
Solving Fuzzy Job-Shop Scheduling Problems
with a Multiobjective Optimizer

Thanh-Do Tran∗, Ramiro Varela, Inés González-Rodrı́guez, and El-Ghazali Talbi

Abstract. In real-world manufacturing environments, it is common to face a
job-shop scheduling problem (JSP) with uncertainty. Among different sources of un-
certainty, processing times uncertainty is the most common. In this paper, we inves-
tigate the use of a multiobjective genetic algorithm to address JSPs with uncertain
durations. Uncertain durations in a JSP are expressed by means of triangular fuzzy
numbers (TFNs). Instead of using expected values as in other work, we consider
all vertices of the TFN representing the overall completion time. As a consequence,
the proposed approach tries to obtain a schedule that optimizes the three component
scheduling problems [corresponding to the lowest, most probable, and largest dura-
tions] all at the same time. In order to verify the quality of solutions found by the
proposed approach, an experimental study was carried out across different bench-
mark instances. In all experiments, comparisons with previous approaches that are
based on a single-objective genetic algorithm were also performed.

1 Introduction

Job-shop scheduling problems (JSPs) are known to be one of the hardest classes of
combinatorial problems. They have formed an important body of research since the

Thanh-Do Tran · El-Ghazali Talbi
DOLPHIN Team, Inria Lille – Nord Europe and LIFL, Université Lille 1, France
e-mail: thanh-do.tran@inria.fr

Ramiro Varela
A.I. Centre and Department of Computer Science, University of Oviedo, Spain

Inés González-Rodrı́guez
Dept. of Mathematics, Statistics and Computing, University of Cantabria, Spain
∗ TDT was supported by the ECSC Scholarship Program of the Master in Soft Computing

and Intelligent Data Analysis at the European Centre for Soft Computing and, currently,
is supported by the CORDI-S Doctoral Fellowship at Inria Lille.

V.-N. Huynh et al. (eds.), Knowledge and Systems Engineering, Volume 2, 197
Advances in Intelligent Systems and Computing 245,
DOI: 10.1007/978-3-319-02821-7_19, © Springer International Publishing Switzerland 2014

198 T.-D. Tran et al.

late fifties, with multiple applications in industry, finance, and science [23]. In fact,
JSPs are not only NP-complete but also among the worst NP-complete class mem-
bers [21]. Therefore, they have usually been solved by using heuristic techniques,
rather than exact methodologies.

During the past two decades, various proposals based on genetic algorithms have
been introduced to solve large JSP instances: [4], [27], [22], and [15], to name but a
few. Even though most proposals deal with crisp JSPs, i.e. all relevant information
is assumed to be concrete, in many real-life situations, it is often the case that the
exact duration of a task is not known in advance [10]. Instead, based on previous ex-
perience, an expert may have some knowledge about this duration and it is therefore
possible to estimate this processing time. In such a situation, it is neither possible
nor plausible to represent processing times with concrete numbers.

Depending on the available knowledge and the representation technique being
used, the information about durations can be modeled by an interval for the possible
processing times or its most typical values. When deeper knowledge of the problem
is available, fuzzy intervals—which are considered as an alternative to probability
distributions—can also be used; however, this technique usually requires complex
computation [13]. When only little knowledge is available, we can use a confidence
interval to represent the uncertain duration of a task. In this context, if some values
in the interval appear to be more probable than others, it is natural to extend the
representation to a fuzzy interval or fuzzy number [13].

In this work, following [10], triangular fuzzy numbers (TFNs) are employed to
represent uncertain durations in a JSP. By this representation, only the sum and
maximum operations are needed to calculate the completion time of each task in a
job. Then, the completion time of each job is computed via a semi-active schedule
builder [12]. This job completion time is also represented by a TFN. When com-
pletion times of all jobs have been determined, the overall completion time of the
JSP (aka makespan) is taken as the maximum completion time over all the jobs.
By taking the expected value of the overall completion time as an objective func-
tion, genetic and memetic algorithms have been successfully applied to search for a
(near-) optimal schedule to the problem [11, 14, 24].

