
Chapter 19
The Arrow of Time and Information Theory

Vieri Benci

Abstract In this paper first we present the notions of Boltzmann entropy and Shan-
non entropy and some notions from information theory. Also we define some new
concepts such as Combinatorial Entropy and Computable Information Content. In
the second part, we argue that the mechanisms which determine the two arrows of
time (the thermodynamic arrow and the evolution arrow) can be modeled and better
understood using these concepts.
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1 Introduction

1.1 The Arrows of Time

The problems related to time are as old as human thinking. One of the most fas-
cinating and unsettling problem is the arrow of time. In modern science the most
meaningful indicators of flowing of time and of its direction are essentially two:

• (II law) The second law of thermodynamics: the passing of time destroys infor-
mation. Time is Kronos who devours his offspring. Everything is consumed by
the flow of time, and, at the very end, the universe will be an undifferentiated
mass where even light and darkness will be hopelessly mixed together.

• (Evolution) Historical, biological, cosmological evolution: the passing of time
creates information. In cosmological evolution, light is separated from darkness;
galaxies, stars, and planets take their form; in biological evolution life arise from
mud and bacteria, protista, fungi, plants, and animals evolve in always more com-
plex forms; and then intelligence appears and evolution continues in history and
gives origin to more and more complex civilizations.

V. Benci (B)
Dipartimento di Matematica Applicata “U. Dini”, Università degli Studi di Pisa, Largo Bruno
Pontecorvo 1/c, 56127 Pisa, Italy
e-mail: benci@dma.unipi.it

S. Albeverio, P. Blanchard (eds.), Direction of Time,
DOI 10.1007/978-3-319-02798-2_19,
© Springer International Publishing Switzerland 2014

233

mailto:benci@dma.unipi.it
http://dx.doi.org/10.1007/978-3-319-02798-2_19


234 V. Benci

These two aspects of the arrow of time are apparently contradictory with each
other. But there is more to say: both of them are in contradiction with the funda-
mental laws of physics.

In fact the fundamental laws of physics are reversible: they do not distinguish past
and future. From a mathematical point of view, the law of physics are expressed by
differential equations (e.g. the equations of Hamilton, Maxwell, Schrödinger, Ein-
stein, etc.). The “state” of any physical system at time t is described by a func-
tion u(t) which solves the equations involved. A peculiarity of all these equations
lies in the fact that if u(t) is a solution, also u(−t) is a solution. This is the meaning
of the word “reversibility”, at least in this paper. This fact, in the physical world
has the following meaning: if u(t) describes the evolution of a physical system,
also u(−t) represents a possible evolution of the same system (with different ini-
tial conditions). This fact is in evident contradiction with experience. Nobody is
born old and gets younger until becoming a child and finally disappearing in an
egg.

1.2 The Aim of This Paper

Today, these apparent contradictions are understood reasonably well. The relation
between the second law and the reversibility of the fundamental law of physics has
been explained by Boltzmann. His theory has received and still receives many ob-
jections, but it is essentially correct (at least in my opinion and in the opinion of
most scientists). The evolution arrow and its apparent contradiction with the second
law, in recent times, has been object of a lot of attention and the study of dissipative
systems explains reasonably well the underlying mechanisms. Nevertheless, still
there are many subtle questions to be settled from many points of view: philosophi-
cal, physical and mathematical. One of these questions is related to the meaning of
“information” and its relation with the many notions of “entropy”. In this paper, we
propose new and more precise definitions of these concepts which help, we hope, to
clarify some delicate points on this matter. My point of view arises from the consid-
eration that these concepts are universal and should be applicable to many contexts
and not only to physical systems. Moreover, in any model in which the existence
and coexistence of the two arrows of time are present, the basic definitions must
be relatively simple. These ideas are supported by the empirical experience which
we get from computer simulations. If we simulate a dynamical system of mixing
type (such as the cat map) and we start with an ordered distribution of the initial
points, we experience a growth of disorder which we can assimilate to the growth
of entropy in a physical systems. On the other hand, if we simulate an irreversible
dynamical system (such as the Conway “game of life”) we see complex structures
to appear. We experience a sort of creation of order and information. If creation and
destruction of information can be simulated so easily, the right mathematical defini-
tions which can describe ad eventually explain these phenomena, must be relatively
simple.



