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Abstract. When the number of association rules extracted from datasets is very
large, using them becomes too complicated to the users. Thus, it is important to
obtain a small set of association rules in direction to users. The paper investigates
the problem of discovering the set of association rules intersected with constraint
itemsets. Since the constraints usually change, we start the mining from the lattice
of closed itemsets and their generators, mined only one time, instead of from the
dataset. We first partition the rule set with constraint into disjoint classes of the
rules having the same closures. Then, each class is mined independently. Using
the set operators on the closed itemsets and their generators, we show the explicit
representations of the rules intersected with constraints in two shapes: rules with
confidence of equal to 1 and those with confidence of less than 1. Due to those
representations, the algorithm IntARS-OurApp is proposed for mining quickly the
rules without checking rules directly with constraints. The experiments proved its
efficiency.

1 Introduction

Mining association rules from datasets [1] usually outputs a large number of associ-
ation rules. However, the users only take care of a small one of them which contains
the rules satisfying given constraints. Some models and types of constraints have
been considered in [5, 13, 10]. In the recent results [2, 4, 7], we concentrate on the
mining frequent itemsets with constraints involved directly items. The paper focuses
the problem, stated as follows: For T – a given dataset of transactions, A – the
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set of all items appeared in T , the minimum support 1 ≤ s0 ≤ |T | and the mini-
mum confidence 0 < c0 ≤ 1 and two constraints /0 �= G T ,K L ⊆A , let us find the
constraint-based association rule set

A RS ∩G T ,K L (s0,c0)≡
{L′ → R′ ∈A RS (s0,c0) : L′ ∩G T �= /0,R′ ∩K L �= /0} (1)

where: A RS (s0,c0) is the set of association rules in the normal meaning accord-
ing to the thresolds s0 and c0.

The post-processing approach solves the problem in three phases as follows. The
first is to mine all frequent itemsets. The second is to generate association rules
from those itemsets. Selecting the ones satisfying two constraints is done in the last
phase. We can see that the approach is naive because of several reasons as follows.
First, the numbers of frequent itemsets and association rules can grow exponentially.
Mining them spends much time since there could be a large number of redundant
candidates. Further, the post-processing step contains many intersection operations
on itemsets. Second, whenever the constraints change, we need to solve the problem
from the beginning.

The authors of the recent papers [2, 3, 5, 6, 9, 11] concentrate on the discovering
for the condensed, lossless representations of frequent itemsets as well association
rules, e.g., the lattice of closed itemsets and their generators. Only based on them,
we can obtain all frequent itemsets and corresponding association rules (see [2,
3]). Hence, using the lattice for constrained based mining is a natural approach. In
fact, in [2], we presented the model of mining frequent itemsets based on it. The
model had been applied successfully for mining frequent itemsets with some types
of constraint such as [2, 3, 7].

In the paper, based on it we mine association rules intersected with constraints.
First, the lattice of frequent closed itemsets and their generators is mined. The task
is quickly finished since the number of closed itemsets is usually small compared
to the one of all frequent itemsets (see [12]). Then, using the results of partitioning
the association rule set and the structure of each rule class [3], the constraint-based
association rule set is partitioned into disjoint equivalence rule classes. Without loss
of the generality, we just consider the mining each class independently. Each class
A RS ∩G T ,K L (L,S) is represented by a pair of two frequent closed itemsets (L,S)
for L⊆ S,L∩G T �= /0,S∩K L �= /0,c0 ≤ (support(S)/support(L)). The left side
L′ of a rule is a frequent itemset such that: (1) its closure is identical to L and (2) the
intersection of it and G T is not empty. In the case L = S, the corresponding right
one, namely R′, is contained in the difference of L′ from L having the non-empty
intersection with K L . Otherwise, for L ⊂ S,R′ is contained in the difference of
L′ from S satisfied two following conditions: (1) the closure of the two-side union
L′+R′1 is equal to S and (2) the intersection of R′ and K L is non-empty. The
paper proposes and applies explicit representations for L′ and R′ to mine quickly
them without testing the constraints.

