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Abstract. There has been recent interest in applying Stackelberg games to in-
frastructure security, in which a defender must protect targets from attack by an
adaptive adversary. In real-world security settings the adversaries are humans
and are thus boundedly rational. Most existing approaches for computing de-
fender strategies against boundedly rational adversaries try to optimize against
specific behavioral models of adversaries, and provide no quality guarantee when
the estimated model is inaccurate. We propose a new solution concept, mono-
tonic maximin, which provides guarantees against all adversary behavior models
satisfying monotonicity, including all in the family of Regular Quantal Response
functions. We propose a mixed-integer linear program formulation for computing
monotonic maximin. We also consider top-monotonic maximin, a related solution
concept that is more conservative, and propose a polynomial-time algorithm for
top-monotonic maximin.

1 Introduction

Stackelberg games have been used to model resource allocation problems in infrastruc-
ture security, in which a defender must allocate limited security resources to protect
targets from attack by an adversary [1, 2, 10, 16]. Due to surveillance by the adversary,
any pure strategy by the defender can be exploited. The defender thus should commit to
a mixed strategy as the leader in this Stackelberg game, taking into account the response
by the adversary who is the follower. Classical solution concepts such as Strong Stackel-
berg Equilibrium assume that the follower is perfectly rational. However, in real-world
security settings the adversaries are humans and thus this perfect rationality assumption
is problematic. There has been much recent progress on optimal defender strategies for
Stackelberg security games against boundedly rational adversaries, for various behav-
ior models including epsilon-best response, anchoring bias, prospect theory and logit
quantal response models [14, 18].

The quantal response (QR) model is well-supported by the social and behavioral
science literature [11–13] and has performed well in laboratory experiments for the
Stackelberg game setting [18]. Within the QR framework, there is some freedom in
the choice of functional families (logit, probit, etc.) and parameter values, e.g., the pa-
rameter λ in the logit QR model which measures the adversary’s level of rationality.
Once the function form is selected and parameter estimated (e.g., from real-world data
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or lab experiments), optimal defender strategies can be computed using optimization
algorithms such as BRQR and PASAQ [18, 19].

However, there is some uncertainty about the best modeling parameters to use in
real-world settings. In particular, real-world data on terrorist attacks are difficult to ob-
tain. One can try to overcome this by running laboratory experiments, but models and
parameters that give good fits in laboratory settings might not perform as well in actual
security settings, due to factors such as different populations and different environ-
ments. And when the parameter estimate is inaccurate, current algorithms provide no
worst-case guarantee with respect to the solution quality.

At the other extreme, there is the maximin solution: a leader strategy that maximizes
leader expected utility when the follower is playing the worst-case strategy, i.e., play as
if the follower is trying to minimize the leader’s utility, even though the game is gener-
ally not zero-sum. The maximin solution provides utility guarantee without making any
assumption on the attackers’ behavior model. The maximin solution is computationally
tractable: it can be solved by linear programming. However, the solution concept may
be too conservative; in particular, the leader is disregarding any knowledge she may
have about the follower’s utilities in the game.

Are there robust solutions that do make use of recent advances in behavioral sciences,
but are less sensitive to the choice of modeling parameters? In this paper we propose an
approach that, instead of optimizing against a particular QR model, aims to guarantee
good defender utility against all “reasonable” QR attackers. We note that QR in its most
general form [13] covers all possible player behavior [6], so restriction to some notion
of “reasonableness” is necessary. Goeree, Holt and Palfrey [5] proposed four properties
that all reasonable QR models should satisfy, and called models satisfying all four prop-
erties Regular Quantal Response. In this paper, we impose constraints on attacker strate-
gies that correspond to a relaxed version of Regular QR. Specifically, we assume that
the attacker’s strategies satisfy one of the four Regular QR properties, namely mono-
tonicity, which is the property that actions with lower expected utility are played with
smaller probability. (We further discuss the choice of monotonicity in Section 3.2.) We
propose the following “monotonic maximin” solution concept to Stackelberg games: a
defender plays a mixed strategy that maximizes defender expected utility, against the
worst-case monotonic attacker mixed strategy. Since all Regular QR attackers satisfy
monotonicity, monotonic maximin provides utility guarantees against all Regular QR
attackers. Monotonic maximin is a robust alternative to the optimal Stackelberg strat-
egy against specific QR models: it provides utility guarantees against all “reasonably
rational” attackers (as defined by Regular QR) without making assumptions about pa-
rameters. This can be thought of as a “model-free” or “non-parametric” approach to
Stackelberg games with boundedly rational followers.

The resulting computational problem might appear similar to a standard maximin
problem, but is more challenging because the constraints for attacker’s monotonicity
now depend on the defender strategy. In this paper we propose an algorithm for this
problem, based on LP duality and mixed-integer programming.

It is also interesting to consider attackers satisfying relaxations of the monotonicity
constraint: the resulting defender strategies are more robust, as we are considering a
larger set of possible attacker strategies. Specifically, we consider top monotonicity, the
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property that the follower’s probability of playing each best response action is no less
that that of any other action. We propose a polynomial-time algorithm for computing
the resulting top-monotonic maximin solution concept.

We ran computational experiments to compare monotonic maximin and top-
monotonic maximin against previously-proposed solution concepts including strong
Stackelberg equilibrium [4], maximin, MATCH [15], as well as logit QR models with
various parameter settings. Overall monotonic maximin is significantly more robust
against monotonic adversaries compared to the previously-proposed solution concepts.

1.1 Related Work

There has been some recent work on designing defender strategies in security games
that are robust against uncertainties, including uncertainties about the opponent as well
as about the environment. One line of work is based on probabilistic models of uncer-
tainties, and aims for security strategies that maximize the defender’s expected utility
under such probabilistic models. These include approaches based on specific models
of bounded rationality, such as logit quantal response, prospect theory, and anchoring
bias [14, 18]. A drawback of such approaches is the requirement on the availability and
accuracy of probabilistic models; if an inaccurate probabilistic model is chosen, there
is no quality guarantee with respect to the resulting security solution.