19 The Arrow of Time and Information Theory 235

2 Review of the Main Notions

2.1 Clausius and Boltzmann Entropy

One of the classic formulations of the second law of thermodynamics is the follow-
ing:

“The entropy of an isolated system grows until the thermodynamical
equilibrium which corresponds to the maximum of entropy”

In this case, by entropy, we mean the thermodynamic entropy defined (by Clau-
sius in 1850) as follows:

S =
∫

dQ

T

According to the theory of Boltzmann the thermodynamic entropy can be defined
from the law of classical dynamics. Boltzmann’s theory is based on the distinction
between macrostate and microstate.

The macrostate is defined by the property accessible to the observer, namely
by the quantity which can be experimentally measured; the microstate is given by
its complete description, namely the position and the velocity of all the elemen-
tary components of the system. For example, if we are dealing with a perfect gas,
the macrostate is described by volume, pressure and temperature; the microstate
is described by the position and the velocity of each molecule with a given accu-
racy.

According to Boltzmann, the entropy of the system can be defined by the follow-
ing equation:

S = k lnW (1)

where k is the Boltzmann constant and W is the number of microstates compatible
with the given macrostate.

This theory is consistent with many theoretical and experimental facts and it is
accepted by the majority of scientists.

2.2 Shannon Information and Entropy

Let A be an alphabet, namely a finite collection of symbols (letters).
Given a finite string σ (namely a finite sequence of symbols taken in our alpha-

bet), the intuitive meaning of quantity of information I (σ ) contained in σ is the
following one:

I (σ ) is the length of the smallest binary message from which you can
reconstruct σ.
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Thus, formally

I : Σ(A) → N

I is a function from the set of finite strings in a finite alphabet A which takes values
in the set of natural numbers. There are different notions of information and some
of them will be discussed here. The first one is due to Shannon.

In his pioneering work, Shannon defined the quantity of information as a statis-
tical notion using the tools of probability theory. Thus in Shannon framework, the
quantity of information which is contained in a string depends on its context. For
example the string ′pane′ contains a certain information when it is considered as
a string coming from a given language. For example this world contains a certain
amount of information in English; the same string ′pane′ contains much less Shan-
non information when it is considered as a string coming from the Italian language
because it is much more common (in fact it means “bread”). Roughly speaking, the
Shannon information of a string σ is given by

I (σ ) = log2
1

p(σ)

where p(σ) denotes the probability of σ in a given context. The logarithm is taken
in base two so that the information can be measured in binary digits (bits).1

If in a language the occurrences of the letters are independent of each other, the
information carried by each letter is given by

I (ai) = log
1

pi

where pi is the probability of the letter ai . Then the average information of each
letter is given by

H =
∑

i

pi log
1

pi

(2)

Shannon called the quantity H entropy for its formal similarity with the Boltz-
mann’s entropy. Now, we will discuss the reason of this similarity.

2.2.1 Shannon Versus Boltzmann Entropy

Consider a set of n particles and suppose that the phase space X of each particle is
divided in L small cells. We can label any cell by a letter ai of an ideal alphabet.
Then the microstate of the system (with the accuracy given by the grain of our

1From now on, we will use the symbol “log” just for the base 2 logarithm “log2” and we will
denote the natural logarithm by “ln”.
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partition of the phase pace) can be represented by a string of letters. Namely the
string

a1a2a3 . . .

represents the state in which the particle 1 is in the cell a1, the particle 2 is in the
cell a2, and so on. At this point it is possible to compute the Boltzmann entropy of
our microstate; it is given by log2 W where W is the set of all the configurations of
our system. Clearly two configurations must be considered as belonging to the same
macrostate if they have the same number of particles npi in the cell aj . Then the
number W takes the following form:

W = n!∏N
i=1 ni !

(3)

where n := ∑L
i=1 ni is the number of particles, ni is the number of particles in the

cell ai .
We can give a nice form to the number W using the following approximation

given by the Stirling formula:

logn! = n logn + n log e + O(logn) (4)

Using this formula we get

logW = log
n!∏N

i=1 ni !
= logn! −

L∑
i=1

logni !