Being a single number, an expected value cannot fully represent the overall com-
pletion time that is expressed by a triangular fuzzy number. Consequently, using the
expected value as an objective function implies an approximation of the problem
to be solved. Such approximation might, to some extent, result in the loss of in-
formation; and therefore the obtained schedule might always be different from the
true optimal one in some situations. To overcome this conspicuous drawback of the
current techniques, we have investigated a new approach based on a multi-objective
genetic algorithm.

This new approach enables us to take into account all three vertices of a TFN rep-
resenting the overall completion time in the objective function. As a consequence,
this approach considers at the same time three different scheduling problems cor-
responding to the lowest, most probable, and largest durations. With the use of a
multi-objective genetic algorithm, the proposed approach tries to obtain a schedule
that optimizes the three component scheduling problems all at the same time. In

Solving Fuzzy JSPs with Multiobjective Optimizer 199

order to verify the quality of solutions found by the proposed approach, an experi-
mental study has been carried out across different benchmark instances. Then a new
proposal on analyzing the tolerance for the imprecision of knowledge representation
is presented.

2 Job-Shop Scheduling with Uncertain Durations

2.1 Crisp Job-Shop Scheduling Problems

A general JSP [16] can be defined as scheduling a set of n jobs {J1,J2, · · · ,Jn} on
a set of m physical resources or machines {M1,M2, · · · ,Mm}, subject to a set of
constraints. For a job Ji to be completed, a series of tasks have to be done in a
predefined order. Those tasks are enumerated by an index j, and, obviously, j is
at most equal to m. The job Ji is then said to be composed of tasks θi j’s, where
j = 1,2, · · · ,m. It is noteworthy that a task denoted by θi j does not imply that it will
be processed on the j-th machine. The index j is used only for task enumeration of
the job Ji.

In such a general JSP, the predefined orders of tasks form precedence constraints;
that is, m tasks {θi1,θi2, · · · ,θim} of the job Ji, where i = 1,2, · · · ,n, have to be
sequentially scheduled. Also, there are capacity constraints; that is, each task θi j

requires the uninterrupted and exclusive use of one of the machines for its whole
processing time. A solution to this problem is a schedule s—which is an allocation
of starting times for all the tasks. Such a solution, besides being feasible (i.e. all
the constraints hold), has to be optimal according to some criteria, for instance, the
makespan is minimal [10].

Without loss of generality, let us now consider a JSP instance of size n×m (i.e.
n jobs and m machines), let p be a duration (aka processing time) matrix and v
be a machine matrix such that pi j is the processing time of task θi j and vi j is the
machine required by θi j , where i= 1,2, · · · ,n and j = 1,2, · · · ,m. Let σ be a feasible
task processing order, i.e. a lineal ordering of tasks which is compatible with a
processing order of tasks that may be carried out such that all constraints hold. A
feasible schedule s may be derived from σ using a semi-active schedule builder [17,
12]. Let Si j(σ ,p,v) and Ci j(σ ,p,v) denote the starting and completion times of the
task θi j. According to the semi-active schedule builder, the starting and completion
times can be computed as follows:

Si j (σ ,p,v) = Ci(j−1) (σ ,p,v) ∨ Crs (σ ,p,v) , (1)

Ci j (σ ,p,v) = Si j (σ ,p,v) + pi j, (2)

where θrs is the task preceding θi j in the machine according to the processing order
σ , Ci0(σ ,p,v) is assumed to be zero and, analogously,Crs(σ ,p,v) is taken to be zero
if θi j is the first task to be processed in the corresponding machine. The completion
time of job Ji will then be Ci(σ ,p,v) =Cim(σ ,p,v), and the makespan Cmax(σ ,p,v)
is the maximum completion time of any job under a given candidate schedule σ :

200 T.-D. Tran et al.

Cmax(σ ,p,v) = ∨1≤i≤n
[
Ci(σ ,p,v)

]
. (3)

For the sake of notation simplicity, we follow [10] to write Cmax(σ) when the prob-
lem (hence p and v) is fixed or even Cmax when no confusion is possible.