Another line of work, which includes our approach in this paper, adopts the robust
optimization framework [3, 17] from Operations Research: define an uncertainty set
that represents the space of likely models, and compute a security strategy that max-
imizes defender’s utility under the worst case choice of models from that uncertainty
set. For example, the BRASS algorithm [14] was designed to be robust against all ad-
versaries playing epsilon-best response. An algorithm that is related to our approach is
MATCH [15], which aims to provide a robust approach to Stackelberg security games
against human attackers. MATCH is based on a similar intuition as our approach, that
places less importance on attacker’s actions with worse expected utilities. Specifically,
MATCH bounds the defender’s potential loss due to attacker’s irrational behavior by
a β-multiple of the attacker’s loss due to his irrational behavior. Thus the robustness
guarantee provided by MATCH is relative to the amount of the attacker’s loss due to
irrational behavior, and gets worse against less rational attackers. In contrast, our ap-
proach provides guarantees on defender utility against all Regular QR attackers.

At a high level, one drawback of these previous robust approaches is that they are
still dependent on their parameter settings to define the sizes of their uncertainty sets. If
the parameters are set so that the uncertainty sets are too small, the resulting solutions
will be insufficiently robust. If the parameters are set so that the uncertainty sets are too
large, the resulting solutions approach the maximin solution and are thus too conser-
vative. While for certain cases it may be possible to come up with suitable parameters,
our monotonic maximin approach avoids the requirement for parameters altogether. On
the other hand, one could ask the same question about the uncertainty set defined by
monotonic maximin: does the uncertainty set have the “right” shape and size? In par-
ticular, one potential criticism against monotonic maximin would be that it may be too
conservative, because it uses only one of the four Regular QR conditions. In Section
3.2 we show that the uncertainty set for monotonic maximin is tight for Regular QR
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attackers, that is, any point in the uncertainty set could be arbitrarily approached by the
behavior of a Regular QR attacker.

Finally, we mention work on modeling the game’s uncertainties in aspects other than
the adversary’s behavior. Bayesian games were proposed to model players’ probabilistic
uncertainty about payoffs of the game [7]. There is also work that uses Bayesian games
to model probabilistic uncertainties about defender’s ability to execute the strategies as
well as attacker’s observation of defender strategies [22]. Within the robust optimization
framework, The RECON algorithm [20] was designed to be robust against observation
and execution uncertainties within a certain (hyperrectangular) error bound. Kiekintveld
et al. [8] proposed robust solutions for security games against interval payoff uncertain-
ties. While our paper’s focus is on the behavior of the adversary, in Section 3.3 we
briefly mention how our approach can be applied to achieve robustness against certain
types of payoff uncertainty.

2 Preliminaries

Let 1 be a vector of 1’s, the dimension of which will be clear from context. Let ei be
the i-th basis vector. Denote by [n] the set {1, . . . , n}.

We consider a two-player Stackelberg game between a leader and a follower. Leader’s
mixed strategy is denoted by x ∈ X ⊂ Rm where X = {x ∈ Rm|Cx ≤ d} is a poly-
tope. This includes the standard case where x is the distribution over m leader actions,
when X is the simplex {x ∈ Rm|x ≥ 0,1Tx = 1}; it also includes cases where x
is a compact representation of mixed strategy as marginal probabilities (e.g., marginal
coverage on targets [9], or marginal flow on a network [21]). Follower has n actions,
labeled from 1 to n; i.e., his set of actions is [n]. Follower’s mixed strategy is denoted
by y ∈ Y , where Y = {y ∈ Rn|y ≥ 0,1Ty = 1} is the standard simplex. The game’s
payoff matrices are A,B ∈ Rm×n. Expected utilities for the leader and the follower
are xTAy and xTBy respectively. The game is general-sum: the sum of the players’
utilities is not necessarily a constant.

Stackelberg Security Games. Although the solution concepts proposed in this paper
apply to two-player Stackelberg games in general, we will frequently consider Stackel-
berg Security Games (SSGs) [9], a class of games with utility structure corresponding
to the real-world problem of infrastructure security. Specifically, an SSG is a two-player
Stackberg game between a defender (the leader) and an an adversary/attacker (the fol-
lower). There is a set of n targets T = [n]. The defender can deploy resources to cover
some of the targets. Let Z ⊂ {0, 1}n be the set of feasible allocations of defender re-
sources to targets, where for each allocation z ∈ Z and target j ∈ T = [n], zj = 1
means the target is covered by the defender, and zj = 0 means the target is not covered.
Defender’s set of mixed strategies X can then be represented by the convex hull of fea-
sible allocations Z: X = conv(Z) ⊂ Rn. The attacker chooses one target to attack,
i.e., his set of mixed strategies Y is the standard simplex {y ∈ Rn|y ≥ 0,1Ty = 1}.

The payoffs to the players depend only on which target is attacked, and whether that
target is covered by the defender. In other words, whether the defender covers an un-
attacked target does not affect the payoffs. Specifically, for each target t ∈ T , we denote
by Uu

d (t) the defender’s utility for an uncovered attack on t, and U c
d(t) for a covered
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attack. Similarly, Uu
a (t) and U c

a(t) are the attacker’s payoffs for uncovered and covered
attacks on t, respectively. In terms of the payoff matrices A,B ∈ Rn×n, this means
that Aij is equal to U c

d(j) if i = j, and Uu
d (j) otherwise; while Bij is equal to U c

a(j) if
i = j and Uu

a (j) otherwise. We further assume that U c
d(t) > Uu

d (t) and U c
a(t) < Uu

a (t)
for all t ∈ T .

In this paper we will focus on SSGs in which the set of feasible defender alloca-
tions Z has a simple structure: the defender has r resources, and each resource can
protect any single target. Thus any allocation that uses r resources is feasible. The
corresponding convex hull X can be described using a small number of constraints:
X = {x ∈ Rn|0 ≤ x ≤ 1,1Tx = r}. We call such a game an SSG with r resources.

Table 1. An example 3-target Stackelberg security game

Target 1 Target 2 Target 3
Uc

d 7 10 2
Uu

d -10 -8 -10
Uu

a 3 10 4
Uc

a -10 -4 -10

Example 1. Table 1 shows the payoffs of an example Stackelberg security game with
3 targets. Specifically, the columns represent the targets and for each column the de-
fender’s utilities for covered attack (U c

d) and uncovered attack (Uu
d ), and the attacker’s

utilities for uncovered attack (Uu
a ) and covered attack (U c

a) are given.

