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Abstract. A rough set logic based on Heyting-Brouwer algebras HBRSL is pro-
posed as a basis for reasoning about rough information. It is an extension of
Düntsch’s logic with intuitionistic implication, and is seen as a variant of Heyting-
Brouwer logic. A Kripke semantics and natural deduction for the logic are presented
and the completeness theorem is proved.
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1 Introduction

In 1982, Pawlak proposed a rough set to represent coarse (rough) information; see
Pawlak [5, 6]. The formalization of rough information has been the subject of inves-
tigation in rough set theory which is closely related to other areas. In formal logic,
it is very important to develop a logic for rough sets.

Initial work in this direction has been done in Orlowska [3, 4]. The most signif-
icant is probably due to Düntsch [2] who proposed a propositional logic for rough
sets with an algebraic semantics based on regular double Stone algebras.

It is a famous fact that the collection of all subsets of a set constitutes a Boolean
algebra and that its logic is exactly the classical propositional logic. J. Pomykala
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and J.A. Pomykala [7] showed that the collection of rough sets of an approximation
space forms a regular double Stone algebra. Based on their results, Düntsch succeed
in developing a logic for rough sets.

There are, however, two problems with Düntsch’s logic. The first problem is that
he did not give a Kripke-type relational semantics. This means that we cannot intu-
itively understand his logic. The second problem is the lack of proof theory. Indeed
in his presentation the Hilbert system is implicit, but it is not adequate for practical
inferences.

The purpose of this paper is to develop another rough set logic which ex-
tends Düntsch’s logic with intuitionistic implication. Our approach starts with
Heyting-Brouwer logic, also known as bi-intuitionistic logic, which was proposed
by Rauszer [8], and the idea leads interesting proof-theoretic and semantical char-
acterization of the new rough set logic.

The structure of this paper is as follows. In section 2, we briefly review rough sets.
In section 3, we present an exposition of Düntsch’s logic for rough sets. In section
4, we introduce a new rough set logic called Heyting-Brouwer rough set logic with
Kripke semantics and natural deduction. We also prove the completeness theorem
based on a canonical model. The final section makes some conclusions with the
discussion on future work.

2 Rough Set

The concept of rough set was proposed by Pawlak [5]; also see Pawlak [6]. A rough
set can be seen as an approximation of a set denoted by a pair of sets, called the
lower and upper approximation of the set to deal with reasoning from imprecise
data.

We here sketch the background of rough sets. Let U be a non-empty finite set,
called the universe of objects in question. Then, any subset X ⊆U is called a concept
in U and any family of concepts in U is called knowledge about U . If R be the
equivalence relation on U , then U/R denotes the family of all equivalence classes
of R (or classification about U), called categories or concepts of R. We write [x]R
for a category in R containing an element x ∈U . If P⊆ R and P �= /0, then ∩P is also
an equivalence relation called indiscernibility relation on P, designated as IND(P).

An approximation space is a pair 〈U,R〉. Then, for each subset X ⊆U and equiv-
alence relation R, we associate two subsets, i.e.,

RX = {x ∈U : [x]R ⊆ X}, RX = {x ∈U : [x]R∩X �= /0}.

Here, RX is called the lower approximation of X , and RX is called the upper ap-
proximation of X , respectively. A rough set is designated as the pair 〈RX ,RX〉. In-
tuitively, RX is the set of all elements of U which can be certainly classified as
elements of X in the knowledge R, and RX is the set of elements which can be
possibly classified as elements of X in the knowledge R. Then, we can define three
types of sets, i.e.,



Heyting-Brouwer Rough Set Logic 137

POSR(X) = RX (R-positive region of X),

NEGR(X) =U−RX (R-negative region of X),

BNR(X) = RX −RX (R-boundary region of X).

These sets enable us to classify our knowledge. Pawlak [6] contains comprehensive
account of rough sets.

3 Rough Set Logic

Düntsch [2] developed a propositional logic for rough sets inspired by the topolog-
ical construction of rough sets using Boolean algebras. His work is based on the
fact that the collection of all subsets of a set forms a Boolean algebra under the set-
theoretic operation, and that the collection of rough sets of an approximation space
is a regular double Stone algebra. Thus, we can assume that regular double Stone
algebras give a semantics for a logic for rough sets.

