Chapter 11
Asymmetries, Irreversibility, and Dynamics
of Time

Luciano Boi

Non in tempore sed cum tempore Deus creavit ceelum et terram.
Saint Augustine

A moment not out of time, but in time, in what we call history:
transecting, bisecting the world of time, a moment in time but
not like a moment of time.

T.S. Eliot

Abstract The paper wants to address some conceptual issues concerned with the
finding of the fundamental role played by the phenomenon of breaking symmetry
in different natural processes. We also shall discuss a certain theoretical problem
that poses the asymmetrical nature of time in a manifold of scientific domains. In
the second part of the paper, we describe some fundamental features of the action of
time in the framework of dynamical systems and irreversibility. This article is aimed
at showing some features of the dynamics of time into diverse subjects of physics,
as well as of our perception of psychological time.
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1 From CPT Invariance Violation and Cosmic Asymmetry
to the Fundamental Concept of Entropy

Let us start with a brief review of some fundamental concepts of modern physics into
which the role of time enters as a fundamental part of the study of nature. We shall
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start with a few remarks on the development of thermodynamics, before we expose
the second law and the related concept of entropy where for the first time the possi-
bility that time could be irreversible appears. The other context in which enters the
notion of “arrow of time”, i.e. the fact that the physical laws governing the universe
should not be invariant with respect to time reversal, is cosmology and particularly
the quantum theory of space-time singularities, which leads one to consider the exis-
tence of a cosmic asymmetry between matter and antimatter as the realistic scenario
followed by the universe since its origins. Finally, there has been a very surprising
result in quantum field theory: the 1956 discovery of parity (P) non-conservation
in weak interaction phenomena. Even more surprising was the discovery of CP vi-
olation in 1964, which shattered the illusion concerning the fundamental nature of
CPT theorem, that is, the belief that the invariance of time reversal transformation,
of charge conjugation and of space inversion or mirror symmetry are the general
principles to be satisfied by the equations of motion—hence a firm root in the foun-
dations of physics, and opened up questions concerning its origin and its profound
implication for our conception of physics and nature. These questions have not yet
been answered satisfactorily despite an enormous effort in theoretical and experi-
mental physics. Nevertheless, the developments of physics and of the other natural
sciences in the last two decades lead to the belief that the violation of CPT invari-
ance is needed to deal with interactions that are not invariant under one or more of
these transformations.

One should distinguish two aspects of the violation of the three fundamental sym-
metries of nature, namely the time invariance (7'), the electrical charge invariance
(C) and the space inversion invariance (P). The first concern the consequences of T
invariance for those properties of matter that depend on electromagnetic and strong
interactions, and even on the grosser features of the weak interactions; the other
concern the violation of CP invariance and 7 invariance in some special aspects of
the weak interactions. The ability to separate these two aspects rests on the fact that
the observed violation is an extremely small effect, not influencing in a (so far) mea-
surable way even high-precision weak interactions measurements other than those
specific, particularly sensitive one by means of which the CP violation was dis-
covered. Nevertheless, most physicists believe firmly in the notion of a theory that
unifies the electromagnetic, weak, and strong interaction phenomena at some level.
At that level the separation of the physical phenomena into two classes should likely
become meaningless. And the very fact that the observed violation occurs in such a
limited though very meaningful way suggests that the level of unification at which
T violation originates in a fundamental way must be very deep indeed. Therefore
its elucidation may have profound implications for our understanding of the nature
of physical theories. It may also have important implications for cosmology and
notably for our actual conception of the structure of space and time.

1.1 Arrows of Time and Their Relations

So in our universe, as we find it, there are at least five arrows of time. Physicists
do not yet know how they are interrelated. The preferred time direction on the sub-
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atomic microlevel, in certain weak interactions involving K -mesons, is still a mys-
tery. It may have no connection with the macroscopic arrows, just as the handedness
of particles seems to have no connection with the handedness of molecules, and the
handedness of molecules in turn has no bearing on the bilateral symmetry of human
body. On the macrolevel are four arrows. First, there is the entropy arrow, which has
a precise technical definition in both thermodynamic theory and information theory.
The notion of entropy was first introduced by the 19th century Austrian physicist
Ludwig Boltzmann who founded statistical thermodynamics, whose starting point
was the study of a system of gas molecules moving about randomly in a closed con-
tainer. According to his vision, entropy is the principal foundation for the arrow of
time. We can think of it in a rough way as a measure of disorder—the absence of
pattern. The “information” content of a system, roughly speaking, is a measure of
order (see below for a mathematical definition). The two measures vary inversely. If
the entropy of a system goes up, its information content goes down, and vice versa.

We suggest distinguishing between two classes of phenomena and events in
which time acts in a fundamental way. One in one case uses the term geometri-
cal arrow for those processes in which order is increasing. They are very grounded
in historical as well as in biological evolution. The formation of matter, moving in
an orderly fashion outward from the site of the big bang, was the first gigantic in-
stance of an event stamped with the geometrical arrow. The evolutions of stars and
planets are later examples. The formation of strongly ordered crystals is another ex-
ample. Finally, the energy radiating from a highly ordered sun allowed the rise and
proliferation of life, the most highly patterned thing we know. The entropy arrow
points opposite ways with respect to order, hence apply to those natural phenomena
which evolve towards disorder. Let us now mention the other arrows of time.! There
is the arrow defined by events radiating from a centre like expanding circular ripples
on a pond or energy radiating from a star. This kind of arrows (for example, those
concerned with dissipative chaotic systems) seems to derive from the probability of
initial or boundary conditions. Third, there is the expansion of the universe, or the
cosmic arrow. Fourth, there is the psychological arrow of consciousness. (For some
remarks about the last two arrows of time, see below.)

1.2 The Fundamental Principle of Entropy in Thermodynamics
Theory

The second law of thermodynamics has “various formulations”, but they all lead to
the existence of an entropy function whose reason for existence is to tell us which
processes can occur and which cannot. We shall reformulate it by referring to the
existence of entropy as the second law. The entropy we are talking about is that
defined by thermodynamics, and not some analytic quantity that appears in infor-
mation theory, probability theory and statistical mechanical models. The statement

TFor further interesting reflections on this subject, see [4, 5].
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of the first law of thermodynamics is essentially the statement of the principle of the
conservation of energy for thermodynamical systems. As such, it may be expressed
by stating that the variation in energy of a system during any transformation is equal
to the amount of energy that the system receives from its environment. Briefly, it is
a concept that provides the connection between mechanics (and things like falling
weights) and thermodynamics. The first law arose as the result of the impossibility
of constructing a machine that could create energy. However, it places no limitations
on the possibility of transforming energy from one form into another. Thus, for in-
stance, on the basis of the first law alone, the possibility of transforming heat into
work or work into heat always exists provided the total amount of heat is equivalent
to the total amount of work.

