
Chapter 8
Boundary Conditions, Time Reversal
and Measurements

J.C. Zambrini

Abstract This contribution is divided into two parts. In the first one, we argue that
the idea of time reversal in Quantum Mechanics is considerably more subtle than
generally thought. For example, it is not even possible to make sense of Feynman’s
reinterpretation of the Heisenberg uncertainty principle without a good grasp of it.
In the second part, more speculative, we discuss the importance of “randomizing”
some times, in Quantum Mechanics, as a preliminary step before the expected con-
ciliation with General Relativity.

1 The (Deterministic) Time We Know

There are basically two levels of analysis, in theoretical physics, of the issue of
time-reversal (TR) symmetry:

(A) It is a trivial issue.
(B) It is one of the most vexing issues of Theoretical Physics.

There is no need to allude to the devastating problems associated with the Wave
Function of the Universe to see how limited is the first opinion. As a matter of fact,
it is sufficient to pick the most offensively trivial system of classical mechanics: the
one dimensional free particle (of mass 1), whose second order (Newton’s) dynami-
cal law is

d2

dt2
q = 0 (1)

According to (A) there is no more in the statement that this law is invariant
(or symmetric) under time reversal than the trivial observation:

“If q(t) solves (1) so does q̂(t) = q(−t), ∀t ∈ R”.

One can as well define a time-reversal operator T , acting on the state of the system,
here ξ = (q,p) ∈ S = R

2 by T (q,p) = (q,−p). Then, since the Hamiltonian flow
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(with Hamiltonian h(q,p) = 1
2p2) is given by Ut : S → S, (q,p) �→ (q + pt,p),

the fact that T q̂(t) = q(t) and T p̂(t) = −p(t) can be rewritten as

U−t = T −1UtT (2)

Of course, the time reversed (q̂(·), p̂(·)) are not really used physically. Instead,
the previous formula allows us to extend the dynamical information available about
the future, i.e. t ∈ [0,∞[, into the past t ∈] − ∞,0], given the initial condition, i.e
the state, at t = 0. (The initial time is, of course, arbitrary.)

This way to think about time symmetry of physical laws of nature is, in fact, uni-
versal since it is thought that (almost) all fundamental laws are invariant under time
reversal for the appropriate operation T, which depends on the considered domain of
physics (for instance, in classical electrodynamics, if ( �E, �B) denotes, respectively,
the electric and magnetic fields then T ( �E, �B) = ( �E,− �B).

A substantial part of the discussions on physical interpretations of the time-
reversal symmetry amounts to ponder over the operational meaning, if any, of the
mathematical procedure given before. Is it physically realistic to transfer our dy-
namical information from the future to the past. (Or the other way around!) What is
the meaning of such a transfer in the lab?

In any time reversal, initial conditions become final ones and this may easily
conflict with our naïve (intuitive) concept of causality. It is a trivial observation
that initial boundary conditions are, practically speaking, more easy to deal with
than final ones. But one tends to use excessively this argument to eliminate (or
ignore) some solutions of the laws of motion which are precisely needed to show
the invariance of the theory under TR! An example is the propagation of classical
waves where we tend to ignore the advanced solution and retain only the retarded
one, more in accordance with “causality”.

We can, of course, give at once boundary conditions at two different times but
the associated boundary value problem is, in general, considerably more subtle than
the traditional (Cauchy) problem. Consistency conditions are needed between those
data, and we may easily loose the existence and uniqueness of the solution.