= n logn + n log e −
L∑

i=1

ni logni − e

L∑
i=1

ni + O(logn)

= n logn −
L∑

i=1

ni logni + O(logn) � n logn −
L∑

i=1

ni logni

Now, setting pi = ni/n, we get the equation

S = logW ∼= n

L∑
i=1

pi log
1

pi

(5)

where the number pi can be interpreted as the probability that a particle lies in the
cell ai . The formal similarity between (2) and (5) is evident. The main difference
consists of the factor n. This is because the entropy (5) represents the “information”
necessary to describe the full microsystem, while the (2) represents average the
information of each letter. The full information of a typical message of n letter is
given by nH . In this comparison we can identify a language L with a macrostate,
provided that we define a language as the set of all messages (strings) of length n

which contain exactly npj times the letter aj . A more appropriate definition of
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language (or, information source) will be given in the next section. Anyhow, in this
heuristic description, the Shannon entropy could be defined as

H = logW

n

Thus we have the following scheme:

Boltzmann Shannon
A set of the cell alphabet
n number of particles length of the message
L macrostate language
σ microstate string
W microstates in L strings in L
S(L) logW −
H(L) − 1

n
logW

(6)

Notice that the factor n which distinguish S(L) from H(L) makes S(L) an “ex-
tensive” measure while H(L) is an average measure. For example, in a particles gas,
H(L) is the average Boltzmann entropy for particle. This point is source of many
misunderstanding when we use the word “entropy” in an interdisciplinary context.
In the following we will define different “kind” of entropies; in order to avoid these
misleading facts, we will use the letters S and H as extensive and average “mea-
sures”, respectively.

If we assume that the strings are very long, the statistical properties of a language
can be studied letting n → ∞. This fact, in our comparison correspond in taking the
thermodynamic limit.

2.2.2 A Mathematical Definition of Shannon Entropy

In this section we will give the exact mathematical definition of Shannon entropy.
We will define Shannon entropy in a new way, which emphasizes its similarity with
Boltzmann entropy and which will be useful later when we will introduce the notion
of Computable Information Content. We refer to [1] for more details on this point.

Let σ be a finite string of length n. We set

S0(σ ) = logW(σ) (7)

where W(σ) is the number of strings which can be obtained by σ permuting its
letters. Notice that

S0(σ ) ≤ |σ | · log |A|
where A is the alphabet of σ , namely the set of letters which appear in σ . Moreover
S0(σ ) = 0 iff σ is constant.

We will call a parsing of σ a partition of σ in shorter strings w which we will
call words. For example if



19 The Arrow of Time and Information Theory 239

σ = “betubetube”

two parsings of σ are given by

α1 = (be, tube, tube)

α2 = (bet, u,bet, u, e)

Given a parsing α, we will denote by W(α) the number of strings which can be
obtained permuting the words of α. In our example we have

W(α1) = 3;
W(α2) = 5!

2! · 2! · 1! = 30

Given a parsing α, we will call dictionary of α the set V (α) of words w (with
|w| > 1) which appear in α. In our example we have

V (α1) = {be, tube}
V (α2) = {bet}

We define the combinatorial entropy of σ as follows:

Scom(σ ) = min
α

[
logW(α) +

∑
w∈V (α)

S0(w)

]
(8)

Notice that Scom(σ ) ≤ S0(σ ). In fact, if α contains only one-letter words, we
have logW(α) = logW(σ) and V (α) = ∅. Since Scom(σ ) is obtained taking the
minimum over all the partitions, it turns out that Scom(σ ) ≤ S0(σ ).

Given any string σ we denote by α(σ) the partition which gives the minimum
in (8) and set V (σ) = V (α(σ )); if two partitions give the same minimum value, we
take the one which corresponds to the smaller dictionary.

In our example, we have α(σ) = α1, V (σ) = V (α1) = {be, tube}
Scom(σ ) = logW

(
α(σ)

) + S0(be) + S0(tube)

= log 3 + log 2 + log 4! ∼= 7.169

We define the average combinatorial entropy of σ in the following way:

H(σ) = Scom(σ )

|σ |
Now let ω be an infinite string and let ωn ∈ An be the finite string obtained taking
the first n digits of ω and set

H(ω) = max lim
n→∞ H

(
ωn

)

Since H(σ) ≤ Scom(σ )
|σ | ≤ log |A| the maximum limit is finite.
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Let AN be the set of all the infinite string in the alphabet A, let μ be a prob-
ability measure on AN and let T : AN → AN be the shift map (defined as fol-
lows: (T σ )i = σi+1). μ is called invariant (or stationary) if for every A ⊂ AN,
μ(A) = μ(T −1(A)). If μ is invariant the couple (AN,μ) is called an information
source.

