessarily time-optimally) without violating any constraints,
and the inner user-chosen control law in its MAS whose purpose is performance
according to the user’s choice.

Novel proofs of recursive feasibility and asymptotic stability of the Vertex Con-
trol law, and of the Interpolating Control law are given. Algorithms for Implicit and
Explicit IC are presented in such a way that the reader may easily realize them.

Each chapter includes illustrative examples, and comparisons with MPC. It is
demonstrated that the computation complexity of IC is considerably lower than that
of MPC, in particular for high-order systems, and systems with uncertainty, although
the performance is similar except in those cases when an MPC solution cannot be
found.

In the last part of the book two high order examples as well as a benchmark
problem of robust MPC are reported in order to illustrate some practical aspects of
the proposed methods.
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Chapter 2
Set Theoretic Methods in Control

2.1 Set Terminology

For completeness, some standard definitions of set terminology will be introduced.
For a detailed reference, the reader is referred to the book [72].

Definition 2.1 (Closed set) A set S ⊆ R
n is closed if it contains its own boundary.

In other words, any point outside S has a neighborhood disjoint from S.

Definition 2.2 (Closure of a set) The closure of a set S ⊆ R
n is the intersection of

all closed sets containing S.

Definition 2.3 (Bounded set) A set S ⊂ R
n is bounded if it is contained in some

ball BR = {x ∈R
n : ‖x‖2 ≤ ε} of finite radius ε > 0.

Definition 2.4 (Compact set) A set S ⊂ R
n is compact if it is closed and bounded.

Definition 2.5 (Support function) The support function of a set S ⊂ R
n, evaluated

at z ∈ R
n is defined as

φS(z) = sup
x∈S

{
zT x

}

2.2 Convex Sets

2.2.1 Basic Definitions

The fact that convexity is a more important property than linearity has been rec-
ognized in several domains, the optimization theory being maybe the best example
[31, 106]. We provide in this section a series of definitions which will be useful in
the sequel.

H.-N. Nguyen, Constrained Control of Uncertain, Time-Varying, Discrete-Time Systems,
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8 2 Set Theoretic Methods in Control

Definition 2.6 (Convex set) A set S ⊂ R
n is convex if it holds that, ∀x1 ∈ S and

∀x2 ∈ S,

αx1 + (1 − α)x2 ∈ S, ∀α ∈ [0,1]

The point

x = αx1 + (1 − α)x2

where 0 ≤ α ≤ 1 is called a convex combination of the pair {x1, x2}. The set of all
such points is the line segment connecting x1 and x2. Obviously, a set S is convex if
a segment between any two points in S lies in S.

Definition 2.7 (Convex function) A function f : S → R with a convex set S ⊆ R
n

is convex if and only if, ∀x1 ∈ S, ∀x2 ∈ S and ∀α ∈ [0,1],
f
(
αx1 + (1 − α)x2

)≤ αf (x1) + (1 − α)f (x2)

Definition 2.8 (C-set) A set S ⊂ R
n is a C-set if it is a convex and compact set,

containing the origin in its interior.

Definition 2.9 (Convex hull) The convex hull of a set S ⊂ R
n is the smallest convex

set containing S.

It is well known [133] that for any finite set S = {s1, s2, . . . , sr }, where si ∈ R
n,

i = 1,2, . . . , r , the convex hull of S is given by

Convex Hull(S) =
{

s ∈ R
n : s =

r∑

i=1

αisi : ∀si ∈ S

}

where
∑r

i=1 αi = 1 and αi ≥ 0, i = 1,2, . . . , r .

2.2.2 Ellipsoidal Set

Ellipsoidal sets or ellipsoids are one of the famous classes of convex sets. Ellipsoids
represent a large category used in the study of dynamical systems due to their simple
numerical representation [32, 75]. Next we provide a formal definition for ellipsoids
and a few properties.

Definition 2.10 (Ellipsoidal set) An ellipsoid E(P,x0) ⊂ R
n with center x0 and

shape matrix P is a set of the form,

E(P,x0) = {x ∈R
n : (x − x0)

T P −1(x − x0) ≤ 1
}

(2.1)

where P ∈ R
n×n is a positive definite matrix.
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If x0 = 0 then it is possible to write,

E(P ) = {x ∈R
n : xT P −1x ≤ 1

}
(2.2)

Define Q = √
P as the Cholesky factor of matrix P , which satisfies

QT Q = QQT = P

With matrix Q, it is possible to show an alternative dual representation of ellip-
soid (2.1)

D(Q,x0) = {x ∈ R
n : x = x0 + Qz

}

where z ∈R
n such that zT z ≤ 1.

Ellipsoids are probably the most commonly used in the control field since
they are associated with powerful tools such as Linear Matrix Inequalities (LMI)
[32, 112]. When using ellipsoids, almost all the control optimization problems can
be reduced to the optimization of a linear function under LMI constraints. This op-
timization problem is convex and is by now a powerful design tool in many control
applications.

A linear matrix inequality is a condition of the type [32, 112],

F(x) � 0

where x ∈ R
n is a vector variable and

F(x) = F0 +
n∑

i=1

Fixi

with symmetric matrices Fi ∈R
m×m.

LMIs can either be understood as feasibility conditions or constraints for opti-
mization problems. Optimization of a linear function over LMI constraints is called
semi-definite programming, which is considered as an extension of linear program-
ming. Nowadays, a major benefit in using LMIs is that for solving an LMI prob-
lem, several polynomial time algorithms were developed and implemented in free
available software packages, such as LMI Lab [43], YALMIP [87], CVX [49],
SEDUMI [121], etc.

The Schur complements are a very useful tool for manipulating matrix inequali-
ties. The Schur complements state that the nonlinear conditions of the special forms,

{
P(x) � 0

P(x) − Q(x)T R(x)−1Q(x) � 0
(2.3)

or
{

R(x) � 0

R(x) − Q(x)P (x)−1Q(x)T � 0
(2.4)
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can be equivalently written in the LMI form,
[

P(x) Q(x)T

Q(x) R(x)

]
� 0 (2.5)

The Schur complements allows one to convert certain nonlinear matrix inequal-
ities into a higher dimensional LMI. For example, it is well known [75] that the
support function of the ellipsoid E(P ), evaluated at the vector f ∈ R

n is,

φE(P )(z) =
√

f T Pf (2.6)

then clearly, E(P ) is a subset of the polyhedral set1 P(f,1), where

P(f,1) = {x ∈ R
n : ∣∣f T x

∣∣≤ 1
}

if and only if

f T Pf ≤ 1

or by using the Schur complements this condition can be rewritten as [32, 55],
[

1 f T P

Pf P

]
� 0 (2.7)

An ellipsoid E(P,x0) ⊂ R
n is uniquely defined by its matrix P and by its cen-

ter x0. Since matrix P is symmetric, the complexity of the representation (2.1) is

n(n + 1)

2
+ n = n(n + 3)

2

The main drawback of ellipsoids is however that having a fixed and symmetrical
structure they may be too conservative and this conservativeness is increased by the
related operations. It is well known [75] that2

• The convex hull of of a set of ellipsoids, in general, is not an ellipsoid.
• The sum of two ellipsoids is not, in general, an ellipsoid.
• The difference of two ellipsoids is not, in general, an ellipsoid.
• The intersection of two ellipsoids is not, in general, an ellipsoid.

2.2.3 Polyhedral Set

Polyhedral sets provide a useful geometrical representation for linear constraints
that appear in diverse fields such as control and optimization. In a convex setting,

1A rigorous definition of polyhedral sets will be given in Sect. 2.2.3.
2The reader is referred to [75] for the definitions of operations with ellipsoids.
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they provide a good compromise between complexity and flexibility. Due to their
linear and convex nature, the basic set operations are relatively easy to implement
[76, 129]. Principally, this is related to their dual (half-spaces/vertices) representa-
tion [33, 93] which allows choosing which formulation is best suited for a particular
problem. This section is started by recalling some theoretical concepts.

Definition 2.11 (Hyperplane) A hyperplane H(f,g) is a set of the form,

H(f,g) = {x ∈ R
n : f T x = g

}
(2.8)

where f ∈R
n, g ∈ R.

Definition 2.12 (Half-space) A closed half-space H (f, g) is a set of the form,

H (f, g) = {x ∈R
n : f T x ≤ g

}
(2.9)

where f ∈R
n, g ∈ R.

Definition 2.13 (Polyhedral set) A convex polyhedral set P(F,g) is a set of the
form,

P(F,g) = {x ∈ R
n : FT

i x ≤ gi, i = 1,2, . . . , n1
}

(2.10)

where FT
i ∈ R

n denotes the i-th row of the matrix F ∈ R
n1×n and gi is the i-th

component of the column vector g ∈R
n1 .

A polyhedral set contains the origin if and only if g ≥ 0, and includes the origin
in its interior if and only if g > 0.

Definition 2.14 (Polytope) A polytope is a bounded polyhedral set.

Definition 2.15 (Dimension of polytope) A polytope P(F,g) ⊂ R
n is of dimension

d ≤ n, if there exists a d-dimension ball with radius ε > 0 contained in P(F,g)

and there exists no (d + 1)-dimension ball with radius ε > 0 contained in P(F,g).
A polytope is full dimensional if d = n.

Definition 2.16 (Face, facet, vertex, edge) An (n−1)-dimensional face Fai of poly-
tope P(F,g) ⊂ R

n is defined as,

Fai = {x ∈ P : FT
i x = gi

}
(2.11)

and can be interpreted as the intersection between P and a non-redundant support-
ing hyperplane

Fai = P ∩ {x ∈R
n : FT

i x = gi

}
(2.12)

The non-empty intersection of two faces of dimension (n − r) with r = 0,1, . . . ,

n− 1 leads to the description of (n− r − 1)-dimensional face. The faces of P(F,g)

with dimension 0, 1 and (n − 1) are called vertices, edges and facets, respectively.
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Fig. 2.1 Exemplification for
the equivalent of half-space
and vertex representations of
polytopes

One of the fundamental properties of polytope is that it can be presented in half-
space representation as in Definition 2.13 or in vertex representation as

P(V ) =
{

x ∈R
n : x =

r∑

i=1

αivi

}

where vi ∈ R
n is the i-column of matrix V ∈ R

n×r ,
∑r

i=1 αi = 1 and αi ≥ 0, i =
1,2, . . . , r , see Fig. 2.1.

Note that the transformation from half-space (vertex) representation to vertex
(half-space) representation may be time-consuming with several well-known algo-
rithms: Fourier-Motzkin elimination [39], CDD [41], Equality Set Projection [64].

Recall that the expression x = ∑r
i=1 αivi with a given set of vectors {v1, v2,

. . . , vr} and
r∑

i=1

αi = 1, αi ≥ 0

is called the convex hull of the set {v1, v2, . . . , vr} and will be denoted as

x = Conv{v1, v2, . . . , vr}

Definition 2.17 (Simplex) A simplex S ⊂ R
n is an n-dimensional polytope, which

is the convex hull of n + 1 vertices.
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For example, a 2D-simplex is a triangle, a 3D-simplex is a tetrahedron, and a
4D-simplex is a pentachoron.

Definition 2.18 (Redundant half-space) For a given polytope P(F,g), the polyhe-
dral set P(F ,g) is defined by removing the i-th half-space FT

i from matrix F and
the corresponding component gi from vector g. The facet (F T

i , gi) is redundant if
and only if

gi < gi (2.13)

where

gi = max
x

{
FT

i x
}

s.t. x ∈ P(F ,g)

Definition 2.19 (Redundant vertex) For a given polytope P(V ), the polyhedral set
P(V ) is defined by removing the i-th vertex vi from the matrix V . The vertex vi is
redundant if and only if

pi < 1 (2.14)

where

pi = min
p

{
1T p

}
s.t.

{
V p = vi,

p ≥ 0

Definition 2.20 (Minimal representation) A half-space or vertex representation of
polytope P is minimal if and only if the removal of any facet or any vertex would
change P , i.e. there are no redundant facets or redundant vertices.

Clearly, a minimal representation of a polytope can be achieved by removing
from the half-space (vertex) representation all the redundant facets (vertices).

Definition 2.21 (Normalized representation) A polytope

P(F,g) = {x ∈ R
n : FT

i x ≤ gi, i = 1,2, . . . , n1
}

is in a normalized representation if it has the following property

FT
i Fi = 1, ∀i = 1,2, . . . , n1

A normalized full dimensional polytope has a unique minimal representation.
This fact is very useful in practice, since normalized full dimensional polytopes in
minimal representation allow us to avoid any ambiguity when comparing them.

Next, some basic operations on polytopes will be briefly reviewed. Note that al-
though the focus lies on polytopes, most of the operations described here are directly
or with minor changes applicable to polyhedral sets. Additional details on polytope
computation can be found in [42, 51, 133].
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Fig. 2.2 Minkowski sum and
Pontryagin difference of
polytopes

Definition 2.22 (Intersection) The intersection of two polytopes P1 ⊂ R
n, P2 ⊂ R

n

is a polytope,

P1 ∩ P2 = {x ∈ R
n : x ∈ P1, x ∈ P2

}

Definition 2.23 (Minkowski sum) The Minkowski sum of two polytopes P1 ⊂ R
n,

P2 ⊂ R
n is a polytope, see Fig. 2.2(a),

P1 ⊕ P2 = {x1 + x2 : x1 ∈ P1, x2 ∈ P2}

It is well known [133] that if P1 and P2 are given in vertex representation, i.e.

P1 = Conv{v11, v12, . . . , v1p},
P2 = Conv{v21, v22, . . . , v2q}

then their Minkowski sum can be computed as,

P1 ⊕ P2 = Conv{v1i + v2j }, ∀i = 1,2, . . . , p, ∀j = 1,2, . . . , q

Definition 2.24 (Pontryagin difference) The Pontryagin difference of two poly-
topes P1 ⊂ R

n, P2 ⊂ R
n is the polytope, see Fig. 2.2(b),

P1 � P2 = {x1 ∈ P1 : x1 + x2 ∈ P1,∀x2 ∈ P2}
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Fig. 2.3 Projection of a
2-dimensional polytope P

onto a line x1

Note that the Pontryagin difference is not the complement of the Minkowski sum.
For two polytopes P1 and P2, it holds only that (P1 � P2) ⊕ P2 ⊆ P1.

Definition 2.25 (Projection) Given a polytope P ⊂ R
n1+n2 , the orthogonal projec-

tion of P onto the x1-space R
n1 is defined as, see Fig. 2.3,

Projx1
(P ) = {x1 ∈R

n1 : ∃x2 ∈R
n2 such that

[
xT

1 xT
2

]T ∈ P
}

It is well known [133] that the Minkowski sum operation on polytopes in their
half-space representation is complexity-wise equivalent to a projection. Current pro-
jection methods for polytopes that can operate in general dimensions can be grouped
into four classes: Fourier elimination [66], block elimination [12], vertex based ap-
proaches and wrapping-based techniques [64].

Clearly, the complexity of the representation of polytopes is not a function of the
space dimension only, but it may be arbitrarily big. For the half-space (vertex) repre-
sentation, the complexity of the polytopes is a linear function of the number of rows
of the matrix F (the number of columns of the matrix V ). As far as the complexity
issue concerns, it is worth to be mentioned that none of these representations can
be regarded as more convenient. Apparently, one can define an arbitrary polytope
with relatively few vertices, however this may nevertheless have a surprisingly large
number of facets. This happens, for example when some vertices contribute to many
facets. And equally, one can define an arbitrary polytope with relatively few facets,
however this may have relatively many more vertices. This happens, for example
when some facets have many vertices [42].

The main advantage of the polytopes is their flexibility. It is well known [33] that
any convex body can be approximated arbitrarily close by a polytope. Particularly,
for a given bounded, convex and closed set S and for a given scalar 0 < ε < 1, then
there exists a polytope P such that,

(1 − ε)S ⊆ P ⊆ S

for an inner ε-approximation of the set S and

S ⊆ P ⊆ (1 + ε)S

for an outer ε-approximation of the set S.
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2.3 Set Invariance Theory

2.3.1 Problem Formulation

Consider the following uncertain and/or time-varying linear discrete-time system,

x(k + 1) = A(k)x(k) + B(k)u(k) + Dw(k) (2.15)

where x(k) ∈ R
n, u(k) ∈ R

m, w(k) ∈ R
d are, respectively the state, input and dis-

turbance vectors. The matrices A(k) ∈ R
n×n, B(k) ∈ R

n×m, D ∈ R
n×d . A(k) and

B(k) satisfy,

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

A(k) =
q∑

i=1

αi(k)Ai, B(k) =
q∑

i=1

αi(k)Bi

q∑

i=1

αi(k) = 1, αi(k) ≥ 0

(2.16)

where the matrices Ai , Bi , i = 1,2, . . . , q are the extreme realizations of A(k) and
B(k).

Theorem 2.1 A(k), B(k) given as,

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

A(k) =
q1∑

i=1

αi(k)Ai, B(k) =
q2∑

j=1

βj (k)Bj ,

q1∑

i=1

αi(k) = 1, αi(k) ≥ 0, ∀i = 1,2, . . . , q1,

q2∑

j=1

βj (k) = 1, βj (k) ≥ 0, ∀j = 1,2, . . . , q2

(2.17)

can be transformed into the form of (2.16).

Proof For simplicity, the case D = 0 is considered. One has,

x(k + 1) =
q1∑

i=1

αi(k)Aix(k) +
q2∑

j=1

βj (k)Bju(k)

=
q1∑

i=1

αi(k)Aix(k) +
q1∑

i=1

αi(k)

q2∑

j=1

βj (k)Bju(k)
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=
q1∑

i=1

αi(k)

{

Aix(k) +
q2∑

j=1

βj (k)Bju(k)

}

=
q1∑

i=1

αi(k)

{
q2∑

j=1

βj (k)Aix(k) +
q2∑

j=1

βj (k)Bju(k)

}

=
q1∑

i=1

αi(k)

q2∑

j=1

βj (k)
{
Aix(k) + Bju(k)

}

=
q1∑

i=1

q2∑

j=1

αi(k)βj (k)
{
Aix(k) + Bju(k)

}

Consider the polytope Qc whose vertices are obtained by taking all possible com-
binations of {Ai,Bj } with i = 1,2, . . . , q1 and j = 1,2, . . . , q2. Since

q1∑

i=1

q2∑

j=1

αi(k)βj (k) =
q1∑

i=1

αi(k)

q2∑

j=1

βj (k) = 1

it follows that {A(k),B(k)} can be expressed as a convex combination of the vertices
of Qc. �

The state, the control and the disturbance are subject to the following polytopic
constraints,

⎧
⎪⎪⎨

⎪⎪⎩

x(k) ∈ X, X = {x ∈ R
n : Fxx ≤ gx

}

u(k) ∈ U, U = {u ∈ R
m : Fuu ≤ gu

}

w(k) ∈ W, W = {w ∈R
d : Fww ≤ gw

}
(2.18)

where the matrices Fx , Fu, Fw and the vectors gx , gu, gw are assumed to be constant
with gx > 0, gu > 0, gw > 0 such that the origin is contained in the interior of X,
U and W . Here the inequalities are element-wise.

The aim of this section is to briefly review the set invariance theory, whose defi-
nitions are reported in the next subsection.

2.3.2 Basic Definitions

The relationship between the dynamic (2.15) and constraints (2.18) leads to the
introduction of invariance/viability concepts [9, 28]. First we consider the case when
no inputs are present,

x(k + 1) = A(k)x(k) + Dw(k) (2.19)
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Definition 2.26 (Robustly positively invariant set) [24, 67] The set Ω ⊆ X is ro-
bustly positively invariant for system (2.19) if and only if, ∀x(k) ∈ Ω , ∀w(k) ∈ W ,

x(k + 1) = A(k)x(k) + Dw(k) ∈ Ω

Hence if the state x(k) reaches Ω , it will remain inside Ω in spite of distur-
bance w(k). The term positively refers to the fact that only forward evolutions of
system (2.19) are considered and will be omitted in future sections for brevity.

The maximal robustly invariant set Ωmax ⊆ X is a robustly invariant set, that
contains all the robustly invariant sets contained in X.

A concept similar to invariance, but with possibly stronger requirements, is the
concept of contractivity introduced in the following definition.

Definition 2.27 (Robustly contractive set) [24, 67] For a given 0 ≤ λ ≤ 1, the
set Ω ⊆ X is robustly λ-contractive for system (2.19) if and only if, ∀x(k) ∈ Ω ,
∀w(k) ∈ W ,

x(k + 1) = A(k)x(k) + Dw(k) ∈ λΩ

Other useful definitions which will be used in the sequence are reported next.

Definition 2.28 (Robustly controlled invariant set and admissible control) [24, 67]
The set C ⊆ X is robustly controlled invariant for the system (2.15) if for all
x(k) ∈ C, there exists a control value u(k) ∈ U such that, ∀w(k) ∈ W ,

x(k + 1) = A(k)x(k) + B(k)u(k) + Dw(k) ∈ C

Such a control action is called admissible.

The maximal robustly controlled invariant set Cmax ⊆ X is a robustly controlled
invariant set and contains all the robust controlled invariant sets contained in X.

Definition 2.29 (Robustly controlled contractive set) [24, 67] For a given 0 ≤ λ ≤ 1
the set C ⊆ X is robustly controlled contractive for the system (2.15) if for all
x(k) ∈ C, there exists a control value u(k) ∈ U such that, ∀w(k) ∈ W ,

x(k + 1) = A(k)x(k) + B(k)u(k) + Dw(k) ∈ λC

Note that in Definition 2.27 and Definition 2.29 if λ = 1 we will, respectively
retrieve the robustly invariance and robustly controlled invariance.

2.3.3 Ellipsoidal Invariant Sets

In this subsection, ellipsoids will be used for set invariance description. For sim-
plicity, the case of vanishing disturbances is considered. In other words, the system
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under consideration is,

x(k + 1) = A(k)x(k) + B(k)u(k) (2.20)

It is assumed that the state and control constraints are symmetric,
{

x(k) ∈ X,X = {x : ∣∣FT
i x
∣∣≤ 1

}
, ∀i = 1,2, . . . , n1

u(k) ∈ U,U = {u : |uj | ≤ ujmax}, ∀j = 1,2, . . . ,m
(2.21)

where ujmax is the j -component of vector umax ∈R
m.

Consider now the problem of checking robustly controlled invariance. The set
E(P ) = {x ∈ R

n : xT P −1x ≤ 1} is controlled invariant if and only if for all
x ∈ E(P ) there exists an input u = Φ(x) ∈ U such that,

(
Aix + BiΦ(x)

)T
P −1(Aix + BiΦ(x)

)≤ 1, ∀i = 1,2, . . . , q (2.22)

One possible choice for u = Φ(x) is a linear controller u = Kx. By defining
Aci = Ai + BiK with i = 1,2, . . . , q , condition (2.22) is equivalent to,

xT AT
ciP

−1Acix ≤ 1, ∀i = 1,2, . . . , q (2.23)

It is well known [29] that for the linear system (2.20), it is sufficient to check con-
dition (2.23) for all x on the boundary of E(P ), i.e. for all x such that xT P −1x = 1.
Therefore (2.23) can be transformed into,

xT AT
ciP

−1Acix ≤ xT P −1x, ∀i = 1,2, . . . , q

or equivalently,

AT
ciP

−1Aci � P −1, ∀i = 1,2, . . . , q

By using the Schur complements, this condition can be rewritten as,
[
P −1 AT

ci

Aci P

]
� 0, ∀i = 1,2, . . . , q

The condition provided here is not linear in P . By using the Schur complements
again, one gets,

P − AciPAT
ci � 0, ∀i = 1,2, . . . , q

or
[

P AciP

PAT
ci P

]
� 0, ∀i = 1,2, . . . , q

By substituting Aci = Ai + BiK , i = 1,2, . . . , q , one obtains,
[

P AiP + BiKP

PAT
i + PKT BT

i P

]
� 0, ∀i = 1,2, . . . , q (2.24)
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Though this condition is nonlinear, since P and K are the unknowns. Still it can
be re-parameterized into a linear condition by setting Y = KP . Condition (2.24)
becomes,

[
P AiP + BiY

PAT
i + YT BT

i P

]
� 0, ∀i = 1,2, . . . , q (2.25)

Condition (2.25) is necessary and sufficient for ellipsoid E(P ) with the linear con-
troller u = Kx to be robustly invariant. Concerning the constraints (2.21), using
equation (2.7) it follows that,

• The state constraints are satisfied if E(P ) ⊆ X, or,
[

1 FT
i P

PFi P

]
� 0, ∀i = 1,2, . . . , n1 (2.26)

• The input constraints are satisfied if E(P ) ⊆ Xu where,

Xu = {x ∈R
n : ∣∣Kjx

∣∣≤ ujmax
}
, j = 1,2, . . . ,m

and Kj is the j -row of the matrix K ∈R
m×n, hence,

[
u2

jmax KjP

PKT
j P

]

� 0,

Since Yj = KjP where Yj is the j -row of the matrix Y ∈ Rm×n, it follows that,

[
u2

jmax Yj

Y T
j P

]

� 0 (2.27)

Define a vector Tj ∈ R
m as,

Tj = [0 0 . . . 0 1︸︷︷︸
j -th position

0 . . . 0 0]

Since Yj = TjY , equation (2.27) can be transformed into,

[
u2

jmax TjY

YT T T
j P

]

� 0 (2.28)

It is generally desirable to have the largest ellipsoid among the ones satisfying
conditions (2.25), (2.26), (2.28). In the literature [55, 125], the size of ellipsoid
E(P ) is usually measured by the determinant or the trace of matrix P . Here the trace
of matrix P is chosen due to its linearity. The trace of a square matrix is defined to
be the sum of the elements on the main diagonal of the matrix. Maximization of the
trace of matrices corresponds to the search for the maximal sum of eigenvalues of
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matrices. With the trace of matrix as the objective function, the problem of choosing
the largest robustly invariant ellipsoid can be formulated as,

J = max
P,Y

{
trace(P )

}
(2.29)

subject to

• Invariance condition (2.25).
• Constraints satisfaction (2.26), (2.28).

It is clear that the solution P , Y of problem (2.29) may lead to the controller
K = YP −1 such that the closed loop system with matrix Ac(k) = A(k) + B(k)K is
at the stability margin. In other words, the ellipsoid E(P ) thus obtained might not
be contractive (although being invariant). Indeed, the system trajectories might not
converge to the origin. In order to ensure x(k) → 0 as k → ∞, it is required that for
all x ∈ E(P ), to have

(
Aix + BiΦ(x)

)T
P −1(Aix + BiΦ(x)

)
< 1, ∀i = 1,2, . . . , q

With the same argument as above, one can conclude that an ellipsoid E(P ) with a
linear controller u = Kx is robustly contractive if the following set of LMI condi-
tions is satisfied,

[
P AiP + BiY

PAT
i + YT BT

i P

]
� 0, ∀i = 1,2, . . . , q (2.30)

where Y = KP .
It should be noted that condition (2.30) is the same as (2.25), except that condi-

tion (2.30) requires the left hand side to be a strictly positive matrix.

2.3.4 Polyhedral Invariant Sets

The problem of set invariance description using polyhedral sets is addressed in this
subsection. With linear constraints on the state and the control vectors, polyhedral
invariant sets are preferred to ellipsoidal invariant sets, since they offer a better ap-
proximation of the domain of attraction [22, 38, 54]. To begin, let us consider the
case, when the control input is of the form u(k) = Kx(k). Then the system (2.15)
becomes,

x(k + 1) = Ac(k)x(k) + Dw(k) (2.31)

where

Ac(k) = A(k) + B(k)K = Conv{Aci} (2.32)

with Aci = Ai + BiK , i = 1,2, . . . , q .
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The state constraints of the system (2.31) are,

x ∈ Xc, Xc = {x ∈R
n : Fcx ≤ gc

}
(2.33)

where

Fc =
[

Fx

FuK

]
, gc =

[
gx

gu

]

The following definition plays an important role in computing robustly invariant sets
for system (2.31) with constraints (2.33).

Definition 2.30 (Pre-image set) For the system (2.31), the one step admissible pre-
image set of the set Xc is a set X

(1)
c ⊆ Xc such that for all x ∈ X

(1)
c , it holds that,

∀w ∈ W ,

Acix + Dw ∈ Xc, ∀i = 1,2, . . . , q

The pre-image set X
(1)
c can be computed as [23, 27],

X(1)
c =

{
x ∈ Xc : FcAcix ≤ gc − max

w∈W
{FcDw}, i = 1,2, . . . , q

}
(2.34)

Example 2.1 Consider the following uncertain and time-varying system,

x(k + 1) = A(k)x(k) + Bu(k) + Dw(k)

where

A(k) = α(k)A1 + (1 − α(k)
)
A2, 0 ≤ α(k) ≤ 1,

A1 =
[

1.1 1
0 1

]
, A2 =

[
0.6 1
0 1

]
, B =

[
0
1

]
, D =

[
1 0
0 1

]

The constraints (2.18) have the particular realization given by the matrices,

Fx =

⎡

⎢
⎢
⎣

1 0
0 1

−1 0
0 −1

⎤

⎥
⎥
⎦ , gx =

⎡

⎢
⎢
⎣

3
3
3
3

⎤

⎥
⎥
⎦ , Fw =

⎡

⎢
⎢
⎣

1 0
0 1

−1 0
0 −1

⎤

⎥
⎥
⎦ , gw =

⎡

⎢
⎢
⎣

0.2
0.2
0.2
0.2

⎤

⎥
⎥
⎦ ,

Fu =
[

1
−1

]
, gu =

[
2
2

]

The controller is chosen as,

K = [−0.3856 −1.0024]
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The closed loop matrices are,

Ac1 =
[

1.1000 1.0000
−0.3856 −0.0024

]
, Ac2 =

[
0.6000 1.0000

−0.3856 −0.0024

]

The set Xc = {x ∈ R
2 : Fcx ≤ gc} is,

Fc =

⎡

⎢⎢⎢⎢⎢
⎢
⎣

1.0000 0
0 1.0000

−1.0000 0
0 −1.0000

−0.3856 −1.0024
0.3856 1.0024

⎤

⎥⎥⎥⎥⎥
⎥
⎦

, gc =

⎡

⎢⎢⎢⎢⎢
⎢
⎣

3.0000
3.0000
3.0000
3.0000
2.0000
2.0000

⎤

⎥⎥⎥⎥⎥
⎥
⎦

By solving the LP problem (2.13), it follows that the second and the fourth inequal-
ities of Xc, i.e. [0 1]x ≤ 3 and [0 −1]x ≤ 3, are redundant. After eliminating the
redundant inequalities and normalizing the half-space representation, the set Xc is
given as,

Xc = {x ∈ R
2 : F̂cx ≤ ĝc

}

where

F̂c =

⎡

⎢⎢
⎣

1.0000 0
−1.0000 0
−0.3590 −0.9333
0.3590 0.9333

⎤

⎥⎥
⎦ , ĝc =

⎡

⎢⎢
⎣

3.0000
3.0000
0.9311
0.9311

⎤

⎥⎥
⎦

Using (2.34), the one step admissible pre-image set X1
c of Xc is defined as,

X(1)
c =

⎧
⎪⎨

⎪⎩
x ∈R

2 :
⎡

⎢
⎣

F̂c

F̂cA1

F̂cA2

⎤

⎥
⎦x ≤

⎡

⎢
⎣

ĝc

ĝc − maxw∈W {F̂cw}
ĝc − maxw∈W {F̂cw}

⎤

⎥
⎦

⎫
⎪⎬

⎪⎭
(2.35)

After removing redundant inequalities, the set X
(1)
c is presented in minimal normal-

ized half-space representation as,

X(1)
c =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

x ∈ R
2 :

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢
⎢
⎣

1.0000 0
−1.0000 0
−0.3590 −0.9333
0.3590 0.9333
0.7399 0.6727

−0.7399 −0.6727
0.3753 −0.9269

−0.3753 0.9269

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥
⎥
⎦

x ≤

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢
⎢
⎣

3.0000
3.0000
0.9311
0.9311
1.8835
1.8835
1.7474
1.7474

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥
⎥
⎦

⎫
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

The sets X, Xc and X
(1)
c are depicted in Fig. 2.4.
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Procedure 2.1 Robustly invariant set computation [46, 68]
• Input: The matrices Ac1,Ac2, . . . ,Acq,D, the sets Xc in (2.33) and W .
• Output: The robustly invariant set Ω .

1. Set i = 0, F0 = Fc, g0 = gc and X0 = {x ∈ R
n : F0x ≤ g0}.

2. Set X1 = X0.
3. Eliminate redundant inequalities of the following polytope,

P =

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

x ∈R
n :

⎡

⎢⎢
⎢⎢⎢
⎣

F0
F0Ac1
F0Ac2

...

F0Acq

⎤

⎥⎥
⎥⎥⎥
⎦

x ≤

⎡

⎢⎢⎢
⎢⎢⎢
⎣

g0
g0 − maxw∈W {F0Dw}
g0 − maxw∈W {F0Dw}

...

g0 − maxw∈W {F0Dw}

⎤

⎥⎥⎥
⎥⎥⎥
⎦

⎫
⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎭

4. Set X0 = P and update consequently the matrices F0 and g0.
5. If X0 = X1 then stop and set Ω = X0. Else continue.
6. Set i = i + 1 and go to step 2.

Fig. 2.4 One step pre-image
set for Example 2.1

Clearly, Ω ⊆ Xc is robustly invariant if it equals to its one step admissible pre-
image set, i.e., ∀x ∈ Ω , ∀w ∈ W ,

Aix + Dw ∈ Ω, ∀i = 1,2, . . . , q

Using this observation, Procedure 2.1 can be used for computing the set Ω for sys-
tem (2.31) with constraints (2.33).

A natural question for Procedure 2.1 is that if there exists a finite index i such
that X0 = X1, or equivalently if Procedure 2.1 terminates after a finite number of
iterations.

In the absence of disturbances, the following theorem holds [25].

Theorem 2.2 [25] Assume that the system (2.31) is robustly asymptotically stable.
Then there exists a finite index i = imax, such that X0 = X1 in Procedure 2.1.
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Procedure 2.2 Robustly invariant set computation
• Input: The matrices Ac1,Ac2, . . . ,Acq,D, the sets Xc and W .
• Output: The robustly invariant set Ω .

1. Set i = 0, F0 = Fc, g0 = gc and X0 = {x ∈ R
n : F0x ≤ g0}.

2. Consider the following polytope

P =

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

x ∈R
n :

⎡

⎢⎢⎢⎢
⎢
⎣

F0
F0Ac1
F0Ac2

...

F0Acq

⎤

⎥⎥⎥⎥
⎥
⎦

x ≤

⎡

⎢⎢⎢⎢⎢
⎢
⎣

g0
g0 − maxw∈W {F0Dw}
g0 − maxw∈W {F0Dw}

...

g0 − maxw∈W {F0Dw}

⎤

⎥⎥⎥⎥⎥
⎥
⎦

⎫
⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎭

and iteratively check the redundancy of the following subset of inequalities
{
x ∈R

n : F0Acjx ≤ g0 − max
w∈W

{F0Dw}
}

with j = 1,2, . . . , q .
3. If all of the inequalities are redundant with respect to X0, then stop and set

Ω = X0. Else continue.
4. Set X0 = P .
5. Set i = i + 1 and go to step 2.

Remark 2.1 In the presence of disturbances, the necessary and sufficient condi-
tion for the existence of a finite index i is that the minimal robustly invariant set3

[71, 97, 105] is a subset of Xc.

Note that checking equality of two polytopes X0 and X1 in step 5 is computa-
tionally demanding, i.e. one has to check X0 ⊆ X1 and X1 ⊆ X0. Note also that if
the set Ω is invariant at the iteration i then the following set of inequalities,

⎡

⎢⎢⎢
⎣

F0Ac1
F0Ac2

...

F0Acq

⎤

⎥⎥⎥
⎦

x ≤

⎡

⎢⎢⎢⎢
⎣

g0 − maxw∈W {F0D1w}
g0 − maxw∈W {F0D2w}

...

g0 − maxw∈W {F0Dqw}

⎤

⎥⎥⎥⎥
⎦

is redundant with respect to Ω = {x ∈ R
n : F0x ≤ g0}. Hence Procedure 2.1 can be

made more efficient as in Procedure 2.2.

3The set Ω ⊆ Xc is minimal robustly invariant if it is a robustly invariant set and is a subset of any
robustly invariant set contained in Xc .
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Fig. 2.5 Maximal robustly
invariant set Ωmax for
Example 2.2

It is well known [29, 46, 71] that the set Ω resulting from Procedure 2.1 or
Procedure 2.2, is actually the maximal robustly invariant set for system (2.31) and
constraints (2.33), that is Ω = Ωmax.

Example 2.2 Consider the uncertain system in Example 2.1 with the same state,
control and disturbance constraints. Using Procedure 2.2, the set Ωmax is found
after 5 iterations as,

Ωmax =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

x ∈R
2 :

⎡

⎢⎢⎢
⎢⎢⎢⎢⎢⎢⎢
⎣

−0.3590 −0.9333
0.3590 0.9333
0.6739 0.7388

−0.6739 −0.7388
0.8979 0.4401

−0.8979 −0.4401
0.3753 −0.9269

−0.3753 0.9269

⎤

⎥⎥⎥
⎥⎥⎥⎥⎥⎥⎥
⎦

x ≤

⎡

⎢⎢⎢
⎢⎢⎢⎢⎢⎢⎢
⎣

0.9311
0.9311
1.2075
1.2075
1.7334
1.7334
1.7474
1.7474

⎤

⎥⎥⎥
⎥⎥⎥⎥⎥⎥⎥
⎦

⎫
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

The sets X, Xc and Ωmax are depicted in Fig. 2.5.