Let us come back to our trivial mechanical example, but regarded now as a
boundary value problem. Since nothing in it depends on the choice of initial in-
stant we shall consider any time interval I = [s, u] and pick a reference time t in
between. According to the classical Hamilton–Jacobi theory, we have now a dual
description of the dynamics on I , when the boundary data of (1) become

q(s) = x and q(u) = z (3)

According to the first description, say the “causal” one, we have to consider a
family of solutions of the (free) Hamiltonian equations with (past) boundary condi-
tions:

q(s) = x, p(s) = ∇S∗
s (x) (4)

where S∗
s is regular enough to define an initial Lagrangian manifold in phase space

(we shall need, in fact, singular manifold for our example). This family of solutions
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is described by the action with initial condition, regarded as function of the final
point (q, t):

S∗
L(q, t) = S∗

s (x) +
∫ q,t

x,s

Ldτ (5)

for any t in I , where L is the Lagrangian of the system (for our Hamiltonian

h(q,p) = p2

2 , L(q, q̇) reduces to 1
2 |q̇|2 and the integral is computed along the char-

acteristics connecting x and q(t) = q , q being regarded as variable). As a function,
S∗

L solves the Hamilton–Jacobi (HJ) equation
{

∂S∗
L

∂t
+ h

(
q,∇S∗

L

) = 0 t ∈ I

S∗
L(q, s) = S∗

s (q)
(6)

Clearly, this first order equation chooses definitely an arrow of time. But how
come, since the resulting free dynamics does not? Even stranger, the time-symmetric
Newton’s equation results from the gradient of the “irreversible” HJ equation! There
is no paradox here, however, but the explanation may be more interesting and gen-
eral than expected. In the Hamilton–Jacobi framework, we had to ignore half of the
boundary conditions (3), the future one. But we could have done a symmetric se-
lection and keep the future information of (3). Then the relevant family of solutions
would be described by an action with this final condition and regarded as a function
of the initial point (q, t):

SL(q, t) = Su(z) +
∫ z,u

q,t

Ldτ (7)

that is, the solution of {
− ∂SL

∂t
+ h(q,−∇SL) = 0 t ∈ I

SL(q,u) = Su(q)
(8)

This HJ equation can be regarded as the time reversed of (6) on I , because
dS∗

L = Ldt and dSL = −Ldt . But, since our trivial boundary value dynamical sys-
tem (1) and (3) has clearly an unique solution t �→ q(t), ∀t ∈ I , some consistency
condition is needed between (6) and (8). It is the following.

For any t ∈]s, u[ along this solution

p∗
(
q(t), t

) = ∂SL

∂q
(x, s, q, t)

∣∣∣∣
q=q(t)

= −∂SL

∂q
(q, t, z, u)

∣∣∣∣
q=q(t)

= p
(
q(t), t

)
(9)

expressing the smoothness of the trajectory, ∀t ∈ I . Notice that because our condi-
tions (3) at the boundary ∂I are trivial, here, we can just use Hamilton’s principal
function and, then, drop the ∗ on the l.h.s. action without ambiguity.

So our trivial (time homogeneous) boundary value problem (1) and (3) involves,
in the Hamilton–Jacobi perspective, two distinct momenta needed to take the arbi-
trary given data at ∂I into consideration. And our second order homogeneous prob-
lem can be solved via two time dependent first order problems. Since the Hamilton
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Fig. 1 The two distinct
momenta (or velocities) at a
given time t

Fig. 2 The track of a
quantum particle according to
Heisenberg [1]

principal function reduces here to S(q1, t1, q2, t2) = 1
2

|q2−q1|2
t2−t1

, they can be written
as a left hand differential d∗q(τ) = q̇(τ−) dτ where (cf. Fig. 1)

{
d∗q = q−x

τ−s
dτ = px∗(q, τ ) dτ s ≤ τ < t

q(t) = q
(10)

and a right hand differential dq(τ) = q̇(τ+) dτ :
{

dq = z−q
u−τ

dτ = pz(q, τ ) dτ t < τ ≤ u

q(t) = q
(11)

The consistency relation (9) determines uniquely the solution of (1) and (3).
According to Heisenberg we are not allowed to preserve any such space-time

view for the quantum version of our trivial dynamical system, i.e for the one dimen-
sional quantum free particle. We are even told why this is impossible; because the
track of our quantum particle looks like (see [1]) Fig. 2.