1 The notation ”+” represents the union of two disjoint sets.
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The rest of the paper is organized as follows. Section 2 recalls some preliminaries
of association rule mining. Section 3 proposes our mining approach. Experimental
results and the conclusion are shown in Sect. 4 and Sect. 5.

2 Preliminaries

2.1 Basic Concepts of Association Rule Mining

Let O be a dataset of transactions, A the set of items related to objects o∈O and R
a binary relation on O×A . A triple (O,A ,R) is called a data mining context. We
consider two set functions: λ : 2O→ 2A ,ρ : 2A → 2O as follows: ∀ /0 �= A⊆A , /0 �=
O⊆O : λ (O)≡{a∈A : (o,a)∈R,∀o∈O},ρ(A)≡{o∈O : (o,a)∈R,∀a∈ A},
where 2O ,2A are the classes of all subsets of O and A . We denote h(A)≡ λ (ρ(A))
as the closure of A. An itemset A⊆A is called closed iff 2 it is equal to its closure
[13], i.e. h(A) = A. For G,A : /0 �= G ⊆ A ⊆ A ,G is called a generator [9] of A if
h(G) = h(A) and (∀G′ : /0 �= G′ ⊂ G⇒ h(G′) ⊂ h(G)). The class of all generators
of A is named by G (A).

Let s0 and c0 be the minimum support and minimum confidence. For an itemset
S′, the number |ρ(S′)| is called the support of S′, denoted by supp(S′). S′ is called
frequent iff supp(S′) ≥ s0 [1]. Let CS ,FS be the classes of all closed itemsets
and of all frequent itemsets and FC S ≡ C S ∩FS the class of all frequent
closed itemsets. For /0 �= L′ ⊂ S′ and R′ = S′ \ L′, we call r : L′ → R′ the rule de-
termined by L′,R′. The confidence of r is defined by con f (r)≡ supp(S′)/supp(L′)
and it is called an association rule iff con f (r) ≥ c0 and supp(r) ≡ supp(S′) ≥ s0

[1]. The set of all association rules is denoted by A RS (s0,c0). The set of the ones
with constraints is defined in (1).

2.2 Explicit Structures of Frequent Itemsets

For frequent closed itemset L, the equivalence class of the subsets of L having the
same closure L is written by [L]. Formally, [L] ≡ { /0 �= L′ ⊆ L : h(L′) = L}. Fol-
lowing theorems of 2 and 3 in [2], we have propositions 1, 2 for the structures of
frequent itemsets having the same closures and the functions for deriving them non-
repeatedly.

Proposition 1 ([2]). For L ∈FC S :

1. L′ ∈ [L]⇐⇒∃Li ∈ G (L),L′′ ⊆ L\Li : L′ = Li +L′′.
2. Let us call LU :=

⋃
Li∈G (L) Li, LU,i := LU \Li, L := L\L (A)

U ,

FS (L) := {Li +L′i +L˜ | Li ∈ G (L),L˜ ⊆ L ,L′i ⊆ LU,i,

� ∃1≤ k < i : Lk ⊂ Li +L′i}. (2)

2 We write ”if and only if” simply as ”iff”.
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We have [L] =FS (L) and all itemsets of FS (L) are derived non-repeatedly.

For L,S ∈ FC S ,L ⊆ S,L′ ∈ [L],Y := S \ L′, let M (Y,L′) be the class of the
minimal elements of the class {Sk \L′ : Sk ∈ G (S)} (B). The class of the sub-sets
R′ of Y in which the union of each of them with L′ has the closure S, is defined by
!Y"L′ ≡ {R′ ⊆ Y : h(L′+R′) = S}.
Proposition 2. For L,S ∈FCS ,L⊆ S,L′ ∈ [L],Y := S \L′:

1. R′ ∈ !Y"L′ ⇐⇒ ∃S0 ∈ G (S),S′0 ⊆ S \ S0 : R′ = (S0 + S′0)\L′.
2. Assign that RU :=

⋃
R∈M (Y,L′) R, RU,k := RU \Rk, R := Y \R (C)

U ,

FS (Y )L′ := {Rk +R′k +R˜ | Rk ∈M (Y,L′),R˜⊆ R ,R′k ⊆ RU,k,

� ∃1≤ j < k : R j ⊂ Rk +R′k}. (3)

Thus, !Y"L′ = FS (Y )L′ and all itemsets of FS (Y )L′ are distinctly obtained.