Now, we can give a definition of Shannon entropy which can be proved to be
equivalent to the usual one.

Definition 1 The Shannon entropy of (AN,μ) is defined by

hμ =
∫
AN

H(ω)dμ

It is also possible to prove that for μ-almost every string ω ∈AN the limit

H(ω) = lim
n→∞H

(
ωn

)
(9)

exists (see [1]). Clearly, if μ is ergodic, H(ω) = hμ for μ-almost every string
ω ∈AN.

2.3 Information Content

As we have seen the Shannon notion of information relies strongly on the notion of
probability and this is very disappointing for the aims of this paper for the following
reasons:

• we think that from an epistemological point of view the definition of probability
presents many problems and does not help to clarify the nature of notion such as
“entropy” and irreversibility

• we think that the notion of information is primitive and that the notion of proba-
bility should be derived by it

• our goal is to give definition which can be applied also to cellular automata and
to computer simulations and this objects are strictly deterministic; thus the notion
of probability should be avoided at least as primitive concept.

Moreover the Shannon information is context dependent and also this fact is in
contrast with our aims. However, there are measures of information which depend
intrinsically on the string and not on its probability within a given context. We give
a general definition of information content which apply to many different contexts.

Definition 2 Let

U : Σ(A) → Σ
({0,1})

be an injective map and set

IU (σ ) = ∣∣U(σ)
∣∣
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The function

IU : Σ(A) → N

is called information function relative to U if, for any infinitely long string ω for
which the limit (9) exists, we have

HU(ω) ≤ H(ω) (10)

where

HU(ω) = min lim
n→∞

IU (ωn)

n
(11)

The number IU (σ ) will be called U -information content of σ .

U(σ) can be thought as a coding of the string σ in binary alphabet. (10) relates
the information content to the Shannon entropy. Actually, (10) represents a kind
of optimality of the coding U . The U -information content IU allows to define the
U -entropy, HU(ω) of a single infinite string ω by (11). HU(ω) represents the av-
erage information content of the string ω and it des not depend on any probability
measure.

HU(ω) allows to give an exact relation between the Shannon entropy hμ and the
information content IU :

Theorem 3 Let (AN,μ) be an information source with entropy hμ; then

hμ =
∫

HU(ω)dμ

Proof See [1]. �

Of course there are many functions U and IU which satisfy Definition 2; for in-
finitely long strings they are equivalent in the sense of Theorem 3. However, they
can be very different from each other when we consider finite strings, particularly
when these strings are generated by a non-stationary information source. In the fol-
lowing we will discuss some of them.

2.4 Algorithmic Information Content

One of the most important of the information functions is the Algorithmic Informa-
tion Content (AIC). In order to define it, it is necessary to define the notion of partial
recursive function. We limit ourselves to give an intuitive idea which is very close to
the formal definition. We can consider a partial recursive function as a computer C

which takes a program P (namely a binary string) as an input, performs some com-
putations and gives a string σ = C(P ), written in the given alphabet A, as an output.
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The AIC of a string σ is defined as the shortest binary program P which gives σ as
its output, namely

IAIC(σ,C) = min
{|P | : C(P ) = σ

}
In this case the function U(σ) of Definition 2 is just the shortest program

which produces σ . We require that our computer is a universal computing machine.
Roughly speaking, a computing machine is called universal if it can simulate any
other machine. In particular every real computer is a universal computing machine,
provided that we assume that it has virtually infinite memory. For a precise defini-
tion see e.g. [7] or [5]. We have the following theorem due to Kolmogorov.

Theorem 4 If C and C′ are universal computing machine then
∣∣IAIC(σ,C) − IAIC

(
σ,C′)∣∣ ≤ K

(
C,C′)

where K(C,C′) is a constant which depends only on C and C′ but not on σ .

This theorem implies that the AIC-information content of σ with respect to C

depends only on σ up to a fixed constant and then its asymptotic behavior does
not depend on the choice of C. For this reason from now on we will write IAIC(σ )

instead of IAIC(σ,C).
The shortest program which gives a string as its output is a sort of ideal encod-

ing of the string. The information which is necessary to reconstruct the string is
contained in the program.