Definition 2.31 (One-step robustly controlled set) Given system (2.15), the one-
step robustly controlled set, denoted as C1 of the set C0 = {x ∈ R

n : F0x ≤ g0} is
given by all states that can be steered in one step into C0 when a suitable control
action is applied. The set C1 can be shown to be [23, 27],

C1 =
{
x ∈R

n : ∃u ∈ U : F0(Aix + Biu) ≤ g0 − max
w∈W

{F0Dw}
}
, i = 1,2, . . . , q

(2.36)

Remark 2.2 If C0 is robustly invariant, then C0 ⊆ C1. Hence C1 is a robustly con-
trolled invariant set.

Recall that Ωmax is the maximal robustly invariant set with respect to a predefined
control law u(k) = Kx(k). Define CN as the set of all states, that can be steered into
Ωmax in no more than N steps along an admissible trajectory, i.e. a trajectory satisfy-



2.4 On the Domain of Attraction 27

Fig. 2.6 Robustly controlled
invariant sets for Example 2.3

ing control, state and disturbance constraints. This set can be computed recursively
by Procedure 2.3.

Since Ωmax is a robustly invariant set, it follows that Ci−1 ⊆ Ci and therefore Ci

is a robustly controlled invariant set and a sequence of nested polytopes. Note that
the complexity of CN does not have an analytic dependence on N and may increase
without bound, thus placing a practical limitation on the choice of N .

Example 2.3 Consider the uncertain system in Example 2.1 with the same state,
input and disturbance constraints. Using Procedure 2.3, the robustly controlled in-
variant sets CN with N = 1 and N = 7 are obtained and shown in Fig. 2.6. Note
that C7 = C8 is the maximal robustly controlled invariant set.

The set C7 is presented in minimal normalized half-space representation as,

C7 =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

x ∈R
2 :

⎡

⎢⎢⎢⎢
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢
⎢⎢⎢
⎣

0.3731 0.9278
−0.3731 −0.9278
0.4992 0.8665

−0.4992 −0.8665
0.1696 0.9855

−0.1696 −0.9855
0.2142 0.9768

−0.2142 −0.9768
0.7399 0.6727

−0.7399 −0.6727
1.0000 0

−1.0000 0

⎤

⎥⎥⎥⎥
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥
⎥⎥⎥
⎦

x ≤

⎡

⎢⎢⎢⎢
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢
⎢⎢⎢
⎣

1.3505
1.3505
1.3946
1.3946
1.5289
1.5289
1.4218
1.4218
1.8835
1.8835
3.0000
3.0000

⎤

⎥⎥⎥⎥
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥
⎥⎥⎥
⎦

⎫
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

2.4 On the Domain of Attraction

In this section we study the problem of estimating the domain of attraction for uncer-
tain and/or time-varying linear discrete-time systems in closed-loop with a saturated
controller and state constraints.
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Procedure 2.3 Robustly N -step controlled invariant set computation
• Input: The matrices A1,A2, . . . ,Aq,D and the sets X, U , W and Ωmax.
• Output: The N -step robustly controlled invariant set CN .

1. Set i = 0 and C0 = Ωmax and let the matrices F0, g0 be the half-space repre-
sentation of C0, i.e. C0 = {x ∈R

n : F0x ≤ g0}
2. Compute the expanded set Pi ⊂ R

n+m

Pi =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

(x,u) ∈ R
n+m :

⎡

⎢⎢
⎢
⎣

Fi(A1x + B1u)

Fi(A2x + B2u)
...

Fi(Aqx + Bqu)

⎤

⎥⎥
⎥
⎦

≤

⎡

⎢⎢⎢
⎢
⎣

gi − maxw∈W {FiDw}
gi − maxw∈W {FiDw}

...

gi − maxw∈W {FiDw}

⎤

⎥⎥⎥
⎥
⎦

⎫
⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎭

3. Compute the projection P
(n)
i of Pi on R

n

P
(n)
i = {x ∈ R

n : ∃u ∈ U such that (x,u) ∈ Pi

}

4. Set

Ci+1 = P
(n)
i ∩ X

and let Fi+1, gi+1 be the half-space representation of Ci+1, i.e.

Ci+1 = {x ∈ R
n : Fi+1x ≤ gi+1

}

5. If Ci+1 = Ci , then stop and set CN = Ci . Else continue.
6. If i = N , then stop else continue.
7. Set i = i + 1 and go to step 2.

2.4.1 Problem Formulation

Consider the following uncertain and/or time-varying linear discrete-time system,

x(k + 1) = A(k)x(k) + B(k)u(k) (2.37)

where
⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

A(k) =
q∑

i=1

αi(k)Ai, B(k) =
q∑

i=1

αi(k)Bi

q∑

i=1

αi(k) = 1, αi(k) ≥ 0

(2.38)

with given matrices Ai ∈ R
n×n and Bi ∈ R

n×m, i = 1,2, . . . , q .
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Fig. 2.7 Saturation function

Both the state vector x(k) and the control vector u(k) are subject to the con-
straints,

{
x(k) ∈ X, X = {x ∈R

n : FT
i x ≤ gi

}
, ∀i = 1,2, . . . , n1

u(k) ∈ U, U = {u ∈R
m : ujl ≤ uj ≤ uju

}
, ∀j = 1,2, . . . ,m

(2.39)

where FT
i ∈ R

n is the i-th row of the matrix Fx ∈ R
n1×n, gi is the i-th component of

the vector gx ∈ R
n1 , uil and uiu are respectively, the i-th component of the vectors

ul and uu, which are the lower and upper bounds of input u. It is assumed that the
matrix Fx and the vectors gx , ul and uu are constant with gx > 0, ul < 0 and uu > 0.

Our aim is to estimate the domain of attraction for the system,

x(k + 1) = A(k)x(k) + B(k) sat
(
Kx(k)

)
(2.40)

subject to the constraints (2.39), where

u(k) = Kx(k) (2.41)

is a given controller that robustly stabilizes system (2.37).

2.4.2 Saturation Nonlinearity Modeling—A Linear Differential
Inclusion Approach

A linear differential inclusion approach used for modeling the saturation function is
briefly reviewed in this subsection. This modeling framework was first proposed by
Hu et al. [55, 57, 58]. Then its generalization was developed by Alamo et al. [5, 6].
The main idea of the linear differential inclusion approach is to use an auxiliary
vector variable v ∈ R

m, and to compose the output of the saturation function as a
convex combination of u and v.

The saturation function is defined as

sat(u) = [sat(u1) sat(u2) . . . sat(um)
]T (2.42)
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Fig. 2.8 Linear differential inclusion approach

where, see Fig. 2.7,

sat(ui) =

⎧
⎪⎨

⎪⎩

uil, if ui ≤ uil

ui, if uil ≤ ui ≤ uiu

uiu, if uiu ≤ ui

i = 1,2, . . . ,m (2.43)

To underline the details of the approach, let us first consider the case u and con-
sequently v are scalars. Clearly, for any u, there exist ul ≤ v ≤ uu and 0 ≤ β ≤ 1
such that,

sat(u) = βu + (1 − β)v (2.44)

or, equivalently

sat(u) ∈ Conv{u,v} (2.45)

Figure 2.8 illustrates this fact.
Analogously, for m = 2 and v such that

{
u1l ≤ v1 ≤ u1u

u2l ≤ v2 ≤ u2u

(2.46)

the saturation function can be expressed as,

sat(u) = β1

[
u1
u2

]
+ β2

[
u1
v2

]
+ β3

[
v1
u2

]
+ β4

[
v1
v2

]
(2.47)

with
∑4

j=1 βj = 1, βj ≥ 0. Or, equivalently

sat(u) ∈ Conv

{[
u1
u2

]
,

[
u1
v2

]
,

[
v1
u2

]
,

[
v1
v2

]}
(2.48)
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Define Dm as the set of m × m diagonal matrices whose diagonal elements are
either 0 or 1. For example, if m = 2 then

D2 =
{[

0 0
0 0

]
,

[
1 0
0 0

]
,

[
0 0
0 1

]
,

[
1 0
0 1

]}

There are 2m elements in Dm. Denote each element of Dm as Ej , j =
1,2, . . . ,2m and define E−

j = I − Ej . For example, if

E1 =
[

0 0
0 0

]

then

E−
1 =

[
1 0
0 1

]
−
[

0 0
0 0

]
=
[

1 0
0 1

]

Clearly, if Ej ∈ Dm, then E−
j is also in Dm. The generalization of the re-

sults (2.45) (2.48) is reported by the following lemma [55, 57, 58],

Lemma 2.1 [57] Consider two vectors u ∈R
m and v ∈R

m such that uil ≤ vi ≤ uiu

for all i = 1,2, . . . ,m, then it holds that

sat(u) ∈ Conv
{
Eju + E−

j v
}
, j = 1,2, . . . ,2m (2.49)

Consequently, there exist βj ≥ 0 and
∑2m

j=1 βj = 1 such that,

sat(u) =
2m∑

j=1

βj

(
Eju + E−

j v
)

2.4.3 The Ellipsoidal Set Approach

The aim of this subsection is twofold. First, we provide an invariance condition
of ellipsoidal sets for uncertain and/or time-varying linear discrete-time systems
with a saturated input and state constraints. This invariance condition is an extended
version of the previously published results in [57] for the robust case. Secondly,
we propose a method for computing a saturated controller u(k) = sat(Kx(k)) that
makes a given invariant ellipsoid contractive with the maximal contraction factor.
For simplicity, the case of bounds equal to umax is considered, namely

−ul = uu = umax
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and let us assume that the set X in (2.39) is symmetric and gi = 1, ∀i = 1,2, . . . , n1.
Clearly, the latter assumption is nonrestrictive as long as, ∀gi > 0

FT
i x ≤ gi ⇔ FT

i

gi

x ≤ 1

For a given matrix H ∈ R
m×n, define Xc as the intersection between X and the

polyhedral set F(H,umax) = {x ∈ R
n : |Hx| ≤ umax}, i.e.

Xc =
⎧
⎨

⎩
x ∈ R

n :
⎡

⎣
Fx

H

−H

⎤

⎦x ≤
⎡

⎣
1

umax
umax

⎤

⎦

⎫
⎬

⎭
(2.50)

We are now ready to state the main result of this subsection,

Theorem 2.3 If there exist a positive definite matrix P ∈ R
n×n and a matrix

H ∈ R
m×n such that, ∀i = 1,2, . . . , q , ∀j = 1,2, . . . ,2m,

[
P {Ai + Bi(EjK + E−

j H)}P
P {Ai + Bi(EjK + E−

j H)}T P

]

� 0, (2.51)

and E(P ) ⊂ Xc, then the ellipsoid E(P ) is a robustly invariant set for system (2.40)
with constraints (2.39).

Proof Assume that there exist P and H such that condition (2.51) is satisfied. Using
Lemma 2.1 and by choosing v = Hx, it follows that,

sat
(
Kx(k)

)=
2m∑

j=1

βj (k)
(
EjKx(k) + E−

j Hx(k)
)

for all x(k) such that |Hx(k)| ≤ umax. Subsequently,

x(k + 1) =
q∑

i=1

αi(k)

{

Ai + Bi

2m∑

j=1

βj (k)
(
EjK + E−

j H
)
}

x(k)

=
q∑

i=1

αi(k)

{
2m∑

j=1

βj (k)Ai + Bi

2m∑

j=1

βj (k)
(
EjK + E−

j H
)
}

x(k)

=
q∑

i=1

αi(k)

2m∑

j=1

βj (k)
{
Ai + Bi

(
EjK + E−

j H
)}

x(k)

=
q∑

i=1

2m∑

j=1

αi(k)βj (k)
{
Ai + Bi

(
EjK + E−

j H
)}

x(k) = Ac(k)x(k)
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where

Ac(k) =
q∑

i=1

2m∑

j=1

αi(k)βj (k)
{
Ai + Bi

(
EjK + E−

j H
)}

Since

q∑

i=1

2m∑

j=1

αi(k)βj (k) =
q∑

i=1

αi(k)

{
2m∑

j=1

βj (k)

}

= 1

if follows that Ac(k) belongs to the polytope Pc , whose vertices are obtained by
taking all possible combinations of Ai +Bi(EjK +E−

j H) with i = 1,2, . . . , q and
j = 1,2, . . . ,2m.

The set E(P ) = {x ∈R
n : xT P −1x ≤ 1} is invariant, if and only if

xT Ac(k)T P −1Ac(k)x ≤ 1 (2.52)

for all x ∈ E(P ). With the same argument as in Sect. 2.3.3, condition (2.52) can be
transformed to,

[
P Ac(k)P

PAc(k)T P

]
� 0 (2.53)

Since Ac(k) belongs to the polytope Pc, it follows that one should check (2.53) at
the vertices of Pc. So the set of LMI conditions to be satisfied is the following,
∀i = 1,2, . . . , q , ∀j = 1,2, . . . ,2m,

[
P {Ai + Bi(EjK + E−

j H)}P
P {Ai + Bi(EjK + E−

j H)}T P

]

� 0
�

Note that condition (2.51) involves the multiplication between two unknown pa-
rameters H and P . By defining Y = HP , condition (2.51) can be rewritten as,
∀i = 1,2, . . . , q , ∀j = 1,2, . . . ,2m,

[
P (AiP + BiEjKP + BiE

−
j Y )

(PAT
i + PKT EjB

T
i + YT E−

j BT
i ) P

]

� 0,

(2.54)
Thus the unknown matrices P and Y enter linearly in (2.54).

As in Sect. 2.3.3, in general one would like to have the largest invariant ellip-
soid for system (2.37) under saturated controller u(k) = sat(Kx(k)) with respect to
constraints (2.39). This can be achieved by solving the following LMI problem,

J = max
P,Y

{
trace(P )

}
(2.55)
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subject to

• Invariance condition (2.54).
• Constraint satisfaction,

– On state
[

1 FT
i P

PFi P

]
� 0, ∀i = 1,2, . . . , n1

– On input
[

u2
imax Yi

Y T
i P

]

� 0, ∀i = 1,2, . . . ,m

where Yi is the i-th row of the matrix Y .

Example 2.4 Consider the following linear uncertain, time-varying discrete-time
system,

x(k + 1) = A(k)x(k) + B(k)u(k)

with

A(k) = α(k)A1 + (1 − α(k)
)
A2, B(k) = α(k)B1 + (1 − α(k)

)
B2

and

A1 =
[

1 0.1
0 1

]
, A2 =

[
1 0.2
0 1

]
, B1 =

[
0
1

]
, B2 =

[
0

1.5

]

At each sampling time α(k) ∈ [0, 1] is an uniformly distributed pseudo-random
number. The constraints are,

−10 ≤ x1 ≤ 10, −10 ≤ x2 ≤ 10, −1 ≤ u ≤ 1

The controller is chosen as,

K = [−1.8112 −0.8092]
By solving the LMI problem (2.55), the matrices P and Y are obtained,

P =
[

5.0494 −8.9640
−8.9640 28.4285

]
, Y = [0.4365 −4.2452]

Hence

H = YP −1 = [−0.4058 −0.2773]
Solving the LMI problem (2.30), the ellipsoid E(P1) is obtained with

P1 =
[

1.1490 −3.1747
−3.1747 9.9824

]
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Fig. 2.9 Invariant sets with
different control laws for
Example 2.4. The set E(P ) is
obtained for
u(k) = sat(Kx(k)) and the set
E(P1) is obtained for
u(k) = Kx(k)

Fig. 2.10 State trajectories
of the closed loop system for
Example 2.4

under the linear feedback u(k) = Kx(k). Figure 2.9 presents two invariant ellipsoids
with different control laws. E(P ) is obtained for u(k) = sat(Kx(k)) and E(P1) is
obtained for u(k) = Kx(k).

Figure 2.10 shows state trajectories of the closed loop system with the controller
u(k) = sat(Kx(k)) for different initial conditions and realizations of α(k).

In the first part of this subsection, Theorem 2.3 was exploited in the following
manner: if E(P ) is robustly invariant for the system,

x(k + 1) = A(k)x(k) + B(k) sat
(
Kx(k)

)

then there exists a stabilizing linear controller u(k) = Hx(k), such that E(P ) is
robustly invariant for system,

x(k + 1) = A(k)x(k) + B(k)Hx(k)

with H ∈ R
m×n obtained by solving the LMI problem (2.55).

Theorem 2.3 now will be exploited in a different manner. We would like to de-
sign a saturated controller u(k) = sat(Kx(k)) that makes a given invariant ellipsoid
E(P ) contractive with the maximal contraction factor. This invariant ellipsoid E(P )

can be inherited for example together with a linear controller u(k) = Hx(k) from
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the optimization of some convex objective function J (P ),4 for example trace(P ).
In the second stage, using H and E(P ), a saturated controller u(k) = sat(Kx(k))

which maximizes some contraction factor 1 − g is computed.
It is worth noticing that the invariance condition (2.29) corresponds to the one

in condition (2.54) with Ej = 0 and E−
j = I − Ej = I . Following the proof of

Theorem 2.3, it can be shown that for the system,

x(k + 1) = A(k)x(k) + B(k) sat
(
Kx(k)

)

the set E(P ) is contractive with the contraction factor 1 − g if

{
Ai +Bi

(
EjK +E−

j H
)}T

P −1{Ai +Bi

(
EjK +E−

j H
)}−P −1 � −gP −1 (2.56)

∀i = 1,2, . . . , q , ∀j = 1,2, . . . ,2m such that Ej �= 0. Using the Schur complements,
(2.56) becomes,

[
(1 − g)P −1 (Ai + Bi(EjK + E−

j H))T

(Ai + Bi(EjK + E−
j H)) P

]

� 0 (2.57)

∀i = 1,2, . . . , p, ∀j = 1,2, . . . ,2m with Ej �= 0.
Hence, the problem of computing a saturated controller that makes a given in-

variant ellipsoid contractive with the maximal contraction factor can be formulated
as,

J = max
g,K

{g} (2.58)

subject to (2.57).
Recall that here the only unknown parameters are the matrix K ∈ R

m×n and the
scalar g, the matrices P and H being given in the first stage.

Remark 2.3 The proposed two-stage control design presented here benefits from
global uniqueness properties of the solution. This is due to the one-way dependence
of the two (prioritized) objectives: the trace maximization precedes the associated
contraction factor.

Example 2.5 Consider the uncertain system in Example 2.4 with the same state
and input constraints. In the first stage, by solving (2.29), the matrices P and Y are
obtained,

P =
[

100.0000 −43.1051
−43.1051 100.0000

]
, Y = [−3.5691 −6.5121]

4Practically, the design of the invariant ellipsoid E(P ) and the controller u(k) = Hx(k) can be
done by solving the LMI problem (2.29).
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Fig. 2.11 Invariant ellipsoid
and state trajectories of the
closed loop system for
Example 2.5

Hence H = YP −1 = [−0.0783 −0.0989]. In the second stage, by solving (2.58),
the matrix K is obtained,

K = [−0.3342 −0.7629]
Figure 2.11 shows the invariant ellipsoid E(P ). This figure also shows state trajec-
tories of the closed loop system with the controller u(k) = sat(Kx(k)) for different
initial conditions and realizations of α(k).

For the initial condition x(0) = [−4 10]T , Fig. 2.12(a) presents state trajectories
of the closed loop system as functions of time for the saturated controller u(k) =
sat(Kx(k)) (solid) and for the linear controller u(k) = Hx(k) (dashed). It is worth
noticing that the time to regulate the plant to the origin by using u(k) = Hx(k) is
longer than the time to regulate the plant to the origin by using u(k) = sat(Kx(k)).
The reason is that when using u(k) = Hx(k), the control action is saturated only at
some points of the boundary of E(P ), while using u(k) = sat(Kx(k)), the control
action is saturated not only on the boundary of E(P ), the saturation being active
also inside E(P ). This phenomena can be observed in Fig. 2.12(b). The same figure
presents the realization of α(k).

2.4.4 The Polyhedral Set Approach

The problem of estimating the domain of attraction is addressed by using polyhedral
sets in this subsection. For a given linear controller u(k) = Kx(k), it is clear that the
largest polyhedral invariant set is the maximal robustly invariant set Ωmax which can
be found using Procedure 2.1 or Procedure 2.2. From this point on, it is assumed that
Ωmax is known.

The aim is to find the largest polyhedral invariant set Ωs ⊆ X characterizing an
estimation of the domain of attraction for system (2.37) under u(k) = sat(Kx(k)).
To this aim, recall that from Lemma 2.1, the saturation function can be expressed
as,

sat
(
Kx(k)

)=
2m∑

j=1

βj (k)
(
EjKx + E−

j v
)
,

2m∑

j=1

βj (k) = 1, βj ≥ 0 (2.59)
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Fig. 2.12 State and input
trajectories for Example 2.5
for the controller u = sat(Kx)

(solid), and for the controller
u = Hx (dashed) in the
figures for x1, x2 and u

where ul ≤ v ≤ uu and Ej is an element of Dm and E−
j = I − Ej .

Using (2.59), the closed loop system can be rewritten as,

x(k + 1) =
q∑

i=1

αi(k)

{

Aix(k) + Bi

2m∑

j=1

βj (k)
(
EjKx(k) + E−

j v
)
}

=
q∑

i=1

αi(k)

{
2m∑

j=1

βj (k)Aix(k) + Bi

2m∑

j=1

βj (k)
(
EjKx(k) + E−

j v
)
}

=
q∑

i=1

αi(k)

2m∑

j=1

βj (k)
{
Aix(k) + Bi

(
EjKx(k) + E−

j v
)}

or

x(k + 1) =
q∑

i=1

αi(k)

2m∑

j=1

βj (k)
{
(Ai + BiEjK)x(k) + BiE

−
j v
}

(2.60)

The variable v ∈ R
m can be considered as an external controlled input for the

system (2.60). Hence, the problem of finding Ωs for the system (2.40) boils down to
the problem of computing the largest controlled invariant set for the system (2.60).
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Procedure 2.4 Invariant set computation
• Input: The matrices A1, . . . ,Aq , B1, . . . ,Bq , the matrix K and the sets X, U and

Ωmax
• Output: An invariant approximation of the invariant set Ωs for the closed loop

system (2.40).

1. Set i = 0 and C0 = Ωmax and let the matrices F0, g0 be the half space repre-
sentation of C0, i.e. C0 = {x ∈R

n : F0x ≤ g0}
2. Compute the expanded set Pj ⊂ R

n+m, ∀j = 1,2, . . . ,2m

Pj =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

(x, v) ∈R
n+m :

⎡

⎢⎢⎢⎢
⎣

Fi{(A1 + B1EjK)x + B1E
−
j v}

Fi{(A2 + B2EjK)x + B2E
−
j v}

...

Fi{(Aq + BqEjK)x + BqE−
j v}

⎤

⎥⎥⎥⎥
⎦

≤

⎡

⎢⎢⎢
⎣

gi

gi

...

gi

⎤

⎥⎥⎥
⎦

⎫
⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎭

3. Compute the projection P
(n)
j of Pj on R

n,

P
(n)
j = {x ∈ R

n : ∃v ∈ U such that (x, v) ∈ Pj

}
, ∀j = 1,2, . . . ,2m

4. Set

Ci+1 = X

2m⋂

j=1

P
(n)
j

and let the matrices Fi+1, gi+1 be the half space representation of Ci+1, i.e.

Ci+1 = {x ∈ R
n : Fi+1x ≤ gi+1

}

5. If Ci+1 = Ci , then stop and set Ωs = Ci . Else continue.
6. Set i = i + 1 and go to step 2.

The system (2.60) can be considered as an uncertain system with respect to the
parameters αi and βj . Hence using the results in Sect. 2.3.4, Procedure 2.4 can be
used to obtain Ωs .

Since Ωmax is robustly invariant, it follows that Ci−1 ⊆ Ci . Hence Ci is a robustly
invariant set. The set sequence {C0,C1, . . .} converges to Ωs , which is the largest
polyhedral invariant set.

Remark 2.4 Each polytope Ci represents an inner invariant approximation of the
domain of attraction for the system (2.37) under the controller u(k) = sat(Kx(k)).
That means Procedure 2.4 can be stopped at any time before converging to the true
largest invariant set Ωs and obtain an inner invariant approximation of the domain
of attraction.
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Procedure 2.5 Invariant set computation
• Input: The matrices A1,A2, . . . ,Aq and the sets XH and Ωmax.
• Output: The invariant set ΩH

s .

1. Set i = 0 and C0 = Ωmax and let the matrices F0, g0 be the half-space repre-
sentation of the set C0, i.e. C0 = {x ∈R

n : F0x ≤ g0}
2. Compute the set Pj ⊂ R

n

Pj =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

x ∈R
n :

⎡

⎢⎢⎢
⎢
⎣

Fi(A1 + B1EjK + B1E
−
j H)x

Fi(A2 + B2EjK + B2E
−
j H)x

...

Fi(Aq + BqEjK + +BqE−
j H)x

⎤

⎥⎥⎥
⎥
⎦

≤

⎡

⎢⎢
⎢
⎣

gi

gi

...

gi

⎤

⎥⎥
⎥
⎦

⎫
⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎭

3. Set

Ci+1 = XH

2m⋂

j=1

Pj

and let the matrices Fi+1, gi+1 be the half-space representation of Ci+1, i.e.

Ci+1 = {x ∈ R
n : Fi+1x ≤ gi+1

}

4. If Ci+1 = Ci , then stop and set Ωs = Ci . Else continue.
5. Set i = i + 1 and go to step 2.

Fig. 2.13 Invariant sets for
different control laws and
different methods for
Example 2.6. The set Ωs is
obtained for
u(k) = sat(Kx(k)) using
Procedure 2.4. The set ΩH

s is
obtained for
u(k) = sat(Kx(k)) using
Procedure 2.5. The set Ωmax
is obtained for u(k) = Kx

using Procedure 2.2

It is worth noticing that the matrix H ∈ R
m×n resulting from the LMI prob-

lem (2.55) can also be used for computing an inner polyhedral invariant approxima-
tion ΩH

s of the domain of attraction. Clearly, ΩH
s is a subset of Ωs , since v is now

in a restricted form v(k) = Hx(k). In this case, using (2.60) one obtains,

x(k + 1) =
q∑

i=1

αi(k)

2m∑

j=1

βj (k)
{(

Ai + BiEjK + BiE
−
j H

)
x(k)

}
(2.61)
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Fig. 2.14 State trajectories
of the closed loop system
with u(k) = sat(Kx(k)) for
Example 2.6

Define the set XH as,

XH = {x ∈R
n : FH x ≤ gH

}
(2.62)

where

FH =
⎡

⎣
Fx

H

−H

⎤

⎦ , gH =
⎡

⎣
gx

uu

ul

⎤

⎦

Procedure 2.5 can be used for computing ΩH
s .

Since the matrix
∑q

i=1 αi(k)
∑2m

j=1 βj (k){(Ai + BiEjK + BiE
−
j H)} is asymp-

totically stable, Procedure 2.5 terminates in finite time [29]. In other words, there
exists a finite index i = imax such that Cimax = Cimax+1.

Example 2.6 Consider Example 2.4 with the same state and control constraints.
The controller is K = [−1.8112 −0.8092].

Using Procedure 2.4, the set Ωs is obtained after 121 iterations and depicted in
Fig. 2.13. This figure also shows the set ΩH

s obtained by using Procedure 2.5 with
the auxiliary matrix H = [−0.4058 −0.2773], and the set Ωmax obtained with the
controller u(k) = Kx using Procedure 2.2.

ΩH
s and Ωs are presented in minimal normalized half-space representation as,

ΩH
s =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

x ∈ R
2 :

⎡

⎢⎢⎢
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢
⎢⎢⎢
⎣

−0.8256 −0.5642
0.8256 0.5642
0.9999 0.0108

−0.9999 −0.0108
0.9986 0.0532

−0.9986 −0.0532
−0.6981 −0.7160
0.6981 0.7160
0.9791 0.2033

−0.9791 −0.2033
−0.4254 −0.9050
0.4254 0.9050

⎤

⎥⎥⎥
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥
⎥⎥⎥
⎦

x ≤

⎡

⎢⎢⎢
⎢
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢
⎢⎢⎢
⎣

2.0346
2.0346
2.3612
2.3612
2.3467
2.3467
2.9453
2.9453
2.3273
2.3273
4.7785
4.7785

⎤

⎥⎥⎥
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥
⎥⎥⎥
⎦

⎫
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭
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Ωs =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

x ∈R
2 :

⎡

⎢⎢⎢⎢⎢
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢
⎢⎢
⎣

−0.9996 −0.0273
0.9996 0.0273

−0.9993 −0.0369
0.9993 0.0369

−0.9731 −0.2305
0.9731 0.2305
0.9164 0.4004

−0.9164 −0.4004
0.8434 0.5372

−0.8434 −0.5372
0.7669 0.6418

−0.7669 −0.6418
0.6942 0.7198

−0.6942 −0.7198
0.6287 0.7776

−0.6287 −0.7776
0.5712 0.8208

−0.5712 −0.8208

⎤

⎥⎥⎥⎥⎥
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥
⎥⎥
⎦

x ≤

⎡

⎢⎢⎢⎢⎢
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢
⎢⎢
⎣

3.5340
3.5340
3.5104
3.5104
3.4720
3.4720
3.5953
3.5953
3.8621
3.8621
4.2441
4.2441
4.7132
4.7132
5.2465
5.2465
5.8267
5.8267

⎤

⎥⎥⎥⎥⎥
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥
⎥⎥
⎦

⎫
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

Figure 2.14 presents state trajectories of the closed loop system with u(k) =
sat(Kx(k)) for different initial conditions and realizations of α(k).



Chapter 3
Optimal and Constrained
Control—An Overview

3.1 Dynamic Programming

Dynamic programming was developed by R.E. Bellman in the early fifties [13–16].
It provides a sufficient condition for optimality of the control problems for various
classes of systems, e.g. linear, time-varying or nonlinear. In general the optimal
solution is expressed as a time-varying state-feedback form.

Dynamic programming is based on the following principle of optimality [17],
An optimal policy has the property that whatever the initial state and initial de-

cision are, the remaining decisions must constitute an optimal policy with regard to
the state resulting from the first decision.

To begin, let us consider the following optimal control problem,

min
x,u

{

E
(
x(N)

)+
N−1∑

k=0

L
(
x(k), u(k)

)
}

(3.1)

subject to
⎧
⎪⎪⎨

⎪⎪⎩

x(k + 1) = f
(
x(k), u(k)

)
, k = 0,1, . . . ,N − 1,

u(k) ∈ U, k = 0,1, . . . ,N − 1,

x(k) ∈ X, k = 0,1, . . . ,N,

x(0) = x0

where

• x(k) ∈R
n and u(k) ∈ R

m are respectively, the state and control variables.
• N > 0 is called the time horizon.
• L(x(k), u(k)) represents a cost along the trajectory.
• E(x(N)) represents the terminal cost.
• U and X are respectively, the input and state constraints.
• x(0) is the initial condition.
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© Springer International Publishing Switzerland 2014

43

http://dx.doi.org/10.1007/978-3-319-02827-9_3


44 3 Optimal and ConstrainedControl—An Overview

Define the value function Vi(x(i)) as,

Vi

(
x(i)

)= min
x,u

{

E
(
x(N)

)+
N−1∑

k=i

L
(
x(k), u(k)

)
}

(3.2)

subject to
⎧
⎨

⎩

x(k + 1) = f
(
x(k), u(k)

)
, k = i, i + 1, . . . ,N − 1,

u(k) ∈ U, k = i, i + 1, . . . ,N − 1,

x(k) ∈ X, k = i, i + 1, . . . ,N

for i = N,N − 1,N − 2, . . . ,0.
Vi(x(i)) is the optimal cost on the horizon [i,N ], starting from the state x(i).

Using the principle of optimality, one has,

Vi

(
x(i)

)= min
u(i)

{
L
(
x(i), u(i)

)+ Vi+1
(
x(i + 1)

)}
(3.3)

By substituting x(i + 1) = f (x(i), u(i)) in (3.3), one obtains,

Vi(z) = min
u(i)

{
L
(
x(i), u(i)

)+ Vi+1
(
f
(
x(i), u(i)

))}
(3.4)

subject to
{

u(i) ∈ U,

f
(
x(i), u(i)

) ∈ X

Problem (3.4) is much simpler than (3.1) because it involves only one decision vari-
able u(i). To actually solve this problem, we work backwards in time from i = N ,
starting with

VN

(
x(N)

)= E
(
x(N)

)

Based on the value function Vi+1(x(i+1)) with i = N −1,N −2, . . . ,0, the optimal
control values u∗(i) can be obtained as,

u∗(i) = arg min
u(i)

{
L
(
x(i), u(i)

)+ Vi+1
(
f
(
x(i), u(i)

))}

subject to
{

u(i) ∈ U,

f
(
x(i), u(i)

) ∈ X

3.2 Pontryagin’s Maximum Principle

The second milestone in the optimal control theory is the Pontryagin’s maximum
principle [36, 103]. This approach, can be seen as a counterpart of the classical
calculus of variation approach, allowing us to solve the control problems in which
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the control input is subject to constraints in a very general way. Here for illustration,
we consider the following simple optimal control problem,

min
x,u

{

E
(
x(N)

)+
N−1∑

k=0

L
(
x(k), u(k)

)
}

(3.5)

subject to
⎧
⎨

⎩

x(k + 1) = f
(
x(k), u(k)

)
, k = 0,1, . . . ,N − 1,

u(k) ∈ U, k = 0,1, . . . ,N − 1,

x(0) = x0

For simplicity, the state variables are considered unconstrained. For solving the
problem (3.5) with the Pontryagin’s maximum principle, the following Hamiltonian
Hk(·) is defined,

Hk

(
x(k), u(k), λ(k + 1)

)= L
(
x(k), u(k)

)+ λT (k + 1)f
(
x(k), u(k)

)
(3.6)

where λ(k) ∈ R
n with k = 1,2, . . . ,N are called the co-state or the adjoint vari-

ables. For the problem (3.5), these variables must satisfy the so called co-state equa-
tion,

λ∗(k + 1) = ∂Hk

∂(x(k))
, k = 0,1, . . . ,N − 2

and

λ∗(N) = ∂E(x(N))

∂(x(N))

For given state and co-state variables, the Pontryagin’s maximum principle states
that the optimal control value is achieved by choosing control u∗(k) that minimizes
the Hamiltonian at each time instant, i.e.

Hk

(
x∗(k), u∗(k), λ∗(k + 1)

)≤ Hk

(
x∗(k), u(k), λ∗(k + 1)

)
, ∀u(k) ∈ U

3.3 Model Predictive Control

Model predictive control (MPC), or receding horizon control, is one of the most ad-
vanced control approaches which, in the last decades, has became a leading indus-
trial control technology for constrained control systems [30, 34, 47, 52, 88, 92, 107].
MPC is an optimization based strategy, where a model of the plant is used to predict
the future evolution of the system, see [88, 92]. This prediction uses the current state
of the plant as the initial state and, at each time instant, k, the controller computes
a finite optimal control sequence. Then the first control action in this sequence is
applied to the plant at time instant k, and at time instant k + 1 the optimization
procedure is repeated with a new plant measurement. This open loop optimal feed-
back mechanism1 of the MPC compensates for the prediction error due to structural

1It was named OLOF (Open Loop Optimal Feedback) control, by the author of [40].
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mismatch between the model and the real system as well as for disturbances and
measurement noise. In contrast to the maximal principle solutions, which are al-
most always open loop optimal, the receding horizon principle behind MPC brings
the advantage of the feedback structure.

The main advantage which makes MPC industrially desirable is that it can take
into account constraints in the control problem. This feature is very important for
several reasons,

• Often the best performance, which may correspond to the most efficient opera-
tion, is obtained when the system is made to operate near the constraints.

• The possibility to explicitly express constraints in the problem formulation offers
a natural way to state complex control objectives.

• Stability and other features can be proved, at least in some cases, in contrast to
popular ad-hoc methods to handle constraints, like anti-windup control [50], and
override control [118].

3.3.1 Implicit Model Predictive Control

Consider the problem of regulating to the origin the following time-invariant linear
discrete-time system,

x(k + 1) = Ax(k) + Bu(k) (3.7)

where x(k) ∈ R
n and u(k) ∈ R

m are respectively the state and the input variables,
A ∈ R

n×n and B ∈R
n×m. Both x(k) and u(k) are subject to polytopic constraints,

{
x(k) ∈ X, X = {x ∈ R

n : Fxx ≤ gx

}

u(k) ∈ U, U = {u ∈R
m : Fuu ≤ gu

} ∀k ≥ 0 (3.8)

where the matrices Fx , Fu and the vectors gx , gu are assumed to be constant with
gx > 0, gu > 0. Here the inequalities are element-wise.

Provided that x(k) is available, the MPC optimization problem is defined as,

V
(
x(k)

)= min
u=[u0,u1,...,uN−1]

{
N∑

t=1

xT
t Qxt +

N−1∑

t=0

uT
t Rut

}

(3.9)

subject to
⎧
⎪⎪⎨

⎪⎪⎩

xt+1 = Axt + But , t = 0,1, . . . ,N − 1,

xt ∈ X, t = 1,2, . . . ,N,

ut ∈ U, t = 0,1, . . . ,N − 1,

x0 = x(k)

where

• xt+1 and ut are, respectively the predicted states and the predicted inputs, t =
0,1, . . . ,N − 1.

• Q ∈ R
n×n and Q � 0.
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• R ∈ R
m×m and R � 0.

• N ≥ 1 is a fixed integer. N is called the time horizon or the prediction horizon.

The conditions on Q and R guarantee that the cost function (3.9) is strongly
convex. In term of eigenvalues, the eigenvalues of Q should be non-negative, while
those of R should be positive in order to ensure the unique optimal solution.

Clearly, the term xT
t Qxt penalizes the deviation of the state x from the origin,

while the term uT
t Rut measures the input control energy. In other words, selecting

Q large means that, to keep V small, the state xt must be as close as possible to the
origin in a weighted Euclidean norm. On the other hand, selecting R large means
that the control input ut must be small to keep the cost function V small.