But, 20 years after Heisenberg, Feynman has shown that this radicalism was not
necessary [2]. One should just relax the classical hypothesis of smoothness of the
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trajectories. The building block of the Feynman reinterpretation is the concept of
transition element (or amplitude) on I :

〈ϕ|Iψ〉SL
=

∫ ∫
ψs(x)K(x,u − s, z)ϕ̄u(z) dx dz

=
∫ ∫

Ωz
x

∫
ψs(x)e

i
�
SL[ω(·);u−s]ϕ̄u(z)Dωdx dz (12)

where SL is the classical action, regarded now as a functional along Feynman’s
quantum paths ω ∈ Ωz

x = {ω ∈ C([s, u];R) such that ω(s) = x, ω(u) = z}, I de-
notes the identity operator, � is Planck’s quantum of action and Dω denotes the
symbolic product

∏
s≤τ≤u dω(τ).

The definition (12) involves boundary conditions {ψs,ϕu}, two states in L2(R)

at two different times. When those states are arbitrary, the transition element
has no probabilistic interpretation; it is just a (complex) scalar product of vec-
tors. But we can, in particular, propagate a single state ψs to its future value by
ϕu = exp(− i

�
(u − s)H)ψs = ∫

ψs(x)K(x,u − s, z) dx, where H is the quantiza-
tion of the Hamiltonian h. Then the integrand of (12) reduces to Born’s probability
density of the initial (or final) wave function. The integral kernel propagating for-
ward (causally!) the initial probability |ϕs(x)|2 in I is

PF (s, x, t, dz) = (
ϕ̄s(x)

)−1
K(x,u − s, z)ϕ̄u(z) dz (13)

for all x s.t. ϕs(x) = 0. But we could as well propagate backward in time Born’s
final probability density |ψu(z)|2, via the kernel

PB(s, dx,u, z) = ψs(x)K(x,u − s, z)
(
ψu(z)

)−1
dx (14)

Notice that if we were allowed to regard t �→ ω(t) as a well defined Markovian
(stochastic) process, then, using (13) and (14), the integrand of Feynman’s transi-
tion element (12) would satisfy a “detailed balance condition”, one of the statistical
expressions of equilibrium:

dx
∣∣ϕs(x)

∣∣2
PF (s, x,u, dz) = PB(s, dx,u, z)

∣∣ψu(z)
∣∣2

dz (15)

Of course, now, the classical consistency condition (9) in I cannot be true any-
more since it means that the realized (extremum) trajectory is smooth everywhere
in I . Moreover it uses a (dual) concept of momentum apparently obsolete in the
quantum context.

Still a quantum deformation of (9) is available. It has been discovered by Feyn-
man, in a time discretized way, as the following kinematical property (see [3]):

〈
ω(t)

(
ω(t) − ω(t − 	t)

	t

)〉
SL

−
〈(

ω(t + 	t) − ω(t)

	t

)
ω(t)

〉
SL

= i� (16)
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where 〈·〉SL
denotes the “expectation” with respect to the above-mentioned “pro-

cess”. If we were allowed to take the limit 	t → 0 in (16) then the first time deriva-
tive in (16) should be a left hand one, like p∗(q, t) before, and the second one a
right hand derivative like p(q, t). It is, therefore intuitively clear that the only way
the difference on the l.h.s. of (16) could be non-zero, for our free quantum dynam-
ics, is when t �→ ω(t) becomes very irregular. This is, indeed Feynman’s way to
show that the quantum trajectories are Brownian like. The beauty of (16) is that it is
the space-time version of QP −PQ = i�, i.e. of Heisenberg’s uncertainty principle
motivated by Fig. 2!

What is definitely missing for a probabilistic understanding of Feynman’s ideas
is the stochastic process itself and, therefore, the expectation 〈·〉SL

. But using (13)
and (14) it is a simple exercise to find its profile: ω(t) should be a diffusion process

(for Hamiltonians like the one considered here) with drift, or mean velocity, i�
∇ψ̄t

ψ̄t

(or −i�
∇ψt

ψt
) and diffusion constant i�, like the r.h.s. of (16). Following St. Anselm,

however, we regard the existence as an important part of the perfection and so we
feel compelled to look for what can really makes sense in Feynman’s point of view.