Strong Stackelberg Equilibrium (SSE) is one of the standard solution concepts of
Stackelberg games. In an SSE, the leader is maximizing her expected utility, assuming
that the follower plays a best response. When the follower has multiple best responses,
he is assumed to break ties in favor the leader. Formally, the SSE strategy for the leader
is argmaxx∈X,y∈BR(x) x

TAy, where BR(x) = argmaxy∈Y xTBy is the set of best
responses of the follower given leader strategy x.

Quantal Response is in general defined by a function P : Rn → Y from the
vector of expected payoffs of an agent’s actions to a probability distribution over the
actions. Denote by Pj(u) the probability of playing action j given the vector u ∈ Rn

of expected payoffs. For example, the logit quantal response function has the form
Pj(u) = eλuj

∑
j′ e

λu
j′ where λ ≥ 0 is a parameter. Other examples of P include probit,

and the constant mapping to the uniform distribution.
Quantal Response Equilibrium (QRE) [13] is a solution concept for simultaneous

games in which all players are playing quantal response strategies. In security domains,
the adversary is human (and therefore not perfectly rational) while the defender can be
assumed to be a rational decision maker aided by computers. This “Stackelberg against
Quantal Response” model has been studied by Yang et al [18], who assumed that the
adversary’s quantal response function is known to the defender. In this paper we con-
sider the case where the defender knows that the adversary behaves according to some
quantal response model but does not know the specific quantal response function P .
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Regular QRE. Goeree, Holt and Palfrey [5] proposed constraints that all reasonable
QRE models should satisfy. Formally, P is a regular quantal response function if it
satisfies the following:

1. Interiority: Pj(u) > 0 for all j.
2. Continuity: Pj(u) is continuously differentiable.
3. Responsiveness: ∂Pj(u)

∂uj
> 0 for all j.

4. Monotonicity: uj > uk ⇒ Pj(u) > Pk(u) for all j, k.

They also point out that Continuity and Monotonicity imply uj = uk ⇒ Pj(u) =
Pk(u). The logit and the probit distributions are examples of regular quantal response
functions. On the other hand, choosing a best response is not a regular quantal response
function because it does not satisfy Interiority and Continuity.

The maximin solution is the optimal defender strategy assuming that the attacker
is choosing the strategy that is worst for the defender: argmaxx∈X miny∈Y xTAy.
This solution concept is extremely conservative: the defender has to take into account
an attacker that does completely arbitrary things, and as a result is disregarding his
knowledge about the attacker payoff matrix B and treating the game as a zero-sum
game.

3 Monotonic Maximin

Our overall approach is to modify maximin by imposing constraints on the attacker
strategy. Specifically, we assume that the attacker strategy satisfies monotonicity. Since
all Regular QR attackers satisfy monotonicity, our approach is able to provide guaran-
tee against all Regular QR attackers. For computational convenience we will use the
following form of monotonicity.

Definition 1. Given x ∈ X,y ∈ Y , we say y satisfies closed monotonicity if for all
i, j ∈ [n], xTBei ≥ xTBej ⇒ yi ≥ yj .

Recall that xTBei is the follower’s expected utility of choosing action i, given that the
leader plays x. There are strategies that are closedly monotonic but not monotonic, for
example the uniformly random strategy. It is straightforward to show the following:

Proposition 1. If attacker is acting according to a regular quantal response function,
then his mixed strategy y satisfies closed monotonicity.

Proof. We need to show that for all i, j, xTBei ≥ xTBej ⇒ yi ≥ yj . Given i, j,
suppose xTBei > xTBej . Then by the assumption of Monotonicity we have yi > yj
which implies yi ≥ yj . Now suppose xTBei = xTBej . Then by Continuity and
Monotonicity, yi = yj which implies yi ≥ yj .

Observe that closed monotonicity is not necessarily a weaker version of Monotonicity;
nevertheless it is a consequence of Continuity and Monotonicity.

Let Q(x) ⊆ Y be the set of follower mixed strategies that satisfy closed monotonic-
ity given x. Then Q(x) = {y ∈ Y |∀(i, j) ∈ E(x), yi ≥ yj}, where E(x) = {(i, j) ∈
[n]|xTBei ≥ xTBej}.
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Definition 2. The monotonic maximin solution is

argmax
x∈X

min
y∈Q(x)

xTAy. (1)

Let the monotonic maximin value be the corresponding objective value:
maxx∈X miny∈Q(x) x

TAy. By definition, the monotonic maximin solution pro-
vides guaranteed expected utility of at least the monotonic maximin value against all
attacker strategies satisfying the monotonicity property.

Example 2. Consider the 3-target Stackelberg security game from Example 1. Suppose
the defender has one resource. The defender’s strategies generated by monotonic max-
imin, maximin, and SSE are shown in Table 2. For example, the second row indicates
the defender’s strategy generated by monotonic maximin, i.e., target 1 will be covered
by the defender 37% of the time while there are 53% and 10% that target 2 and 3 will
be covered by the defender, respectively.

When the strategy of the defender is generated by monotonic maximin, the defender’s
expected utility is -3.65 given a worst-case monotonic attacker strategy. Multiple mono-
tonic attacker strategies tied for the worst case, including (12 , 0,

1
2 ) and (13 ,

1
3 ,

1
3 ). On

the other hand, when maximin is used, the defender’s expected utility is -4.38 for any
actions of the monotonic attacker. Finally, when SSE is used, the attacker’s expected
utilities for all targets are the same and equal to 1.05. Thus the only feasible action for
the monotonic attacker is (13 ,

1
3 ,

1
3 ). The defender’s expected utility in this case is -3.8.

Table 2. Defender’s strategy

Target 1 Target 2 Target 3
Monotonic maximin 0.3732 0.5277 0.0991

Maximin 0.3306 0.2011 0.4683
SSE 0.15 0.6393 0.2107

The following proposition shows that the monotonic maximin concept is of most
interest when the game is not zero sum.