2.2 Modeling Uncertain Durations with TFNs

In real-life applications, it is often the case that the exact duration of a task, i.e. the
time it takes to be processed, is not known in advance. However, based on previ-
ous experience, an expert may have some knowledge, usually uncertain, about the
duration. The most straightforward representation for uncertain durations would be
a human-originated confidence interval. If some values appear to be more plausi-
ble than others, a natural extension is a fuzzy interval or fuzzy number [14]. The
simplest model for this case is a triangular fuzzy number (TFN) [19], which use an
interval

[
p1, p3

]
of possible values and a modal value p2 in between. For a TFN A,

denoted by A=(p1, p2, p3), the membership function takes the following triangular
shape:

μA(x) =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

0 , x < p1

x−p1

p2−p1 , p1 ≤ x≤ p2

x−p3

p2−p3 , p2 < x≤ p3

0 , x > p3.

(4)

In the JSP, we essentially need two operations on fuzzy quantities: the sum and
the maximum. These operations are obtained by extending the corresponding opera-
tions on real numbers using the so-called Extension Principle. However, computing
the resulting expression is cumbersome, if not intractable [10].

For the sake of simplicity and tractability of numerical calculations, we follow [7]
to approximate the results of these operations by a TFN. In other words, we evaluate
the sum and maximum operations on only three defining points of each TFN. The
approximated sum coincides with the sum of TFNs as defined by the Extension
Principle; thus, for any pair of TFNs M and N, if S = M+N denotes their sum, we
have:

S =
(
m1 + n1, m2 + n2, m3 + n3) . (5)

Unfortunately, for the maximum of TFNs, there is no such simplified expression.
For any two TFNs M and N, let F = N ∨M denote their [true] maximum, and G =
(m1∨n1, m2∨n2, m3∨n3) its approximated value, an illustration of the distinction
between the maximum and its approximation is given in Fig. 1. It is interesting to
note that such an approximated maximum can trivially be extended to the case of
more than two TFNs [13].

Besides being simple, it is clear that this approximation possesses another nice
property of preserving the support and modal value of the true maximum. It is how-
ever remarkable that, at all α-cuts, the lower and upper bounds of the approximated
maximum are either smaller than or equal to the lower and upper bounds of the true

Solving Fuzzy JSPs with Multiobjective Optimizer 201

Fig. 1 Exact (magenta) and approximated (red) maximum operations

maximum, respectively. More formally, let [f α , f α] and [gα , gα] be the α-cuts of F
and G, respectively, it holds that:

∀α ∈ [0,1], f α ≤ gα and f α ≤ gα . (6)

In possibility theory, the membership function μQ of a fuzzy quantity Q can be
interpreted as a possibility distribution on real numbers; and this allows us to define
the expected value of a fuzzy quantity. For a given TFN A =

(
p1, p2, p3

)
, a typical

model [20] for defining its expected value E[A] is given by:

E [A] =
1
4

(
p1 + 2p2 + p3) . (7)

Importantly, the expected value coincides with the neutral scalar substitute of a
fuzzy interval [28]. The neutral scalar substitute is among the most natural defuzzi-
fication procedures proposed in the literature [3]. The expected value can also be
obtained as the center of gravity of its mean value, or using the area compensation
method proposed by Fortemps and Roubens [8]. Most importantly, it induces a total
ordering≤E in the set of fuzzy intervals [3, 7]. For any two fuzzy intervals M and N,
M ≤E N if and only if E[M] ≤ E[N]. Obviously, for any two TFNs A =

(
a1, a2, a3

)

and B =
(
b1, b2, b3

)
, if ai ≤ bi ∀i, then A≤E B; the reverse, however, does not hold.

2.3 Fuzzy Job-Shop Scheduling Problems

The fuzzy JSP considered in this study is the JSP with uncertain processing times
(durations). Since processing times of operations are fuzzy intervals, the sum and
maximum operations used to propagate constraints (in Eqs. 1 and 2) are taken to be
the corresponding operations on fuzzy intervals, and approximated for the particu-
lar case of TFNs as explained in Sect. 2.2. The obtained schedule will be a fuzzy
schedule in the sense that the starting and completion times of all tasks as well as
the makespan are all fuzzy intervals. However, the task processing ordering σ that
determines the schedule s is crisp—there is no uncertainty regarding the order in
which the tasks have to be processed.

202 T.-D. Tran et al.

In order to demonstrate the graphical representation of a fuzzy JSP and a partic-
ular schedule for one of its instances, let’s consider an instance with 3 jobs and 3
machines, having the following machine allocation and fuzzy processing time ma-
trices:

p =

⎛

⎝
(3, 4, 6) (2, 3, 4) (1, 2, 5)
(1, 2, 4) (2, 3, 4) (1, 2, 3)
(2, 3, 5) (2, 3, 4) (1, 2, 4)

⎞

⎠ , v =

⎛

⎝
1 2 3
1 3 2
2 1 3

⎞

⎠ .