Proof

1. “=⇒”: R′ ∈ !Y"L′ implies that R′ ⊆Y,h(L′+R′) = (S). There exists S0 ∈ G (S) :
S0 ⊆ L′+R′. Thus, S′0 := (L′+R′)\ S0 ⊆ S \ S0. Therefore, R′ = (S0 + S′0)\L′.
“⇐=”: If R′ = (S0+S′0)\L′= (S0 \L′)+(S′0\L′), where S0 ∈ G (S),S′0⊆ S\S0.
Then, R′ ⊆ Y , because L′ ∩Y = /0. Further, S0 = (S0∩L′)+ (S0 \L′)⊆ L′+R′.
Thus, h(S) = h(S0)⊆ h(L′+R′)⊆ h(S). Hence, h(L′+R′) = h(S).

2. – “⊆”: If R′ ∈ !Y"L′ , by statement 1, assume that k is the minimum index such
that Sk ∈ G (L′+Y ) and Rk = Sk \L′ is a minimal set, R′′k ⊆ (L′+Y )\ Sk : R′ =
(Sk +R′′k ) \ L′ = Rk + (R′′k \ L′). Let R′k = (R′′k \ L′)∩ RU ,R˜ = (R′′k \ L′) \ RU .
Then R′k ⊆ RU,k,R˜⊆ R and R′ = Rk +R′k +R˜. Assume that there exists j such
that 1 ≤ j < k,R j ∈M (Y,L′) and R j ⊆ Rk +R′k. Then, R′ = R j +R′′j , where
R′′j = R′j +R˜ and R′j = (Rk +R′k) \R j = (Rk \R j)+ (R′k \R j) ⊆ (L′+Y ) \ S j.
Therefore, R′′j ⊆ (L′+Y )\S j: It contradicts to the selection of the index k! Thus,
R′ ∈FS (Y )L′ .
– “⊇”: If Y ′ ∈ FS (Y )L′ , there exists Rk = Sk \ L′ ∈M (Y,L′),Sk ∈ G (L′ +
Y ),R′k ⊆ RU,k,R˜⊆ R such that R′ = Rk +R′k +R˜⊆Y . If R′ ∩L′ = /0, we have
R′k +R˜ = R′ \Rk = R′ \ Sk and R′ = (Sk \L′)+ (R′ \ Sk). Otherwise, L′ ∩Y = /0
implies that R′ ∩Sk = Sk \L′ ⊆ R′,Sk = (Sk ∩L′)+ (Sk \L′) ⊆ L′+R′ ⊆ L′+Y
and h(L′+Y ) = h(Sk)⊆ h(L′+R′)⊆ h(L′+Y ). Hence, h(L′+R′) = h(L′+Y ).
Then, R′ ∈ !Y"L′ .
– To prove the left, we assume that there exist k, j such that 1≤ j < k and Rk +
R′k + R˜k ≡ R j + R′j +R˜ j, Rk,R j ∈M (Y,L′), R˜k,R˜ j ⊆ R , R′k ⊆ RU,k,R′j ⊆
RU, j. Since R j ∩R˜k = /0, R j ⊂ Rk +R′k: a contradiction! Therefore, all itemsets
of FS (Y )L′ are distinctly derived. %&
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3 Mining Association Rules with Constraints

3.1 Partitioning Association Rule Set with Constraints

It is known in [3] that the association rule set A RS (s0,c0) is partitioned into
equivalence classes A R(L,S) for (L,S) ∈N FC S (s0,c0) ≡ {(L,S) ∈FC S ×
FC S | L⊆ S,c0 ≤ (supp(S)/supp(L))} where

A R(L,S)≡ {r : L′ → R′ | h(L′) = L,h(L′+R′) = S}. (4)

Definition 1. For (L,S) ∈ N FC S (s0,c0), the set of association rules in
A R(L,S) intersected with constraints is definded by:

A R∩G T ,K L (L,S)≡ {r : L′ → R′ ∈A R(L,S) | L′ ∩G T �= /0,R′ ∩K L �= /0}.