An alternative is a performance measure based on l1-norm,

min
u=[u0,u1,...,uN−1]

{
N∑

t=1

|Qxt |1 +
N−1∑

t=0

|Rut |1
}

(3.10)

or l∞-norm,

min
u=[u0,u1,...,uN−1]

{
N∑

t=1

|Qxt |∞ +
N−1∑

t=0

|Rut |∞
}

(3.11)

Using the state space model (3.7), the future state variables are expressed sequen-
tially using the set of future control variable values,

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

x1 = Ax0 + Bu0

x2 = Ax1 + Bu1 = A2x0 + ABu0 + Bu1
...

xN = ANx0 + AN−1Bu0 + AN−2Bu1 + · · · + BuN−1

(3.12)

The set of (3.12) can be rewritten in a compact matrix form as,

x = Aax0 + Bau = Aax(k) + Bau (3.13)

with x = [xT
1 xT

2 . . . xT
N ]T , u = [uT

0 uT
1 . . . uT

N−1]T and

Aa =

⎡

⎢
⎢⎢
⎣

A

A2

...

AN

⎤

⎥
⎥⎥
⎦

, Ba =

⎡

⎢
⎢⎢⎢
⎣

B 0 . . . 0

AB B
.. .

...
...

...
. . . 0

AN−1B AN−2B . . . B

⎤

⎥
⎥⎥⎥
⎦

The MPC optimization problem (3.9) can be rewritten as,

V
(
x(k)

)= min
u

{
xT Qax + uT Rau

}
(3.14)

where

Qa =

⎡

⎢⎢⎢
⎣

Q 0 . . . 0
0 Q . . . 0
...

...
. . .

...

0 0 . . . Q

⎤

⎥⎥⎥
⎦

, Ra =

⎡

⎢⎢⎢
⎣

R 0 . . . 0
0 R . . . 0
...

...
. . .

...

0 0 . . . R

⎤

⎥⎥⎥
⎦



48 3 Optimal and ConstrainedControl—An Overview

and by substituting (3.13) in (3.14), one gets

V
(
x(k)

)= min
u

{
uT Hu + 2xT (k)Fu + xT (k)Yx(k)

}
(3.15)

where

H = BT
a QaBa + Ra, F = AT

a QaBa, Y = AT
a QaAa (3.16)

Consider now the constraints (3.8) along the horizon. Using (3.8), it can be shown
that the constraints on the predicted states and inputs are,

{
Fa

x x ≤ ga
x ,

F a
u u ≤ ga

u

(3.17)

where

Fa
x =

⎡

⎢⎢⎢
⎣

Fx 0 . . . 0
0 Fx . . . 0
...

...
. . .

...

0 0 . . . Fx

⎤

⎥⎥⎥
⎦

, ga
x =

⎡

⎢⎢⎢
⎣

gx

gx

...

gx

⎤

⎥⎥⎥
⎦

,

F a
u =

⎡

⎢⎢
⎢
⎣

Fu 0 . . . 0
0 Fu . . . 0
...

...
. . .

...

0 0 . . . Fu

⎤

⎥⎥
⎥
⎦

, ga
u =

⎡

⎢⎢
⎢
⎣

gu

gu

...

gu

⎤

⎥⎥
⎥
⎦

Using (3.13), the state constraints along the horizon can be expressed as,

Fa
x

{
Aax(k) + Bau

}≤ ga
x

or, equivalently

Fa
x Bau ≤ −Fa

x Aax(k) + ga
x (3.18)

Combining (3.17), (3.18), one obtains,

Gu ≤ Ex(k) + S (3.19)

where

G =
[

Fa
u

F a
x Ba

]
, E =

[
0

−Fa
x Aa

]
, S =

[
ga

u

ga
x

]

From (3.14) and (3.19), the MPC problem can be formulated as,

V1
(
x(k)

)= min
u

{
uT Hu + 2xT (k)Fu

}
(3.20)

subject to

Gu ≤ Ex(k) + S

where the term xT (k)Yx(k) is removed since it does not influence the optimal ar-
gument. The value of the cost function at optimum is simply obtained from (3.20)
by,

V
(
x(k)

)= V1
(
x(k)

)+ xT (k)Yx(k)

The control law obtained by solving on-line (3.20) is called implicit model predic-
tive control.
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Example 3.1 Consider the following time-invariant linear discrete-time system,

x(k + 1) =
[

1 1
0 1

]
x(k) +

[
1

0.7

]
u(k) (3.21)

and the MPC problem with N = 3, Q = I and R = 1. The constraints are,

−2 ≤ x1 ≤ 2, −5 ≤ x2 ≤ 5, −1 ≤ u ≤ 1

Using (3.20), the MPC problem can be described as,

min
u={u0,u1,u2}

{
uT Hu + 2xT (k)Fu

}

where

H =
⎡

⎣
12.1200 6.7600 2.8900
6.7600 5.8700 2.1900
2.8900 2.1900 2.4900

⎤

⎦ , F =
[

5.1000 2.7000 1.0000
13.7000 8.5000 3.7000

]

and subject to

Gu ≤ S + Ex(k)

where

G =

⎡

⎢⎢⎢⎢⎢⎢⎢
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢
⎣

1.0000 0 0
−1.0000 0 0

0 1.0000 0
0 −1.0000 0
0 0 1.0000
0 0 −1.0000

1.0000 0 0
0.7000 0 0

−1.0000 0 0
−0.7000 0 0
1.7000 1.0000 0
0.7000 0.7000 0

−1.7000 −1.0000 0
−0.7000 −0.7000 0
2.4000 1.7000 1.0000
0.7000 0.7000 0.7000

−2.4000 −1.7000 −1.0000
−0.7000 −0.7000 −0.7000

⎤

⎥⎥⎥⎥⎥⎥⎥
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥
⎦

, E =

⎡

⎢⎢⎢⎢⎢⎢⎢
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢
⎣

0 0
0 0
0 0
0 0
0 0
0 0

−1 −1
0 −1
1 1
0 1

−1 −2
0 −1
1 2
0 1

−1 −3
0 −1
1 3
0 1

⎤

⎥⎥⎥⎥⎥⎥⎥
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥
⎦

, S =

⎡

⎢⎢⎢⎢⎢⎢⎢
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢
⎣

1
1
1
1
1
1
2
5
2
5
2
5
2
5
2
5
2
5

⎤

⎥⎥⎥⎥⎥⎥⎥
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥
⎦

Algorithm 3.1 Model predictive control—Implicit approach
1. Measure the current state x(k).
2. Compute the control signal sequence u by solving (3.20).
3. Apply first element of u as input to the system (3.7).
4. Wait for the next time instant k := k + 1.
5. Go to step 1 and repeat
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Fig. 3.1 State and input
trajectories as functions of
time for Example 3.1

For the initial condition x(0) = [2 1]T , Fig. 3.1 shows the state and input trajectories
of the closed loop system obtained by using Algorithm 3.1.

3.3.2 Recursive Feasibility and Stability

Recursive feasibility of the optimization problem and stability of the resulting
closed-loop system are two important aspects when designing a MPC controller.

Recursive feasibility of the QP problem (3.20) means that if (3.20) is feasible at
time k, it will be also feasible at time k+1. In other words there exists an admissible
control value that holds the system within the state constraints. The feasibility prob-
lem can arise due to model errors, disturbances or the choice of the cost function.

Stability analysis necessitates the use of Lyapunov theory [70], since the pres-
ence of the constraints makes the closed-loop system nonlinear. In addition, it
is well known that unstable input-constrained system cannot be globally stabi-
lized [89, 113, 119]. Another problem is that the control law is generated by the
solution of the QP problem (3.20) and generally there does not exist any simple
closed-form expression for the solution, although it can be shown that the solution
is a piecewise affine state feedback law [20].

Recursive feasibility and stability can be assured by adding a terminal cost func-
tion in the objective function (3.9) and by including the final state of the planning
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horizon in a terminal invariant set. Let the matrix P ∈ R
n×n be the unique solution

of the following discrete-time algebraic Riccati equation,

P = AT PA − AT PB
(
BT XB + R

)−1
BT PA + Q (3.22)

and the matrix gain K ∈R
m×n is defined as,

K = −(BT PB + R
)−1

BT PA (3.23)

It is well known [7, 80, 83, 85] that matrix gain K is the solution of the optimization
problem (3.9) when the time horizon N = ∞ and there are no active state and input
constraints. In this case the cost function is,

V
(
x(0)

) =
∞∑

k=0

{
xT
k Qxk + uT

k Ruk

}=
∞∑

k=0

xT
k

(
Q + KT RK

)
xk = xT

0 Px0

For the stabilizing controller u(k) = Kx(k), using results in Sect. 2.3, an ellip-
soidal or polyhedral invariant set Ω ⊆ X can be computed for system (3.7) with
constraints (3.8).

Consider now the following MPC optimization problem,

min
u=[u0,u1,...,uN−1]

{

xT
NPxN +

N−1∑

t=0

{
xT
t Qxt + uT

t Rut

}
}

(3.24)

subject to
⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

xt+1 = Axt + But , t = 0,1, . . . ,N − 1,

xt ∈ X, t = 1,2, . . . ,N − 1,

ut ∈ U, t = 0,1, . . . ,N − 1,

xN ∈ Ω,

x0 = x(k)

The following theorem holds [92]

Theorem 3.1 [92] Assuming feasibility at the initial state, the MPC controller
(3.24) guarantees recursive feasibility and asymptotic stability.

The MPC problem considered here uses both a terminal cost function and a ter-
minal set constraint and is called the dual-mode MPC. This MPC scheme is the most
attractive version in the MPC literature. In general, it offers better performance com-
pared with other MPC versions and allows a wider range of control problems to be
handled. The downside is the dependence of the feasible domain on the prediction
horizon. Generally, for a large domain one needs to employ a large prediction hori-
zon.

3.3.3 Explicit Model Predictive Control—Parameterized Vertices

Note that the implicit MPC requires running on-line optimization algorithms to
solve a QP problem associated with the objective function (3.9) or to solve an LP
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problem with the objective function (3.10) or (3.11). Although computational speed
and optimization algorithms are continuously improving, solving a QP or LP prob-
lem can be computationally costly, specially when the prediction horizon is large,
and this has traditionally limited MPC to applications with relatively low complex-
ity/sampling interval ratio.

Indeed the state vector can be interpreted as a vector of parameters in the opti-
mization problem (3.24). The exact optimal solution can be expressed as a piece-
wise affine function of the state over a polyhedral partition of the state space and
the MPC computation can be moved off-line [20, 30, 95, 115]. The control action is
then computed on-line by lookup tables and search trees.

Several solutions have been proposed in the literature for constructing a polyhe-
dral partition of the state space [20, 95, 115]. In [19, 20] some iterative techniques
use a QP or LP to find feasible points and then split the parameters space by in-
verting one by one the constraints hyper-planes. As an alternative, in [115] the au-
thors construct the unconstrained polyhedral region and then enumerate the others
based on the combinations of active constraints. When the cost function is quadratic,
the uniqueness of the optimal solution is guaranteed and the methods proposed in
[19, 20, 115] work well, at least for non-degenerate sets of constraints [127].

It is worth noticing that by using l1- or l∞-norms as the performance measure,
the cost function is only positive semi-definite and the uniqueness of the optimal
solution is not guaranteed and as a consequence, neither the continuity. A control
law will have a practical advantage if the control action presents no jumps on the
boundaries of the polyhedral partitions. When the optimal solution is not unique,
the methods in [19, 20, 115] allow discontinuities as long as during the exploration
of the parameters space, the optimal basis is chosen arbitrarily.

Note that using the cost (3.10) or (3.11), the MPC problem can be rewritten as

V
(
x(k)

)= min
z

{
cT z

}
(3.25)

subject to

Glz ≤ Elx(k) + Sl

with

z = [ξT
1 ξT

2 . . . ξT
Nξ

uT
0 uT

1 . . . uT
N−1

]T

where ξi , i = 1,2, . . . ,Nξ are slack variables and Nξ depends on the norm used and
on the prediction horizon N . Details of how to compute vectors c, Sl and matrices
Gl , El are well known [19].

The feasible domain for the LP problem (3.25) is defined by a finite number of
inequalities with a right hand side linearly dependent on the vector of parameters
x(k), describing in fact a parameterized polytope [86],

P
(
x(k)

)= {z : Glz ≤ Elx(k) + Sl

}
(3.26)

For simplicity, it is assumed that, the polyhedral set P(x(k)) is bounded
∀x(k) ∈ X. In this case P(x(k)) can be expressed in a dual (generator based) form
as

P(x) = Conv
{
vi

(
x(k)

)}
, i = 1,2, . . . , nv (3.27)
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where vi(x(k)) are the parameterized vertices. Each parameterized vertex in (3.27)
is characterized by a set of active constraints. Once the set of active constraints is
identified, the parameterized vertex vi(x(k)) can be computed as

vi

(
x(k)

)= G
−1
li Elix(k) + G

−1
li Sli (3.28)

where Gli , Eli , Wli correspond to the subset of active constraints for the i-th pa-
rameterized vertex.

As a first conclusion, the construction of the dual description (3.26), (3.27) re-
quires the determination of the set of parameterized vertices. Efficient algorithms
exist in this direction [86], the main idea is the analogy with a non-parameterized
polytope in a higher dimension.

When the vector of parameter x(k) varies inside X, the vertices (3.27) may split
or merge. This means that each parameterized vertex vi(x(k)) is defined only over
a specific region in the parameters space. These regions VDi are called validity
domains and can be constructed using simple projection mechanism [86].

Once the entire family of parameterized vertices and their validity domains are
available, the optimal solution can be constructed as follows.

For a given x(k), the minimum (3.25) is attained by a subset of vertices vi(x(k))

of P(x(k)), denoted v∗
i (x(k)). The complete solution is,

zk

(
x(k)

)= Conv
{
v∗

1k

(
x(k)

)
, v∗

2k

(
x(k)

)
, . . . , v∗

sk

(
x(k)

)}
(3.29)

i.e. any function included in the convex combination of vertices is optimal.
The following theorem holds regarding the structure of the polyhedral partitions

of the parameters space [96].

Theorem 3.2 [96] Let the multi-parametric program in (3.25) and vi(x(k)) be
the parameterized vertices of the feasible domain (3.26), (3.27) with their corre-
sponding validity domains V Di . If a parameterized vertex is selected as an optimal
candidate, then it covers all its validity domain.

It is worth noticing that the complete optimal solution (3.29) takes into account
the eventual non-uniqueness of the optimum, and it defines the entire family of
optimal solutions using the parameterized vertices and their validity domains.

Once the entire family of optimal solutions is available, the continuity of the
control law can be guaranteed as follows. First if the optimal solution is unique,
then there is no decision to be made, the explicit solution being the collection of the
parameterized vertices and their validity domains. The continuity is intrinsic.

Conversely, the family of the optimal solutions can be enriched in the presence
of several optimal parameterized vertices,

⎧
⎨

⎩

zk

(
x(k)

)= α1kv
∗
1k + α2kv

∗
2k + · · · + αskv

∗
sk

αik ≥ 0, i = 1,2, . . . , s

α1k + α2k + · · · + αsk = 1
(3.30)

passing to an infinite number of candidates. As mentioned previously, the vertices
of the feasible domain split and merge. The changes occur with a preservation of the
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continuity. Hence the continuity of the control law is guaranteed by the continuity
of the parameterized vertices. The interested reader is referred to [96] for further
discussions on the related concepts and constructive procedures.

Example 3.2 To illustrate the parameterized vertices concept, consider the follow-
ing feasible domain for the MPC optimization problem,

P
(
x(k)

)= P1 ∩ P2
(
x(k)

)
(3.31)

where P1 is a fixed polytope,

P1 =

⎧
⎪⎪⎨

⎪⎪⎩
z ∈ R

2 :

⎡

⎢⎢
⎣

0 1
1 0
0 −1

−1 0

⎤

⎥⎥
⎦ z ≤

⎡

⎢⎢
⎣

1
1
0
0

⎤

⎥⎥
⎦

⎫
⎪⎪⎬

⎪⎪⎭
(3.32)

and P2(x(k)) is a parameterized polyhedral set,

P2
(
x(k)

)=
{
z ∈ R

2 :
[−1 0

0 −1

]
z ≤

[−1
−1

]
x(k) +

[
0.5
0.5

]}
(3.33)

Note that P2(x(k)) is an unbounded set. Using (3.33), it is follows that,

• If x(k) ≤ 0.5, then −x(k) + 0.5 ≥ 0. It follows that P1 ⊂ P2(x(k)), and hence
P(x(k)) = P1 has the half-space representation as (3.32) and the vertex represen-
tation as,

P
(
x(k)

)= Conv{v1, v2, v3, v4}
where

v1 =
[

0
0

]
, v2 =

[
1
0

]
, v3 =

[
0
1

]
, v4 =

[
1
1

]

• If 0.5 ≤ x(k) ≤ 1.5, then −1 ≤ −x(k)+0.5 ≤ 0. It follows that P1 ∩P2(x(k)) �= ∅.
Note that for P(x(k)), the half-spaces z1 = 0 and z2 = 0 are redundant. P(x(k))

has the half-space representation,

P
(
x(k)

)=

⎧
⎪⎪⎨

⎪⎪⎩
z ∈R

2 :

⎡

⎢⎢
⎣

0 1
1 0

−1 0
0 −1

⎤

⎥⎥
⎦ z ≤

⎡

⎢⎢
⎣

0
0

−1
−1

⎤

⎥⎥
⎦x(k) +

⎡

⎢⎢
⎣

1
1

0.5
0.5

⎤

⎥⎥
⎦

⎫
⎪⎪⎬

⎪⎪⎭

and the vertex representation,

P
(
x(k)

)= Conv{v4, v5, v6, v7}
with

v5 =
[

1
x − 0.5

]
, v6 =

[
x − 0.5

1

]
, v7 =

[
x − 0.5
x − 0.5

]
,

• If 1.5 < x(k), then −x(k) + 0.5 < −1. It follows that P1 ∩ P2(x(k)) = ∅. Hence
P(x(k)) = ∅.
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Table 3.1 Validity domains
and their parameterized
vertices

VD1 VD2 VD3

v1, v2, v3, v4 v4, v5, v6, v7 ∅

Fig. 3.2 Polyhedral sets P1
and P2(x(k)) with
x(k) = 0.3, x(k) = 0.9 and
x(k) = 1.5 for Example 3.2.
For x(k) ≤ 0.5,
P1 ∩ P2(x(k)) = P1. For
0.5 ≤ x(k) ≤ 1.5,
P1 ∩ P2(x(k)) �= ∅. For
x(k) > 1.5,
P1 ∩ P2(x(k)) = ∅

In conclusion, the parameterized vertices of P(x(k)) are,

v1 =
[

0
0

]
, v2 =

[
1
0

]
, v3 =

[
0
1

]
, v4 =

[
1
1

]
,

v5 =
[

1
x(k) − 0.5

]
, v6 =

[
x(k) − 0.5

1

]
, v7 =

[
x(k) − 0.5
x(k) − 0.5

]
,

and the validity domains,

VD1 = (−∞ 0.5], VD2 = [0.5 1.5], VD3 = (1.5 +∞)

Table 3.1 presents the validity domains and their corresponding parameterized
vertices.

Figure 3.2 shows the polyhedral sets P1 and P2(x(k)) with x(k) = 0.3, x(k) =
0.9 and x(k) = 1.5.

Example 3.3 Consider the linear discrete-time system in Example 3.1 with the
same constraints on the state and input variables. Here we will use a dual-mode
MPC (3.24), which guarantees recursive feasibility and stability.

By solving (3.22) and (3.23) for Q = I , R = 1, one obtains,

P =
[

1.5076 −0.1173
−0.1173 1.2014

]
, K = [−0.7015 −1.0576]

For the controller u = Kx, the terminal invariant set Ω is computed using Proce-
dure 2.2,

Ω =

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

x ∈R
2 :

⎡

⎢⎢⎢
⎢⎢⎢
⎣

0.7979 −0.6029
−0.7979 0.6029
1.0000 0

−1.0000 0
−0.5528 −0.8333
0.5528 0.8333

⎤

⎥⎥⎥
⎥⎥⎥
⎦

x ≤

⎡

⎢⎢⎢
⎢⎢⎢
⎣

2.5740
2.5740
2.0000
2.0000
0.7879
0.7879

⎤

⎥⎥⎥
⎥⎥⎥
⎦

⎫
⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎭
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Figure 3.3 shows the state space partition obtained by using the parameterized
vertices framework as a method to construct the explicit solution to the MPC prob-
lem (3.24) with prediction horizon N = 2.

The control law over the state space partition is,

u(k) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

−0.70x1(k) − 1.06x2(k) if

⎡

⎢⎢⎢
⎢⎢
⎣

−0.80 0.60
0.80 −0.60
0.55 0.83

−0.55 −0.83
−1.00 0.00
1.00 0.00

⎤

⎥⎥⎥
⎥⎥
⎦

x(k) ≤

⎡

⎢⎢⎢
⎢⎢
⎣

2.57
2.57
0.79
0.79
2.00
2.00

⎤

⎥⎥⎥
⎥⎥
⎦

(Region 1)

−0.56x1(k) − 1.17x2(k) + 0.47 if

⎡

⎣
0.43 0.90

−1.00 0.00
0.80 −0.60

⎤

⎦x(k) ≤
⎡

⎣
1.14
2.00

−2.57

⎤

⎦

(Region 4)

−0.56x1(k) − 1.17x2(k) − 0.47 if

⎡

⎣
−0.43 −0.90
1.00 0.00

−0.80 0.60

⎤

⎦x(k) ≤
⎡

⎣
1.14
2.00

−2.57

⎤

⎦

(Region 7)

−1 if

⎡

⎣
0.37 0.93
1.00 0.00

−0.55 −0.83

⎤

⎦x(k) ≤
⎡

⎣
1.29
2.00

−0.79

⎤

⎦

(Region 2)

1 if

⎡

⎣
−0.37 −0.93
−1.00 0.00
0.55 0.83

⎤

⎦x(k) ≤
⎡

⎣
1.29
2.00

−0.79

⎤

⎦

(Region 5)

−1 if

⎡

⎢⎢⎢
⎢⎢
⎣

0.71 0.71
0.27 0.96

−1.00 0.00
1.00 0.00

−0.43 −0.90
−0.37 −0.93

⎤

⎥⎥⎥
⎥⎥
⎦

x(k) ≤

⎡

⎢⎢⎢
⎢⎢
⎣

2.12
1.71
2.00
2.00

−1.14
−1.29

⎤

⎥⎥⎥
⎥⎥
⎦

(Region 3)

1 if

⎡

⎢⎢
⎢⎢⎢
⎣

−0.71 −0.71
−0.27 −0.96
1.00 0.00

−1.00 0.00
0.43 0.90
0.37 0.93

⎤

⎥⎥
⎥⎥⎥
⎦

x(k) ≤

⎡

⎢⎢
⎢⎢⎢
⎣

2.12
1.71
2.00
2.00

−1.14
−1.29

⎤

⎥⎥
⎥⎥⎥
⎦

(Region 6)

For the initial condition x(0) = [−2 2.33], Fig. 3.4 shows the state and input trajec-
tories as functions of time.

3.4 Vertex Control

The vertex control framework was first proposed by Gutman and Cwikel in [53].
It gives a necessary and sufficient condition for stabilizing a time-invariant linear
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Fig. 3.3 State space partition
for Example 3.3. Number of
regions Nr = 7

Fig. 3.4 State and input
trajectories of the closed loop
system as functions of time
for Example 3.3

discrete-time system with bounded polyhedral state and control constraints. The
condition is that at each vertex of the controlled invariant set2 CN there exists an
admissible control action that brings the state to the interior of the set CN in finite
time. Then, this condition was extended to the uncertain plant case by Blanchini in
[23]. A stabilizing controller is given by the convex combination of vertex controls
in each sector with a Lyapunov function given by shrunken images of the boundary
of the set CN [23, 53].

2See Sect. 2.3.4.
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Fig. 3.5 Graphical
illustration of the simplex
decomposition

To begin, let us consider the following uncertain and/or time-varying linear
discrete-time system,

x(k + 1) = A(k)x(k) + B(k)u(k) (3.34)

where x(k) ∈ R
n, u(k) ∈ R

m are, respectively the state and input vectors. The ma-
trices A(k) ∈R

n×n, B(k) ∈ R
n×m satisfy,

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

A(k) =
q∑

i=1

αi(k)Ai, B(k) =
q∑

i=1

αi(k)Bi,

q∑

i=1

αi(k) = 1, αi(k) ≥ 0

(3.35)

where the matrices Ai , Bi are given.
Both x(k) and u(k) are subject to the following bounded polytopic constraints,

{
x(k) ∈ X, X = {x ∈ R

n : Fxx ≤ gx

}

u(k) ∈ U, U = {u ∈R
m : Fuu ≤ gu

} (3.36)

where the matrices Fx , Fu and the vectors gx and guare assumed to be constant with
gx > 0, gu > 0.

Using results in Sect. 2.3.4, it is assumed that the robustly controlled invariant
set CN with some fixed integer N > 0 is available as,

CN = {x ∈ R
n : FNx ≤ gN

}
(3.37)

The set CN with non-empty interior can be decomposed as a sequence of simpli-
cies C

(j)
N each formed by n vertices {x(j)

1 , x
(j)

2 , . . . , x
(j)
n } and the origin, having the

following properties, see Fig. 3.5,

• C
(j)
N has nonempty interior.

• Int(C(j)
N ) ∩ Int(C(l)

N ) = ∅,∀j �= l.

• ⋃
j C

(j)
N = CN .
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Denote by V (j) = [v(j)

1 v
(j)

2 . . . v
(j)
n ] the square matrix defined by the vertices

generating C
(j)
N . Since C

(j)
N has nonempty interior, V (j) is invertible. Let

U(j) = [u(j)

1 u
(j)

2 . . . u
(j)
n

]

be the m × n matrix defined by chosen admissible control values3 satisfying (3.36)
at the vertices of C

(j)
N . Consider the following piecewise linear controller,

u(k) = K(j)x(k) (3.38)

called the vertex control law, for x(k) ∈ C
(j)
N , where

K(j) = U(j)
(
V (j)

)−1 (3.39)

A simple LP problem is formulated to determine to which simplex j the current
state belongs [65, 128] in order to compute (3.38).

Remark 3.1 Generally, one would like to push the state away from the boundary of
the set CN as far as possible in a contractive sense: if x(k) is a vertex of CN , one
would like to find the control value u(k) ∈ U , such that x(k +1) ∈ μCN , whereby μ

is minimal. This can be done by solving the following linear programming problem,

J = min
μ,u

{μ} (3.40)

subject to
⎧
⎨

⎩

FN(Aix + Biu) ≤ μgN, ∀i = 1,2 . . . , q,

Fuu ≤ gu,

0 ≤ μ ≤ 1

Due to the invariance properties of CN , problem (3.40) is always feasible.

Theorem 3.3 The vertex controller (3.38) guarantees recursive feasibility for all
initial states x(0) ∈ CN .

Proof Proofs are given in [23, 53]. Here a new simple proof is proposed. For all
x(k) ∈ CN , there exists an index j such that x(k) ∈ C

(j)
N , and x(k) can be expressed

as a convex combination of the vertices of C
(j)
N ,

x(k) = β1(k)v
(j)

1 + β2(k)v
(j)

2 + · · · + βn(k)v
(j)
n (3.41)

where
∑n

i=1 βi(k) ≤ 1 and βi(k) ≥ 0. Equation (3.41) can be written in a compact
form as,

x(k) = V (j)β(k) (3.42)

3By an admissible control value we understand any control value that is the first of a sequence of
control values that bring the state from the vertex to the interior of the feasible set in a finite number
of steps, see [53].



60 3 Optimal and ConstrainedControl—An Overview

where β(k) = [β1(k) β2(k) . . . βn(k)]T and by consequence

β(k) = (V (j)
)−1

x(k) (3.43)

Using (3.38), (3.39), one has

u(k) = K(j)x(k) = U(j)
(
V (j)

)−1
x(k) (3.44)

and by (3.43), equation (3.44) becomes

u(k) = U(j)β(k) =
n∑

i=1

βi(k)u
(j)
i (3.45)

Hence for a given x(k) ∈ C
(j)
N , the control value is the convex combination of vertex

controls of C
(j)
N .

For feasibility, one has to assure,

∀x(k) ∈ CN :
{

Fuu(k) ≤ gu,

x(k + 1) = A(k)x(k) + B(k)u(k) ∈ CN

For the input constraints, using (3.45), it holds that,

Fuu(k) =
n∑

i=1

βi(k)Fuu
(j)
i ≤

n∑

i=1

βi(k)gu ≤ gu

For the state constraints, using (3.42), (3.45), one obtains,

x(k + 1) = A(k)x(k) + B(k)u(k) = A(k)V (j)β(k) + B(k)U(j)β(k)

=
n∑

i=1

βi(k)
(
A(k)v

(j)
i + B(k)u

(j)
i

)

Since A(k)v
(j)
i +B(k)u

(j)
i ∈ CN , ∀i = 1,2, . . . , n, it follows that x(k + 1) ∈ CN . �

Theorem 3.4 Given the system (3.34) and the constraints (3.36), the vertex control
law (3.38) is robustly asymptotically stabilizing for all initial states x(0) ∈ CN .

Proof Proofs are given in [23, 53]. Here we give another proof providing valuable
insight into the vertex control scheme. Denote the vertices of CN as {v1, v2, . . . , vs}
where s is the number of vertices. It follows from [53] that the vertex control law can
be obtained by solving the following optimization problem, for a given x(k) ∈ CN ,

V
(
x(k)

)= min
βi(k)

{
s∑

i=1

βi(k)

}

(3.46)

subject to
⎧
⎪⎨

⎪⎩

x(k) =
s∑

i=1

βi(k)vi,

0 ≤ βi(k) ≤ 1, ∀i = 1,2, . . . , s



3.4 Vertex Control 61

and letting the control value u(k) at the current state x(k) be defined as,

u(k) =
s∑

i=1

β∗
i (k)ui

where ui is the vertex control value at vi and β∗
i (k) is the solution of (3.46).

Consider the positive function V (x) = ∑s
i=1 β∗

i (x) for all x ∈ CN . V (x) is a
Lyapunov function candidate. One has

x(k + 1) = A(k)x(k) + B(k)u(k) = A(k)

s∑

i=1

β∗
i (k)vi + B(k)

s∑

i=1

β∗
i (k)ui

=
s∑

i=1

β∗
i (k)

(
A(k)vi + B(k)ui

)=
s∑

i=1

β∗
i (k)v+

i (k)

where v+
i (k) = A(k)vi +B(k)ui ∈ CN . Clearly, v+

i (k) can be expressed as the con-
vex hull of vertices of CN , i.e.

v+
i (k) =

s∑

j=1

γij (k)vj

where
∑s

j=1 γij (k) ≤ 1 and 0 ≤ γij (k) ≤ 1, ∀j = 1,2, . . . , s, ∀i = 1,2, . . . , s. It
follows that,

x(k + 1) =
s∑

i=1

β∗
i (k)v+

i (k) =
s∑

i=1

β∗
i (k)

s∑

j=1

γij (k)vj =
s∑

j=1

(
s∑

i=1

β∗
i (k)γij (k)

)

vj

(3.47)

Hence (
∑s

i=1 β∗
i (k)γij (k)), ∀j = 1,2, . . . , s is a feasible solution of the optimiza-

tion problem (3.46) at time k + 1. Since
∑s

j=1 γij ≤ 1, ∀i = 1,2, . . . , s, it follows
that,

s∑

j=1

(
s∑

i=1

β∗
i (k)γij

)

=
s∑

i=1

β∗
i (k)

(
s∑

j=1

γij

)

≤
s∑

i=1

β∗
i (k) (3.48)

By solving the linear programming problem (3.46) at time k + 1, one gets the opti-
mal solution, namely

x(k + 1) =
s∑

i=1

β∗
i (k + 1)vi (3.49)

Using (3.47), (3.49), it follows that
s∑

i=1

β∗
i (k + 1) ≤

s∑

j=1

s∑

i=1

β∗
i (k)γij (k)

and together with (3.48), one obtains
s∑

i=1

β∗
i (k + 1) ≤

s∑

i=1

β∗
i (k)

hence V (x) is a non-increasing function.
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Fig. 3.6 Invariant set CN and
state space partition for vertex
control for Example 3.4

The facts that the level curves of the function V (x) =∑s
i=1 β∗

i (k) are given by
scaling the boundary of CN , and the state contraction property of applying of the
control values ui at the vertices of CN , guarantees that there is no initial condition
x(0) on the boundary of CN such that

∑s
i=1 β∗

i (k) = ∑s
i=1 β∗

i (0) = 1 for suffi-
ciently large and finite k. The conclusion is that V (x) =∑s

i=1 β∗
i (x) is a Lyapunov

function for x(k) ∈ CN . Hence the closed loop system with the vertex control law is
robustly asymptotically stable. �

Example 3.4 Consider the discrete-time system in example 3.1,

x(k + 1) =
[

1 1
0 1

]
x(k) +

[
1

0.7

]
u(k) (3.50)

The constraints are,

−2 ≤ x1 ≤ 2, −5 ≤ x2 ≤ 5, −1 ≤ u ≤ 1 (3.51)

Using Procedure 2.3, the set CN is computed and depicted in Fig. 3.6.
The set of vertices of CN is given by the matrix V (CN) below, together with the

control matrix Uv ,
⎧
⎪⎨

⎪⎩

V (CN) =
[

2.00 1.30 −0.10 −2.00 −2.00 −1.30 0.10 2.00
1.00 1.70 2.40 3.03 −1.00 −1.70 −2.40 −3.03

]
,

Uv = [−1 −1 −1 −1 1 1 1 1
]

(3.52)

The vertex control law over the state space partition is,

u(k) =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

−0.25x1(k) − 0.50x2(k), if x(k) ∈ C
(1)
N or x(k) ∈ C

(5)
N

−0.33x1(k) − 0.33x2(k), if x(k) ∈ C
(2)
N or x(k) ∈ C

(6)
N

−0.21x1(k) − 0.43x2(k), if x(k) ∈ C
(3)
N or x(k) ∈ C

(7)
N

−0.14x1(k) − 0.42x2(k), if x(k) ∈ C
(4)
N or x(k) ∈ C

(8)
N

(3.53)

with
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C
(1)
N =

⎧
⎨

⎩
x ∈ R

2 :
⎡

⎣
1.00 0.00

−0.45 0.89
−0.83 −0.55

⎤

⎦x ≤
⎡

⎣
2.00
0.00
0.00

⎤

⎦

⎫
⎬

⎭

C
(2)
N =

⎧
⎨

⎩
x ∈ R

2 :
⎡

⎣
0.71 0.71
0.45 −0.89

−0.79 0.61

⎤

⎦x ≤
⎡

⎣
2.12
0.00
0.00

⎤

⎦

⎫
⎬

⎭

C
(3)
N =

⎧
⎨

⎩
x ∈ R

2 :
⎡

⎣
0.79 −0.61
0.45 0.89

−1.00 −0.04

⎤

⎦x ≤
⎡

⎣
0.00
2.10
0.00

⎤

⎦

⎫
⎬

⎭

C
(4)
N =

⎧
⎨

⎩
x ∈ R

2 :
⎡

⎣
1.00 0.04

−0.83 −0.55
0.32 0.95

⎤

⎦x ≤
⎡

⎣
0.00
0.00
2.25

⎤

⎦

⎫
⎬

⎭

C
(5)
N =

⎧
⎨

⎩
x ∈ R

2 :
⎡

⎣
−1.00 0.00
0.45 −0.89
0.83 0.55

⎤

⎦x ≤
⎡

⎣
2.00
0.00
0.00

⎤

⎦

⎫
⎬

⎭

C
(6)
N =

⎧
⎨

⎩
x ∈ R

2 :
⎡

⎣
−0.71 −0.71
−0.45 0.89
0.79 −0.61

⎤

⎦x ≤
⎡

⎣
2.12
0.00
0.00

⎤

⎦

⎫
⎬

⎭

C
(7)
N =

⎧
⎨

⎩
x ∈ R

2 :
⎡

⎣
−0.79 0.61
−0.45 −0.89
1.00 0.04

⎤

⎦x ≤
⎡

⎣
0.00
2.10
0.00

⎤

⎦

⎫
⎬

⎭

C
(8)
N =

⎧
⎨

⎩
x ∈ R

2 :
⎡

⎣
−1.00 −0.04
0.83 0.55

−0.32 −0.95

⎤

⎦x ≤
⎡

⎣
0.00
0.00
2.25

⎤

⎦

⎫
⎬

⎭

Figure 3.7 presents state trajectories of the closed loop system for different initial
conditions.

For the initial condition x(0) = [−2.0000 3.0333]T , Fig. 3.8 shows the state,
input trajectory, and the Lyapunov function V (x) =∑s

i=1 β∗
i . As expected V (x) is

a positive and non-increasing function.
From Fig. 3.8(b), it is worth noticing that using the vertex controller, the control

values are saturated only on the boundary of the set CN , i.e. when V (x) = 1. And
also the state trajectory at some moments is parallel to the boundary of the set CN ,

Fig. 3.7 State trajectories of
the closed loop system for
Example 3.4
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Fig. 3.8 State, input
trajectory and the Lyapunov
function V (x) as functions of
time for Example 3.4

i.e when V (x) is constant. At these moments, the control values are also constant
due to the choice of the control values at the vertices of the set CN .