For a task processing order σ = (θ31, θ11, θ32, θ12, θ21, θ33, θ13, θ22, θ23), we
have the corresponding Gantt chart as shown in Fig. 2. This Gantt chart uses each
particular color for all tasks that belong to each particular job; tasks associated with
different jobs are accordingly colored differently.

Fig. 2 A sample Gantt chart for a fuzzy JSP instance

Since we could build a feasible schedule s from a feasible task processing order
σ , we would therefore restate the goal of the fuzzy job-shop problem as finding an
optimal task processing order σ , in the sense that the makespan for the schedule
derived from that task processing order is minimal.

In [10], the authors employed a single-objective genetic algorithm that is en-
hanced by a local search to optimize the expected value of the makespan. However,
the expected value does not account for the width of a makespan. For instance,
the expected value cannot distinguish between two fuzzy makespans A = (2,6,10)
and B = (4,6,8), since both have the same expected value 6, but one would think
B = (4,6,8) is better because it is less uncertain and thus it provides more accurate
information on the possible values of the makespan.

On the other hand, the approximated maximum operator has identical support and
modal value to its exact version. As a consequence, the induced fuzzy makespan
also has identical support and modal value to the exact fuzzy makespan. Thanks
to this nice property, we could try to take into consideration the three exact ver-
tices of a fuzzy makespan, instead of its approximated expected value, in searching
for an optimal schedule to the JSP. Such an idea naturally calls for the use of a
multi-objective optimization algorithm. As more information from the exact fuzzy
makespan is considered, the schedule obtained under this perspective is expected to
be more reliable and robust than those returned when considering only the modal
value or the expected value of the makespan.

Solving Fuzzy JSPs with Multiobjective Optimizer 203

3 An Evolutionary Approach to the Fuzzy JSPs

In order to apply a genetic algorithm to solving a combinatorial problem in gen-
eral and a JSP in particular, we need to define a chromosome encoding strat-
egy. Among different proposals available in the literature, the two most popular
encoding schemes are the conventional permutations (CP) [2] and permutations
with repetition (PR) [1]. In both cases, a chromosome expresses a total ordering
of all operations of the problem [26]. For example, if we have a problem with
n = 3 jobs and m = 4 machines, one possible ordering is given by the permu-
tation (θ21, θ11, θ12, θ31, θ32, θ22, θ33, θ13, θ23, θ24, θ14, θ34), where θi j repre-
sents the task j of the job i (where i = 1, 2, 3; and j = 1, 2, 3, 4). In the CP
scheme, operations are codified by the numbers 1, 2, · · · , n× m, starting from
the first job, so that the previous ordering would be codified by the chromosome
(5, 1, 2, 9, 10, 6, 11, 3, 7, 8, 4, 12). Whereas in the PR encoding scheme, an oper-
ation is codified just by its job number; hence the previous order would be given
by (2, 1, 1, 3, 3, 2, 3, 1, 2, 2, 1, 3) [26]. Also in [26], the authors have demonstrated
that PR scheme is better than the CP. Taking that result, we will use the PR encoding
scheme in this work.

After initialized randomly, each chromosome undergoes the crossover and
mutation stages. New chromosome will then be created and selected to the next
generation based on their fitness values—which are the expected makespans of the
schedule they encode—by the well-known binary tournament selection strategy. To
create new offspring, the job order crossover (JOX) [1, 12] and a simple swap mu-
tation are employed. Specifically, given any two parents, the JOX selects a random
subset of jobs from the first parent and copies the associated genes to the offspring
at the same positions as they appear in that parent. Then, the remaining genes are
taken from the second parent such that they maintain their relative ordering. The
second offspring is produced in the same manner but considering the second par-
ent first. Following the JOX, the simple swap mutation operator randomly selects
and swaps two consecutive genes that encode two different jobs (i.e. having dif-
ferent values). For the single-objective GA, the generational-with-elitism survivor
selection is employed; that is, the whole offspring population replaces the parent
population except for the best chromosome in the parent population being copied
directly to the offspring population.