The three popular formulation of the second law are: (i) No process is possible the
sole result of which is that heat is transformed from a body to a hotter one (postulate
of Clasius). (ii) No process is possible the sole result of which is that a body is cooled
and work is done (postulate of Kelvin and Planck). (iii) In any neighbourhood of any
state there are states that cannot be reached by it by an adiabatic process. All three
formulations are supposed to lead to the entropy principle (defined below).

Definition A state Y is adiabatically accessible from a state X, in symbols X <Y,
if it is possible to change the state from X to Y by means of an interaction with
some device consisting of some auxiliary system and a weight in such a way that
the auxiliary system returns to its initial state at the end of the process, whereas the
weight may have risen or fallen.

We could have (in principle, at least) both X < Y and Y < X, and we could call
such a process a reversible adiabatic process. Let us write X < Y if X <Y but
not Y < X (written Y < X). In this case we say that we can go from X to Y by an
irreversible adiabatic process. If X <Y and Y < X (i.e., X and Y are connected
by a reversible adiabatic process), we say that X and Y are adiabatically equivalent
and write X ~ Y.

Entropy Principle There is a real-valued function on all states of all systems (in-
cluding compound systems) called entropy, denoted by S, such that:

(a) Monotonicity: When X and Y are comparable states, then X < Y if and only if
S(X) <8().

(b) Additivity and extensivity: If X and Y are states of some (possibly different)
systems and if (X, Y) denotes the corresponding state in the compound system,
then the entropy is additive for these states; i.e., S(X,Y) = S(X) + S(Y). S is
also extensive; i.e., for each A > 0 and each state X and its scaled copy AX €
'™ (where I is the space of states of the system) S(AX) = AS(X).

A formulation logically equivalent to (a) is the following pair of statements:
X~Y=SX)=S%) and X <Y = S(X) < S(Y). The last line is especially
noteworthy. It says that entropy must increase in an irreversible adiabatic process.
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Then, irreversibility means that for each X € I" there is a point ¥ € I" such that
XKY.

The reversibility of time in physical elementary process (both in classical and in
quantum mechanics, as well as in the relativistic theories) is commonly accepted
and very well established; that means that the fundamental laws of physics are in-
variant under time reversal. However, it is an obvious fact that most phenomena
in Nature distinguish a direction of time; time is irreversible in complex systems.
Electromagnetic waves are observed in their retarded form only, where the fields
causally follow from their sources. The increase of entropy, as expressed in the sec-
ond law of thermodynamics, also defines a time direction. This is directly connected
with the psychological arrow of time—we remember the past but not the future. In
quantum mechanics it is the irreversible measurement process and in cosmology the
expansion of the universe, as well as the local growing of inhomogeneities, which
determine a direction of time.

1.3 Irreversibility of Complex Systems

In order to make clear the irreversible character of most complex systems, let us con-
sider a simple case of a droplet of ink added to water in a jar. The droplet spreads out
rapidly, so that the colour becomes uniform in the entire vessel. Anyone can observe
these phenomena. However, no one has ever seen a process developing in the oppo-
site direction: ink particles collecting from the whole volume into a single droplet.
Take now an iron rod, heat it and then put it into a vessel with cold water. The rod
will cool down, the water will get warmer and their temperatures will become equal.
The process always goes this way. Heat is never transferred from cold water to hot
iron, raising its temperature still further. This is another example of an irreversible
process, similar to the spreading of a droplet. Why does irreversibility always arise
in all such processes, even though they are composed of particle motions that are
definitely time-reversible? Where and how does reversibility perish?

The answer to that question, as we have seen above, lies in the second law of ther-
modynamics discovered by the physicists Rudolf Clasius and William Thomson.
Their thermodynamic ideas were then developed and extended by Ludwig Boltz-
mann. He uncovered the meaning of the second law of thermodynamics. Heat is, in
fact, the chaotic motion of atoms and molecules of which material bodies consist.
Hence the transition of the energy of mechanical motion of individual constituents
of the system into heat signifies the transition from the organised motion of large
parts of the system to the chaotic motion of the smallest particles; this means that an
increase in chaos is inevitable owing to the random motion of particles, unless the
system is influenced from outside so as to maintain the level of order. Boltzmann
showed that the measure of chaos in a system is a quantity called entropy. The
greater the chaos, the higher the entropy. The transition of different types of motion
of matter into heat means that entropy grows. When all forms of energy have trans-
formed into heat, and this heat has spread uniformly through the system, this state of
maximum chaos ceases to change with time and corresponds to maximum entropy.
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This is the gist of the matter! In complex systems consisting of many particles or
other elements, disorder (chaos) inevitably increases as a result of the random nature
of numerous interactions. Entropy is that very measure of the degree of chaos. It is
very important that when creating a more ordered state in a system, by influencing it
from within a larger system, we inevitably insert additional disorder into this larger
system. The laws of thermodynamics state that the “chaos” added to the larger sys-
tem is inevitably greater than the ‘order’ introduced into the smaller system. Hence
the “chaos”, and “entropy”, in the whole world must grow, even though order may
be established in some parts of the world. One realises then that the second law of
thermodynamics is of great importance for the evolution of the universe. Indeed,
exchange of energy between the world and “other systems” being impossible, the
universe must be treated as an isolated system. Therefore, all types of energy in
the universe must ultimately convert to heat spread uniformly through matter, after
which all macroscopic motion peters out. Even though the law of conservation of
energy is not violated, the energy does not disappear and remains in the form of
heat, it ‘loses all forces’, any possibility of transformation, any possibility of doing
the work of motion. This bleak state became known as the ‘thermal death’ of the
universe. The irreversible process in the universe is thus the growth of entropy. The
question, however, remain open: can this process entirely dictate the direction of
flow of time? I guess that we shall search for some other key feature of time and of
space-time if we want to be able to give a satisfactory answer to these questions.

For the moment, we may ask: how can one understand that most phenomena
distinguish a direction of time? One of the most interesting answer likely lies in
the possibility of very special boundary conditions such as an initial condition of
low entropy (see [6]). Such an assumption transcends the Newtonian separation into
laws and boundary conditions by also seeking physical explanations for the latter.
Where lies the key to the understanding of the irreversibility of time? According to
Roger Penrose, it is primarily the high-unoccupied entropy capacity of the gravi-
tational field that allows for the emergence of structure far from thermodynamical
equilibrium. As he has stressed, the presence and the apparent structure of space-
time singularities contain the key to the solution to one of the long-standing mys-
teries of physics: the origin of the arrow of time [7]. He has emphasised that the
statistical notion of entropy is crucial for the discussion of time-symmetry. And if
the fundamental local laws are all time-symmetric, then the place to look for the ori-
gin of statistical asymmetries is in the boundary conditions. This assumes that the
local laws are of the form that, like Newtonian theory, standard Maxwell-Lorentz
theory, Hamiltonian theory, Schrodinger’s equations, etc., they determine the evo-
Iution of the system once we have boundary conditions either in the past or in the
future. Then the statistical arrow of time can arise via the fact that, for some reason,
the initial boundary conditions have an overwhelmingly lower entropy than do the
final boundary conditions. Penrose has convincingly showed that the expansion of
the universe cannot, in itself, be responsible for the entropy imbalance either. Ac-
cordingly, the arrows of entropy and retarded radiation can be explained if a reason
is found for the initial state of the universe (big bang singularity) to be of compara-
tively low entropy and for the final state to be of high entropy. Consequently some
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low-entropy assumption does need to be imposed on the big bang; that is, the mere
fact that the universe expands away from a singularity is in no way sufficient. We
need some assumption on initial singularities that rules out those which would lie
at the centres of white holes. But what is it in the nature of the big bang that is of
‘low entropy’? The answer to this question lies in the unusual nature of gravitational
entropy.