Proposition 2. For zero-sum games, the monotonic maximin solution coincides with
maximin solution.

Intuitively, if we consider e.g., a logit QR follower with λ → ∞, then his behavior
approaches that of a perfectly rational player and the leader can do no better than the
maximin solution in a zero-sum game.

3.1 Existence of Monotonic Maximin Solutions

The standard Extreme Value Theorem states that a continuous function on a compact
domain has a maximum. Since the set of monotonic follower strategies Q(x) is not
continuous in x, the value of the inner minimization miny∈Q(x) x

TAy is not neces-
sarily continuous in x. A natural question arises: does the monotonic maximin solution
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always exist? Of course if the maximum does not exist we could take the supremum
instead, but the corresponding defender strategy would no longer be guaranteed to be
robust.

Proposition 3. The monotonic maximin solution exists in all Stackelberg games.

This will be a direct consequence of Proposition 6 in Section 4, which provides an
algorithm for monotonic maximin.

3.2 Optimality against Interiority, Continuity and Responsiveness

One potential criticism is that by focusing on monotonicity (and not the other condi-
tions of Regular QR), monotonic maximin may be too conservative as it does not take
advantage of all information about the follower behavior provided by the Regular QR
model.

Proposition 4. The monotonic maximin solution is arbitrarily close to optimal against
an attacker who chooses the worst (for the defender) strategy satisfying both closed
monotonicity and interiority.

Proof (sketch). It is sufficient to show that given any x, miny∈Q(x) x
TAy =

infy∈Q(x)∩Int x
TAy where Int is the set of strategies satisfying interiority. Given an

attacker strategy y that does not satisfy interiority (say a solution of the LHS), we can
construct another strategy y′ that satisfies interiority by re-assigning a small amount of
probability mass to actions with zero probability in y. It is also straightforward to show
that this can be done in a way that preserves closed monotonicity. y and y′ achieve
almost the same expected payoffs for both players.

Let us now consider continuity and responsiveness. Unlike monotonicity and interi-
ority, which can be expressed as “local constraints” on y, continuity and responsiveness
are properties of the response functionP (u) and correspond to constraints on the values
of P given multiple inputs.

Consider the inner minimization problem of monotonic maximin: q(x) =
argminy∈Q(x) x

TAy. This defines a response function P (u) for the attacker,1 which
likely violates continuity and responsiveness. But is that necessarily the response func-
tion of the attacker we face? In particular does the attacker’s response function have to
be the same regardless of the defender’s mixed strategy? Instead, we allow the attacker
to “pick a response function” after observing defender’s mixed strategy x, which is con-
sistent with our overall robust optimization approach. It turns out that it is possible to
pick the response function in a way that satisfies all conditions of regular quantal re-
sponse, at the same time outputting the worst-case closedly monotonic strategy given x.
This shows that monotonic maximin remains the optimal solution concept even when
we consider attackers that satisfy all conditions of regular quantal response.

1 Actually for P to be well-defined, it requires that q(x) = q(x′) whenever xTB = x′TB. This
holds for Stackelberg security games, in which the players’ utilities depend on the coverage
on targets.
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Proposition 5. Given x ∈ X , there exists a regular quantal response function P :
Rn → Y such that P (xTB) is arbitrarily close to argminy∈Q(x) x

TAy.

We give a proof in Section 5.2.

3.3 Capturing Other Behavioral and Uncertainty Models

In this section we show that monotonic maximin provides guarantees not only against
regular quantal response attackers, but also other models of attacker behavior. Further-
more, if uncertainties in the game model (e.g., in the game’s payoffs, attacker’s capabil-
ities, defender’s execution, etc.) result in attacker behavior that is monotonic, then we
can use monotonic maximin as a robust solution concept against such uncertainties.

Behavioral Models. A mixture (i.e., convex combination) of regular quantal response
models is also a regular quantal response model, and therefore satisfies closed mono-
tonicity. For example, one can have some probabilistic prior belief over the values of
parameter λ in logit QR models, resulting in a mixture of logit QR models. As an-
other example, consider a mixture of a regular QR model with the model that attacker
plays a uniformly random mixed strategy. This is also a mixture of Regular QR mod-
els because the uniformly random strategy is a special case of Regular QR. Monotonic
maximin provides utility guarantees against all such models.

Such guarantees are also applicable to behavior models that are not Regular QR
but satisfy closed monotonicity. For example, consider the following “uniform best re-
sponse” model: the attacker chooses a best response; if there are multiple pure-strategy
best responses the attacker uniformly randomizes among those best responses. This is
not a Regular QR function since it is not continuously differentiable; but it satisfies
closed monotonicity. More generally, consider the uniform top-K strategy, in which the
top K actions in terms of expected utilities are played, each with equal probability of
1/K . These are not Regular QR but are nevertheless closedly monotonic. We will see
later that these strategies have importance in monotonic maximin solutions.

Payoff Uncertainty. A simple consequence of [13] is that if we add i.i.d. noise with a
smooth distribution of zero mean to the entries of the follower’s payoff matrix B, and
assuming that the follower plays a best response, then the resulting average follower
strategy is monotonic. However this kind of noise does not preserve the structure of
Stackelberg security games. For Stackelberg security games, consider the following
type of payoff noise: i.i.d. with a smooth distribution of zero mean, added for each
target to the payoffs of covered and uncovered attacks. For each instantiation of this
noise the resulting game is still a Stackelberg security game. Given a defender mixed
strategy, this would result in zero-mean i.i.d. noise over the expected attacker utilities
of attacking each target. By the same argument as in [13], if the follower plays a best
response, then the resulting average follower strategy is monotonic.

However, if the follower has a monotonic response function (not just a best re-
sponse), the resulting average strategy under i.i.d. payoff noise is not guaranteed to be
monotonic. Indeed, our numerical experiments show that when the follower plays the
worst-case monotonic strategy with respect to perturbed utilities, the resulting average
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strategy is not always monotonic. It is possible to show that monotonicity is preserved
under such noise if we assume the follower’s response function is symmetric with re-
spect to actions; we leave the detailed discussion to a future extended version of the
paper.