The feasible search space for a JSP is usually very large; we therefore need to en-
rich GAs with some advanced algorithm that can somehow limit the feasible space
to a narrower one but still guarantee the existence of optimal schedules. The algo-
rithm proposed by Giffler and Thompson [9]—which is commonly referred to as
the G&T algorithm—is the best known algorithm for that aim. In fact, this algo-
rithm can be regarded as a transfer function that transforms a candidate schedule to
a very similar yet better one in terms of makespan. In this sense, different candi-
date schedules might be transformed to a unique better schedule by this algorithm.
In this work, for both single- and multi-objective GAs, we use the extended G&T
algorithm for the fuzzy JSP as proposed in [13].

204 T.-D. Tran et al.

Our main aim in this work is to optimize simultaneously the three vertices of a
makespan. Thus, we need to employ a technique in evolutionary multiobjective opti-
mization (EMO) to handle these three objectives all at the same time, and to evolve
a population of candidate solutions over generations in such a way that they get
gradual improvements in all objectives. With the framework presented above for a
single-objective GA, it is straightforward to extend the algorithm to a multiobjective
version by the application of one of the existing EMO techniques. Among various
EMO algorithms, the non-dominated sorting genetic algorithm (NSGA-II) [25, 5, 6]
has gained a lot of popularity in the last few years, and becomes a landmark against
which other EMO algorithms are often compared. In this work, we will there-
fore employed NSGA-II as a multiobjective optimizer to address the fuzzy JSP.
The job order crossover and simple swap mutation described above will replace
the simulated binary crossover and polynomial mutation in the original design of
NSGA-II [6].

4 Analyzing the Tolerance for Knowledge Representation

A set of experiments has been conducted to examine the ability of the proposed
approach to tolerate the imprecision inherent in representing the expert knowledge
about task processing times by TFNs. This imprecision is due to the fact that the
expert might not be completely sure about his specification of the fuzzy numbers.
In other words, the specification of a fuzzy number is fuzzy itself. The location of
the modal value as well as the support of a TFN is naturally imprecise. Accordingly,
for a certain task, the processing time might be specified by various fuzzy numbers
that are slightly different from each other. Another context can also be the case,
that is, when more-than-one experts are jointly specifying the processing times of
tasks. Obviously, they may have different knowledge about the tasks, and therefore
the TFNs specified by each of them might be different from those specified by the
others.

In the experiments, we have selected three typical benchmark instances from a
famous library of 40 instances proposed by Lawrence [18]. On the other hand, three
genetic algorithms that share common components have been implemented to en-
able a fairer comparative analysis. These algorithms are: (1) GAcrisp is the single-
objective genetic algorithm considering only the most probable processing time of
tasks, which is equivalent to a crisp JSP; (2) GAfuzzy is the single-objective genetic
algorithm considering the expected value of the fuzzy makespan as the objective
function; and (3) NSGAII is the multi-objective genetic algorithm (i.e. NSGA-II)
considering at the same time the three vertices of a fuzzy makespan as its objec-
tives. In all algorithms, we have used the binary tournament selection, the JOX with
a crossover rate of 0.85, and the simple swap mutation with a mutation rate of 0.1;
a randomly initialized population with 100 chromosomes will evolve across 100
generations.

The three benchmark instances that have been used are LA04 (10×5), LA09
(15×5), and LA18 (10×10). For each benchmark, we randomly sample 10 fuzzy

Solving Fuzzy JSPs with Multiobjective Optimizer 205

instances in the following manner. The modal value (p2) for each fuzzy process-
ing time (pi j) is sampled uniformly at random in an interval having the crisp pro-
cessing time as its center (p), with the lower and upper bounds being 95%p and
105%p. Then, the left (p1) and right (p3) extremes of that fuzzy processing time is
uniformly sampled at random in the intervals [50%p, 95%p] and [105%p, 150%p],
respectively. An example to illustrate this procedure is given in Fig. 3. In this illus-
tration, the red triangle is a randomly sampled fuzzy processing time, which has the
three vertices being sampled in the blue, violet, and green intervals.

Fig. 3 Sampling fuzzy processing time

For each benchmark, each of the ten sampled fuzzy instances is tested on the three
algorithms, repeated 10 times with different initial populations in each repetition.
With 3 algorithms tested on 3 benchmarks having 10 sampled fuzzy instances for
each, and repeated 10 runs, we have done 3×3×10×10 = 900 runs.