Part II
Interpolating Control



Chapter 4
Interpolating Control—Nominal State
Feedback Case

4.1 Problem Formulation

Consider the problem of regulating to the origin the following time-invariant linear
discrete-time system,

x(k + 1) = Ax(k) + Bu(k) (4.1)

where x(k) ∈ R
n and u(k) ∈ R

m are respectively, the measurable state vector and
the input vector. The matrices A ∈ R

n×n and B ∈ R
n×m. Both x(k) and u(k) are

subject to bounded polytopic constraints,
{

x(k) ∈ X, X = {x ∈R
n : Fxx ≤ gx

}

u(k) ∈ U, U = {u ∈ R
m : Fuu ≤ gu

} ∀k ≥ 0 (4.2)

where the matrices Fx , Fu and the vectors gx , gu are assumed to be constant. The
inequalities are taken element-wise. It is assumed that the pair (A,B) is stabilizable,
i.e. all uncontrollable states have stable dynamics.

4.2 Interpolating Control via Linear Programming—Implicit
Solution

Define a linear controller K ∈ R
m×n, such that,

u(k) = Kx(k) (4.3)

asymptotically stabilizes the system (4.1) with some desired performance specifi-
cations. The details of such a synthesis procedure are not reproduced here, but we
assume that feasibility is guaranteed. For the controller (4.3) using Procedure 2.1 or
Procedure 2.2 the maximal invariant set Ωmax can be computed as,

Ωmax = {x ∈R
n : Fox ≤ go

}
(4.4)

H.-N. Nguyen, Constrained Control of Uncertain, Time-Varying, Discrete-Time Systems,
Lecture Notes in Control and Information Sciences 451,
DOI 10.1007/978-3-319-02827-9_4,
© Springer International Publishing Switzerland 2014
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Fig. 4.1 Any state x(k) can
be decomposed as a convex
combination of xv(k) ∈ CN

and xo(k) ∈ Ωmax

Furthermore with some given and fixed integer N > 0, based on Procedure 2.3 the
controlled invariant set CN can be found as,

CN = {x ∈ R
n : FNx ≤ gN

}
(4.5)

such that all x ∈ CN can be steered into Ωmax in no more than N steps when a
suitable control is applied. As in Sect. 3.4, the set CN is decomposed as a sequence
of simplices C

(j)
N , each formed by n vertices of CN and the origin. For all x(k) ∈

C
(j)
N , the vertex controller

u(k) = K(j)x(k), (4.6)

with K(j) given in (3.38) asymptotically stabilizes the system (4.1), while the con-
straints (4.2) are fulfilled.

The main advantage of the vertex control scheme is the size of the domain of
attraction, i.e. the set CN . Clearly, CN , that is the feasible domain for vertex con-
trol, might be as large as that of any other constrained control scheme. However,
a weakness of vertex control is that the full control range is exploited only on the
boundary of CN in the state space, with progressively smaller control action when
state approaches the origin. Hence the time to regulate the plant to the origin is often
unnecessary long. A way to overcome this shortcoming is to switch to another, more
aggressive, local controller, e.g. the controller (4.3), when the state reaches Ωmax.
The disadvantage of this solution is that the control action becomes nonsmooth [94].

Here a method to overcome the nonsmooth control action [94] will be proposed.
For this purpose, any state x(k) ∈ CN is decomposed as,

x(k) = c(k)xv(k) + (1 − c(k)
)
xo(k) (4.7)

with xv ∈ CN , xo ∈ Ωmax and 0 ≤ c ≤ 1. Figure 4.1 illustrates such a decomposition.

Consider the following control law,

u(k) = c(k)uv(k) + (1 − c(k)
)
uo(k) (4.8)

where uv(k) is the vertex control law (4.6) at xv(k) and uo(k) = Kxo(k) is the
control law (4.3) in Ωmax.
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Theorem 4.1 For system (4.1) and constraints (4.2), the control law (4.7), (4.8)
guarantees recursive feasibility for all initial states x(0) ∈ CN .

Proof For recursive feasibility, we have to prove that,
{

Fuu(k) ≤ gu

x(k + 1) = Ax(k) + Bu(k) ∈ CN

for all x(k) ∈ CN . For the input constraints,

Fuu(k) = Fu

{
c(k)uv(k) + (1 − c(k)

)
uo(k)

}

= c(k)Fuuv(k) + (1 − c(k)
)
Fuuo(k)

≤ c(k)gu + (1 − c(k)
)
gu = gu

and for the state constraints,

x(k + 1) = Ax(k) + Bu(k)

= A
{
c(k)xv(k) + (1 − c(k)

)
xo(k)

}+ B
{
c(k)uv(k) + (1 − c(k)

)
uo(k)

}

= c(k)
{
Axv(k) + Buv(k)

}+ (1 − c(k)
){

Axo(k) + Buo(k)
}

Since Axv(k) + Buv(k) ∈ CN and Axo(k) + Buo(k) ∈ Ωmax ⊆ CN , it follows that
x(k + 1) ∈ CN . �

Since the controller (4.3) is designed to give specified unconstrained performance
in Ωmax, it might be desirable to have u(k) in (4.8) as close as possible to it also
outside Ωmax. This can be achieved by minimizing c,

c∗ = min
xv,xo,c

{c} (4.9)

subject to
⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

FNxv ≤ gN,

Foxo ≤ go,

cxv + (1 − c)xo = x,

0 ≤ c ≤ 1

Denote rv = cxv ∈ R
n, ro = (1 − c)xo ∈ R

n. Since xv ∈ CN and xo ∈ Ωmax, it fol-
lows that rv ∈ cCN and ro ∈ (1 − c)Ωmax or equivalently

{
FNrv ≤ cgN

Foro ≤ (1 − c)go

Hence the nonlinear optimization problem (4.9) is transformed into the following
linear programming problem,
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c∗ = min
rv,c

{c} (4.10)

subject to
⎧
⎪⎪⎨

⎪⎪⎩

FNrv ≤ cgN,

Fo(x − rv) ≤ (1 − c)go,

0 ≤ c ≤ 1

Remark 4.1 If one would like to maximize c, it is obvious that c = 1 for all x ∈ CN .
In this case the controller (4.7), (4.8) becomes the vertex controller.

Theorem 4.2 The control law (4.7), (4.8), (4.10) guarantees asymptotic stability
for all initial states x(0) ∈ CN .

Proof First of all we will prove that all solutions starting in CN \ Ωmax will reach
Ωmax in finite time. For this purpose, consider the following non-negative function,

V (x) = c∗(x), ∀x ∈ CN \ Ωmax (4.11)

V (x) is a candidate Lyapunov function. After solving the LP problem (4.10) and
applying (4.7), (4.8), one obtains, for x(k) ∈ CN \ Ωmax,

{
x(k) = c∗(k)x∗

v (k) + (1 − c∗(k)
)
x∗
o (k)

u(k) = c∗(k)uv(k) + (1 − c∗(k)
)
uo(k)

It follows that,

x(k + 1) = Ax(k) + Bu(k)

= c∗(k)xv(k + 1) + (1 − c∗(k)
)
xo(k + 1)

where
{

xv(k + 1) = Ax∗
v (k) + Buv(k) ∈ CN

xo(k + 1) = Ax∗
o (k) + Buo(k) ∈ Ωmax

Hence c∗(k) is a feasible solution for the LP problem (4.10) at time k+1. By solving
(4.10) at time k + 1, one gets the optimal solution, namely

x(k + 1) = c∗(k + 1)x∗
v (k + 1) + (1 − c∗(k + 1)

)
x∗
o (k + 1)

where x∗
v (k + 1) ∈ CN and x∗

o (k + 1) ∈ Ωmax. It follows that c∗(k + 1) ≤ c∗(k) and
V (x) is non-increasing.

Using the vertex controller, an interpolation between a point of CN and the origin
is obtained. Conversely using the controller (4.7), (4.8), (4.10) an interpolation is
constructed between a point of CN and a point of Ωmax which in turn contains the
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Algorithm 4.1 Interpolating control—Implicit solution
1. Measure the current state x(k).
2. Solve the LP problem (4.10).
3. Compute urv in (4.12) by determining to which simplex r∗

v belongs and using
(3.38).

4. Implement as input the control signal (4.12).
5. Wait for the next time instant k := k + 1.
6. Go to step 1 and repeat.

origin as an interior point. This last property proves that the vertex controller is a
feasible choice for the interpolation scheme (4.7), (4.8), (4.10). Hence it follows
that,

c∗(k) ≤
s∑

i=1

β∗
i (k)

for any x(k) ∈ CN , with β∗
i (k) obtained in (3.46), Sect. 3.4.

Since the vertex controller is asymptotically stabilizing, the state reaches any
bounded set around the origin in finite time. In our case this property will imply that
using the controller (4.7), (4.8), (4.10) the state of the closed loop system reaches
Ωmax in finite time or equivalently that there exists a finite k such that c∗(k) = 0.

The proof is complete by noting that inside Ωmax, the LP problem (4.10) has the
trivial solution c∗ = 0. Hence the controller (4.7), (4.8), (4.10) becomes the local
controller (4.3). The feasible stabilizing controller u(k) = Kx(k) is contractive, and
thus the interpolating controller assures asymptotic stability for all x ∈ CN . �

The control law (4.7), (4.8), (4.10) obtained by solving on-line the LP problem
(4.10) is called Implicit Interpolating Control.

Since r∗
v (k) = c∗(k)x∗

v (k) and r∗
o (k) = (1 − c∗(k))x∗

o (k), it follows that,

u(k) = urv(k) + uro(k) (4.12)

where urv(k) is the vertex control law at r∗
v (k) and uro(k) = Kr∗

o (k).

Remark 4.2 Note that at each time instant Algorithm 4.1 requires the solutions of
two LP problems, one is (4.10) of dimension n + 1, the other is to determine to
which simplex r∗

v belongs.

Example 4.1 Consider the following time-invariant linear discrete-time system,

x(k + 1) =
[

1 1
0 1

]
x(k) +

[
1

0.3

]
u(k) (4.13)

The constraints are,

−10 ≤ x1(k) ≤ 10, −5 ≤ x2(k) ≤ 5, −1 ≤ u(k) ≤ 1 (4.14)



72 4 Interpolating Control—Nominal State Feedback Case

The local controller is chosen as a linear quadratic (LQ) controller with weighting
matrices Q = I and R = 1, giving the state feedback gain,

K = [−0.5609 −0.9758] (4.15)

The sets Ωmax and CN with N = 14 are shown in Fig. 4.1. Note that C14 = C15

is the maximal controlled invariant set. Ωmax is presented in minimal normalized
half-space representation as,

Ωmax =

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

x ∈R
2 :

⎡

⎢⎢⎢⎢⎢⎢
⎣

0.1627 −0.9867
−0.1627 0.9867
−0.1159 −0.9933
0.1159 0.9933

−0.4983 −0.8670
0.4983 0.8670

⎤

⎥⎥⎥⎥⎥⎥
⎦

x ≤

⎡

⎢⎢⎢⎢⎢⎢
⎣

1.9746
1.9746
1.4115
1.4115
0.8884
0.8884

⎤

⎥⎥⎥⎥⎥⎥
⎦

⎫
⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎭

(4.16)

The set of vertices of CN is given by the matrix V (CN), together with the corre-
sponding control matrix Uv ,

V (CN) = [V1 −V1], Uv = [U1 −U1] (4.17)

where

V1 =
[

10.0000 9.7000 9.1000 8.2000 7.0000 5.5000 3.7000 1.6027 −10.0000
1.0000 1.3000 1.6000 1.9000 2.2000 2.5000 2.8000 3.0996 3.8368

]
,

U1 = [−1 −1 −1 −1 −1 −1 −1 −1 1
]

The state space partition of vertex control is shown in Fig. 4.2(a). Using the implicit
interpolating controller, Fig. 4.2(b) presents state trajectories of the closed loop sys-
tem for different initial conditions.

For the initial condition x(0) = [−2.0000 3.3284]T , Fig. 4.3 shows the state and
input trajectories for the implicit interpolating controller (solid). As a comparison,
we take MPC, based on quadratic programming, where an LQ criterion is optimized,
with identity weighting matrices. Hence the set Ωmax for the local unconstrained
control is identical for the MPC solution and for the implicit interpolating controller.
The prediction horizon for the MPC was chosen to be 14 to match the controlled
invariant set C14 used for the implicit interpolating controller. Figure 4.3 shows the
state and input trajectories obtained for the implicit MPC (dashed).

Using the tic/toc function of Matlab 2011b, the computational burdens of inter-
polating control and MPC were compared. The result is shown in Table 4.1

Table 4.1 Durations [ms] of
the on-line computations
during one sampling interval
for interpolating control and
MPC, respectively for
Example 4.1

Computational time

Implicit interpolating control 0.7652

Implicit QP-MPC 4.6743
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Fig. 4.2 State space partition
of vertex control and state
trajectories for Example 4.1

As a final analysis element, Fig. 4.4 presents the interpolating coefficient c∗(k).
It is interesting to note that c∗(k) = 0, ∀k ≥ 15 indicating that from time instant
k = 15, the state of the closed loop system is in Ωmax, and consequently is optimal
in the MPC cost function terms. The monotonic decrease and the positivity confirms
the Lyapunov interpretation given in the present section.

4.3 Interpolating Control via Linear Programming—Explicit
Solution

The structural implication of the LP problem (4.10) is investigated in this section.

4.3.1 Geometrical Interpretation

Let ∂(·) denotes the boundary of the corresponding set (·). The following theorem
holds

Theorem 4.3 For all x ∈ CN \Ωmax, the solution of the LP problem (4.10) satisfies
x∗
v ∈ ∂CN and x∗

o ∈ ∂Ωmax.
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Fig. 4.3 State and input
trajectories for Example 4.1
for implicit interpolating
control (solid), and for
implicit QP-MPC (dashed)

Fig. 4.4 Interpolating
coefficient c∗ as a function of
time example 4.1

Proof Consider x ∈ CN \ Ωmax, with a particular convex combination

x = cxv + (1 − c)xo

where xv ∈ CN and xo ∈ Ωmax. If xo is strictly inside Ωmax, one can set x̃o =
∂Ωmax ∩ x, xo, i.e. x̃o is the intersection between ∂Ωmax and the line segment con-
necting x and xo, see Fig. 4.5. Apparently, x can be expressed as the convex com-
bination of xv and x̃o, i.e.

x = c̃xv + (1 − c̃)x̃o

with c̃ < c, since x is closer to x̃o than to xo. So (4.10) leads to {c∗, x∗
v , x∗

o } with
x∗
o ∈ ∂Ωmax.
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Fig. 4.5 Graphical
illustration for the proof of
Theorem 4.3

One the other hand, if xv is strictly inside CN , one can set x̃v = ∂CN∩ −→
x, xv ,

i.e. x̃v is the intersection between ∂CN and the ray starting from x through xv , see
Fig. 4.5. Again, x can be written as the convex combination of x̃v and xo, i.e.

x = c̃x̃v + (1 − c̃)xo

with c̃ < c, since x is further from x̃v than from xv . This leads to the conclusion that
for the optimal solution {c∗, x∗

v , x∗
o } we have x∗

v ∈ ∂PN . �

Theorem 4.3 states that for all x ∈ CN \ Ωmax, the interpolating coefficient c

is minimal if and only if x is written as a convex combination of two points, one
belonging to CN and the other to ∂Ωmax. It is obvious that for x ∈ Ωmax, the LP
problem (4.10) has the trivial solution c∗ = 0 and thus x∗

v = 0 and x∗
o = x.

Theorem 4.4 For all x ∈ CN \ Ωmax, the convex combination x = cxv + (1 − c)xo

gives the smallest value of c if the ratio ‖xv−x‖
‖x−xo‖ is maximal, where ‖ · ‖ denotes the

Euclidean vector norm.

Proof It holds that

x = cxv + (1 − c)xo

⇒ xv − x = xv − cxv − (1 − c)xo = (1 − c)(xv − xo)

consequently

‖xv − x‖ = (1 − c)‖xv − xo‖ (4.18)

Analogously, one obtains

‖x − xo‖ = c‖xv − xo‖ (4.19)

Combining (4.18) and (4.19) and the fact that c �= 0 for all x ∈ CN \ Ωmax, one gets

‖xv − x‖
‖x − xo‖ = (1 − c)‖xv − xo‖

c‖xv − xo‖ = 1

c
− 1

c > 0 is minimal if and only if 1
c

− 1 is maximal, or equivalently ‖xv−x‖
‖x−xo‖ is maxi-

mal. �
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Fig. 4.6 Graphical
illustration for the proof of
Theorem 4.5

4.3.2 Analysis in R
2

In this subsection an analysis of the optimization problem (4.9) in the R
2 parameter

space is presented with reference to Fig. 4.6. The discussion is insightful in what
concerns the properties of the partition in the explicit solution. The problem con-
sidered here is to decompose the polyhedral X1234 such that the explicit solution
c∗ = min{c} is given in the decomposed cells.

For illustration we will consider four points V1,V2,V3,V4, and any point x ∈
Conv(V1,V2,V3,V4). This schematic view can be generalized to any pair of faces
of CN and Ωmax. Denote Vij as the interval connecting Vi and Vj for i, j = 1, . . . ,4.
The problem is reduced to the expression of a convex combination x = cxv+
(1 − c)xo, where xv ∈ V12 ⊂ ∂CN and xo ∈ V34 ⊂ ∂Ωmax providing the minimal
value of c.

Without loss of generality, suppose that the distance from V2 to V34 is greater
than the distance from V1 to V34, or equivalently the distance from V4 to V12 is
smaller than the distance from V3 to V12.

Theorem 4.5 Under the condition that the distance from V2 to V34 is greater than
the distance from V1 to V34, or equivalently the distance from V4 to V12 is smaller
than the distance from V3 to V12, the decomposition of the polytope V1234, V1234 =
V124 ∪ V234 is the result of the minimization of the interpolating coefficient c.

Proof Without loss of generality, suppose that x ∈ V234. x can be decomposed as,

x = cV2 + (1 − c)xo (4.20)

where xo ∈ V34, see Fig. 4.6. Another possible decomposition is

x = c′x′
v + (1 − c′)x′

o (4.21)

where x′
v belongs to V34 and x′

o belongs to V12.
Clearly, if the distance from V2 to V34 is greater than the distance from V1 to V34

then the distance from V2 to V34 is greater than the distance from any point in V12
to V34. Consequently, there exists the point T in the ray, starting from V2 through
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x such that the distance from T to V34 is equal to the distance from x′
v to V34. It

follows that the line connecting T and x′
v is parallel to X34, see Fig. 4.6.

Using Basic Proportionality Theorem, one has

‖x − x′
v‖

‖x − x′
o‖

= ‖x − T ‖
‖x − xo‖ (4.22)

by using Theorem 4.4 and since

‖x − T ‖
‖x − xo‖ <

‖x − V2‖
‖x − xo‖

it follows that c < c′. �

Theorem 4.5 states that the minimal value of the interpolating coefficient c is
found with the help of the decomposition of V1234 as V1234 = V124 ∪ V234.

Remark 4.3 Clearly, if V12 is parallel to V34, then any convex combination x =
cxv + (1 − c)xo gives the same value of c. Hence the partition may not be unique.

Remark 4.4 As a consequence of Theorem 4.5, it is clear that the region CN \Ωmax

can be subdivided into partitions (cells) as follows,

• For each facet of the set Ωmax, one has to find the furthest point on ∂CN on the
same side of the origin as the facet of Ωmax. A polyhedral cell is obtained as the
convex hull of that facet of Ωmax and the furthest point in CN . By the bounded
polyhedral structure of CN , the existence of some vertex of CN as the furthest
point is guaranteed.

• On the other hand, for each facet of CN , one has to find the closest point on ∂Ωmax

on the same side of the origin as the facet of CN . A polyhedral cell is obtained as
the convex hull of that facet of CN and the closest point in Ωmax. Again by the
bounded polyhedral structure of Ωmax, the existence of some vertex Ωmax as the
closest point is guaranteed.

Remark 4.5 Clearly, in R
2, the state space partition according to Remark 4.4 cover

the entire set CN , see e.g. Fig. 4.7. However in R
n, that is not necessarily the case

as shown in the following example. Let CN and Ωmax be given by the vertex repre-
sentations, displayed in Fig. 4.8(a),

CN = Conv

⎧
⎨

⎩

⎡

⎣
−4
0
0

⎤

⎦ ,

⎡

⎣
4
4
4

⎤

⎦ ,

⎡

⎣
4

−4
0

⎤

⎦ ,

⎡

⎣
4
4

−4

⎤

⎦

⎫
⎬

⎭

Ωmax = Conv

⎧
⎨

⎩

⎡

⎣
1
0
0

⎤

⎦ ,

⎡

⎣
−0.5
−0.5
−0.5

⎤

⎦ ,

⎡

⎣
−0.5
0.5
0

⎤

⎦ ,

⎡

⎣
−0.5
−0.5
0.5

⎤

⎦

⎫
⎬

⎭
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Fig. 4.7 Simplex based
decomposition as an explicit
solution of the LP problem
(4.10)

Fig. 4.8 Graphical
illustration for Remark 4.5.
The partition is obtained by
two vertices of the inner set
Ωmax and two vertices of the
outer set CN

By solving the parametric linear programming problem (4.10) with respect to x, the
state space partition is obtained [19]. Figure 4.8(b) shows two polyhedral partitions
of the state space partition. The black set is Ωmax. The gray set is the convex hull of
two vertices of Ωmax and two vertices of CN .

In conclusion, in R
n for all x ∈ CN \ Ωmax, the smallest value c will be reached

when CN \ Ωmax is decomposed into polytopes with vertices both on ∂CN and
∂Ωmax. These polytopes can be further decomposed into simplices, each formed by
r vertices of CN and n − r + 1 vertices of Ωmax where 1 ≤ r ≤ n.
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4.3.3 Explicit Solution

Theorem 4.6 For all x ∈ CN \Ωmax, the controller (4.7), (4.8), (4.10) is a piecewise
affine state feedback law defined over a partition of CN \ Ωmax into simplices. The
controller gains are obtained by linear interpolation of the control values at the
vertices of simplices.

Proof Suppose that x belongs to a simplex formed by n vertices {v1, v2, . . . , vn}
of CN and the vertex vo of Ωmax. The other cases of n + 1vertices distributed in a
different manner between CN and Ωmax can be treated similarly.

In this case, x can be expressed as,

x =
n∑

i=1

βivi + βn+1vo (4.23)

where
n+1∑

i=1

βi = 1, βi ≥ 0 (4.24)

Given that n + 1 linearly independent vectors define a non-empty simplex, let the
invertible (n + 1) × (n + 1) matrix be

Ts =
[
v1 v2 . . . vn vo

1 1 . . . 1 1

]
(4.25)

Using (4.23), (4.24), (4.25), the interpolating coefficients βi with i = 1,2, . . . , n+1
are defined uniquely as,

[
β1 β2 . . . βn βn+1

]T = T −1
s

[
x

1

]
(4.26)

On the other hand, from (4.7),

x = cxv + (1 − c)xo,

Due to the uniqueness of (4.23), βn+1 = 1 − c and

xv =
n∑

i=1

βi

c
vi

The Vertex Controller (3.46) gives

uv =
n∑

i=1

βi

c
ui
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where ui are an admissible control value at vi , i = 1,2, . . . , n. Therefore

u = cuv + (1 − c)uo =
n∑

i=1

βiui + βn+1uo.

with uo = Kxo. Together with (4.26), one obtains

u = [u1 u2 . . . un uo

] [
β1 β2 . . . βn βn+1

]T

= [u1 u2 . . . un uo

]
T −1

s

[
x

1

]

= Lx + v

where the matrix L ∈ R
m×n and the vector v ∈R

m are defined by,

[
L v

]= [u1 u2 . . . un uo

]
T −1

s

Hence for all x ∈ CN \ Ωmax the controller (4.7), (4.8), (4.10) is a piecewise affine
state feedback law. �

It is interesting to note that the interpolation between the piecewise linear Vertex
Controller and the linear controller in Ωmax give rise to a piecewise affine controller.
This is not completely unexpected since (4.10) is a multi-parametric linear program
with respect to x.

As in MPC, the number of cells can be reduced by merging those with identical
control laws [45].

Remark 4.6 It can be observed that Algorithm 4.2 uses only the information about
the state space partition of the explicit solution of the LP problem (4.10). The ex-
plicit form of c∗, r∗

v and r∗
o as a piecewise affine function of the state is not used.

Clearly, the simplex-based partition over CN \ Ωmax in step 2 might be very
complex. Also the fact, that for all facets of Ωmax the local controller is of the form
u = Kx, is not exploited. In addition, as practice usually shows, for each facet of
CN , the vertex controller is usually constant. In these cases, the complexity of the
explicit interpolating controller (4.7), (4.8), (4.10) might be reduced as follows.

Consider the case when the state space partition CR of CN \ Ωmax is formed by
one vertex xv of CN and one facet Fo of Ωmax. Note that from Remark 4.4 such
a partition always exists as an explicit solution to the LP problem (4.10). For all
x ∈ CR it follows that

x = c∗x∗
v + (1 − c∗)x∗

o = c∗x∗
v + r∗

o

with x∗
o ∈ Fo and r∗

o = (1 − c∗)x∗
o .
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Algorithm 4.2 Interpolating control—Explicit solution
Input: The sets CN , Ωmax, the optimal feedback controller u = Kx in Ωmax and
the control values at the vertices of CN .
Output: The piecewise affine control law over the partitions of CN .

1. Solve the LP (4.10) by using explicit multi-parametric linear programming. As a
result, one obtains the state space partition of CN .

2. Decompose each polyhedral partition of CN \ Ωmax in a sequence of simplices,
each formed by r vertices of CN and n− z + 1 vertex of Ωmax, where 1 ≤ z ≤ n.
The result is a the state space partition over CN \ Ωmax in the form of simplices
CRi .

3. In each simplex CRi ⊂ CN \ Ωmax the control law is defined as,

u(x) = Lix + vi (4.27)

where Li ∈ R
m×n and vi ∈ R

m are defined as

[
Li vi

]=
[
u

(i)
1 u

(i)
2 . . . u

(i)
n+1

][
v

(i)
1 v

(i)
2 . . . v

(i)
n+1

1 1 . . . 1

]−1

(4.28)

with {v(i)
1 , v

(i)
2 , . . . v

(i)
n+1} are vertices of CRi that defines a full-dimensional

simplex and {u(i)
1 , u

(i)
2 , . . . u

(i)
n+1} are the corresponding control values at the

vertices.

Let uv ∈R
m be an admissible control value at xv and denote the explicit solution

of c∗ and r∗
o to the LP problem (4.10) for all x ∈ CR as,

{
c∗ = Lcx + vc

r∗
o = Lox + vo

(4.29)

where Lc, vc and Lo, vo are matrices of appropriate dimensions. The control value
for x ∈ CR is computed as,

u = c∗uv + (1 − c∗)Kx∗
o = c∗uv + Kr∗

o (4.30)

By substituting (4.29) into (4.30), one obtains

u = uv(Lcx + vc) + K(Lox + vo)

or, equivalently

u = (uvLc + KLo)x + (uvvc + Kvo) (4.31)

The fact that the control value is a piecewise affine function of state is confirmed.
Clearly, the complexity of the explicit solution with the control law (4.31) is lower
than the complexity of the explicit solution with the simplex based partition, since
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Fig. 4.9 Graphical
illustration for the proof of
Theorem 4.7

one does not have to divide up the facets of Ωmax (and facets of CN , in the case
when the vertex control for such facets is constant) into a set of simplices.

4.3.4 Qualitative Analysis

Theorem 4.7 below shows the Lipschitz continuity of the control law based on linear
programming (4.7), (4.8), (4.10).

Theorem 4.7 The explicit interpolating control law (4.7), (4.8), (4.10) obtained by
using Algorithm 4.2 is continuous and Lipschitz continuous with Lipschitz constant
M = maxi ‖Li‖, where i ranges over the set of indices of partitions and ‖Li‖ is
defined in (4.28).

Proof The explicit interpolating controller might be discontinuous only on the
boundary of polyhedral cells CRi . Suppose that x belongs to the intersection of
s cells CRj , j = 1,2, . . . , s.

For CRj , as in (4.23), the state x can be expressed as,

x = β
(j)

1 v
(j)

1 + β
(j)

2 v
(j)

2 + · · · + β
(j)

n+1v
(j)

n+1

where
∑n+1

i=1 β
(j)
i = 1, 0 ≤ β

(j)
i ≤ 1 and v

(j)
i , i = 1,2, . . . , n + 1 are the vertices

of CRj , j = 1,2, . . . , s. It is clear that the only nonzero entries of the interpolating

coefficients {β(j)

1 , . . . , β
(j)

n+1} are those corresponding to the vertices that belong to
the intersection. Therefore

u = β
(j)

1 u
(j)

1 + · · · + β
(j)

n+1u
(j)

n+1

is equal for all j = 1,2, . . . , s.
For the Lipschitz continuity property, for any two points xA and xB in CN , there

exist r + 1 points x0, x1, . . . , xr that lie on the line segment, connecting xA and xB ,
and such that xA = x0, xB = xr and (xi−1, xi) = xA,xB ∩ ∂CRi , i.e. (xi−1, xi) is the
intersection between the line connecting xA,xB and the boundary of some critical
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Fig. 4.10 Lyapunov function
and Lyapunov level curves
for the interpolating
controller for Example 4.2

region CRi , see Fig. 4.9. Due to the continuity property, proved above, of the control
law (4.27), one has,

∥∥(LAxA + vA) − (LBxB + vB)
∥∥

= ∥∥(L0x0 + v0) − (L0x1 + v0) + (L1x1 + v1) − · · · − (Lrxr + vr)
∥∥

= ‖L0x0 − L0x1 + L1x1 − · · · − Lrxr‖

≤
r∑

i=1

∥∥Li−1(xi − xi−1)
∥∥≤

r∑

k=1

‖Li−1‖
∥∥(xi − xi−1)

∥∥

≤ max
k

{‖Li−1‖
} r∑

i=1

∥∥(xi − xi−1)
∥∥= M‖xA − xB‖

where the last equality holds, since the points xi with k = 0,1, . . . , r are aligned. �

Example 4.2 We consider now the explicit interpolating controller for Example 4.1.
Using Algorithm 4.2, the state space partition is obtained in Fig. 4.7. Merging the
regions with identical control laws, the reduced state space partition is obtained in
Fig. 4.9.
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Table 4.2 Number of
regions for explicit
interpolating control and for
explicit MPC for Example 4.2

Before merging After merging

Explicit interpolating control 25 11

Explicit MPC 127 97

Figure 4.10(a) shows the Lyapunov function as a piecewise affine function of
state. It is well known1 that the level sets of the Lyapunov function for vertex control
are simply obtained by scaling the boundary of the set CN . For the interpolating
controller (4.7), (4.8), (4.10), the level sets of the Lyapunov function V (x) = c∗
depicted in Fig. 4.10(b) have a more complicated form and generally are not parallel
to the boundary of CN . From Fig. 4.10, it can be observed that the Lyapunov level
sets V (x) = c∗ have the outer set CN as an external level set (for c∗ = 1). The inner
level sets change the polytopic shape in order to approach the boundary of the inner
set Ωmax.

Fig. 4.11 State space
partition before and after
merging for Example 4.2
using explicit MPC

1See Sect. 3.4.
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The control law over the state space partition is,

u(k) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

−1 if

⎡

⎢
⎢⎢⎢
⎢⎢⎢⎢
⎢⎢⎢⎢
⎢
⎣

0.45 0.89
0.24 0.97
0.16 0.99

−0.55 0.84
0.14 0.99

−0.50 −0.87
0.20 0.98
0.32 0.95
0.37 −0.93
0.70 0.71

⎤

⎥
⎥⎥⎥
⎥⎥⎥⎥
⎥⎥⎥⎥
⎥
⎦

x(k) ≤

⎡

⎢
⎢⎢⎢
⎢⎢⎢⎢
⎢⎢⎢⎢
⎢
⎣

5.50
3.83
3.37
1.75
3.30

−0.89
3.53
4.40
2.73
7.78

⎤

⎥
⎥⎥⎥
⎥⎥⎥⎥
⎥⎥⎥⎥
⎥
⎦

−0.38x1(k) + 0.59x2(k) − 2.23 if

⎡

⎣
0.54 −0.84

−0.37 0.93
−0.12 −0.99

⎤

⎦x(k) ≤
⎡

⎣
−1.75
2.30

−1.41

⎤

⎦

−0.02x1(k) − 0.32x2(k) + 0.02 if

⎡

⎣
0.37 −0.93
0.06 1.00

−0.26 −0.96

⎤

⎦x(k) ≤
⎡

⎣
−2.30
3.20

−1.06

⎤

⎦

−0.43x1(k) − 1.80x2(k) + 1.65 if

⎡

⎣
0.16 −0.99
0.26 0.96

−0.39 −0.92

⎤

⎦x(k) ≤
⎡

⎣
−1.97
1.06
0.38

⎤

⎦

0.16x1(k) − 0.41x2(k) + 2.21 if

⎡

⎣
0.39 0.92

−1.00 0
0.37 −0.93

⎤

⎦x(k) ≤
⎡

⎣
−0.38
10.00
−2.73

⎤

⎦

1 if

⎡

⎢⎢⎢
⎢⎢⎢⎢
⎢⎢⎢
⎢⎢⎢
⎣

−0.14 −0.99
−0.37 0.93
−0.24 −0.97
−0.71 −0.71
−0.45 −0.89
−0.32 −0.95
−0.20 −0.98
−0.16 −0.99
0.50 0.87
0.54 −0.84

⎤

⎥⎥⎥
⎥⎥⎥⎥
⎥⎥⎥
⎥⎥⎥
⎦

x(k) ≤

⎡

⎢⎢⎢
⎢⎢⎢⎢
⎢⎢⎢
⎢⎢⎢
⎣

3.30
2.73
3.83
7.78
5.50
4.40
3.53
3.37

−0.89
1.75

⎤

⎥⎥⎥
⎥⎥⎥⎥
⎥⎥⎥
⎥⎥⎥
⎦

−0.38x1(k) + 0.59x2(k) + 2.23 if

⎡

⎣
0.12 0.99
0.37 −0.93

−0.54 0.84

⎤

⎦x(k) ≤
⎡

⎣
−1.41
2.30

−1.75

⎤

⎦

−0.02x1(k) − 0.32x2(k) − 0.02 if

⎡

⎣
0.26 0.96

−0.06 −1.00
−0.37 0.93

⎤

⎦x(k) ≤
⎡

⎣
−1.06
3.20

−2.30

⎤

⎦

−0.43x1(k) − 1.80x2(k) − 1.65 if

⎡

⎣
0.39 0.92

−0.26 −0.96
−0.16 0.97

⎤

⎦x(k) ≤
⎡

⎣
0.38
1.06

−1.98

⎤

⎦

0.16x1(k) − 0.41x2(k) − 2.21 if

⎡

⎣
1.00 0

−0.37 0.93
−0.39 −0.92

⎤

⎦x(k) ≤
⎡

⎣
10.00
−2.73
−0.38

⎤

⎦

−0.56x1(k) − 0.98x2(k) if

⎡

⎢
⎢⎢⎢⎢
⎣

0.16 −0.99
−0.16 0.99
−0.12 −0.99
0.12 0.99

−0.50 −0.87
0.50 0.87

⎤

⎥
⎥⎥⎥⎥
⎦

x(k) ≤

⎡

⎢
⎢⎢⎢⎢
⎣

1.97
1.97
1.41
1.41
0.89
0.89

⎤

⎥
⎥⎥⎥⎥
⎦
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Fig. 4.12 Explicit
interpolating control law and
explicit MPC control law as
piecewise affine functions of
state for Example 4.2

In view of comparison, consider the explicit MPC solution in Example 4.1,
Fig. 4.11(a) presents the state space partition of the explicit MPC with the same
setup parameters as in Example 4.1. Merging the polyhedral regions with an identi-
cal piecewise affine control function, the reduced state space partition is obtained in
Fig. 4.11(b).

The comparison of explicit interpolating control and explicit MPC in terms of
the number of regions before and after merging is given in Table 4.2.

Figure 4.12 shows the explicit interpolating control law and the explicit MPC
control law as piecewise affine functions of state, respectively.

4.4 Improved Interpolating Control

The interpolating controller in Sect. 4.2 and Sect. 4.3 can be considered as an ap-
proximate model predictive control law, which in the last decade has received signif-
icant attention in the control community [18, 60, 63, 78, 108, 114]. From this point
of view, it is worthwhile to obtain an interpolating controller with some given level
of accuracy in terms of performance compared with the optimal MPC one. Natu-
rally, the approximation error can be a measure of the level of accuracy. The methods
of computing bounds on the approximation error are known, see e.g. [18, 60, 114].
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Obviously, the simplest way of improving the performance of the interpolating
controller is to use an intermediate s-step controlled invariant set Cs with 1 ≤ s < N .
Then there will be not only one level of interpolation but two or virtually any number
of interpolation as necessary from the performance point of view. For simplicity, we
provide in the following a study of the case when only one intermediate controlled
invariant set Cs is used. Let Cs be in the form,

Cs = {x ∈R
n : Fsx ≤ gs

}
(4.32)

and satisfy the condition Ωmax ⊂ Cs ⊂ CN .

Remark 4.7 It has to be noted however that, the expected increase in performance
comes at the price of complexity as long as the intermediate set needs to be stored
along with its vertex controller.