We have easily Theorem 3 that helps us to avoid the duplication in the mining
rules intersected with constraints. Without loss of the generality, we consider only
the mining independently each rule class with constraints A R∩G T ,K L (L,S) of the
same support supp(S) and the same confidence (supp(S)/supp(L)).

Theorem 1 (Partitioning Association Rule Set with Constraints)

A RS ∩G T ,K L (s0,c0) = ∑
(L,S)∈N FCS (s0,c0))

A R∩G T ,K L (L,S).

Definition 2. For L ∈FC S , we define

[L]∩G T ≡ {L′ ∈ [L] : L′ ∩G T �= /0}.
For (L,S) ∈N FC S (s0,c0),L′ ∈ [L],Y := S \L′ :

!Y"L′,∩K L ≡ {R′ ∈ !Y"L′ : R′ ∩K L �= /0}.
Since A R(L,S) = {r : L′ → R′ | L′ ∈ [L],R′ ∈ !S \L′"L′ }, we have:

A R∩G T ,K L (L,S) = {r : L′ → R′ | L′ ∈ [L]∩G T ,R′ ∈ !S \L′"L′,∩K L }. (5)

3.2 Post-processing Mining Approach

Using the derivation functions of FS (L) and FS (S\L′)L′ (given in propositions
of 1 and 2) we can generate distinctly the rules r′ : L′ → R′ such that L′ ∈ [L] and
R′ ∈ !S \L′"L′ . Then, we choose the ones satisfying the constraints.

The corresponding algorithm, namely IntARS-PostPro, is shown in Fig. 1.
Though it does not make any duplication in the execution, it runs slowly since two
reasons. First, we need to compute the intersections of two rule sides with G T and
K L . Second, there are many generated redundant rule candidates.
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Fig. 1 The algorithm IntARS-PostPro

3.3 Our Approach

To overcome those limitations, we propose the explicit representations for two sides
of the rules in order to mine quickly them without testing the constraints. The one
FS ∩G T (L), for generating non-repeatedly and directly the left sides L′ of the rules
intersected with G T (FS ∩G T (L) = [L]G T ), was shown in [4]. Here, we give the
function FS ∩K L (S \L′)L′ for generating the right ones.

We have immediately that A R∩G T ,K L (L,S) = /0 when L ∩ G T = /0 or
S ∩K L = /0. Hence, we just mine the class A R∩G T ,K L (L,S) for (L,S) ∈
N FC S ∩G T ,K L (s0,c0) ≡ {(L,S) ∈ N FCS (s0,c0) | L ∈ FC S ∩G T ,S ∈
FC S ∩K L } where: FC S ∩X ≡ {S ∈FCS ,S∩X �= /0}, with X ⊆A .

3.3.1 Mining the Right Sides of the Rules for L = S

Assign that Y := L \ L′, from definition 2, we have !Y"L′,∩K L = {R′ ⊆ Y : R′ ∩
K L �= /0}. Let us define the derivation function FS ∩K L (Y )L′ by:

FS ∩K L (Y )L′ ≡ 2Y\K L ⊕ (2Y∩K L \ { /0}) (6)

where X ⊕Z := {A+B : /0 �= A ∈X , /0 �= B ∈ Z } for X ,Z ⊆ 2A \ { /0},X ∩
Z = /0.

Theorem 2. For (L,L) ∈N FC S ∩G T ,K L (s0,c0),Y := L\L′, we have:

!Y"L′,∩K L = FS ∩K L (Y )L′

and the fact that all itemsets of FS ∩K L (Y )L′ are generated non-repeatedly.