Besides the existence problem there is another one showing us the way: to give
boundary conditions at ∂I is not usual in the classical theory of stochastic processes.
The future data excludes, for instance, the basic class of processes with independent
increments (like Brownian or Poisson processes). On the other hand, the separation
between past and future is sharp, here; this suggests that the process should still be
Markovian. Coming back to our trivial example, we shall keep the classical drifts
of (10) and (11) and just add a mathematically decent noise to Feynman’s picture,
namely, for t ∈ I

{
d∗X(t) = √

�d∗W∗(t) + px∗
(
X(t), t

)
dt

X(u) = z
(17)

and
{

dX(t) = √
�dW(t) + pz

(
X(t), t

)
dt

X(s) = x
(18)

where W∗ and W denote, respectively, Brownian motions adapted to our dual de-
scription. The diffusion coefficient

√
� is imposed by the above mentioned profile.

Anyone of these (Itô’s stochastic) differential equations can be solved explicitly.
Their common solution is a Gaussian process, whose mean solves our classical
boundary value problem (1) and (3). Its covariance is the one computed by Feynman
using ω(t), after the substitution t �→ it (the “Euclidean” or “Wick” rotation). The
(“Bernstein”) process X(t) is Markovian, not of independent increment, but invari-
ant under time reversal in the same sense as (1). The probabilistic counterpart of
Feynman’s kinematical property (16) in terms of the well defined expectation E[·]
of X(t) is

E
[
X(t) · px∗

(
X(t), t

) − pz
(
X(t), t

) · X(t)
] = � (16’)
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If we relax the boundary conditions δx, δz at ∂I and give, instead, a pair of (strictly
positive) probability densities at time s and u, the construction survives and pro-
vides all the well defined processes realizing Feynman’s idea (12) of transition ele-
ment on I . This is also the case if our starting classical particle is not free anymore
but subjected to a force F(q) = −∇V (q), for most of the potentials V of physical
interest (see [4]).

It is interesting to reconsider Feynman’s approach to the one-slit experiment in
this new perspective. The introduction of a slit in the picture corresponds to a mea-
surement of position of the (free) particle. To say that a particle, starting originally
form the origin, has to be localized in the slit at a given time T in the future is
a conditioning, in the traditional probabilistic sense [5, 6]. Then one verifies that
this conditioning introduces indeed an irreversibility in an otherwise perfectly time-
symmetric framework [7].

In general, any such process X(t), t ∈ I , associated with an Hamiltonian H

as before can be found in an interval A with the probability P(X(t) ∈ A) =∫
A

η∗η(q, t) dq where η and η∗ are positive solutions of

{
−�

∂η∗
∂t

= Hη∗

η∗(q, s) = η∗
s (q)

and

{
+�

∂η
∂t

= Hη

η(q,u) = ηu(q)
(19)

One checks easily that the drifts of X(t) are the Euclidean translation of Feynman’s
ones. This is not a surprise since its above probability constitutes manifestly the
Euclidean counterpart of (Born’s) probabilistic interpretation of the state ψt . In this
sense, our boundary value problem (19) mimics the way probability arises in quan-
tum theory. Is it accidental?

A crucial theoretical test is to look for symmetries. Here, this means that knowing
the pair (η, η∗) determining X(t) we look for another one (ηα, ηα∗) determining
Xα(t), for any α in R. But then, clearly, we should have, ∀t ∈ I ,

1 =
∫
R

ηη∗ dq =
∫
R

ηη∗ ηα

η

η∗
α

η∗ dq ≡ E
[
hαhα∗

(
X(t), t

)]

The probabilists are familiar with such transformations X(t) → Xα(t). They are
called Doob’s h-transforms (our notations in the last expectation are not arbitrary)
and allow us to produce a large collection of Euclidean counterpart of quantum
unitary transformations. The first integrals associated with those symmetries are
martingales of X(t). The concept of martingale is the closest analogue of constant
of motion for a stochastic process. It is also, interestingly enough, the cornerstone
of the mathematical theory of stochastic processes [5, 6].