Unfortunately this coding procedure cannot be performed by any algorithm
(Chaitin Theorem).2 This is a very deep statement and, in some sense, it is equiva-
lent to the Turing halting problem or to the Gödel Incompleteness Theorem. Then
the Algorithmic Information Content is not computable by any algorithm.

This fact has very deep consequences for our discussion of the arrow of time
as we will see later. For the moment we can say that the AIC cannot be used as a
reasonable physical quantity since it cannot be measured nor computed.

3 Computable Information Content

3.1 The Idea of Computable Information Content

Suppose that we have some lossless (reversible) coding procedure Z : Σ(A) →
Σ({0,1}) such that from the coded string we can reconstruct the original string (for
example the data compression algorithms that are in any personal computer). Since

2Actually, the Chaitin theorem states a weaker statement: a procedure (computer program) which
states that a string σ of length n can be produced by a program shorter than n must be longer
than n.
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the coded string contains all the information that is necessary to reconstruct the
original string, we can consider the length of the coded string as an approximate
measure of the quantity of information that is contained in the original string. We
can define the information content of the string σ as the length of the compressed
string Z(σ), namely

IZ(σ ) = ∣∣Z(σ)
∣∣

The advantage of using a Compression Algorithm lies in the fact that, in this
way, the information content IZ(σ ) turns out to be a computable function and hence
it can be used in computer simulations and it can be considered as a measurable
physical quantity.

We will list the properties which the notion of computable information content
must satisfy for our purposes.

A function

ICIC : Σ(A) → N

is called Computable Information Content if it satisfies the following properties:

• (i) it an information function in the sense of Definition 2.
• (ii) it is computable.
• (iii) ICIC(σ ) = MCIC(σ ) + SCIC(σ ) where SCIC(σ ) satisfy the following proper-

ties:

– (S1) SCIC(σ ) ≤ logW(σ)

– (S2) SCIC(στ) ≤ SCIC(σ ) + SCIC(τ )

– (S3) SCIC(σ ) ≥ IAIC(σ ) − const.

The properties (i) and (ii) are satisfied by IZ defined by any reasonable compres-
sion algorithm Z. The important peculiarity of the Computable Information Content
lies in the possibility of decomposing the global quantity of information in two parts:

• SCIC(σ ) which we will call computable entropy of σ and represents the disor-
dered part of the information.

• MCIC(σ ) which we will call macroinformation of σ which represent the regular
part of the information.

The properties (S1), (S2) and (S3) of the entropy are chosen in order to fit our
intuitive idea of measure of disorder. For example, by (S1), we deduce that a con-
stant string has null entropy: no disorder. (S2) can be interpreted in the following
way: the “disorder” of two string is additive unless the two strings are correlated
with each other in some way. (S3) gives a lower bound to the quantity of disor-
dered information of a string. Since the best program P which produces σ must be
random (in the sense of Chaitin [5]), our string is forced to contain a “quantity of
disorder” at least equal to |P | = IAIC(σ ). The negative constant −const is necessary
to make a consistent theory. For example, the entropy of a constant string c is 0, but
IAIC(c) > 0.
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These properties makes the computable entropy come close to the Boltzmann
definition of entropy and this fact is very relevant for the interpretation of physical
phenomena.

3.2 The Definition of CIC

Functions ICIC which satisfy (i), (ii), and (iii) exist. We will give an example of it.
Suppose to have a string σ and to have computed α(σ) and V (σ) as in Sect. 2.2.2.

If you want to send a message from which a receiver can reconstruct the string σ ,
a possible strategy is the following one:

• (i) you send to the receiver the dictionary V (σ) and the number n(w,σ ) which
specifies the number of times that the word w appears in the parsing α(σ).

• (ii) you send another number which select α among all the Scom(σ ) possible
strings which have the same dictionary V (σ) and the same numbers n(w,σ ).

In this way, the information content of the full message is divided in two parts:
part (i) which specifies the “macroscopic features” of the string and part (ii) which
specifies only a number s ≈ Scom(σ ) which selects σ among all the strings with the
same features.

The above procedure makes possible the following definition of macrostate:

Definition 5 Given two strings σ1 and σ2, we say that they belong to the same
macrostate if

• V (σ1) = V (σ2)

• for every word w ∈ V (σ1), n(w,σ1) = n(w,σ2)

Roughly speaking, the string σ1 and σ2 belong to the same macrostate if they can
be described in the same way, namely if they have the same dictionary and the same
occurrence of each word in the dictionary. So they have the same macroinformation
and the same entropy.