Many authors have pointed out that gravity behaves in a somewhat anomalous
way with regard to entropy. This is true just as much for Newtonian theory as for
general relativity. Thus, in many circumstances in which gravity is involved, a sys-
tem may behave as though it has a negative specific heat. This is directly true in the
case of a black hole emitting Hawking radiation, since the more it emits, the hotter
it gets (the energy increase). This is essentially an effect of the universally attrac-
tive nature of the gravitational interaction. As a gravitating system “relaxes” more
and more, velocities increase and the sources clump together—instead of uniformly
spreading throughout space in a more familiar high-entropy arrangement. With other
types of forces, their attractive aspects tend to saturate (such as with a system bound
electromagnetically), but this is not the case with gravity. Only non-gravitational
forces can prevent parts of a gravitationally bound system from collapsing further
inwards as the system relaxes. Kinetic energy itself can halt collapse only temporar-
ily. In the absence of significant non-gravitational forces, when dissipative effects
come further into play, clumping becomes more and more marked as the entropy
increases. Finally, maximum entropy is achieved with collapse to a black hole.

Consider a universe that expands from a “big bang” singularity and then re-
collapses to an all-embracing final singularity. The entropy in the late stages ought
to be much higher than the entropy in the early stages. How does this increase in
entropy manifest itself? In what way does the high entropy of the final singular-
ity distinguish it from the big bang, with its comparatively low entropy? We may
suppose that, as is apparently the case with the actual universe, the entropy in the
initial matter is high. The kinetic energy of the big bang, also, is easily sufficient
(at least on average) to overcome the attraction due to gravity, and the universe
expands. But then, relentlessly, gravity begins to win out. The precise moment at
which it does so, locally, depends upon the degree of irregularity already present,
and probably on various other unknown factors. Then clumping occurs, resulting in
clusters of galaxies, galaxies themselves, globular clusters, ordinary stars, planets,
white dwarfs, neutron stars, black holes, etc. The elaborate and interesting structures
that we are familiar with all owe their existence to this clumping, whereby the grav-
itational potential energy begins to be taken up and the entropy can consequently
begin to rise above the apparently very high value that the system had initially. This
clumping must be expected to increase; more black holes are formed; smallish black
holes swallow material and congeal with each other to form bigger ones. This pro-
cess accelerates in the final stages of re-collapse when the average density becomes
very large again, and one must expect a very irregular and clumpy final state.

As Roger Penrose [3] has emphasised, there is very likely a qualitative relation
between gravitational clumping and an entropy increase due to the taking up of grav-
itational potential energy. In terms of space-time curvature, the absence of clumping
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corresponds to the absence of Weyl conformal curvature (since absence of clump-
ing implies spatial isotropy, and hence no gravitational principal null-directions).
When clumping takes place, each clump is surrounded by a region of nonzero Weyl
curvature. As the clumping gets more pronounced owing to gravitational contrac-
tion, new regions of empty space appear with Weyl curvature of greatly increased
magnitude. Finally, when gravitational collapse takes place and a black hole forms,
the Weyl curvature in the interior region is larger still and diverges to infinity at the
singularity. In other words, Penrose formulated his Weyl tensor hypothesis that the
Weyl tensor vanishes at singularities in the past but not at those in the future. The
Weyl tensor is that part of the Riemann tensor which is not fixed by the boundary
equations (in which only the Ricci tensor enters) but by the boundary conditions
only. It describes the degrees of freedom of the gravitational field. Since it vanishes
exactly for a homogeneous and isotropic Friedmann universe, it can be taken as a
heuristic measure for inhomogeneity and, therefore, for gravitational entropy.

2 Symmetry and Symmetry Breaking in Nature

2.1 The Meanings of Symmetry

In general terms, what symmetry means is that the (physical) system possesses the
possibility of a change that leaves some aspect of the system unchanged. Symmetry
of the laws of nature concerns conservation. There are a number of conservations,
called “conservation laws”, that hold for quasi-isolated systems. The best known of
them are conservation of energy, conservation of linear momentum, conservation of
angular momentum and conservation of electric charge. What is meant is that, if the
initial state of any quasi-isolated physical system is characterised by having definite
values for one or more of those quantities, then any state that evolves naturally
from that initial state will have the same values for those quantities. The conceptual
definition of symmetry can be thus: Symmetry is immunity to a possible change. We
can point out the two following essential components of symmetry: 1. Possibility of
change. 2. Immunity. If a change is possible but some aspect of the system is not
immune to it, we have asymmetry. The system can be said to be asymmetric under
the change with respect to that aspect.

The symmetry principle is fundamental to the applications of symmetry in sci-
ence, and especially in physics. It states that the symmetry group of the cause is a
subgroup of the symmetry group of the effect. In other words: the effect is at least
as symmetric as the cause. However, these principles is in many situations contra-
dicted by the phenomenon of “spontaneous symmetry breaking”. There appear to
be cases of physical systems where the effect simply has less symmetry than the
cause, where the symmetry of the cause is possessed by the effect only as a badly
broken symmetry, so that the exact symmetry group of the effect is a subgroup of
the symmetry group of the cause, rather than vice versa. In fact, what is assumed
to be the exact symmetry of the cause is really only an approximate symmetry. Just
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how small, symmetry-breaking perturbations of a cause affect the symmetry of the
effect? What can be said about the symmetry of an effect relative to the approximate
symmetry of its cause? That depends on the actual nature of the physical system,
on whatever it is that links cause and effect in each case. But we can consider the
possibilities.

1. Stability. The deviation from the exact symmetry limit of the cause, introduced
by the perturbation, is “damped out”, so that the approximate symmetry group
of the cause is the minimal symmetry group of the effect.

2. Lability. The approximate symmetry group of the cause is the minimal approx-
imate symmetry group of the effect, of more or less the same goodness of ap-
proximation.