The good surprise of this way to interpret Feynman is that it enables us to guess
new quantum symmetries. Let us consider again our free particle. A particular one-
parameter family of solutions of the second equation (19), for instance, is

ηα(q, t) = e
1
�
(αq− α2

2 t)η(q − αt, t), ∀α ∈R (20)
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The simplest free solution is η = 1. Then the drift of Feynman’s associated “diffu-
sion” is zero, so we know that he is talking really about the Brownian motion. The
relation (20) can be understood as ηα = e−αN 1, for N = t ∂

∂q
− q

h̄
. ηα(q, t) is what

the probabilists call the “exponential martingale”. So

hα(q, t) = ηα(q, t) = e
1
�
(αq− α2

2 t) = 1+ α

�
q+ α2

2�2

(
q2 −�t

)+ α3

3!�3

(
q3 −3�tq

)+· · ·

By successive differentiations with respect to α, at α = 0, we find the collection
of martingales of the Brownian motion. The quantum translation of this observation
is that

Q(t), Q2(t) + i�t, Q3(t) + 3i�tQ(t), etc. (21)

for Q(t) the position observable, in the sense of Heisenberg representation, are con-
stants of the free quantum motion. Trivial as it is, this remark if far from being
common knowledge.

The perspective sketched here (cf. [7] for more about this “Euclidean Quantum
Mechanics” founded on Schrödinger’s suggestion in [8], forgotten until the mid-
1980s but periodically rediscovered since then: cf. L. Schulman’s contribution in
this volume, for example) suggests that it is indeed possible to think about quantum
physics in probabilistic terms but that this is a rather subtle exercise. In part because,
after A.N. Kolmogorov, the theory of stochastic processes itself has developed with
an arrow of time in it, which is not natural in a quantum perspective. But the subtle
exercise in question can be illuminating, for this reason, in probability theory and in
quantum physics, since it leads us to question some generally accepted ideas.

One of the rewards of such a line of thought is precisely the fact that, on the
Euclidean side, the problem belongs to regular statistical mechanics. It has been
shown long ago (cf. [4] and references therein) that the unique difference with the
“usual” construction of Markovian processes like X(t) lies in our boundary con-
ditions. As said before, to determine X(t), t ∈ I we need, in general, to give a
probability density ρs at t = s and another one, ρu at t = u. From this follows,
indeed, a quantum-like structure suggesting, as we said, new results on the physi-
cal side. Is it a modest expression of the “Eternal Universe” mentioned by C. von
der Malsburg? Or is it that, somehow, to understand better the structure of the prob-
abilistic interpretation of quantum mechanics, one needs to think about a classical
experiment already done, in our past? After all, it is not true that, for such a finished
experiment, the nonlocality is much less shocking?

2 The (Random) Time We Would Like to Know

This section will be more speculative but will try to touch upon the heart of our
subject matter: not only the direction of time, but its own nature.

It is not necessary, here, to elaborate on the fact that the two pillars of Modern
Physics, i.e. General Relativity and Quantum Physics are irreconcilable. In fact,
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short after the heroic period of creation of the second theory, it was frequent to read
very critical comments about the status of time in elementary Quantum Mechanics.
For example, E. Schrödinger:

Cette notion (beaucoup trop classique) de temps est un grave manque de
conséquence dans la mécanique quantique . . . abstraction faite des postulats
de relativité. [8, p. 293]

or J. von Neumann emphasizing the:

Chief weakness of Quantum Mechanics: its non-relativistic character.
While the space coordinate is represented by an operator, the time is an or-
dinary number parameter. [9, p. 354]

It may seem strange that, 70 years after, this issue is manifestly not regarded
anymore as worrying by most scientists (but cf. [10–12], for example). Is it, as sug-
gested by T. Kuhn, that Theoretical Physics did not leave, yet, one of these long
periods of “normal science” where the community tends to ignore difficulties seri-
ously challenging accepted theories?