3.4 Top-Monotonic Maximin

We define top monotonicity to be the property that for each best response action of the
attacker, the probability of that action is no less than that of any other action. Formally,
y satisfies top monotonicity given x if for all i ∈ [n],

xTBei ≥ xTBej ∀j ⇒ yi ≥ yj ∀j.

We denote by ̂Q(x) ⊂ Y the set of top-monotonic follower strategies given x.
Top-monotonicity is a relaxation of closed monotonicity: the inequality yi ≥ yj only

needs to hold between the best response action i and each of the other actions j. In other
words, the corresponding top-monotonic maximin solution

argmax
x∈X

min
y∈Q̂(x)

xTAy

is more conservative than monotonic maximin.
Top-monotonic maximin is interesting partially because there have been extensive

studies on various solution concepts that focus on pairwise comparisons between the
best-response action against possible deviations.2 Furthermore, we will show later that
top-monotonic maximin can be computed in polynomial time.

4 Computation of Monotonic Maximin

4.1 Multiple-LP Formulation

Unlike the Maximin problem, we cannot directly use linear programming to solve (1).
This is because the feasible set Q(x) for y now depends on x. Fortunately, Q(x) de-
pends only on E(x), which is essentially the ordering of attacker actions in terms of
attacker utilities. So in theory we could solve an LP for each possible ordering, and
return the one with best defender utility.

Since the attacker utilities are real numbers, the binary relation E(x) ⊂ [n]× [n] sat-
isfies the constraints of a total order, i.e., transitivity: (i, j), (j, k) ∈ E(x) ⇒ (i, k) ∈
E(x) and totality: (i, j) ∈ E(x) ∨ (j, i) ∈ E(x). Given a total order E ⊂ [n]× [n], let
E−1(E) = {x ∈ X : E = E(x)}, i.e., the set of leader strategies inducing the order E
on follower expected utilities.

2 For example, in a Strong Stackelberg Equilibrium, any non-best response of the follower re-
ceives zero probability; for the epsilon-best responses considered in the BRASS algorithm
[14], any follower action that is more than ε worse than the best response receives zero prob-
ability; In a MATCH solution [15], if an adversary action j is ε worse than the best response,
the defender’s potential loss if the adversary chooses j instead of the best response is bounded
by βε, where β > 0 is a parameter of the solution concept.
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Thus, for each E that corresponds to a total order, we solve

max
x∈E−1(E)

min
y∈Q(x)

xTAy, (2)

and output the solution that achieves the best objective value. However, the set

E−1(E) = {x : ∀(i, j) ∈ E , (i, j) ∈ E(x); ∀(i, j) �∈ E , (i, j) �∈ E(x)}
= {x : ∀(i, j) ∈ E ,xTBei ≥ xTBej ; ∀(i, j) �∈ E ,xTBei < xTBej}

is not closed in general, since it involves strict inequalities for pairs not in E . This
presents problems such as potential nonexistence of solutions of (2). We instead use the
closure of E−1(E), which is

clE−1(E) = {x : ∀(i, j) ∈ E ,xTBei ≥ xTBej ; ∀(i, j) �∈ E ,xTBei ≤ xTBej}.
Since E is a total order, (i, j) �∈ E implies that (j, i) ∈ E , so the above can be simplified
to {x : ∀(i, j) ∈ E ,xTBei ≥ xTBej}. Given E , define the matrix F ∈ Rn×n(n−1)

such that its (i, j)-th column F(i,j) is ei − ej if (i, j) ∈ E and the 0 vector otherwise.
Then clE−1(E) can be written as {x : xTBF ≥ 0}. We will show below that replacing
E−1(E) with clE−1(E) will not introduce incorrect solutions.

The inner minimization problem of (2) can then be written as

min xTAy (3)

FTy ≥ 0 (4)

1Ty = 1 (5)

y ≥ 0 (6)

where FTy ≥ 0 is the matrix form for constraints yi ≥ yj ∀(i, j) ∈ E .
Given x, the above is an LP. By LP duality, its optimal solution is equal to that of its

dual LP

max t (7)

Fλ+ t1 ≤ ATx (8)

λ ≥ 0. (9)

Now that the inner min becomes an max, max-min becomes a max-max problem. Recall
that x ∈ X can be expressed as the linear constraints Cx ≤ d, and x ∈ clE−1(E) can
be expressed as the linear constraints xTBF ≥ 0. Then (2) can be written as

VF =max
x,λ,t

t (10)

Cx ≤ d (11)

xTBF ≥ 0 (12)

Fλ+ t1 ≤ ATx (13)

λ ≥ 0 (14)

which is an LP.
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Proposition 6. Consider the following Multiple-LP algorithm: given a two-player gen-
eral sum game, solve the LP (10) for each F corresponding to a total order over the
set of attacker actions. For the LP achieving the highest objective value VF , output its
solution x. Then x is a monotonic maximin solution of the game.

Proof (sketch). By construction, {E−1(E) : E is a total order} partitions X ; however
each of the E−1(E) is not necessarily closed. Instead, the feasible sets for x in the LP
instances (10) are closures of E−1(E), and thus cover X . These feasible sets have over-
laps: consider total orders E and E ′, corresponding to matrices F and F ′ respectively,
such that E ′ ⊂ E . Then clE−1(E) ⊆ clE−1(E ′). Such overlap presents potential prob-
lems if the LP for F ′ has a solution x′ ∈ clE−1(E), with an objective value greater
than VF , the optimal objective of the LP for F ; this is because such a solution would
mask the correct solution for the region clE−1(E). We claim that this masking will
never happen. Take this x′, which is feasible for the LPs for F and F ′, and compare the
objective values achieved by x′ in the two LPs. Given x′, the objective for the LP for
F will be higher, intuitively because E ′ ⊂ E and closed monotonicity implies that the
follower is subject to more constraints in the case of E , which makes the leader better
off. Therefore the objective value of x′ can never be higher than VF , and the output of
the Multiple-LP algorithm will be the monotonic maximin solution.

A direct consequence of this result is the existence of monotonic maximin solutions in
all Stackelberg games (Proposition 3).