Here, we need to survey Düntsch’s work. To understand his logic, we need some
concepts. A double Stone algebra DSA is denoted by 〈L,+, ·,∗.+,0,1〉with the type
〈2,2,1,1,0,0〉 satisfying the following conditions:

(1) 〈L,+, ·,0,1〉 is a bounded distributed lattice.

(2) x∗ is the pseudocomplement of x, i.e.,

y≤ x∗ ⇔ y · x = 0.

(3) x+ is the dual pseudocomplement of x, i.e.,

y≥ x+ ⇔ y+x = 1.

(4) x∗+x∗∗ = 1,x+ · x++ = 0

DSA is called regular if it satisfies the additional condition: x ·x+ ≤ x+ x∗. Let B be
a Boolean algebra, F be a filter on B, and

〈B,F〉= {〈a,b〉 | a,b ∈ B,a≤ b,a+(−b) ∈ F}

We define the following operations on 〈B,F〉 as follows:

〈a,b〉+ 〈c,d〉 = 〈a+c,b+d〉,
〈a,b〉 · 〈c,d〉 = 〈a · c,b ·d〉,
〈a,b〉∗ = 〈−b,−b〉,
〈a,b〉+ = 〈−a,−a〉.

If 〈U,R〉 is an approximation space, the classes o R can be viewed as a complete sub-
algebra of the Boolean algebra B(U). Conversely, any atomic complete subalgebra
B of B(U) yields an equivalence relation R on U by the relation:

xRy ⇔ x and y are contained in the same atom of B,

and this correspondence is bijective. If {a} ∈ B, then for every X ⊆U we have:

If a ∈ RX , then a ∈ X ,



138 S. Akama, T. Murai, and Y. Kudo

and the rough sets of the corresponding approximation space are the elements of the
regular double Stone algebra 〈B,F〉, where F is the filter of B which is generated by
the union of the singleton elements of B.

Based on the construction of regular double Stone algebras, Düntsch proposed a
propositional rough set logic RSL. The language L of RSL has two binary connec-
tives ∧ (conjunction), ∨ (disjunction), two unary connectives ∗,+ for two types of
negation, and the logical constant 	 for truth.

Let P be a non-empty set of propositional variables. Then, the set Fml of for-
mulas with the logical operators constitutes an absolutely free algebra with a type
〈2,2,1,1,0〉.

Let W be a set and B(W ) be a Boolean algebra based on W . Then, a model M of
L is seen as a pair (W,v), where v : P→ B(W )×B(W) is the valuation function for
all p ∈ P satisfying:

if v(p) = 〈A,B〉, then A⊆ B.

Here, v(p) = 〈A,B〉 states that p holds at all states of A and does not hold at any
state outside B.

Düntsch relates the valuation to Lukasiewicz’s three-valued logic by the follow-
ing construction. For each p ∈ P, let vp : W → 3 = {0, 1

2 ,1}. v : P→ B(W )×B(W )
is defined as follows:

v(p) = 〈{w ∈W : vp(w) = 1},{w ∈W : vp(w) �= 0}〉.

In addition, Düntsch connected the valuation and rough sets as follows:

vp(w) = 1 if w ∈ A,
vp(w) = 1

2 if w ∈ B\A,
vp(w) = 0 otherwise.

Given a model M = (W,v), the meaning function mng : Fml→ B(W )× B(W) is de-
fined to give a valuation of arbitrary formulas in the following way:

mng(	) = 〈W,W 〉,
mng(p) = v(p) for p ∈ P.

If mng(φ) = 〈A,B〉 and mng(ψ) = 〈C,D〉, then

mng(φ ∧ψ) = 〈A∩C,B∩D〉,
mng(φ ∨ψ) = 〈A∪C,B∪D〉,
mng(φ∗) = 〈−B,−B〉,
mng(φ+) = 〈−A,−A〉.

Here,−A denotes the complement of A in B(W ). We can understand that the mean-
ing function assigns the meaning to formulas.

A formula A holds in a model M = 〈W,v〉, written M |= A, if mng(A) = 〈W,W 〉.
A set Γ of sentences entails a formula A, written Γ � A, if every model of Γ is
a model of A. Düntsch proved that RSL is sound and complete with respect to the
above semantics, where he seemed to assume a Hilbert system as a proof theory.
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4 Heyting-Brouwer Rough Set Logic

As noted in section 1, Düntsch did not provide a Kripke semantics for his logic. In
addition, his Hilbert system seems to be abstractly presented. To overcome these
difficulties, we introduce a new logic, i.e., Heyting-Brouwer rough logic denoted
HBRSL whose language is the one of RSL with intuitionistic implication →. The
addition of→ is essential in that we can construct a rough set logic as a variant of
Heyting-Brouwer logic.