For further use, the vertex control law applied for the set Cs is denoted as us .
Using the same philosophy as in Sect. 4.2, the state x is decomposed as,

1. If x ∈ CN and x /∈ Cs , then

x = c1xv + (1 − c1)xs (4.33)

with xv ∈ CN , xs ∈ Cs and 0 ≤ c1 ≤ 1. The control law is,

u = c1uv + (1 − c1)us (4.34)

2. Else x ∈ Cs ,

x = c2xs + (1 − c2)xo (4.35)

with xs ∈ Cs , xo ∈ Ωmax and 0 ≤ c2 ≤ 1. The control law is,

u = c2us + (1 − c2)uo (4.36)

Depending on the value of x, at each time instant, either c1 or c2 is minimized
in order to be as close as possible to the optimal controller. This can be done by
solving the following nonlinear optimization problems,

1. If x ∈ CN \ Cs ,

c∗
1 = min

xv,xs ,c1
{c1} (4.37)

subject to
⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

FNxv ≤ gN,

Fsxs ≤ gs,

c1xv + (1 − c1)xs = x,

0 ≤ c1 ≤ 1
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2. Else x ∈ Cs ,

c∗
2 = min

xs ,xo,c2
{c2} (4.38)

subject to
⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

Fsxs ≤ gs,

Foxo ≤ go,

c2xs + (1 − c2)xo = x,

0 ≤ c2 ≤ 1

or by changing variables rv = c1xv and rs = c2xs , the nonlinear optimization prob-
lems (4.37) and (4.38) can be transformed in the following LP problems, respec-
tively,

1. If x ∈ CN \ Cs

c∗
1 = min

rv,c1
{c1} (4.39)

subject to
⎧
⎪⎪⎨

⎪⎪⎩

FNrv ≤ c1gN,

Fs(x − rv) ≤ (1 − c1)gs,

0 ≤ c1 ≤ 1

2. Else x ∈ Cs

c∗
2 = min

rs ,c2
{c2} (4.40)

subject to
⎧
⎪⎪⎨

⎪⎪⎩

Fsrs ≤ c2gs,

Fo(x − rs) ≤ (1 − c2)go,

0 ≤ c2 ≤ 1

The following theorem shows recursive feasibility and asymptotic stability of the
interpolating controller (4.33), (4.34), (4.35), (4.36), (4.39), (4.40),

Theorem 4.8 The control law (4.33), (4.34), (4.35), (4.36), (4.39), (4.40) guaran-
tees recursive feasibility and asymptotic stability of the closed loop system for all
initial states x(0) ∈ CN .

Proof The proof is omitted here, since it follows the same steps as those presented
in the feasibility proof of Theorem 4.1 and the stability proof of Theorem 4.2 in
Sect. 4.2. �
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Remark 4.8 Clearly, instead of the second level of interpolation (4.35), (4.36),
(4.40), the MPC approach can be applied for all states inside the set Cs . This has
very practical consequences in applications, since it is well known [34, 88] that the
main issue of MPC for time-invariant linear discrete-time systems is the trade-off
between the overall complexity (computational cost) and the size of the domain of
attraction. If the prediction horizon is short then the domain of attraction is small. If
the prediction horizon is long then the computational cost may be very burdensome
for the available hardware. Here MPC with the short prediction horizon is employed
inside Cs for the performance and then for enlarging the domain of attraction, the
control law (4.33), (4.34), (4.39) is used. In this way one can achieve the perfor-
mance and the domain of attraction with a relatively small computational cost.

Theorem 4.9 The control law (4.33), (4.34), (4.35), (4.36), (4.39), (4.40) can be
represented as a continuous function of the state.

Proof Clearly, the discontinuity of the control law may arise only on the boundary
of the set Cs , denoted as ∂Cs . Note that for x ∈ ∂Cs , the LP problems (4.39), (4.40)
have the trivial solution,

c∗
1 = 0, c∗

2 = 1

Therefore, for x ∈ ∂Cs the control law (4.33), (4.34), (4.39) is u = us and the con-
trol law (4.35), (4.36), (4.40) is u = us . Hence the continuity of the control law is
guaranteed. �

Remark 4.9 It is interesting to note that by using N −1 intermediate sets Ci together
with the sets CN and Ωmax, a continuous minimum-time controller is obtained, i.e.
a controller that steers all state x ∈ CN into Ωmax in no more than N steps.

Concerning the explicit solution of the control law (4.33), (4.34), (4.35), (4.36),
(4.39), (4.40), with the same argument as in Sect. 4.3, it can be concluded that,

• If x ∈ CN \ Cs (or x ∈ Cs \ Ωmax), the smallest value c1 (or c2) will be reached
when the region CN \Cs (or CS \Ωmax) is decomposed into polyhedral partitions
in form of simplices with vertices both on ∂CN and on ∂Cs (or on ∂Cs and on
∂Ωmax). The control law in each simplex is a piecewise affine function of the
state, whose gains are obtained by interpolation of control values at the vertices
of the simplex.

• If x ∈ Ωmax, then the control law is the optimal unconstrained controller.

Example 4.3 Consider again Example 4.1. Here one intermediate set Cs with s = 4
is introduced. The set of vertices Vs of Cs is,

Vs =
[

10.00 −5.95 −7.71 −10.00 −10.00 5.95 7.71 10.00
−0.06 2.72 2.86 1.78 0.06 −2.72 −2.86 −1.78

]

(4.41)
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Fig. 4.13 Two-level
interpolation for improving
the performance

Fig. 4.14 State space
partition before merging
(number of regions: Nr = 37)
and after merging (Nr = 19),
and state trajectories for
Example 4.3

and the set of the corresponding control actions at the vertices Vs is,

Us = [−1 −1 −1 −1 1 1 1 1
]

(4.42)

The sets CN , Cs and Ωmax are depicted in Fig. 4.13. For the explicit solution, the
state space partition of the control law (4.33), (4.34), (4.35), (4.36), (4.39), (4.40)
is shown in Fig. 4.14(a). Merging the regions with identical control laws, the re-
duced state space partition is obtained in Fig. 4.14(b). This figure also shows state
trajectories of the closed-loop system for different initial conditions.

Figure 4.15 shows the control law with two-level interpolation.
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Fig. 4.15 Control value as a
piecewise affine function of
the state using two-level
interpolation for Example 4.3

Fig. 4.16 State and input
trajectories for one-level
interpolating control
(dashed), and for two-level
interpolating control (solid)
for Example 4.3

For the initial condition x(0) = [9.9800 −3.8291]T , Fig. 4.16 shows the results
of a time-domain simulation. The two curves correspond to the one-level and two-
level interpolating control, respectively.

Figure 4.17 presents the interpolating coefficients c∗
1 and c∗

2 . As expected c∗
1

and c∗
2 are positive and non-increasing. It is also interesting to note that ∀k ≥ 10,

c∗
1(k) = 0, indicating that x is inside Cs and ∀k ≥ 14, c∗

2(k) = 0, indicating that x is
inside Ωmax.
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Fig. 4.17 Interpolating
coefficients as functions of
time for Example 4.3

4.5 Interpolating Control via Quadratic Programming

The interpolating controller in Sect. 4.2 and Sect. 4.4 makes use of linear program-
ming, which is extremely simple. However, the main issue regarding the implemen-
tation of Algorithm 4.1 is the non-uniqueness of the solution. Multiple optima are
undesirable, as they might lead to a fast switching between the different optimal
control actions when the LP problem (4.10) is solved on-line. In addition, MPC
traditionally has been formulated using a quadratic criterion [92]. Hence, also in in-
terpolating control it is worthwhile to investigate the use of quadratic programming.

Before introducing a QP formulation, let us note that the idea of using QP for
interpolating control is not new. In [10, 110], Lyapunov theory is used to compute
an upper bound of the infinite horizon cost function,

J =
∞∑

k=0

{
x(k)T Qx(k) + u(k)T Ru(k)

}
(4.43)

where Q � 0 and R � 0 are the state and input weighting matrices. At each time
instant, the algorithms in [110] use an on-line decomposition of the current state,
with each component lying in a separate invariant set, after which the corresponding
controller is applied to each component separately in order to calculate the control
action. Polytopes are employed as candidate invariant sets. Hence, the on-line opti-
mization problem can be formulated as a QP problem. The approach taken in this
section follows ideas originally proposed in [10, 110]. In this setting we provide a
QP based solution to the constrained control problem.

This section begins with a brief summary on the works [10, 110]. For this pur-
pose, it is assumed that a set of unconstrained asymptotically stabilizing feedback
controllers u(k) = Kix(k), i = 1,2, . . . , s is available such that the corresponding
invariant set Ωi ⊆ X

Ωi = {x ∈R
n : F (i)

o x ≤ g(i)
o

}
(4.44)

is non-empty for i = 1,2, . . . , s.
Denote Ω as the convex hull of Ωi , i = 1,2, . . . , s. It follows that Ω ⊆ X, since

Ωi ⊆ X, ∀i = 1,2, . . . , s and the fact that X is convex. Any state x(k) ∈ Ω can be
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decomposed as,

x(k) = λ1(k)̂x1(k) + λ2(k)̂x2(k) + · · · + λs(k)̂xs(k) (4.45)

where x̂i (k) ∈ Ωi , ∀i = 1,2, . . . , s and
∑s

i=1 λi(k) = 1, λi(k) ≥ 0.
Define ri = λix̂i . Since x̂i ∈ Ωi , it follows that ri ∈ λiΩi or equivalently,

F (i)
o ri ≤ λig

(i)
o , ∀i = 1,2, . . . , s (4.46)

From (4.45), one obtains

x(k) = r1(k) + r2(k) + · · · + rs(k) (4.47)

Consider the following control law,

u(k) =
s∑

i=1

λiKix̂i =
s∑

i=1

Kiri (4.48)

where ui(k) = Kiri(k) is the control law in Ωi . One has,

x(k + 1) = Ax(k) + Bu(k) = A

s∑

i=1

ri(k) + B

s∑

i=1

Kiri(k) =
s∑

i=1

(A + BKi)ri(k)

or,

x(k + 1) =
s∑

i=1

ri(k + 1) (4.49)

where ri(k + 1) = Aciri(k) and Aci = A + BKi .
Define the vector z ∈ R

sn as,

z = [rT
1 rT

2 . . . rT
s

]T (4.50)

Using (4.49), one obtains,

z(k + 1) = Φz(k) (4.51)

where

Φ =

⎡

⎢⎢⎢
⎣

Ac1 0 . . . 0
0 Ac2 . . . 0
...

...
. . .

...

0 0 . . . Acs

⎤

⎥⎥⎥
⎦

For the given state and control weighting matrices Q ∈ R
n×n and R ∈ R

m×m, con-
sider the following quadratic function,

V (z) = zT P z (4.52)
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where matrix P ∈R
sn×sn, P � 0 is chosen to satisfy,

V
(
z(k + 1)

)− V
(
z(k)

)≤ −x(k)T Qx(k) − u(k)T Ru(k) (4.53)

Using (4.51), the left hand side of (4.53) can be rewritten as,

V
(
z(k + 1)

)− V
(
z(k)

)= z(k)T
(
ΦT PΦ − P

)
z(k) (4.54)

and using (4.47), (4.48), (4.50), the right hand side of (4.53) becomes,

−x(k)T Qx(k) − u(k)T Ru(k) = z(k)T (Q1 + R1)z(k) (4.55)

where

Q1 = −

⎡

⎢⎢⎢
⎣

I

I
...

I

⎤

⎥⎥⎥
⎦

Q
[
I I . . . I

]
, R1 = −

⎡

⎢⎢⎢
⎣

KT
1

KT
2
...

KT
s

⎤

⎥⎥⎥
⎦

R
[
K1 K2 . . . Ks

]

Combining (4.53), (4.54) and (4.55), one gets,

ΦT PΦ − P � Q1 + R1

or by using the Schur complements, one obtains,

[
P + Q1 + R1 ΦT P

PΦ P

]
� 0 (4.56)

Problem (4.56) is linear with respect to matrix P . Since matrix Φ has a sub-unitary
spectral radius (4.51), problem (4.56) is always feasible. One way to obtain P is to
solve the following LMI problem,

min
P

{
trace(P )

}
(4.57)

subject to constraints (4.56).
At each time instant, for a given current state x, consider the following optimiza-

tion problem,

min
ri ,λi

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

[
rT

1 rT
2 . . . rT

s

]
P

⎡

⎢⎢⎢
⎣

r1
r2
...

rs

⎤

⎥⎥⎥
⎦

⎫
⎪⎪⎪⎬

⎪⎪⎪⎭

(4.58)
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subject to
⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

F (i)
o ri ≤ λig

(i)
o , ∀i = 1,2, . . . , s,

s∑

i=1

ri = x,

s∑

i=1

λi = 1,

λi ≥ 0, ∀i = 1,2, . . . , s

and implement as input the control action u =∑s
i=1 Kiri .

Theorem 4.10 [10, 110] The control law (4.45), (4.48), (4.58) guarantees recursive
feasibility and asymptotic stability for all initial states x(0) ∈ Ω .

Note that using the approach in [10, 110], for a given state x we are trying to
minimize r1, r2, . . . , rs in the weighted Euclidean norm sense. This is somehow a
conflicting task, since,

r1 + r2 + · · · + rs = x

In addition, if the first controller is optimal and plays the role of a performance
controller, then one would like to have a control law as close as possible to the first
controller. This means that in the interpolation scheme (4.45), one would like to
have r1 = x and

r2 = r3 = · · · = rs = 0

whenever it is possible. And it is not trivial to do this with the approach in [10, 110].
Below we provide a contribution to this line of research by considering one of

the interpolation factors, i.e. control gains to be a performance related one, while
the remaining factors play the role of degrees of freedom to enlarge the domain
of attraction. This alternative approach can provide the appropriate framework for
the constrained control design which builds on the unconstrained optimal controller
(generally with high gain) and subsequently need to adjusted them to cope with the
constraints and limitations (via interpolation with adequate low gain controllers).
From this point of view, in the remaining part of this section we try to build a bridge
between the linear interpolation scheme presented in Sect. 4.2 and the QP based
interpolation approaches in [10, 110].

For a given set of state and control weighting matrices Qi � 0, Ri � 0, consider
the following set of quadratic functions,

Vi(ri) = rT
i Piri , ∀i = 2,3, . . . , s (4.59)

where matrix Pi ∈ R
n×n and Pi � 0 is chosen to satisfy

Vi

(
ri(k + 1)

)− Vi

(
ri(k)

)≤ −ri(k)T Qiri(k) − ui(k)T Riui(k) (4.60)
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Since ri(k + 1) = Aciri(k) and ui(k) = Kiri(k), equation (4.60) can be written as,

AT
ciPiAci − Pi � −Qi − KT

i RiKi

By using the Schur complements, one obtains
[
Pi − Qi − KT

i RiKi AT
ciPi

PiAci Pi

]
� 0 (4.61)

Since matrix Aci has a sub-unitary spectral radius, problem (4.61) is always feasible.
One way to obtain matrix Pi is to solve the following LMI problem,

min
Pi

{
trace(Pi)

}
(4.62)

subject to constraint (4.61).
Define the vector z1 ∈ R

(s−1)(n+1) as,

z1 = [rT
2 rT

3 . . . rT
s λ2 λ3 . . . λs

]T

Consider the following quadratic function,

J (z1) =
s∑

i=2

rT
i Piri +

s∑

i=2

λ2
i (4.63)

We underline the fact that the sum is built on indices {2,3, . . . , s}, corresponding to
the more poorly performing controllers. At each time instant, consider the following
optimization problem,

V1(z1) = min
z1

{
J (z1)

}
(4.64)

subject to the constraints
⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

F (i)
o ri ≤ λig

(i)
o ,∀i = 1,2, . . . , s,

s∑

i=1

ri = x,

s∑

i=1

λi = 1,

λi ≥ 0,∀i = 1,2, . . . , s

and apply as input the control signal u =∑s
i=1{Kiri}.

Theorem 4.11 The control law (4.45), (4.48), (4.64) guarantees recursive feasibil-
ity and asymptotic stability for all initial states x(0) ∈ Ω .
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Proof Theorem 4.11 makes two important claims, namely the recursive feasibility
and the asymptotic stability. These can be treated sequentially.

Recursive feasibility: It has to be proved that Fuu(k) ≤ gu and x(k + 1) ∈ Ω for
all x(k) ∈ Ω . It holds that,

Fuu(k) = Fu

s∑

i=1

λiKix̂i =
s∑

i=1

λiFuKix̂i ≤
s∑

i=1

λigu = gu

and

x(k + 1) = Ax(k) + Bu(k) =
s∑

i=1

λiAci x̂i (k)

Since Acix̂i(k) ∈ Ωi ⊆ Ω , it follows that x(k + 1) ∈ Ω .
Asymptotic stability: Consider the positive function V1(z1) as a candidate Lya-

punov function. From the recursive feasibility proof, it is apparent that if λ∗
1(k),

λ∗
2(k), . . ., λ∗

s (k) and r∗
1 (k), r∗

2 (k), . . . , r∗
s (k) is the solution of the optimization prob-

lem (4.64) at time instant k, then λi(k + 1) = λ∗
i (k) and

ri(k + 1) = Acir
∗
i (k)

∀i = 1,2, . . . , s is a feasible solution to (4.64) at time instant k + 1. Since at each
time instant we are trying to minimize J (z1), it follows that

V1
(
z∗

1(k + 1)
)≤ J

(
z1(k + 1)

)

and therefore

V1
(
z∗

1(k + 1)
)− V1

(
z∗

1(k)
)≤ J

(
z1(k + 1)

)− V1
(
z∗

1(k)
)

together with (4.60), one obtains

V1
(
z∗

1(k + 1)
)− V1

(
z∗

1(k)
)≤ −

s∑

i=2

(
rT
i Qiri + uT

i Riui

)

Hence V1(z1) is a Lyapunov function and the control law (4.45), (4.48), (4.64) as-
sures asymptotic stability for all x ∈ Ω . �
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The constraints of the problem (4.64) can be rewritten as,

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

F (1)
o (x − r2 − · · · − rs) ≤ (1 − λ2 − · · · − λs)g

(1)
o

F (2)
o r2 ≤ λ2g

(2)
o

...

F (s)
o rs ≤ λsg

(s)
o

λi ≥ 0, ∀i = 2, . . . , s

λ2 + λ3 + · · · + λs ≤ 1

or, equivalently

Gz1 ≤ S + Ex (4.65)

where

G =

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢
⎢⎢⎢⎢⎢⎢⎢⎢
⎣

−F
(1)
o −F

(1)
o . . . −F

(1)
o g

(1)
o g

(1)
o . . . g

(1)
o

F
(2)
o 0 . . . 0 −g

(2)
o 0 . . . 0

0 F
(3)
o . . . 0 0 −g

(3)
o . . . 0

...
...

. . .
...

...
...

. . .
...

0 0 . . . F
(s)
o 0 0 . . . −g

(s)
o

0 0 . . . 0 −1 0 . . . 0
0 0 . . . 0 0 −1 . . . 0
...

...
. . .

...
...

...
. . .

...

0 0 . . . 0 0 0 . . . −1
0 0 . . . 0 1 1 . . . 1

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥
⎥⎥⎥⎥⎥⎥⎥⎥
⎦

,

S =
[
(g

(1)
o )T 0 0 . . . 0 0 0 . . . 0 1

]T

E =
[
−(F

(1)
o )T 0 0 . . . 0 0 0 . . . 0 0

]T

And the objective function (4.64) can be written as,

min
z1

{
zT

1 Hz1
}

(4.66)
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Algorithm 4.3 Interpolating control via quadratic programming
1. Measure the current state x(k).
2. Solve the QP problem (4.66), (4.65).
3. Apply the control input (4.48).
4. Wait for the next time instant k := k + 1.
5. Go to step 1 and repeat.

where

H =

⎡

⎢⎢⎢⎢⎢⎢⎢⎢
⎢⎢⎢⎢
⎣

P2 0 . . . 0 0 0 . . . 0
0 P3 . . . 0 0 0 . . . 0
...

...
. . .

...
...

...
. . .

...

0 0 . . . Ps 0 0 . . . 0
0 0 . . . 0 1 0 . . . 0
0 0 . . . 0 0 1 . . . 0
...

...
. . .

...
...

...
. . .

...

0 0 . . . 0 0 0 . . . 1

⎤

⎥⎥⎥⎥⎥⎥⎥⎥
⎥⎥⎥⎥
⎦

Hence, the optimization problem (4.64) is transformed into the quadratic program-
ming problem (4.66), (4.65).

It is worth noticing that for all x ∈ Ω1, the QP problem (4.66), (4.65) has the
trivial solution, namely

{
ri = 0,

λi = 0
∀i = 2,3, . . . , s

Hence r1 = x and λ1 = 1. That means, inside the set Ω1, the interpolating controller
(4.45), (4.48), (4.64) becomes the optimal unconstrained controller.

Remark 4.10 Note that Algorithm 4.3 requires the solution of the QP problem
(4.66) of dimension (s − 1)(n+ 1) where s is the number of interpolated controllers
and n is the dimension of state. Clearly, solving the QP problem (4.66) can be com-
putationally expensive when the number of interpolated controllers is big. However,
it is usually enough with s = 2 or s = 3 in terms of performance and in terms of the
size of the domain of attraction.

Example 4.4 Consider again the system in Example 4.2 with the same state and
control constraints. Two linear feedback controllers are chosen as,

{
K1 = [−0.0942 −0.7724]
K2 = [−0.0669 −0.2875] (4.67)

The first controller u(k) = K1x(k) is an optimal controller and plays the role of the
performance controller, and the second controller u(k) = K2x(k) is used to enlarge
the domain of attraction.
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Figure 4.18(a) shows the invariant sets Ω1 and Ω2 correspond to the controllers
K1 and K2, respectively. Figure 4.18(b) shows state trajectories obtained by solving
the QP problem (4.66), (4.65) for different initial conditions.

The sets Ω1 and Ω2 are presented in minimal normalized half-space representa-
tion as,

Ω1 =

⎧
⎪⎪⎨

⎪⎪⎩
x ∈ R

2 :

⎡

⎢⎢
⎣

1.0000 0
−1.0000 0
−0.1211 −0.9926
0.1211 0.9926

⎤

⎥⎥
⎦x ≤

⎡

⎢⎢
⎣

10.0000
10.0000
1.2851
1.2851

⎤

⎥⎥
⎦

⎫
⎪⎪⎬

⎪⎪⎭

Ω2 =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

x ∈ R
2 :

⎡

⎢⎢⎢⎢⎢⎢⎢
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢
⎢⎢⎢⎢⎢⎢
⎣

1.0000 0
−1.0000 0
−0.2266 −0.9740
0.2266 0.9740
0.7948 0.6069

−0.7948 −0.6069
−0.1796 −0.9837
0.1796 0.9837

−0.1425 −0.9898
0.1425 0.9898

−0.1117 −0.9937
0.1117 0.9937

−0.0850 −0.9964
0.0850 0.9964

−0.0610 −0.9981
0.0610 0.9981

−0.0386 −0.9993
0.0386 0.9993

−0.0170 −0.9999
0.0170 0.9999

⎤

⎥⎥⎥⎥⎥⎥⎥
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥
⎥⎥⎥⎥⎥⎥
⎦

x ≤

⎡

⎢⎢⎢⎢⎢⎢
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢
⎢⎢⎢⎢⎢
⎣

10.0000
10.0000
3.3878
3.3878
8.5177
8.5177
3.1696
3.1696
3.0552
3.0552
3.0182
3.0182
3.0449
3.0449
3.1299
3.1299
3.2732
3.2732
3.4795
3.4795

⎤

⎥⎥⎥⎥⎥⎥
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥
⎥⎥⎥⎥⎥
⎦

⎫
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

For the weighting matrices Q2 = I , R2 = 1, and by solving the LMI problem (4.62),
one obtains,

P2 =
[

5.1917 9.9813
9.9813 101.2651

]
(4.68)

For the initial condition x(0) = [6.8200 1.8890]T , Fig. 4.19(a) and 4.19(b) present
the state and input trajectories of the closed loop system for our approach (solid),
and for the approach in [110] (dashed).

For [110], the matrix P in the problem (4.57) is computed as,

P =

⎡

⎢⎢
⎣

4.8126 2.9389 4.5577 13.8988
2.9389 7.0130 2.2637 20.4391
4.5577 2.2637 5.1917 9.9813

13.8988 20.4391 9.9813 101.2651

⎤

⎥⎥
⎦
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Fig. 4.18 Feasible invariant
sets and state trajectories of
the closed loop system for
Example 4.4

for the weighting matrices Q = I , R = 1.
The interpolating coefficient λ∗

2 and the Lyapunov function V1(z1) are depicted
in Fig. 4.20. As expected V1(z1) is a positive and non-increasing function.

4.6 Interpolating Control Based on Saturated Controllers

In this section, in order to fully utilize the capability of actuators and to enlarge
the domain of attraction, an interpolation between several saturated controllers will
be proposed. For simplicity, only single-input single-output system is considered,
although extensions to multi-input multi-output systems are straightforward.

From Lemma 2.1 in Sect. 2.4.1, recall that for a given stabilizing controller
u(k) = Kx(k), there exists an auxiliary stabilizing controller u(k) = Hx(k) such
that the saturation function can be expressed as, ∀x such that Hx ∈ U ,

sat
(
Kx(k)

)= α(k)Kx(k) + (1 − α(k)
)
Hx(k) (4.69)

where 0 ≤ α(k) ≤ 1. Matrix H ∈ R
n can be computed using Theorem 2.3. Using

Procedure 2.5 in Sect. 2.4.1, the polyhedral set ΩH
s can be computed, which is

invariant for system,

x(k + 1) = Ax(k) + B sat
(
Kx(k)

)
(4.70)

and with respect to the constraints (4.2).
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Fig. 4.19 State and input
trajectories of the closed loop
system for our approach
(solid), and for the approach
in [110] (dashed) for
Example 4.4

It is assumed that a set of asymptotically stabilizing feedback controllers
Ki ∈ R

n, i = 1,2, . . . , s is available as well as a set of auxiliary matrices Hi ∈ R
n,

i = 2, . . . , s such that the corresponding invariant sets Ω1 ⊆ X

Ω1 = {x ∈ R
n : F (1)

o x ≤ g(1)
o

}
(4.71)

for the linear controller u = K1x and Ω
Hi
s ⊆ X

ΩHi
s = {x ∈ R

n : F (i)
o x ≤ g(i)

o

}
(4.72)

for the saturated controllers u = sat(Kix), ∀i = 2,3, . . . , s, are non-empty. De-
note Ωs as the convex hull of the sets Ω1 and Ω

Hi
s , i = 2,3, . . . , s. It follows that

Ωs ⊆ X, since Ω1 ⊆ X, Ω
Hi
s ⊆ X, ∀i = 2,3, . . . , s and the fact that X is a convex

set.

Remark 4.11 We use one linear control law here in order to show that interpolation
can be done between any kind of controllers: linear or saturated. The main require-
ment is that there exists for each of these controllers its own convex invariant set as
the domain of attraction.

Any state x(k) ∈ Ωs can be decomposed as,

x(k) = λ1(k)̂x1(k) +
s∑

i=2

λi(k)̂xi(k) (4.73)
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Fig. 4.20 Interpolating
coefficient λ∗

2 and the
Lyapunov function V1(z1) as
functions of time for
Example 4.4

where x̂1(k) ∈ Ω1, x̂i (k) ∈ Ω
Hi
s , i = 2,3, . . . , s and

s∑

i=1

λi(k) = 1, λi(k) ≥ 0.

Consider the following control law,

u(k) = λ1(k)K1x̂1(k) +
s∑

i=2

λi(k) sat
(
Kix̂i(k)

)
(4.74)

Using Lemma 2.1, one obtains,

u(k) = λ1(k)K1x̂1(k) +
s∑

i=2

λi(k)
(
αi(k)Ki + (1 − αi(k)

)
Hi

)
x̂i (k) (4.75)

where 0 ≤ αi(k) ≤ 1 for all i = 2,3, . . . , s.
Similar with the notation employed in Sect. 4.5, we denote ri = λix̂i . Since x̂1 ∈

Ω1 and x̂i ∈ Ω
Hi
s , it follows that r1 ∈ λ1Ω1 and ri ∈ λiΩ

Hi
s or, equivalently

F (i)
o ri ≤ λig

(i)
o , ∀i = 1,2, . . . , s (4.76)
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Based on (4.73) and (4.75), one obtains,
⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

x = r1 +
s∑

i=2

ri,

u = u1 +
s∑

i=2

ui

(4.77)

where u1 = K1r1 and ui = (αiKi + (1 − αi)Hi)ri , i = 2,3, . . . , s.
As in Sect. 4.5, the first controller, identified by the high gain K1, will play

the role of a performance controller, while the remaining controllers u = sat(Kix),
i = 2,3, . . . , s will be used to extend the domain of attraction.

It holds that,

x(k + 1) = Ax(k) + Bu(k)

= A

s∑

i=1

ri(k) + B

s∑

i=1

ui =
s∑

i=1

ri(k + 1)

where r1(k + 1) = Ar1 + Bu1 = (A + BK1)r1 and

ri(k + 1) = Ari(k) + Bui(k) = {A + B
(
αiKi + (1 − αi)Hi

)}
ri(k) (4.78)

or, equivalently

ri(k + 1) = Aciri(k) (4.79)

with Aci = A + B(αiKi + (1 − αi)Hi), ∀i = 2,3, . . . , s.
For a given set of state and control weighting matrices Qi � 0 and Ri � 0, i =

2,3, . . . , s, consider the following set of quadratic functions,

Vi(ri) = rT
i Piri , i = 2,3, . . . , s (4.80)

where the matrix Pi ∈R
n×n, Pi � 0 is chosen to satisfy,

Vi

(
ri(k + 1)

)− Vi

(
ri(k)

)≤ −ri(k)T Qiri(k) − ui(k)T Riui(k) (4.81)

With the same argument as in Sect. 4.5, equation (4.81) can be rewritten as,

AT
ciPiAci − Pi � −Qi − (αiKi + (1 − αi)Hi

)T
Ri

(
αiKi + (1 − αi)Hi

)

Using the Schur complements, the above condition can be transformed into,
[
Pi − Qi − YT

i RiYi AT
ciPi

PiAci Pi

]
� 0

where Yi = αiKi + (1 − αi)Hi . Or, equivalently
[

Pi AT
ciPi

PiAci Pi

]
−
[
Qi + YT

i RiYi 0
0 0

]
� 0
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Denote
√

Qi and
√

Ri as the Cholesky factor of the matrices Qi and Ri , which
satisfy

√
Qi

T√
Qi = Qi and

√
Ri

T√
Ri = Ri.

The previous condition can be rewritten as,

[
Pi AT

ciPi

PiAci Pi

]
−
[√

Qi
T

YT
i

√
Ri

T

0 0

][ √
Qi 0√

RiYi 0

]
� 0

or by using the Schur complements, one obtains,

⎡

⎢⎢
⎣

Pi AT
ciPi

√
Qi

T
YT

i

√
Ri

T

PiAci Pi 0 0√
Qi 0 I 0√

RiYi 0 0 I

⎤

⎥⎥
⎦� 0 (4.82)

Since Yi = αiKi + (1 − αi)Hi , and Aci = A + BYi the left hand side of inequality
(4.82) is linear in αi , and hence reaches its minimum at either αi = 0 or αi = 1.
Consequently, the set of LMI conditions to be checked is following,

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

⎡

⎢
⎢
⎣

Pi (A + BKi)
T Pi

√
Qi

T
(
√

RiKi)
T

Pi(A + BKi) Pi 0 0√
Qi 0 I 0√

RiKi 0 0 I

⎤

⎥
⎥
⎦� 0

⎡

⎢⎢
⎣

Pi (A + BHi)
T Pi

√
Qi

T
(
√

RiHi)
T

Pi(A + BHi) Pi 0 0√
Qi 0 I 0√

RiHi 0 0 I

⎤

⎥⎥
⎦� 0

(4.83)

Condition (4.83) is linear with respect to the matrix Pi . One way to calculate Pi is
to solve the following LMI problem,

min
Pi

{
trace(Pi)

}
(4.84)

subject to constraint (4.83).
Once the matrices Pi , i = 2,3, . . . , s are computed, they can be used in practice

for real-time control based on the following algorithm, which can be formulated as
an optimization problem that is efficient with respect to structure and complexity.
At each time instant, for a given current state x, minimize on-line the quadratic cost
function,
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min
ri ,λi

{
s∑

i=2

rT
i Piri +

s∑

i=2

λ2
i

}

(4.85)

subject to the linear constraints
⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

F (i)
o ri ≤ λig

(i)
o , ∀i = 1,2, . . . , s,

s∑

i=1

ri = x,

s∑

i=1

λi = 1,

λi ≥ 0, ∀i = 1,2, . . . , s

Theorem 4.12 The control law (4.73), (4.74), (4.85) guarantees recursive feasibil-
ity and asymptotic stability of the closed loop system for all initial states x(0) ∈ Ωs .

Proof The proof is similar to Theorem 4.11. Hence it is omitted here. �

Example 4.5 Consider again the system in Example 4.1 with the same state and
control constraints. Two gain matrices are chosen as,

{
K1 = [−0.9500 −1.1137],
K2 = [−0.4230 −2.0607] (4.86)

Using Theorem 2.3, matrix H2 is computed as,

H2 = [−0.0669 −0.2875] (4.87)

The invariant sets Ω1 and Ω
H2
s are, respectively constructed for the controllers

u = K1x and u = sat(K2x), see Fig. 4.21(a). Figure 4.21(b) shows state trajecto-
ries for different initial conditions.

The sets Ω1 and Ω
H2
s are presented in minimal normalized half-space represen-

tation as,

Ω1 =

⎧
⎪⎪⎨

⎪⎪⎩
x ∈R

2 :

⎡

⎢⎢
⎣

0.3919 −0.9200
−0.3919 0.9200
−0.6490 −0.7608
0.6490 0.7608

⎤

⎥⎥
⎦x ≤

⎡

⎢⎢
⎣

1.4521
1.4521
0.6831
0.6831

⎤

⎥⎥
⎦

⎫
⎪⎪⎬

⎪⎪⎭
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Fig. 4.21 Feasible invariant
sets and state trajectories of
the closed loop system for
Example 4.5

ΩH2
s =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

x ∈ R
2 :

⎡

⎢⎢⎢⎢⎢⎢⎢⎢
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢
⎢⎢⎢
⎣

−0.0170 −0.9999
0.0170 0.9999

−0.0386 −0.9993
0.0386 0.9993

−0.0610 −0.9981
0.0610 0.9981

−0.0850 −0.9964
0.0850 0.9964

−0.1117 −0.9937
0.1117 0.9937

−0.1425 −0.9898
0.1425 0.9898
0.7948 0.6069

−0.7948 −0.6069
−0.1796 −0.9837
0.1796 0.9837
1.0000 0

−1.0000 0
−0.2266 −0.9740
0.2266 0.9740

⎤

⎥⎥⎥⎥⎥⎥⎥⎥
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥
⎥⎥⎥
⎦

x ≤

⎡

⎢⎢⎢⎢⎢⎢⎢⎢
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢
⎢⎢⎢
⎣

3.4795
3.4795
3.2732
3.2732
3.1299
3.1299
3.0449
3.0449
3.0182
3.0182
3.0552
3.0552
8.5177
8.5177
3.1696
3.1696

10.0000
10.0000
3.3878
3.3878

⎤

⎥⎥⎥⎥⎥⎥⎥⎥
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥
⎥⎥⎥
⎦

⎫
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭
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Fig. 4.22 State and input
trajectories of the closed loop
system as functions of time
for Example 4.5 for the
interpolating controller
(solid) and for the saturated
controller u = sat(K2x)

(dashed)

With the weighting matrices Q2 = I , R2 = 0.001 and by solving the LMI problem
(4.84), one obtains,

P2 =
[

5.4929 9.8907
9.8907 104.1516

]

For the initial condition x(0) = [−9.79 −1.2]T , Fig. 4.22 presents the state and
input trajectories for the interpolating controller (solid blue) and for the saturated
controller u = sat(K2x) (dashed red), which is the controller corresponding to the
set Ω

H2
s . The interpolating coefficient λ∗

2 and the objective function as a Lyapunov
function are shown in Fig. 4.23.

4.7 Convex Hull of Ellipsoids

For high dimensional systems, the polyhedral based interpolation approaches in
Sects. 4.2, 4.3, 4.4, 4.5, 4.6 might be impractical due to the huge number of ver-
tices or half-spaces in the representation of polyhedral sets. In that case, ellipsoids
might be a suitable class of sets for interpolation.

Note that the idea of using ellipsoids for a constrained control system is well
known, for time-invariant linear continuous-time systems, see [56], and for time-
invariant linear discrete-time systems, see [10]. In these papers, a method to con-
struct a continuous control law based on a set of linear control laws was proposed
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Fig. 4.23 Interpolating
coefficient λ∗

2 and Lyapunov
function as functions of time
for Example 4.5

to make the convex hull of an associated set of invariant ellipsoids invariant. How-
ever these results do not allow to impose priority among the control laws.

In this section, an interpolation using a set of saturated controllers and its asso-
ciated set of invariant ellipsoid is presented. The main contribution with respect to
[10, 56] is to provide a new type of controller, that uses interpolation.

It is assumed that a set of asymptotically stabilizing saturated controllers u =
sat(Kix) is available such that the corresponding ellipsoidal invariant sets E(Pi)

E(Pi) = {x ∈ R
n : xT P −1

i x ≤ 1
}

(4.88)

are non-empty for i = 1,2, . . . , s. Recall that for all x(k) ∈ E(Pi), it follows that
sat(Kix) ∈ U and x(k + 1) = Ax(k) + B sat(Kix(k)) ∈ X. Denote ΩE ⊂ R

n as the
convex hull of E(Pi), i = 1,2, . . . , s. It follows that ΩE ⊆ X, since X is convex and
E(Pi) ⊆ X, i = 1,2, . . . , s.

Any state x(k) ∈ ΩE can be decomposed as,

x(k) =
s∑

i=1

λi(k)̂xi(k) (4.89)
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where x̂i (k) ∈ E(Pi) and λi(k) are interpolating coefficients, that satisfy

s∑

i=1

λi(k) = 1, λi(k) ≥ 0

Consider the following control law,

u(k) =
s∑

i=1

λi(k) sat
(
Kix̂i(k)

)
(4.90)

where sat(Kix̂i(k)) is the saturated control law in E(Pi).