For GAcrisp and GAfuzzy, we obtain a single best solution in each of the runs.
This is however not the case for NSGAII; NSGAII returns a set of non-dominated
solutions in the last generation. To facilitate the comparison with GAcrisp and GA-
fuzzy, a single best solution from the obtained Pareto-optimal set must be nom-
inated. For that purpose, we calculate the expected value of each solution in the
Pareto-optimal set and select the one with the best (minimal) expected value of
the makespan. In this way, we could reach a single best solution in each run of all
the algorithms, and the results from the 10 runs can be summarized by box plots
as presented in Fig. 4 for LA04. In this figure, each box contains 10 results from
the 10 runs of a corresponding algorithm on a single sampled fuzzy instance. Also,
the three algorithms referred to as Crisp, Fuzz, and NSGAII are the GAcrisp,
GAfuzzy, and NSGAII, respectively. In addition, the ten sampled fuzzy instances
are enumerated as Fuzz Samp 1 to Fuzz Samp 10.

Taking a look at Fig. 4, it is not difficult to realize that Crisp—which is the
GA working with only the most probable task processing time in the sampled fuzzy
instances—has makespans varying from instance to instance; whereas, the other two
algorithms, i.e. Fuzz and NSGAII, are less sensitive to the random sampling. In
addition, their expected makespans are much better (lower) than those of the Crisp
on average. It should be noticed that, due to the space limitation, only the boxplot
for LA04 is presented here; the similar plots for LA09 and LA18 also exhibit com-
pletely the same trend.

206 T.-D. Tran et al.

m
ak

es
pa

n

650

700

Fuzz Samp 1 Fuzz Samp 2 Fuzz Samp 3 Fuzz Samp 4 Fuzz Samp 5

600

650

700

Fig. 4 Results on asymmetrically sampled fuzzy versions of LA04 (10×5)

The comparison between Fuzz (i.e. the GA working with the expected fuzzy
makespan) and NSGAII (i.e. the NSGA-II working with the three vertices of the
fuzzy makespan) is however not intuitive. In fact, their results are close together
for LA04 and LA18; and for LA09, their results look identical. (Notice again that
the results for LA09 and LA18 are not shown here). Besides, the boxes for Crisp
is larger than those for the other algorithms, which would suggest that under the
current experimental setting of the algorithms (100 chromosomes evolved over 100
generations), Fuzz and NSGAII converge better than Crisp. Consequently, their
results from different runs do not vary so much as those of the Crisp. Nonetheless,
we have initialized the three algorithms by the same random seeds and they also
share the same common structural components of the GA. In such a context, a more
plausible explanation could be that, taking into consideration the triangular fuzzy
processing time of tasks instead of only the most probable one, we could always
gain benefits regardless of whether the expected value or all the three vertices of a
makespan is utilized as the objective function(s).

What still remains interesting to know is how these algorithms perform on av-
erage in terms of the mean and variation of makespans over all the sampled fuzzy
instances. To answer this question, we first take the mean (or median, alternatively)
of each box, i.e. we are averaging the 10 runs. Then we calculate the mean and stan-
dard deviation of these ten means (or ten medians, alternatively). In other words,
we are averaging the results of the 10 sampled fuzzy instances. As we have run
each test only 10 times, the use of median could be a better estimate of the actual
performance of the algorithms. Respective results from these calculations are fully
presented in Table 1.

The results shown in Table 1 suggest that NSGA-II has a promising ability to
tolerate the imprecision in representing the expert’s knowledge about the fuzzy pro-
cessing time. Under different randomly sampled fuzzy processing time, the final
results of NSGA-II clearly exhibit less variation than those of GAcrisp on all the
benchmarks. However, more extensive experiments are advocated in order to draw

Solving Fuzzy JSPs with Multiobjective Optimizer 207

Table 1 Mean and standard deviation of makespans calculated on the mean/median of all
runs over all sampled fuzzy instances

Averaging over all
sampled fuzzy instances

mean over 10 runs median over 10 runs
mean std mean std

LA04
GAcrisp 655.9 11.14 642.3 19.49
GAfuzzy 614.3 6.56 614.7 5.9
NSGAII 617.4 8.34 616.8 9.34