4 Information and Dynamics

The various notions of information are useful in many problems. Here we will con-
sider their application to dynamical systems and will investigate the implications
relative to the arrows of time which is the main point of this meeting.

We assume to have a dynamical systems consisting of many particles; using the
same construction as Sect. 2.2.1 (see table (6)), we can apply the previous results.
Our discretized phase space will be given by Ω = An where A is the alphabet which
corresponds to the graining of the phase space X of a single particle. Notice that the
notion of ICIC makes sense also when the number of particles is low, but in this
case SCIC will be close to 0 and the statistical behavior is not interesting (unless we



19 The Arrow of Time and Information Theory 245

decide to study the statistics making the average over long times). For simplicity
we assume that time is discrete. The transition map f : Ω → Ω must be consid-
ered as the evolution map at time 1. We will consider both Hamiltonian dynamics
(reversible dynamics) and dissipative systems. Of course, we may think of dissi-
pative systems as subsystems of an Hamiltonian systems of which the microscopic
dynamic variables have been ignored.

Also, we remark that we are not interested in taking the thermodynamic limit.
This limit will simplify the equations but will hide some interesting notion such as
the notion of macroinformation.

4.1 Physical Systems

If you consider the discretization of a continuous Hamiltonian system of weakly
interacting particles, you obtain the usual description of statistical mechanics. In
this case it is possible to identify the CIC-entropy with the physical entropy via the
Boltzmann equation (1). The concrete computations are the same and any possible
difference is of the order of logn where n is the number of particles.

However, if the particles interact strongly with each other and give a rich struc-
ture to the system, our description cannot be reduced to the traditional one, both
for the presence of macroinformation (which might become relevant) and for a dif-
ferent notion macrostate. In particular the CIC-entropy of a state is not equal to a
probability measure of the macrostate deduced by the Liouville theorem.

At this point it is interesting to stress the differences between this approach and
the Brillouin point of view [4]. Also for him, the physical entropy is information,
namely the information which the observer does not have; in particular he writes an
equation like this

Itot = Iobs + S (12)

where Itot is the total information, Iobs is the information of the observer, and S is
the entropy. In the above equation, he considered Itot constant since the system is
reversible and he gets the following equality:

�S = −�Iobs

which can be interpreted as follows: an increase of entropy �S equals the increase
of ignorance of the observer. Thus he identifies the entropy as negative information
and he can call the information of the observer “negentropy”.

In our approach, (12) is replaced by the following one:

ICIC = MCIC + SCIC (13)

where the macroinformation might be related to the information of the observer, but
in no way can be identified with it. In fact in (13) the observer does not play any
role. Moreover, in a real system, in general both MCIC and SCIC grow with time.
A more detailed description of this scenario is done in next sections.
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4.2 Chaotic Reversible Systems

First of all let us consider “chaotic” Hamiltonian system. Most of the states of a sys-
tem belong to the same macrostate Σ0 and have the maximum CIC-entropy which
is of the order of log |Ω| and of course, they have minimum macroinformation.

Thus, for most of the initial condition the system enters the macrostate Σ0 and
it will stay there for a time of the order of Poincaré time. Σ0 can be considered
as the state which corresponds to the thermodynamical equilibrium. If you start
with an initial condition with low CIC-entropy and high macroinformation then the
CIC-entropy will increase until the maximum entropy while the macroinformation
will decrease until the minimum which is a value very small if compared with the
value of SCIC.

In this sense time destroys information: namely, the macroinformation of the
initial conditions is lost, in the sense that it cannot be recovered by a computable
algorithm. In fact, if you have a “disordered” configuration, in general, there is not
a computable procedure to know if it is derived by an “ordered” situation or not.

Thus we have obtained the traditional point of view of Boltzmann. The use of
CIC makes possible to give a precise sense to the sentences:

information is destroyed

and

the disorder increases.

In fact, in this contest, they simply mean that MCIC decreases and SCIC increases.