Theorem 4.13 The control law (4.89), (4.90) guarantees recursive feasibility for
all initial conditions x(0) ∈ ΩE .

Proof One has to prove that u(k) ∈ U and x(k + 1) = Ax(k) + Bu(k) ∈ ΩE for all
x(k) ∈ ΩE . For the input constraints, from equation (4.90) and since sat(Kix̂i(k)) ∈
U , it follows that u(k) ∈ U .

For the state constraints, it holds that,

x(k + 1) = Ax(k) + Bu(k)

= A

s∑

i=1

λi(k)̂xi(k) + B

s∑

i=1

λi(k) sat(Kix̂i(k))

=
s∑

i=1

λi(k)(Ax̂i(k) + B sat(Kix̂i(k)))

One has Ax̂i(k) + B sat(Kix̂i(k)) ∈ E(Pi) ⊆ ΩE , i = 1,2, . . . , s, which ultimately
assures that x(k + 1) ∈ ΩE . �

As in Sects. 4.5 and 4.6, the first high gain controller will be used for the perfor-
mance, while the rest of available low gain controllers will be used to enlarge the
domain of attraction. For a given current state x, consider the following optimization
problem,

λ∗
i = min

x̂i ,λi

{
s∑

i=2

λi

}

(4.91)
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subject to
⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

x̂T
i P −1

i x̂i ≤ 1, ∀i = 1,2, . . . , s,

s∑

i=1

λix̂i = x,

s∑

i=1

λi = 1,

λi ≥ 0, ∀i = 1,2, . . . , s

Theorem 4.14 The control law (4.89), (4.90), (4.91) guarantees asymptotic stabil-
ity for all initial states x(0) ∈ ΩE .

Proof Consider the following non-negative function,

V (x) =
s∑

i=2

λ∗
i (k) (4.92)

for all x ∈ ΩE \ E(P1). V (x) is a Lyapunov function candidate.
For any x(k) ∈ ΩE \ E(P1), by solving the optimization problem (4.91) and by

applying (4.89), (4.90), one obtains

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

x(k) =
s∑

i=1

λ∗
i (k)̂x∗

i (k)

u(k) =
s∑

i=1

λ∗
i (k) sat(Kix̂

∗
i (k))

It follows that,

x(k + 1) = Ax(k) + Bu(k) = A

s∑

i=1

λ∗
i (k)̂x∗

i (k) + B

s∑

i=1

λ∗
i (k) sat(Kix̂

∗
i (k))

=
s∑

i=1

λ∗
i (k)̂xi(k + 1)

where x̂i (k + 1) = Ax̂∗
i (k) + B sat(Kix̂

∗
i (k)) ∈ E(Pi), ∀i = 1,2, . . . , s. Hence

λ∗
i (k), ∀i = 1,2, . . . , s is a feasible solution of (4.91) at time k + 1.

At time k + 1, by soling the optimization problem (4.91), one obtains

x(k + 1) =
s∑

i=1

λ∗
i (k + 1)̂x∗

i (k + 1)
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where x̂∗
i (k + 1) ∈ E(Pi). It follows that

∑s
i=2 λ∗

i (k + 1) ≤∑s
i=2 λ∗

i (k) and V (x)

is a non-increasing function.
The contractive property of the ellipsoids E(Pi), i = 1,2, . . . , s assures that there

is no initial condition x(0) ∈ ΩE \ E(P1) such that
∑s

i=2 λ∗
i (k + 1) =∑s

i=2 λ∗
i (k)

for sufficiently large and finite k. It follows that V (x) =∑s
i=2 λ∗

i (k) is a Lyapunov
function for all x ∈ ΩE \ E(P1).

The proof is completed by noting that inside E(P1), λ1 = 1 and λi = 0, i =
2,3, . . . , s, the saturated controller u = sat(K1x̂) is contractive and thus the control
laws (4.89), (4.90), (4.91) assures asymptotic stability for all x ∈ ΩE . �

Denote ri = λix̂i . Since x̂i ∈ E(Pi), it follows that ri ∈ λiE(Pi), and hence
rT
i P −1

i ri ≤ λ2
i . The non-linear optimization problem (4.91) can be rewritten as,

min
ri ,λi

{
s∑

i=2

λi

}

(4.93)

subject to

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

rT
i P −1

i ri ≤ λ2
i , ∀i = 1,2, . . . , s,

s∑

i=1

ri = x,

s∑

i=1

λi = 1, λi ≥ 0, ∀i = 1,2, . . . , s

By using the Schur complements, (4.93) is converted into the following LMI prob-
lem,

min
ri ,λi

{
s∑

i=2

λi

}

(4.94)

subject to
⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

[
λi rT

i

ri λiPi

]
� 0, ∀i = 1,2, . . . , s,

s∑

i=1

ri = x,

s∑

i=1

λi = 1, λi ≥ 0, ∀i = 1,2, . . . , s
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Algorithm 4.4 Interpolating control—Convex hull of ellipsoids
1. Measure the current state x(k).
2. Solve the LMI problem (4.94).
3. Apply as input the control signal (4.90).
4. Wait for the next time instant k := k + 1.
5. Go to step 1 and repeat.

Remark 4.12 It is worth noticing that for all x(k) ∈ E(P1), the LMI problem (4.94)
has the trivial solution,

λi = 0, ∀i = 2,3, . . . , s

Hence λ1 = 1 and x = x̂1. In this case, the interpolating controller becomes the
saturated controller u = sat(K1x).

Example 4.6 Consider again the system in Example 4.1 with the same state and
control constraints. Three gain matrices are chosen as,

⎧
⎪⎪⎨

⎪⎪⎩

K1 = [−0.9500 −1.1137],
K2 = [−0.4230 −2.0607],
K3 = [−0.5010 −2.1340]

(4.95)

Fig. 4.24 Invariant ellipsoids
and state trajectories of the
closed loop system for
Example 4.6
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Fig. 4.25 State trajectory,
input trajectory and the sum
(λ∗

2 + λ∗
3) of the closed loop

system for Example 4.6

By solving the LMI problem (2.55) three invariant ellipsoids E(P1), E(P2),
E(P3) are computed corresponding to the saturated controllers u = sat(K1x),
u = sat(K2x) and u = sat(K3x). The sets E(P1), E(P2), E(P3) and their convex
hull are depicted in Fig. 4.24(a). Figure 4.24(b) shows state trajectories for different
initial conditions.

The matrices P1, P2 and P3 are,

P1 =
[

42.27 2.82
2.82 4.80

]
, P2 =

[
100.00 −3.10
−3.10 8.12

]
, P3 =

[
100.00 −19.40
−19.40 9.54

]

For the initial condition x(0) = [−0.64 −2.8]T , using Algorithm 4.4, Fig. 4.25
presents the state and input trajectories and the sum (λ∗

2 + λ∗
3). As expected, the

sum (λ∗
2 + λ∗

3), i.e. the Lyapunov function is positive and non-increasing.



Chapter 5
Interpolating Control—Robust State Feedback
Case

5.1 Problem Formulation

Consider the problem of regulating to the origin the following uncertain and/or time-
varying linear discrete-time system subject to additive bounded disturbances,

x(k + 1) = A(k)x(k) + B(k)u(k) + Dw(k) (5.1)

where x(k) ∈ R
n, u(k) ∈ R

m and w(k) ∈ R
d are respectively, the measurable state,

the input and the disturbance vectors. The matrices A(k) ∈R
n×n, B(k) ∈ R

n×m and
D ∈R

n×d . A(k) and B(k) satisfy,

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

A(k) =
q∑

i=1

αi(k)Ai, B(k) =
q∑

i=1

αi(k)Bi,

q∑

i=1

αi(k) = 1, αi(k) ≥ 0

(5.2)

where the matrices Ai , Bi are given.
The state, the control and the disturbance are subject to the following bounded

polytopic constraints,

⎧
⎪⎪⎨

⎪⎪⎩

x(k) ∈ X, X = {x ∈ R
n : Fxx ≤ gx

}

u(k) ∈ U, U = {u ∈ R
m : Fuu ≤ gu

}

w(k) ∈ W, W = {w ∈R
d : Fww ≤ gw

}
(5.3)

where the matrices Fx , Fu and Fw and the vectors gx , gu and gw are assumed to be
constant with gx > 0, gu > 0, gw > 0. The inequalities are component-wise.

H.-N. Nguyen, Constrained Control of Uncertain, Time-Varying, Discrete-Time Systems,
Lecture Notes in Control and Information Sciences 451,
DOI 10.1007/978-3-319-02827-9_5,
© Springer International Publishing Switzerland 2014
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5.2 Interpolating Control via Linear Programming

It is assumed that an unconstrained robustly asymptotically stabilizing feedback
controller

u(k) = Kx(k)

is available such that the corresponding maximal robustly invariant set Ωmax ⊆ X,

Ωmax = {x ∈R
n : Fox ≤ go

}
(5.4)

is non-empty. Furthermore with some given and fixed integer N > 0, based on Pro-
cedure 2.3 the robustly controlled invariant set CN ⊆ X,

CN = {x ∈ R
n : FNx ≤ gN

}
(5.5)

is computed such that all x ∈ CN can be steered into Ωmax in no more than N steps
when suitable control is applied. The set CN is decomposed into a set of simplices
C

(j)
N , each formed by n vertices of CN and the origin. For all x ∈ CN , the vertex

controller

u(k) = K(j)x(k), x ∈ C
(j)
N (5.6)

where K(j) is defined as in (3.38) robustly stabilizes the system (5.1), while the
constraints (5.3) are fulfilled.

In the robust case, similar to the nominal case presented in Sect. 4.2, Chap. 4,
the weakness of vertex control is that the full control range is exploited only on the
border of the set CN in the state space, with progressively smaller control action
when state approaches the origin. Hence the time to regulate the plant to the origin
is longer than necessary. Here we provide a method to overcome this shortcoming,
where the control action is still smooth. For this purpose, any state x(k) ∈ CN is
decomposed as,

x(k) = c(k)xv(k) + (1 − c(k)
)
xo(k) (5.7)

where xv ∈ CN , xo ∈ Ωmax and 0 ≤ c ≤ 1.
Consider the following control law,

u(k) = c(k)uv(k) + (1 − c(k)
)
uo(k) (5.8)

where uv(k) is the vertex control law (5.6) for xv(k) and uo(k) = Kxo(k) is the
control law in Ωmax.

Theorem 5.1 For system (5.1) and constraints (5.3), the control law (5.7), (5.8)
guarantees recursive feasibility for all initial states x(0) ∈ CN .
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Proof For recursive feasibility, it has to be proved that,

{
Fuu(k) ≤ gu,

x(k + 1) = A(k)x(k) + B(k)u(k) + Dw(k) ∈ CN

for all x(k) ∈ CN .
While the feasibility of the input constraints is proved in a similar way to the

nominal case, the state constraint feasibility deserves an adaptation.

x(k + 1) = A(k)x(k) + B(k)u(k) + Dw(k)

= A(k)
{
c(k)xv(k) + (1 − c(k)

)
xo(k)

}

+ B(k)
{
c(k)uv(k) + (1 − c(k)

)
uo(k)

}+ Dw(k)

= c(k)xv(k + 1) + (1 − c(k)
)
xo(k + 1)

where

xv(k + 1) = A(k)xv(k) + B(k)uv(k) + Dw(k) ∈ CN

xo(k + 1) = A(k)xo(k) + B(k)uo(k) + Dw(k) ∈ Ωmax ⊆ CN

It follows that x(k + 1) ∈ CN . �

As in Sect. 4.2, in order for u(k) in (5.8) to be as close as possible to the op-
timal unconstrained local controller, one would like to minimize the interpolating
coefficient c(k). This can be done by solving the following nonlinear optimization
problem,

c∗ = min
xv,xo,c

{c} (5.9)

subject to
⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

FNxv ≤ gN,

Foxo ≤ go,

cxv + (1 − c)xo = x,

0 ≤ c ≤ 1

Define rv = cxv and ro = (1 − c)xo. Since xv ∈ CN and xo ∈ Ωmax, it follows that
rv ∈ cCN and ro ∈ (1 − c)Ωmax or equivalently,

{
FNrv ≤ cgN,

Foro ≤ (1 − c)go

With this change of variables, the nonlinear optimization problem (5.9) is trans-
formed into the following linear programming problem,
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c∗ = min
rv,c

{c} (5.10)

subject to
⎧
⎪⎪⎨

⎪⎪⎩

FNrv ≤ cgN,

Fo(x − rv) ≤ (1 − c)go,

0 ≤ c ≤ 1

Theorem 5.2 The control law (5.7), (5.8), (5.10) guarantees robustly asymptotic
stability1 for all initial states x(0) ∈ CN .

Proof First of all we will prove that all solutions starting in CN \ Ωmax will reach
Ωmax in finite time. For this purpose, consider the following non-negative function,

V (x) = c∗(x), ∀x ∈ CN \ Ωmax (5.11)

V (x) is a candidate Lyapunov function. At time k, after solving the LP problem
(5.10) and applying (5.7), (5.8), one obtains, for x(k) ∈ CN \ Ωmax,

{
x(k) = c∗(k)x∗

v (k) + (1 − c∗(k)
)
x∗
o (k),

u(k) = c∗(k)uv(k) + (1 − c∗(k)
)
uo(k)

It follows that,

x(k + 1) = A(k)x(k) + B(k)u(k) + Dw(k)

= c∗(k)xv(k + 1) + (1 − c∗(k)
)
xo(k + 1)

where
{

xv(k + 1) = A(k)x∗
v (k) + B(k)uv(k) + Dw(k) ∈ CN,

xo(k + 1) = A(k)x∗
o (k) + B(k)uo(k) + Dw(k) ∈ Ωmax

Hence {c∗(k), x∗
v (k), x∗

o (k)} is a feasible solution for the LP problem (5.10) at time
k + 1, see Fig. 5.1. By solving (5.10) at time k + 1, one gets the optimal solution,
namely

x(k + 1) = c∗(k + 1)x∗
v (k + 1) + (1 − c∗(k + 1)

)
x∗
o (k + 1)

1Here by robustly asymptotic stability we understand that the state of the closed loop system con-
verges to the minimal robustly positively invariant set [97, 105] of the system,

x(k + 1) = (A(k) + B(k)K
)
x(k) + Dw(k)

despite the parameter variation and the influence of additive disturbances.



5.2 Interpolating Control via Linear Programming 119

Fig. 5.1 Graphical
illustration for the proof of
Theorem 5.2

Algorithm 5.1 Interpolating control—Implicit solution
1. Measure the current state x(k).
2. Solve the LP problem (5.10).
3. Compute uv by determining to which simplex x∗

v belongs and using (5.6).
4. Implement as input the control action (5.8).
5. Wait for the next time instant k := k + 1.
6. Go to step 1 and repeat.

where x∗
v (k + 1) ∈ CN and x∗

o (k + 1) ∈ Ωmax. It follows that c∗(k + 1) ≤ c∗(k) and
V (x) is non-increasing.

With the same argument as in the proof of Theorem 4.3, it can be shown that the
interpolating coefficient c in (5.10) is minimal if and only if x is decomposed as
x = cxv + (1 − c)xo with xv ∈ ∂CN and xo ∈ ∂Ωmax, see Fig. 5.1. Recall here that
∂(·) denotes the boundary of the corresponding set (·).

The state contraction properties of the vertex controller and the local controller
for the states on ∂CN and on ∂Ωmax, respectively, guarantee that there is no ini-
tial condition x(0) ∈ CN \ Ωmax such that c∗(k) = c∗(0) for sufficiently large
and finite k. The conclusion is that V (x) = c∗(x) is a Lyapunov function for
x(k) ∈ CN \ Ωmax and all solutions starting in CN \ Ωmax will reach Ωmax in fi-
nite time.

The proof is complete by noting that inside Ωmax, the LP problem (5.10) has the
trivial solution c∗ = 0. Hence the control law (5.7), (5.8), (5.10) becomes the local
controller, which is robustly stabilizing. Therefore robustly asymptotic stability is
guaranteed ∀x ∈ CN . �

It is worth noticing that the complexity of the control law (5.7), (5.8), (5.10) is
in direct relationship with the complexity of the vertex controller and can be very
high, since in general the complexity of the set CN is high in terms of vertices. It
is also well known [26] that the number of simplices of vertex control is typically
much greater than the number of vertices. Therefore a question is how to achieve an
interpolating controller whose complexity is not correlated with the complexity of
the involved sets.
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In Algorithm 5.1, it is obvious that vertex control is only one possible choice
for the global outer controller. One can consider any other linear or non-linear
controller and the principle of interpolation scheme (5.7), (5.8), (5.10) holds as
long as the convexity of the associated robustly controlled invariant set is pre-
served. A natural candidate for the global controller is the saturated controller
u = sat(Ksx) with the associated robustly invariant set Ωs computed by Proce-
dure 2.4 in Sect. 2.3.4. The experience usually shows that by properly choosing the
matrix gain Ks ∈ R

m×n, the set Ωs might be as large as that of any other constrained
control scheme.

In summary with the global saturated controller u(k) = sat(Ksx(k)) the interpo-
lating controller (5.7), (5.8), (5.10) involves the following steps,

1. Design a local gain K and a global gain Ks , both stabilizing with some desired
performance specifications. Usually K is chosen for the performance, while
Ks is designed for extending the domain of attraction.

2. Compute the invariant sets Ωmax and Ωs associated with the controllers u =
Kx and u = sat(Ksx), respectively. Ωmax is computed by using Procedure 2.2,
and Ωs by Procedure 2.4.

3. Implement the control law (5.7), (5.8), (5.10).

Practically, the interpolation scheme using saturated control is simpler than the
interpolation scheme using vertex control, while the domain of attraction remains
typically the same.

Remark 5.1 Concerning the explicit solution of the control law (5.7), (5.8), (5.10)
with the vertex controller, using the same argument as in Sect. 4.3, it can be con-
cluded that,

• If x ∈ CN \ Ωmax, the smallest value of the interpolating coefficient c will
be reached when the region CN \ Ω is decomposed into polyhedral partitions
in form of simplices with vertices both on ∂CN and on ∂Ωmax. The con-
trol law in each simplex is a piecewise affine function of state whose gains
are obtained by interpolation of control values at the vertices of the sim-
plex.

• If x ∈ Ωmax, then the control law is the optimal local controller.

Example 5.1 Consider the following uncertain and time-varying linear discrete-
time system,

x(k + 1) = A(k)x(k) + B(k)u(k) (5.12)

where
{

A(k) = α(k)A1 + (1 − α(k)
)
A2

B(k) = α(k)B1 + (1 − α(k)
)
B2
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and

A1 =
[

1 0.1
0 1

]
, A2 =

[
1 0.2
0 1

]
, B1 =

[
0
1

]
, B2 =

[
0

1.5

]

At each time instant α(k) ∈ [0,1] is an uniformly distributed pseudo-random num-
ber. The constraints are,

−10 ≤ x1 ≤ 10, −10 ≤ x2 ≤ 10, −1 ≤ u ≤ 1 (5.13)

The stabilizing feedback gain for states near the origin is chosen as,

K = [−1.8112 −0.8092]

Using Procedure 2.2 and Procedure 2.3, the sets Ωmax and CN are obtained and
shown in Fig. 5.1. Note that C27 = C28 is the maximal robustly controlled invariant
set for system (5.12).

The set of vertices of CN is given by the matrix V (CN) below, together with the
control matrix Uv at these vertices,

V (PN) = [V1 −V1],
Uv = [U1 −U1],

V1 =
[

10.0000 9.7000 9.1000 8.2000 7.0000 5.5000 3.7000 2.3000 −10.0000
0 1.5000 3.0000 4.5000 6.0000 7.5000 9.0000 10.0000 10.0000

]
,

U1 = [−1 −1 −1 −1 −1 −1 −1 −1 −1
]

The set Ωmax is presented in minimal normalized half-space representation as,

Ωmax =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

x ∈R
2 :

⎡

⎢⎢⎢⎢
⎢⎢⎢⎢⎢⎢
⎣

−0.9130 −0.4079
0.9130 0.4079
0.8985 −0.4391

−0.8985 0.4391
1.0000 0.0036

−1.0000 −0.0036
0.9916 0.1297

−0.9916 −0.1297

⎤

⎥⎥⎥⎥
⎥⎥⎥⎥⎥⎥
⎦

≤

⎡

⎢⎢⎢⎢
⎢⎢⎢⎢⎢⎢
⎣

0.5041
0.5041
2.3202
2.3202
1.3699
1.3699
1.1001
1.1001

⎤

⎥⎥⎥⎥
⎥⎥
⎥⎥⎥⎥
⎦

⎫
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

Solving explicitly the LP problem (5.10) by using multi-parametric linear program-
ming, the state space partition is obtained in Fig. 5.2(a). The number of regions
is Nr = 27. Merging the regions with the identical control law, the reduced state
space partition is obtained (Nr = 13) in Fig. 5.2(b). Figure 5.2(b) also presents state
trajectories for different initial conditions and realizations of α(k).
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The control law over the state space partition with 13 regions is,

u(k) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

−1 if

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢
⎣

0.93 0.37
0.78 0.62
0.64 0.77

−0.91 −0.41
−0.90 0.44
0.58 0.81
0.71 0.71
0.86 0.51
0.20 −0.98
0.98 0.20

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥
⎦

x(k) ≤

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢
⎣

9.56
9.21
9.28

−0.50
2.32
9.47
9.19
9.35
2.00
9.81

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥
⎦

−1 if

⎡

⎣
0.90 −0.44

−0.00 1.00
−0.59 −0.81

⎤

⎦x(k) ≤
⎡

⎣
−2.32
10.00
−2.14

⎤

⎦

−0.92x1(k) − 1.25x2(k) + 2.31 if

⎡

⎣
0.90 −0.44
0.59 0.81

−0.66 −0.75

⎤

⎦x(k) ≤
⎡

⎣
−2.32
2.14

−0.95

⎤

⎦

−0.00x1(k) − 0.20x2(k) + 1.00 if

⎡

⎣
0.66 0.75

−1.00 0.00
0.27 −0.96

⎤

⎦x(k) ≤
⎡

⎣
0.95

10.00
−2.75

⎤

⎦

0.17x1(k) − 0.80x2(k) + 2.72 if

⎡

⎣
1.00 0.00
0.23 −0.97

−0.27 0.96

⎤

⎦x(k) ≤
⎡

⎣
−1.37
−2.31
2.75

⎤

⎦

0.11x1(k) − 0.56x2(k) + 2.13 if

⎡

⎣
0.99 0.13
0.20 −0.98

−0.23 0.97

⎤

⎦x(k) ≤
⎡

⎣
−1.10
−2.00
2.31

⎤

⎦

−1.81x1(k) − 0.81x2(k) if

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢
⎣

−0.91 −0.41
0.91 0.41
0.90 −0.44

−0.90 0.44
1.00 0.00

−1.00 −0.00
0.99 0.13

−0.99 −0.13

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥
⎦

x(k) ≤

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢
⎣

0.50
0.50
2.32
2.32
1.37
1.37
1.10
1.10

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥
⎦

(due to symmetry of the explicit solution, only the control law for seven regions are
reported here)

The interpolating coefficient and the control input are depicted in Fig. 5.3.
For the initial condition x0 = [2.2954 9.9800]T , Fig. 5.4 shows the state and

input trajectories as functions of time for the interpolating controller (solid). As a
comparison, Fig. 5.4 also shows the state and input trajectories obtained by using
the LMI based MPC algorithm in [74] (dashed). The state and control weighting
matrices are Q = I , R = 0.01 for [74].

Figure 5.5 presents the interpolating coefficient and the realization of α(k). As
expected c∗(k) is a positive and non-increasing function.
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Fig. 5.2 Explicit solution
before and after merging for
the interpolating controller
and state trajectories of the
closed loop system for
Example 5.1

Fig. 5.3 Interpolating
coefficient and the control
input as piecewise affine
functions of state for
Example 5.1
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Fig. 5.4 State and input
trajectories as functions of
time for Example 5.1 for the
interpolating controller
(solid), and for [74] (dashed)

Example 5.2 This example extends the study of the nominal case. The discrete-time
linear time-invariant system with disturbances is given as,

x(k + 1) =
[

1 1
0 1

]
x(k) +

[
0
1

]
u(k) + w(k) (5.14)

The constraints are,

− 5 ≤ x1 ≤ 5, −5 ≤ x2 ≤ 5, −1 ≤ u ≤ 1,

− 0.1 ≤ w1 ≤ 0.1, −0.1 ≤ w2 ≤ 0.1
(5.15)

The local controller is chosen as an LQ controller with weighting matrices Q = I ,
R = 0.01, leading to the state feedback gain,

K = [−0.6136 −1.6099]
The following saturated controller u(k) = sat(Ksx(k)) is chosen as a global con-
troller with the matrix gain,

Ks = [−0.1782 −0.5205]
Using Procedure 2.2 and Procedure 2.4 the sets Ωmax and Ωs are respectively, com-
puted for the control laws u(k) = Kx(k) and u(k) = sat(Ksx(k)), see Fig. 5.6(a).
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Fig. 5.5 Interpolating
coefficient and the realization
of α(k) as functions of time
for Example 5.1

Note that Ωs is actually the maximal invariant set for system (5.14) with constraints
(5.15), which can be verified by comparing the equivalence between the set Ωs and
its one-step robustly controlled invariant set. Figure 5.6(b) presents state trajectories
for different initial conditions and realizations of w(k). It is worth noticing that the
trajectories do not converge to the origin but to the minimal robustly invariant set of
the system,

x(k + 1) = (A + BK)x(k) + w(k)

Ωs and Ωmax are presented in minimal normalized half-space representation as,

Ωs =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

x ∈R
2 :

⎡

⎢
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢
⎢⎢⎢
⎣

1.0000 0
−1.0000 0
0.7071 0.7071

−0.7071 −0.7071
0.4472 0.8944

−0.4472 −0.8944
0.3162 0.9487

−0.3162 −0.9487
0.2425 0.9701

−0.2425 −0.9701
0.1961 0.9806

−0.1961 −0.9806

⎤

⎥
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥
⎥⎥⎥
⎦

x ≤

⎡

⎢
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢
⎢⎢⎢
⎣

5.0000
5.0000
3.4648
3.4648
2.5491
2.5491
2.3401
2.3401
2.4254
2.4254
2.6476
2.6476

⎤

⎥
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥
⎥⎥⎥
⎦

⎫
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭
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Fig. 5.6 Feasible invariant
sets and state trajectories of
the closed loop system for
Example 5.2

Fig. 5.7 State trajectories as
functions of time for
Example 5.2 for the
interpolating controller
(solid), and for the tube MPC
in [81] (dashed)

Ωmax =

⎧
⎪⎪⎨

⎪⎪⎩
x ∈R

2 :

⎡

⎢⎢
⎣

−0.3562 −0.9344
0.3562 0.9344
0.7129 0.7013

−0.7129 −0.7013

⎤

⎥⎥
⎦x ≤

⎡

⎢⎢
⎣

0.5804
0.5804
1.4813
1.4813

⎤

⎥⎥
⎦

⎫
⎪⎪⎬

⎪⎪⎭

For the initial condition x(0) = [−3.0654 2.9541]T , Fig. 5.7 and Fig. 5.8 show the
state and input trajectories for the interpolating controller (solid). As a comparison,
we choose the tube MPC in [81]. The dashed lines in Fig. 5.7 and Fig. 5.8 are
obtained by using this technique.
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Fig. 5.8 Input trajectories as
functions of time for
Example 5.2 for the
interpolating controller
(solid), and for the tube MPC
in [81] (dashed)

Fig. 5.9 Outer invariant
approximation of the minimal
robustly invariant set for
Example 5.2

The following parameters were used for the tube MPC. The outer invariant ap-
proximation R∞ of the minimal robustly invariant set was constructed for system,

x(k + 1) = (A + BK)x(k) + w(k)

using the method in [105]. The set R∞ is depicted in Fig. 5.9. The setup of the MPC
approach for the nominal system of the tube MPC framework is Q = I , R = 0.01.
The prediction horizon N = 10.

The interpolating coefficient c∗(k) and the realization of w(k) are presented in
Fig. 5.10.

5.3 Interpolating Control via Quadratic Programming

The non-uniqueness of the solution is the main issue regarding the implementation
of the interpolating controller in Sect. 5.2. Hence, as in the nominal case, it is also
worthwhile in the robust case to have an interpolation scheme with strictly convex
objective function.

In this section, we consider the problem of regulating to the origin system (5.1)
in the absence of disturbances. In other words, the system under consideration is of
the form,

x(k + 1) = A(k)x(k) + B(k)u(k) (5.16)

where the uncertainty description of A(k) and B(k) is as in (5.2).
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Fig. 5.10 Interpolating
coefficient and the realization
of w(k) as functions of time
for Example 5.2

For a given set of robustly asymptotically stabilizing controllers u(k) = Kix(k),
i = 1,2, . . . , s and corresponding maximal robustly invariant sets Ωi ⊆ X

Ωi = {x ∈R
n : F (i)

o x ≤ g(i)
o

}
(5.17)

denote Ω as a convex hull of Ωi . It follows from the convexity of X that Ω ⊆ X,
since Ωi ⊆ X, ∀i = 1,2, . . . , s.

By employing the same design scheme in Sect. 4.5, the first high gain controller
in this enumeration will play the role of a performance controller, while the re-
maining low gain controllers will be used in the interpolation scheme to enlarge the
domain of attraction. Any state x(k) ∈ Ω can be decomposed as follows,

x(k) = λ1(k)̂x1(k) + λ2(k)̂x2(k) + · · · + λs(k)̂xs(k) (5.18)

where x̂i (k) ∈ Ωi , ∀i = 1,2, . . . , s and

s∑

i=1

λi(k) = 1, λi(k) ≥ 0

Consider the following control law,

u(k) = λ1(k)K1x̂1(k) + λ2(k)K2x̂2(k) + · · · + λs(k)Ksx̂s(k) (5.19)
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where ui(k) = Kix̂i(k) is the control law in Ωi . Define ri = λi x̂i . Since x̂i ∈ Ωi , it
follows that ri ∈ λiΩi or equivalently that the set of inequalities,

F (i)
o ri ≤ λig

(i)
o (5.20)

is verified ∀i = 1,2, . . . , s.
It holds that,

x(k + 1) = A(k)x(k) + B(k)u(k) = A(k)

s∑

i=1

ri(k) + B(k)

s∑

i=1

Kiri(k)

=
s∑

i=1

(A(k) + B(k)Ki)ri(k)

or

x(k + 1) =
s∑

i=1

ri(k + 1) (5.21)

with ri(k + 1) = Aci(k)ri(k) and Aci(k) = A(k) + B(k)Ki .
For a given set of state and control weighting matrices Qi � 0, Ri � 0, i =

2,3, . . . , s, consider the following set of quadratic functions,

Vi(ri) = rT
i Piri , ∀i = 2,3, . . . , s (5.22)

where Pi ∈R
n×n and Pi � 0 is chosen to satisfy,

Vi

(
ri(k + 1)

)− Vi

(
ri(k)

)≤ −ri(k)T Qiri(k) − ui(k)T Riui(k) (5.23)

From (5.22), (5.23) and since ri(k + 1) = Aci(k)ri(k), ui(k) = Kiri(k), it follows
that,

AT
ciPiAci − Pi � −Qi − KT

i RiKi

By using the Schur complements, one obtains

[
Pi − Qi − KT

i RiKi AT
ciPi

PiAci Pi

]
� 0 (5.24)

Aci(k) = A(k)+B(k)Ki =∑q

j=1 αj (k)(Aj +BjKi) is linear with respect to αj (k).
Hence one should verify (5.24) at the vertices of αj (k), i.e. when αj (k) = 0 or
αj (k) = 1. Therefore the set of LMI conditions to be satisfied is following,

[
Pi − Qi − KT

i RiKi (Aj + BjKi)
T Pi

Pi(Aj + BjKi) Pi

]
� 0, ∀j = 1,2, . . . , q (5.25)
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One way to obtain matrix Pi is to solve the following LMI problem,

min
Pi

{
trace(Pi)

}
(5.26)

subject to constraints (5.25).
Define the vector z ∈ R

(s−1)(n+1) as follows,

z = [rT
2 . . . rT

s λ2 . . . λs

]T (5.27)

At each time instant, consider the following optimization problem,

V (z) = min
z

{
s∑

i=2

rT
i Piri +

s∑

i=2

λ2
i

}

(5.28)

subject to the constraints
⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

F (i)
o ri ≤ λig

(i)
o , i = 1,2, . . . , s,

s∑

i=1

ri = x,

s∑

i=1

λi = 1,

λi ≥ 0, i = 1,2, . . . , s

and apply as input the control action u =∑s
i=1 Kiri .

We underline the fact that the cost function is built on the indices {2,3, . . . , s},
which correspond to the more poorly performing controllers. Simultaneously, the
cost function is intended to diminish the influence of these controller actions in the
interpolation scheme toward the unconstrained optimum with ri = 0 and λi = 0,
∀i = 2,3, . . . , s

Theorem 5.3 The interpolating controller (5.18), (5.19), (5.28) guarantees recur-
sive feasibility and robustly asymptotic stability for all initial states x(0) ∈ Ω .

Proof The proof of this theorem follows the same argumentation as the one of The-
orem 4.11. Hence it is omitted here. �

As in Sect. 4.5, the cost function in (5.28) can be rewritten in a quadratic form
as,

V (z) = min
z

{
zT Hz

}
(5.29)
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with

H =

⎡

⎢⎢⎢⎢⎢
⎢⎢⎢⎢⎢⎢⎢
⎣

P2 0 . . . 0 0 0 . . . 0
0 P3 . . . 0 0 0 . . . 0
...

...
. . .

... 0 0 . . . 0
0 0 . . . Ps 0 0 . . . 0
0 0 . . . 0 1 0 . . . 0
0 0 . . . 0 0 1 . . . 0
...

...
. . .

... 0 0 . . . 0
0 0 . . . 0 0 0 . . . 1

⎤

⎥⎥⎥⎥⎥
⎥⎥⎥⎥⎥⎥⎥
⎦

and the constraints of (5.28) can be rewritten as,

Gz ≤ S + Ex(k) (5.30)

where

G =

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢
⎢⎢⎢⎢⎢⎢⎢⎢
⎣

−F
(1)
o −F

(1)
o . . . −F

(1)
o g

(1)
o g

(1)
o . . . g

(1)
o

F
(2)
o 0 . . . 0 −g

(2)
o 0 . . . 0

0 F
(3)
o . . . 0 0 −g

(3)
o . . . 0

...
...

. . .
...

...
...

. . .
...

0 0 . . . F
(s)
o 0 0 . . . −g

(s)
o

0 0 . . . 0 −1 0 . . . 0
0 0 . . . 0 0 −1 . . . 0
...

...
. . .

...
...

...
. . .

...

0 0 . . . 0 0 0 . . . −1
0 0 . . . 0 1 1 . . . 1

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥
⎥⎥⎥⎥⎥⎥⎥⎥
⎦

S =
[
(g

(1)
o )T 0 0 . . . 0 0 0 . . . 0 1

]T

E =
[
−(F

(1)
o )T 0 0 . . . 0 0 0 . . . 0 0

]T

Hence the optimization problem (5.28) is transformed into the quadratic program-
ming problem (5.29), (5.30).

It is worth noticing that for all x ∈ Ω1, the QP problem (5.29), (5.30) has the
trivial solution, that is,

{
ri = 0,

λi = 0,
∀i = 2,3, . . . s

Hence r1 = x and λ1 = 1 for x ∈ Ω1. And therefore, inside Ω1, the interpolating
controller becomes the optimal one.
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Algorithm 5.2 Interpolating control via quadratic programming
1. Measure the current state x(k).
2. Solve the QP problem (5.29), (5.30).
3. Implement as input the control action u =∑s

i=1 Kiri .
4. Wait for the next time instant k := k + 1.
5. Go to step 1 and repeat.

Fig. 5.11 Feasible invariant
sets and state trajectories of
the closed loop system for
Example 5.3

Example 5.3 Consider the system in Example 5.1 with the same state and control
constraints. Two linear feedback controllers are chosen as,

{
K1 = [−1.8112 −0.8092],
K2 = [−0.0786 −0.1010] (5.31)

The first controller u(k) = K1x(k) plays the role of a performance controller, while
the second controller u(k) = K2x(k) is used for extending the domain of attrac-
tion.

Figure 5.11(a) shows the maximal robustly invariant sets Ω1 and Ω2 correspond
to the controllers K1 and K2 respectively. Figure 5.11(b) presents state trajectories
for different initial conditions and realizations of α(k).
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The sets Ω1 and Ω2 are presented in minimal normalized half-space representa-
tion as,

Ω1 =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

x ∈R
2 :

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢
⎣

1.0000 0.0036
−1.0000 −0.0036
0.9916 0.1297

−0.9916 −0.1297
0.8985 −0.4391

−0.8985 0.4391
−0.9130 −0.4079
0.9130 0.4079

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥
⎦

x ≤

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢
⎣

1.3699
1.3699
1.1001
1.1001
2.3202
2.3202
0.5041
0.5041

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥
⎦

⎫
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

Ω2 =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

x ∈ R
2 :

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢
⎢⎢⎢⎢⎢⎢⎢
⎣

0.9352 0.3541
−0.9352 −0.3541
0.9806 0.1961

−0.9806 −0.1961
−0.5494 −0.8355
0.5494 0.8355
1.0000 0

0 1.0000
−1.0000 0

0 −1.0000
−0.6142 −0.7892
0.6142 0.7892

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥
⎥⎥⎥⎥⎥⎥⎥
⎦

x ≤

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢
⎢⎢⎢⎢⎢⎢⎢
⎣

9.5779
9.5779
9.8058
9.8058
8.2385
8.2385

10.0000
10.0000
10.0000
10.0000
7.8137
7.8137

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥
⎥⎥⎥⎥⎥⎥⎥
⎦

⎫
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

With the weighting matrices Q2 = I , R2 = 0.001, and by solving the LMI problem
(5.26), one obtains,

P2 =
[

17.5066 7.9919
7.9919 16.7525

]

For the initial condition x(0) = [0.3380 9.6181]T , Fig. 5.12(a) and 5.12(b)
show the state and input trajectories for our approach (solid). Figure 5.12(a)
and 5.12(b) also show the state and input trajectories for the algorithm in [102]
(dashed). The state and control weighting matrices for [102] are Q = I , R =
0.001.