3. Instability. The deviation from the exact symmetry limit of the cause, introduced
by the perturbation, is “amplified”, and the minimal symmetry of the effect is
only the exact symmetry of the cause (including perturbation), with the approxi-
mate symmetry of the cause appearing in the effect as a badly broken symmetry.
That is what is commonly called spontaneous symmetry breaking. Thus, although
symmetric causes must produce symmetric effects, nearly symmetric causes need
not produce nearly symmetric effects: a symmetry problem need have no stable
symmetric solutions.

2.2 Examples of Symmetry Breaking

As an example of instability, we can take the solar system, its origin and evolution.
Modern theory has the solar system originating as a rotating cloud of approximate
axial symmetry and reflection symmetry with respect to a plane perpendicular to its
axis. If that state of what is now the solar system is taken as the cause, the present
state can be taken as the effect. And any axial symmetry the proto solar system one
had has clearly practically disappeared during the course of evolution, leaving the
solar system as we now observe it. The random, symmetry-breaking fluctuations in
the original cloud grew in importance as the system evolved, until the original axial
symmetry became hopelessly broken. Consider now, for another example of spon-
taneous symmetry breaking, a volume of liquid at rest in a container; such liquid is
isotropic, which is to say that its physical properties are independent of direction,
hence it is a symmetric system. Now, a small crystal of the frozen liquid thrown into
the liquid breaks the symmetry, but is soon melts and isotropy returns. However,
when the liquid is cooled to below its freezing point, the situation alters drastically.
Let now throw in a crystal, then the supercooled liquid will immediately crystallise
and thus become highly anisotropic. If in the subfreezing temperature range the sys-
tem is unstable for isotropy; any anisotropic perturbation is immediately amplified
until the whole volume becomes anisotropic and stays that way. The cooler the lig-
uid (below its freezing point), the greater its instability. The freezing point is the
boundary between the temperature range of stability and that of instability.



102 L. Boi

It must be pointed out that one of the most important upheavals in the scientific
vision of nature in the last century has been the discovering that spontaneous break-
ing symmetries, bifurcations and singularities are three mechanisms which play a
fundamental role for the organisation of physical and living matter and the unfolding
of natural phenomena. These mechanisms are very deep related, because each time
that a physical or living system bifurcs, the immediate consequence is that the sym-
metry of the system breaks down and instead of that a new broader symmetry will
appear. Besides, the fact that a system may bifurc at some moment of his evolution
means that its unfolding stops to be (mathematically speaking) continuous or lin-
ear and become discontinuous and non-linear. In many situations, this non-linearity
(of partial differential equations) lead to the emergence of new order-disorder tran-
sition phenomena which exhibits non-equilibrium states mathematically express-
ible by time-dependent equations, and it is a source of instability, bifurcation and
symmetry-breaking phenomena. Many of these macroscopic and local dynamical
laws and phenomena manifest time asymmetry or irreversibility, which is a feature
of key significance. Let me first mention some examples and fields in which spon-
taneous symmetry breaking manifests itself as a primary feature of the problem.

Example 1 (Morphogenesis and molecular biology) A striking example of symme-
try breaking in a biological system is the breakdown of rotational symmetry in the
Fucus seaweed egg. At a critical stage in the development of the egg a transition is
made from a spherically symmetric membrane potential distribution to a polarised
state with an axial symmetry, and a net trans-cellular current leaving one pole and
entering the opposite. This phenomenon (or effect) is termed “self-electrophoresis”.
The net trans-cellular potential gradient is believed to be essential in the develop-
ment of the asymmetry that leads to dramatically different rhizoid and thallus cells
after the first division of the egg. The symmetry breakdown in the Fucus egg is of the
form rotational invariance to axial invariance. That is, prior to self-electrophoresis
the solutions are invariant under the entire rotation group O(3), while the bifurcat-
ing solutions are invariant only under a subgroup of rotations about a fixed axis. The
solutions thus appear in two-dimensional orbits with one-dimensional isotropy sub-
group. This, however, is by no means the only symmetry breakdown that can occur
in rotationally invariant systems.

Processes underlying the growth and reproduction of living organisms seem to
be governed by a fundamental asymmetrical structure. In particular, sister cells can
be born different by an asymmetric cell division. At each stage in its development,
a cell in an embryo is presented with a limited set of options according to the state
it has attained: the cell travels along a developmental pathway that branches re-
peatedly. At each branch in the pathway it has to make a choice, and its sequence
of choices determines its final destiny. In this way, a complicated array of differ-
ent cell types is produced. To understand development, we need to know how each
choice between options is controlled, and how those options depend on the choices
made previously. To reduce the question to his simplest form: how do two cells
with the same genome come to be different? When a cell undergoes mitosis, both
of the resulting daughter cells receive a precise copy of the mother cell’s genome.
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Yet those daughters will often have different specialised fates, and, at some point,
they or their progeny must acquire different characters. In some cases, the two sister
cells are born different as a result of an asymmetric cell division, in which some
significant set of molecules is divided unequally between the two daughter cells at
the time of division. This asymmetrically segregated molecule (or set of molecules)
then acts as a determinant for one of the cell fates by directly or indirectly altering
the pattern of gene expression within the daughter cell that receives it. Asymmetric
division are particularly common at the beginning of development, when the fer-
tilised egg divides to give daughter cells with different fates, but they also occur at
later stages—in the genesis of nerve cells, for example.

Example 2 (Wave propagation in neural networks) Bifurcation phenomena in sim-
ple mathematical models of excitatory inhibitory neural networks have been dis-
cussed recently by many peoples (see, for instance [1]). Neural networks are ag-
gregates of nerve cells which interact with other neurones in the network in either
an excitatory or inhibitory way, and so it is plausible to expect these networks to
exhibit such non-linear collective phenomena as bifurcation, threshold effects, and
hysteresis. One can model these networks by a system of equations

uY =—Y +S(KY + P) (1)

where Y is a two-component vector, S is a non-linear vector-valued function, K is
a linear convolution operator, and P is the external stimulus. Equation (1) may be
studied in one, two, or three dimensions. Some neurophysiologists seek to model
the patterns of activity of the central nervous system by showing how organised
space-time neuronal activity patterns can arise through the mechanisms of bifurca-
tion from an initially uniform resting state. They investigate the structure of the bi-
furcation when two pairs of complex conjugate eigenvalues cross the imaginary axis
simultaneously. In that case one gets secondary bifurcation as some of the param-
eters in the problem are varied. J.D. Cowan and G.B. Ermentrout [2] have treated
hallucinatory phenomena from the standpoint of symmetry-breaking bifurcations.
Recent experiments on mescaline induced hallucinations have led to the conclu-
sion that most simple hallucinations could be classified into one of four categories:
(a) grating, lattice, honeycomb or chessboard; (b) cobweb; (c) funnel, tunnel, cone
or vessel; (d) spiral. Cowan and Ermentrout base their analysis on the contention
that simple formed hallucinations arise from an instability of the resting state lead-
ing to concomitant spatial patterns of activity in the cortex. This instability arises
from a combination of enhanced excitatory modulation and decreased inhibition.
They demonstrate that such spatial patterns are a property of neural nets with long
strong lateral interactions acting to provide a dominant negative feedback. They for-
malise these postulates into a simple mathematical model and then use bifurcation
theory to demonstrate the existence of the relevant spatial patterns.