However, we would need to solve one LP for each total order on [n]. The following
proposition shows that we only need to consider the strict orderings on [n], i.e., those E
in which for each pair of actions i, j, exactly one of (i, j) and (j, i) is in E .

Proposition 7. Consider a “non-strict” total order Et, with corresponding matrix F t,
i.e., there exists (i, j) such that (i, j), (j, i) ∈ Et. We say total order Ec (with corre-
sponding matrix F c) is a sharpening of Et if Ec ⊂ Et and Ec is a strict order; i.e., for ev-
ery pair (i, j), (j, i) ∈ Et, either (i, j) or (j, i) belongs to Ec, not both. Let F(Et) be the
set of matrices corresponding to sharpenings of Et. Then VF t ≤ maxF c∈F(Et){VF c}.

The proof is given in an online appendix available at http://teamcore.usc.
edu/people/jiangx/papers/MMappendix.pdf.

This reduces the number of orderings we need to consider, but there are still n! strict
orderings to consider, corresponding to permutations of [n]. One approach to overcome
this is to formulate the problem as a mixed-integer linear program (MILP).

4.2 MILP Formulation

The main idea is to have a binary integer variable zij that indicates whether (i, j) ∈ E.
Then F(i,j) = zij(ei − ej). To ensure that E corresponds to a total order, we can have
constraints zij + zji ≥ 1 and (1 − zij) + (1 − zjk) + zik ≥ 1. Then xTBF ≥ 0 can
be expressed as

xTBei +M(1− zij) ≥ xTBej , ∀i, j (15)

where M is a sufficiently large positive constant that upper bounds |xTB(ei − ej)|,
e.g. M = (maxi∈[m],j∈[n]Bij −mini∈[m],j∈[n]Bij)maxx∈X ‖x‖1.

http://teamcore.usc.edu/people/jiangx/papers/MMappendix.pdf
http://teamcore.usc.edu/people/jiangx/papers/MMappendix.pdf
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One issue is that Fλ =
∑

i,j λijF(i,j) =
∑

i,j λijzij(ei − ej), which now involves
quadratic terms. We can transform this quadratic expression into MILP constraints us-
ing standard techniques, by replacing λijzij with a new variable wij satisfying the
following constraints:

wij ≥ 0 (16)

wij ≥ λij − (1− zij)N (17)

wij ≤ λij (18)

wij ≤ zijN (19)

where N is a large positive constant. In fact we can eliminate λ since it is not used
elsewhere, i.e., we do not need to include the constraints (17) and (18). Taking these
together, we have a polynomial-sized MILP

max
x,w,t,z

t (20)

Cx ≤ d (21)

xTBei +M(1− zij) ≥ xTBej , ∀i, j (22)
∑

i,j

wij(ei − ej) + t1 ≤ ATx (23)

0 ≤ wij ≤ zijN (24)

zij ∈ {0, 1} (25)

zij + zji ≥ 1 (26)

(1 − zij) + (1 − zjk) + zik ≥ 1. (27)

4.3 Computing Top-Monotonic Maximin

Top-monotonic maximin can be efficiently computed by solving a small number of LPs.
There are n possible best response actions of the attacker corresponding to n LPs: for
each i ∈ [n], let E = {(i, j)|j ∈ [n], j �= i} and solve (10). These correspond to
partial orders as opposed to the total orders used previously. What about the cases with
multiple best responses? The same argument as in Proposition 7 shows that we only
need to consider the case with a single best response.

Proposition 8. Top-monotonic maximin can be computed in time polynomial in n, m,
and the number of constraints that define X .

We can define similar relaxations of closed monotonicity, that focus on the best L
actions: y is top-L monotonic for positive integer L ≥ 2 if the closed monotonicity
condition holds for any pair of actions (i, j) in which at least one of i and j is among
the top L actions.3 Top-L monotonic maximin is defined analogously. For the corre-
sponding computational problem, we only need to solve n!

(n−L)! LPs, one for each way
of selecting an ordered L-tuple from n actions as the top L actions. This number of LPs
is polynomial when L is fixed to be a constant.

3 The notion of top L actions is well-defined: we do not need to consider the case of ties, by the
same argument as in Proposition 7.
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Proposition 9. For constant L, top-L monotonic maximin can be computed in time
polynomial in n, m, and the number of constraints that define X .

5 Structure of Monotonic Maximin Solutions

5.1 Extreme Points of the Set of Monotonic Follower Strategies

Givenx, the attacker’s feasible regionQ(x) is a polytope. Consider the inner minimiza-
tion problem miny∈Q(x)x

TAy. Since the objective is linear, it is sufficient to consider
only vertices of the polytope Q(x). These vertices correspond to points y for which a
sufficient number of inequalities of Q(x) become tight. The inequalities of Q(x) are of
the form yi ≥ 0 and yi ≥ yj . Therefore, we have the following:

Lemma 1. Let y be a vertex of the polytope Q(x). Then each action that is played with
positive probability in y is played with equal probability.

Thus a vertex is specified by a support set R ⊆ [n], which is the set of attacker actions
played with positive probability. Given R, the vertex yR has yRi = 0 for all i �∈ R, and
yRi = 1/|R| for i ∈ R.

The support set R of a vertex of Q(x) has the following properties:

1. All best responses of the follower are required to be in R.
2. If i ∈ R then all pure strategies that are better for the follower than i are also in R.
3. Since x induces a total ordering on [n] of the follower expected utilities, there exists

an action j ∈ [n] such that i ∈ R iff xTBi ≥ xTBj . We call such an action j a
threshold action.

In other words, given x, threshold action determines the support set. Since there
are at most n possible threshold actions, we have the following characterization of the
polytope Q(x):

Proposition 10. Q(x) has at most n vertices, each of which is specified by a threshold
action.

These vertices correspond to uniform top K strategies for various K (recall that these
are strategies in which the top K actions in terms of expected utilities are played, each
with equal probability of 1/K). This ranges from the “rational” uniform best response
strategy, to the completely mixed uniform random strategy.

5.2 Proof of Proposition 5

In this section, we give a proof of Proposition 5, making use of the structure of Q(x)
that we showed in Section 5.1.