LA09
GAcrisp 980.9 11.04 975.1 14.23
GAfuzzy 952.8 7.51 952.8 7.51
NSGAII 952.8 7.51 952.8 7.51

LA18
GAcrisp 958.8 13.3 956.3 21.28
GAfuzzy 886.7 12.09 884.5 14.3
NSGAII 894.2 8.16 891.6 9.74

a further conclusion about whether NSGA-II is better than the single-objective GA
using the expected value of the makespan as its objective function. In fact, NSGAII
has the same variation as GAfuzzy on the benchmark LA09, and a better (smaller)
variation on LA18, but a worse (larger) variation on LA04, in comparison with GA-
fuzzy.

5 Conclusions

In this work, we have investigated the application of a multi-objective genetic al-
gorithm — the NSGA-II — to solving JSPs with uncertain durations, where un-
certainty is modeled by triangular fuzzy numbers. The novelty of the investigation
is that, we have considered the three vertices of a triangular fuzzy makespan all at
the same time as three objectives of NSGA-II, rather than just using a representative
which is the expected value as in previous work.Such a new proposal is often prefer-
able to the existing approach in terms of offering the decision maker more options in
selecting a scheduling strategy according to his preference to the earliest, most prob-
able, or latest completion time. To validate the proposed multi-objective approach,
a set of experiments has been performed. Even though the simulation results on a
limited number of benchmarks do not strongly demonstrate the superiority of the
proposal, they have provided some evidence for the imprecision tolerance ability of
the obtained schedules with respect to the knowledge representation of the experts.
The results have also suggested that a more comprehensive validation on a larger
set of benchmark instances as well as a more extensive simulation would bring
about a clear insight into the difference between the proposal and other available
approaches.

208 T.-D. Tran et al.

References

1. Bierwirth, C.: A generalized permutation approach to job shop scheduling with genetic
algorithms. OR Spektrum 17(2-3), 87–92 (1995)

2. Bierwirth, C., Mattfeld, D.C.: Production scheduling and rescheduling with genetic al-
gorithms. Evolutionary Computation 7(1), 1–17 (1999)

3. Bortolan, G., Degani, R.: A review of some methods for ranking fuzzy subsets. Fuzzy
Sets and Systems 15(1), 1–19 (1985)

4. Cheng, R., Gen, M., Tsujimura, Y.: A tutorial survey of job-shop scheduling problems
using genetic algorithms—I. representation. Computers & Industrial Engineering 30(4),
983–997 (1996)

5. Deb, K., Agarwal, S., Pratap, A., Meyarivan, T.: A fast elitist non-dominated sorting
genetic algorithm for multi-objective optimization: NSGA-II. In: Schoenauer, M., Deb,
K., Rudolph, G., Yao, X., Lutton, E., Merelo, J.J., Schwefel, H.-P. (eds.) PPSN 2000.
LNCS, vol. 1917, pp. 849–858. Springer, Heidelberg (2000)

6. Deb, K., Pratap, A., Agarwal, S., Meyarivan, T.: A fast and elitist multiobjective genetic
algorithm: NSGA-II. IEEE Transactions on Evolutionary Computation 6(2), 182–197
(2002)

7. Fortemps, P.: Jobshop scheduling with imprecise durations: a fuzzy approach. IEEE
Transactions on Fuzzy Systems 5(4), 557–569 (1997)

8. Fortemps, P., Roubens, M.: Ranking and defuzzification methods based on area compen-
sation. Fuzzy Sets and Systems 82(3), 319–330 (1996)

9. Giffler, B., Thompson, G.L.: Algorithms for solving production-scheduling problems.
Operations Research 8(4), 487–503 (1960)

10. Gonzalez-Rodriguez, I., Puente, J., Vela, C.R., Varela, R.: Semantics of schedules for the
fuzzy job-shop problem. IEEE Transactions on Systems, Man and Cybernetics, Part A:
Systems and Humans 38(3), 655–666 (2008)

11. Gonzalez-Rodriguez, I., Vela, C.R., Puente, J.: A memetic approach to fuzzy job shop
based on expectation model. In: IEEE Int. Conf. on Fuzzy Systems, pp. 1–6 (2007)