The relevant spatial patterns are none other than those crystallographic patterns
that have already made their appearance in the Bénard problem, with one addi-
tional factor. Experimental observations have established that in primates there is
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a conformal transformation from the retinal field, which is circular, to the cortical
field, which has Cartesian (rectangular) symmetry. This implies that the transfor-
mation from retinal polar co-ordinates to cortical rectangular co-ordinates must be
essentially logarithmic in nature. Such a logarithmic transformation would take a
tunnel pattern consisting of concentric circles of activity to a pattern of rolls parallel
to the y-axis. Similarly, spirals are transforms of rolls with some other direction.
Thus the patterns observed in hallucinatory phenomena are images under the log
transformations of the cellular patterns familiar in the analysis of the Bénard prob-
lem: hexagons, squares, rectangles, and rolls. One can in fact assume that, as some
parameter A increases, the strength of the excitation increases until, beyond some
critical value A., the rest state becomes unstable and gives way to the stationary
patterns of spatial activity. Thus, according to this theory, the drug-induced halluci-
natory patterns are precisely those which one would see when Euclidean invariance
is broken.

Example 3 (Phase transitions in statistical mechanics) The notion of symmetry
breaking is fundamental to phase transitions, yet much harder to treat mathemat-
ically. Until the renormalisation theories developed in the last two decades, the pri-
mary approach to phase transition was, in one way or another, a mean-field approxi-
mation coupled with a bifurcation analysis of the mean-field equations. The simplest
mean-field theories for critical phenomena were the scalar equations of state, such
as the Van der Waals equation for a gas of the Curie—Weiss model for a ferromagnet.
In more elaborate theories the state of the ensemble is described, for example, by
a single particle density function, and an integral equation is derived for this func-
tion by some kind of closure hypothesis for the hierarchy of higher-order (multiple
particle) correlation functions. Nevertheless, these approximations are still mean-
field theories, and depend, for their validity, on the assumption that fluctuations are
negligible; the major difficulty is that in many cases, large fluctuations become im-
portant precisely at the critical point. In fact, at a critical point the fluctuations very
often diverge to infinity, making the mean-field approximation invalid, and it is this
fact which accounts for the deviation of the critical exponents from the “classical
exponents” predicted by bifurcation (mean-field models. All this notwithstanding,
the bifurcation models do have some areas of validity, and they are generally suc-
cessful in predicting the symmetry changes actually observed. Landau’s theory of
second-order phase transitions is a phenomenological description of phase transi-
tions, which is essentially a theory of “symmetry-breaking bifurcations”. According
to this point of view, the generalised mean-field approximation usually brings us to
the formulation of the broken-symmetry problem in terms of the bifurcation on a
non-linear integral equation solution for the Bogolyubov quasi-average. Especially
the liquid-solid phase transition is considered as a bifurcation of the solution of the
equation of Hammerstein type

D(r1) — M/ K(r1,r2) f(@(r2), r2) dry =0. )
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The phase transitions of the ensemble are described in terms of bifurcations of
this integral equation. In the area of non-equilibrium thermodynamics the operation
of the laser can be described by a mean-field theory, which is amenable to a bifurca-
tion analysis. In the Dicke—-Haken—Lax model of the laser it is possible to describe
the many body photon field by a mean-field theory as N (the number of degrees
of freedom) tends to infinity. Thus it is possible in this case to solve a non-linear
quantum-mechanical model, far from equilibrium, by reducing the problem to a
system of ordinary differential equations for the expectation values of the extensive
variables. The onset of laser action in these theories is then described by the bifurca-
tion of time-periodic solutions from the equilibrium solution, that is, so-called Hopf
bifurcations.

3 Spontaneous Symmetry Breakdown, Gauge Fields
and Particle Physics

Here are some long-standing problems in particle theory: (1) How can we under-
stand the hierarchical structure of the fundamental interactions? Are the strong,
medium strong (i.e. SU (3)-breaking), electromagnetic, and weak interactions truly
independent, or is there some principle that establishes connections between them?
(2) How can we construct a renormalisable theory of the weak interactions, one
which reproduces the low-energy successes of the Fermi theory but predicts finite
higher-order corrections? (3) How can we construct a theory of electromagnetic
interactions in which electromagnetic mass differences within isotopic multiplets
are finite? (4) How can we reconcile Bjorken scaling in deep inelastic electro-
production with quantum field theory? The SLAC-MIT experiments seem to be
telling us that the light-cone singularities in the product of two currents are canon-
ical in structure; ordinary perturbation theory, on the other hand, tells us that the
canonical structure is spoiled by logarithmic factors, which get worse and worse
as we go to higher and higher orders in the perturbation expansion. Are there any
theories of the strong interactions for which we can tame the logarithms, sum them
up and show they are harmless? Very significant advances have been made on all
of these problems in the last 20 years. There now exist a large family of models of
the weak and electromagnetic interactions that solve the second and third problem,
and there has been discovered a somewhat smaller family of models of the strong
interactions that solve the fourth problem. As we shall see, the structure of these
models is such that we are beginning to get ideas about the solution of the (very
deep) first problem; connections are beginning to appear in unexpected places, and
one might optimistically say that we are on the road to the first truly unified theory
of the fundamental interactions. All these marvellous developments are based upon
the ideas of spontaneous symmetry breakdown and gauge fields.

Let us briefly discuss spontaneous symmetry breakdown, Goldstone bosons,
gauge fields, and the Higgs phenomenon in the simplest context, that is, classical
field theory. I will have no time to go into the renormalisation problem, nor into the
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non-Abelian generalisations of the Wald identities, and other aspects of the quanti-
sation of gauge fields. In general, there is no reason why an invariance of the Hamil-
tonian of a quantum-mechanical system should also be an invariance of the ground
state of the system. Thus, for example, the nuclear forces are rotationally invariant,
but this does not mean that the ground state of a nucleus is necessarily rotationally
invariant (i.e. of spin zero). This is a triviality for nuclei, but it has highly non-trivial
consequences if we consider systems which, unlike nuclei, are of infinite spatial
extent. The standard example is the Heisenberg ferromagnet, an infinite crystalline
array of spin —1/2 magnetic dipoles, with spin—spin interactions between nearest
neighbours such that neighbouring dipoles tend to align. Even though the Hamil-
tonian is rotationally invariant, the ground state is not; it is a state in which all the
dipoles are aligned in some arbitrary direction, and is infinitely degenerate for an in-
finite ferromagnet. A little man living inside such a ferromagnet would have a hard
time detecting the rotational invariance of the laws of nature; all his experiments
would be corrupted by the background magnetic field. If his experimental appa-
ratus interacted only weakly with the background field, he might detect rotational
invariance as an approximate symmetry; if it interacted strongly, he might miss it
altogether; in any case, he would have no reason to suspect that it was in fact an
exact symmetry. Also, the little man would have no hope of detecting directly that
the ground state in which he happens to find himself is in fact part of an infinitely
degenerate multiplet. Since he is of finite extent (this is the technical meaning of
“little”), he can only change the direction of a finite number of dipoles at a time;
but to go from one ground state of the ferromagnet to another, he must change the
directions of an infinite number of dipoles—an impossible task.