As well known, the difficulty in question is already obvious if one tries to un-
derstand the possible interpretations of Heisenberg’s uncertainty principle when the
canonically conjugate observables of position Q and momentum P are replaced by
time T and energy H .

It was shown by W. Pauli, in his famous 1958 Encyclopedia of Physics article,
that since the first version of uncertainty relation requires the spectra of both Q

and P to be unlimited and the one of H should be, realistically, bounded below,
T cannot be an observable in von Neumann sense.

Although the names of some famous scientists are associated with various at-
tempts to puzzle out Pauli’s observation, it is fair to say that no indisputable progress
has been made on this basic issue.

But what about Feynman’s formulation of Heisenberg’s uncertainty principle?
It is revealing that the father of path integral does not have anything like (16) to
suggest as counterpart of the informal (Hilbert space) time-energy commutation re-
lation. And, indeed, he complains that his framework “does not exhibit the important
relationship between the Hamiltonian and time ([3, Sect. 7.7]).

Taking for granted that (16’) is the mathematically consistent version of (16) it
is clear that, to make sense of such a time-energy relation, we should have some
random times to start with.

There is little hope to ever construct those directly in the Hilbert space framework
of Quantum Theory, for two kinds of reasons. The first one is that we do not know
at all where to look for observables which are not (denselly defined) self-adjoint
operators in Hilbert space, i.e. von Neumann’s observables.

The second one is related with the very shaky status of probability theory in
Quantum Physics. This framework is supposed to describe quantitatively the ulti-
mate kind of unpredictable phenomena, only accessible to a statistical analysis. And,
indeed, the theory does this quite well, with a remarkable level of a precision in its
statistical predictions. But, as far as probability theory is concerned, Quantum Me-
chanics in an embarrassing mystery: all the ingredients needed to construct a decent
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mathematical model of random experiments are missing. The above-mentioned ex-
istence problem with Feynman’s “stochastic process” is, unfortunately, typical. The
situation gets only worse when more complicated quantum systems are considered.

On the other hand, when the stochastic processes make sense, the concept of
random time is a tool immediately available. According to Kai Lai Chung, in point
of fact, “this is the single tool that separates probabilistic methods from others,
without which the theory of Markov processes would lose much of its strength and
depth” ([7, p. 80]).

Feynman is by far the theoretical physicist who tried hardest to turn Quantum
Mechanics and Quantum Field Theory into theories involving fundamentally the
tools of Stochastic Analysis instead of the ones of elementary (Newton–Leibniz)
calculus [3, 13]. The failure of his “probabilistic” approach (the “Path Integral” ap-
proach) is very relative. Relative, in particular, to the scientific community in charge
of its assessment. Many physicists do not understand why an approach allowing
systematically to guess new results is not taken more seriously by some mathe-
maticians. Those, however, would invariably answer that none of Feynman’s path
integrals (or processes) do exist.

Our hunch is that, using the well defined counterpart of Feynman’s approach
sketched in the first section, it will be possible to construct specific random times,
corresponding to realistic experimental conditions.

Now, of course, such times would not be the quantum times we would like to
know. Our Euclidean counterpart is only an analogue of Quantum Mechanics. But
it seems to be a pretty good analogue; for example the “new” quantum constants
of the free motion listed in (21) have been discovered directly via our probabilistic
analogy. As a matter of fact, they are a very special case of a quantum Theorem
of Noether providing systematically richer informations on quantum symmetries
than the textbooks results on that matter (cf. [7, 14]). The same should happen with
random times. Although such times are, indeed, immediately available on the theo-
retical (Euclidean) side, the algorithms involved in their computations are sophisti-
cated, plunging into the heart of the theory of Markov processes and properties of
their trajectories. Nothing, certainly, that Hilbert spaces should help us to discover.

If, as expected, a natural randomization of some specific times is possible, this
new breach into determinism could open the way to the more radical ones needed
to think simultaneously about Quantum Physics and General Relativity.
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disciplinary meeting. Their initiative was exceptional and I hope that it will not remain so.
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