Heyting-Brouwer logic is the system founded on Heyting algebras and Brouwe-
rian algebras. Heyting algebra 〈L,∨,∧,→,0,1〉 is a lattice with the bottom 0, the top
1, and the binary operation called implication→ satisfying a∧b≤ c ⇔ a≤ b→ c.
¬a = a→ 0 is called the pseudocomplement of a. Heyting algebra is an algebraic
model for intuitionistic logic in which Heyting (intuitionistic) negation is denoted
by ¬.

The dual of Heyting algebra is called Brouwerian algebra 〈L,∨,∧,−<,0,1〉 is a
lattice with 0 and 1, and the binary operation called dual implication −< satisfying
x−< y ≤ z ⇔ x ≤ y∨ z. −a = 1−< a is called the dual pseudocomplement of
a. Brouwerian algebra is an algebraic model for dual intuitionistic logic in which
Brouwerian (dual intuitionistic) negation is denoted by −.

Heyting-Brouwer logic HBL is an extension of positive intuitionistic logic with
implication and dual implication (and intuitionistic negation and dual intuitionistic
negation, if needed). Rauszer [7] extensively studied proof and model theory for
Heyting-Brouwer logic.

We are now ready to turn to an exposition of a new rough set logic called Heyting-
Brouwer rough set logic denoted by HBRSL. The language of HBRSL is that of RSL
with intuitionistic implication→, truth 	 and falsity ⊥. We write atomic formula
by p,q,r, ... and arbitrary formula by A,B,C, ..., respectively.

Note that ∗ and + denote intuitionistic-like negation and dual intuitionistic-like
negation, respectively. We here say intuitionistic-like and dual intuitionistic-like
negation, because they do not correspond to intuitionistic and dual intuitionistic
negation in the sense of Rauszer. The addition of→ is essential in that it enables us
to work out an elegant theoretical foundation for HBRSL. Of course, one could also
add −< to HBRSL, but its addition may not be important for practical purposes.

We start with a Kripke semantics for HBRSL, which is a modification of that for
HBL in Rauszer [7]. A Kripke model for HBRSL is a tuple M = 〈W,R,V 〉. Here,
W is a non-empty set of worlds. R is a binary relation on W , which is reflexive
and transitive, and directed, i.e., ∃v∀w(wRv), dual directed, i.e., ∃v∀w(vRw), and
bridged, i.e., ∀w∀v(wRv ⇒ w = v or ∀u(wRu ⇒ w = u)) for w,v,u ∈W . V is a
valuation function from W × At to {0,1}, where At is a set of atomic formulas,
satisfying that V (w,	) = 1 and V (w,⊥) = 0 for any w ∈W .

Then, we define the truth relation |= such that V (w, p) = 1 ⇔ w |= p and
V (w, p) = 0 ⇔ w �|= p. Here, w |= p reads “p is true at w” and w �|= p reads “p
is not true at w”, respectively. The truth relation |= is then defined for any formula
A,B as follows.
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w |= A∧B ⇔ w |= A and w |= B
w |= A∨B ⇔ w |= A or w |= B
w |= A→ B ⇔ ∀v(wRv and v |= A ⇒ v |= B)
w |= ∗A ⇔ ∀v(wRv ⇒ v �|= A)
w |=+A ⇔ ∃v(vRw and v �|= A)

Although HBRSL has no dual implication −<, it can be added to HBRSL and inter-
preted as follows:

w |= A−< B ⇔ ∃v(vRw and v |= A and v �|= B)

In the Kripke model, both persistency (P) and dual-persistency (DP) with respect to
|= and �|= hold:

(P) ∀w∀v(w |= p and wRv ⇒ v |= p)
(DP) ∀w∀v(w �|= p and vRw ⇒ v �|= p)

for any atomic p. We write w |= Γ to mean that for all formulas in Γ are true at
w. We say that a formula A is valid, written |= A, if it is true for all worlds for all
models.

Lemma 1. For any formula A, both (P) and (DP) hold:

∀w∀v(w |= A and wRv ⇒ v |= A),
∀w∀v(w �|= A and vRw ⇒ v �|= A).