Proof. It is obvious since Y = (Y ∩K L )+ (Y \K L ). %&

3.3.2 Mining the Right Sides of the Rules for L⊂ S

For Y := S \ L′, we split !Y"L′,∩K L into two disjoint parts of !Y"1L′,∩K L and

!Y"2L′,∩K L . The first one contains frequent itemsets created from the generators of
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S which do not contain any item of K L and non-empty subsets of the intersection
of Y with K L . The remaining part is generated from the generators involved with
K L . It follows that we can avoid the intersection of itemsets with K L . Two func-
tions of FS 1

∩K L (Y )L′ and FS 2
∩K L (Y )L′ are obtained for deriving distinctly all

itemsets of !Y"1L′,∩K L and !Y"2L′,∩K L accordingly.

We split the class M (Y,L′) (see (B)) into M¬K L (Y,L′) ≡ {Mk ∈M (Y,L′) :
Mk ∩K L = /0} and M∩K L (Y,L′) ≡M (Y,L′) \M¬K L (Y,L′). All m elements
in M¬K L (Y,L′) are numbered as R1,R2, ..,Rm. The ones in M∩K L (Y,L′) are
Rm+1,Rm+2, ..,RM (where M := |M (Y,L′)|) (D).

Deriving !Y"1L′,∩K L by FS 1
∩K L (Y )L′ .

We define: !Y"L′ ,¬K L ≡ {R′ ∈ !Y"L′ : R′ ∩K L = /0} and

!Y"1L′,∩K L ≡ {R′′+V,R′′ ∈ !Y"L′,¬K L , /0 �=V ⊆Y ∩K L }. (7)

We can apply first FS (Y )L′ (in (3)) to derive the itemsets R′′ in !Y"L′ and
then choose the ones that have empty intersections with K L in order to obtain
!Y"1L′,∩K L . However, the difficulities similar to the post-processing approach also
come. Using the function FS ¬K L (Y )L′ in (8) we can generate them directly.

Lemma 1. For Rk ∈M¬K L (Y,L′), RU,¬K L :=
⋃

Rk∈M¬K L (Y,L′) Rk, R ,¬K L :=

(Y \K L )\RU,¬K L , RU,¬K L ,k := RU,¬K L \Rk
(E),

FS ¬K L (Y )L′ := {Rk +R′k +R˜ : Rk ∈M¬K L (Y,L′),R′k ⊆ RU,¬K L ,k,

R˜⊆ R ,¬K L , � ∃1≤ j < k : R j ⊂ Rk +R′k, R j ∈M¬K L (Y,L′)}, (8)

1. !Y"L′,¬K L = FS ¬K L (Y )L′ .
2. All itemsets of FS ¬K L (Y )L′ come non-repeatedly.

Proof

1. – “⊆”: Following from Proposition 2.1, for R′ ∈ !Y"L′,¬K L , there exists k, such
that Sk ∈ G (S),S′′k ⊆ S \ Sk : R′ = (Sk + S′′k ) \L′ = Sk \L′+ S′′k \L′ (because of
Sk∩S′′k = /0). Hence, R′= Rk+(S′′k \L′) for Rk ∈M (Y,L′). Since R′ ∩K L = /0,
Rk ∩K L = /0, i.e. Rk ∈M¬K L (Y,L′). Let R′k = (S′′k \ L′)∩ RU,¬K L ,R˜ =
(S′′k \ L′) \ RU,¬K L . Then, R′k ⊆ RU,¬K L ,k,R˜ ⊆ R′ \ RU,¬K L ⊆ R ,¬K L .
Thus, R′ = Rk + R′k +R˜. Assume that there exists the index j such that 1 ≤
j < k,R j ∈M¬K L (Y,L′),R j ⊂ Rk + R′k. Therefore, R′ = R j + R′′j for R′′j =
(Rk +R′k)\R j +R˜. Since (Rk +R′k)\R j = (Rk \R j)+(R′k \R j)⊆ (L′+Y )\S j,
we have R′′j ⊆ (L′+Y ) \ S j. This contradicts to how we select index k! Hence,
R′ ∈FS ¬K L (Y )L′ .
– “⊇”: For R′ = Rk +R′k +R˜ ∈FS ¬K L (Y )L′ . Since R′ ∩L′ = /0,R′k +R˜ =
(R′k +R˜) \L′. Then, R′ = Sk \L′+(R′k +R˜) = Sk \L′+(R′k +R˜) \L′. Based
on Proposition 2.1, R′ ∈ !Y"L′ because of R′k + R˜ ⊆ S \ Sk. Further, since
R′ ∩K L = /0 (RU,¬K L ∩K L = /0,R ,¬K L ∩K L = /0), R′ ∈ !Y"L′,¬K L .
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2. Assume that there exists k, j such that 1≤ j < k and Rk +R′k +R˜k ≡ R j +R′j +
R˜ j, where: R j,Rk ∈M¬K L (Y,L′), R˜k,R˜ j ⊆ R ,¬K L , R′k ⊆ RU,¬K L ,k,R′j ⊆
RU,¬K L , j. Since R j ∩ R˜k = /0, R j ⊂ Rk + R′k. It is not how we select
index k! %&