4.3 Gradient-Like Systems

A discrete dynamical system (Ω,f ) is called gradient-like if it admits a Lyapunov
function, namely a function V : Ω → R, such that

• V(f (x)) ≤ V(x), x ∈ Ω

• V(f (x)) = V(x) ⇔ f (x) = x

In dissipative physical system the Lyapunov function usually corresponds to the
energy. Gradient-like systems evolve until reaching a stable equilibrium configura-
tion x0. Usually these configurations have low Information Content. Thus the evo-
lution make to decrease both the entropy and the macroinformation; there is an ab-
solute decrease of ICIC. The system loses its memory and any kind of information
is destroyed. This is obvious since the transition map f is not injective and different
initial conditions lead to the same final configuration. If we embed this system in an
invertible system, we will get a chaotic system and the consideration of the previous
section apply.
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4.4 Self-organizing Systems

If, in a physical dissipative system, there is an input of energy from the outside, in
general, stable equilibrium configurations cannot exist. In this case many phenom-
ena may occur; stable periodic orbits, stable tori or even strange attractors. Some-
times, very interesting spatial structures may appear. Analogous phenomena occur
in non-reversible cellular automata. The most famous of them is the Conway game
of life in which a lot of intriguing shapes appear in spite of the simplicity of the
transition map.

From the point of view of Information theory, these are the systems which make
the macroinformation to increase. If we start from an initial data with a low macroin-
formation content, the macroinformation will increase until reaching a limit value.
If the system is infinite the macroinformation will increase for ever. For example
you may think of the game of life in an infinite grid with initial conditions having
only a finite number of black cells (and thus you start with an initial condition which
has finite information).

As in the case of gradient-like system, we may embed these systems in a re-
versible system. In this situation, we will have also an increase of the entropy. Thus
the two main arrows of time, described in the introduction, will be present. We be-
lieve that a sufficiently large system, in which many nonlinear interactions play a
role, is very likely to present such a behavior.

From a general and qualitative point of view, these systems represent a good
model for large natural system in which the appearance of complex structures oc-
curs.

5 An Exorcism of the Maxwell Demon

The Maxwell demon acts on a pipe which joins two containers of particles, A and B .
This pipe has a gate which can be kept open or closed by a demon. He opens the
gate when he sees a particle coming from A and he closes it when he sees a particle
coming from B . In this way, at some point all the particles will be in the container B

(actually the “original” Maxwell demon made a distinction between slow and fast
particles but the argument is the same).

At the end of this operation the entropy of the system of particles will be reduced
since all the particles are in one container, namely in the container B .

This seems a violation of the second law of thermodynamics. Where is the catch?
Many different explanations have been proposed to exorcise this demon and to

save the second law. We will give a brief sketch of some of them.

5.1 Szilard

The first important contribution to this problem was given by Leo Szilard in 1929.
He thought that the measurement performed by the demon cause an increase of en-
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tropy in the environment which compensate the decrease of entropy in the contain-
ers. He was rather vague about the mechanism responsible of the entropy increase
and the questions relative to this point were left open.

5.2 Brillouin and Gabor

The next important contribution came by Léon Brillouin (1956) and Dennis Gabor
who saw in the Indetermination Principle of Quantum Mechanics the key point in
the exorcism of the demon (see e.g. [4]). When the demon performs its measure-
ment, he needs to send an energetic beam of light on the particle and this fact has
an energetic cost which increases the entropy of the environment. We think that this
explanation is wrong for at least two reasons: (1) you may imagine that this exper-
iment is performed with big balls and in this case the perturbations of the photons
are not relevant, or, to say it in a different way, the explanation should be indepen-
dent on the scale, while every explanation which includes � depends on the scale;
(2) Charles Bennet made a model in which the observation of the demon is inde-
pendent of the presence of wuantum phenomena. Quantum mechanics has nothing
to do with the Maxwell demon.

5.3 Landauer

A big step toward the right answer was made by Rolf Landauer (1961) who studied
the constrains imposed to computation by physical laws (see e.g. [6]). He identi-
fied some operations which he “called” logically irreversible. These logically irre-
versible operations are also physically irreversible since they make the entropy of
the environment to increase. One of them is the erasing of the memory of the com-
puting machine, whatever its internal nature is. Clearly if you erase the memory you
cannot make a time reversal and come back to the initial condition. This fact implies
an increase of the entropy of the environment. The entropy balance is easy to cal-
culate if you take in account the distinctions between AIC, CIC and CIC-entropy.
If you assume that the computer plus the environment are ruled by reversible equa-
tions, then the AIC is preserved. However, this information is not contained in the
computer after that its memory has been cleared. Thus, this information has been
transferred to the environment, and since we may assume that it is contained in it
in a random way, this information makes the CIC-entropy of the environment in-
crease.