12. González, M.A., Vela, C.R., Varela, R.: Scheduling with memetic algorithms over
the spaces of semi-active and active schedules. In: Rutkowski, L., Tadeusiewicz, R.,
Zadeh, L.A., Żurada, J.M. (eds.) ICAISC 2006. LNCS (LNAI), vol. 4029, pp. 370–379.
Springer, Heidelberg (2006)

13. González, M.A., Vela, C.R., Puente, J.: A genetic solution based on lexicographical goal
programming for a multiobjective job shop with uncertainty. Journal of Intelligent Man-
ufacturing 21(1), 65–73 (2010)

14. González, M.A., Vela, C.R., Puente, J., Hernández-Arauzo, A.: Improved local search
for job shop scheduling with uncertain durations. In: Nineteenth Int. Conf. on Automated
Planning and Scheduling (ICAPS 2009), pp. 154–161 (2009)

15. Gonalves, J.F., de Magalhes Mendes, J.J., Resende, M.G.C.: A hybrid genetic algorithm
for the job shop scheduling problem. European Journal of Operational Research 167(1),
77–95 (2005)

16. Jain, A.S., Meeran, S.: Deterministic job-shop scheduling: Past, present and future. Eu-
ropean Journal of Operational Research 113(2), 390–434 (1999)

17. Jensen, M.T.: Improving robustness and flexibility of tardiness and total flow-time job
shops using robustness measures. Applied Soft Computing 1(1), 35–52 (2001)

18. Lawrence, S.: Supplement to “Resource constrained project scheduling: An experimental
investigation of heuristic scheduling techniques”. Tech. rep., GSIA, Carnegie Mellon
University, Pittsburgh PA (1984)

Solving Fuzzy JSPs with Multiobjective Optimizer 209

19. Lin, F.T., Yao, J.S.: Using fuzzy numbers in knapsack problems. European Journal of
Operational Research 135(1), 158–176 (2001)

20. Liu, B., Liu, Y.K.: Expected value of fuzzy variable and fuzzy expected value models.
IEEE Transactions on Fuzzy Systems 10(4), 445–450 (2002)

21. Nakano, R., Yamada, T.: Conventional genetic algorithm for job shop problems. In: Pro-
ceedings of ICGA, pp. 474–479 (1991)

22. Park, B.J., Choi, H.R., Kim, H.S.: A hybrid genetic algorithm for the job shop scheduling
problems. Computers & Industrial Engineering 45(4), 597–613 (2003)

23. Pinedo, M.L.: Scheduling: Theory, Algorithms, and Systems, 3rd edn. Springer (2008)
24. Puente, J., Vela, C.R., González-Rodrı́guez, I.: Fast local search for fuzzy job shop

scheduling. In: Proceedings of ECAI 2010, pp. 739–744. IOS Press (2010)
25. Srinivas, N., Deb, K.: Muiltiobjective optimization using nondominated sorting in ge-

netic algorithms. Evolutionary Computation 2(3), 221–248 (1994)
26. Varela, R., Serrano, D., Sierra, M.R.: New codification schemas for scheduling with

genetic algorithms. In: Mira, J., Álvarez, J.R. (eds.) IWINAC 2005, Part II. LNCS,
vol. 3562, pp. 11–20. Springer, Heidelberg (2005)

27. Vázquez, M., Whitley, D.: A comparison of genetic algorithms for the static job shop
scheduling problem. In: Schoenauer, M., Deb, K., Rudolph, G., Yao, X., Lutton, E.,
Merelo, J.J., Schwefel, H.-P. (eds.) PPSN 2000. LNCS, vol. 1917, pp. 303–312. Springer,
Heidelberg (2000)

28. Yager, R.R.: A procedure for ordering fuzzy subsets of the unit interval. Information
Sciences 24(2), 143–161 (1981)

	Solving Fuzzy Job-Shop Scheduling Problems with a Multiobjective Optimizer
	1 Introduction
	2 Job-Shop Scheduling with Uncertain Durations
	2.1 Crisp Job-Shop Scheduling Problems
	2.2 Modeling Uncertain Durations with TFNs
	2.3 Fuzzy Job-Shop Scheduling Problems

	3 An Evolutionary Approach to the Fuzzy JSPs
	4 Analyzing the Tolerance for Knowledge Representation
	5 Conclusions
	References