Proposition 3 (Deriving directly, distinctly all itemsets of !Y"1L′,∩K L ). For

FS 1
∩K L (Y )L′ ≡ {R′ = R′′+V,R′′ ∈FS ¬K L (Y )L′ , /0 �=V ⊆ Y ∩K L }, (9)

1. FS 1
∩K L (Y )L′ ⊆ !Y"L′,∩K L .

2. All itemsets of FS 1
∩K L (Y )L′ are generated non-repeatedly.

Proof. Based on Lemma 1, (7) and the fact that !Y"1L′,∩K L ⊆ !Y"L′,∩K L . %&

Deriving !Y"2L′,∩K L by FS 2
∩K L (Y )L′ .

We describe the class of right sides coming from the generators of S involved to
K L by:

!Y"2L′,∩K L ≡ {R′ ∈ !Y"L′,∩K L | ∃Rk ∈M∩K L (Y,L′) : R′ ⊇ Rk}.

Proposition 4 (Deriving directly, distinctly all itemsets of !Y"2L′ ,∩K L ). Using the

notations (C), for

FS 2
∩K L (Y )L′ ≡ {Rk +R′k +R˜ : Rk ∈M∩K L (Y,L′),R′k ⊆ RU,k,R˜⊆ R ,

� ∃1≤ j < k : R j ⊂ Rk +R′k, R j ∈M (Y,L′) (F)}, (10)

we hold:

1. FS 2
∩K L (Y )L′ ⊆ !Y"L′,∩K L

2. All elements of FS 2
∩K L (Y )L′ are derived distinctly.

Proof. Similar to the proof of Lemma 1. %&

The derivation function FS ∩K L (Y )L′ .

Defining
FS ∩K L (Y )L′ ≡FS 1

∩K L (Y )L′ +FS 2
∩K L (Y )L′ , (11)

we have Theorem 3 for generating efficiently all rules intersected with constraints.

Theorem 3. For (L,S) ∈N FC S ∩G T ,K L (s0,c0),L⊂ S,L′ ∈ [L],Y := S \L′:

1. FS 1
∩K L (Y )L′ ∩FS 2

∩K L (Y )L′ = /0, and !Y"L′,∩K L = FS ∩K L (Y )L′ .
2. All itemsets of FS ∩K L (Y )L′ come distinctly.
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Proof

1. – If there exist R′1 ∈ FS 1
∩K L (Y )L′ ,R

′
2 ∈ FS 2

∩K L (Y,L′) such that R′1 ≡
R′2. Thus, R′1 = R j1 + R′j1 + R˜1 +V ≡ Rk2 + R′k2

+ R˜2 = R′2 where: k2 > j1
(since (D)), R j1 ∈M¬K L (Y,L′),R′j1 ⊆ RU,¬K L , j1 ,R˜1 ⊆ R ,¬K L , /0 �= V ⊆
Y ∩K L ,Rk2 ∈M∩K L (Y,L′),R′k2

⊆ RU,k2 ,R˜2 ⊆ R (used (E) and (C)). Since
R j1 ⊆ RU,¬K L ⊆ RU , we have immediately R j1 ∩R˜2 = /0. Thus, R j1 ⊂ Rk2 +

R′k2
. That contradicts to (F). Hence, FS 1

∩K L (Y )L′ ∩FS 2
∩K L (Y )L′ = /0.