At least at first glance, there appears to be nothing in this picture that cannot
be generalised to relativistic quantum mechanics. For the Hamiltonian of a ferro-
magnet, we can substitute the Hamiltonian of a quantum field theory; for rotational
invariance, some internal symmetry; for the ground state of the ferromagnet, the
vacuum state; and for the little man, ourselves. That is to say, we conjecture that the
laws of nature may possess symmetries that are not manifest to us because the vac-
uum state is not invariant under them. This situation is usually called “spontaneous
breakdown symmetry”. Let us investigate spontaneous symmetry breakdown in the
case of classical field theory. For simplicity, we will restrict ourselves to theories
involving a set of n real scalar fields, which we assemble into a real n-vector, ¢,
with Lagrange density

L=1/23,9)- (3"¢) - U(@), 3)

where U is some function of the ¢g, but not of their derivatives. We treat these
theories purely classically, but use quantum-mechanical language; thus, we call the
state of lowest energy “the vacuum”, and refer to the quantities which characterise
the spectra of small oscillations about the vacuum as “particle masses”. For any of
these theories, the energy density is

H =1/2(30$)> + 1/2(V$)* + U (). 4)
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Thus the state of lowest energy is one for which the value of ¢ is a constant, which
we denote by (¢). The value of (¢) is determined by the detailed dynamics of the
particular theory under investigation, that is to say, by the location of the minimum
(or minima) of the potential U. We call (¢) “the vacuum expectation value of ¢”.
Within this class of theories, it is easy to find examples for which symmetries are
either manifest or spontaneously broken. The simplest one is the theory of a single
field for which the potential is

U=0./4)¢* + (1°/2)6°, (5)

where A is a positive number and 12 can be either positive or negative. This theory
admits the symmetry

¢— —¢. (6)

If u? is positive, the potential has one minimum. The vacuum is at (¢) equals zero,
the symmetry is manifest, and ;2 is the mass of the scalar meson. If ;2 is negative,
though, the situation is quite different; the potential has two minima. In this case, it
is convenient to introduce the quantity

a* = —6u*/1, (7
and to rewrite the potential as
U =1/41(¢> - a?)’, (8)

plus an (irrelevant) constant. It is clear from this formula that the potential now has
two minima, at ¢ = £a. Because of the symmetry (6), which one we choose as the
vacuum is irrelevant to the resulting physics; however, whichever one we choose, the
symmetry is spontaneously broken. Let us choose (¢) = a. To investigate physics
about the asymmetric vacuum, let us define a new field

(t)/ = ¢ —da. (9)
In terms of the new (“shifted”) field,
U =1/41(¢ +2a¢)" = 0 /4D + (ha/6)p” + (1a>/6)¢”%.  (10)

We see that the true mass of the meson is Aa2/3. Note that a cubic meson self-
coupling has appeared as a result of the shift, which would make it hard to detect
the hidden symmetry (6) directly.

A new phenomenon appears if we consider the spontaneous breakdown of con-
tinuous symmetries. Let us consider the theory of two scalar fields, A and B, with

U=1/4[A% + B2 —a?]". (1)
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This theory admits a continuous group of symmetries isomorphic to the two-
dimensional rotation group, SO(2):

A — Bcosw + Bsinw, B — —Asinw + Bcosw. (12)
The minima of the potential lie on the circle
A’ + B? =4’ (13)

Just as before, which of these we choose as the vacuum is irrelevant, but whichever
one we choose, the SO(2) internal symmetry is spontaneously broken. Let us choose

(A) =a, (B)=0. (14)
As before, we shift the fields,
¢'=¢—(9), 15)
and find
U=1/4(A"+ B? +2aA")". (16)

Expanding this, we see that the A-meson has the same mass as before, but the
B-meson is massless. Such a massless spin-less meson is called a Goldstone bo-
son; for the class of theories under consideration, its appearance does not depend at
all on the special form of the potential U, but is a consequence only of the sponta-
neous breakdown of the continuous SO(2) symmetry group (12). To show this, let
us introduce “angular variables”,

A = pcosb, B = psinf. a7
In terms of these variables, (12) becomes
0 — pb —> 0+ w, (18)
and the Lagrange density becomes
L=1/2(0,p)> +1/2p°(8,0)* — U (p). (19)

In terms of these variables, SO(2) invariance is simply the statement that U does not
depend on 6. The transformation to angular variables is, of course, ill-defined at the
origin, and this is reflected in the singular form of the derivative part of the Lagrange
density (19). However, this is of no interest to us, since we wish to do perturbation
expansions not about the origin, but about an assumed asymmetric vacuum. With
no loss of generality, we can assume this vacuum is at (p) = a, (6) = 0. Introducing
shifted fields as before,

o =p—a, 0'=0, (20)
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we find
L=1/2(3,0)" +1/2(0' +a)*(8,6')’ = U (0’ +a). @1)

It is clear from this expression that the 6-meson is massless, just because the
0-field enters the Lagrangian only through its derivatives. This can also be seen
purely geometrically, without writing down any formulae. If the vacuum is not in-
variant under SO(2) rotations, then there is a curve passing through the vacuum
along which the potential is constant; this is the curve of points obtained from the
vacuum by SO(2) rotations—in terms of our variables, the curve of constant p. If
we expand the potential around the vacuum, no terms can appear involving the vari-
able that measures displacement along this curve—the 6 variable. Hence we always
have a massless meson. This argument can easily be generalised to the spontaneous
breakdown of a general continuous internal symmetry group.

Summarising, we can make the following remarks relating to the above descrip-
tion:

(1) There is a large family of field theories that display spontaneous breakdown
on internal symmetries. If the spontaneously broken symmetry is discrete, this
causes no problems; however, if the symmetry is continuous, symmetry break-
down is associated with the appearance of Goldstone bosons. This can be cured
by coupling gauge fields to the system and promoting the internal symmetry
group to a gauge group; the Goldstone bosons then disappear and the gauge
mesons acquire masses. It should be remembered that, at the time of their in-
ventions, both the theory of non-Abelian gauge fields and the theory of spon-
taneous symmetry breakdown were thought to be theoretically amusing but
physically untenable, because both predicted unobserved massless particles,
the gauge mesons and the Goldstone bosons. It was only later that it was dis-
covered that each of these diseases was the other’s cure.