Figure 5.13 presents the interpolating coefficient λ2(k), the realization of α(k)

and the Lyapunov function as functions of time.

5.4 Interpolating Control Based on Saturated Controllers

In this section, in order to fully utilize the capability of actuators and to extend the
domain of attraction, an interpolation between several saturated controllers will be
proposed. As in the previous section, we consider the case when w(k) = 0, ∀k ≥ 0.
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Fig. 5.12 State and input
trajectories of the closed loop
system as functions of time
for Example 5.3 for our
approach (solid), and for
[102] (dashed)

For simplicity, only the single input–single output system case is considered here,
although extension to the multi-input multi-output system case is straightforward.

From Lemma 2.1 in Sect. 2.4.1, recall that for a given stabilizing controller
u(k) = sat(Kx(k)), there exists an auxiliary stabilizing controller u(k) = Hx(k)

such that the saturation function can be expressed as, ∀x such that Hx ∈ U ,

sat
(
Kx(k)

)= β(k)Kx(k) + (1 − β(k)
)
Hx(k) (5.32)

where 0 ≤ β(k) ≤ 1. The instrumental vector H ∈ R
n can be computed by Theo-

rem 2.3. Based on Procedure 2.5 in Sect. 2.4.1, an associated robustly polyhedral
set ΩH

s can be computed, that is invariant for the system,

x(k + 1) = A(k)x(k) + B(k) sat
(
Kx(k)

)
(5.33)

It is assumed that a set of robustly asymptotically stabilizing controllers u(k) =
sat(Kix(k)), ∀i = 1,2, . . . , s is available as well as a set of auxiliary vectors Hi ∈
R

n with i = 2,3, . . . , s such that the maximal invariant set Ω1 ⊆ X

Ω1 = {x ∈ R
n : F (1)

o x ≤ g(1)
o

}
(5.34)

for the linear controller u = K1x, and the maximal invariant set Ω
Hi
s ⊆ X

ΩHi
s = {x ∈ R

n : F (i)
o x ≤ g(i)

o

}
(5.35)
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Fig. 5.13 Interpolating
coefficient, Lyapunov
function and α(k) realization
as functions of time for
Example 5.3

for i = 2,3, . . . , s is non-empty. Denote Ωs as the convex hull of the sets Ω
Hi
s . By

the convexity of X, it follows that Ωs ⊆ X, since

Ω1 ⊆ X and ΩHi
s ⊆ X, ∀i = 2,3 . . . , s.

Any state x(k) ∈ Ωs can be decomposed as,

x(k) = λ1(k)̂x1(k) +
s∑

i=2

λi(k)̂xi(k) (5.36)
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where x̂1(k) ∈ Ω1, x̂i (k) ∈ Ω
Hi
s , ∀i = 2,3, . . . , s and

s∑

i=1

λi(k) = 1, λi(k) ≥ 0

As in the previous section we remark the non-uniqueness of the decomposition
(5.36). Consider the following control law,

u(k) = λ1(k)K1x̂1(k) +
s∑

i=2

λi(k) sat
(
Kix̂i(k)

)
(5.37)

Using Lemma 2.1, one obtains,

u(k) = λ1(k)K1x̂1(k) +
s∑

i=2

λi(k)
(
βi(k)Ki + (1 − βi(k)

)
Hi

)
x̂i (k) (5.38)

where 0 ≤ βi(k) ≤ 1, ∀i = 2,3, . . . , s.
With the same notation as in the previous section, let ri = λix̂i . Since x̂1 ∈ Ω1

and x̂i ∈ Ω
Hi
s , i = 2,3, . . . , s, it follows that r1 ∈ λ1Ω1 and ri ∈ λiΩ

Hi
s , i =

2,3, . . . , s or,

F (i)
o xi ≤ λig

(i)
o , ∀i = 1,2, . . . , s (5.39)

Using (5.36), (5.38), one gets,
⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

x = r1 +
s∑

i=2

ri,

u = u1 +
s∑

i=2

ui

(5.40)

where u1 = K1r1 and

ui = (βiKi + (1 − βi)Hi

)
ri, i = 2,3, . . . , s (5.41)

The first high gain controller plays the role of a performance controller, while the
remaining low gain controllers is used to enlarge the domain of attraction. It holds
that,

x(k + 1) = A(k)x(k) + B(k)u(k) = A(k)

s∑

i=1

ri(k) + B(k)

s∑

i=1

ui(k)

=
s∑

i=1

ri(k + 1)

where

r1(k + 1) = A(k)r1(k) + B(k)u1(k) = (A(k) + B(k)K1
)
r1(k)
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and

ri(k + 1) = A(k)ri(k) + B(k)ui(k)

= {A(k) + B(k)(βi(k)Ki + (1 − βi(k)
)
Hi)

}
ri(k)

or

ri(k + 1) = Aci(k)ri(k) (5.42)

with Aci(k) = A(k) + B(k)(βi(k)Ki + (1 − βi(k))Hi), i = 2,3, . . . , s.
For a given set of state and control weighting matrices Qi � 0 and Ri � 0, i =

2,3, . . . , s, consider the following set of quadratic functions,

Vi(ri) = rT
i Piri , i = 2,3, . . . , s (5.43)

where matrix Pi ∈ R
n×n, Pi � 0 is chosen to satisfy,

Vi

(
ri(k + 1)

)− Vi

(
ri(k)

)≤ −ri(k)T Qiri(k) − ui(k)T Riui(k) (5.44)

Define Yi = βiKi + (1−βi)Hi . From (5.41), (5.42), (5.43), one can rewrite inequal-
ity (5.44) as,

AT
ciPiAci − Pi � −Qi − YT

i RiYi

By using the Schur complements, the previous condition can be transformed into,

[
Pi − Qi − YT

i RiYi AT
ciPi

PiAci Pi

]
� 0

or
[

Pi AT
ciPi

PiAci Pi

]
−
[
Qi + YT

i RiYi 0
0 0

]
� 0

Denote
√

Qi and
√

Ri as the Cholesky factor of the matrices Qi and Ri , which sat-
isfy

√
Qi

T √
Qi = Qi and

√
Ri

T √
Ri = Ri . The previous condition can be rewritten

as,
[

Pi AT
ciPi

PiAci Pi

]
−
[√

Qi
T

YT
i

√
Ri

T

0 0

][ √
Qi 0√

RiYi 0

]
� 0

or by using the Schur complements, one obtains,

⎡

⎢
⎢
⎣

Pi AT
ciPi

√
Qi

T
YT

i

√
Ri

T

PiAci Pi 0 0√
Qi 0 I 0√

RiYi 0 0 I

⎤

⎥
⎥
⎦� 0 (5.45)
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Clearly, one should verify inequality (5.45) at the vertices of Aci and Yi . Hence the
set of LMI conditions to be checked is the following,
⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

⎡

⎢⎢
⎣

Pi (Aj + BjKi)
T Pi

√
Qi

T
KT

i

√
Ri

T

Pi(Aj + BjKi) Pi 0 0√
Qi 0 I 0√

RiKi 0 0 I

⎤

⎥⎥
⎦� 0

⎡

⎢⎢
⎣

Pi (Aj + BjHi)
T Pi

√
Qi

T
HT

i

√
Ri

T

Pi(Aj + BjHi) Pi 0 0√
Qi 0 I 0√

RiHi 0 0 I

⎤

⎥⎥
⎦� 0

∀j = 1,2, . . . , q

(5.46)
Condition (5.46) is linear with respect to the matrix Pi . One way to calculate Pi

is to solve the following LMI problem,

min
Pi

{
trace(Pi)

}
(5.47)

subject to constraint (5.46).
Once the matrices Pi with i = 2,3, . . . , s are computed, they can be used in prac-

tice for real-time control based on the resolution of a low complexity optimization
problem. At each time instant, for a given current state x, minimize on-line the fol-
lowing quadratic cost function subject to linear constraints,

min
ri ,λi

{
s∑

i=2

rT
i Piri +

s∑

i=2

λ2
i

}

(5.48)

subject to
⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

F (i)
o ri ≤ λig

(i)
o , ∀i = 1,2, . . . , s,

s∑

i=1

ri = x,

s∑

i=1

λi = 1,

λi ≥ 0,∀i = 1,2, . . . , s

Theorem 5.4 The control law (5.36), (5.37), (5.48) guarantees recursive feasibil-
ity and robustly asymptotic stability of the closed loop system for all initial states
x(0) ∈ Ωs .

Proof The proof is omitted here, since it is the same as the one of theorem 4.11. �
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Algorithm 5.3 Interpolating control via quadratic programming
1. Measure the current state x(k).
2. Solve the QP problem (5.48).
3. Implement as input the control action u = λ1K1x̂1 +∑s

i=2 λi sat(Kix̂i).
4. Wait for the next time instant k := k + 1.
5. Go to step 1 and repeat.

Fig. 5.14 Feasible invariant
sets and state trajectories of
the closed loop system for
Example 5.4

Example 5.4 We recall the uncertain, time-varying linear discrete-time system,

x(k + 1) = (α(k)A1 + (1 −α(k)
)
A2
)
x(k)+ (α(k)B1 + (1 −α(k)

)
B2
)
u(k) (5.49)

in Example 5.1 with the same state and control constraints. Two matrix gains in the
interpolation scheme are chosen as,

{
K1 = [−1.8112 −0.8092],
K2 = [−0.0936 −0.1424] (5.50)

Using Theorem 2.3, the matrix H2 is computed as,

H2 = [−0.0786 −0.1010] (5.51)
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The robustly invariant sets Ω1 and Ω
H2
s are respectively, constructed for the con-

trollers u = K1x and u = sat(K2x), see Fig. 5.14(a). Figure 5.14(b) shows state
trajectories, obtained by solving the QP problem (5.48), for different initial condi-
tions and realizations of α(k).

The sets Ω1 and Ω
H2
s are presented in minimal normalized half-space represen-

tation as,

Ω1 =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

x ∈R
2 :

⎡

⎢⎢⎢⎢⎢⎢⎢⎢
⎢⎢
⎣

1.0000 0.0036
−1.0000 −0.0036
0.9916 0.1297

−0.9916 −0.1297
0.8985 −0.4391

−0.8985 0.4391
−0.9130 −0.4079
0.9130 0.4079

⎤

⎥⎥⎥⎥⎥⎥⎥⎥
⎥⎥
⎦

x ≤

⎡

⎢⎢⎢⎢⎢⎢⎢⎢
⎢⎢
⎣

1.3699
1.3699
1.1001
1.1001
2.3202
2.3202
0.5041
0.5041

⎤

⎥⎥⎥⎥⎥⎥⎥⎥
⎥⎥
⎦

⎫
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

ΩH2
s =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

x ∈R
2 :

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢
⎢⎢⎢⎢⎢⎢⎢⎢
⎣

0.9352 0.3541
−0.9352 −0.3541
0.9806 0.1961

−0.9806 −0.1961
−0.5494 −0.8355
0.5494 0.8355
1.0000 0

0 1.0000
−1.0000 0

0 −1.0000
−0.6142 −0.7892
0.6142 0.7892

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥
⎥⎥⎥⎥⎥⎥⎥⎥
⎦

x ≤

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢
⎢⎢⎢⎢⎢⎢⎢⎢
⎣

9.5779
9.5779
9.8058
9.8058
8.2385
8.2385
10.0000
10.0000
10.0000
10.0000
7.8137
7.8137

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥
⎥⎥⎥⎥⎥⎥⎥⎥
⎦

⎫
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

With the weighting matrices Q2 = I , R2 = 10−4, and by solving the LMI problem
(4.84), one obtains,

P2 =
[

17.5066 7.9919
7.9919 16.7524

]

Using Algorithm 5.3, for the initial condition x(0) = [−4.1194 9.9800]T , Fig. 5.15
shows the state and input trajectories as functions of time for our approach (solid)
and for the approach in [74] (dashed). Figure 5.16 presents the interpolating coeffi-
cient λ2(k), the objective function i.e. the Lyapunov function and the realization of
α(k).

5.5 Interpolation via Quadratic Programming for Uncertain
Systems with Disturbances

Note that all the developments in Sects. 5.3 and 5.4 avoided handling of additive
disturbances due to the impossibility of dealing with the robustly asymptotic stabil-
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Fig. 5.15 State and input
trajectories as functions of
time for our approach (solid)
and for [74] (dashed) for
Example 5.4

ity of the origin as an equilibrium point. In this section, an interpolation for system
(5.1) with constraints (5.3) using quadratic programming will be proposed to cope
with the additive disturbance problem.

Clearly, when the disturbance is persistent, it is impossible to guarantee the con-
vergence x(k) → 0 as k → +∞. In other words, it is impossible to achieve asymp-
totic stability of the closed loop system to the origin. The best that can be hoped
for is that the controller steers any initial state to some target set around the origin.
Therefore an input-to-state stability (ISS) framework proposed in [59, 82, 91] will
be used for characterizing this target region.

5.5.1 Input to State Stability

The input to state stability framework provides a natural way to formulate questions
of stability with respect to disturbances [120]. This framework attempts to capture
the notion of bounded disturbance input—bounded state.

Definition 5.1 (K -function) A real valued scalar function φ : R≥0 → R≥0 is of
class K if it is continuous, strictly increasing and φ(0) = 0.

Definition 5.2 (K∞-function) A function φ : R≥0 → R≥0 is of class K∞ if it is a
K-function and φ(s) → +∞ as s → +∞.
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Fig. 5.16 Interpolating coefficient, Lyapunov function and α(k) realization as functions of time
for Example 5.4

Definition 5.3 (K L -function) A function β : R≥0 ×R≥0 →R≥0 is of class K L
if for each fixed k ≥ 0, it follows that β(·, k) is a K function and for each fixed
s ≥ 0, it follows that β(s, ·) is decreasing and β(s, k) → 0 as k → 0.

The ISS framework for autonomous uncertain/time-varying linear discrete-time
systems, as studied by Jiang and Wang in [59], is briefly reviewed next.
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Consider system (5.1) with a feedback controller u(k) = Kx(k) and the corre-
sponding closed loop matrix Ac(k) = A(k) + B(k)K ,

x(k + 1) = Ac(k)x(k) + Dw(k) (5.52)

Definition 5.4 (ISS stability) The dynamical system (5.52) is ISS with respect to
disturbance w(k) if there exist a K L -function β and a K -function φ such that for
all initial states x(0) and for all admissible disturbances w(k), the evolution x(k) of
system (5.52) satisfies,

∥∥x(k)
∥∥≤ β

(∥∥x(0)
∥∥, k

)+ φ
(

sup
0≤i≤k−1

∥∥w(i)
∥∥
)

(5.53)

The function φ(·) is usually called an ISS gain of system (5.52) [59, 91].

Definition 5.5 (ISS Lyapunov function) A function V : Rn → R≥0 is an ISS Lya-
punov function for system (5.52) is there exist K∞-functions γ1, γ2, γ3 and a K -
function θ such that,

{
γ1
(‖x‖)≤ V (x) ≤ γ2

(‖x‖),
V
(
x(k + 1)

)− V
(
x(k)

)≤ −γ3
(∥∥x(k)

∥
∥)+ θ

(∥∥w(k)
∥
∥)

(5.54)

Theorem 5.5 [59, 82, 91] System (5.52) is input-to-state stable if it admits an ISS
Lyapunov function.

Remark 5.2 Note that the ISS notion is related to the existence of states x such that,

γ3
(‖x‖)≥ θ

(‖w‖)

for all w ∈ W . This implies that there exists a scalar d ≥ 0 such that,

γ3(d) = max
w∈W

θ
(‖w‖)

or d = γ −1
3 (maxw(k)∈W θ(‖w(k)‖)). Here γ −1

3 denotes the inverse operator of γ3. It
follows that for any ‖x(k)‖ > d , one has,

V
(
x(k + 1)

)− V
(
x(k)

)≤ −γ3
(∥∥x(k)

∥∥)+ θ
(∥∥w(k)

∥∥)≤ −γ3(d) + θ
(∥∥w(k)

∥∥)< 0

Thus the trajectory x(k) of system (5.52) will eventually enter the region Rx =
{x ∈ R

n : ‖x(k)‖ ≤ d}. Once inside, the trajectory will never leave this region, due
to the monotonicity condition imposed on V (x(k)) outside the region Rx .

5.5.2 Cost Function Determination

The main contribution presented in the following starts from the assumption that a
set of unconstrained robustly asymptotically stabilizing feedback controllers u(k) =
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Kix(k), i = 1,2, . . . , s, is available such that for each i the matrix Aci(k) is asymp-
totically stable, where Aci(k) = A(k) + B(k)Ki .

Using Procedure 2.2, the maximal robustly invariant set Ωi ⊆ X is found as,

Ωi = {x ∈R
n : F (i)

o x ≤ g(i)
o

}
(5.55)

for the corresponding controller u(k) = Kix(k), i = 1,2, . . . , s. With a slight abuse
of notation, denote Ω as the convex hull of Ωi , i = 1,2, . . . , s. It follows that
Ω ⊆ X, since X is convex and Ωi ⊆ X, i = 1,2, . . . , s.

Any state x(k) ∈ Ω can be decomposed as,

x(k) = λ1(k)̂x1(k) +
s∑

i=2

λi(k)̂xi(k) (5.56)

with x̂i (k) ∈ Ωi and
∑s

i=1 λi(k) = 1, λi(k) ≥ 0.
One of the first remark is that according to the cardinal number s and the dispo-

sition of the sets Ωi , the decomposition (5.56) is not unique.
Define ri(k) = λi(k)̂xi(k), ∀i = 1,2, . . . , s. Equation (5.56) can be rewritten as,

x(k) = r1(k) +
s∑

i=2

ri(k)

or, equivalently

r1(k) = x(k) −
s∑

i=2

ri(k) (5.57)

Since x̂i ∈ Ωi , it follows that ri ∈ λiΩi , or in other words,

F (i)
o ri ≤ λig

(i)
o , i = 1,2, . . . , s (5.58)

Consider the following control law,

u(k) = λ1(k)K1x̂1(k) +
s∑

i=2

λi(k)Kix̂i(k) = K1r1(k) +
s∑

i=2

Kiri(k) (5.59)

where Kix̂i(k) is the control law in Ωi .
Substituting (5.57) into (5.59), one gets,

u(k) = K1x(k) +
s∑

i=2

(Ki − K1)ri(k) (5.60)
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Using (5.60), one has,

x(k + 1) = A(k)x(k) + B(k)u(k) + Dw(k)

= A(k)x(k) + B(k)K1x(k) + B(k)

s∑

i=2

(Ki − K1)ri(k) + Dw(k)

or, equivalently

x(k + 1) = Ac1(k)x(k) + B(k)

s∑

i=2

(Ki − K1)ri(k) + Dw(k) (5.61)

where Ac1(k) = A(k) + B(k)K1.
Define ri(k + 1) as follows, i = 2,3, . . . , s,

ri(k + 1) = Aci(k)ri(k) + Dwi(k) (5.62)

with Aci(k) = A(k) + B(k)Ki and wi(k) = λi(k)w(k).
Define the vectors z and ω as,

z = [xT rT
2 . . . rT

s

]T
, ω = [wT wT

2 . . . wT
s

]T
(5.63)

Writing (5.61), (5.62) in a compact matrix form, one obtains,

z(k + 1) = Φ(k)z(k) + Γ ω(k) (5.64)

where

Φ(k) =

⎡

⎢⎢⎢
⎣

Ac1(k) B(k)(K2 − K1) . . . B(k)(Ks − K1)

0 Ac2(k) . . . 0
...

...
. . .

...

0 0 . . . Acs(k)

⎤

⎥⎥⎥
⎦

, Γ =

⎡

⎢⎢⎢
⎣

D 0 . . . 0
0 D . . . 0
...

...
. . .

...

0 0 . . . D

⎤

⎥⎥⎥
⎦

Using (5.2), it follows that Φ(k) can be expressed as a convex combination of Φj ,
i.e.

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

Φ(k) =
q∑

j=1

αj (k)Φj ,

q∑

j=1

αj (k) = 1, αj (k) ≥ 0

(5.65)

where

Φj =

⎡

⎢⎢⎢
⎣

(Aj + BjK1) Bj (K2 − K1) . . . Bj (Ks − K1)

0 (Aj + BjK2) . . . 0
...

...
. . .

...

0 0 . . . (Aj + BjKs)

⎤

⎥⎥⎥
⎦
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Consider the following quadratic function,

V (z) = zT P z (5.66)

where matrix P � 0 is chosen to satisfy,

V
(
z(k + 1)

)− V
(
z(k)

)≤ −x(k)T Qx(k) − u(k)T Ru(k) + θω(k)T ω(k) (5.67)

where Q ∈ R
n×n, R ∈ R

m×m, Q � 0 and R � 0 are the state and input weighting
matrices, θ ≥ 0.

Using (5.64), the left hand side of (5.67) can be written as,

V
(
z(k + 1)

)− V
(
z(k)

)

= (Φz + Γ ω)T P (Φz + Γ ω) − zT P z

= [zT ωT
][ΦT

Γ T

]
P
[
Φ Γ

][ z

ω

]
− [zT ωT

][P 0
0 0

][
z

ω

]
(5.68)

And using (5.60), (5.63) the right hand side of (5.67) becomes,

− x(k)T Qx(k) − u(k)T Ru(k) + θω(k)T ω(k)

= z(k)T (−Q1 − R1)z(k) + θω(k)T ω(k)

= [zT ωT
][−Q1 − R1 0

0 θI

][
z

ω

]
(5.69)

where

Q1 =

⎡

⎢⎢⎢
⎣

I

0
...

0

⎤

⎥⎥⎥
⎦

Q
[
I 0 . . . 0

]
,

R1 =

⎡

⎢⎢⎢
⎣

KT
1

(K2 − K1)
T

...

(Ks − K1)
T

⎤

⎥⎥⎥
⎦

R
[
K1 (K2 − K1) . . . (Ks − K1)

]

From (5.67), (5.68), (5.69), one gets,
[
ΦT

Γ T

]
P
[
Φ Γ

]−
[
P 0
0 0

]
�
[−Q1 − R1 0

0 θI

]

or equivalently,
[
P − Q1 − R1 0

0 θI

]
−
[
ΦT

Γ T

]
P
[
Φ Γ

]� 0 (5.70)



5.5 Interpolating Control via Quadratic Programming for Systems 147

Using the Schur complements, equation (5.70) can be brought to,
⎡

⎣
P − Q1 − R1 0 ΦT P

0 θI Γ T P

PΦ PΓ P

⎤

⎦� 0 (5.71)

It is clear from (5.70) that problem (5.71) is feasible if the matrix Φ(k) is asymptot-
ically stable, or in other words, all matrices Aci(k) are asymptotically stable.

The left hand side of (5.71) is linear with respect to αj (k). Hence one should
verify (5.71) at the vertices of αj (k), i.e. when αj (k) = 0 or αj (k) = 1. Therefore
the set of LMI conditions to be checked is as follows,

⎡

⎣
P − Q1 − R1 0 ΦT

j P

0 θI Γ T P

PΦj PΓ P

⎤

⎦� 0, ∀j = 1,2, . . . , q (5.72)

Structurally, problem (5.72) is linear with respect to the matrix P and to the
scalar θ . It is well known [82] that having a smaller θ is a desirable property in
the sense of the ISS gain. The smallest value of θ can be computed by solving the
following LMI optimization problem,

min
P,θ

{θ} (5.73)

subject to (5.72).

5.5.3 Interpolating Control via Quadratic Programming

Once the matrix P is computed as the solution of the problem (5.73), it can be
used in practice for real time control based on the resolution of a low complexity
optimization problem with respect to structure and complexity. The resulting control
law can be seen as a predictive control type of construction, if the function (5.66) is
interpreted as an upper bound for a receding horizon cost function.

Define the vector z1 and the matrix P1 as follows,

z1 = [xT rT
2 . . . rT

s λ2 λ3 . . . λs

]T
,

P1 =
[
P 0
0 I

]

Consider the following quadratic function

J (z1) = zT
1 P1z1 (5.74)

At each time instant, for a given current state x, minimize on-line the following
quadratic cost function,
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V1(z1) = min
z1

{
J (z1)

}
(5.75)

subject to linear constraints
⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

F (i)
o ri ≤ λig

(i)
o , ∀i = 1,2, . . . , s,

s∑

i=1

ri = x,

λi ≥ 0, ∀i = 1,2, . . . , s,

s∑

i=1

λi = 1

and implement as input the control action u = K1x +∑s
i=2(Ki − K1)ri .

Theorem 5.6 The control law (5.56), (5.60), (5.75) guarantees recursive feasibility
and the closed loop system is ISS for all initial states x(0) ∈ Ω .

Proof Theorem 5.6 stands on two important claims, namely recursive feasibility
and input-to-state stability. These can be treated sequentially.

Recursive feasibility: It has to be proved that Fuu(k) ≤ gu and x(k + 1) ∈ Ω for
all x(k) ∈ Ω . Using (5.56), (5.59), one gets,

x(k) =
s∑

i=1

λi(k)̂xi(k),

u(k) =
s∑

i=1

λi(k)Kix̂i(k)

It just holds that

Fuu(k) = Fu

s∑

i=1

λi(k)Kix̂i(k) =
s∑

i=1

λi(k)FuKix̂i(k)

≤
s∑

i=1

λi(k)gu = gu

and
x(k + 1) = A(k)x(k) + B(k)u(k) + Dw(k)

=
s∑

i=1

λi(k)
{(

A(k) + B(k)Ki

)
x̂i (k) + Dw(k)

}

Since (A(k) + B(k)Ki )̂xi(k) + Dw(k) ∈ Ωi ⊆ Ω , it follows that x(k + 1) ∈ Ω .
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ISS stability: From the feasibility proof, it is clear that if r∗
i (k) and λ∗

i (k), i =
1,2, . . . , s is the solution of (5.75) at time k, then

ri(k + 1) = Aci(k)r∗
i (k) + Dwi(k)

and λi(k + 1) = λ∗
i (k) is a feasible solution of (5.75) at time k + 1. Using (5.67),

one obtains,

J
(
z1(k + 1)

)− V1
(
z1(k)

)≤ −x(k)T Qx(k) − u(k)T Ru(k) + θω(k)T ω(k) (5.76)

By solving the QP problem (5.75) at time k + 1, one gets,

V1
(
z1(k + 1)

)≤ J
(
z1(k + 1)

)

It follows that,

V1
(
z1(k + 1)

)− V1
(
z1(k)

)≤ J
(
z1(k + 1)

)− V1
(
z1(k)

)

≤ −x(k)T Qx(k) − u(k)T Ru(k) + θω(k)T ω(k)

(5.77)
where the last step of (5.77) follows from (5.76). Therefore V1(z1) is an ISS Lya-
punov function of the system (5.64). It follows that the closed loop system with the
interpolating controller is ISS. �

Remark 5.3 Matrix P can be chosen as follows,

P =
[
P11 0
0 Pss

]
(5.78)

where P11 ∈ R
n×n, Pss ∈ R

(s−1)n×(s−1)n. In this case, the cost function (5.75) can
be written by,

J (z1) = xT P11x + rT
e Pssre +

s∑

i=2

λ2
i

where re = [rT
2 rT

3 . . . rT
s ]T . Hence for any x ∈ Ω1, the QP problem (5.75) has the

trivial solution as,
{

ri = 0,

λi = 0
∀i = 2,3, . . . , s

and thus r1 = x and λ1 = 0. Therefore, the interpolating controller becomes the opti-
mal unconstrained controller u = K1x. It follows that the minimal robust positively
invariant set R∞ of the system,

x(k + 1) = (A(k) + B(k)K1
)
x(k) + Dw(k)

is an attractor of the closed loop system with the interpolating controller. In the other
words, all trajectories will converge to the set R∞.
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Algorithm 5.4 Interpolating control via quadratic programming
1. Measure the current state x(k).
2. Solve the QP problem (5.75).
3. Implement as input the control action u = K1x +∑r

i=2(Ki − K1)ri .
4. Wait for the next time instant k := k + 1.
5. Go to step 1 and repeat.

Example 5.5 Consider the following uncertain linear discrete-time system

x(k + 1) = A(k)x(k) + B(k)u(k) + w(k) (5.79)

where
{

A(k) = α(k)A1 + (1 − α(k)
)
A2,

B(k) = α(k)B1 + (1 − α(k)
)
B2

and

A1 =
[

1 0.1
0 1

]
, B1 =

[
0
1

]
, A2 =

[
1 0.2
0 1

]
, B2 =

[
0
2

]

At each sampling time α(k) ∈ [0,1] is an uniformly distributed pseudorandom num-
ber. The constraints are,

− 10 ≤ x1 ≤ 10, −10 ≤ x2 ≤ 10, −1 ≤ u ≤ 1,

− 0.1 ≤ w1 ≤ 0.1, −0.1 ≤ w2 ≤ 0.1

Three feedback controllers are chosen as,
⎧
⎪⎪⎨

⎪⎪⎩

K1 = [−1.8112 −0.8092],
K2 = [−0.0878 −0.1176],
K3 = [−0.0979 −0.0499]

(5.80)

With the weighting matrices Q = I , R = 1, and by solving the LMI problem (5.73)
with P in the form (5.78), one obtains θ = 41150 and With the weighting matrices
Q = I , R = 1, and by solving the LMI problem (5.73) with P in the form (5.78),
one obtains θ = 41150 and

P11 =
[

76.2384 11.4260
11.4260 3.6285

]
, P33 =

⎡

⎢⎢
⎣

2468.4 1622.9 −144.2 105.2
1622.9 4164.3 −81.6 −160.6
−144.2 −81.6 865.7 278.4
105.2 −160.6 278.4 967.8

⎤

⎥⎥
⎦

Figure 5.17(a) shows the maximal robustly invariant sets Ω1, Ω2 and Ω3, asso-
ciated with the feedback gains K1, K2 and K3, respectively. Figure 5.17(b) presents
state trajectories for different initial conditions and realizations of α(k) and w(k).
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Fig. 5.17 Feasible invariant
sets and state trajectories of
the closed loop system for
Example 5.5

For the initial condition x0 = [9.6145 1.1772]T that is feasible for the controller
u(k) = K3x(k), Fig. 5.18 shows the state and input trajectories for the interpolating
controller (solid) and for the controller u(k) = K3x(k) (dashed). From Fig. 5.18, it is
clear that the performance of the closed loop system with the interpolating controller
is better than the performance of the closed loop system with the controller u(k) =
K3x(k).

Figure 5.19(a) presents the ISS Lyapunov function as a function of time. The
non-decreasing phenomena of the ISS Lyapunov function, when the state is near to
the origin is shown in Fig. 5.19(b).

Figure 5.20(a) shows the realization of α(k) and w(k) = [w1(k) w2(k)]T as
functions of time. The interpolating coefficients λ∗

2(k) and λ∗
3(k) are depicted in

Fig. 5.20(b).

5.6 Convex Hull of Invariant Ellipsoids for Uncertain,
Time-Varying Systems

In this section, ellipsoids will be used as a class of sets for interpolation. It will be
shown that the convex hull of a set of invariant ellipsoids is invariant. The ultimate
goal is to design a method for constructing a continuous constrained feedback law
based on interpolation for a given set of saturated control laws. In the absence of



152 5 Interpolating Control—Robust State Feedback Case

Fig. 5.18 State and input
trajectories of the closed loop
system as functions of time
for the interpolating
controller (solid), and for the
controller u(k) = K3x(k)

(dashed) for Example 5.5

disturbances, the system considered is of the form,

x(k + 1) = A(k)x(k) + B(k)u(k) (5.81)

It is assumed that a set of asymptotically stabilizing saturated controllers u =
sat(Kix), i = 1,2, . . . , s is available such that the corresponding robustly invariant
ellipsoids E(Pi) ⊂ X,

E(Pi) = {x ∈ R
n : xT P −1

i x ≤ 1
}

(5.82)

are non-empty, i = 1,2, . . . , s. Recall that for all x(k) ∈ E(Pi), it follows that
sat(Kix) ∈ U and

x(k + 1) = A(k)x(k) + B(k) sat
(
Kix(k)

) ∈ E(Pi)

Denote ΩE as the convex hull of E(Pi). It follows that ΩE ⊆ X, since X is convex
and E(Pi) ⊆ X, i = 1,2, . . . , s.

Any state x(k) ∈ ΩE can be decomposed as follows,

x(k) =
s∑

i=1

λi(k)̂xi(k) (5.83)
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Fig. 5.19 ISS Lyapunov
function and its
non-increasing phenomena as
functions of time for
Example 5.5

with x̂i (k) ∈ E(Pi) and λi(k) are the interpolating coefficients, that satisfy,

s∑

i=1

λi = 1, λi ≥ 0

Consider the following control law,

u(k) =
s∑

i=1

λi(k) sat
(
Kix̂i(k)

)
(5.84)

where ui(k) = sat(Kix̂i(k)) is the saturated control law in E(Pi).

Theorem 5.7 The control law (5.83), (5.84) guarantees recursive feasibility for all
x(0) ∈ ΩE .

Proof The proof of this theorem is the same as the proof of Theorem 4.13 and is
omitted here. �

As in the previous Sections, the first feedback gain in the sequence is used for
satisfying performance specifications near the origin, while the remaining gains are
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Fig. 5.20 Realization of
α(k), w(k) and interpolating
coefficients λ∗

2(k) and λ∗
3(k)

for Example 5.5

used to enlarge the domain of attraction. For a given current state x, consider the
following optimization problem,

λ∗
i = min

x̂i ,λi

{
s∑

i=2

λi

}

(5.85)

subject to,
⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

x̂T
i P −1

i x̂i ≤ 1, ∀i = 1,2, . . . , s,

s∑

i=1

λix̂i = x,

s∑

i=1

λi = 1,

λi ≥ 0, ∀i = 1,2, . . . , s

Theorem 5.8 The control law (5.83), (5.84), (5.85) guarantees robustly asymptotic
stability for all initial states x(0) ∈ ΩE .
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Proof Consider the following positive function,

V (x) =
s∑

i=2

λ∗
i (x) (5.86)

for all x ∈ ΩE \ E(P1). V (x) is a Lyapunov function candidate.
At time k by solving the optimization problem (5.85) and by applying (5.83),

(5.84), one has, for any x(k) ∈ ΩE \ E(P1),
⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

x(k) =
s∑

i=1

λ∗
i (k)̂x∗

i (k),

u(k) =
s∑

i=1

λ∗
i (k) sat

(
Kix̂

∗
i (k)

)

It follows that,

x(k + 1) = A(k)x(k) + B(k)u(k)

= A(k)

s∑

i=1

λ∗
i (k)̂x∗

i (k) + B(k)

s∑

i=1

λ∗
i (k) sat

(
Kix̂

∗
i (k)

)

=
s∑

i=1

λ∗
i (k)̂xi(k + 1)

where

x̂i (k + 1) = A(k)̂x∗
i (k) + B(k) sat

(
Kix̂

∗
i (k)

) ∈ E(Pi), i = 1,2, . . . , s

Hence λ∗
i (k), i = 1,2, . . . , s is a feasible solution of (5.85) at time k + 1.

By solving the optimization problem (5.85) at time k + 1, the optimal solution is
obtained,

x(k + 1) =
s∑

i=1

λ∗
i (k + 1)̂x∗

i (k + 1)

where x̂∗
i (k + 1) ∈ E(Pi). It follows that,

s∑

i=2

λ∗
i (k + 1) ≤

s∑

i=2

λ∗
i (k)

and V (x) is a non-increasing function.
The contractive invariant property of ellipsoids E(Pi), i = 1,2, . . . , s assures

that there is no initial condition x(0) ∈ ΩE \ E(P1) such that
∑s

i=2 λ∗
i (k + 1) =∑s

i=2 λ∗
i (k) for all k ≥ 0. It follows that V (x) =∑s

i=2 λ∗
i (x) is a Lyapunov function

for all x ∈ ΩE \ E(P1).
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Algorithm 5.5 Interpolating control—Convex hull of ellipsoids
1. Measure the current state x(k).
2. Solve the LMI problem (5.87).
3. Apply as input the control law (5.84).
4. Wait for the next instant k := k + 1.
5. Go to step 1 and repeat.

The proof is complete by noting that inside E(P1), λ∗
1 = 1, the robustly stabi-

lizing controller u = sat(K1x) is contractive and thus the interpolating controller
assures robustly asymptotic stability for all x ∈ ΩE . �

Define ri = λix̂i . Since x̂i ∈ E(Pi), it follows that rT
i P −1

i ri ≤ λ2
i or by using the

Schur complements,
[
λi rT

i

ri λiPi

]
� 0

Hence, the non-linear optimization problem (5.85) can be brought to the following
LMI optimization problem,

λ∗
i = min

ri ,λi

{
s∑

i=2

λi

}

(5.87)

subject to
⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

[
λi rT

i

ri λiPi

]
� 0, ∀i = 1,2, . . . , s,

s∑

i=1

ri = x,

s∑

i=1

λi = 1,

λi ≥ 0, ∀i = 1,2, . . . , s

For x ∈ E(P1), it is clear that the optimization problem (5.85) has the trivial
solution

λ∗
i = 0, i = 2,3, . . . , s.