Proof. By induction A.
Next, we describe a proof theory of HBRSL denoted NHBRSL using natural

deduction in a sequential form. NHBRSL is formalized by axiom and rule. Let Γ ,Δ
be sets of formulas, A,B,C,D be formulas. An expression of the formΓ � A is called
a sequent. If Γ = {A1, ...,An}, then Γ � B iff (A1∧ ...∧An)→ B. When Γ is empty,
Γ � A is written as � A. Then, a rule is of the form:

Γ1 � A1....Γi � Ai

Δ � B

which says that if Γ1 � A1, ...Γi � An (premises) holds then Δ � B (consequent) holds.
An axiom can be regarded as the rule without premises.

There are two types of rules, i.e., introduction rule and elimination rule. An in-
troduction rule introduces a logical symbol in the consequent, and an elimination
rule eliminates a logical symbol in the consequent. We denote, for example, the in-
troduction rule for ∧ by (∧I) and the elimination rule for ∧ by (∧E), respectively.
Additionally, we use some special rules. A proof is constructed as a tree in which all
leaves are axioms, and in this case the formula in the root is a formula to be proved.
We write �NHBRSL A when A is provable in NHBRSL.

Below are axioms and rules for NHBRSL. Γ is a (possibly empty) set of formulas
and A,B,C,D are formulas, respectively.
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Natural Deduction System NHBRSL

Axioms

(A1) Γ ,A � A (A2) Γ ,⊥ � A
(A3) Γ � 	 (A4) � ∗A∨∗∗A
(A5) +A∧++A � (A6) Γ ,A∧+A � A∨∗A
(A7) ∗+A � A

Rules
Γ � A Γ � B
Γ � A∧B

(∧I)
Γ � A∧B
Γ � A

Γ � A∧B
Γ � B

(∧E)

Γ � A
Γ � A∨B

Γ � B
Γ � A∨B

(∨I)
Γ � A∨B Γ ,A �C Γ ,B �C

Γ �C
(∨E)

Γ ,A � B
Γ � A→ B

(→ I)
Γ � A Γ � A→ B

Γ � B
(→ E)

Γ ,A �
Γ � ∗A (∗I) Γ � A Γ � ∗A

Γ � ⊥ (∗E)
D � 	 A �C

D �+A
(+I)

Γ �+A Γ ,	 � A
Γ � B

(+E)

Here, we can dispense with rules for ∗, since ∗A is defined as A→⊥. Observe
that the condition in (+I), namely D in the premise D � 	 and in the consequent
D �+A and A in the premise A �C must be a single formula, not a set of formulas,
is crucial to our formalization. One could also describe the rules for dual implication
−< as follows:

D � A B �C
D � A−< B

(−< I)
Γ � A−< B Γ ,A � B

Γ �C
(−< E)

The natural deduction system with axioms (A1)−(A3) and rules for ∧,∨,∗ is for
intuitionistic propositional logic Int, in which ∗ can be identified with intuitionistic
negation ¬.

If we delete the axiom (A6),(A7) and rules for (→), the natural deduction sys-
tem NHBRSL0 for the logic based on double Stone algebras is available. A natural
deduction system NHBRSL1 is obtainable from NHBRSL0 by adding (A6).

Lemma 2. The following formulas are provable in NHBRSL.

(i) �NHBRSL A→	
(ii) �NHBRSL ⊥→ A

(iii) �NHBRSL ∗(+A∧++A)

(iv) �NHBRSL (A∧+A)→ (A∨∗A)
(v) �NHBRSL A↔∗+A

Here, A↔ B abbreviates (A→ B)∧ (B→ A).

Next, we present the soundness result of HBRSL. As noted above, ∗ is
intuitionistic-like negation and + is dual intuitionistic-like negation. The fact is
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technically important here. To validate (A4), we need the condition of directedness.
Logics stronger than intuitionistic logic but weaker than classical logic are called
the intermediate logics or superintuitionistic logics.

Intuitionistic logic with the axiom called the weak law of excluded middle:
¬A∨¬¬A is the intermediate logic often denoted by LQ; e.g., see Akama [1]. Simi-
larly, the condition of dual directedness is needed to validate (A5). The intermediate
extensions of dual intuitionistic logic did not seem to be fully studied in the litera-
ture. The condition of bridge is added for the validity of (A6).

