
Chapter 2
A Simple Model for Decoherence

Alessandro Teta

Abstract The meaning of decoherence as a (practically) irreversible process in
Quantum Mechanics is discussed. Also a simple two-particle model is introduced
consisting of a heavy (the system) and a light (the environment) particle and the
decoherence effect is explicitly computed on the heavy particle due to the presence
of the light one.

It is generally believed that one of the main distinctive character of Quantum Me-
chanics is the superposition principle.

From the mathematical point of view, it simply means that if one has two pos-
sible states for the system then also any their (normalised) linear combination is a
possible state, due to the fact that the state space of the system has a linear struc-
ture.

The key point is that a superposition state in general describes entirely new phys-
ical properties of the system which cannot be argued from the knowledge of the
component states separately.

A typical example considered here is the case of a particle in one dimen-
sion described, in the position representation, by the superposition state ψt(x) =

1√
2
(ψ+

t (x) + ψ−
t (x)), where ψ+

t , ψ−
t are two normalised and orthogonal states at

time t ≥ 0. If one computes the probability distribution of the position of the particle
one obviously has
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(
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t (x)ψ−

t (x)
)

(1)

Then if the supports of the two states are not disjoint, the interference term

Re(ψ+
t (x)ψ−

t (x)) is relevant and it is responsible for the interference fringes ob-
served in real experiments involving microscopic objects, e.g. the two slits experi-
ment.
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It is remarkable that, due to the presence of the interference term, one cannot
interpret the state ψt as a classical statistical mixture of identical particles which are
in ψ+

t or ψ−
t with probability one half.

The possibility of producing such interference is one of the most relevant charac-
teristic behaviours of the microscopic world which is accurately described applying
the rules of Quantum Mechanics.

On the other hand the Schroedinger equation has universal validity and in par-
ticular it can be used to describe systems consisting of a macro object coupled with
a micro object. In such a situation it is easily seen that a superposition state of the
micro object can be transferred to the macro object as a result of the dynamical
evolution.

This means that the theory predicts the existence of superposition states and the
highly non-classical interference effects also for macro objects which, of course, are
not usually observed in our everyday life.

This apparent paradox can be explained if one realises that superposition states
are in fact fragile and then they can be destroyed even by a weak interaction with an
environment. Such dynamical and practically irreversible mechanism of suppression
is usually called decoherence.

In the last 30 years the phenomenon of decoherence has been described in the
physical literature using many different models (see e.g. [4] and references therein).

Nevertheless only few of these results are mathematically proved and then a fur-
ther analysis in the direction of a rigorous study of simple models in which the
approximations used are controlled is required.

Here we shall describe a first attempt of rigorous derivation of the decoherence
effect in a two particles system ([2], see also [3] for results in the same direction).

The basic tool for the analysis is the representation of the state by a density
matrix, i.e. a positive, trace-class operator ρt , with Trρt = 1, acting on the Hilbert
space of the system H.

If in particular ρ2
t = ρt , i.e. ρt is a projector on some ξt ∈ H, then one recovers

the usual description in terms of the wave function ξt and ρt is called a pure state.
In the general case ρ2

t �= ρt the state is called a mixture.
The difference between pure and mixed states can be understood in terms of the

entropy S(ρt ) = −Trρt logρt ; for a pure state the entropy vanishes (correspond-
ing to the maximal information available on the system) while it is strictly positive
for a mixture (corresponding to our degree of knowledge on the preparation of the
state).

If one considers an isolated particle described by the superposition (pure) state
ψt introduced above, the corresponding density matrix in the position representation
is given by the kernel

ρ
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The last two terms in (2) are usually called off-diagonal terms and they are re-
sponsible for the interference effects (in fact the probability distribution for the po-
sition ρ

p
t (x, x) reduces to (1)).

On the opposite side one can considers the mixed state for the same particle

ρm
t

(

x, x′) = 1

2
ψ+

t (x)ψ+
t

(

x′) + 1

2
ψ−

t (x)ψ−
t

(

x′) (3)

obtained from (2) by eliminating the off-diagonal terms. In such a case all the in-
terference effects are cancelled and one can say that the particle is in ψ+

t or in ψ−
t

with probability one half, i.e. one has a classical statistical mixture of ψ+
t and ψ−

t ,
corresponding to our ignorance on the preparation of the state.

In this sense we can say that a quantum particle described by ρm
t exhibits a clas-

sical behaviour.
Notice that S(ρm

t ) = log 2, which is the entropy associated to a classical bit with
two possible levels of probability one half.

Between the two extreme cases ρ
p
t and ρm

t one can have an intermediate situation
in which the off-diagonal terms are non-vanishing but reduced with respect to the
pure case.

If one considers the more general situation of a particle interacting with an
environment it is convenient to introduce the notion of reduced density matrix.
Let x, y be the coordinates of the particle and the environment, respectively,
and let ρt (x, y, x′, y′) the corresponding density matrix in the position represen-
tation.

If the environment is considered practically not observable, we can only be inter-
ested in the expectation values of (bounded) observables Ax relative to the particle,
i.e. operators acting only on the x variable.