Proof (of Proposition 5). Recall that given x ∈ X , Proposition 5 asks for a
regular quantal response function P such that P (xTB) is arbitrarily close to
argminy∈Q(x) x

TAy. Given x, we know that at least one attacker strategy in
argminy∈Q(x) x

TAy is a vertex of Q(x), and is therefore a uniform top-K strategy
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for some K . Now fix this K , and consider an attacker who plays the uniform top-K
strategy against any x. Since the top K actions depends only on the attacker utilities
xTB, this defines a response function P ′. However, P ′ does not satisfy interiority and
continuity. We instead consider Pλ, a smooth version of P ′, defined as follows: given a
vector of expected utilities u ∈ Rn, Pλ first selects a subset S of K actions according
to the probability distribution

Pr(S) =
eλ

∑
j∈S uj

∑

S′⊂[n]:|S′|=K eλ
∑

j′∈S′ uj′
,

then randomize uniformly over the K selected actions. For any λ > 0, Pλ is a response
function satisfying monotonicity, interiority, continuity and responsiveness. As we take
λ → ∞, Pλ becomes arbitrarily close to P .

6 Evaluation

We ran computational experiments to compare the performance of monotonic maximin
and its variants (top-L monotonic maximin) against other previously-proposed solution
concepts, including Strong Stackelberg Equilibrium (SSE), MATCH [15], maximin,
and logit Quantal Response. Both the solution quality and the runtime performance are
examined, on instances of Stackelberg security games across a wide range of number
of targets and number of defender resources.

6.1 Payoff Structures

The performances of solution concepts are affected by payoffs of the game. In partic-
ular, it is known that for zero-sum games, SSE, MATCH and maximin solutions coin-
cide [15]; indeed monotonic maximin also coincides with maximin for zero-sum games
(Proposition 2). We generated payoff structures for Stackelberg security games with
different covariance values, by adapting the covariance game generator of the GAMUT
package. The covariance value r, which is chosen within the range [−1.0, 0.0], mea-
sures the correlation between the defender’s payoff and the adversary’s payoff. For
example, when r = −1.0, the game becomes zero-sum whereas there will be no corre-
lation between the defender and the adversary’s payoffs when r = 0.0. The rewards for
success of both the defender and the adversary are positive integers which lie within the
range [1, 10]. On the other hand, the penalties for failure are negative integers within
the range [−10,−1].

6.2 Solution Quality against Worst-Case Monotonic Attackers

In the first set of experiments, we compared the solution quality (i.e., defender expected
utility) of the different solution concepts against the worst-case closedly monotonic
attacker. That is, given a defender strategy x provided by one of the solution concepts,
the attacker chooses y ∈ argminy∈Q(x) x

TAy. We would expect monotonic maximin
to achieve the best performance, since it is by definition the optimal solution in this
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(a) 6 Targets, 3 Defender Resources (b) 8 Targets, 3 Defender Resources

Fig. 1. The defender expected utility against the monotonic adversary, exact payoff structures

measure. The purpose of these experiments is to observe the magnitudes of differences
in performance between monotonic maximin and others, and to check whether our top-
L monotonic maximin algorithms provide good approximations to monotonic maximin.
Specifically, we compared the performances among monotonic maximin, top-3, top-2,
top-1 monotonic maximin, Maximin, MATCH, SSE, and logit Quantal Response. For
logit Quantal Response, we tried a number of different values for λ, ranging from 1/32
to 8, but will only present the results for the best-performing value, which is λ = 0.5.
The results for 6-target and 8-target games with 3 defender resources are shown in
Figure 1. The x-axis represents the covariance value ranging from 0 to -0.8 with the step
size of 0.4 while the y-axis shows the average of the defender expected utility when the
adversary chooses the worst monotonic strategy. These computed values are averaged
across 200 generated payoff structures for each covariance value, and error bars indicate
standard deviations. As shown in Figure 1, monotonic maximin obtains a much higher
defender’s expected utility than Maximin, MATCH, SSE, and logit Quantal Response.
In particular, for logit Quantal Response, even though the key parameter λ is carefully
selected, it still performs poorly in comparison with monotonic maximin, implying its
non-robustness against a monotonic adversary. For example, in the case of 6 targets
and 3 resources (Figure 1a), when the covariance r = 0, while the defender achieves
an average of expected utility of 0.37 using monotonic maximin, her expected utility
is only -0.026, 0.007, 0.029, and 0.099 when using Maximin, MATCH, SSE, and logit
Quantal Response, respectively. Furthermore, Figure 1 shows that top-1, top-2, and top-
3 also significantly outperform Maximin, MATCH, SSE, and Quantal Response while
their performance is in turn closer to monotonic maximin when the number of targets
in the top set increases.

As predicted, when the games are zero-sum games (i.e., r = −1.0), the defender
strategies generated by all algorithms excepts for Quantal Response turn out to be the
same. In addition, as shown in Figure 1, when the covariance value r is closer to -1, the
differences in defender expected utilities obtained by the compared algorithms tend to
be smaller. Indeed, we observed that when the games are close to zero-sum games, the
defender strategies generated by the algorithms are similar, thus the difference in their
performances becomes small.

The promising performance of our algorithms in the case of small games motivated
us to investigate their performance in larger games. In the next experiment, we evaluated
the performance of top-1, top-2, and top-3 as well as Maximin, MATCH, SSE, and
Quantal Response in 12-target and 14-target games with 6 defender resources. In this
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(a) 12 Targets, 6 Defender Resources (b) 14 Targets, 6 Defender Resources

Fig. 2. The defender expected utility against the monotonic adversary, large games

(a) 12 Targets, 6 Defender Resources (b) 14 Targets, 6 Defender Resources

Fig. 3. Comparison results between the monotonic adversary and the expected adversary

experiment, we did not examine monotonic maximin due to its runtime limitation which
we will describe in detail later. The results are shown in Figure 2. For each covariance
value, 50 payoff structures are generated.