Theorem 1 (soundness). �NHBRSL A ⇒ |=NHBRSL A

Proof. It can be proved by checking that all axioms are valid and all rules preserve
validity. Most cases are immediate from the soundness proof for intuitionistic logic.
Checking of rules is trivial and omitted. For axioms, the validity of (A1),(A2),(A3),
and (A7) are obvious. Thus, we here only consider (A4),(A5) and (A6).
(A4): Suppose (A4) is not valid. Then, there is a Kripke model satisfying that w �|=
∗A∨∗∗A for some w. From the truth definition of ∗, we have that w �|= ∗A and w �|=
∗ ∗A which is equivalent to the following:

∃v(wRv and v |= A) and ∃v(wRv and ∀u(vRu ⇒ u �|= A)).

From the first conjunct, v |= A holds. Since R is directed, ∃u∀v(vRu). By persistency
(P), we have u |= A. The second conjunct says that u �|= A, which contradicts u |= A
from the first conjunct. Consequently, (A4) is shown to be sound.
(A5): Suppose (A5) is not valid. Then, we have a Kripke model satisfying that w |=
+A∧++A for some w. From the truth definition of +, we have:

∃v(wRv and v �|= A) and ∃v(wRw and ∀u(uRv ⇒ u |= A)).

From the first conjunct, v �|= A holds. By the dual directedness of R, i.e., ∃u∀v(uRv),
together with the dual persistency (DP), u �|= A is derived. But it contradicts with the
second conjunct u |= A. Consequently, (A5) is a sound rule.
(A6): It suffices to see the validity of A∧+A � A∨∗A. Suppose A∧+A � A∨∗A is
not valid. Then, there is a Kripke model satisfying that w |= A∧+A but w �|= A∨∗A
for some w, which is equivalent to the following:

w |= A and ∃v(vRw and v �|= A) and w �|= A and ∃u(wRu and u |= A).

Since R is bridged, ∀w∀v(wRv ⇒ w = v or ∀u(wRu ⇒ w = u)) holds. We must
consider two cases. First, if the condition (wRv ⇒ w = v) in the bridge condition
holds, then the first and second conjuncts give contradiction. Second, if the condition
(wRu ⇒ w = u) in the bridge condition holds, then the third and fourth conjuncts
give contradiction. From these considerations, we obtain the fact that (A6) is sound.

Next, we prove the completeness of HBRSL by means of canonical model. Our
method for proving completeness is a suitable modification of the one used in Kripke
semantics for intuitionistic logic. We need some preliminary definitions. If Γ =
{A1, ...,An},Δ = {B1, ...,Bm}, then we set

∧
Γ = A1∧ ...∧An,

∨
Δ = B1∨ ...∨Bm.

The pair (Γ ,Δ) is consistent iff there are no finite subsets Γ0 ⊂ Γ and Δ0 ⊂ Δ such
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that �NHBRSL
∧
Γ0 → ∨

Δ0, where
∧

/0 = 	,∨ /0 = ⊥. Γ is consistent iff (Γ , /0) is
consistent. A pair (Γ ′,Δ ′) is an extension of a pair (Γ ,Δ) iff Γ ⊆ Γ ′ and Δ ⊆ Δ ′.

A set Γ of formulas is saturated if the following conditions hold: (i) Γ is
consistent, (ii) Γ �NHBRSL A ⇒ A ∈ Γ , (iii) Γ �NHBRSL A∨ B ⇒ Γ �NHBRSL

A or Γ �NHBRSL. If Γ ��NHBRSL A, then Γ can be extended to saturated Γ ′ ⊃ Γ such
that Γ ′ ��NHBRSL A by standard construction.

For our setting, we generalize the notion of saturated set for the pair of sets of
formulas defined above. Let T,S be sets of formulas of the language of HBRSL. The
pair (T,S) is saturated iff the following hold:

T ∩S = /0
A∧B ∈ T ⇒ A ∈ T and B ∈ T
A∨B ∈ T ⇒ A ∈ T or B ∈ T
A→ B ∈ T ⇒ A ∈ S or B ∈ T
∗A ∈ T ⇒ A ∈ S or ⊥ ∈ T
+A ∈ T ⇒ 	∈ T and A ∈ S
A∧B ∈ S ⇒ A ∈ S or B ∈ S
A∨B ∈ S ⇒ A ∈ S and B ∈ S
A→ B ∈ S ⇒ A ∈ T and B ∈ S
∗A ∈ S ⇒ A ∈ T and ⊥∈ S
+A ∈ S ⇒ 	∈ S or A ∈ T