– The fact that !Y"L′,∩K L ⊇ FS ∩K L (Y )L′ follows from (11), Proposi-
tion 3.1 and Proposition 4.1. What is left is to show that !Y"L′,∩K L ⊆
FS 1

∩K L (Y )L′ + FS 2
∩K L (Y )L′ . We use the notations given at (E) and

(C). For every R′ ∈ !Y"L′,∩K L , from Proposition 2.2, R′ = Rk + R′k +
R˜,Rk ∈M (Y,L′),R′k ⊆ RU,k,R˜ ⊆ R and R′ ∩K L �= /0: [Case 1] If Rk ∈
M¬K L (Y,L′), then (R′k +R˜)∩K L �= /0. Let us call R′′k = R′k ∩RU,¬K L ⊆
RU,¬K L ,k, R′′′k = (R′k \RU,¬K L ) \K L ⊆ R ,¬K L , R′′′′k = (R′k \RU,¬K L )∩
K L ⊆ R ∩K L , R˜¬K L = R˜ \K L ⊆ R ,¬K L , and R˜∩K L = R˜∩
K L ⊆ Y ∩K L . Clearly, /0 �= (R′k + R˜) ∩K L = R′′′′k + R˜∩K L . Now,
R′= [Rk+R′′k +(R′′′k +R˜¬K L )]+(R′′′′k +R˜∩K L ) for R′′′k +R˜¬K L ⊆R ,¬K L

and /0 �= (R′′′′k +R˜∩K L ) ⊆ Y ∩K L . Therefore, R′ ∈FS 1
∩K L (Y )L′ . [Case

2] Otherwise, R′ ∈FS 2
∩K L (Y )L′ .

2. Following directly from (11) and propositions of 3.2 and 4.2. %&
Theorem 4 (Mining directly, distinctly all rules with constraints for each class).
For (L,S) ∈ N FCS ∩G T ,K L (s0,c0),A R∗∩G T ,K L (L,S) ≡ {r : L′ → R′ | L′ ∈
FS ∩G T (L),R′ ∈FS ∩K L (S \L′)L′ }, the following statements hold true:

1. A R∗∩G T ,K L (L,S) = A R∩G T ,K L (L,S).
2. All rules of A R∗∩G T ,K L (L,S) are derived non-repeatedly.

Proof. Directly from (5), Theorem 3 in [4], and theorems 2, 3. %&
The algorithm for mining efficiently A R∩G T ,K L (L,S) is posted in Fig. 2.

3.3.3 An Example

For illustrating the approach, we consider the mining association rules with con-
straints of G T = 1,K L = 7 on dataset T1 shown in Table 1 for s0 = 2,c0 = 0.5.
The lattice of frequent closed itemsets (underlined) together their generators (itali-
cized) and supports (superscripted) is shown in Fig. 3.

We observe the mining on the class A R∩1,7(12467,12467) containing the rules
with the same support 2 and the same confidence 1. For L′ = 16 ∈ [12467]∩1, Y =
12467 \ 16 = 247. Then, Y ∩K L = 7 and Y \K L = 24. Hence, we discovered
constrained rules: 16→ 7+ /0,16→ 7+ 2,16→ 7+ 4,16→ 7+ 24.