(i) What has been done for classical field theory can be extended to some ex-
tent into the quantum domain. At least for weak couplings, the phenomenon
of spontaneous breakdown of internal symmetries survives substantially un-
changed; in particular, all of the equations we have derived can be reinterpreted
as the first terms in a systematic quantum expansion.

(iii) Regarding theories with fermions, it is clear that if we couple fermions to the
scalar-meson systems we have discussed, either directly (through Yukawa cou-
plings) or indirectly (through gauge field couplings), then the shift in the scalar
fields will induce an apparent symmetry-violating term in the fermion part of
the Lagrangian. A more interesting question is whether spontaneous symmetry
breakdown can occur in a theory without fundamental scalar fields. For ex-
ample, perhaps bilinear forms in Fermi fields can develop symmetry-breaking
vacuum expectation values all by themselves. There is one exactly soluble
model without fundamental scalars that displays the full Goldstone—Higgs phe-
nomenon. This is the Schwinger model, quantum electrodynamics of massless
fermions in two-dimensional space-time.

(iv) It is important to realise that we can make the effects of spontaneous symme-
try breakdown as large or as small as we want, by appropriately fudging the
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parameters in our models. Thus, in the real world, some of the spontaneously
broken symmetries of nature may be totally inaccessible to direct observation.
Also, of course, there is no objection to exact or approximate symmetries of
the usual kind coexisting with spontaneously broken symmetries. Presumably
symmetries such as nucleon number conservation, neither broken nor coupled
to a massless gauge meson, are of this sort.

4 Some Mathematical Aspects of Bifurcations, Singularities
and Universality

Bifurcation, as a scientific terminology, has been used to describe significant and
qualitative changes that occur in the solution curves of a dynamical system, as the
key system parameters are varied. Very frequently, it is used to describe the quali-
tative stability changes of the solution curves of a non-linear dynamical system. In
other words, the concept of bifurcation allows studying the branch points in non-
linear equations, that is, of singular points of the equations where several solutions
come together. It is important in applications because bifurcation phenomena typi-
cally accompany the transition to instability when a characteristic parameter passes
through a critical value. Most of the dynamical systems naturally depend on param-
eters. For some special (critical) values of the parameters, say c, the non-generic
situations may occur. For example, two stationary points A and B, depending on the
parameter ¢, may collide at ¢ = 1/4. If c is decreasing, the unique stationary point
existing for ¢ = 1/4, is “subdivided” into two points A and B. In such examples,
all topological changes of the phase portraits under the change of the parameters
are called bifurcations. A phase singularity is a point at which phase is ambiguous
and near which phase takes on all values. In other words, singularity means a place
where slopes become infinite, where the rate of change of one variable with another
exceeds all bounds, and where a big change in an observable is caused by an arbi-
trarily small change in something else. Various areas of physics (solid state physics,
hydrodynamics, fluid mechanics, physical chemistry and statistical physics) are a
rich source of instability and bifurcation phenomena. We mention the formation of
convection cells in the Bénard problem, which furnishes an excellent example of
what is called a “symmetry-breaking instability”. Prior to the onset of instability
the solution is invariant under the entire group of rigid motions, whereas the bi-
furcating convective motions are invariant only under a crystallographic subgroup.
Symmetry is broken “spontaneously”, because the symmetry group of the equations
is unchanged, while the bifurcating solutions have a smaller symmetry group.

The centre manifold theorem is one of the most useful tools for giving a repre-
sentation of the solution trajectories of a non-linear dynamical system in a neigh-
bourhood of a non-hyperbolic equilibrium (for further details and a mathematical
statement, see [10] and [9]). It permits to understand the transition from stability
to instability in many non-linear dynamical systems—the stability may vanish at
the criticality appearing with different kinds of bifurcation points and trajectories
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or other singularities—and the emergence of new periodic or non-periodic (such as
in the case of chaotic time evolutions like hydrodynamic turbulence and strange at-
tractors) solutions. The concepts of bifurcation and attractor are very important for
understanding the transition from stable dynamical systems to unstable dynamical
systems in a large class of natural phenomena.

Closely related to this last question is a recent remarkable discovery—the so-
called Feigenbaum universality, which is based on the well-known renormalisation-
group method in theoretical physics, first used in statistical mechanics and quantum
field theory. The problem with which Feigenbaum started consists in studying how
dynamical systems depending on a parameter pass from a stable type of motion,
which it is natural to call laminar, to an unstable type that involves the appearance
of strong statistical properties frequently associated with turbulence. The Feigen-
baum universality refers directly to sequences of period-doubling bifurcations. In
traditional bifurcation theory it is usual to consider the local behaviour of families
of dynamical systems in a neighbourhood of a bifurcation value of the parameter.
Here, however, we encounter a completely new problem: the local behaviour of a
family of dynamical systems in a neighbourhood of a parameter value where in-
finitely many parameter bifurcation values accumulate. It should be observed that
the form of the trajectories becomes more complicated as the parameter increases
for a broad class of one-parameter families of maps of a closed interval into itself,
namely, a stable periodic trajectory becomes unstable as the parameter increases,
and a stable periodic trajectory with twice the period is created, which attracts all
points except for unstable cycles. Feigenbaum observed that the successive parame-
ter values where such bifurcations take place for the family of maps x — pux(1 —x)
(0 < <4)of [0, 1] into itself converge to a limit at the rate of a geometric progres-
sion with the ratio § =4.6692. .., the famous Feigenbaum constant. He then made
analogous calculations with the family f(x : u) = wsin(;rx) and observed here a
geometric progression with the same ratio. This led to the natural conjecture that
& does not depend at all on the form of the specific family of maps. Feigenbaum
also proposed a theory explaining the universality of . It is useful qualitatively to
form an intuitive picture of the phenomenon taking place when there is an infinite
sequence of period-doubling bifurcations.

5 Brief Remarks on Conservative and Dissipative Systems

Very roughly one can classify the natural phenomena into two great classes: those
that do not depend on time, i.e. which are invariant with respect to time changes, and
those that depend on time, that is, which transforms in the course of time evolution
and, more important, with time. The most interesting example of this variation of
many natural phenomena and living systems is the spontaneous symmetry breaking,
which produces a qualitative change in the state of those phenomena and systems.
Consider a (non-linear) oscillator, which is an archetypal system having a be-
haviour depending on time. Consider further the periodic movement of a physical
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pendulum; now this movement will stops after a certain time owing to frictions (and
other perturbations). In other words, the amplitude of oscillations will decrease in-
evitably with time. This phenomenon consists in a dissipation of energy, which we
found to be very general and to lead to implications for the study of everyday phys-
ical experience, and which can be expressed in a precise mathematical formulation.
One can first consider the ideal case of a simple pendulum where we have, in addi-
tion to the point-like character of the mass, the absence of any kind of friction; yet
some physical quantities and properties of the system are conserved.