5.4 Bennet

The final step was made by Charles Bennet (1982) who gave the following explana-
tion (see e.g. [3]). The demon needs a buffer to store the information that a particle
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is coming from A or from B in order to keep the door open or closed. Afterwards,
he must store the analogous information relative to the next ball in a buffer. Thus he
has two choices: or he uses some extra memory or he clears the buffer. According
to Bennet, in order to perform a cycle, at some point, the demon needs to clear his
memory, and this fact will make the entropy of the environment to increase.

5.5 Our Point of View

I think that this explanation is essentially right even if it presents some weak points
which have been pointed out by the conference of David Albert. More or less Albert
says the following: first of all, you do not need to consider a cycle; this has nothing
to do with the second law which just states that the entropy of an isolated system
does not decrease. Now, assume that the containers and the demon D constitute an
isolated system and that the demon does not erase its memory. At the end of the
process, the system A + B + D will have a lower entropy, at least if you define the
entropy as the measure of the final macrostate in the phase space. In fact it is not
difficult to imagine a Hamiltonian for which this is true.

However, the Bennet point of view can be easily saved using the notion of
CIC-entropy rather than a probability measure in the phase space. In fact, every
thing becomes clear if we identify the physical entropy with the CIC-entropy. When
the memory of the demon has stored all the past history of this process, it contains a
string with a large content of disordered information (CIC-entropy). It is exactly the
information which you need to reverse the process. Thus if you make a CIC-entropy
balance, you discover that the CIC-entropy is the same. Thus any contradiction dis-
appears.

Moreover, if you assume that our system is not is isolated, this description can say
more. When you erase the memory, the AIC contained in the memory of the demon-
computer will be discharged in the environment (since the system A + B + D +
[environment] is reversible). In this operation the global CIC-entropy will increase,
since you cannot find an algorithm which is able to recover the information spread
in the environment.

6 Conclusions

We think that the right description of the origin of irreversibility, complexity and the
arrow of time lies in a good notion of “information content”. A good notion must be
independent of the notion of probability for the reasons described in Sect. 2.3.

Moreover, we think that it is very important to distinguish two different meanings
of the notion of information:

• the general abstract notion of information (such as the AIC) which in reversible
system is a constant of motion and exists only in the mind of God (but not in the
mind of the demons, at least, if they are submitted to the laws of our universe).
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• a computable notion of information (such as the CIC) which is related to physical
quantities; it changes in time and can be used to describe the observed phenom-
ena.

The distinctions between these two notions is marked by the Turing halting the-
orem which, we think, is one of the deepest theorems discovered in last century and
whose consequences are not yet all completely understood.

Once, we have agreed to consider the CIC (or any other “epistemologically”
equivalent notion of information) as the relevant physical quantity, it is impor-
tant to have a mathematical method to separate the CIC in two different compo-
nents:

• the entropy which corresponds to the old idea of “measure of disorder”. From a
physical point of view this information cannot be used to make exact deterministic
predictions. It is the information dispersed in the chaos and it cannot be recovered
without a violation of the Turing halting theorem.

• the macroinformation which is related to physical measurable quantities and can
be used to make predictions. Moreover, the macroinformation is strictly related
to various indicators of complexity.

Thus, in information theory, we have the distinction between macroinformation
and CIC-entropy. This is similar to the distinction, in thermodynamics, between
free energy F = E − TS and bad energy. The CIC-entropy cannot be used to make
predictions, while TS cannot be used to perform any work. However, it is very im-
portant to underline that, in isolated systems, free energy and macroinformation
behave in a quite different way: free energy always decreases, while macroinfor-
mation might increase. The development of life, in all its forms, determines a de-
crease of free energy and an increase of macroinformation. Probably there is a deep
mathematical relation between the evolution of these two quantities. The study of
the interplay between macroinformation, entropy and the other physical quanti-
ties is a good way to investigate the origin and the evolution of complex struc-
tures.

In Sect. 3.2, we have proposed a mathematical model which makes a distinction
between macroinformation and entropy. This is not the only possible model and
probably is not the best. However, it seems to me that this is a good direction for
investigating this kind of problems.
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