In the case of L ⊂ S, we consider the rule class A R∩1,7(12467,12) with the
confidence 0.5. For L′= 1∈ [12]∩1, Y = 2467. Therefore, M (Y,L′) =Minimal{16\
1,17\1,247\1,26\1}= {6,7}. Thus, M¬7(Y,L′) = {6}. It follows from RU,¬7 =
6 that RU,¬7,1 = /0 and R ,¬7 = (2467 \ 7) \ 6 = 24. Then, FS ¬7(2467)1 = {6+
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Fig. 2 The algorithm IntARS-OurApp

Table 1 Dataset T1

Trans Items

1 0 1 2 4 6 7
2 0 2 3 5 7
3 0 3 4 5 6 7
4 1 2 4 5 6 7
5 1 2 4
6 1 2

Fig. 3 The lattice of frequent closed itemsets, their generators and supports from T1
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/0+ /0,6+ /0+2,6+ /0+4,6+ /0+24}. Since Y ∩K L = 7,FS 1
∩7(2467)1 = {6+

7,62+7,64+7,624+7}, the rules of r1 : 1→ 67,r2 : 1→ 627,r3 : 1→ 647 and r4 :
1→ 6247 are discovered. We consider the right sides (in FS 2

∩7(2467)1) coming
from M∩7 = {7}. It is easy to know that RU = 67,RU,2 = 67 \ 7 = 6 and R =
2467 \ 67= 24. For R′2 = /0, we have the rules of 1→ 7+ /0+ /0,1→ 7+ /0+ 2,1→
7+ /0+ 4 and 1→ 7+ /0+ 24. For R′2 = 6, since R1 = 6⊂ R2 +R′2 = 7+ 6, we pass
the repeatedly generation for the rules r1,r2,r3 and r4.

4 Experimental Results

The following experiments were performed on i5-2400 CPU, 3.10 GHz @ 3.09
GHz, 3.16 GB RAM, running Linux (Cygwin). The algorithms were coded in
C++. Two highly correlated datasets of Mushroom and C20d10k, coming from
http://fimi.cs.helsinki.fi/data/, are used during these experiments.
Mushroom describes the characteristics of the mushrooms. It includes 8124 trans-
actions of 119 items. C20d10k is a census dataset from the PUMS sample file and
includes 100000 transactions of 385 items.

Given minimum support s0, Charm-L [12] and MinimalGenerators [11] are ex-
ecuted to mine from the dataset the lattice FC S of frequent closed itemsets (to-
gether their generators). For s0, the constraints are selected from the set A F of all
frequent items of A with the sizes of K ∗ |A F | for K = 1

8 ,
2
8 ,

3
8 and 1

2 . Since the

Fig. 4 The running times of IntARS-PostPro and IntARS-OurApp for C20d10k

http://fimi.cs.helsinki.fi/data/
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users are interested in the high-support items, we sort all items by the ascending or-
der of their supports and fix a support threshold H such that |{ f ∈A F : supp( f )≥
H}| ≈ 1

2 ∗ |A F |. The set C having the size L of frequent items are constructed ran-
domly by two subsets of C1 and C2 where C1 contains P∗L (P := 2

3 ) high-support
items (whose supports are greater than or equal to H) and C2 contains the remaining
ones. Then C randomly splits into two disjoint subsets of G T and K L . Thus, we
consider eight pairs of (G T ,K L ) for each s0.

Fig. 5 The running times of IntARS-PostPro and IntARS-OurApp for Mushroom

For each (s0,c0), we traverse FC S for obtaining N FC S ∩G T ,K L (s0,c0)
and apply in turn IntARS-PostPro and IntARS-OurApp to mine constrained asso-
ciation rule sets for eight pairs of constraints. We take in our account the average
mining times of IntARS-PostPro and IntARS-OurApp and figure out them in Fig. 4,
Fig. 5. They show that IntARS-OurApp runs quickly than IntARS-PostPro, especially
for the low values of s0,c0.

5 Conclusions

We divide the problem of mining the set of association rules intersected with con-
straint into independent sub-problems. That helps us to avoid the duplication in
the mining. Instead of generating rule candidates and testing with constraints, we
find the explicit representations of them. Based on those representations, we design
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the algorithm IntARS-OurApp for mining rules. The tests on benchmark datasets
showed its efficiency. The approach opens a direction to solve the tasks of mining
association rules with the different types of constraint itemsets.
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