The damped-oscillator provides a typical example of a dissipative dynamical sys-
tem; and its most striking dynamical properties may be summarised as follows.

1. For such dissipative systems, there is not in general a time-independent Hamil-
tonian H, hence, no conservation of the energy of the systems.

2. In some cases, on the other hand, there exists a function of the dynamical vari-
ables, called the Lyapounov function, which is positive and monotonically de-
creasing (with time), which means that the system under consideration undertake
an irreversible process.

3. One can also have, in the case of a dissipative system, a domain of evolution
much more complicated than a simple decreasing. In any case, every time there
is dissipation the equations of movement change by time reversal: therefore, the
dynamics of dissipative systems is irreversible.

6 Some Qualitative and Geometrical Properties of Psychological
Time

This last reflection is twofold aimed. First, we would like emphasising some prop-
erties of time which make up its peculiar structure in the conception of the physical
world that governs everyday life. Let us begin by distinguishing quantitative from
qualitative properties of time. In measuring time by the help of clocks we make use
of its quantitative, or metrical, properties. Such measurements concern the determi-
nation of time distances of equal length, represented, for instance, by two consecu-
tive hours; and, in addition, the determination of simultaneity, that is, of equal time
values for spatially distant points. The theory of the metrical properties of time has
been developed in great detail in modern physics—in particular, in Einstein’s the-
ory of relativity. The qualitative, or fopological, properties of time are fundamental,
in that they hold independently of specific procedures of measurement and remain
unchanged even if the form of measuring time are varied. They comprise notably
those properties that confer upon time its specific nature as different from space and
that account for our sensible perception towards time. Following the precise anal-
ysis given by Hans Reichenbach [8] (see also [11]), we can formulate in several
statements the most evident qualitative properties of time as follows:

(1) Time goes from the past to the future. This statement refers to the flow of time;
it expresses what we call becoming. Time is not static; it moves. We may regard
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the flow of time as the common product of an objective (physical) factor and a
subjective one (connected with the structure of human consciousness).

(2) The present, which divides the past from the future, is now. The meaning of
“now” might express either (or simultaneously) our subjective and intentional
approach to time for the “present”, or (and) the fact that we see the things around
us in a certain spatial perspective. However that may be, this statement appears,
from the psychological point of view, rather enigmatic.

(3) The past never comes back. This statement appears to be closely connected with
the flow of time, that is, with the fact that time flows linearly in one and same
direction, in the direction of a straight line, without thus never and nowhere
intersects itself; the one-dimensional and linear continuum is the model of this
conception of time.

The following three statements are intended to express the differences between
the “past” and the “future”.

(4) We cannot change the past, but we can change the future. The statement means,
among other things, that there are some future happenings which we can pre-
dict and control though—owing to the random and complex nature of many
macroscopic—we cannot predict and control cosmic events, or the weather, or
earthquakes; and we are rather poor at controlling human society, which contin-
ues to drift from crisis into crisis and from war into war, but there are not events
of the past which we can change.

(5) We can make records of the past, but not of the future. It is not possible to predict
the future from isolated indications. And even if such a prediction from a few
isolated causes is possible, it can be made only in approximate terms. Moreover,
even the knowledge of the total cause cannot permit sure predictions.

(6) The past is determined; the future is undetermined. In some sense, the past
consists of established facts, whereas the future does not; and an established
fact is something that we cannot change, whereas the future concerns uncertain
and questionable facts, and it is open to very different issues.

Then we want to sketch the essential features of a geometric suited model to
represent the multidimensional and polycyclical nature of psychological and possi-
bly physical time upon which rests partly our perception of the world. We borrow
the fundamental ideas of this model from the mathematical theory of superstrings
and from the theory of Calabi—Yau spaces. The central idea is that the space-time
structure of the universe may have both extended dimensions and curled-up dimen-
sions. This is an astounding suggestion made in 1919 by the Polish mathematician
Theodor Kaluza, and refined some years later by the Swedish physicist Oskar Klein.
This means that our spatial universe has dimensions that are large, extended, and
easily visible, namely the three spatial dimensions of common experience, but that
may also have additional spatial dimensions that are tightly curled up into a very tiny
space. For instance, circular loops may exist at every point in the familiar extended
dimensions. It is worthy of note that the circular dimension is not merely a circular
bump within the familiar extended dimensions; rather, the circular dimension is a
new dimension, one that exists at every point in the familiar extended dimensions;
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it is a new and independent direction in which some being, if it were small enough,
could move.

In the 1980s, it has been showed that one may generalise the Kaluza—Klein
theory to higher-dimensional theories with numerous curled-up spatial directions.
These extra dimensions are curled up into the surface of a sphere. Of course, be-
yond proposing a different number of extra dimensions, one can also imagine other
shapes for the extra dimensions, for instance, the shape of a torus. And also more
complicated possibilities can be imagined in which there are three, four, five, es-
sentially any number of extra spatial dimensions, curled up into a wide spectrum
of exotic shapes. In fact, the extra dimensions or the curled-up dimensions, which
seem very profoundly to influence basic physical properties of the universe, look
like a class of six-dimensional geometrical shapes known as Calabi—Yau spaces.
Roughly, we have to imagine replacing each of the spheres—which represented two
curled-up dimensions—with Calabi—Yau space. That is, at every point in the three
familiar extended dimensions, string theory claims that there are six hitherto unex-
pected dimensions, tightly curled up into one of these rather complicated-looking
shapes. These dimensions are an integral and ubiquitous part of the space’s struc-
ture; they exist everywhere. For instance, if you sweep your hand in a large arc, you
are moving not only through the three extended dimensions, but also through these
curled-up dimensions. Of course, because the curled-up dimensions are very small,
as you move your hand you circumnavigate them an enormous number of times,
repeatedly returning to your starting point.

Now, given the requirement of numerous extra dimensions, is it possible that
some are additional time dimensions, as opposed to additional space dimensions?
We all have an understanding of what is means for the universe to have multiple
space dimensions, since we live in a world in which we constantly deal with a plu-
rality three. But what would it mean to have multiple times? Would one align with
time as we presently experience it psychologically while the other would somehow
be “different”? It gets even hard to accept when you think about a curled-up time
dimension. Nevertheless, we may think of time not solely as a dimension we can
traverse in only one direction with absolute inevitability, never being able to return
to an instant after it has passed. At any rate, it might be that curled-up time dimen-
sions have vastly different properties from the familiar, vast time dimension that we
imagine reaching back to the creation of the universe and forward to the present
moment.

But, in contrast to extra spatial dimensions, new and previously unknown time
dimensions would clearly require an even more profound change of our intuition.
It seems to us that the intriguing possibility of new time dimensions could well
play a role in future developments of our conceptions of physical reality and of
natural phenomena. Starting from these mathematical objects, one might suggest a
geometrical model notably of psychological time which cannot be conceived like a
linear and one-dimensional concept any more, but rather as a multidimensional and
polycyclical one.
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