Then, applying the standard rules of Quantum Mechanics, one has

〈Ax〉ρt = Tr
(

Axρt

) = Trx
(

Axρ̂t

)

, ρ̂t

(

x, x′) =
∫

dyρt

(

x, y, x′, y
)

(4)

where Trx denotes the trace with respect to the coordinates of the particle and
ρ̂t is the reduced density matrix. It is now clear that ρ̂t is the basic object
for the investigation of the dynamics of the particle in presence of the environ-
ment.

More precisely, we shall consider an initial state for the particle plus environment
in a product form ρ0 = ρ

p

0 ⊗ ρe
0, where ρ

p

0 is a superposition (pure) state of the
particle of the form (2) and ρe

0 is a state for the environment.
The reduced density matrix of the system at time zero is ρ̂0 = ρ

p

0 and, clearly,
S(ρ̂0) = 0. Due to the interaction between the particle and the environment, at any
time t > 0 the density matrix ρt is no longer a product state and the reduced density
matrix ρ̂t is in general a complicated mixture, with S(ρ̂t ) > 0 (i.e. in the transition
from ρ̂0 to ρ̂t there is an obvious loss of information since the degrees of freedom
of the environment have been neglected).

We shall say that the environment has produced a decoherence effect on the par-
ticle if, after some short time t , ρ̂t takes a form very close to (3).
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Such a kind of result can be proved under suitable condition on the environ-
ment.

We shall consider here the extremely simple case of one heavy particle (the sys-
tem) interacting with a light particle (the environment) via a delta potential in di-
mension one.

The self-adjoint hamiltonian in H = L2(R2) describing the two particles is

H = − �
2

2M
Δx − �

2

2m
Δy + α0δ(x − y), α0 > 0 (5)

and we consider the initial state

ρ0
(

x, y, x′, y′) = ρ
p

0

(

x, x′)ρe
0

(

y, y′), ρe
0

(

y, y′) = φ0(y)φ0
(

y′) (6)

where ρ
p

0 (x, x′) is given in (2) and

ψ±
0 (x) = 1√

σ
f

(
x ± R0

σ

)

e±i
P0
�

x, φ0(y) = 1√
δ
g

(
y

δ

)

,

σ, δ,R0,P0 > 0, f, g ∈ C∞
0 (−1,1) (7)

According to (6), (7), the heavy particle is initially in a superposition of two
wave packets, one localised in −R0 with momentum P0 and the other localised in
R0 with momentum −P0; the light particle is localised in the region around the
origin.

The model hamiltonian (5) has been considered for the sake of simplicity and
the solution of the corresponding Schroedinger equation can be explicitly computed
(see e.g. [6]).

In fact we are interested in the case in which the mass ratio ε = m
M

is small and
in such a regime the evolution becomes particularly simple.

Since the dynamics is linear, we can analyse the evolutions of the wave packets
ψ+

0 , ψ−
0 separately.

If we consider the wave packet ψ+
0 coming from the left, we expect that it prop-

agates almost freely and, after a time of order τ = MR0
P0

, it reaches the origin.
Then, due to the presence of the δ potential, the wave function of the light parti-

cle is partly reflected far away to the right and partly is transmitted, i.e. it remains
localised around the origin.

Obviously, the wave packet ψ−
0 coming from the right produces an analogous

effect, i.e. part of the wave function of the light particle is reflected far away to the
left and the remaining part is transmitted.

This means that, after a time of order τ , only the transmitted parts of the wave
function of the light particle have a common support.

The result is that in the reduced density matrix of the heavy particle ρ̂t the diag-
onal terms are almost unaffected while the off-diagonal terms are reduced and the
reduction is stronger if the transmitted wave is smaller.



2 A Simple Model for Decoherence 19

The above intuitive picture can be proved in a rigorous way. In fact, assuming
ε � 1 and, moreover, δ � R0, σ � 1

α
� R0, where α ≡ mα0

�2 , for t > τ one has
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U0
t ψ±

0 = e−i t
�
H0ψ±

0 , H0 = − �
2

2M
Δ, Λ =

∫

dk
∣
∣φ̃0(k)

∣
∣
2 k2

α2 + k2
(9)

and the small error E can be explicitly estimated, uniformly in t > τ (see [2] for
details).

Notice that the parameter Λ is less than one and it represents the fraction of
transmitted wave for a particle initially in φ0 and subject to a point interaction of
strength α.

Thus the effect of the light particle is to reduce the off-diagonal terms and this
means a (partial) decoherence effect on the heavy particle.

The model considered here is clearly too simple and it can only have the peda-
gogical meaning to show explicitly a dynamical mechanism producing decoherence.

A more reasonable model of environment would be a gas of N (non-interacting)
light particles.

In this more general situation we can expect that the effect of each scattering
event is cumulative and then we would get the same expression (8) with Λ replaced
by ΛN which, for N large, means complete decoherence.

A similar argument has been heuristically justified in [5], while a rigorous deriva-
tion starting from the Schroedinger equation for the N -particle system is given
in [1].
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