Figure 2 clearly shows that our top-L monotonic maximin algorithms with L = 1, 2,
3 outperform Maximin, MATCH, SSE, and logit Quantal Response in terms of the ob-
tained defender expected utility. For example, in Figure 2b, when the covariance value
r = 0, the defender expected utility obtained by top-3, top-2, and top-1 are in turn -0.48,
-0.51, and -0.54 while the defender expected utility obtained by Maximin, MATCH,
SSE, and logit Quantal Response are -0.61, -0.65, -0.69, and -0.58, respectively. This
result demonstrates that our algorithms still perform much better than the other com-
pared algorithms in large game scenarios. It also suggests that our top-L algorithm is a
promising approach for handling monotonic adversaries in large games.

In this paper we have argued that previous algorithms such as SSE and logit Quantal
Response are not robust because such algorithms only attempt to address a specific type
of adversary which could lead to deterioration in their performance when their assump-
tions are inaccurate. To check whether this is confirmed by our experiments, for both
SSE and logit Quantal Response we compared the defender’s expected utility of the
expected objective (assuming correct model) and the expected utility against the worst
case monotonic adversary. As shown in Figure 3, these two algorithms’ performance
against the monotonic adversary is significantly worse than the performance that they
expected. For example, in Figure 3a, when the covariance r = 0, Quantal Response
obtains the defender expected utility of only 0.05 against the worst case monotonic ad-
versary while its expected objective value is 0.67. Also, SSE obtains only -0.05 against
the worst case monotonic adversary while its expected value is 4.09.
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6.3 Solution Quality against Non-monotonic Attackers

In the second set of experiments, we compared the solution concepts when the attacker
is playing a non-monotonic strategy. The motivation for such experiments is that unlike
the setting of our previous experiment, in practice our estimates about the payoffs of the
adversary may be inaccurate. Recall from Section 3.3 that monotonicity is generally not
preserved under payoff uncertainty, even if the payoff noise is zero-mean and i.i.d.

We added i.i.d. zero-mean noise to the reward and penalty of the adversary at ev-
ery target, and calculated defender expected utilities given that the adversary responds
with the worst-case monotonic strategy in each of the perturbed games. The defender
computes her strategy with respect to the non-perturbed game. Specifically, the noise
distribution we used is a uniform mixture of 10 Gaussians with zero mean and standard
deviation values from 0.01 to 0.10 with a step size of 0.01. We used 6-target and 8-
target games with 3 defender resources for evaluating the performance of the compared
algorithms, and showed the results according to different covariance values r. For each
covariance value, 50 payoff structures are generated; for each payoff structure, for each
of the 10 standard deviation values, 100 samples of the adversary’s payoff noise are
drawn from a zero-mean Gaussian distribution with the corresponding standard devia-
tion. That is, 50 x 10 x 100 = 50000 samples are generated for each covariance value.
The result is shown in Figure 4, in which we plot the average defender expected utility
across all noisy samples. As shown in Figure 4, monotonic maximin still outperforms
the other compared algorithms although the differences are smaller than in the previous
experiment with exact payoffs for the adversary. In addition, the top-L monotonic max-
imin algorithms with L = 1, 2, and 3 also obtained higher defender expected utilities
than Maximin, MATCH, and SSE. This result indicates that our algorithms are robust
to some amount of noise in the adversary’s payoffs, even when such noise induces non-
monotonic behavior from the adversary.

On the other hand, as we increase the magnitude (i.e., standard deviation) of noise,
monotonic maximin no longer has a significant advantage over the previous solution
concepts. Intuitively, as the noise becomes larger, the resulting average strategy of the
attacker becomes farther away from the set of monotonic strategies, which are the strate-
gies that monotonic maximin is designed to be robust against.

(a) 6 Targets, 3 Defender Resources (b) 8 Targets, 3 Defender Resources

Fig. 4. The defender expected utility against the monotonic adversary, uncertainty in the adver-
sary’s payoffs
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6.4 Runtime Performance

Finally, we tested the runtime scaling behavior of the algorithms. The results are shown
in Figure 5. Figure 5a shows the runtime comparison between monotonic maximin,
top-3, top-2, top-1, Maximin, MATCH, and SSE (as implemented by the ERASER
algorithm [9]) in small games, i.e., 5-10 target games with 3 defender resources. The
x-axis indicates the number of targets and the y-axis shows the average runtime in
seconds for each algorithm to compute the defender’s strategy given a payoff structure.
The runtime is averaged over 300 different payoff structures. As shown in this figure,
monotonic maximin’s runtime grows very quickly with regard to the number of targets
compared to other algorithms. When the number of targets increases to 10, its runtime
reaches 446 seconds while top-3, top-2, and top-1 require only 11.91 seconds, 1.53
seconds, and 0.19 seconds, respectively. In this case, it takes Maximin, MATCH, and
SSE only 0.02 seconds, 0.1 seconds, and 0.1 seconds, respectively.

In figure 5b, the runtime of top-3, top-2, top-1, Maximin, MATCH, and SSE in large
game scenarios (i.e., 10-70 targets and 6 defender resources) are illustrated. This figure
shows that when the number of targets is up to 20 targets, the runtime of top-3 increases
to 146.49 seconds. In the case of 70 targets, top-2’s runtime reaches 99.68 seconds while
the runtime of top-1 is about 1.83 seconds, and the runtime of Maximin, MATCH, and
SSE are all less than 1 second.

Overall, monotonic maximin and its variants have been shown to outperform
Maximin, MATCH, logit QR and SSE in various game settings, i.e., different number
of targets and different number of defender resources, and different groups of payoff
structures with corresponding covariance values. In terms of scalability, even though
our algorithms are not as fast as algorithms for these existing solution concepts, we
have shown that our approach (especially top-L monotonic maximin) is feasible for
large game scenarios. Among different variants of monotonic maximin, there is a trade-
off between solution quality and runtime performance.

(a) 5-10 Targets, 3 Defender Resources (b) 10-70 Targets, 6 Defender Resources

Fig. 5. Runtime comparison

7 Conclusion and Future Work

We proposed monotonic maximin, a novel robust solution concept for Stackelberg
games with boundedly rational followers. We showed both theoretically and through
numerical experiments on security games that monotonic maximin provides defender
strategies that are robust against all regular quantal response attackers.
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Our work points the way to a variety of new research challenges and potential fu-
ture directions, including extending our robust optimization approach to other behavior
models such as risk averseness, as well as applying the solution concept to games with
multiple followers.
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