We are now ready to define a canonical model M c = 〈W c,Rc,V c〉. Here, W c

is a set of all sets Γ = T ∪ S where (T,S) is a saturated pair. Rc is ⊆ satisfying
∃Δ∀Γ (Γ ⊆ Δ),∃Σ∀Γ (Σ ⊆ Γ ), and ∀Γ∀Δ(Γ ⊆ Δ ⇒ Γ = Δ or ∀Σ(Γ ⊆ Σ ⇒
Γ = Σ)). V c(Γ , p) ⇔ p ∈ Γ for atomic p. We can then define |=c for any formula
as described before.

Lemma 3 is a key lemma to prove completeness.

Lemma 3. For any Γ ∈W c and any formula: we have:

Γ |=c A ⇔ A ∈ Γ

Proof. The cases in which A is of the form B∧C,B∨C,B→C or ∗B are proved as
in intuitionistic logic. It thus suffices to only consider the case in which A =+B.

Γ |=c +B ⇔ ∃Δ (Δ ⊆ Γ and Δ �|=c B)
⇔ ∃Δ (Δ ⊆ Γ and B �∈ Δ )
⇔ +B ∈ Γ

Here, we must prove that ∃Δ(Δ ⊆ Γ and B �∈ Δ) ⇔ +B ∈ Γ . For (⇐), suppose
+B ∈ Γ . Then, by the definition of saturated pair, we have that 	 ∈ T and B ∈ S.
In Γ = T ∪S set T = Δ , then Δ ⊆ Γ follows. Since T ∩S = /0, from B ∈ S we have
B �∈ Δ = T . Then, Δ ⊆ Γ and B �∈ Δ hold.

For (⇒), suppose ∃Δ(Δ ⊆ Γ and B �∈ Δ). Set Γ = {D}, then D �NHBRSL 	 by
the axiom (A3). As B �∈ {D}, B �NHBSRL ⊥ by saturatedness. By applying (I→) to
the axiom (A2) B,⊥ �NHBRSL C, we have that B �NHBRSL ⊥→C. By (→ E), B �C
follows. Using the rule (+I) enables us to obtain D �+B. Thus, +B ∈ Γ holds.

Then, we can conclude the completeness of HBRSL:
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Theorem 2 (completeness). Γ �NHBRSL A ⇔ Γ |= A.

Proof. For soundness (⇒), Γ �NHBRSL A iff �NHBRSL Γ → A. Then, applying theo-
rem 1 to it leads the soundness.

For completeness (⇐), we use contrapositive argument. Assume that Γ ��NHBRSL

A. Then, there is a saturated pair Γ ′ = (T,S). Thus, the completeness follows by
Lemma 3.

We can similarly establish completeness results of HBRSL0 and HBRSL1 by con-
sidering the corresponding conditions of Kripke models. Our result also implies the
Kripke completeness of Düntsch’s logic. If we add dual intuitionistic implication to
HBRSL, we can show the completeness proof for Heyting-Brouwer logic and some
of its extensions.

5 Conclusion

We proposed a rough set logic called the Heyting-Brouwer rough set logic HBRSL,
which extends Düntsch’s rough set logic with intuitionistic implication. A model
theory was supplied by a Kripke model to give an intuitive semantics, and proof
theory based on natural deduction is presented. We established a completeness result
by means of a canonical model. Thus, an alternative foundation for rough set logics
was outlined in this paper. We believe that our logic can serve as a logical framework
for reasoning about rough information.

There are some interesting research topics related to our logic. Although we use a
natural deduction system as a proof theory, other proof methods like sequent calcu-
lus and tableau calculus can be explored. In particular, cut-free sequent formulation
seems important to advance a practical proof method.

It would be also possible to investigate other types of logics based on double
Stone algebras with Kripke or algebraic semantics. For instance, introducing differ-
ent types of implications is one of the important problems.

Another line of work in this research will be the modal and three-valued charac-
terizations of rough set logics. A modal approach would be promising because many
connections of intuitionistic (and intermediate) logic and modal logic are known. A
three-valued approach is also interesting. For example, a model theory based on
three-valued Lukasiewicz algebra appears to provide some extensions of rough set
logics.

Acknowledgments. Thanks are due to an anonymous referee for useful comments and
suggestions.
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