And hence λ∗
1 = 1 and x̂1 = x. It follows that the interpolating controller becomes

the saturated controller u = sat(K1x) inside E(P1).
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Fig. 5.21 Feasible invariant
sets and state trajectories of
the closed loop system for
Example 5.6

Fig. 5.22 State and input
trajectories of the closed loop
system as functions of time
for Example 5.6
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Fig. 5.23 Interpolating
coefficient λ∗

2(k) and α(k)

realization as functions of
time for Example 5.6

Example 5.6 Consider the uncertain system in Example 5.1 with the same state and
control constraints. Two matrix gains are chosen as,

{
K1 = [−0.6451 −0.7740],
K2 = [−0.2416 −0.7824] (5.88)

Using Theorem 2.3, two invariant ellipsoids E(P1) and E(P2) are respectively,
constructed for the saturated controllers u = sat(K1x) and u = sat(K2x), see
Fig. 5.21(a). Figure 5.21(b) shows state trajectories for different initial conditions
and realizations of α(k). The matrices P1 and P2 are,

P1 =
[

100.0000 −64.4190
−64.4190 100.00000

]
, P2 =

[
100.0000 −32.2659
−32.2659 100.0000

]

Using Algorithm 5.5, for the initial condition x(0) = [−2.96 −8.08]T , Fig. 5.22
shows the state and the input trajectories. Figure 5.23 presents the interpolating
coefficient λ∗

2(k) and the realization of α(k). As expected, λ∗
2(k) is positive and

non-increasing.



Chapter 6
Interpolating Control—Output Feedback Case

6.1 Problem Formulation

Consider the problem of regulating to the origin the following uncertain and/or time-
varying linear discrete-time system, described by the input-output relationship,

y(k + 1) + E1y(k) + E2y(k − 1) + · · · + Esy(k − s + 1)

= N1u(k) + N2u(k − 1) + · · · + Nru(k − r + 1) + w(k) (6.1)

where y(k) ∈ R
p , u(k) ∈ R

m and w(k) ∈ R
p are respectively, the output, the

input and the disturbance vector. The matrices Ei ∈ R
p×p , i = 1,2, . . . , s and

Nj ∈R
p×m, j = 1,2, . . . , r .

For simplicity, it is assumed that s = r . The matrices Ei and Ni , i = 1,2, . . . , s

satisfy,
[

E1 E2 . . . Es

N1 N2 . . . Ns

]
=

q∑

j=1

αj (k)

[
E

(j)

1 E
(j)

2 . . . E
(j)
s

N
(j)

1 N
(j)

2 . . . N
(j)
s

]

(6.2)

where αj (k) ≥ 0 and
∑q

j=1 αj (k) = 1 and
[

E
(j)

1 E
(j)

2 . . . E
(j)
s

N
(j)

1 N
(j)

2 . . . N
(j)
s

]

, j = 1,2, . . . , q

are the extreme realizations of the polytopic model (6.2).
The output, control and disturbance vectors are subject to the following bounded

polytopic constraints,
⎧
⎪⎨

⎪⎩

y(k) ∈ Y, Y = {y ∈R
p : Fyy ≤ gy

}
,

u(k) ∈ U, U = {u ∈ R
m : Fuu ≤ gu

}
,

w(k) ∈ W, W = {w ∈R
p : Fww ≤ gw

}
,

(6.3)

where the matrices Fy , Fu, Fw and the vectors gy , gu, gw are assumed to be constant
with gy > 0, gu > 0 and gw > 0.
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6.2 Output Feedback—Nominal Case

In this section, we consider the case when the matrices Ei and Ni for i = 1,2, . . . , s

are known and fixed. The case when Ei and Ni for i = 1,2, . . . , s are uncertain
and/or time-varying will be treated in the next section.

A state space representation will be constructed along the lines of [126]. All the
steps of the construction are detailed such that the presentation are self contained.
The state of the system is chosen as follows,

x(k) = [x1(k)T x2(k)T . . . xs(k)T
]T

(6.4)

where
⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

x1(k) = y(k)

x2(k) = −Esx1(k − 1) + Nsu(k − 1)

x3(k) = −Es−1x1(k − 1) + x2(k − 1) + Ns−1u(k − 1)

x4(k) = −Es−2x1(k − 1) + x3(k − 1) + Ns−2u(k − 1)
...

xs(k) = −E2x1(k − 1) + xs−1(k − 1) + N2u(k − 1)

(6.5)

The components of the state vector can be interpreted exclusively in terms of the
input and output vectors as,

x2(k) = −Esy(k − 1) + Nsu(k − 1)

x3(k) = −Es−1y(k − 1) − Esy(k − 2) + Ns−1u(k − 1) + Nsu(k − 2)

...

xs(k) = −E2y(k − 1) − E3y(k − 2) − · · · − Esy(k − s + 1)

+N2u(k − 1) + N3u(k − 2) + · · · + Nsu(k − s + 1)

It holds that,

y(k + 1) = −E1y(k) − E2y(k − 1) − · · · − Esy(k − s + 1)

+N1u(k) + N2u(k − 1) + · · · + Nsu(k − s + 1) + w(k)

or, equivalently

x1(k + 1) = −E1x1(k) + xs(k) + N1u(k) + w(k)

The state space model is then defined in a compact form as follows,
{

x(k + 1) = Ax(k) + Bu(k) + Dw(k)

y(k) = Cx(k)
(6.6)
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where

A =

⎡

⎢⎢⎢⎢⎢⎢⎢
⎣

−E1 0 0 . . . 0 I

−Es 0 0 . . . 0 0
−Es−1 I 0 . . . 0 0
−Es−2 0 I . . . 0 0

...
...

...
. . .

...
...

−E2 0 0 . . . I 0

⎤

⎥⎥⎥⎥⎥⎥⎥
⎦

, B =

⎡

⎢⎢⎢⎢⎢⎢⎢
⎣

N1
Ns

Ns−1
Ns−2

...

N2

⎤

⎥⎥⎥⎥⎥⎥⎥
⎦

, D =

⎡

⎢⎢⎢⎢⎢⎢⎢
⎣

I

0
0
0
...

0

⎤

⎥⎥⎥⎥⎥⎥⎥
⎦

and

C = [I 0 0 0 . . . 0
]

Clearly, the realization (6.6) is minimal in the single-input single-output case.
However, in the multi-input multi-output case, this realization might not be minimal,
as shown in the following example.

Consider the following single-input multi-output linear discrete-time system,

y(k + 1) −
[

2 0
0 2

]
y(k) +

[
1 0
0 1

]
y(k − 1)

=
[

0.5
2

]
u(k) +

[
0.5
1

]
u(k − 1) + w(k) (6.7)

Using the construction (6.4), (6.5), the state space model is given as,
{

x(k + 1) = Ax(k) + Bu(k) + Dw(k)

y(k) = Cx(k)

where

A =

⎡

⎢⎢
⎣

2 0 1 0
0 2 0 1

−1 0 0 0
0 −1 0 0

⎤

⎥⎥
⎦ , B =

⎡

⎢⎢
⎣

0.5
0.5
0.5

−1.5

⎤

⎥⎥
⎦ ,

D =

⎡

⎢⎢
⎣

1
1
0
0

⎤

⎥⎥
⎦ , C =

[
1 0 0 0
0 1 0 0

]

This realization is not minimal, since it unnecessarily replicates the common poles
of the denominator in the input-output description. There exists minimal state space
realization like,

A =
[

0 −1
1 2

]
, B =

[
0.5
0.5

]
, D =

[
0
1

]
, C =

[
0 1
1 0

]

Define

z(k) = [y(k)T . . . y(k − s + 1)T u(k − 1)T . . . u(k − s + 1)T
]T (6.8)

Using (6.5), the state x(k) is expressed through z(k) as,

x(k) = T z(k) (6.9)
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where T = [T1 T2] and

T1 =

⎡

⎢⎢
⎢⎢⎢
⎣

I 0 0 . . . 0
0 −Es 0 . . . 0
0 −Es−1 −Es . . . 0
...

...
...

. . .
...

0 −E2 −E3 . . . −Es

⎤

⎥⎥
⎥⎥⎥
⎦

, T2 =

⎡

⎢⎢
⎢⎢⎢
⎣

0 0 0 . . . 0
Ns 0 0 . . . 0

Ns−1 Ns 0 . . . 0
...

...
...

. . .
...

N2 N3 N4 . . . Ns

⎤

⎥⎥
⎥⎥⎥
⎦

Hence, it becomes obvious that at any time instant k, the state vector is available
exclusively though measured input and output variables and their past values.

Using (6.3), (6.5), it follows that the state constraints are xi ∈ Xi , where Xi are
given as,

⎧
⎨

⎩

X1 = Y,

X2 = Es(−X1) ⊕ NsU,

Xi = Es+2−i (−X1) ⊕ Xi−1 ⊕ Ns+2−iU, ∀i = 3, . . . , s

(6.10)

Example 6.1 Consider the following discrete-time system,

y(k + 1) − 2y(k) + y(k − 1) = 0.5u(k) + 0.5u(k − 1) + w(k) (6.11)

The constraints are,

−5 ≤ y(k) ≤ 5, −5 ≤ u(k) ≤ 5, −0.1 ≤ w(k) ≤ 0.1

Using the construction (6.4), (6.5), the state space model is given as,
{

x(k + 1) = Ax(k) + Bu(k) + Dw(k)

y(k) = Cx(k)

where

A =
[

2 1
−1 0

]
, B =

[
0.5
0.5

]
, E =

[
1
0

]
, C = [1 0

]

x(k) is available though the measured input, output and their past values as,

x(k) =
[

1 0 0
0 −1 0.5

]⎡

⎣
y(k)

y(k − 1)

u(k − 1)

⎤

⎦

Using (6.10), the constraints on the state are,

−5 ≤ x1 ≤ 5, −7.5 ≤ x2 ≤ 7.5

The local controller is chosen as an LQ controller with the following weighting
matrices,

Q = CT C =
[

1 0
0 0

]
, R = 0.1

giving the state feedback gain,

K = [−2.3548 −1.3895
]
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Fig. 6.1 Feasible invariant
sets and state trajectories for
Example 6.1

This example will use Algorithm 5.1 in Sect. 5.2, where vertex control is a global
controller. Using Procedure 2.2 and Procedure 2.3, the sets Ωmax and CN with
N = 3 are found and shown in Fig. 6.1(a). Note that C3 = C4 is the maximal in-
variant set for system (6.11). Figure 6.1(b) presents state trajectories for different
initial conditions and realizations of w(k).

The set of vertices of CN is given by the matrix V (CN) below, together with the
control matrix Uv ,

V (CN) =
[−5 −0.1 5 0.1 −0.1 −5 0.1 5

7.5 7.5 −2.6 7.2 −7.2 2.6 −7.5 −7.5

]
,

Uv = [−5 −5 −5 −4.9 5 5 5 4.9
]

Ωmax is presented in minimal normalized half-space representation as,

Ωmax =

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

x ∈R
2 :

⎡

⎢
⎢⎢⎢⎢⎢
⎣

1.0000 0
0 1.0000

−1.0000 0
0 −1.0000

−0.8612 −0.5082
0.8612 0.5082

⎤

⎥
⎥⎥⎥⎥⎥
⎦

x ≤

⎡

⎢
⎢⎢⎢⎢⎢
⎣

5.0000
7.5000
5.0000
7.5000
1.8287
1.8287

⎤

⎥
⎥⎥⎥⎥⎥
⎦

⎫
⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎭

For the initial condition x(0) = [−0.1000 7.5000]T , Fig. 6.2 shows the output
and input trajectories as functions of time.
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Fig. 6.2 Output and input
trajectories of the closed loop
system for Example 6.1

The interpolating coefficient and the realization of w(k) as functions of time are
depicted in Fig. 6.3. As expected, the interpolating coefficient, i.e. the Lyapunov
function is positive and non-increasing.

As a comparison, we present a solution based on the well-known steady state
Kalman filter. Figure 6.4 shows the output trajectories for the constrained output
feedback approach (solid) and for the Kalman filter + constrained state feedback
approach (dashed).

The Kalman function of Matlab 2011b was used for designing the Kalman filter.
The process noise is a white noise with an uniform distribution and no measurement
noise was considered. The disturbance w is a random number with an uniform dis-
tribution, wl ≤ w ≤ wu where wl = −0.1 and wu = 0.1. The variance of w is given
as,

Cw = (wu − wl + 1)2 − 1

12
= 0.0367

The estimator gain of the Kalman filter is obtained as,

L = [2 −1]T
The Kalman filter is used to estimate the state of and then this estimation is used to
close the loop with the interpolating controller. In contrast to the output feedback
approach, where the state is exact with respect to the measurement, in the Kalman
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Fig. 6.3 Interpolating
coefficient and realization of
w(k) for Example 6.1

Fig. 6.4 Output trajectories
for our approach (solid) and
for the Kalman filter based
approach (dashed) for
Example 6.1

filter approach, an extra level of uncertainty is introduced, since the real state is un-
known. Thus there is no guarantee that the constraints are satisfied in the transitory
stage. This constraint violation effect is shown in Fig. 6.5.

6.3 Output Feedback—Robust Case

A weakness of the approach in Sect. 6.2 is that the state measurement is available
if and only if the parameters of the system are known. For uncertain and/or time-
varying system, that is not the case. In this section, we provide another method
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Fig. 6.5 Constraint violation
for the Kalman filter based
approach for Example 6.1

for constructing the state variables, that do not use the information of the system
parameters. The price to be paid is that the realization is in general non-minimal
even in the single-input single-output case.

Based on the measured plant input, output and their past measured values, the
state of the system (6.1) is chosen as,

x(k) = [
y(k)T . . . y(k − s + 1)T u(k − 1)T . . . u(k − s + 1)T

]T (6.12)

The state space model is then defined as follows,
{

x(k + 1) = A(k)x(k) + B(k)u(k) + Dw(k)

y(k) = Cx(k)
(6.13)

where

A(k) =

⎡

⎢⎢⎢⎢⎢⎢⎢⎢
⎢⎢⎢⎢⎢⎢
⎣

−E1(k) −E2(k) . . . −Es(k) N2(k) . . . Ns−1(k) Ns(k)

I 0 . . . 0 0 . . . 0 0
0 I . . . 0 0 . . . 0 0
...

...
. . .

...
...

. . .
...

...

0 0 . . . I 0 . . . 0 0
0 0 . . . 0 0 . . . 0 0
0 0 . . . O I . . . 0 0
...

...
. . .

...
...

. . .
...

...

0 0 . . . O 0 . . . I 0

⎤

⎥⎥⎥⎥⎥⎥⎥⎥
⎥⎥⎥⎥⎥⎥
⎦

B(k) = [N1(k)T 0 0 . . . 0 I 0 . . . 0
]T

D = [I 0 0 . . . 0 0 0 . . . 0
]T

C = [I 0 0 . . . 0 0 0 . . . 0
]

Using (6.2), it follows that matrices A(k) and B(k) belong to a polytopic set,

(A,B) ∈ Conv
{
(A1,B1), (A2,B2), . . . , (Aq,Bq)

}
(6.14)

where the vertices (Ai,Bi), i = 1,2, . . . , q are obtained from the vertices of (6.2).
Although the obtained representation is non-minimal, it has the merit that the

original output-feedback problem for the uncertain and/or time-varying plant has
been transformed into a state-feedback problem where the matrices A and B lie in



6.3 Output Feedback—Robust Case 167

the polytope defined by (6.14) without any additional uncertainty. Clearly, any state-
feedback control which is designed for the representation (6.13) in the form u = Kx

can be translated into a dynamic output-feedback controller.
Using (6.3), it follows that x(k) ∈ X ⊂ R

s×(p+m), where the set X is given by,

X = Y × Y × · · · × Y︸ ︷︷ ︸
s times

×U × U × · · · × U︸ ︷︷ ︸
s times

Example 6.2 Consider the following transfer function,

P(s) = k1s + 1

s(s + k2)
(6.15)

where k1 = 0.787, 0.1 ≤ k2 ≤ 3. Using a sampling time of 0.1 and Euler’s first order
approximation for the derivative, the following input-output relationship is obtained,

y(k + 1) − (2 − 0.1k2)y(k) + (1 − 0.1k2)y(k − 1)

= 0.1k1u(k) + (0.01 − 0.1k2)u(k − 1) + w(k) (6.16)

The signal w(k) is added to represent the process noise with −0.01 ≤ w ≤ 0.01.
The constraints on output and input are,

−10 ≤ y ≤ 10, −5 ≤ u ≤ 5

The state x(k) is constructed as follows,

x(k) = [y(k) y(k − 1) u(k − 1)
]T

Hence, the state space model is given by,
{

x(k + 1) = A(k)x(k) + Bu(k) + Dw(k)

y(k) = Cx(k)

where

A(k) =
⎡

⎣
(2 − 0.1k2) −(1 − 0.1k2) (0.01 − 0.1k1)

1 0 0
0 0 0

⎤

⎦ ,

B =
⎡

⎣
0.1k1

0
1

⎤

⎦ , D =
⎡

⎣
1
0
0

⎤

⎦ and C = [1 0 0
]

Using the polytopic uncertainty description, one obtains,

A(k) = α(k)A1 + (1 − α(k)
)
A2

where

A1 =
⎡

⎣
1.99 −0.99 −0.0687

1 0 0
0 0 0

⎤

⎦ , A2 =
⎡

⎣
1.7 −0.7 −0.0687
1 0 0
0 0 0

⎤

⎦

At each time instant 0 ≤ α(k) ≤ 1 and −0.01 ≤ w(k) ≤ 0.01 are uniformly dis-
tributed pseudo-random numbers. This example will use Algorithm 5.1 with a global
saturated controller. For this purpose, two controllers have been designed
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Fig. 6.6 Feasible invariant
sets for Example 6.2

Fig. 6.7 Output and input
trajectories of the closed loop
system for Example 6.2
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Fig. 6.8 Interpolating
coefficient and realizations of
α(k) and w(k) for
Example 6.2

• The local linear controller u(k) = Kx(k) for the performance is chosen as,

K = [−22.7252 10.7369 0.8729]
• The global saturated controller u(k) = sat(Ksx(k)) for the domain of attraction,

Ks = [−4.8069 4.5625 0.3365]
It is worth noticing that u(k) = Kx(k) and u(k) = sat(Ksx(k)) can be described in
the output-feedback form as,

K(z) = −22.7894 + 10.7369z−1

1 − 0.8729z−1
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and respectively

Ks(z) = sat

(−4.8069 + 4.5625z−1

1 − 0.3365z−1

)

Overall the control scheme is described by a second order plant and two first order
controllers, which provide a reduced order solution for the stabilization problem.

Using Procedure 2.2 and Procedure 2.4 and corresponding to the control laws
u(k) = Kx(k) and u(k) = sat(Ksx(k)), the maximal robustly invariant sets Ωmax
(white) and Ωs (black) are computed and depicted in Fig. 6.6(a). Figure 6.6(b)
presents the projection of the sets Ωmax and Ωs onto the (x1, x2) state space.

For the initial condition x(0) = [6.6970 7.7760 5.0000]T , Fig. 6.7 presents the
output and input trajectories as functions of time.

Finally, Fig. 6.8 shows the interpolating coefficient, the realizations of α(k) and
w(k) as functions of time.



Part III
Applications



Chapter 7
High-Order Examples

7.1 Implicit Interpolating Control for High Order Systems

This example is taken from [11]. We consider the problem of regulating the yaw
and lateral dynamics in heavy vehicles, consisting of combinations of truck and
multiple towed units, see Fig. 7.1 and Fig. 7.2. In such heavy vehicle configurations,
undesired yaw rate and lateral acceleration amplifications, causing tail swings and
lateral instabilities of the towed units, can be observed at high speed [11].

It is well known [11, 44, 116] that this vehicle model can be described by a
linear parameter varying system, where the longitudinal velocity vx is the parameter
variation. By choosing vx = 80 km/h, the following system is obtained,

{
x(k + 1) = Ax(k) + Bu(k),

y(k) = Cx(k)
(7.1)

where {
x = [x1 x2 x3 x4 x5 x6]T ,

y = [y1 y2 y3 y4]T
(7.2)

with x1 = vy1 is the lateral velocity of the truck, x2 = ψ̇1 is the yaw rate of the
truck, x3 = θ1 and x4 = θ2 are the articulation angles of the dolly and the semitrailer,
x5 = θ̇1 and x6 = θ̇2 are, respectively the derivatives of x3 and x4, y1 and y2 are the
yaw rates of the dolly and semitrailer, y3 = x3 and y4 = x4, u1 = δ2, u2 = δ3 are the
lumped (relative) steering angles of the dolly and the semitrailer, respectively. The
matrices A, B , C are,

A =

⎡

⎢⎢⎢
⎢⎢⎢
⎣

0.8668 −1.6664 −0.0118 0.0002 −0.0681 0.0007
0.0038 0.8604 0.0043 −0.0001 0.0243 −0.0002

−0.0046 0.0018 0.8173 0.0032 −1.0296 0.0100
0.0002 0.0507 0.0472 0.8440 1.0278 −0.4982

−0.0002 0.0000 0.0639 0.0001 0.9627 0.0004
0.0000 0.0019 0.0013 0.0646 0.0373 0.9821

⎤

⎥⎥⎥
⎥⎥⎥
⎦

,

H.-N. Nguyen, Constrained Control of Uncertain, Time-Varying, Discrete-Time Systems,
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DOI 10.1007/978-3-319-02827-9_7,
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Fig. 7.1
Truck-dolly-semitrailer

Fig. 7.2
Truck-dolly-semitrailer:
schematic model. The first
three blocks represent the
wheels of the truck, the
second two blocks represent
the wheels of the dolly, and
the last three blocks represent
the wheels of the semitrailer

B =
[−0.0688 0.0246 −1.0396 1.5260 −0.0376 0.0552

0.0007 −0.0002 0.0100 −0.4982 0.0004 −0.0179

]T

,

C =

⎡

⎢⎢
⎣

0 1 0 0 1 0
0 1 0 0 1 1
0 0 1 0 0 0
0 0 0 1 0 0

⎤

⎥⎥
⎦

(7.3)
The input and output constraints are

− 8 ≤ y1 ≤ 8, −8 ≤ y2 ≤ 8, −8 ≤ y3 ≤ 8,

− 8 ≤ y4 ≤ 8, −0.5 ≤ u1 ≤ 0.5, −0.5 ≤ u2 ≤ 0.5
(7.4)

Algorithm 5.1 in Sect. 5.2 will be used in this example, where the following
saturated controller u = sat(Ksx),

Ks =
[

0.0017 −0.0160 0.0067 −0.0227 −0.1199 −0.0012
−0.0010 0.0084 0.0070 0.0221 0.1102 −0.0333

]
(7.5)

is used as a global controller.
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Fig. 7.3 Illustration of the
feasible invariant sets for the
controller u = Kx (black)
and for the controller
u = sat(Ksx) (white)

The local controller is chosen as a linear quadratic (LQ) controller with weighting
matrices

Q = CT

⎡

⎢⎢
⎣

2 0 0 0
0 4 0 0
0 0 2 0
0 0 0 2

⎤

⎥⎥
⎦C =

⎡

⎢⎢⎢⎢⎢⎢
⎣

0 0 0 0 0 0
0 6 0 0 6 4
0 0 2 0 0 0
0 0 0 2 0 0
0 6 0 0 6 4
0 4 0 0 4 4

⎤

⎥⎥⎥⎥⎥⎥
⎦

, R =
[

0.01 0
0 0.01

]

(7.6)
giving the state feedback gain,

K =
[

0.0057 0.4661 0.8373 0.0194 0.3996 0.6023
0.0291 2.1493 2.6772 1.8025 4.5305 3.1107

]
(7.7)

Using Procedure 2.2 and Procedure 2.4 the sets Ωmax and Ωs are respectively,
computed for the control laws u(k) = Kx(k) and u(k) = sat(Ksx(k)). The set Ωs

is found after 5 iterations in Procedure 2.4. Ωmax and Ωs are illustrated in Fig. 7.3.
For the MPC setup, we take MPC, based on quadratic programming, where an

LQ criterion is optimized, with the same weighting matrices as in (7.6). Hence the
set Ωmax for the local unconstrained control is identical for the MPC solution and
for the implicit interpolating controller. The prediction horizon for the MPC was
chosen to be 40 to match the set Ωs .

For the initial condition

x(0) = [−185.6830 9.1019 1.1120 8.0000 − 1.1019 − 4.9729]′,

Fig. 7.4 and Fig. 7.5 show the output and input trajectories as functions of time for
the interpolating controller (solid) and for the MPC controller (dashed).

Using the tic/toc function of Matlab 2011b, the computational burdens of inter-
polating controller and MPC were compared. The result is shown in Table 7.1.

Finally, Fig. 7.6 presents the interpolating coefficient as a function of time. As
expected, this function is positive and decreasing.
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Fig. 7.4 Output trajectories
for the interpolating
controller (solid) and for the
MPC controller (dashed)

Fig. 7.5 Input trajectories for
the interpolating controller
(solid) and for the MPC
controller (dashed)

Fig. 7.6 Interpolating
coefficient as a function of
time

Table 7.1 Comparison between interpolating control and model predictive control

Solver Number of decision
variables

Duration [ms] for the on-line
computations during one
sampling interval

Implicit Interpolating
Controller

LP 7 0.9869

Implicit MPC QP 80 28.9923

7.2 Explicit Interpolating Controller for High Order Systems

This example is taken from [122]. Consider the following discrete-time linear time-
invariant system

x(k + 1) = Ax(k) + Bu(k) (7.8)
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Fig. 7.7 Illustration of the
feasible invariant sets for the
controller u = Kx (black)
and for the controller
u = sat(Ksx) (white)

where

A =

⎡

⎢⎢
⎣

0.4035 0.3704 0.2935 −0.7258
−0.2114 0.6405 −0.6717 −0.0420
0.8368 0.0175 −0.2806 0.3808

−0.0724 0.6001 0.5552 0.4919

⎤

⎥⎥
⎦ ,

B = [1.6124 0.4086 −1.4512 −0.6761
]T

(7.9)

The constraints are

− 5 ≤ x1 ≤ 5, −5 ≤ x2 ≤ 5, −5 ≤ x3 ≤ 5,

− 5 ≤ x4 ≤ 5, −0.2 ≤ u ≤ 0.2
(7.10)

For our explicit interpolating control solution, we choose local LQ control with
the following weighting matrices

Q =

⎡

⎢⎢
⎣

1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

⎤

⎥⎥
⎦ , R = 0.2 (7.11)

The calculated local feedback gain is then

K = [−0.0047 −0.1082 −0.0496 0.4110
]

(7.12)

The following saturated controller u = sat(Ksx),

Ks = [0.0104 −0.0064 −0.0100 0.0439
]

(7.13)

is chosen as a global controller.
A cut of the maximal invariant set Ωmax for the controller u = Kx and the in-

variant set Ωs for the saturated controller u = sat(Ksx) are shown in Fig. 7.7. The
set Ωs is computed by using Procedure 2.4 after 10 iterations.

The Explicit Interpolating Controller is computed. It covers 945 cells and is not
given here but will be sent to the reader on demand. Note that one does not need to
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Fig. 7.8 State trajectories for
the explicit interpolating
controller (solid) and for the
implicit MPC controller
(dashed)

Fig. 7.9 Input trajectories for
the explicit interpolating
controller (solid) and for the
implicit MPC controller
(dashed)

Fig. 7.10 Interpolating
coefficient as a function of
time

perform step 2 in Algorithm 4.2, since the saturated controller (7.13) is chosen as a
global controller.

For the initial condition

x(0) = [5.0000 3.0625 2.5060 4.6109]T ,

Fig. 7.8 and Fig. 7.9 show the state and input trajectories for the explicit interpolat-
ing controller.

Figure 7.8 and Fig. 7.9 also show the state and input trajectories obtained by
using implicit MPC with quadratic cost, with the weighting matrices as in (7.11)
and with prediction horizon = 17.
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As reported in [122], the explicit solution of the QP-MPC problem with the pre-
diction horizon 17 and with the weighting matrices (7.11) could not be fully com-
puted for this example due to the high complexity. The solution was terminated
when 50000 polyhedral cells were already computed. In [122] using adaptive multi-
scale bases, an approximate explicit MPC solution was constructed, that consists of
3633 regions.

The interpolating coefficient as a function of time is depicted in Fig. 7.10.



Chapter 8
A Benchmark Problem: The Non-isothermal
Continuous Stirred Tank Reactor

8.1 Continuous Stirred Tank Reactor Model

The case of a single non-isothermal continuous stirred tank reactor [69, 90, 111] is
studied in this chapter. The reactor is the one presented in various works by Perez
et al. [98, 99] in which the exothermic reaction A → B is assumed to take place.
The heat of reaction is removed via the cooling jacket that surrounds the reactor.
The jacket cooling water is assumed to be perfectly mixed and the mass of the
metal walls is considered negligible, so that the thermal inertia of the metal is not
considered. The reactor is also assumed to be perfectly mixed and heat losses are
regarded as negligible, see Fig. 8.1.

The continuous linearized reactor system [90] is modeled as,

ẋ = Acx + Bcu (8.1)

where x = [x1 x2]T , x1 is the reactor concentration and x2 is the reactor temperature,
u = [u1 u2]T , u1 is the feed concentration and u2 is the coolant flow. The matrices
Ac and Bc are,

Ac =
⎡

⎢
⎣

(−F
V

− k0(t)e
− E

RTs
) (− E

RT 2
s

k0(t)e
− E

RTs CAs

)

(−�Hrxn(t)k0(t)e
− E

RTs

ρCp

) (−F
V

− UA
VρCp

− �Hrxn(t) E
ρCpRT 2

s
k0(t)e

− E
RTs CAs

)

⎤

⎥
⎦ ,

Bc =
[

F
V

0

0 −2.098 × 105 Ts−365
VρCp

]

(8.2)

The operating parameters are shown in Table 8.1.
The linearized model at steady state x1 = 0.265 kmol/m3 and x2 = 394 K and

under the uncertain parameters k0 and −�Hrxn will be considered. The following
uncertain system [130] is obtained after discretizing system (8.1) with a sampling
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Fig. 8.1 Continuous stirred
tank reactor

Table 8.1 The operating
parameters of non-isothermal
CSTR

Parameter Value Unit

F 1 m3/min

V 1 m3

ρ 106 g/m3

Cp 1 cal/g·K
�Hrxn 107–108 cal/kmol

E/R 8330.1 K

ko 109–1010 min−1

UA 5.34 × 106 cal/K·min

time of 0.15 min,
{

x(k + 1) = A(k)x(k) + Bu(k)

y(k) = Cx(k)
(8.3)

where

A(k) =
[

0.85 − 0.0986β1(k) −0.0014β1(k)

0.9864β1(k)β2(k) 0.0487 + 0.01403β1(k)β2(k)

]
,

B =
[

0.15 0
0 −0.912

]
, C =

[
1 0
0 1

]

and the parameter variation bounded by,
⎧
⎪⎪⎨

⎪⎪⎩

1 ≤ β1(k) = k0

109
≤ 10

1 ≤ β2(k) = −�Hrxn

107 ≤ 10

Matrix A(k) can be expressed as,

A(k) = α1(k)A1 + α2(k)A2 + α3(k)A3 + α4(k)A4
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Fig. 8.2 Feasible invariant
sets

where
∑4

i=1 αi(k) = 1, αi(k) ≥ 0 and

A1 =
[

0.751 −0.0014
0.986 0.063

]
, A2 =

[
0.751 −0.0014
9.864 0.189

]

A3 =
[−0.136 −0.014

9.864 0.189

]
, A4 =

[−0.136 −0.014
98.644 1.451

]

The input and state constraints on input are,

{ − 0.5 ≤ x1 ≤ 0.5, −20 ≤ x2 ≤ 20,

− 0.5 ≤ u1 ≤ 0.5, −1 ≤ u2 ≤ 1
(8.4)

8.2 Controller Design

The explicit interpolating controller in Sect. 5.2 will be used in this example. The
local feedback controller u(k) = Kx(k) is chosen as,

K =
[−2.8413 0.0366

34.4141 0.5195

]
(8.5)

Based on Procedure 2.2 and Procedure 2.3, the robustly maximal invariant set Ωmax

and the robustly controlled invariant set CN with N = 9 are computed. Note that
C9 = C10 is the maximal controlled invariant set for system (8.3) with constraints
(8.4). The sets Ωmax and CN are depicted in Fig. 8.2.

The set Ωmax given in half-space representation is,

Ωmax =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

x ∈R
2 :

⎡

⎢⎢
⎣

−1.0000 0.0129
1.0000 0.0151
1.0000 −0.0129

−1.0000 −0.0151

⎤

⎥⎥
⎦x ≤

⎡

⎢
⎢⎢⎢
⎣

0.2501
0.1760
0.0291
0.1760
0.0291

⎤

⎥
⎥⎥⎥
⎦

⎫
⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎭
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The set of vertices of CN , V (CN) = [V1 −V1], and the control matrix Uv =
[U1 −U1] at these vertices are,

V1 =
[

0.3401 0.2385 −0.0822
−20.0000 −1.8031 20.0000

]
, U1 =

[−0.5000 −0.5000 0.3534
1.0000 1.0000 1.0000

]

The state space partition of the explicit interpolating controller is shown in Fig. 8.3.
The explicit control law over the state space partition, see below, is illustrated in

Fig. 8.4.

u(k) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

[−0.50
1.00

]
if

⎡

⎣
1.00 0.01

−1.00 −0.02
−1.00 0.04

⎤

⎦x(k) ≤
⎡

⎣
0.23

−0.03
−0.31

⎤

⎦

[−0.75 0.03
0.00 0.00

]
x(k) +

[−0.27
1.00

]
if

⎡

⎣
1.00 −0.04
1.00 0.01

−1.00 −0.01

⎤

⎦x(k) ≤
⎡

⎣
0.31
0.21

−0.07

⎤

⎦

[−6.05 −0.01
0.00 0.00

]
x(k) +

[
0.09

1

]
if

⎡

⎣
−1.00 −0.02
1.00 0.01

−1.00 −0.00

⎤

⎦x(k) ≤
⎡

⎣
−0.03
0.07
0.08

⎤

⎦

[−0.57 −0.01
7.75 0.00

]
x(k) +

[
0.54
1.63

]
if

⎡

⎣
1.00 0.00

−1.00 −0.02
0.00 1.00

⎤

⎦x(k) ≤
⎡

⎣
−0.08
−0.07
20.00

⎤

⎦

[
0.00 0.00
33.70 0.53

]
x(k) +

[
0.50

−0.13

]
if

⎡

⎣
1.00 −0.01
1.00 0.02

−1.00 −0.02

⎤

⎦x(k) ≤
⎡

⎣
−0.18
0.07
0.03

⎤

⎦

[
0.50

−1.00

]
if

⎡

⎣
−1.00 −0.01
1.00 0.02
1.00 −0.04

⎤

⎦x(k) ≤
⎡

⎣
0.23

−0.03
−0.31

⎤

⎦

[−0.75 0.03
0.00 0.00

]
x(k) +

[
0.27

−1.00

]
if

⎡

⎣
−1.00 0.04
−1.00 −0.01
1.00 0.01

⎤

⎦x(k) ≤
⎡

⎣
0.31
0.21

−0.07

⎤

⎦

[−6.05 −0.01
0.00 0.00

]
x(k) +

[−0.09
−1

]
if

⎡

⎣
1.00 0.02

−1.00 −0.01
1.00 0.00

⎤

⎦x(k) ≤
⎡

⎣
−0.03
0.07
0.08

⎤

⎦

[−0.57 −0.01
7.75 0.00

]
x(k) +

[−0.54
−1.63

]
if

⎡

⎣
−1.00 0.00
1.00 0.02
0.00 −1.00

⎤

⎦x(k) ≤
⎡

⎣
−0.08
−0.07
20.00

⎤

⎦

[
0.00 0.00
33.70 0.53

]
x(k) +

[−0.50
0.13

]
if

⎡

⎣
−1.00 0.01
−1.00 −0.02
1.00 0.02

⎤

⎦x(k) ≤
⎡

⎣
−0.18
0.07
0.03

⎤

⎦

[−2.84 0.04
34.41 0.52

]
x(k) +

[
0
0

]
if

⎡

⎢⎢
⎣

−1.00 0.01
1.00 0.02
1.00 −0.01

−1.00 −0.02

⎤

⎥⎥
⎦x(k) ≤

⎡

⎢⎢
⎣

0.18
0.03
0.18
0.03

⎤

⎥⎥
⎦
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Fig. 8.3 State space partition

Fig. 8.4 Control inputs as
piecewise affine functions of
state

Fig. 8.5 State trajectories of
the closed loop system
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Fig. 8.6 State trajectories as
functions of time

Fig. 8.7 Input trajectories as
functions of time

Fig. 8.8 The feasible set of
[74] (white) is a subset of
ours (gray)

Figure 8.5 presents state trajectories of the closed loop system for different initial
conditions and realizations of α(k).

Note that the explicit solution of the MMMPC optimization problem [21] with
the
∞-norm cost function with identity weighting matrices, prediction horizon 9 could
not be fully computed after 3 hours due to high complexity.

For the initial condition x(0) = [0.2000 −12.0000]T , Fig. 8.6 and Fig. 8.7 show
the state and input trajectories (solid) of the closed loop system. A comparison
(dashed) is made with the implicit LMI based MPC in [74]. The feasible sets of
our approach (gray), and of [74] (white) are depicted in Fig. 8.8. Finally, Fig. 8.9
shows the interpolating coefficient c∗, and the realizations of αi(k), i = 1,2,3,4.
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Fig. 8.9 Interpolating
coefficient c∗, and the
realizations of αi(k),
i = 1,2,3,4 as functions of
time
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